Lombarts, Kiki M J M H; Heineman, Maas Jan; Scherpbier, Albert J J A; Arah, Onyebuchi A
2014-01-01
To understand teaching performance of individual faculty, the climate in which residents' learning takes place, the learning climate, may be important. There is emerging evidence that specific climates do predict specific outcomes. Until now, the effect of learning climate on the performance of the individual faculty who actually do the teaching was unknown. THIS STUDY: (i) tested the hypothesis that a positive learning climate was associated with better teaching performance of individual faculty as evaluated by residents, and (ii) explored which dimensions of learning climate were associated with faculty's teaching performance. We conducted two cross-sectional questionnaire surveys amongst residents from 45 residency training programs and multiple specialties in 17 hospitals in the Netherlands. Residents evaluated the teaching performance of individual faculty using the robust System for Evaluating Teaching Qualities (SETQ) and evaluated the learning climate of residency programs using the Dutch Residency Educational Climate Test (D-RECT). The validated D-RECT questionnaire consisted of 11 subscales of learning climate. Main outcome measure was faculty's overall teaching (SETQ) score. We used multivariable adjusted linear mixed models to estimate the separate associations of overall learning climate and each of its subscales with faculty's teaching performance. In total 451 residents completed 3569 SETQ evaluations of 502 faculty. Residents also evaluated the learning climate of 45 residency programs in 17 hospitals in the Netherlands. Overall learning climate was positively associated with faculty's teaching performance (regression coefficient 0.54, 95% confidence interval: 0.37 to 0.71; P<0.001). Three out of 11 learning climate subscales were substantially associated with better teaching performance: 'coaching and assessment', 'work is adapted to residents' competence', and 'formal education'. Individual faculty's teaching performance evaluations are positively affected by better learning climate of residency programs.
Self-regulated learning processes of medical students during an academic learning task.
Gandomkar, Roghayeh; Mirzazadeh, Azim; Jalili, Mohammad; Yazdani, Kamran; Fata, Ladan; Sandars, John
2016-10-01
This study was designed to identify the self-regulated learning (SRL) processes of medical students during a biomedical science learning task and to examine the associations of the SRL processes with previous performance in biomedical science examinations and subsequent performance on a learning task. A sample of 76 Year 1 medical students were recruited based on their performance in biomedical science examinations and stratified into previous high and low performers. Participants were asked to complete a biomedical science learning task. Participants' SRL processes were assessed before (self-efficacy, goal setting and strategic planning), during (metacognitive monitoring) and after (causal attributions and adaptive inferences) their completion of the task using an SRL microanalytic interview. Descriptive statistics were used to analyse the means and frequencies of SRL processes. Univariate and multiple logistic regression analyses were conducted to examine the associations of SRL processes with previous examination performance and the learning task performance. Most participants (from 88.2% to 43.4%) reported task-specific processes for SRL measures. Students who exhibited higher self-efficacy (odds ratio [OR] 1.44, 95% confidence interval [CI] 1.09-1.90) and reported task-specific processes for metacognitive monitoring (OR 6.61, 95% CI 1.68-25.93) and causal attributions (OR 6.75, 95% CI 2.05-22.25) measures were more likely to be high previous performers. Multiple analysis revealed that similar SRL measures were associated with previous performance. The use of task-specific processes for causal attributions (OR 23.00, 95% CI 4.57-115.76) and adaptive inferences (OR 27.00, 95% CI 3.39-214.95) measures were associated with being a high learning task performer. In multiple analysis, only the causal attributions measure was associated with high learning task performance. Self-efficacy, metacognitive monitoring and causal attributions measures were associated positively with previous performance. Causal attributions and adaptive inferences measures were associated positively with learning task performance. These findings may inform remediation interventions in the early years of medical school training. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Nikouei Mahani, Mohammad-Ali; Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid
2016-01-01
In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode.
ERIC Educational Resources Information Center
Neroni, Joyce; Gijselaers, Hieronymus J. M.; Kirschner, Paul A.; Groot, Renate H. M.
2015-01-01
Learning is crucial for everyone. The association between biological (eg, sleep, nutrition) and psychological factors (eg, test anxiety, goal orientation) and learning performance has been well established for children, adolescents and college students in traditional education. Evidence for these associations for adult distance students is lacking…
Jokisch, Daniel; Roser, Patrik; Juckel, Georg; Daum, Irene; Bellebaum, Christian
2014-07-01
Excessive alcohol consumption has been linked to structural and functional brain changes associated with cognitive, emotional, and behavioral impairments. It has been suggested that neural processing in the reward system is also affected by alcoholism. The present study aimed at further investigating reward-based associative learning and reversal learning in detoxified alcohol-dependent patients. Twenty-one detoxified alcohol-dependent patients and 26 healthy control subjects participated in a probabilistic learning task using monetary and alcohol-associated rewards as feedback stimuli indicating correct responses. Performance during acquisition and reversal learning in the different feedback conditions was analyzed. Alcohol-dependent patients and healthy control subjects showed an increase in learning performance over learning blocks during acquisition, with learning performance being significantly lower in alcohol-dependent patients. After changing the contingencies, alcohol-dependent patients exhibited impaired reversal learning and showed, in contrast to healthy controls, different learning curves for different types of rewards with no increase in performance for high monetary and alcohol-associated feedback. The present findings provide evidence that dysfunctional processing in the reward system in alcohol-dependent patients leads to alterations in reward-based learning resulting in a generally reduced performance. In addition, the results suggest that alcohol-dependent patients are, in particular, more impaired in changing an established behavior originally reinforced by high rewards. Copyright © 2014 by the Research Society on Alcoholism.
Nawroth, Christian; Prentice, Pamela M; McElligott, Alan G
2017-01-01
Variation in common personality traits, such as boldness or exploration, is often associated with risk-reward trade-offs and behavioural flexibility. To date, only a few studies have examined the effects of consistent behavioural traits on both learning and cognition. We investigated whether certain personality traits ('exploration' and 'sociability') of individuals were related to cognitive performance, learning flexibility and learning style in a social ungulate species, the goat (Capra hircus). We also investigated whether a preference for feature cues rather than impaired learning abilities can explain performance variation in a visual discrimination task. We found that personality scores were consistent across time and context. Less explorative goats performed better in a non-associative cognitive task, in which subjects had to follow the trajectory of a hidden object (i.e. testing their ability for object permanence). We also found that less sociable subjects performed better compared to more sociable goats in a visual discrimination task. Good visual learning performance was associated with a preference for feature cues, indicating personality-dependent learning strategies in goats. Our results suggest that personality traits predict the outcome in visual discrimination and non-associative cognitive tasks in goats and that impaired performance in a visual discrimination tasks does not necessarily imply impaired learning capacities, but rather can be explained by a varying preference for feature cues. Copyright © 2016 Elsevier B.V. All rights reserved.
Color-dependent learning in restrained Africanized honey bees.
Jernigan, C M; Roubik, D W; Wcislo, W T; Riveros, A J
2014-02-01
Associative color learning has been demonstrated to be very poor using restrained European honey bees unless the antennae are amputated. Consequently, our understanding of proximate mechanisms in visual information processing is handicapped. Here we test learning performance of Africanized honey bees under restrained conditions with visual and olfactory stimulation using the proboscis extension response (PER) protocol. Restrained individuals were trained to learn an association between a color stimulus and a sugar-water reward. We evaluated performance for 'absolute' learning (learned association between a stimulus and a reward) and 'discriminant' learning (discrimination between two stimuli). Restrained Africanized honey bees (AHBs) readily learned the association of color stimulus for both blue and green LED stimuli in absolute and discriminatory learning tasks within seven presentations, but not with violet as the rewarded color. Additionally, 24-h memory improved considerably during the discrimination task, compared with absolute association (15-55%). We found that antennal amputation was unnecessary and reduced performance in AHBs. Thus color learning can now be studied using the PER protocol with intact AHBs. This finding opens the way towards investigating visual and multimodal learning with application of neural techniques commonly used in restrained honey bees.
Raine, Nigel E.; Chittka, Lars
2012-01-01
Potential trade-offs between learning speed and memory-related performance could be important factors in the evolution of learning. Here, we test whether rapid learning interferes with the acquisition of new information using a reversal learning paradigm. Bumblebees (Bombus terrestris) were trained to associate yellow with a floral reward. Subsequently the association between colour and reward was reversed, meaning bees then had to learn to visit blue flowers. We demonstrate that individuals that were fast to learn yellow as a predictor of reward were also quick to reverse this association. Furthermore, overnight memory retention tests suggest that faster learning individuals are also better at retaining previously learned information. There is also an effect of relatedness: colonies whose workers were fast to learn the association between yellow and reward also reversed this association rapidly. These results are inconsistent with a trade-off between learning speed and the reversal of a previously made association. On the contrary, they suggest that differences in learning performance and cognitive (behavioural) flexibility could reflect more general differences in colony learning ability. Hence, this study provides additional evidence to support the idea that rapid learning and behavioural flexibility have adaptive value. PMID:23028779
Dissociation of visual associative and motor learning in Drosophila at the flight simulator.
Wang, Shunpeng; Li, Yan; Feng, Chunhua; Guo, Aike
2003-08-29
Ever since operant conditioning was studied experimentally, the relationship between associative learning and possible motor learning has become controversial. Although motor learning and its underlying neural substrates have been extensively studied in mammals, it is still poorly understood in invertebrates. The visual discriminative avoidance paradigm of Drosophila at the flight simulator has been widely used to study the flies' visual associative learning and related functions, but it has not been used to study the motor learning process. In this study, newly-designed data analysis was employed to examine the flies' solitary behavioural variable that was recorded at the flight simulator-yaw torque. Analysis was conducted to explore torque distributions of both wild-type and mutant flies in conditioning, with the following results: (1) Wild-type Canton-S flies had motor learning performance in conditioning, which was proved by modifications of the animal's behavioural mode in conditioning. (2) Repetition of training improved the motor learning performance of wild-type Canton-S flies. (3) Although mutant dunce(1) flies were defective in visual associative learning, they showed essentially normal motor learning performance in terms of yaw torque distribution in conditioning. Finally, we tentatively proposed that both visual associative learning and motor learning were involved in the visual operant conditioning of Drosophila at the flight simulator, that the two learning forms could be dissociated and they might have different neural bases.
Bitran, Marcela; Lafuente, Montserrat; Zúñiga, Denisse; Viviani, Paola; Mena, Beltrán
2004-09-01
The degree of difficulty we experience while learning different concepts and skills depends, among other things, on our psychological features and learning style. This may be particularly true for medical students, whose formation involves the acquisition of multiple cognitive, affective and psychomotor skills. To assess whether the psychological features and learning styles of medical students are associated with their academic performance. The psychological preferences and learning styles of 66 students of the 2001-graduating cohort were determined with the Myers Briggs Type Inventory (MBTI) and the Kolb Learning Style Inventory (LSI), respectively. The academic performance was assessed by the Calificación Médica Nacional (CMN), Chile and by the marks obtained during the Basic (1st to 3rd), Preclinical (4th and 5th) and Clinical (6th and 7th) years of undergraduate training. The psychological features, together with the sex of students were found to be associated with the performance in the Preclinical and Clinical years, and to the CMN. In men, the interest and ability to communicate with people and the concern for harmony, and in women the tendency to function in a systematic and orderly way are the features associated to high academic performance. No associations were found between learning styles and academic performance. The finding that the psychological preferences of medical students are relevent to their academic performance opens a new perspective to analyze the medical education and to design programs aimed at improving learning.
Shephard, E; Jackson, G M; Groom, M J
2014-01-01
This study examined neurocognitive differences between children and adults in the ability to learn and adapt simple stimulus-response associations through feedback. Fourteen typically developing children (mean age=10.2) and 15 healthy adults (mean age=25.5) completed a simple task in which they learned to associate visually presented stimuli with manual responses based on performance feedback (acquisition phase), and then reversed and re-learned those associations following an unexpected change in reinforcement contingencies (reversal phase). Electrophysiological activity was recorded throughout task performance. We found no group differences in learning-related changes in performance (reaction time, accuracy) or in the amplitude of event-related potentials (ERPs) associated with stimulus processing (P3 ERP) or feedback processing (feedback-related negativity; FRN) during the acquisition phase. However, children's performance was significantly more disrupted by the reversal than adults and FRN amplitudes were significantly modulated by the reversal phase in children but not adults. These findings indicate that children have specific difficulties with reinforcement learning when acquired behaviours must be altered. This may be caused by the added demands on immature executive functioning, specifically response monitoring, created by the requirement to reverse the associations, or a developmental difference in the way in which children and adults approach reinforcement learning. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sometimes-Competing Retrieval (SOCR): A Formalization of the Comparator Hypothesis
ERIC Educational Resources Information Center
Stout, Steven C.; Miller, Ralph R.
2007-01-01
Cue competition is one of the most studied phenomena in associative learning. However, a theoretical disagreement has long stood over whether it reflects a learning or performance deficit. The comparator hypothesis, a model of expression of Pavlovian associations, posits that learning is not subject to competition but that performance reflects a…
Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N
2016-01-04
The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.
Veit, Lena; Pidpruzhnykova, Galyna; Nieder, Andreas
2015-01-01
The ability to form associations between behaviorally relevant sensory stimuli is fundamental for goal-directed behaviors. We investigated neuronal activity in the telencephalic area nidopallium caudolaterale (NCL) while two crows (Corvus corone) performed a delayed association task. Whereas some paired associates were familiar to the crows, novel associations had to be learned and mapped to the same target stimuli within a single session. We found neurons that prospectively encoded the chosen test item during the delay for both familiar and newly learned associations. These neurons increased their selectivity during learning in parallel with the crows' increased behavioral performance. Thus, sustained activity in the NCL actively processes information for the upcoming behavioral choice. These data provide new insights into memory representations of behaviorally meaningful stimuli in birds, and how such representations are formed during learning. The findings suggest that the NCL plays a role in learning arbitrary associations, a cornerstone of corvids’ remarkable behavioral flexibility and adaptability. PMID:26598669
Gross, M Melissa; Wright, Mary C; Anderson, Olivia S
2017-09-01
Research on the benefits of visual learning has relied primarily on lecture-based pedagogy, but the potential benefits of combining active learning strategies with visual and verbal materials on learning anatomy has not yet been explored. In this study, the differential effects of text-based and image-based active learning exercises on examination performance were investigated in a functional anatomy course. Each class session was punctuated with an average of 12 text-based and image-based active learning exercises. Participation data from 231 students were compared with their examination performance on 262 questions associated with the in-class exercises. Students also rated the helpfulness and difficulty of the in-class exercises on a survey. Participation in the active learning exercises was positively correlated with examination performance (r = 0.63, P < 0.001). When controlling for other key demographics (gender, underrepresented minority status) and prior grade point average, participation in the image-based exercises was significantly correlated with performance on examination questions associated with image-based exercises (P < 0.001) and text-based exercises (P < 0.01), while participation in text-based exercises was not. Additionally, students reported that the active learning exercises were helpful for seeing images of key ideas (94%) and clarifying key course concepts (80%), and that the image-based exercises were significantly less demanding, less hard and required less effort than text-based exercises (P < 0.05). The findings confirm the positive effect of using images and active learning strategies on student learning, and suggest that integrating them may be especially beneficial for learning anatomy. Anat Sci Educ 10: 444-455. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
The Role of Prefrontal Dopamine D1 Receptors in the Neural Mechanisms of Associative Learning
Puig, M. Victoria; Miller, Earl K.
2013-01-01
Summary Dopamine is thought to play a major role in learning. However, while dopamine D1 receptors (D1Rs) in the prefrontal cortex (PFC) have been shown to modulate working memory-related neural activity, their role in the cellular basis of learning is unknown. We recorded activity from multiple electrodes while injecting the D1R antagonist SCH23390 in the lateral PFC as monkeys learned visuomotor associations. Blocking D1Rs impaired learning of novel associations and decreased cognitive flexibility, but spared performance of already familiar associations. This suggests a greater role for prefrontal D1Rs in learning new, than performing familiar, associations. There was a corresponding greater decrease in neural selectivity and increase in alpha and beta oscillations in local field potentials for novel than familiar associations. Our results suggest that weak stimulation of D1Rs observed in aging and psychiatric disorders may impair learning and PFC function by reducing neural selectivity and exacerbating neural oscillations associated with inattention and cognitive deficits. PMID:22681691
Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo
2016-01-01
Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632
Strategies in probabilistic feedback learning in Parkinson patients OFF medication.
Bellebaum, C; Kobza, S; Ferrea, S; Schnitzler, A; Pollok, B; Südmeyer, M
2016-04-21
Studies on classification learning suggested that altered dopamine function in Parkinson's Disease (PD) specifically affects learning from feedback. In patients OFF medication, enhanced learning from negative feedback has been described. This learning bias was not seen in observational learning from feedback, indicating different neural mechanisms for this type of learning. The present study aimed to compare the acquisition of stimulus-response-outcome associations in PD patients OFF medication and healthy control subjects in active and observational learning. 16 PD patients OFF medication and 16 controls were examined with three parallel learning tasks each, two feedback-based (active and observational) and one non-feedback-based paired associates task. No acquisition deficit was seen in the patients for any of the tasks. More detailed analyses on the learning strategies did, however, reveal that the patients showed more lose-shift responses during active feedback learning than controls, and that lose-shift and win-stay responses more strongly determined performance accuracy in patients than controls. For observational feedback learning, the performance of both groups correlated similarly with the performance in non-feedback-based paired associates learning and with the accuracy of observed performance. Also, patients and controls showed comparable evidence of feedback processing in observational learning. In active feedback learning, PD patients use alternative learning strategies than healthy controls. Analyses on observational learning did not yield differences between patients and controls, adding to recent evidence of a differential role of the human striatum in active and observational learning from feedback. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Roebke, Patrick V; Vadhan, Nehal P; Brooks, Daniel J; Levin, Frances R
2014-07-01
Both individuals with marijuana use and depressive disorders exhibit verbal learning and memory decrements. This study investigated the interaction between marijuana dependence and depression on learning and memory performance. The California Verbal Learning Test-Second Edition (CVLT-II) was administered to depressed (n = 71) and non-depressed (n = 131) near-daily marijuana users. The severity of depressive symptoms was measured by the self-rated Beck Depression Inventory (BDI-II) and the clinician-rated Hamilton Depression Rating Scale (HAM-D). Multivariate analyses of covariance statistics (MANCOVA) were employed to analyze group differences in cognitive performance. Pearson's correlation coefficients were calculated to examine the relative associations between marijuana use, depression and CVLT-II performance. Findings from each group were compared to published normative data. Although both groups exhibited decreased CVLT-II performance relative to the test's normative sample (p < 0.05), marijuana-dependent subjects with a depressive disorder did not perform differently than marijuana-dependent subjects without a depressive disorder (p > 0.05). Further, poorer CVLT-II performance was modestly associated with increased self-reported daily amount of marijuana use (corrected p < 0.002), but was not significantly associated with increased scores on measures of depressive symptoms (corrected p > 0.002). These findings suggest an inverse association between marijuana use and verbal learning function, but not between depression and verbal learning function in regular marijuana users.
Wayne, Sharon J; Fortner, Sally A; Kitzes, Judith A; Timm, Craig; Kalishman, Summers
2013-05-01
A school's learning environment is believed to influence academic performance yet few studies have evaluated this association controlling for prior academic ability, an important factor since students who do well in school tend to rate their school's environment more highly than students who are less academically strong. To evaluate the effect of student perception of the learning environment on their performance on a standardized licensing test while controlling for prior academic ability. We measured perception of the learning environment after the first year of medical school in 267 students from five consecutive classes and related that measure to performance on United States Medical Licensing Examination (USMLE) Step 1, taken approximately six months later. We controlled for prior academic performance by including Medical College Admission Test score and undergraduate grade point average in linear regression models. Three of the five learning environment subscales were statistically associated with Step 1 performance (p < 0.05): meaningful learning environment, emotional climate, and student-student interaction. A one-point increase in the rating of the subscales (scale of 1-4) was associated with increases of 6.8, 6.6, and 4.8 points on the Step 1 exam. Our findings provide some evidence for the widely held assumption that a positively perceived learning environment contributes to better academic performance.
O'Mahony, Siobhain M; Sbayeh, Amgad; Horgan, Mary; O'Flynn, Siun; O'Tuathaigh, Colm M P
2016-07-08
An improved understanding of the relationship between anatomy learning performance and approaches to learning can lead to the development of a more tailored approach to delivering anatomy teaching to medical students. This study investigated the relationship between learning style preferences, as measured by Visual, Aural, Read/write, and Kinesthetic (VARK) inventory style questionnaire and Honey and Mumford's learning style questionnaire (LSQ), and anatomy and clinical skills assessment performance at an Irish medical school. Additionally, mode of entry to medical school [undergraduate/direct-entry (DEM) vs. graduate-entry (GEM)], was examined in relation to individual learning style, and assessment results. The VARK and LSQ were distributed to first and second year DEM, and first year GEM students. DEM students achieved higher clinical skills marks than GEM students, but anatomy marks did not differ between each group. Several LSQ style preferences were shown to be weakly correlated with anatomy assessment performance in a program- and year-specific manner. Specifically, the "Activist" style was negatively correlated with anatomy scores in DEM Year 2 students (rs = -0.45, P = 0.002). The "Theorist" style demonstrated a weak correlation with anatomy performance in DEM Year 2 (rs = 0.18, P = 0.003). Regression analysis revealed that, among the LSQ styles, the "Activist" was associated with poorer anatomy assessment performance (P < 0.05), while improved scores were associated with students who scored highly on the VARK "Aural" modality (P < 0.05). These data support the contention that individual student learning styles contribute little to variation in academic performance in medical students. Anat Sci Educ 9: 391-399. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
Team-Based Learning Enhances Performance in Introductory Biology
ERIC Educational Resources Information Center
Carmichael, Jeffrey
2009-01-01
Given the problems associated with the traditional lecture method, the constraints associated with large classes, and the effectiveness of active learning, continued development and testing of efficient student-centered learning approaches are needed. This study explores the effectiveness of team-based learning (TBL) in a large-enrollment…
Musicians' edge: A comparison of auditory processing, cognitive abilities and statistical learning.
Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Demuth, Katherine; Arciuli, Joanne
2016-12-01
It has been hypothesized that musical expertise is associated with enhanced auditory processing and cognitive abilities. Recent research has examined the relationship between musicians' advantage and implicit statistical learning skills. In the present study, we assessed a variety of auditory processing skills, cognitive processing skills, and statistical learning (auditory and visual forms) in age-matched musicians (N = 17) and non-musicians (N = 18). Musicians had significantly better performance than non-musicians on frequency discrimination, and backward digit span. A key finding was that musicians had better auditory, but not visual, statistical learning than non-musicians. Performance on the statistical learning tasks was not correlated with performance on auditory and cognitive measures. Musicians' superior performance on auditory (but not visual) statistical learning suggests that musical expertise is associated with an enhanced ability to detect statistical regularities in auditory stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.
D'Agostino, Justin; Cunningham, Clare
2015-08-01
Previous studies in learning set formation have shown that most animal species can learn to learn with subsequent novel presentations being solved in fewer presentations than when they first encounter a task. Gibbons (Hylobatidae) have generally struggled with these tasks and do not show the learning to learn pattern found in other species. This is surprising given their phylogenetic position and level of cortical development. However, there have been conflicting results with some studies demonstrating higher level learning abilities in these small apes. This study attempts to clarify whether gibbons can in fact use knowledge gained during one learning task to facilitate performance on a similar, but novel problem that would be a precursor to development of a learning set. We tested 16 captive gibbons' ability to associate color cues with provisioned food items in two experiments where they experienced a period of learning followed by experimental trials during which they could potentially use knowledge gained in their first learning experience to facilitate solution I subsequent novel tasks. Our results are similar to most previous studies in that there was no evidence of gibbons being able to use previously acquired knowledge to solve a novel task. However, once the learning association was made, the gibbons performed well above chance. We found no differences across color associations, indicating learning was not affected by the particular color / reward association. However, there were variations in learning performance with regard to genera. The hoolock (Hoolock leuconedys) and siamang (Symphalangus syndactylus) learned the fastest and the lar group (Hylobates sp.) learned the slowest. We caution these results could be due to the small sample size and because of the captive environment in which these gibbons were raised. However, it is likely that environmental variability in the native habitats of the subjects tested could facilitate the evolution of flexible learning in some genera. Further comparative study is necessary in order to incorporate realistic cognitive variables into foraging models. © 2015 Wiley Periodicals, Inc.
Roebke, Patrick V.; Vadhan, Nehal P.; Brooks, Daniel J.; Levin, Frances R.
2014-01-01
Background: Both individuals with marijuana use and depressive disorders exhibit verbal learning and memory decrements. Objectives: This study investigated the interaction between marijuana dependence and depression on learning and memory performance. Methods: The California Verbal Learning Test – Second Edition (CVLT-II) was administered to depressed (n=71) and non-depressed (n=131) near-daily marijuana users. The severity of depressive symptoms was measured by the self-rated Beck Depression Inventory (BDI-II) and the clinician-rated Hamilton Depression Rating Scale (HAM-D). Multivariate analyses of covariance statistics (MANCOVA) were employed to analyze group differences in cognitive performance. Pearson’s correlation coefficients were calculated to examine the relative associations between marijuana use, depression and CVLT-II performance. Findings from each group were compared to published normative data. Results: Although both groups exhibited decreased CVLT-II performance relative to the test’s normative sample (p<0.05), marijuana-dependent subjects with a depressive disorder did not perform differently than marijuana-dependent subjects without a depressive disorder (p>0.05). Further, poorer CVLT-II performance was modestly associated with increased self-reported daily amount of marijuana use (corrected p<0.002), but was not significantly associated with increased scores on measures of depressive symptoms (corrected p>0.002). Conclusion: These findings suggest an inverse association between marijuana use and verbal learning function, but not between depression and verbal learning function in regular marijuana users. PMID:24918839
Differential learning and memory performance in OEF/OIF veterans for verbal and visual material.
Sozda, Christopher N; Muir, James J; Springer, Utaka S; Partovi, Diana; Cole, Michael A
2014-05-01
Memory complaints are particularly salient among veterans who experience combat-related mild traumatic brain injuries and/or trauma exposure, and represent a primary barrier to successful societal reintegration and everyday functioning. Anecdotally within clinical practice, verbal learning and memory performance frequently appears differentially reduced versus visual learning and memory scores. We sought to empirically investigate the robustness of a verbal versus visual learning and memory discrepancy and to explore potential mechanisms for a verbal/visual performance split. Participants consisted of 103 veterans with reported history of mild traumatic brain injuries returning home from U.S. military Operations Enduring Freedom and Iraqi Freedom referred for outpatient neuropsychological evaluation. Findings indicate that visual learning and memory abilities were largely intact while verbal learning and memory performance was significantly reduced in comparison, residing at approximately 1.1 SD below the mean for verbal learning and approximately 1.4 SD below the mean for verbal memory. This difference was not observed in verbal versus visual fluency performance, nor was it associated with estimated premorbid verbal abilities or traumatic brain injury history. In our sample, symptoms of depression, but not posttraumatic stress disorder, were significantly associated with reduced composite verbal learning and memory performance. Verbal learning and memory performance may benefit from targeted treatment of depressive symptomatology. Also, because visual learning and memory functions may remain intact, these might be emphasized when applying neurocognitive rehabilitation interventions to compensate for observed verbal learning and memory difficulties.
Saddoris, Michael P; Carelli, Regina M
2014-01-15
Cocaine use is often associated with diminished cognitive function, persisting even after abstinence from the drug. Likely targets for these changes are the core and shell of the nucleus accumbens (NAc), which are critical for mediating the rewarding aspects of drugs of abuse as well as supporting associative learning. To understand this deficit, we recorded neural activity in the NAc of rats with a history of cocaine self-administration or control subjects while they learned Pavlovian first- and second-order associations. Rats were trained for 2 weeks to self-administer intravenous cocaine or water. Later, rats learned a first-order Pavlovian discrimination where a conditioned stimulus (CS)+ predicted food, and a control (CS-) did not. Rats then learned a second-order association where, absent any food reinforcement, a novel cued (SOC+) predicted the CS+ and another (SOC-) predicted the CS-. Electrophysiological recordings were taken during performance of these tasks in the NAc core and shell. Both control subjects and cocaine-experienced rats learned the first-order association, but only control subjects learned the second-order association. Neural recordings indicated that core and shell neurons encoded task-relevant information that correlated with behavioral performance, whereas this type of encoding was abolished in cocaine-experienced rats. The NAc core and shell perform complementary roles in supporting normal associative learning, functions that are impaired after cocaine experience. This impoverished encoding of motivational behavior, even after abstinence from the drug, might provide a key mechanism to understand why addiction remains a chronically relapsing disorder despite repeated attempts at sobriety. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Impaired associative learning with food rewards in obese women.
Zhang, Zhihao; Manson, Kirk F; Schiller, Daniela; Levy, Ifat
2014-08-04
Obesity is a major epidemic in many parts of the world. One of the main factors contributing to obesity is overconsumption of high-fat and high-calorie food, which is driven by the rewarding properties of these types of food. Previous studies have suggested that dysfunction in reward circuits may be associated with overeating and obesity. The nature of this dysfunction, however, is still unknown. Here, we demonstrate impairment in reward-based associative learning specific to food in obese women. Normal-weight and obese participants performed an appetitive reversal learning task in which they had to learn and modify cue-reward associations. To test whether any learning deficits were specific to food reward or were more general, we used a between-subject design in which half of the participants received food reward and the other half received money reward. Our results reveal a marked difference in associative learning between normal-weight and obese women when food was used as reward. Importantly, no learning deficits were observed with money reward. Multiple regression analyses also established a robust negative association between body mass index and learning performance in the food domain in female participants. Interestingly, such impairment was not observed in obese men. These findings suggest that obesity may be linked to impaired reward-based associative learning and that this impairment may be specific to the food domain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cerezo, Rebeca; Esteban, María; Sánchez-Santillán, Miguel; Núñez, José C.
2017-01-01
Introduction: Research about student performance has traditionally considered academic procrastination as a behavior that has negative effects on academic achievement. Although there is much evidence for this in class-based environments, there is a lack of research on Computer-Based Learning Environments (CBLEs). Therefore, the purpose of this study is to evaluate student behavior in a blended learning program and specifically procrastination behavior in relation to performance through Data Mining techniques. Materials and Methods: A sample of 140 undergraduate students participated in a blended learning experience implemented in a Moodle (Modular Object Oriented Developmental Learning Environment) Management System. Relevant interaction variables were selected for the study, taking into account student achievement and analyzing data by means of association rules, a mining technique. The association rules were arrived at and filtered through two selection criteria: 1, rules must have an accuracy over 0.8 and 2, they must be present in both sub-samples. Results: The findings of our study highlight the influence of time management in online learning environments, particularly on academic achievement, as there is an association between procrastination variables and student performance. Conclusion: Negative impact of procrastination in learning outcomes has been observed again but in virtual learning environments where practical implications, prevention of, and intervention in, are different from class-based learning. These aspects are discussed to help resolve student difficulties at various ages. PMID:28883801
Cerezo, Rebeca; Esteban, María; Sánchez-Santillán, Miguel; Núñez, José C
2017-01-01
Introduction: Research about student performance has traditionally considered academic procrastination as a behavior that has negative effects on academic achievement. Although there is much evidence for this in class-based environments, there is a lack of research on Computer-Based Learning Environments (CBLEs) . Therefore, the purpose of this study is to evaluate student behavior in a blended learning program and specifically procrastination behavior in relation to performance through Data Mining techniques. Materials and Methods: A sample of 140 undergraduate students participated in a blended learning experience implemented in a Moodle (Modular Object Oriented Developmental Learning Environment) Management System. Relevant interaction variables were selected for the study, taking into account student achievement and analyzing data by means of association rules, a mining technique. The association rules were arrived at and filtered through two selection criteria: 1, rules must have an accuracy over 0.8 and 2, they must be present in both sub-samples. Results: The findings of our study highlight the influence of time management in online learning environments, particularly on academic achievement, as there is an association between procrastination variables and student performance. Conclusion: Negative impact of procrastination in learning outcomes has been observed again but in virtual learning environments where practical implications, prevention of, and intervention in, are different from class-based learning. These aspects are discussed to help resolve student difficulties at various ages.
To have or to learn? The effects of materialism on British and Chinese children's learning.
Ku, Lisbeth; Dittmar, Helga; Banerjee, Robin
2014-05-01
This article presents a systematic attempt to examine the associations of materialism with learning in 9- to 11-year-old children in 2 countries of similar economic development but different cultural heritage. Using cross-sectional, longitudinal, and experimental methods, we test a theoretically driven model of associations among materialism, learning motivations, and learning outcomes. Convergent findings suggest that a materialist orientation in elementary school children lowers intrinsic learning motivations, fosters extrinsic learning motivations, and leads to poorer learning outcomes. Materialism was linked directly to lower exam performance, and this link was mediated by lower mastery and heightened performance goals, with patterns not differing between British and Hong Kong Chinese children (Study 1). A follow-up showed that initial materialism predicted worse exam grades 1 year later, suggesting a detrimental long-term effect on Chinese children's school performance (Study 2). We then tested relationships between materialism and learning experimentally, by priming a momentary (state) orientation toward materialism. Writing about material possessions and money affected Chinese children's learning motivations, so that they endorsed lower mastery and higher performance goals (Study 3). A video-diary materialism prime had significant effects on actual learning behaviors, leading British children to (a) choose a performance-oriented learning task over a mastery-oriented task and (b) give up on the task more quickly (Study 4). This research has important implications for personality psychology, educational policy, and future research.
Enhancing Learning Performance and Adaptability for Complex Tasks
2005-03-30
development of active learning interventions and techniques that influence the focus and quality of learner regulatory activity (Kozlowski Toney et al...what are the effects of these goal representations on learning strategies, performance, and adaptability? Can active learning inductions, that influence...and mindful process - active learning - are generally associated with improved skill acquisition and adaptability for complex tasks (Smith et al
The rat's not for turning: Dissociating the psychological components of cognitive inflexibility☆
Nilsson, Simon R.O.; Alsiö, Johan; Somerville, Elizabeth M.; Clifton, Peter G.
2015-01-01
Executive function is commonly assessed by assays of cognitive flexibility such as reversal learning and attentional set-shifting. Disrupted performance in these assays, apparent in many neuropsychiatric disorders, is frequently interpreted as inability to overcome prior associations with reward. However, non-rewarded or irrelevant associations may be of considerable importance in both discrimination learning and cognitive flexibility. Non-rewarded associations can have greater influence on choice behaviour than rewarded associations in discrimination learning. Pathology-related deficits in cognitive flexibility can produce selective disruptions to both the processing of irrelevant associations and associations with reward. Genetic and pharmacological animal models demonstrate that modulation of reversal learning may result from alterations in either rewarded or non-rewarded associations. Successful performance in assays of cognitive flexibility can therefore depend on a combination of rewarded, non-rewarded, and irrelevant associations derived from previous learning, accounting for some inconsistencies observed in the literature. Taking this combination into account may increase the validity of animal models and may also reveal pathology-specific differences in problem solving and executive function. PMID:26112128
Kurtz, Tanja; Mogle, Jacqueline; Sliwinski, Martin J.; Hofer, Scott M.
2013-01-01
Background The role of processing speed and working memory was investigated in terms of individual differences in task-specific paired associates learning in a sample of older adults. Task-specific learning, as distinct from content-oriented item-specific learning, refers to gains in performance due to repeated practice on a learning task in which the to-be-learned material changes over trials. Methods Learning trajectories were modeled within an intensive repeated-measures design based on participants obtained from an opt-in internet-based sampling service (Mage = 65.3, SD = 4.81). Participants completed an eight-item paired associates task daily over a seven-day period. Results Results indicated that a three-parameter hyperbolic model (i.e., initial level, learning rate, and asymptotic performance) best described learning trajectory. After controlling for age-related effects, both higher working memory and higher processing speed had a positive effect on all three learning parameters. Conclusion These results emphasize the role of cognitive abilities for individual differences in task-specific learning of older adults. PMID:24151913
Normal Aging and the Dissociable Prototype Learning Systems
Glass, Brian D.; Chotibut, Tanya; Pacheco, Jennifer; Schnyer, David M.; Maddox, W. Todd
2011-01-01
Dissociable prototype learning systems have been demonstrated behaviorally and with neuroimaging in younger adults as well as with patient populations. In A/not-A (AN) prototype learning, participants are shown members of category A during training, and during test are asked to decide whether novel items are in category A or are not in category A. Research suggests that AN learning is mediated by a perceptual learning system. In A/B (AB) prototype learning, participants are shown members of category A and B during training, and during test are asked to decide whether novel items are in category A or category B. In contrast to AN, research suggests that AB learning is mediated by a declarative memory system. The current study examined the effects of normal aging on AN and AB prototype learning. We observed an age-related deficit in AB learning, but an age-related advantage in AN learning. Computational modeling supports one possible interpretation based on narrower selective attentional focus in older adults in the AB task and broader selective attention in the AN task. Neuropsychological testing in older participants suggested that executive functioning and attentional control were associated with better performance in both tasks. However, nonverbal memory was associated with better AN performance, while visual attention was associated with worse AB performance. The results support an interactive memory systems approach and suggest that age-related declines in one memory system can lead to deficits in some tasks, but to enhanced performance in others. PMID:21875215
Suri, Rakesh M; Minha, Sa'ar; Alli, Oluseun; Waksman, Ron; Rihal, Charanjit S; Satler, Lowell P; Greason, Kevin L; Torguson, Rebecca; Pichard, Augusto D; Mack, Michael; Svensson, Lars G; Rajeswaran, Jeevanantham; Lowry, Ashley M; Ehrlinger, John; Mick, Stephanie L; Tuzcu, E Murat; Thourani, Vinod H; Makkar, Raj; Holmes, David; Leon, Martin B; Blackstone, Eugene H
2016-09-01
Introduction of hybrid techniques, such as transapical transcatheter aortic valve replacement (TA-TAVR), requires skills that a heart team must master to achieve technical efficiency: the technical performance learning curve. To date, the learning curve for TA-TAVR remains unknown. We therefore evaluated the rate at which technical performance improved, assessed change in occurrence of adverse events in relation to technical performance, and determined whether adverse events after TA-TAVR were linked to acquiring technical performance efficiency (the learning curve). From April 2007 to February 2012, 1100 patients, average age 85.0 ± 6.4 years, underwent TA-TAVR in the PARTNER-I trial. Learning curves were defined by institution-specific patient sequence number using nonlinear mixed modeling. Mean procedure time decreased from 131 to 116 minutes within 30 cases (P = .06) and device success increased to 90% by case 45 (P = .0007). Within 30 days, 354 patients experienced a major adverse event (stroke in 29, death in 96), with possibly decreased complications over time (P ∼ .08). Although longer procedure time was associated with more adverse events (P < .0001), these events were associated with change in patient risk profile, not the technical performance learning curve (P = .8). The learning curve for TA-TAVR was 30 to 45 procedures performed, and technical efficiency was achieved without compromising patient safety. Although fewer patients are now undergoing TAVR via nontransfemoral access, understanding TA-TAVR learning curves and their relationship with outcomes is important as the field moves toward next-generation devices, such as those to replace the mitral valve, delivered via the left ventricular apex. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Pietrzak, Robert H; Scott, James Cobb; Harel, Brian T; Lim, Yen Ying; Snyder, Peter J; Maruff, Paul
2012-11-01
Alprazolam is a benzodiazepine that, when administered acutely, results in impairments in several aspects of cognition, including attention, learning, and memory. However, the profile (i.e., component processes) that underlie alprazolam-related decrements in visual paired associate learning has not been fully explored. In this double-blind, placebo-controlled, randomized cross-over study of healthy older adults, we used a novel, "process-based" computerized measure of visual paired associate learning to examine the effect of a single, acute 1-mg dose of alprazolam on component processes of visual paired associate learning and memory. Acute alprazolam challenge was associated with a large magnitude reduction in visual paired associate learning and memory performance (d = 1.05). Process-based analyses revealed significant increases in distractor, exploratory, between-search, and within-search error types. Analyses of percentages of each error type suggested that, relative to placebo, alprazolam challenge resulted in a decrease in the percentage of exploratory errors and an increase in the percentage of distractor errors, both of which reflect memory processes. Results of this study suggest that acute alprazolam challenge decreases visual paired associate learning and memory performance by reducing the strength of the association between pattern and location, which may reflect a general breakdown in memory consolidation, with less evidence of reductions in executive processes (e.g., working memory) that facilitate visual paired associate learning and memory. Copyright © 2012 John Wiley & Sons, Ltd.
Colbert-Getz, Jorie M; Tackett, Sean; Wright, Scott M; Shochet, Robert S
2016-08-28
This study was conducted to characterize the relative strength of associations of learning environment perception with academic performance and with personal growth. In 2012-2014 second and third year students at Johns Hopkins University School of Medicine completed a learning environment survey and personal growth scale. Hierarchical linear regression analysis was employed to determine if the proportion of variance in learning environment scores accounted for by personal growth was significantly larger than the proportion accounted for by academic performance (course/clerkship grades). The proportion of variance in learning environment scores accounted for by personal growth was larger than the proportion accounted for by academic performance in year 2 [R(2)Δ of 0.09, F(1,175) = 14.99, p < .001] and year 3 [R(2)Δ of 0.28, F(1,169) = 76.80, p < .001]. Learning environment scores shared a small amount of variance with academic performance in years 2 and 3. The amount of variance between learning environment scores and personal growth was small in year 2 and large in year 3. Since supportive learning environments are essential for medical education, future work must determine if enhancing personal growth prior to and during the clerkship year will increase learning environment perception.
Tackett, Sean; Wright, Scott M.; Shochet, Robert S.
2016-01-01
Objectives This study was conducted to characterize the relative strength of associations of learning environment perception with academic performance and with personal growth. Methods In 2012-2014 second and third year students at Johns Hopkins University School of Medicine completed a learning environment survey and personal growth scale. Hierarchical linear regression analysis was employed to determine if the proportion of variance in learning environment scores accounted for by personal growth was significantly larger than the proportion accounted for by academic performance (course/clerkship grades). Results The proportion of variance in learning environment scores accounted for by personal growth was larger than the proportion accounted for by academic performance in year 2 [R2Δ of 0.09, F(1,175) = 14.99, p < .001] and year 3 [R2Δ of 0.28, F(1,169) = 76.80, p < .001]. Learning environment scores shared a small amount of variance with academic performance in years 2 and 3. The amount of variance between learning environment scores and personal growth was small in year 2 and large in year 3. Conclusions Since supportive learning environments are essential for medical education, future work must determine if enhancing personal growth prior to and during the clerkship year will increase learning environment perception. PMID:27570912
Student Buy-In to Active Learning in a College Science Course
Cavanagh, Andrew J.; Aragón, Oriana R.; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I.; Graham, Mark J.
2016-01-01
The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure–persuasion–identification–commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students’ course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. PMID:27909026
ERIC Educational Resources Information Center
Loong, Tang Eng
2012-01-01
This study is an attempt to compare the use of self-regulated learning strategies and their math performance between home and international students in the Monash University Foundation Year (MUFY) and determine the self-regulated learning strategies that are significantly associated with their math performance. The participants of the study were…
Mnemonic strategies in older people: a comparison of errorless and errorful learning.
Kessels, Roy P C; de Haan, Edward H F
2003-09-01
To compare the efficacy of errorless and errorful learning on memory performance in older people and young adults. Face-name association learning was examined in 18 older people and 16 young controls. Subjects were either prompted to guess the correct name during the presentation of photographs of unknown faces (errorful learning) or were instructed to study the face without guessing (errorless learning). The correct name was given after the presentation of each face in both task conditions. Uncued testing followed immediately after the two study phases and after a 10-minute delay. Older subjects had an overall lower memory performance and flatter learning curves compared to the young adults, regardless of task conditions. Also, errorless learning resulted in a higher accuracy than errorful learning, to an equal amount in both groups. Older people have difficulty in the encoding stages of face-name association learning, whereas retrieval is relatively unaffected. In addition, the prevention of errors occurring during learning results in a better memory performance, and is perhaps an effective strategy for coping with age-related memory decrement.
Learning strategies, study habits and social networking activity of undergraduate medical students.
Bickerdike, Andrea; O'Deasmhunaigh, Conall; O'Flynn, Siun; O'Tuathaigh, Colm
2016-07-17
To determine learning strategies, study habits, and online social networking use of undergraduates at an Irish medical school, and their relationship with academic performance. A cross-sectional study was conducted in Year 2 and final year undergraduate-entry and graduate-entry students at an Irish medical school. Data about participants' demographics and educational background, study habits (including time management), and use of online media was collected using a self-report questionnaire. Participants' learning strategies were measured using the 18-item Approaches to Learning and Studying Inventory (ALSI). Year score percentage was the measure of academic achievement. The association between demographic/educational factors, learning strategies, study habits, and academic achievement was statistically analysed using regression analysis. Forty-two percent of students were included in this analysis (n=376). A last-minute "cramming" time management study strategy was associated with increased use of online social networks. Learning strategies differed between undergraduate- and graduate-entrants, with the latter less likely to adopt a 'surface approach' and more likely adopt a 'study monitoring' approach. Year score percentage was positively correlated with the 'effort management/organised studying' learning style. Poorer academic performance was associated with a poor time management approach to studying ("cramming") and increased use of the 'surface learning' strategy. Our study demonstrates that effort management and organised studying should be promoted, and surface learning discouraged, as part of any effort to optimise academic performance in medical school. Excessive use of social networking contributes to poor study habits, which are associated with reduced academic achievement.
2011-08-01
Specifications and Standards; Guide Specifications; CIDs; and NGSs . Learn. Perform. Succeed. STANDARDIZATION DOCUMENTS Federal Specifications Commercial...national or international standardization document developed by a private sector association, organization, or technical society that plans ...Maintain lessons learned • Examples: Guidance for application of a technology; Lists of options Learn. Perform. Succeed. DEFENSE HANDBOOK
General functioning predicts reward and punishment learning in schizophrenia.
Somlai, Zsuzsanna; Moustafa, Ahmed A; Kéri, Szabolcs; Myers, Catherine E; Gluck, Mark A
2011-04-01
Previous studies investigating feedback-driven reinforcement learning in patients with schizophrenia have provided mixed results. In this study, we explored the clinical predictors of reward and punishment learning using a probabilistic classification learning task. Patients with schizophrenia (n=40) performed similarly to healthy controls (n=30) on the classification learning task. However, more severe negative and general symptoms were associated with lower reward-learning performance, whereas poorer general psychosocial functioning was correlated with both lower reward- and punishment-learning performances. Multiple linear regression analyses indicated that general psychosocial functioning was the only significant predictor of reinforcement learning performance when education, antipsychotic dose, and positive, negative and general symptoms were included in the analysis. These results suggest a close relationship between reinforcement learning and general psychosocial functioning in schizophrenia. Published by Elsevier B.V.
Motivation, learning strategies, participation and medical school performance.
Stegers-Jager, Karen M; Cohen-Schotanus, Janke; Themmen, Axel P N
2012-07-01
Medical schools wish to better understand why some students excel academically and others have difficulty in passing medical courses. Components of self-regulated learning (SRL), such as motivational beliefs and learning strategies, as well as participation in scheduled learning activities, have been found to relate to student performance. Although participation may be a form of SRL, little is known about the relationships among motivational beliefs, learning strategies, participation and medical school performance. This study aimed to test and cross-validate a hypothesised model of relationships among motivational beliefs (value and self-efficacy), learning strategies (deep learning and resource management), participation (lecture attendance, skills training attendance and completion of optional study assignments) and Year 1 performance at medical school. Year 1 medical students in the cohorts of 2008 (n = 303) and 2009 (n = 369) completed a questionnaire on motivational beliefs and learning strategies (sourced from the Motivated Strategies for Learning Questionnaire) and participation. Year 1 performance was operationalised as students' average Year 1 course examination grades. Structural equation modelling was used to analyse the data. Participation and self-efficacy beliefs were positively associated with Year 1 performance (β = 0.78 and β = 0.19, respectively). Deep learning strategies were negatively associated with Year 1 performance (β =- 0.31), but positively related to resource management strategies (β = 0.77), which, in turn, were positively related to participation (β = 0.79). Value beliefs were positively related to deep learning strategies only (β = 0.71). The overall structural model for the 2008 cohort accounted for 47% of the variance in Year 1 grade point average and was cross-validated in the 2009 cohort. This study suggests that participation mediates the relationships between motivation and learning strategies, and medical school performance. However, participation and self-efficacy beliefs also made unique contributions towards performance. Encouraging participation and strengthening self-efficacy may help to enhance medical student performance. © Blackwell Publishing Ltd 2012.
Bangirana, Paul; Menk, Jeremiah; John, Chandy C; Boivin, Michael J; Hodges, James S
2013-01-01
The contribution of different cognitive abilities to academic performance in children surviving cerebral insult can guide the choice of interventions to improve cognitive and academic outcomes. This study's objective was to identify which cognitive abilities are associated with academic performance in children after malaria with neurological involvement. 62 Ugandan children with a history of malaria with neurological involvement were assessed for cognitive ability (working memory, reasoning, learning, visual spatial skills, attention) and academic performance (reading, spelling, arithmetic) three months after the illness. Linear regressions were fit for each academic score with the five cognitive outcomes entered as predictors. Adjusters in the analysis were age, sex, education, nutrition, and home environment. Exploratory factor analysis (EFA) and structural equation models (SEM) were used to determine the nature of the association between cognition and academic performance. Predictive residual sum of squares was used to determine which combination of cognitive scores was needed to predict academic performance. In regressions of a single academic score on all five cognitive outcomes and adjusters, only Working Memory was associated with Reading (coefficient estimate = 0.36, 95% confidence interval = 0.10 to 0.63, p<0.01) and Spelling (0.46, 0.13 to 0.78, p<0.01), Visual Spatial Skills was associated with Arithmetic (0.15, 0.03 to 0.26, p<0.05), and Learning was associated with Reading (0.06, 0.00 to 0.11, p<0.05). One latent cognitive factor was identified using EFA. The SEM found a strong association between this latent cognitive ability and each academic performance measure (P<0.0001). Working memory, visual spatial ability and learning were the best predictors of academic performance. Academic performance is strongly associated with the latent variable labelled "cognitive ability" which captures most of the variation in the individual specific cognitive outcome measures. Working memory, visual spatial skills, and learning together stood out as the best combination to predict academic performance.
Seidel, Oliver; Carius, Daniel; Kenville, Rouven; Ragert, Patrick
2017-09-01
Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity. NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We investigated endurance athletes (EA) and nonathletes (NA) in a multimodal balance task (MBT). EA showed superior static balance performance (SBT), whereas MBT-induced SBT improvements did not differ between groups. Functional near-infrared spectroscopy recordings revealed a differential MBT training-induced decrease of deoxygenated hemoglobin in left primary motor cortex and inferior parietal lobe between groups. Copyright © 2017 the American Physiological Society.
Learning style, judgements of learning, and learning of verbal and visual information.
Knoll, Abby R; Otani, Hajime; Skeel, Reid L; Van Horn, K Roger
2017-08-01
The concept of learning style is immensely popular despite the lack of evidence showing that learning style influences performance. This study tested the hypothesis that the popularity of learning style is maintained because it is associated with subjective aspects of learning, such as judgements of learning (JOLs). Preference for verbal and visual information was assessed using the revised Verbalizer-Visualizer Questionnaire (VVQ). Then, participants studied a list of word pairs and a list of picture pairs, making JOLs (immediate, delayed, and global) while studying each list. Learning was tested by cued recall. The results showed that higher VVQ verbalizer scores were associated with higher immediate JOLs for words, and higher VVQ visualizer scores were associated with higher immediate JOLs for pictures. There was no association between VVQ scores and recall or JOL accuracy. As predicted, learning style was associated with subjective aspects of learning but not objective aspects of learning. © 2016 The British Psychological Society.
Kiuru, Noona; Pakarinen, Eija; Vasalampi, Kati; Silinskas, Gintautas; Aunola, Kaisa; Poikkeus, Anna-Maija; Metsäpelto, Riitta-Leena; Lerkkanen, Marja-Kristiina; Nurmi, Jari-Erik
2014-04-01
In the longitudinal study presented here, we tested the theoretical assumption that children's task-focused behavior in learning situations mediates the associations between supportive interpersonal environments and academic performance. The sample consisted of 2,137 Finnish-speaking children. Data on supportive interpersonal environments (characterized by authoritative parenting, positive teacher affect toward the child, and peer acceptance) were gathered in Grade 1. The children's task-focused behavior was measured in Grades 2 and 3, and academic performance was measured in Grades 1 and 4. The results supported our assumption by showing that all three supportive environments were positively associated with children's subsequent academic performance via increased task-focused behavior in learning situations. These findings suggest that students' academic performance can be promoted by increasing the support they receive from peers, parents, and teachers because such increased support leads to better task focus in learning tasks.
Towards a Social Networks Model for Online Learning & Performance
ERIC Educational Resources Information Center
Chung, Kon Shing Kenneth; Paredes, Walter Christian
2015-01-01
In this study, we develop a theoretical model to investigate the association between social network properties, "content richness" (CR) in academic learning discourse, and performance. CR is the extent to which one contributes content that is meaningful, insightful and constructive to aid learning and by social network properties we…
Zhang, Yan; Hawk, Skyler T.; Zhang, Xiaohui; Zhao, Hongyu
2016-01-01
Professional identity is a key issue spanning the entirety of teachers’ career development. Despite the abundance of existing research examining professional identity, its link with occupation-related behavior at the primary career stage (i.e., GPA in preservice education) and the potential process that underlies this association is still not fully understood. This study explored the professional identity of Chinese preservice teachers, and its links with task value belief, intrinsic learning motivation, extrinsic learning motivation, and performance in the education program. Grade-point average (GPA) of courses (both subject and pedagogy courses) was examined as an indicator of performance, and questionnaires were used to measure the remaining variables. Data from 606 preservice teachers in the first 3 years of a teacher-training program indicated that: (1) variables in this research were all significantly correlated with each other, except the correlation between intrinsic learning motivation and program performance; (2) professional identity was positively linked to task value belief, intrinsic and extrinsic learning motivations, and program performance in a structural equation model (SEM); (3) task value belief was positively linked to intrinsic and extrinsic learning motivation; (4) higher extrinsic (but not intrinsic) learning motivation was associated with increased program performance; and (5) task value belief and extrinsic learning motivation were significant mediators in the model. PMID:27199810
Zhang, Yan; Hawk, Skyler T; Zhang, Xiaohui; Zhao, Hongyu
2016-01-01
Professional identity is a key issue spanning the entirety of teachers' career development. Despite the abundance of existing research examining professional identity, its link with occupation-related behavior at the primary career stage (i.e., GPA in preservice education) and the potential process that underlies this association is still not fully understood. This study explored the professional identity of Chinese preservice teachers, and its links with task value belief, intrinsic learning motivation, extrinsic learning motivation, and performance in the education program. Grade-point average (GPA) of courses (both subject and pedagogy courses) was examined as an indicator of performance, and questionnaires were used to measure the remaining variables. Data from 606 preservice teachers in the first 3 years of a teacher-training program indicated that: (1) variables in this research were all significantly correlated with each other, except the correlation between intrinsic learning motivation and program performance; (2) professional identity was positively linked to task value belief, intrinsic and extrinsic learning motivations, and program performance in a structural equation model (SEM); (3) task value belief was positively linked to intrinsic and extrinsic learning motivation; (4) higher extrinsic (but not intrinsic) learning motivation was associated with increased program performance; and (5) task value belief and extrinsic learning motivation were significant mediators in the model.
Context-Dependent Learning in People With Parkinson's Disease.
Lee, Ya-Yun; Winstein, Carolee J; Gordon, James; Petzinger, Giselle M; Zelinski, Elizabeth M; Fisher, Beth E
2016-01-01
Context-dependent learning is a phenomenon in which people demonstrate superior performance in the context in which they originally learned a skill but perform less well in a novel context. This study investigated context-dependent learning in people with Parkinson's disease (PD) and age-matched nondisabled adults. All participants practiced 3 finger sequences, each embedded within a unique context (colors and locations on a computer screen). One day after practice, the participants were tested either under the sequence-context associations remained the same as during practice, or the sequence-context associations were changed (SWITCH). Compared with nondisabled adults, people with PD demonstrated significantly greater decrement in performance (especially movement time) under the SWITCH condition, suggesting that individuals with PD are more context dependent than nondisabled adults.
Lesions of the rat nucleus basalis magnocellularis disrupt appetitive-to-aversive transfer learning.
Butt, A E; Schultz, J A; Arnold, L L; Garman, E E; George, C L; Garraghty, P E
2003-01-01
Rats with selective lesions of the nucleus basalis magnocellularis (NBM) and sham-lesion control animals were tested in an operant appetitive-to-aversive transfer task. We hypothesized that NBM lesions would not affect performance in the appetitive phase, but that performance would be impaired during subsequent transfer to the aversive phase of the task. Additional groups of NBM lesion and control rats were tested in the avoidance condition only, where we hypothesized that NBM lesions would not disrupt performance. These hypotheses were based on the argument that the NBM is not necessary for simple association learning that does not tax attention. Both the appetitive phase of the transfer task and the avoidance only task depend only on simple associative learning and are argued not to tax attention. Consequently, performance in these tasks was predicted to be spared following NBM lesions. Complex, attention-demanding associative learning, however, is argued to depend on the NBM. Performance in the aversive phase of the transfer task is both attentionally demanding and associatively more complex than in either the appetitive or aversive tasks alone; thus, avoidance performance in the NBM lesion group was predicted to be impaired following transfer from prior appetitive conditioning. Results supported our hypotheses, with the NBM lesion group acquiring the appetitive response normally, but showing impaired performance following transfer to the aversive conditioning phase of the transfer task. Impairments were not attributable to disrupted avoidance learning per se, as avoidance behavior was normal in the NBM lesion group tested in the avoidance condition only.
Dynamic functional connectivity shapes individual differences in associative learning.
Fatima, Zainab; Kovacevic, Natasha; Misic, Bratislav; McIntosh, Anthony Randal
2016-11-01
Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sudo, Akihito; Sato, Akihiro; Hasegawa, Osamu
2009-06-01
Associative memory operating in a real environment must perform well in online incremental learning and be robust to noisy data because noisy associative patterns are presented sequentially in a real environment. We propose a novel associative memory that satisfies these requirements. Using the proposed method, new associative pairs that are presented sequentially can be learned accurately without forgetting previously learned patterns. The memory size of the proposed method increases adaptively with learning patterns. Therefore, it suffers neither redundancy nor insufficiency of memory size, even in an environment in which the maximum number of associative pairs to be presented is unknown before learning. Noisy inputs in real environments are classifiable into two types: noise-added original patterns and faultily presented random patterns. The proposed method deals with two types of noise. To our knowledge, no conventional associative memory addresses noise of both types. The proposed associative memory performs as a bidirectional one-to-many or many-to-one associative memory and deals not only with bipolar data, but also with real-valued data. Results demonstrate that the proposed method's features are important for application to an intelligent robot operating in a real environment. The originality of our work consists of two points: employing a growing self-organizing network for an associative memory, and discussing what features are necessary for an associative memory for an intelligent robot and proposing an associative memory that satisfies those requirements.
Hommes, J; Rienties, B; de Grave, W; Bos, G; Schuwirth, L; Scherpbier, A
2012-12-01
World-wide, universities in health sciences have transformed their curriculum to include collaborative learning and facilitate the students' learning process. Interaction has been acknowledged to be the synergistic element in this learning context. However, students spend the majority of their time outside their classroom and interaction does not stop outside the classroom. Therefore we studied how informal social interaction influences student learning. Moreover, to explore what really matters in the students learning process, a model was tested how the generally known important constructs-prior performance, motivation and social integration-relate to informal social interaction and student learning. 301 undergraduate medical students participated in this cross-sectional quantitative study. Informal social interaction was assessed using self-reported surveys following the network approach. Students' individual motivation, social integration and prior performance were assessed by the Academic Motivation Scale, the College Adaption Questionnaire and students' GPA respectively. A factual knowledge test represented student' learning. All social networks were positively associated with student learning significantly: friendships (β = 0.11), providing information to other students (β = 0.16), receiving information from other students (β = 0.25). Structural equation modelling revealed a model in which social networks increased student learning (r = 0.43), followed by prior performance (r = 0.31). In contrast to prior literature, students' academic motivation and social integration were not associated with students' learning. Students' informal social interaction is strongly associated with students' learning. These findings underline the need to change our focus from the formal context (classroom) to the informal context to optimize student learning and deliver modern medics.
Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation
Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert
2010-01-01
Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102
Zebrafish as a Model to Study NF1-Associated Learning Deficits
2016-07-01
characterized by attention deficit and learning disabilities . The NF1 protein govern distinct aspects of cognitive behavior: the NF1- GRD attenuates Ras...most prominently scholastic under-performance characterized by attention deficit and learning disabilities . The NF1 protein govern distinct...disorder associated with attention deficits and learning disabilities . The primary known function of neurofibromin, encoded by the NF1 gene, is to
Bier, Nathalie; Van Der Linden, Martial; Gagnon, Lise; Desrosiers, Johanne; Adam, Stephane; Louveaux, Stephanie; Saint-Mleux, Julie
2008-06-01
This study compared the efficacy of five learning methods in the acquisition of face-name associations in early dementia of Alzheimer type (AD). The contribution of error production and implicit memory to the efficacy of each method was also examined. Fifteen participants with early AD and 15 matched controls were exposed to five learning methods: spaced retrieval, vanishing cues, errorless, and two trial-and-error methods, one with explicit and one with implicit memory task instructions. Under each method, participants had to learn a list of five face-name associations, followed by free recall, cued recall and recognition. Delayed recall was also assessed. For AD, results showed that all methods were efficient but there were no significant differences between them. The number of errors produced during the learning phases varied between the five methods but did not influence learning. There were no significant differences between implicit and explicit memory task instructions on test performances. For the control group, there were no differences between the five methods. Finally, no significant correlations were found between the performance of the AD participants in free recall and their cognitive profile, but generally, the best performers had better remaining episodic memory. Also, case study analyses showed that spaced retrieval was the method for which the greatest number of participants (four) obtained results as good as the controls. This study suggests that the five methods are effective for new learning of face-name associations in AD. It appears that early AD patients can learn, even in the context of error production and explicit memory conditions.
Curved Saccade Trajectories Reveal Conflicting Predictions in Associative Learning
ERIC Educational Resources Information Center
Koenig, Stephan; Lachnit, Harald
2011-01-01
We report how the trajectories of saccadic eye movements are affected by memory interference acquired during associative learning. Human participants learned to perform saccadic choice responses based on the presentation of arbitrary central cues A, B, AC, BC, AX, BY, X, and Y that were trained to predict the appearance of a peripheral target…
Visual Associative Learning in Restrained Honey Bees with Intact Antennae
Dobrin, Scott E.; Fahrbach, Susan E.
2012-01-01
A restrained honey bee can be trained to extend its proboscis in response to the pairing of an odor with a sucrose reward, a form of olfactory associative learning referred to as the proboscis extension response (PER). Although the ability of flying honey bees to respond to visual cues is well-established, associative visual learning in restrained honey bees has been challenging to demonstrate. Those few groups that have documented vision-based PER have reported that removing the antennae prior to training is a prerequisite for learning. Here we report, for a simple visual learning task, the first successful performance by restrained honey bees with intact antennae. Honey bee foragers were trained on a differential visual association task by pairing the presentation of a blue light with a sucrose reward and leaving the presentation of a green light unrewarded. A negative correlation was found between age of foragers and their performance in the visual PER task. Using the adaptations to the traditional PER task outlined here, future studies can exploit pharmacological and physiological techniques to explore the neural circuit basis of visual learning in the honey bee. PMID:22701575
ERIC Educational Resources Information Center
Gaševic, Dragan; Jovanovic, Jelena; Pardo, Abelardo; Dawson, Shane
2017-01-01
The use of analytic methods for extracting learning strategies from trace data has attracted considerable attention in the literature. However, there is a paucity of research examining any association between learning strategies extracted from trace data and responses to well-established self-report instruments and performance scores. This paper…
ERIC Educational Resources Information Center
Witte, Kenneth L.; Freund, Joel S.
1976-01-01
Investigated the learning of young and old adults as related to two variables, stimulus concreteness (low vs. high) and presentation method (recall vs. multiple choice vs. associate matching). Main findings were: (a) the elderly did not perform as well as young adults, (b) for both groups, performance was better for the pairs with concrete…
Stimulant Drug Effects on Touchscreen Automated Paired-Associates Learning (PAL) in Rats
ERIC Educational Resources Information Center
Roschlau, Corinna; Votteler, Angeline; Hauber, Wolfgang
2016-01-01
Here we tested in rats effects of the procognitive drugs modafinil and methylphenidate on post-acquisition performance in an object-location paired-associates learning (PAL) task. Modafinil (32; 64 mg/kg) was without effect, while higher (9 mg/kg) but not lower (4.5 mg/kg) doses of methylphenidate impaired PAL performance. Likewise, higher but not…
Pastura, Giuseppe Mario Carmine; Mattos, Paulo; Araújo, Alexandra Prufer de Queiroz Campos
2009-03-01
Scholastic achievement in a nonclinical sample of ADHD children and adolescents was evaluated taking into consideration variables such as comorbid learning disorders, family income, and parental education which may also be associated with poor academic performance. After screening for ADHD in 396 students, the authors compared academic performance of 26 ADHD individuals and 31 controls paired for gender, age, and intelligence level considering both mathematics and Portuguese language scores. Learning disorders were investigated and the Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV ) criteria were met using structured interviews. The prevalence of academic underachievement was 2.98 times higher in students with ADHD, the most frequent subtype being predominantly inattentive. Parental educational level, family income, and comorbid learning disorders could not explain the discrepancies between ADHD students and controls. ADHD seems to be associated with poor academic performance even in the absence of comorbid learning disorders, lower family income, and parental educational level.
Raza, Meher; Ivry, Richard B.
2016-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. PMID:27832611
Should I Stop or Should I Go? The Role of Associations and Expectancies
2015-01-01
Following exposure to consistent stimulus–stop mappings, response inhibition can become automatized with practice. What is learned is less clear, even though this has important theoretical and practical implications. A recent analysis indicates that stimuli can become associated with a stop signal or with a stop goal. Furthermore, expectancy may play an important role. Previous studies that have used stop or no-go signals to manipulate stimulus–stop learning cannot distinguish between stimulus-signal and stimulus-goal associations, and expectancy has not been measured properly. In the present study, participants performed a task that combined features of the go/no-go task and the stop-signal task in which the stop-signal rule changed at the beginning of each block. The go and stop signals were superimposed over 40 task-irrelevant images. Our results show that participants can learn direct associations between images and the stop goal without mediation via the stop signal. Exposure to the image-stop associations influenced task performance during training, and expectancies measured following task completion or measured within the task. But, despite this, we found an effect of stimulus–stop learning on test performance only when the task increased the task-relevance of the images. This could indicate that the influence of stimulus–stop learning on go performance is strongly influenced by attention to both task-relevant and task-irrelevant stimulus features. More generally, our findings suggest a strong interplay between automatic and controlled processes. PMID:26322688
Microstimulation of the Human Substantia Nigra Alters Reinforcement Learning
Ramayya, Ashwin G.; Misra, Amrit
2014-01-01
Animal studies have shown that substantia nigra (SN) dopaminergic (DA) neurons strengthen action–reward associations during reinforcement learning, but their role in human learning is not known. Here, we applied microstimulation in the SN of 11 patients undergoing deep brain stimulation surgery for the treatment of Parkinson's disease as they performed a two-alternative probability learning task in which rewards were contingent on stimuli, rather than actions. Subjects demonstrated decreased learning from reward trials that were accompanied by phasic SN microstimulation compared with reward trials without stimulation. Subjects who showed large decreases in learning also showed an increased bias toward repeating actions after stimulation trials; therefore, stimulation may have decreased learning by strengthening action–reward associations rather than stimulus–reward associations. Our findings build on previous studies implicating SN DA neurons in preferentially strengthening action–reward associations during reinforcement learning. PMID:24828643
Sex and boldness explain individual differences in spatial learning in a lizard.
Carazo, Pau; Noble, Daniel W A; Chandrasoma, Dani; Whiting, Martin J
2014-05-07
Understanding individual differences in cognitive performance is a major challenge to animal behaviour and cognition studies. We used the Eastern water skink (Eulamprus quoyii) to examine associations between exploration, boldness and individual variability in spatial learning, a dimension of lizard cognition with important bearing on fitness. We show that males perform better than females in a biologically relevant spatial learning task. This is the first evidence for sex differences in learning in a reptile, and we argue that it is probably owing to sex-specific selective pressures that may be widespread in lizards. Across the sexes, we found a clear association between boldness after a simulated predatory attack and the probability of learning the spatial task. In contrast to previous studies, we found a nonlinear association between boldness and learning: both 'bold' and 'shy' behavioural types were more successful learners than intermediate males. Our results do not fit with recent predictions suggesting that individual differences in learning may be linked with behavioural types via high-low-risk/reward trade-offs. We suggest the possibility that differences in spatial cognitive performance may arise in lizards as a consequence of the distinct environmental variability and complexity experienced by individuals as a result of their sex and social tactics.
Long-term associative learning predicts verbal short-term memory performance.
Jones, Gary; Macken, Bill
2018-02-01
Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.
Learning Recruits Neurons Representing Previously Established Associations in the Corvid Endbrain.
Veit, Lena; Pidpruzhnykova, Galyna; Nieder, Andreas
2017-10-01
Crows quickly learn arbitrary associations. As a neuronal correlate of this behavior, single neurons in the corvid endbrain area nidopallium caudolaterale (NCL) change their response properties during association learning. In crows performing a delayed association task that required them to map both familiar and novel sample pictures to the same two choice pictures, NCL neurons established a common, prospective code for associations. Here, we report that neuronal tuning changes during learning were not distributed equally in the recorded population of NCL neurons. Instead, such learning-related changes relied almost exclusively on neurons which were already encoding familiar associations. Only in such neurons did behavioral improvements during learning of novel associations coincide with increasing selectivity over the learning process. The size and direction of selectivity for familiar and newly learned associations were highly correlated. These increases in selectivity for novel associations occurred only late in the delay period. Moreover, NCL neurons discriminated correct from erroneous trial outcome based on feedback signals at the end of the trial, particularly in newly learned associations. Our results indicate that task-relevant changes during association learning are not distributed within the population of corvid NCL neurons but rather are restricted to a specific group of association-selective neurons. Such association neurons in the multimodal cognitive integration area NCL likely play an important role during highly flexible behavior in corvids.
Suksudaj, N; Lekkas, D; Kaidonis, J; Townsend, G C; Winning, T A
2015-02-01
Students' perceptions of their learning environment influence the quality of outcomes they achieve. Learning dental operative techniques in a simulated clinic environment is characterised by reciprocal interactions between skills training, staff- and student-related factors. However, few studies have examined how students perceive their operative learning environments and whether there is a relationship between their perceptions and subsequent performance. Therefore, this study aimed to clarify which learning activities and interactions students perceived as supporting their operative skills learning and to examine relationships with their outcomes. Longitudinal data about examples of operative laboratory sessions that were perceived as effective or ineffective for learning were collected twice a semester, using written critical incidents and interviews. Emergent themes from these data were identified using thematic analysis. Associations between perceptions of learning effectiveness and performance were analysed using chi-square tests. Students indicated that an effective learning environment involved interactions with tutors and peers. This included tutors arranging group discussions to clarify processes and outcomes, providing demonstrations and constructive feedback. Feedback focused on mistakes, and not improvement, was reported as being ineffective for learning. However, there was no significant association between students' perceptions of the effectiveness of their learning experiences and subsequent performance. It was clear that learning in an operative technique setting involved various factors related not only to social interactions and observational aspects of learning but also to cognitive, motivational and affective processes. Consistent with studies that have demonstrated complex interactions between students, their learning environment and outcomes, other factors need investigation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Feng, Sally; McGhee, Katie E.; Bell, Alison M.
2017-01-01
Maternal stress can have long-term negative consequences for offspring learning performance. However, it is unknown whether these maternal effects extend to the ability of offspring to apply previously learned information to new situations. In this study, we first demonstrate that juvenile threespine sticklebacks, Gasterosteus aculeatus, are indeed capable of generalizing an association between a colour and a food reward learned in one foraging context to a new foraging context (i.e. they can apply previously learned knowledge to a new situation). Next, we examined whether this ability to generalize was affected by maternal predator stress. We manipulated whether mothers were repeatedly chased by a model predator while yolking eggs (i.e. before spawning) and then assessed the learning performance of their juvenile offspring in groups and pairs using a colour discrimination task that associated a colour with a food reward. We found that maternal predator exposure affected the tendency of offspring to use social cues: offspring of predator-exposed mothers were faster at copying a leader’s behaviour towards the rewarded colour than offspring of unexposed mothers. However, once the colour–reward association had been learned, offspring of predator-exposed and unexposed mothers were equally able to generalize their learned association to a new foraging task. These results suggest that offspring of predator-exposed mothers might be able to overcome learning deficits caused by maternal stress by relying more on social cues. PMID:29046591
ERIC Educational Resources Information Center
Moore, Catherine; Westwater-Wood, Sarah; Kerry, Roger
2016-01-01
Peer coaching has been associated with positive effects on learning. Specifically, these associations have been explored in complex healthcare professions. A social theory of learning has been proposed as a key component of the utility of peer coaching. Further, within the peer coaching model, assessment has been considered as an important driver.…
ERIC Educational Resources Information Center
Pitas, Nicholas; Murray, Alison; Olsen, Max; Graefe, Alan
2017-01-01
This article describes a modified importance-performance framework for use in evaluation of recreation-based experiential learning programs. Importance-performance analysis (IPA) provides an effective and readily applicable means of evaluating many programs, but the near universal satisfaction associated with recreation inhibits the use of IPA in…
Emotional Intelligence as a Determinant of Readiness for Online Learning
ERIC Educational Resources Information Center
Buzdar, Muhammad Ayub; Ali, Akhtar; Tariq, Riaz Ul Haq
2016-01-01
Students' performance in online learning environments is associated with their readiness to adopt a digital learning approach. Traditional concept of readiness for online learning is connected with students' competencies of using technology for learning purposes. We in this research, however, investigated psychometric aspects of students'…
Microstimulation of the human substantia nigra alters reinforcement learning.
Ramayya, Ashwin G; Misra, Amrit; Baltuch, Gordon H; Kahana, Michael J
2014-05-14
Animal studies have shown that substantia nigra (SN) dopaminergic (DA) neurons strengthen action-reward associations during reinforcement learning, but their role in human learning is not known. Here, we applied microstimulation in the SN of 11 patients undergoing deep brain stimulation surgery for the treatment of Parkinson's disease as they performed a two-alternative probability learning task in which rewards were contingent on stimuli, rather than actions. Subjects demonstrated decreased learning from reward trials that were accompanied by phasic SN microstimulation compared with reward trials without stimulation. Subjects who showed large decreases in learning also showed an increased bias toward repeating actions after stimulation trials; therefore, stimulation may have decreased learning by strengthening action-reward associations rather than stimulus-reward associations. Our findings build on previous studies implicating SN DA neurons in preferentially strengthening action-reward associations during reinforcement learning. Copyright © 2014 the authors 0270-6474/14/346887-09$15.00/0.
Chen, Chi-Hsin; Yu, Chen
2017-06-01
Natural language environments usually provide structured contexts for learning. This study examined the effects of semantically themed contexts-in both learning and retrieval phases-on statistical word learning. Results from 2 experiments consistently showed that participants had higher performance in semantically themed learning contexts. In contrast, themed retrieval contexts did not affect performance. Our work suggests that word learners are sensitive to statistical regularities not just at the level of individual word-object co-occurrences but also at another level containing a whole network of associations among objects and their properties.
Lamar, Melissa; Charlton, Rebecca; Zhang, Aifeng; Kumar, Anand
2012-07-01
Verbal memory deficits attributed to late life depression (LLD) may result from executive dysfunction that is more detrimental to list-learning than story-based recall when compared to healthy aging. Despite these behavioral dissociations, little work has been done investigating related neuroanatomical dissociations across types of verbal memory performance in LLD. We compared list-learning to story-based memory performance in 24 non-demented individuals with LLD (age ~ 66.1 ± 7.8) and 41 non-demented/non-depressed healthy controls (HC; age ~ 67.6 ± 5.3). We correlated significant results of between-group analyses across memory performance variables with brain volumes of frontal, temporal and parietal regions known to be involved with verbal learning and memory. When compared to the HC group, the LLD group showed significantly lower verbal memory performance for spontaneous recall after repeated exposure and after a long-delay but only for the list-learning task; groups did not differ on story-based memory performance. Despite equivalent brain volumes across regions, only the LLD group showed brain associations with verbal memory performance and only for the list-learning task. Specifically, frontal volumes important for subjective organization and response monitoring correlated with list-learning performance in the LLD group. This study is the first to demonstrate neuroanatomical dissociations across types of verbal memory performance in individuals with LLD. Results provide structural evidence for the behavioral dissociations between list-learning and story-based recall in LLD when compared to healthy aging. More specifically, it points toward a network of predominantly anterior brain regions that may underlie the executive contribution to list-learning in older adults with depression. Copyright © 2012 Elsevier Ltd. All rights reserved.
Argumentation Based Joint Learning: A Novel Ensemble Learning Approach
Xu, Junyi; Yao, Li; Li, Le
2015-01-01
Recently, ensemble learning methods have been widely used to improve classification performance in machine learning. In this paper, we present a novel ensemble learning method: argumentation based multi-agent joint learning (AMAJL), which integrates ideas from multi-agent argumentation, ensemble learning, and association rule mining. In AMAJL, argumentation technology is introduced as an ensemble strategy to integrate multiple base classifiers and generate a high performance ensemble classifier. We design an argumentation framework named Arena as a communication platform for knowledge integration. Through argumentation based joint learning, high quality individual knowledge can be extracted, and thus a refined global knowledge base can be generated and used independently for classification. We perform numerous experiments on multiple public datasets using AMAJL and other benchmark methods. The results demonstrate that our method can effectively extract high quality knowledge for ensemble classifier and improve the performance of classification. PMID:25966359
Mercado, Eduardo; Church, Barbara A.; Coutinho, Mariana V. C.; Dovgopoly, Alexander; Lopata, Christopher J.; Toomey, Jennifer A.; Thomeer, Marcus L.
2015-01-01
Previous research suggests that high functioning (HF) children with autism spectrum disorder (ASD) sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally based theories account for atypical perceptual category learning shown by HF children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children’s performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets. PMID:26157368
Action-Effect Associations in Voluntary and Cued Task-Switching.
Sommer, Angelika; Lukas, Sarah
2017-01-01
The literature of action control claims that humans control their actions in two ways. In the stimulus-based approach, actions are triggered by external stimuli. In the ideomotor approach, actions are elicited endogenously and controlled by the intended goal. In the current study, our purpose was to investigate whether these two action control modes affect task-switching differently. We combined a classical task-switching paradigm with action-effect learning. Both experiments consisted of two experimental phases: an acquisition phase, in which associations between task, response and subsequent action effects were learned and a test phase, in which the effects of these associations were tested on task performance by presenting the former action effects as preceding effects, prior to the task (called practiced effects ). Subjects either chose freely between tasks (ideomotor action control mode) or they were cued as to which task to perform (sensorimotor action control mode). We aimed to replicate the consistency effect (i.e., task is chosen according to the practiced task-effect association) and non-reversal advantage (i.e., better task performance when the practiced effect matches the previously learned task-effect association). Our results suggest that participants acquired stable action-effect associations independently of the learning mode. The consistency effect (Experiment 1) could be shown, independent of the learning mode, but only on the response-level. The non-reversal advantage (Experiment 2) was only evident in the error rates and only for participants who had practiced in the ideomotor action control mode.
Action-Effect Associations in Voluntary and Cued Task-Switching
Sommer, Angelika; Lukas, Sarah
2018-01-01
The literature of action control claims that humans control their actions in two ways. In the stimulus-based approach, actions are triggered by external stimuli. In the ideomotor approach, actions are elicited endogenously and controlled by the intended goal. In the current study, our purpose was to investigate whether these two action control modes affect task-switching differently. We combined a classical task-switching paradigm with action-effect learning. Both experiments consisted of two experimental phases: an acquisition phase, in which associations between task, response and subsequent action effects were learned and a test phase, in which the effects of these associations were tested on task performance by presenting the former action effects as preceding effects, prior to the task (called practiced effects). Subjects either chose freely between tasks (ideomotor action control mode) or they were cued as to which task to perform (sensorimotor action control mode). We aimed to replicate the consistency effect (i.e., task is chosen according to the practiced task-effect association) and non-reversal advantage (i.e., better task performance when the practiced effect matches the previously learned task-effect association). Our results suggest that participants acquired stable action-effect associations independently of the learning mode. The consistency effect (Experiment 1) could be shown, independent of the learning mode, but only on the response-level. The non-reversal advantage (Experiment 2) was only evident in the error rates and only for participants who had practiced in the ideomotor action control mode. PMID:29387027
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.
Honeybee associative learning performance and metabolic stress resilience are positively associated.
Amdam, Gro V; Fennern, Erin; Baker, Nicholas; Rascón, Brenda
2010-03-17
Social-environmental influences can affect animal cognition and health. Also, human socio-economic status is a covariate factor connecting psychometric test-performance (a measure of cognitive ability), educational achievement, lifetime health, and survival. The complimentary hypothesis, that mechanisms in physiology can explain some covariance between the same traits, is disputed. Possible mechanisms involve metabolic biology affecting integrity and stability of physiological systems during development and ageing. Knowledge of these relationships is incomplete, and underlying processes are challenging to reveal in people. Model animals, however, can provide insights into connections between metabolic biology and physiological stability that may aid efforts to reduce human health and longevity disparities. We document a positive correlation between a measure of associative learning performance and the metabolic stress resilience of honeybees. This relationship is independent of social factors, and may provide basic insights into how central nervous system (CNS) function and metabolic biology can be associated. Controlling for social environment, age, and learning motivation in each bee, we establish that learning in Pavlovian conditioning to an odour is positively correlated with individual survival time in hyperoxia. Hyperoxia induces oxidative metabolic damage, and provides a measure of metabolic stress resistance that is often related to overall lifespan in laboratory animals. The positive relationship between Pavlovian learning ability and stress resilience in the bee is not equally established in other model organisms so far, and contrasts with a genetic cost of improved associative learning found in Drosophila melanogaster. Similarities in the performances of different animals need not reflect common functional principles. A correlation of honeybee Pavlovian learning and metabolic stress resilience, thereby, is not evidence of a shared biology that will give insight about systems integrity in people. Yet, the means to resolve difficult research questions often come from findings in distant areas of science while the model systems that turn out to be valuable are sometimes the least predictable. Our results add to recent findings indicating that honeybees can become instrumental to understanding how metabolic biology influences life outcomes.
Peterson, Diana Coomes; Mlynarczyk, Gregory S A
2016-11-01
This study examined whether student learning outcome measures are influenced by the addition of three-dimensional and digital teaching tools to a traditional dissection and lecture learning format curricula. The study was performed in a semester long graduate level course that incorporated both gross anatomy and neuroanatomy curricula. Methods compared student examination performance on material taught using lecture and cadaveric dissection teaching tools alone or lecture and cadaveric dissection augmented with computerized three-dimensional teaching tools. Additional analyses were performed to examine potential correlations between question difficulty and format, previous student performance (i.e., undergraduate grade point average), and a student perception survey. The results indicated that students performed better on material in which three-dimensional (3D) technologies are utilized in conjunction with lecture and dissection methodologies. The improvement in performance was observed across the student population primarily on laboratory examinations. Although, student performance was increased, students did not perceive that the use of the additional 3D technology significantly influenced their learning. The results indicate that the addition of 3D learning tools can influence long-term retention of gross anatomy material and should be considered as a beneficial supplement for anatomy courses. Anat Sci Educ 9: 529-536. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
ERIC Educational Resources Information Center
Kambara, Toshimune; Tsukiura, Takashi; Shigemune, Yayoi; Kanno, Akitake; Nouchi, Rui; Yomogida, Yukihito; Kawashima, Ryuta
2013-01-01
This study examined behavioral changes in 15-day learning of word-picture (WP) and word-sound (WS) associations, using meaningless stimuli. Subjects performed a learning task and two recognition tasks under the WP and WS conditions every day for 15 days. Two main findings emerged from this study. First, behavioral data of recognition accuracy and…
Recommendation System Based On Association Rules For Distributed E-Learning Management Systems
NASA Astrophysics Data System (ADS)
Mihai, Gabroveanu
2015-09-01
Traditional Learning Management Systems are installed on a single server where learning materials and user data are kept. To increase its performance, the Learning Management System can be installed on multiple servers; learning materials and user data could be distributed across these servers obtaining a Distributed Learning Management System. In this paper is proposed the prototype of a recommendation system based on association rules for Distributed Learning Management System. Information from LMS databases is analyzed using distributed data mining algorithms in order to extract the association rules. Then the extracted rules are used as inference rules to provide personalized recommendations. The quality of provided recommendations is improved because the rules used to make the inferences are more accurate, since these rules aggregate knowledge from all e-Learning systems included in Distributed Learning Management System.
Schlichting, Margaret L; Guarino, Katharine F; Schapiro, Anna C; Turk-Browne, Nicholas B; Preston, Alison R
2017-01-01
Despite the importance of learning and remembering across the lifespan, little is known about how the episodic memory system develops to support the extraction of associative structure from the environment. Here, we relate individual differences in volumes along the hippocampal long axis to performance on statistical learning and associative inference tasks-both of which require encoding associations that span multiple episodes-in a developmental sample ranging from ages 6 to 30 years. Relating age to volume, we found dissociable patterns across the hippocampal long axis, with opposite nonlinear volume changes in the head and body. These structural differences were paralleled by performance gains across the age range on both tasks, suggesting improvements in the cross-episode binding ability from childhood to adulthood. Controlling for age, we also found that smaller hippocampal heads were associated with superior behavioral performance on both tasks, consistent with this region's hypothesized role in forming generalized codes spanning events. Collectively, these results highlight the importance of examining hippocampal development as a function of position along the hippocampal axis and suggest that the hippocampal head is particularly important in encoding associative structure across development.
Spatial parameters at the basis of social transfer of learning.
Lugli, Luisa; Iani, Cristina; Milanese, Nadia; Sebanz, Natalie; Rubichi, Sandro
2015-06-01
Recent research indicates that practicing on a joint spatial compatibility task with an incompatible stimulus-response mapping affects subsequent joint Simon task performance, eliminating the social Simon effect. It has been well established that in individual contexts, for transfer of learning to occur, participants need to practice an incompatible association between stimulus and response positions. The mechanisms underlying transfer of learning in joint task performance are, however, less well understood. The present study was aimed at assessing the relative contribution of 3 different spatial relations characterizing the joint practice context: stimulus-response, stimulus-participant, and participant-response relations. In 3 experiments, the authors manipulated the stimulus-response, stimulus-participant, and response-participant associations. We found that learning from the practice task did not transfer to the subsequent task when during practice stimulus-response associations were spatially incompatible and stimulus-participant associations were compatible (Experiment 1). However, a transfer of learning was evident when stimulus-participant associations were spatially incompatible. This occurred both when response-participant associations were incompatible (Experiment 2) and when they were compatible (Experiment 3). These results seem to support an agent corepresentation account of correspondence effects emerging in joint settings since they suggest that, in social contexts, critical to obtain transfer-of-learning effects is the spatial relation between stimulus and participant positions while the spatial relation between stimulus and response positions is irrelevant. (c) 2015 APA, all rights reserved).
Mindful learning can promote connectedness to nature: Implicit and explicit evidence.
Wang, Xue; Geng, Liuna; Zhou, Kexin; Ye, Lijuan; Ma, Yinglin; Zhang, Shuhao
2016-08-01
Environmental problems have attracted increasing attention, yet individuals' connectedness to nature remains a significant concern for potential solutions to these problems. In this article, we propose a novel method to promote connectedness to nature: mindful learning. One hundred and thirty-four students participated in the experiment. First, baseline measurements using the Connectedness to Nature Scale were obtained. Participants were then assigned to either a mindful or mindless learning condition. Finally, as a posttest, participants completed the Implicit Association Test and the Inclusion of Nature in the Self Scale. The performance of the mindful-learning group was better for both measures. Participants in the mindful-learning condition performed better on the Implicit Association Test and scored higher on the Inclusion of Nature in the Self Scale. These results provide empirical evidence that mindful learning may promote connectedness to nature, both implicitly and explicitly. Copyright © 2016 Elsevier Inc. All rights reserved.
Sanchez, Daniel J.; Gobel, Eric W.; Reber, Paul J.
2015-01-01
Memory-impaired patients express intact implicit perceptual–motor sequence learning, but it has been difficult to obtain a similarly clear dissociation in healthy participants. When explicit memory is intact, participants acquire some explicit knowledge and performance improvements from implicit learning may be subtle. Therefore, it is difficult to determine whether performance exceeds what could be expected on the basis of the concomitant explicit knowledge. Using a challenging new sequence-learning task, robust implicit learning was found in healthy participants with virtually no associated explicit knowledge. Participants trained on a repeating sequence that was selected randomly from a set of five. On a performance test of all five sequences, performance was best on the trained sequence, and two-thirds of the participants exhibited individually reliable improvement (by chi-square analysis). Participants could not reliably indicate which sequence had been trained by either recognition or recall. Only by expressing their knowledge via performance were participants able to indicate which sequence they had learned. PMID:21169570
Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B
2017-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. Copyright © 2017 the American Physiological Society.
2012-01-01
Objective. To evaluate preceptors’ perception of their ability to perform the Structured Practical Experiences in Pharmacy (SPEP) learning objectives through a self-assessment activity. Methods. A self-assessment instrument consisting of 28 learning objectives associated with clinic, community, and hospital pharmacy practice experiences were developed. Preceptors rated their performance ability for each of the learning objectives using a 3-point Likert scale. Results. Of the 116 preceptors, 89 (77%) completed the self-assessment survey instrument. The overall preceptor responses to the items on performance of the 28 SPEP learning objectives ranged from good to excellent. Years of experience, practice experience setting, and involvement as a SPEP or SPEP and PharmD preceptor had no influence on their self-reported capabilities. Conclusion. Most preceptors rated their ability to perform the learning objectives for the structured practical experiences in pharmacy as high. Competency areas requiring further preceptor development were identified. PMID:23193333
Kraus, Dror; Horowitz-Kraus, Tzipi
2014-01-01
Individuals with dyslexia exhibit associated learning deficits and impaired executive functions. The Wisconsin Card Sorting Test (WCST) is a learning-based task that relies heavily on executive functioning, in particular, attention shift and working memory. Performance during early and late phases of a series within the task represents learning and implementation of a newly learned rule. Here, we aimed to examine two event-related potentials associated with learning, feedback-related negativity (FRN)-P300 complex, in individuals with dyslexia performing the WCST. Adolescents with dyslexia and age-matched typical readers performed the Madrid card sorting test (MCST), a computerized version of the WCST. Task performance, reading measures, and cognitive measures were collected. FRN and the P300 complex were acquired using the event-related potentials methodology and were compared in early vs late errors within a series. While performing the MCST, both groups showed a significant reduction in average reaction times and a trend toward decreased error rates. Typical readers performed consistently better than individuals with dyslexia. FRN amplitudes in early phases were significantly smaller in dyslexic readers, but were essentially equivalent to typical readers in the late phase. P300 amplitudes were initially smaller among readers with dyslexia and tended to decrease further in late phases. Differences in FRN amplitudes for early vs late phases were positively correlated with those of P300 amplitudes in the entire sample. Individuals with dyslexia demonstrate a behavioral and electrophysiological change within single series of the MCST. However, learning patterns seem to differ between individuals with dyslexia and typical readers. We attribute these differences to the lower baseline performance of individuals with dyslexia. We suggest that these changes represent a fast compensatory mechanism, demonstrating the importance of learning strategies on reading among individuals with dyslexia.
Components of Self-Regulated Learning; Implications for School Performance
ERIC Educational Resources Information Center
Mih, Codruta; Mih, Viorel
2010-01-01
Self-regulated school learning behavior includes the activation of a relatively large number of psychological dimensions. Among the most important self-regulation constructs that influence school learning are: learning goals, personal self-efficacy, metacognition and test-anxiety. The adaptive functioning of these is associated with high…
Mathar, David; Neumann, Jane; Villringer, Arno; Horstmann, Annette
2017-10-01
Prediction errors (PEs) encode the difference between expected and actual action outcomes in the brain via dopaminergic modulation. Integration of these learning signals ensures efficient behavioral adaptation. Obesity has recently been linked to altered dopaminergic fronto-striatal circuits, thus implying impairments in cognitive domains that rely on its integrity. 28 obese and 30 lean human participants performed an implicit stimulus-response learning paradigm inside an fMRI scanner. Computational modeling and psycho-physiological interaction (PPI) analysis was utilized for assessing PE-related learning and associated functional connectivity. We show that human obesity is associated with insufficient incorporation of negative PEs into behavioral adaptation even in a non-food context, suggesting differences in a fundamental neural learning mechanism. Obese subjects were less efficient in using negative PEs to improve implicit learning performance, despite proper coding of PEs in striatum. We further observed lower functional coupling between ventral striatum and supplementary motor area in obese subjects subsequent to negative PEs. Importantly, strength of functional coupling predicted task performance and negative PE utilization. These findings show that obesity is linked to insufficient behavioral adaptation specifically in response to negative PEs, and to associated alterations in function and connectivity within the fronto-striatal system. Recognition of neural differences as a central characteristic of obesity hopefully paves the way to rethink established intervention strategies: Differential behavioral sensitivity to negative and positive PEs should be considered when designing intervention programs. Measures relying on penalization of unwanted behavior may prove less effective in obese subjects than alternative approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Intact Associative Learning in Patients with Schizophrenia: Evidence from a Go/NoGo Paradigm
Woolard, Austin A.; Kose, Samet; Woodward, Neil D.; Verbruggen, Frederick; Logan, Gordon D.; Heckers, Stephan
2010-01-01
Objective Schizophrenia is associated with deficits in executive control and associative learning. In the present study, we investigated the effect of associative learning during a Go/NoGo task in healthy controls subjects and patients with schizophrenia. Methods Thirty patients with schizophrenia and 30 age-and-gender matched healthy control subjects performed 15 blocks of training and 3 blocks of test trials. The trials consisted of responding to words denoting either living or non-living objects. In the training condition, subjects were instructed to respond by pressing the space bar (Go-task) to one of the word types (living or non-living objects), but not the other. In the test phase, the Go/NoGo mapping was reversed. Subjects were instructed to respond as quickly and as accurately as possible. Reaction times (RT) and accuracy were recorded for each trial and all subjects were debriefed upon completion of the test trials. Results Patients with schizophrenia had significantly longer Go RTs when compared to the control group, during both training and test trials. However, the two groups did not differ on any measure of associative learning. Conclusions Our findings suggest that associative learning is intact in schizophrenia patients during the performance of a relational Go/NoGo paradigm. PMID:20226631
Neural Pattern Similarity in the Left IFG and Fusiform Is Associated with Novel Word Learning
Qu, Jing; Qian, Liu; Chen, Chuansheng; Xue, Gui; Li, Huiling; Xie, Peng; Mei, Leilei
2017-01-01
Previous studies have revealed that greater neural pattern similarity across repetitions is associated with better subsequent memory. In this study, we used an artificial language training paradigm and representational similarity analysis to examine whether neural pattern similarity across repetitions before training was associated with post-training behavioral performance. Twenty-four native Chinese speakers were trained to learn a logographic artificial language for 12 days and behavioral performance was recorded using the word naming and picture naming tasks. Participants were scanned while performing a passive viewing task before training, after 4-day training and after 12-day training. Results showed that pattern similarity in the left pars opercularis (PO) and fusiform gyrus (FG) before training was negatively associated with reaction time (RT) in both word naming and picture naming tasks after training. These results suggest that neural pattern similarity is an effective neurofunctional predictor of novel word learning in addition to word memory. PMID:28878640
Doñamayor, Nuria; Dinani, Jakob; Römisch, Manuel; Ye, Zheng; Münte, Thomas F
2014-10-01
Neural responses to performance errors and external feedback have been suggested to be altered in obsessive-compulsive disorder. In the current study, an associative learning task was used in healthy participants assessed for obsessive-compulsive symptoms by the OCI-R questionnaire. The task included a condition with equivocal feedback that did not inform about the participants' performance. Following incorrect responses, an error-related negativity and an error positivity were observed. In the feedback phase, the largest feedback-related negativity was observed following equivocal feedback. Theta and beta oscillatory components were found following incorrect and correct responses, respectively, and an increase in theta power was associated with negative and equivocal feedback. Changes over time were also explored as an indicator for possible learning effects. Finally, event-related potentials and oscillatory components were found to be uncorrelated with OCI-R scores in the current non-clinical sample. Copyright © 2014 Elsevier B.V. All rights reserved.
Association between exposure to work stressors and cognitive performance.
Vuori, Marko; Akila, Ritva; Kalakoski, Virpi; Pentti, Jaana; Kivimäki, Mika; Vahtera, Jussi; Härmä, Mikko; Puttonen, Sampsa
2014-04-01
To examine the association between work stress and cognitive performance. Cognitive performance of a total of 99 women (mean age = 47.3 years) working in hospital wards at either the top or bottom quartiles of job strain was assessed using validated tests that measured learning, short-term memory, and speed of memory retrieval. The high job strain group (n = 43) had lower performance than the low job strain group (n = 56) in learning (P = 0.025), short-term memory (P = 0.027), and speed of memory retrieval (P = 0.003). After controlling for education level, only the difference in speed of memory retrieval remained statistically significant (P = 0.010). The association found between job strain and speed of memory retrieval might be one important factor explaining the effect of stress on work performance.
Brajon, Sophie; Laforest, Jean-Paul; Schmitt, Océane; Devillers, Nicolas
2016-08-01
This study investigated whether individual behavioural characteristics of piglets and stress induced by experience with humans can influence learning performance. After weaning, piglets received a chronic experience with humans to modulate their emotional state: rough (ROU), gentle (GEN), or minimal (MIN) experience. Simultaneously, they were trained on a discrimination task. Afterward, their behaviour during challenge tests was assessed. The first learning step of the task involved associating a positive sound cue with a response (approach a trough) and success of piglets depended mostly on motivation to seek for reward. Although the experience with humans did not have direct effect, the degree of fear of handler, measured based on their reactivity to a human approach test, was related to motivation to seek rewards and learning speed of this first step in stressed ROU piglets, but not in MIN and GEN piglets. In contrast, the second learning step was more cognitively challenging, since it involved discrimination learning, including negative cues during which piglets had to learn to avoid the trough. Locomotion activity, measured during an open-field test, was associated with performance of the discrimination learning. To conclude, fearfulness towards humans and locomotion activity are linked with learning performance in relation to task complexity, highlighting the necessity to take into account these factors in animal research and management. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Cáceres, Pablo; San Martín, René
2017-01-01
Many advances have been made over the last decades in describing, on the one hand, the link between reward-based learning and decision-making, and on the other hand, the link between impulsivity and decision-making. However, the association between reward-based learning and impulsivity remains poorly understood. In this study, we evaluated the association between individual differences in loss-minimizing and gain-maximizing behavior in a learning-based probabilistic decision-making task and individual differences in cognitive impulsivity. We found that low cognitive impulsivity was associated both with a better performance minimizing losses and maximizing gains during the task. These associations remained significant after controlling for mathematical skills and gender as potential confounders. We discuss potential mechanisms through which cognitive impulsivity might interact with reward-based learning and decision-making. PMID:28261137
Cáceres, Pablo; San Martín, René
2017-01-01
Many advances have been made over the last decades in describing, on the one hand, the link between reward-based learning and decision-making, and on the other hand, the link between impulsivity and decision-making. However, the association between reward-based learning and impulsivity remains poorly understood. In this study, we evaluated the association between individual differences in loss-minimizing and gain-maximizing behavior in a learning-based probabilistic decision-making task and individual differences in cognitive impulsivity. We found that low cognitive impulsivity was associated both with a better performance minimizing losses and maximizing gains during the task. These associations remained significant after controlling for mathematical skills and gender as potential confounders. We discuss potential mechanisms through which cognitive impulsivity might interact with reward-based learning and decision-making.
Learning and study strategies correlate with medical students' performance in anatomical sciences.
Khalil, Mohammed K; Williams, Shanna E; Gregory Hawkins, H
2018-05-06
Much of the content delivered during medical students' preclinical years is assessed nationally by such testing as the United States Medical Licensing Examination ® (USMLE ® ) Step 1 and Comprehensive Osteopathic Medical Licensing Examination ® (COMPLEX-USA ® ) Step 1. Improvement of student study/learning strategies skills is associated with academic success in internal and external (USMLE Step 1) examinations. This research explores the strength of association between the Learning and Study Strategies Inventory (LASSI) scores and student performance in the anatomical sciences and USMLE Step 1 examinations. The LASSI inventory assesses learning and study strategies based on ten subscale measures. These subscales include three components of strategic learning: skill (Information processing, Selecting main ideas, and Test strategies), will (Anxiety, Attitude, and Motivation) and self-regulation (Concentration, Time management, Self-testing, and Study aid). During second year (M2) orientation, 180 students (Classes of 2016, 2017, and 2018) were administered the LASSI survey instrument. Pearson Product-Moment correlation analyses identified significant associations between five of the ten LASSI subscales (Anxiety, Information processing, Motivation, Selecting main idea, and Test strategies) and students' performance in the anatomical sciences and USMLE Step 1 examinations. Identification of students lacking these skills within the anatomical sciences curriculum allows targeted interventions, which not only maximize academic achievement in an aspect of an institution's internal examinations, but in the external measure of success represented by USMLE Step 1 scores. Anat Sci Educ 11: 236-242. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Miki, Kaori; Yamauchi, Hirotsugu
2005-08-01
We examined the relations among students' perceptions of classroom goal structures (mastery and performance goal structures), students' achievement goal orientations (mastery, performance, and work-avoidance goals), and learning strategies (deep processing, surface processing and self-handicapping strategies). Participants were 323 5th and 6th grade students in elementary schools. The results from structural equation modeling indicated that perceptions of classroom mastery goal structures were associated with students' mastery goal orientations, which were in turn related positively to the deep processing strategies and academic achievement. Perceptions of classroom performance goal stractures proved associated with work avoidance-goal orientations, which were positively related to the surface processing and self-handicapping strategies. Two types of goal structures had a positive relation with students' performance goal orientations, which had significant positive effects on academic achievement. The results of this study suggest that elementary school students' perceptions of mastery goal structures are related to adaptive patterns of learning more than perceptions of performance goal structures are. The role of perceptions of classroom goal structure in promoting students' goal orientations and learning strategies is discussed.
Wilkinson, Leonora; Tai, Yen Foung; Lin, Chia Shu; Lagnado, David Albert; Brooks, David James; Piccini, Paola; Jahanshahi, Marjan
2014-01-01
The basal ganglia (BG) mediate certain types of procedural learning, such as probabilistic classification learning on the ‘weather prediction task’ (WPT). Patients with Parkinson's disease (PD), who have BG dysfunction, are impaired at WPT-learning, but it remains unclear what component of the WPT is important for learning to occur. We tested the hypothesis that learning through processing of corrective feedback is the essential component and is associated with release of striatal dopamine. We employed two WPT paradigms, either involving learning via processing of corrective feedback (FB) or in a paired associate manner (PA). To test the prediction that learning on the FB but not PA paradigm would be associated with dopamine release in the striatum, we used serial 11C-raclopride (RAC) positron emission tomography (PET), to investigate striatal dopamine release during FB and PA WPT-learning in healthy individuals. Two groups, FB, (n = 7) and PA (n = 8), underwent RAC PET twice, once while performing the WPT and once during a control task. Based on a region-of-interest approach, striatal RAC-binding potentials reduced by 13–17% in the right ventral striatum when performing the FB compared to control task, indicating release of synaptic dopamine. In contrast, right ventral striatal RAC binding non-significantly increased by 9% during the PA task. While differences between the FB and PA versions of the WPT in effort and decision-making is also relevant, we conclude striatal dopamine is released during FB-based WPT-learning, implicating the striatum and its dopamine connections in mediating learning with FB. PMID:24777947
Rubin, Leah H; Pyra, Maria; Cook, Judith A; Weber, Kathleen M; Cohen, Mardge H; Martin, Eileen; Valcour, Victor; Milam, Joel; Anastos, Kathryn; Young, Mary A; Alden, Christine; Gustafson, Deborah R; Maki, Pauline M
2016-04-01
The prevalence of post-traumatic stress disorder (PTSD) is higher among HIV-infected (HIV+) women compared with HIV-uninfected (HIV-) women, and deficits in episodic memory are a common feature of both PTSD and HIV infection. We investigated the association between a probable PTSD diagnosis using the PTSD Checklist-Civilian (PCL-C) version and verbal learning and memory using the Hopkins Verbal Learning Test in 1004 HIV+ and 496 at-risk HIV- women. HIV infection was not associated with a probable PTSD diagnosis (17% HIV+, 16% HIV-; p = 0.49) but was associated with lower verbal learning (p < 0.01) and memory scores (p < 0.01). Irrespective of HIV status, a probable PTSD diagnosis was associated with poorer performance in verbal learning (p < 0.01) and memory (p < 0.01) and psychomotor speed (p < 0.001). The particular pattern of cognitive correlates of probable PTSD varied depending on exposure to sexual abuse and/or violence, with exposure to either being associated with a greater number of cognitive domains and a worse cognitive profile. A statistical interaction between HIV serostatus and PTSD was observed on the fine motor skills domain (p = 0.03). Among women with probable PTSD, HIV- women performed worse than HIV+ women on fine motor skills (p = 0.01), but among women without probable PTSD, there was no significant difference in performance between the groups (p = 0.59). These findings underscore the importance of considering mental health factors as correlates to cognitive deficits in women with HIV.
d-Cycloserine facilitates extinction learning and enhances extinction-related brain activation.
Klass, Anne; Glaubitz, Benjamin; Tegenthoff, Martin; Lissek, Silke
2017-10-01
Extinction learning is modulated by N-methyl d-aspartate receptors (NMDAR) particularly in prefrontal and hippocampal brain regions. The use of of NMDA agonists in exposure therapy of anxiety disorders has been investigated in various patient groups. Behavioral results showed beneficial effects of pre-learning administration of the partial NMDAR agonist d-Cycloserine (DCS) on therapy success. However, the impact of DCS upon non-fear-related contextual extinction, and associated recruitment of extinction-relevant brain regions is as yet unknown. In the present fMRI study, healthy human participants performed a context-related associative learning and extinction task. A single dose of DCS, administered prior to extinction learning, enhanced extinction learning performance in an identical context, and increased activation in prefrontal, temporal as well as hippocampal/insular regions, compared to placebo controls. In contrast, DCS did not affect extinction learning in a novel context, nor the renewal effect, which describes the recovery of an extinguished response if the context of extinction differs from the context of recall. Our findings demonstrate a specific involvement of prefrontal and hippocampal NMDAR in the modification of established stimulus-outcome associations in identical contexts and thus their role in behavioral flexibility, underlining their potential for enhancing AAA extinction learning. Copyright © 2017. Published by Elsevier Inc.
Liefting, Maartje; Hoedjes, Katja M; Lann, Cécile Le; Smid, Hans M; Ellers, Jacintha
2018-05-16
We are only starting to understand how variation in cognitive ability can result from local adaptations to environmental conditions. A major question in this regard is to what extent selection on cognitive ability in a specific context affects that ability in general through correlated evolution. To address this question we performed artificial selection on visual associative learning in female Nasonia vitripennis wasps. Using appetitive conditioning in which a visual stimulus was offered in association with a host reward, the ability to learn visual associations was enhanced within 10 generations of selection. To test for correlated evolution affecting this form of learning, the ability to readily form learned associations in females was also tested using an olfactory instead of a visual stimulus in the appetitive conditioning. Additionally, we assessed whether the improved associative learning ability was expressed across sexes by colour-conditioning males with a mating reward. Both females and males from the selected lines consistently demonstrated an increased associative learning ability compared to the control lines, independent of learning context or conditioned stimulus. No difference in relative volume of brain neuropils was detected between the selected and control lines. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467
Biotteau, Maëlle; Péran, Patrice; Vayssière, Nathalie; Tallet, Jessica; Albaret, Jean-Michel; Chaix, Yves
2017-03-01
Recent theories hypothesize that procedural learning may support the frequent overlap between neurodevelopmental disorders. The neural circuitry supporting procedural learning includes, among others, cortico-cerebellar and cortico-striatal loops. Alteration of these loops may account for the frequent comorbidity between Developmental Coordination Disorder (DCD) and Developmental Dyslexia (DD). The aim of our study was to investigate cerebral changes due to the learning and automatization of a sequence learning task in children with DD, or DCD, or both disorders. fMRI on 48 children (aged 8-12) with DD, DCD or DD + DCD was used to explore their brain activity during procedural tasks, performed either after two weeks of training or in the early stage of learning. Firstly, our results indicate that all children were able to perform the task with the same level of automaticity, but recruit different brain processes to achieve the same performance. Secondly, our fMRI results do not appear to confirm Nicolson and Fawcett's model. The neural correlates recruited for procedural learning by the DD and the comorbid groups are very close, while the DCD group presents distinct characteristics. This provide a promising direction on the neural mechanisms associated with procedural learning in neurodevelopmental disorders and for understanding comorbidity. Published by Elsevier Ltd.
Peters, Bart D.; Ikuta, Toshikazu; DeRosse, Pamela; John, Majnu; Burdick, Katherine E.; Gruner, Patricia; Prendergast, Daniel M.; Szeszko, Philip R.; Malhotra, Anil K.
2013-01-01
Background Age-related differences in white matter (WM) tract microstructure have been well-established across the lifespan. In the present cross-sectional study we examined whether these differences are associated with neurocognitive performance from childhood to late adulthood. Methods Diffusion tensor imaging was performed in 296 healthy subjects aged 8–68 years (mean=29.6, SD=14.6). The corpus callosum, two projection tracts, and five association tracts were traced using probabilistic tractography. A neurocognitive test battery was used to assess speed of processing, attention, spatial working memory, verbal functioning, visual learning and executive functioning. Linear mediation models were used to examine whether differences in WM tract fractional anisotropy (FA) were associated with neurocognitive performance, independent of the effect of age. Results From childhood to early adulthood, higher FA of the cingulum bundle and inferior fronto-occipital fasciculus (IFOF) was associated with higher executive functioning and global cognitive functioning, respectively, independent of the effect of age. When adjusting for speed of processing, FA of the IFOF was no longer associated with performance in the other cognitive domains with the exception of visual learning. From early adulthood to late adulthood, WM tract FA was not associated with cognitive performance independent of the age effect. Conclusions The cingulum bundle may play a critical role in protracted maturation of executive functioning. The IFOF may play a key role in maturation of visual learning, and may act as a central ‘hub’ in global cognitive maturation by subserving maturation of processing speed. PMID:23830668
Tracking Plasticity: Effects of Long-Term Rehearsal in Expert Dancers Encoding Music to Movement
Bar, Rachel J.; DeSouza, Joseph F. X.
2016-01-01
Our knowledge of neural plasticity suggests that neural networks show adaptation to environmental and intrinsic change. In particular, studies investigating the neuroplastic changes associated with learning and practicing motor tasks have shown that practicing such tasks results in an increase in neural activation in several specific brain regions. However, studies comparing experts and non-experts suggest that experts employ less neuronal activation than non-experts when performing a familiar motor task. Here, we aimed to determine the long-term changes in neural networks associated with learning a new dance in professional ballet dancers over 34 weeks. Subjects visualized dance movements to music while undergoing fMRI scanning at four time points over 34-weeks. Results demonstrated that initial learning and performance at seven weeks led to increases in activation in cortical regions during visualization compared to the first week. However, at 34 weeks, the cortical networks showed reduced activation compared to week seven. Specifically, motor learning and performance over the 34 weeks showed the typical inverted-U-shaped function of learning. Further, our result demonstrate that learning of a motor sequence of dance movements to music in the real world can be visualized by expert dancers using fMRI and capture highly significant modeled fits of the brain network variance of BOLD signals from early learning to expert level performance. PMID:26824475
The Correlation of Learning Styles with Student Performance In Academic and Clinical Course Work.
ERIC Educational Resources Information Center
Cunningham, M. Jo; Trickey, Becki A.
1983-01-01
The purpose of this study was to determine any correlation between learning styles and performance in the academic and clinical course work of occupational therapy students at the Medical University of South Carolina. (Availability: RAM Associates LTD., P.O. Box N, Laurel, MD 20707) (SSH)
ERIC Educational Resources Information Center
Artelt, Cordula; Schneider, Wolfgang
2015-01-01
Background/Context: Because metacognitive knowledge includes knowledge about adequate learning strategies, and because an effective use of learning strategies is associated with higher levels of performance, substantial relationships can be assumed between metacognitive knowledge, strategic behavior, and performance. However, such a pattern of…
Bazhenov, Maxim; Huerta, Ramon; Smith, Brian H.
2013-01-01
Nonassociative and associative learning rules simultaneously modify neural circuits. However, it remains unclear how these forms of plasticity interact to produce conditioned responses. Here we integrate nonassociative and associative conditioning within a uniform model of olfactory learning in the honeybee. Honeybees show a fairly abrupt increase in response after a number of conditioning trials. The occurrence of this abrupt change takes many more trials after exposure to nonassociative trials than just using associative conditioning. We found that the interaction of unsupervised and supervised learning rules is critical for explaining latent inhibition phenomenon. Associative conditioning combined with the mutual inhibition between the output neurons produces an abrupt increase in performance despite smooth changes of the synaptic weights. The results show that an integrated set of learning rules implemented using fan-out connectivities together with neural inhibition can explain the broad range of experimental data on learning behaviors. PMID:23536082
Schlichting, Margaret L.; Guarino, Katharine F.; Schapiro, Anna C.; Turk-Browne, Nicholas B.; Preston, Alison R.
2016-01-01
Despite the importance of learning and remembering across the lifespan, little is known about how the episodic memory system develops to support the extraction of associative structure from the environment. Here, we relate individual differences in volumes along the hippocampal long axis to performance on statistical learning and associative inference tasks—both of which require encoding associations that span multiple episodes—in a developmental sample ranging from ages 6–30 years. Relating age to volume, we found dissociable patterns across the hippocampal long axis, with opposite nonlinear volume changes in the head and body. These structural differences were paralleled by performance gains across the age range on both tasks, suggesting improvements in the cross-episode binding ability from childhood to adulthood. Controlling for age, we also found that smaller hippocampal heads were associated with superior behavioral performance on both tasks, consistent with this region’s hypothesized role in forming generalized codes spanning events. Collectively, these results highlight the importance of examining hippocampal development as a function of position along the hippocampal axis and suggest that the hippocampal head is particularly important in encoding associative structure across development. PMID:27575916
Are There Age-Related Differences in the Ability to Learn Configural Responses?
Clark, Rachel; Freedberg, Michael; Hazeltine, Eliot; Voss, Michelle W.
2015-01-01
Age is often associated with a decline in cognitive abilities that are important for maintaining functional independence, such as learning new skills. Many forms of motor learning appear to be relatively well preserved with age, while learning tasks that involve associative binding tend to be negatively affected. The current study aimed to determine whether age differences exist on a configural response learning task, which includes aspects of motor learning and associative binding. Young (M = 24 years) and older adults (M = 66.5 years) completed a modified version of a configural learning task. Given the requirement of associative binding in the configural relationships between responses, we predicted older adults would show significantly less learning than young adults. Older adults demonstrated lower performance (slower reaction time and lower accuracy). However, contrary to our prediction, older adults showed similar rates of learning as indexed by a configural learning score compared to young adults. These results suggest that the ability to acquire knowledge incidentally about configural response relationships is largely unaffected by cognitive aging. The configural response learning task provides insight into the task demands that constrain learning abilities in older adults. PMID:26317773
Plaza, Victoria; Molina, Michael; Fuentes, Luis J.; Estévez, Angeles F.
2018-01-01
It has recently been reported that the differential outcomes procedure (DOP) might be one of the therapeutical techniques focused at promoting autonomy in the elderly to deal with their medical issues. Molina et al. (2015) found that a group of healthy young adults improved their learning and long-term retention of six disorder/pill associations when each relationship to be learned was associated with a particular reinforcer (the differential outcomes condition) compared to when they were randomly administered (the non-differential outcomes condition). In the present study, we extend these findings to older adults who usually show difficulties to remember to take their medications as prescribed. Participants were asked to learn the association between three pills and the specific time at the day when they had to take each medication. Two memory tests were also performed 1 h and 1 week after completing the training phase. Results showed a faster learning of the task and long-term retention of the previously learned associations (pill/time of day) when differential outcomes were used. Furthermore, the older adults’ performance in the learning and memory phases did not differ from that of the younger adults in the DOP condition. These findings demonstrate that this procedure can help elderly people to ameliorate not only their learning, but also their long-term memory difficulties, suggesting the potential for the DOP to promote adherence to treatment in this population. PMID:29491846
Statistical learning and auditory processing in children with music training: An ERP study.
Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne
2017-07-01
The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Song learning and cognitive ability are not consistently related in a songbird.
Anderson, Rindy C; Searcy, William A; Peters, Susan; Hughes, Melissa; DuBois, Adrienne L; Nowicki, Stephen
2017-03-01
Learned aspects of song have been hypothesized to signal cognitive ability in songbirds. We tested this hypothesis in hand-reared song sparrows (Melospiza melodia) that were tutored with playback of adult songs during the critical period for song learning. The songs developed by the 19 male subjects were compared to the model songs to produce two measures of song learning: the proportion of notes copied from models and the average spectrogram cross-correlation between copied notes and model notes. Song repertoire size, which reflects song complexity, was also measured. At 1 year of age, subjects were given a battery of five cognitive tests that measured speed of learning in the context of a novel foraging task, color association, color reversal, detour-reaching, and spatial learning. Bivariate correlations between the three song measures and the five cognitive measures revealed no significant associations. As in other studies of avian cognition, different cognitive measures were for the most part not correlated with each other, and this result remained true when 22 hand-reared female song sparrows were added to the analysis. General linear mixed models controlling for effects of neophobia and nest of origin indicated that all three song measures were associated with better performance on color reversal and spatial learning but were associated with worse performance on novel foraging and detour-reaching. Overall, the results do not support the hypothesis that learned aspects of song signal cognitive ability.
Group social rank is associated with performance on a spatial learning task.
Langley, Ellis J G; van Horik, Jayden O; Whiteside, Mark A; Madden, Joah R
2018-02-01
Dominant individuals differ from subordinates in their performances on cognitive tasks across a suite of taxa. Previous studies often only consider dyadic relationships, rather than the more ecologically relevant social hierarchies or networks, hence failing to account for how dyadic relationships may be adjusted within larger social groups. We used a novel statistical method: randomized Elo-ratings, to infer the social hierarchy of 18 male pheasants, Phasianus colchicus , while in a captive, mixed-sex group with a linear hierarchy. We assayed individual learning performance of these males on a binary spatial discrimination task to investigate whether inter-individual variation in performance is associated with group social rank. Task performance improved with increasing trial number and was positively related to social rank, with higher ranking males showing greater levels of success. Motivation to participate in the task was not related to social rank or task performance, thus indicating that these rank-related differences are not a consequence of differences in motivation to complete the task. Our results provide important information about how variation in cognitive performance relates to an individual's social rank within a group. Whether the social environment causes differences in learning performance or instead, inherent differences in learning ability predetermine rank remains to be tested.
McMurray, Bob; Horst, Jessica S.; Samuelson, Larissa K.
2013-01-01
Classic approaches to word learning emphasize the problem of referential ambiguity: in any naming situation the referent of a novel word must be selected from many possible objects, properties, actions, etc. To solve this problem, researchers have posited numerous constraints, and inference strategies, but assume that determining the referent of a novel word is isomorphic to learning. We present an alternative model in which referent selection is an online process that is independent of long-term learning. This two timescale approach creates significant power in the developing system. We illustrate this with a dynamic associative model in which referent selection is simulated as dynamic competition between competing referents, and learning is simulated using associative (Hebbian) learning. This model can account for a range of findings including the delay in expressive vocabulary relative to receptive vocabulary, learning under high degrees of referential ambiguity using cross-situational statistics, accelerating (vocabulary explosion) and decelerating (power-law) learning rates, fast-mapping by mutual exclusivity (and differences in bilinguals), improvements in familiar word recognition with development, and correlations between individual differences in speed of processing and learning. Five theoretical points are illustrated. 1) Word learning does not require specialized processes – general association learning buttressed by dynamic competition can account for much of the literature. 2) The processes of recognizing familiar words are not different than those that support novel words (e.g., fast-mapping). 3) Online competition may allow the network (or child) to leverage information available in the task to augment performance or behavior despite what might be relatively slow learning or poor representations. 4) Even associative learning is more complex than previously thought – a major contributor to performance is the pruning of incorrect associations between words and referents. 5) Finally, the model illustrates that learning and referent selection/word recognition, though logically distinct, can be deeply and subtly related as phenomena like speed of processing and mutual exclusivity may derive in part from the way learning shapes the system. As a whole, this suggests more sophisticated ways of describing the interaction between situation- and developmental-time processes and points to the need for considering such interactions as a primary determinant of development and processing in children. PMID:23088341
Verbal short-term memory and vocabulary learning in polyglots.
Papagno, C; Vallar, G
1995-02-01
Polyglot and non-polyglot Italian subjects were given tests assessing verbal (phonological) and visuo-spatial short-term and long-term memory, general intelligence, and vocabulary knowledge in their native language. Polyglots had a superior level of performance in verbal short-term memory tasks (auditory digit span and nonword repetition) and in a paired-associate learning test, which assessed the subjects' ability to acquire new (Russian) words. By contrast, the two groups had comparable performance levels in tasks assessing general intelligence, visuo-spatial short-term memory and learning, and paired-associate learning of Italian words. These findings, which are in line with neuropsychological and developmental evidence, as well as with data from normal subjects, suggest a close relationship between the capacity of phonological memory and the acquisition of foreign languages.
Subiaul, Francys; Patterson, Eric M; Schilder, Brian; Renner, Elizabeth; Barr, Rachel
2015-11-01
In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation) - involving a demonstration - and two asocial conditions (trial-and-error, recall) - involving individual learning - using two touchscreen tasks. The tasks required responding to either three different pictures in a specific picture order (Cognitive: Airplane→Ball→Cow) or three identical pictures in a specific spatial order (Motor-Spatial: Up→Down→Right). There were age-related improvements across all conditions and imitation, emulation and recall performance were significantly better than trial-and-error learning. Generalized linear models demonstrated that motor-spatial imitation fidelity was associated with age and motor-spatial emulation performance, but cognitive imitation fidelity was only associated with age. While this study provides evidence for multiple imitation mechanisms, the development of one of those mechanisms - motor-spatial imitation - may be bootstrapped by the development of another social learning skill - motor-spatial emulation. Together, these findings provide important clues about the development of imitation, which is arguably a distinctive feature of the human species. © 2014 John Wiley & Sons Ltd.
Sison, Margarette; Gerlai, Robert
2011-01-01
The zebrafish is gaining popularity in behavioral neuroscience perhaps because of a promise of efficient large scale mutagenesis and drug screens that could identify a substantial number of yet undiscovered molecular players involved in complex traits. Learning and memory are complex functions of the brain and the analysis of their mechanisms may benefit from such large scale zebrafish screens. One bottleneck in this research is the paucity of appropriate behavioral screening paradigms, which may be due to the relatively uncharacterized nature of the behavior of this species. Here we show that zebrafish exhibit good learning performance in a task adapted from the mammalian literature, a plus maze in which zebrafish are required to associate a neutral visual stimulus with the presence of conspecifics, the rewarding unconditioned stimulus. Furthermore, we show that MK-801, a non-competitive NMDA-R antagonist, impairs memory performance in this maze when administered right after training or just before recall but not when given before training at a dose that does not impair motor function, perception or motivation. These results suggest that the plus maze associative learning paradigm has face and construct validity and that zebrafish may become an appropriate and translationally relevant study species for the analysis of the mechanisms of vertebrate, including mammalian, learning and memory. PMID:21596149
Exploration of Learning Strategies Associated With Aha Learning Moments.
Pilcher, Jobeth W
2016-01-01
Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments.
Haebig, Eileen; Saffran, Jenny R; Ellis Weismer, Susan
2017-11-01
Word learning is an important component of language development that influences child outcomes across multiple domains. Despite the importance of word knowledge, word-learning mechanisms are poorly understood in children with specific language impairment (SLI) and children with autism spectrum disorder (ASD). This study examined underlying mechanisms of word learning, specifically, statistical learning and fast-mapping, in school-aged children with typical and atypical development. Statistical learning was assessed through a word segmentation task and fast-mapping was examined in an object-label association task. We also examined children's ability to map meaning onto newly segmented words in a third task that combined exposure to an artificial language and a fast-mapping task. Children with SLI had poorer performance on the word segmentation and fast-mapping tasks relative to the typically developing and ASD groups, who did not differ from one another. However, when children with SLI were exposed to an artificial language with phonemes used in the subsequent fast-mapping task, they successfully learned more words than in the isolated fast-mapping task. There was some evidence that word segmentation abilities are associated with word learning in school-aged children with typical development and ASD, but not SLI. Follow-up analyses also examined performance in children with ASD who did and did not have a language impairment. Children with ASD with language impairment evidenced intact statistical learning abilities, but subtle weaknesses in fast-mapping abilities. As the Procedural Deficit Hypothesis (PDH) predicts, children with SLI have impairments in statistical learning. However, children with SLI also have impairments in fast-mapping. Nonetheless, they are able to take advantage of additional phonological exposure to boost subsequent word-learning performance. In contrast to the PDH, children with ASD appear to have intact statistical learning, regardless of language status; however, fast-mapping abilities differ according to broader language skills. © 2017 Association for Child and Adolescent Mental Health.
Gámez, A Matías; León, Samuel P; Rosas, Juan M
2017-09-01
Four experiments in human instrumental learning explored the associations involving the context that develop after three trials of training on simple discriminations. Experiments 1 and 4 found a deleterious effect of switching the learning context that cannot be explained by the context-outcome binary associations commonly used to explain context-switch effects after short training in human predictive learning and in animal Pavlovian conditioning. Evidence for context-outcome (Experiment 2), context-discriminative stimulus (Experiment 3), and context-instrumental response (Experiment 4) binary associations was found within the same training paradigm, suggesting that contexts became associated with all the elements of the situation, regardless of whether those associations played a role in a specific context-switch effect detected on performance.
Novel associative-memory-based self-learning neurocontrol model
NASA Astrophysics Data System (ADS)
Chen, Ke
1992-09-01
Intelligent control is an important field of AI application, which is closely related to machine learning, and the neurocontrol is a kind of intelligent control that controls actions of a physical system or a plant. Linear associative memory model is a good analytic tool for artificial neural networks. In this paper, we present a novel self-learning neurocontrol on the basis of the linear associative memory model to support intelligent control. Using our self-learning neurocontrol model, the learning process is viewed as an extension of one of J. Piaget's developmental stages. After a particular linear associative model developed by us is presented, a brief introduction to J. Piaget's cognitive theory is described as the basis of our self-learning style control. It follows that the neurocontrol model is presented, which usually includes two learning stages, viz. primary learning and high-level learning. As a demonstration of our neurocontrol model, an example is also presented with simulation techniques, called that `bird' catches an aim. The tentative experimental results show that the learning and controlling performance of this approach is surprisingly good. In conclusion, future research is pointed out to improve our self-learning neurocontrol model and explore other areas of application.
Frequency-specific hippocampal-prefrontal interactions during associative learning
Brincat, Scott L.; Miller, Earl K.
2015-01-01
Much of our knowledge of the world depends on learning associations (e.g., face-name), for which the hippocampus (HPC) and prefrontal cortex (PFC) are critical. HPC-PFC interactions have rarely been studied in monkeys, whose cognitive/mnemonic abilities are akin to humans. Here, we show functional differences and frequency-specific interactions between HPC and PFC of monkeys learning object-pair associations, an animal model of human explicit memory. PFC spiking activity reflected learning in parallel with behavioral performance, while HPC neurons reflected feedback about whether trial-and-error guesses were correct or incorrect. Theta-band HPC-PFC synchrony was stronger after errors, was driven primarily by PFC to HPC directional influences, and decreased with learning. In contrast, alpha/beta-band synchrony was stronger after correct trials, was driven more by HPC, and increased with learning. Rapid object associative learning may occur in PFC, while HPC may guide neocortical plasticity by signaling success or failure via oscillatory synchrony in different frequency bands. PMID:25706471
ERIC Educational Resources Information Center
Casem, Merri Lynn
2006-01-01
I have examined how frequency of assessment impacts learning in an undergraduate biology course employing a student-centered, active-learning pedagogy. Frequent assessment was associated with better student performance and greater retention of course concepts. Improvement of higher-order thinking skills may require more classroom practice.…
Learning by Association in Plants.
Gagliano, Monica; Vyazovskiy, Vladyslav V; Borbély, Alexander A; Grimonprez, Mavra; Depczynski, Martial
2016-12-02
In complex and ever-changing environments, resources such as food are often scarce and unevenly distributed in space and time. Therefore, utilizing external cues to locate and remember high-quality sources allows more efficient foraging, thus increasing chances for survival. Associations between environmental cues and food are readily formed because of the tangible benefits they confer. While examples of the key role they play in shaping foraging behaviours are widespread in the animal world, the possibility that plants are also able to acquire learned associations to guide their foraging behaviour has never been demonstrated. Here we show that this type of learning occurs in the garden pea, Pisum sativum. By using a Y-maze task, we show that the position of a neutral cue, predicting the location of a light source, affected the direction of plant growth. This learned behaviour prevailed over innate phototropism. Notably, learning was successful only when it occurred during the subjective day, suggesting that behavioural performance is regulated by metabolic demands. Our results show that associative learning is an essential component of plant behaviour. We conclude that associative learning represents a universal adaptive mechanism shared by both animals and plants.
Krüger, Melanie; Hinder, Mark R; Puri, Rohan; Summers, Jeffery J
2017-01-01
Objectives: The aim of this study was to investigate how age-related performance differences in a visuospatial sequence learning task relate to age-related declines in cognitive functioning. Method: Cognitive functioning of 18 younger and 18 older participants was assessed using a standardized test battery. Participants then undertook a perceptual visuospatial sequence learning task. Various relationships between sequence learning and participants' cognitive functioning were examined through correlation and factor analysis. Results: Older participants exhibited significantly lower performance than their younger counterparts in the sequence learning task as well as in multiple cognitive functions. Factor analysis revealed two independent subsets of cognitive functions associated with performance in the sequence learning task, related to either the processing and storage of sequence information (first subset) or problem solving (second subset). Age-related declines were only found for the first subset of cognitive functions, which also explained a significant degree of the performance differences in the sequence learning task between age-groups. Discussion: The results suggest that age-related performance differences in perceptual visuospatial sequence learning can be explained by declines in the ability to process and store sequence information in older adults, while a set of cognitive functions related to problem solving mediates performance differences independent of age.
Stimulus discriminability may bias value-based probabilistic learning.
Schutte, Iris; Slagter, Heleen A; Collins, Anne G E; Frank, Michael J; Kenemans, J Leon
2017-01-01
Reinforcement learning tasks are often used to assess participants' tendency to learn more from the positive or more from the negative consequences of one's action. However, this assessment often requires comparison in learning performance across different task conditions, which may differ in the relative salience or discriminability of the stimuli associated with more and less rewarding outcomes, respectively. To address this issue, in a first set of studies, participants were subjected to two versions of a common probabilistic learning task. The two versions differed with respect to the stimulus (Hiragana) characters associated with reward probability. The assignment of character to reward probability was fixed within version but reversed between versions. We found that performance was highly influenced by task version, which could be explained by the relative perceptual discriminability of characters assigned to high or low reward probabilities, as assessed by a separate discrimination experiment. Participants were more reliable in selecting rewarding characters that were more discriminable, leading to differences in learning curves and their sensitivity to reward probability. This difference in experienced reinforcement history was accompanied by performance biases in a test phase assessing ability to learn from positive vs. negative outcomes. In a subsequent large-scale web-based experiment, this impact of task version on learning and test measures was replicated and extended. Collectively, these findings imply a key role for perceptual factors in guiding reward learning and underscore the need to control stimulus discriminability when making inferences about individual differences in reinforcement learning.
Do medical students watch video clips in eLearning and do these facilitate learning?
Romanov, Kalle; Nevgi, Anne
2007-06-01
There is controversial evidence of the impact of individual learning style on students' performance in computer-aided learning. We assessed the association between the use of multimedia materials, such as video clips, and collaborative communication tools with learning outcome among medical students. One hundred and twenty-one third-year medical students attended a course in medical informatics (0.7 credits) consisting of lectures, small group sessions and eLearning material. The eLearning material contained six learning modules with integrated video clips and collaborative learning tools in WebCT. Learning outcome was measured with a course exam. Approximately two-thirds of students (68.6%) viewed two or more videos. Female students were significantly more active video-watchers. No significant associations were found between video-watching and self-test scores or the time used in eLearning. Video-watchers were more active in WebCT; they loaded more pages and more actively participated in discussion forums. Video-watching was associated with a better course grade. Students who watched video clips were more active in using collaborative eLearning tools and achieved higher course grades.
Gofer-Levi, M; Silberg, T; Brezner, A; Vakil, E
2014-09-01
Children learn to engage their surroundings skillfully, adopting implicit knowledge of complex regularities and associations. Probabilistic classification learning (PCL) is a type of cognitive procedural learning in which different cues are probabilistically associated with specific outcomes. Little is known about the effects of developmental disorders on cognitive skill acquisition. Twenty-four children and adolescents with cerebral palsy (CP) were compared to 24 typically developing (TD) youth in their ability to learn probabilistic associations. Performance was examined in relation to general cognitive abilities, level of motor impairment and age. Improvement in PCL was observed for all participants, with no relation to IQ. An age effect was found only among TD children. Learning curves of children with CP on a cognitive procedural learning task differ from those of TD peers and do not appear to be age sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Impact of the Supplemental Instruction Leader on Student Performance in Introductory Accounting
ERIC Educational Resources Information Center
Jones, Jefferson P.
2013-01-01
This study explores the association between a supplemental instruction (SI) program and student performance in an introductory accounting course. SI is a proactive academic support program that is aimed at improving student learning in traditionally "high-risk" college courses by integrating learning and critical thinking strategies with…
The Effects of Test Anxiety on Learning at Superficial and Deep Levels of Processing.
ERIC Educational Resources Information Center
Weinstein, Claire E.; And Others
1982-01-01
Using a deep-level processing strategy, low test-anxious college students performed significantly better than high test-anxious students in learning a paired-associate word list. Using a superficial-level processing strategy resulted in no significant difference in performance. A cognitive-attentional theory and test anxiety mechanisms are…
HIV+ Men and Women Show Different Performance Patterns on Procedural Learning Tasks
Martin, Eileen; Gonzalez, Raul; Vassileva, Jasmin; Maki, Pauline
2010-01-01
The literature suggests that nondeclarative, or nonconscious, learning might be impaired among HIV+ individuals compared with HIV− matched control groups, but these studies have included relatively few women. We administered measures of motor skill and probabilistic learning, tasks with a nondeclarative or procedural learning component that are dependent on integrity of prefrontal-striatal systems, to well-matched groups of 148 men and 65 women with a history of substance dependence that included 45 men and 30 women seropositive for HIV. All participants were abstinent at testing. Compared to HIV− women, HIV+ women performed significantly more poorly on both tasks, but HIV+ men’s performance did not differ significantly compared to HIV− men on either task. These different patterns of performance indicate that features of HIV-associated neurocognitive disorder (HAND) can not always be generalized from men to women. Additional studies are needed to address directly the possibility of sex differences in HIV-associated neurocognitive disorder (HAND) and the possibility that women might be more vulnerable to the effects of HIV and substance dependence on some neurocognitive functions. PMID:20694870
Cardinal, Rudolf N; Parkinson, John A; Lachenal, Guillaume; Halkerston, Katherine M; Rudarakanchana, Nung; Hall, Jeremy; Morrison, Caroline H; Howes, Simon R; Robbins, Trevor W; Everitt, Barry J
2002-08-01
The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.
Student Buy-In to Active Learning in a College Science Course.
Cavanagh, Andrew J; Aragón, Oriana R; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I; Graham, Mark J
2016-01-01
The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure-persuasion-identification-commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students' course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. © 2016 A. J. Cavanagh et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
The endocannabinoid system and associative learning and memory in zebrafish.
Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard
2015-09-01
In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.
Improving AACSB Assurance of Learning with Importance-Performance and Learning Growth: A Case Study
ERIC Educational Resources Information Center
Harvey, James W.; McCrohan, Kevin F.
2017-01-01
Two fallacious assumptions can mislead assurance of learning (AoL) loop closing. Association to Advance Collegiate Schools of Business guidance states that learning goals should reflect the outcomes most valued by the program, but evidence shows that schools assign equal priorities to the skills selected. The second false assumption is that…
e-Learning, Online Learning, and Distance Learning Environments: Are They the Same?
ERIC Educational Resources Information Center
Moore, Joi L.; Dickson-Deane, Camille; Galyen, Krista
2011-01-01
It is not uncommon that researchers face difficulties when performing meaningful cross-study comparisons for research. Research associated with the distance learning realm can be even more difficult to use as there are different environments with a variety of characteristics. We implemented a mixed-method analysis of research articles to find out…
Kéri, Szabolcs
2014-05-01
Most of our learning activity takes place in a social context. I examined how social interactions influence associative learning in neurodegenerative diseases and atypical neurodevelopmental conditions primarily characterised by social cognitive and memory dysfunctions. Participants were individuals with high-functioning autism (HFA, n = 18), early-stage behavioural variant frontotemporal dementia (bvFTD, n = 16) and Alzheimer's disease (AD, n = 20). The leading symptoms in HFA and bvFTD were social and behavioural dysfunctions, whereas AD was characterised by memory deficits. Participants received three versions of a paired associates learning task. In the game with boxes test, objects were hidden in six candy boxes placed in different locations on the computer screen. In the game with faces, each box was labelled by a photo of a person. In the real-life version of the game, participants played with real persons. Individuals with HFA and bvFTD performed well in the computer games, but failed on the task including real persons. In contrast, in patients with early-stage AD, social interactions boosted paired associates learning up to the level of healthy control volunteers. Worse performance in the real life game was associated with less successful recognition of complex emotions and mental states in the Reading the Mind in the Eyes Test. Spatial span did not affect the results. When social cognition is impaired, but memory systems are less compromised (HFA and bvFTD), real-life interactions disrupt associative learning; when disease process impairs memory systems but social cognition is relatively intact (early-stage AD), social interactions have a beneficial effect on learning and memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Neural correlates of effective learning in experienced medical decision-makers.
Downar, Jonathan; Bhatt, Meghana; Montague, P Read
2011-01-01
Accurate associative learning is often hindered by confirmation bias and success-chasing, which together can conspire to produce or solidify false beliefs in the decision-maker. We performed functional magnetic resonance imaging in 35 experienced physicians, while they learned to choose between two treatments in a series of virtual patient encounters. We estimated a learning model for each subject based on their observed behavior and this model divided clearly into high performers and low performers. The high performers showed small, but equal learning rates for both successes (positive outcomes) and failures (no response to the drug). In contrast, low performers showed very large and asymmetric learning rates, learning significantly more from successes than failures; a tendency that led to sub-optimal treatment choices. Consistently with these behavioral findings, high performers showed larger, more sustained BOLD responses to failed vs. successful outcomes in the dorsolateral prefrontal cortex and inferior parietal lobule while low performers displayed the opposite response profile. Furthermore, participants' learning asymmetry correlated with anticipatory activation in the nucleus accumbens at trial onset, well before outcome presentation. Subjects with anticipatory activation in the nucleus accumbens showed more success-chasing during learning. These results suggest that high performers' brains achieve better outcomes by attending to informative failures during training, rather than chasing the reward value of successes. The differential brain activations between high and low performers could potentially be developed into biomarkers to identify efficient learners on novel decision tasks, in medical or other contexts.
Older Adults can Learn to Learn New Motor Skills
Seidler, Rachael D.
2007-01-01
Many studies have demonstrated that aging is associated with declines in skill acquisition. In the current study, we tested whether older adults could acquire general, transferable knowledge about skill learning processes. Older adult participants learned five different motor tasks. Two older adult control groups performed the same number of trials, but learned only one task. The experimental group exhibited faster learning than that seen in the control groups. These data demonstrate that older adults can learn to learn new motor skills. PMID:17602760
Thinking Styles in Implicit and Explicit Learning
ERIC Educational Resources Information Center
Xie, Qiuzhi; Gao, Xiangping; King, Ronnel B.
2013-01-01
This study investigated whether individual differences in thinking styles influence explicit and implicit learning. Eighty-seven university students in China participated in this study. Results indicated that performance in the explicit learning condition was positively associated with Type I thinking styles (i.e. legislative and liberal styles)…
The Effect of Practice Schedule on Context-Dependent Learning.
Lee, Ya-Yun; Fisher, Beth E
2018-03-02
It is well established that random practice compared to blocked practice enhances motor learning. Additionally, while information in the environment may be incidental, learning is also enhanced when an individual performs a task within the same environmental context in which the task was originally practiced. This study aimed to disentangle the effects of practice schedule and incidental/environmental context on motor learning. Participants practiced three finger sequences under either a random or blocked practice schedule. Each sequence was associated with specific incidental context (i.e., color and location on the computer screen) during practice. The participants were tested under the conditions when the sequence-context associations remained the same or were changed from that of practice. When the sequence-context association was changed, the participants who practiced under blocked schedule demonstrated greater performance decrement than those who practiced under random schedule. The findings suggested that those participants who practiced under random schedule were more resistant to the change of environmental context.
Willner, Cynthia J; Gatzke-Kopp, Lisa M; Bierman, Karen L; Greenberg, Mark T; Segalowitz, Sidney J
2015-08-01
Learning-related behaviors are important for school success. Socioeconomic disadvantage confers risk for less adaptive learning-related behaviors at school entry, yet substantial variability in school readiness exists within socioeconomically disadvantaged populations. Investigation of neurophysiological systems associated with learning-related behaviors in high-risk populations could illuminate resilience processes. This study examined the relevance of a neurophysiological measure of controlled attention allocation, amplitude of the P3b event-related potential, for learning-related behaviors and academic performance in a sample of socioeconomically disadvantaged kindergarteners. The sample consisted of 239 children from an urban, low-income community, approximately half of whom exhibited behavior problems at school entry (45% aggressive/oppositional; 64% male; 69% African American, 21% Hispanic). Results revealed that higher P3b amplitudes to target stimuli in a go/no-go task were associated with more adaptive learning-related behaviors in kindergarten. Furthermore, children's learning-related behaviors in kindergarten mediated a positive indirect effect of P3b amplitude on growth in academic performance from kindergarten to 1st grade. Given that P3b amplitude reflects attention allocation processes, these findings build on the scientific justification for interventions targeting young children's attention skills in order to promote effective learning-related behaviors and academic achievement within socioeconomically disadvantaged populations. (c) 2015 APA, all rights reserved).
Learning and cognition in insects.
Giurfa, Martin
2015-01-01
Insects possess small brains but exhibit sophisticated behavioral performances. Recent works have reported the existence of unsuspected cognitive capabilities in various insect species, which go beyond the traditional studied framework of simple associative learning. In this study, I focus on capabilities such as attention, social learning, individual recognition, concept learning, and metacognition, and discuss their presence and mechanistic bases in insects. I analyze whether these behaviors can be explained on the basis of elemental associative learning or, on the contrary, require higher-order explanations. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering l architectures underlying cognitive processing. © 2015 John Wiley & Sons, Ltd.
Ren, Xuezhu; Schweizer, Karl; Wang, Tengfei; Xu, Fen
2015-01-01
The present study provides a new account of how fluid intelligence influences academic performance. In this account a complex learning component of fluid intelligence tests is proposed to play a major role in predicting academic performance. A sample of 2, 277 secondary school students completed two reasoning tests that were assumed to represent fluid intelligence and standardized math and verbal tests assessing academic performance. The fluid intelligence data were decomposed into a learning component that was associated with the position effect of intelligence items and a constant component that was independent of the position effect. Results showed that the learning component contributed significantly more to the prediction of math and verbal performance than the constant component. The link from the learning component to math performance was especially strong. These results indicated that fluid intelligence, which has so far been considered as homogeneous, could be decomposed in such a way that the resulting components showed different properties and contributed differently to the prediction of academic performance. Furthermore, the results were in line with the expectation that learning was a predictor of performance in school.
Ren, Xuezhu; Schweizer, Karl; Wang, Tengfei; Xu, Fen
2015-01-01
The present study provides a new account of how fluid intelligence influences academic performance. In this account a complex learning component of fluid intelligence tests is proposed to play a major role in predicting academic performance. A sample of 2, 277 secondary school students completed two reasoning tests that were assumed to represent fluid intelligence and standardized math and verbal tests assessing academic performance. The fluid intelligence data were decomposed into a learning component that was associated with the position effect of intelligence items and a constant component that was independent of the position effect. Results showed that the learning component contributed significantly more to the prediction of math and verbal performance than the constant component. The link from the learning component to math performance was especially strong. These results indicated that fluid intelligence, which has so far been considered as homogeneous, could be decomposed in such a way that the resulting components showed different properties and contributed differently to the prediction of academic performance. Furthermore, the results were in line with the expectation that learning was a predictor of performance in school. PMID:26435760
Peñaloza, Claudia; Mirman, Daniel; Tuomiranta, Leena; Benetello, Annalisa; Heikius, Ida-Maria; Järvinen, Sonja; Majos, Maria C; Cardona, Pedro; Juncadella, Montserrat; Laine, Matti; Martin, Nadine; Rodríguez-Fornells, Antoni
2016-06-01
Recent research suggests that some people with aphasia preserve some ability to learn novel words and to retain them in the long-term. However, this novel word learning ability has been studied only in the context of single word-picture pairings. We examined the ability of people with chronic aphasia to learn novel words using a paradigm that presents new word forms together with a limited set of different possible visual referents and requires the identification of the correct word-object associations on the basis of online feedback. We also studied the relationship between word learning ability and aphasia severity, word processing abilities, and verbal short-term memory (STM). We further examined the influence of gross lesion location on new word learning. The word learning task was first validated with a group of forty-five young adults. Fourteen participants with chronic aphasia were administered the task and underwent tests of immediate and long-term recognition memory at 1 week. Their performance was compared to that of a group of fourteen matched controls using growth curve analysis. The learning curve and recognition performance of the aphasia group was significantly below the matched control group, although above-chance recognition performance and case-by-case analyses indicated that some participants with aphasia had learned the correct word-referent mappings. Verbal STM but not word processing abilities predicted word learning ability after controlling for aphasia severity. Importantly, participants with lesions in the left frontal cortex performed significantly worse than participants with lesions that spared the left frontal region both during word learning and on the recognition tests. Our findings indicate that some people with aphasia can preserve the ability to learn a small novel lexicon in an ambiguous word-referent context. This learning and recognition memory ability was associated with verbal STM capacity, aphasia severity and the integrity of the left inferior frontal region. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peñaloza, Claudia; Mirman, Daniel; Tuomiranta, Leena; Benetello, Annalisa; Heikius, Ida-Maria; Järvinen, Sonja; Majos, Maria C.; Cardona, Pedro; Juncadella, Montserrat; Laine, Matti; Martin, Nadine; Rodríguez-Fornells, Antoni
2017-01-01
Recent research suggests that some people with aphasia preserve some ability to learn novel words and to retain them in the long-term. However, this novel word learning ability has been studied only in the context of single word-picture pairings. We examined the ability of people with chronic aphasia to learn novel words using a paradigm that presents new word forms together with a limited set of different possible visual referents and requires the identification of the correct word-object associations on the basis of online feedback. We also studied the relationship between word learning ability and aphasia severity, word processing abilities, and verbal short-term memory (STM). We further examined the influence of gross lesion location on new word learning. The word learning task was first validated with a group of forty-five young adults. Fourteen participants with chronic aphasia were administered the task and underwent tests of immediate and long-term recognition memory at 1 week. Their performance was compared to that of a group of fourteen matched controls using growth curve analysis. The learning curve and recognition performance of the aphasia group was significantly below the matched control group, although above-chance recognition performance and case-by-case analyses indicated that some participants with aphasia had learned the correct word-referent mappings. Verbal STM but not word processing abilities predicted word learning ability after controlling for aphasia severity. Importantly, participants with lesions in the left frontal cortex performed significantly worse than participants with lesions that spared the left frontal region both during word learning and on the recognition tests. Our findings indicate that some people with aphasia can preserve the ability to learn a small novel lexicon in an ambiguous word-referent context. This learning and recognition memory ability was associated with verbal STM capacity, aphasia severity and the integrity of the left inferior frontal region. PMID:27085892
Elevated cortisol levels in Cushing's disease are associated with cognitive decrements.
Starkman, M N; Giordani, B; Berent, S; Schork, M A; Schteingart, D E
2001-01-01
The objective of this study was to use Cushing's disease as a unique human model to elucidate the cognitive deficits resulting from exposure to chronic stress-level elevations of endogenous cortisol. Forty-eight patients with a first episode of acute, untreated Cushing's disease and 38 healthy control subjects were studied. Scores for four of five verbal IQ subtests were significantly lower in patients with Cushing's disease; their scores were significantly lower for only one nonverbal performance IQ subtest (block design). Verbal, but not visual, learning and delayed recall at 30 minutes were significantly decreased among patients with Cushing's disease. Although verbal delayed recall was significantly lower in these patients, the retention index (percentage), which compares the amount of initially learned material to that recalled after the delay, was not significantly decreased. There was no significant association between depression scores and cognitive performance. A higher degree of cortisol elevation was associated with poorer performance on several subtests of learning, delayed recall, and visual-spatial ability. Chronically elevated levels of glucocorticoids have deleterious effects on particular domains of cognition. Verbal learning and other verbal functions seem more vulnerable than nonverbal functions. The results suggest that both the neocortex and hippocampus are affected.
Hodyl, Nicolette A; Schneider, Luke; Vallence, Ann-Maree; Clow, Angela; Ridding, Michael C; Pitcher, Julia B
2016-02-01
There is emerging evidence of a relationship between the cortisol awakening response (CAR) and the neural mechanisms underlying learning and memory. The aim of this study was to determine whether the CAR is associated with acquisition, retention and overnight consolidation or improvement of a serial sequence reaction time task. Salivary samples were collected at 0, 15, 30 and 45 min after awakening in 39 healthy adults on 2 consecutive days. The serial sequence reaction time task was repeated each afternoon. Participants completed the perceived stress scale and provided salivary samples prior to testing for cortisol assessment. While the magnitude of the CAR (Z score) was not associated with either baseline performance or the timed improvement during task acquisition of the serial sequence task, a positive correlation was observed with reaction times during the stable performance phase on day 1 (r=0.373, p=0.019). Residuals derived from the relationship between baseline and stable phase reaction times on day 1 were used as a surrogate for the degree of learning: these residuals were also correlated with the CAR mean increase on day 1 (r=0.357, p=0.048). Task performance on day 2 was not associated with the CAR obtained on this same day. No association was observed between the perceived stress score, cortisol at testing or task performance. These data indicate that a smaller CAR in healthy adults is associated with a greater degree of learning and faster performance of a serial sequence reaction time task. These results support recognition of the CAR as an important factor contributing to cognitive performance throughout the day. Copyright © 2015 Elsevier B.V. All rights reserved.
The Neural Correlates of Implicit Sequence Learning in Schizophrenia
Marvel, Cherie L.; Turner, Beth M.; O’Leary, Daniel S.; Johnson, Hans J.; Pierson, Ronald K.; Boles Ponto, Laura L.; Andreasen, Nancy C.
2009-01-01
Twenty-seven schizophrenia spectrum patients and 25 healthy controls performed a probabilistic version of the serial reaction time task (SRT) that included sequence trials embedded within random trials. Patients showed diminished, yet measurable, sequence learning. Postexperimental analyses revealed that a group of patients performed above chance when generating short spans of the sequence. This high-generation group showed SRT learning that was similar in magnitude to that of controls. Their learning was evident from the very 1st block; however, unlike controls, learning did not develop further with continued testing. A subset of 12 patients and 11 controls performed the SRT in conjunction with positron emission tomography. High-generation performance, which corresponded to SRT learning in patients, correlated to activity in the premotor cortex and parahippocampus. These areas have been associated with stimulus-driven visuospatial processing. Taken together, these results suggest that a subset of patients who showed moderate success on the SRT used an explicit stimulus-driven strategy to process the sequential stimuli. This adaptive strategy facilitated sequence learning but may have interfered with conventional implicit learning of the overall stimulus pattern. PMID:17983290
McKinstry, Jeffrey L.; Fleischer, Jason G.; Chen, Yanqing; Gall, W. Einar; Edelman, Gerald M.
2016-01-01
Mental imagery occurs “when a representation of the type created during the initial phases of perception is present but the stimulus is not actually being perceived.” How does the capability to perform mental imagery arise? Extending the idea that imagery arises from learned associations, we propose that mental rotation, a specific form of imagery, could arise through the mechanism of sequence learning–that is, by learning to regenerate the sequence of mental images perceived while passively observing a rotating object. To demonstrate the feasibility of this proposal, we constructed a simulated nervous system and embedded it within a behaving humanoid robot. By observing a rotating object, the system learns the sequence of neural activity patterns generated by the visual system in response to the object. After learning, it can internally regenerate a similar sequence of neural activations upon briefly viewing the static object. This system learns to perform a mental rotation task in which the subject must determine whether two objects are identical despite differences in orientation. As with human subjects, the time taken to respond is proportional to the angular difference between the two stimuli. Moreover, as reported in humans, the system fills in intermediate angles during the task, and this putative mental rotation activates the same pathways that are activated when the system views physical rotation. This work supports the proposal that mental rotation arises through sequence learning and the idea that mental imagery aids perception through learned associations, and suggests testable predictions for biological experiments. PMID:27653977
Reske, Martina; Eidt, Carolyn A; Delis, Dean C; Paulus, Martin P
2010-10-15
Stimulants are used increasingly to enhance social (cocaine) or cognitive performance (stimulants normally prescribed, prescription stimulants [e.g., methylphenidate, amphetamines]). Chronic use, by contrast, has been associated with significant verbal memory and learning deficits. This study sought to determine whether subtle learning and memory problems characterize individuals who exhibit occasional but not chronic use of stimulants. One hundred fifty-four young (age 18-25), occasional, nondependent stimulant users and 48 stimulant-naive comparison subjects performed the California Verbal Learning Test II. Lifetime uses of stimulants and co-use of marijuana were considered in correlation and median split analyses. Compared with stimulant-naive subjects, occasional stimulant users showed significant performance deficits, most pronounced in the verbal recall and recognition domains. Lifetime uses of stimulants and marijuana did not affect California Verbal Learning Test II performance. The type of stimulant used, however, was of major relevance: users of cocaine only were less impaired, whereas cumulative use of prescription stimulants was associated with impaired verbal learning and memory capacities. These results support the hypothesis of subtle and possibly pre-existing neurocognitive deficiencies in occasional users of stimulants, which might be related to the motivation for using these drugs. More importantly, despite beneficial short-term effects, cumulative use, particularly of prescription amphetamines and methylphenidate, intensifies these deficits. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Fronto-temporal white matter connectivity predicts reversal learning errors
Alm, Kylie H.; Rolheiser, Tyler; Mohamed, Feroze B.; Olson, Ingrid R.
2015-01-01
Each day, we make hundreds of decisions. In some instances, these decisions are guided by our innate needs; in other instances they are guided by memory. Probabilistic reversal learning tasks exemplify the close relationship between decision making and memory, as subjects are exposed to repeated pairings of a stimulus choice with a reward or punishment outcome. After stimulus–outcome associations have been learned, the associated reward contingencies are reversed, and participants are not immediately aware of this reversal. Individual differences in the tendency to choose the previously rewarded stimulus reveal differences in the tendency to make poorly considered, inflexible choices. Lesion studies have strongly linked reversal learning performance to the functioning of the orbitofrontal cortex, the hippocampus, and in some instances, the amygdala. Here, we asked whether individual differences in the microstructure of the uncinate fasciculus, a white matter tract that connects anterior and medial temporal lobe regions to the orbitofrontal cortex, predict reversal learning performance. Diffusion tensor imaging and behavioral paradigms were used to examine this relationship in 33 healthy young adults. The results of tractography revealed a significant negative relationship between reversal learning performance and uncinate axial diffusivity, but no such relationship was demonstrated in a control tract, the inferior longitudinal fasciculus. Our findings suggest that the uncinate might serve to integrate associations stored in the anterior and medial temporal lobes with expectations about expected value based on feedback history, computed in the orbitofrontal cortex. PMID:26150776
Kim, Dong Wook; Kim, Hwiyoung; Nam, Woong; Kim, Hyung Jun; Cha, In-Ho
2018-04-23
The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis. A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630). Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies. Copyright © 2017. Published by Elsevier Inc.
Distributed Emotions in the Design of Learning Technologies
ERIC Educational Resources Information Center
Kim, Beaumie; Kim, Mi Song
2010-01-01
Learning is a social activity, which requires interactions with the environment, tools, people, and also ourselves (e.g., our previous experiences). Each interaction provides different meanings to learners, and the associated emotion affects their learning and performance. With the premise that emotion and cognition are distributed, the authors…
Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R.
2017-01-01
Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. PMID:28978727
Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R; Chittka, Lars; Perry, Clint J
2017-10-11
Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee ( Bombus terrestris ) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. © 2017 The Authors.
Using variability to guide dimensional weighting: Associative mechanisms in early word learning
Apfelbaum, Keith S.; McMurray, Bob
2013-01-01
At 14 months, children appear to struggle to apply their fairly well developed speech perception abilities to learning similar sounding words (e.g. bih/dih; Stager & Werker, 1997). However, variability in non-phonetic aspects of the training stimuli seems to aid word learning at this age. Extant theories of early word learning cannot account for this benefit of variability. We offer a simple explanation for this range of effects based on associative learning. Simulations suggest that if infants encode both non-contrastive information (e.g. cues to speaker voice) and meaningful linguistic cues (e.g. place of articulation or voicing), then associative learning mechanisms predict these variability effects in early word learning. Crucially, this means that despite the importance of task variables in predicting performance, this body of work shows that phonological categories are still developing in this age, and that the structure of non-informative cues has critical influences on word learning abilities. PMID:21609356
Cognitive Load Theory: implications for medical education: AMEE Guide No. 86.
Young, John Q; Van Merrienboer, Jeroen; Durning, Steve; Ten Cate, Olle
2014-05-01
Cognitive Load Theory (CLT) builds upon established models of human memory that include the subsystems of sensory, working and long-term memory. Working memory (WM) can only process a limited number of information elements at any given time. This constraint creates a "bottleneck" for learning. CLT identifies three types of cognitive load that impact WM: intrinsic load (associated with performing essential aspects of the task), extraneous load (associated with non-essential aspects of the task) and germane load (associated with the deliberate use of cognitive strategies that facilitate learning). When the cognitive load associated with a task exceeds the learner's WM capacity, performance and learning is impaired. To facilitate learning, CLT researchers have developed instructional techniques that decrease extraneous load (e.g. worked examples), titrate intrinsic load to the developmental stage of the learner (e.g. simplify task without decontextualizing) and ensure that unused WM capacity is dedicated to germane load, i.e. cognitive learning strategies. A number of instructional techniques have been empirically tested. As learners' progress, curricula must also attend to the expertise-reversal effect. Instructional techniques that facilitate learning among early learners may not help and may even interfere with learning among more advanced learners. CLT has particular relevance to medical education because many of the professional activities to be learned require the simultaneous integration of multiple and varied sets of knowledge, skills and behaviors at a specific time and place. These activities possess high "element interactivity" and therefore impose a cognitive load that may surpass the WM capacity of the learner. Applications to various medical education settings (classroom, workplace and self-directed learning) are explored.
Auditory and motor imagery modulate learning in music performance
Brown, Rachel M.; Palmer, Caroline
2013-01-01
Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of auditory interference. Motor imagery aided pitch accuracy overall when interference conditions were manipulated at encoding (Experiment 1) but not at retrieval (Experiment 2). Thus, skilled performers' imagery abilities had distinct influences on encoding and retrieval of musical sequences. PMID:23847495
Understanding the science-learning environment: A genetically sensitive approach.
Haworth, Claire M A; Davis, Oliver S P; Hanscombe, Ken B; Kovas, Yulia; Dale, Philip S; Plomin, Robert
2013-02-01
Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000 pairs of 14-year-old twins from the UK Twins Early Development Study reported on their experiences of the science-learning environment and were assessed for their performance in science using a web-based test of scientific enquiry. Multivariate twin analyses were used to investigate the genetic and environmental links between environment and outcome. The most surprising result was that the science-learning environment was almost as heritable (43%) as performance on the science test (50%), and showed negligible shared environmental influence (3%). Genetic links explained most (56%) of the association between learning environment and science outcome, indicating gene-environment correlation.
Cognitive markers of psychotic unipolar depression: a meta-analytic study.
Zaninotto, Leonardo; Guglielmo, Riccardo; Calati, Raffaella; Ioime, Lucia; Camardese, Giovanni; Janiri, Luigi; Bria, Pietro; Serretti, Alessandro
2015-03-15
The goal of the current meta-analysis was to review and examine in detail the features of cognitive performance in psychotic (MDDP) versus non-psychotic (MDD) major depressive disorder. An electronic literature search was performed to find studies comparing cognitive performance in MDDP versus MDD. A meta-analysis of broad cognitive domains (processing speed, reasoning/problem solving, verbal learning, visual learning, attention/working memory) and individual cognitive tasks was conducted on all included studies (n=12). Demographic and clinical features were investigated via meta-regression analysis as moderators of cognitive performance. No difference in socio-demographic and clinical variables was detected between groups. In general, a poorer cognitive performance was detected in MDDP versus MDD subjects (ES=0.38), with a greater effect size in drug-free patients (ES=0.69). MDDP patients were more impaired in verbal learning (ES=0.67), visual learning (ES=0.62) and processing speed (ES=0.71) tasks. A significantly poorer performance was also detected in MDDP patients for individual tasks as Trail Making Test A, WAIS-R digit span backward and WAIS-R digit symbol. Age resulted to have a negative effect on tasks involved in working memory performance. In line with previous meta-analyses, our findings seem to support an association between psychosis and cognitive deficits in the context of affective disorders. Psychosis during the course of MDD is associated with poorer cognitive performance in some specific cognitive domains, such as visual and verbal learning and executive functions. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Lei; Zhao, Qi; Chen, Chun-Hai; Qin, Qi-Zhong; Zhou, Zhou; Yu, Zheng-Ping
2014-09-01
This study aimed to investigate the protective effect of rutin against trimethyltin-induced spatial learning and memory impairment in mice. This study focused on the role of synaptophysin, growth-associated protein 43 and the action of the dopaminergic system in mechanisms associated with rutin protection and trimethyltin-induced spatial learning and memory impairment. Cognitive learning and memory was measured by Morris Water Maze. The expression of synaptophysin and growth-associated protein 43 in hippocampus was analyzed by western blot. The concentrations of dopamine, homovanillic acid, and dihyroxyphenylacetic acid in hippocampus were detected using reversed phase high-performance liquid chromatography with electrochemical detection. Trimethyltin-induced spatial learning impairment showed a dose-dependent mode. Synaptophysin but not growth-associated protein 43 was decreased in the hippocampus after trimethyltin administration. The concentration of dopamine decreased, while homovanillic acid increased in the hippocampus after trimethyltin administration. Mice pretreated with 20 mg/kg of rutin for 7 consecutive days exhibited improved water maze performance. Moreover, rutin pretreatment reversed the decrease of synaptophysin expression and dopamine alteration. These results suggest that rutin may protect against spatial memory impairment induced by trimethyltin. Synaptophysin and the dopaminergic system may be involved in trimethyltin-induced neuronal damage in hippocampus.
Farkas, Gary J; Mazurek, Ewa; Marone, Jane R
2016-01-01
The VARK learning style is a pedagogical focus in health care education. This study examines relationships of course performance vs. VARK learning preference, study time, and career plan among students enrolled in an undergraduate anatomy and physiology course at a large urban university. Students (n = 492) from the fall semester course completed a survey consisting of the VARK questionnaire, gender, academic year, career plans, and estimated hours spent per week in combined classroom and study time. Seventy-eight percent of students reported spending 15 or fewer hours per week studying. Study time and overall course score correlated significantly for the class as a whole (r = 0.111, P = 0.013), which was mainly due to lecture (r = 0.118, P = 0.009) performance. No significant differences were found among students grouped by learning styles. When corrected for academic year, overall course scores (mean ± SEM) for students planning to enter dentistry, medicine, optometry or pharmacy (79.89 ± 0.88%) were significantly higher than those of students planning to enter physical or occupational therapies (74.53 ± 1.15%; P = 0.033), as well as nurse/physician assistant programs (73.60 ± 1.3%; P = 0.040). Time spent studying was not significantly associated with either learning style or career choice. Our findings suggest that specific career goals and study time, not learning preferences, are associated with better performance among a diverse group of students in an undergraduate anatomy and physiology course. However, the extent to which prior academic preparation, cultural norms, and socioeconomic factors influenced these results requires further investigation. © 2015 American Association of Anatomists.
Forrest, Charlotte L D; Monsell, Stephen; McLaren, Ian P L
2014-07-01
Task-cuing experiments are usually intended to explore control of task set. But when small stimulus sets are used, they plausibly afford learning of the response associated with a combination of cue and stimulus, without reference to tasks. In 3 experiments we presented the typical trials of a task-cuing experiment: a cue (colored shape) followed, after a short or long interval, by a digit to which 1 of 2 responses was required. In a tasks condition, participants were (as usual) directed to interpret the cue as an instruction to perform either an odd/even or a high/low classification task. In a cue + stimulus → response (CSR) condition, to induce learning of mappings between cue-stimulus compound and response, participants were, in Experiment 1, given standard task instructions and additionally encouraged to learn the CSR mappings; in Experiment 2, informed of all the CSR mappings and asked to learn them, without standard task instructions; in Experiment 3, required to learn the mappings by trial and error. The effects of a task switch, response congruence, preparation, and transfer to a new set of stimuli differed substantially between the conditions in ways indicative of classification according to task rules in the tasks condition, and retrieval of responses specific to stimulus-cue combinations in the CSR conditions. Qualitative features of the latter could be captured by an associative learning network. Hence associatively based compound retrieval can serve as the basis for performance with a small stimulus set. But when organization by tasks is apparent, control via task set selection is the natural and efficient strategy. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Hannon, Brenda
2012-10-01
Definitions of related concepts (e.g., genotype - phenotype ) are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning definitions of related concepts than was an integrative elaborative strategy, called example elaboration. This outcome occurred even though example elaboration was administered in a naturalistic way (Experiment 1) and students spent more time in the example elaboration condition learning (Experiments 1, 2, 3), and generating pieces of information about the concepts (Experiments 2 and 3). Further, with unrelated concepts ( morpheme-fluid intelligence ), performance was similar regardless if students used differential-associative processing or example elaboration (Experiment 3). Taken as a whole, these results suggest that differential-associative processing is better than example elaboration for learning definitions of related concepts and is as good as example elaboration for learning definitions of unrelated concepts.
Hannon, Brenda
2013-01-01
Definitions of related concepts (e.g., genotype–phenotype) are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning definitions of related concepts than was an integrative elaborative strategy, called example elaboration. This outcome occurred even though example elaboration was administered in a naturalistic way (Experiment 1) and students spent more time in the example elaboration condition learning (Experiments 1, 2, 3), and generating pieces of information about the concepts (Experiments 2 and 3). Further, with unrelated concepts (morpheme-fluid intelligence), performance was similar regardless if students used differential-associative processing or example elaboration (Experiment 3). Taken as a whole, these results suggest that differential-associative processing is better than example elaboration for learning definitions of related concepts and is as good as example elaboration for learning definitions of unrelated concepts. PMID:24347814
ERIC Educational Resources Information Center
Carmine Pastura, Giuseppe Mario; Mattos, Paulo; Campos Araujo, Alexandra Prufer de Queiroz
2009-01-01
Objective: Scholastic achievement in a nonclinical sample of ADHD children and adolescents was evaluated taking into consideration variables such as comorbid learning disorders, family income, and parental education which may also be associated with poor academic performance. Method: After screening for ADHD in 396 students, the authors compared…
Windsor, John A; Diener, Scott; Zoha, Farah
2008-06-01
People learn in different ways, and training techniques and technologies should accommodate individual learning needs. This pilot study looks at the relationship between learning style, as measured with the Multiple Intelligences Developmental Assessment Scales (MIDAS), laparoscopic surgery experience and psychomotor skill performance using the MIST VR surgical simulator. Five groups of volunteer subjects were selected from undergraduate tertiary students, medical students, novice surgical trainees, advanced surgical trainees and experienced laparoscopic surgeons. Each group was administered the MIDAS followed by two simulated surgical tasks on the MIST VR simulator. There was a striking homogeny of learning styles amongst experienced laparoscopic surgeons. Significant differences in the distribution of primary learning styles were found (P < .01) between subjects with minimal surgical training and those with considerable experience. A bodily-kinesthetic learning style, irrespective of experience, was associated with the best performance of the laparoscopic tasks. This is the first study to highlight the relationship between learning style, psychomotor skill and laparoscopic surgical experience with implications for surgeon selection, training and credentialling.
Frontal and Parietal Contributions to Probabilistic Association Learning
Rushby, Jacqueline A.; Vercammen, Ans; Loo, Colleen; Short, Brooke
2011-01-01
Neuroimaging studies have shown both dorsolateral prefrontal (DLPFC) and inferior parietal cortex (iPARC) activation during probabilistic association learning. Whether these cortical brain regions are necessary for probabilistic association learning is presently unknown. Participants' ability to acquire probabilistic associations was assessed during disruptive 1 Hz repetitive transcranial magnetic stimulation (rTMS) of the left DLPFC, left iPARC, and sham using a crossover single-blind design. On subsequent sessions, performance improved relative to baseline except during DLPFC rTMS that disrupted the early acquisition beneficial effect of prior exposure. A second experiment examining rTMS effects on task-naive participants showed that neither DLPFC rTMS nor sham influenced naive acquisition of probabilistic associations. A third experiment examining consecutive administration of the probabilistic association learning test revealed early trial interference from previous exposure to different probability schedules. These experiments, showing disrupted acquisition of probabilistic associations by rTMS only during subsequent sessions with an intervening night's sleep, suggest that the DLPFC may facilitate early access to learned strategies or prior task-related memories via consolidation. Although neuroimaging studies implicate DLPFC and iPARC in probabilistic association learning, the present findings suggest that early acquisition of the probabilistic cue-outcome associations in task-naive participants is not dependent on either region. PMID:21216842
Face-name association learning and brain structural substrates in alcoholism.
Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V
2012-07-01
Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent 3T structural MRI. Compared with controls, alcoholics had poorer associative and single-item learning and performed at similar levels. Level of processing at encoding had little effect on recognition performance but affected reaction time (RT). Correlations with brain volumes were generally modest and based primarily on RT in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task RTs correlated modestly with smaller tissue volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; and associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster RTs and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded RTs occurred at the expense of accuracy and were related most robustly to cerebellar volumes. Copyright © 2012 by the Research Society on Alcoholism.
Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek
2017-05-01
This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.
Moustafa, Ahmed A.; Keri, Szabolcs; Herzallah, Mohammad M.; Myers, Catherine E.; Gluck, Mark A.
2010-01-01
Building on our previous neurocomputational models of basal ganglia and hippocampal-region function (and their modulation by dopamine and acetylcholine, respectively), we show here how an integration of these models can inform our understanding of the interaction between the basal ganglia and hippocampal region in associative learning and transfer generalization across various patient populations. As a common test bed for exploring interactions between these brain regions and neuromodulators, we focus on the acquired equivalence task, an associative learning paradigm in which stimuli that have been associated with the same outcome acquire a functional similarity such that subsequent generalization between these stimuli increases. This task has been used to test cognitive dysfunction in various patient populations with damages to the hippocampal region and basal ganglia, including studies of patients with Parkinson’s disease (PD), schizophrenia, basal forebrain amnesia, and hippocampal atrophy. Simulation results show that damage to the hippocampal region—as in patients with hippocampal atrophy (HA), hypoxia, mild Alzheimer’s (AD), or schizophrenia—leads to intact associative learning but impaired transfer generalization performance. Moreover, the model demonstrates how PD and anterior communicating artery (ACoA) aneurysm—two very different brain disorders that affect different neural mechanisms—can have similar effects on acquired equivalence performance. In particular, the model shows that simulating a loss of dopamine function in the basal ganglia module (as in PD) leads to slow acquisition learning but intact transfer generalization. Similarly, the model shows that simulating the loss of acetylcholine in the hippocampal region (as in ACoA aneurysm) also results in slower acquisition learning. We argue from this that changes in associative learning of stimulus-action pathways (in the basal ganglia) or changes in the learning of stimulus representations (in the hippocampal region) can have similar functional effects. PMID:20728258
Locomotor activity modulates associative learning in mouse cerebellum.
Albergaria, Catarina; Silva, N Tatiana; Pritchett, Dominique L; Carey, Megan R
2018-05-01
Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual's ability to learn.
Chartier, Sylvain; Proulx, Robert
2005-11-01
This paper presents a new unsupervised attractor neural network, which, contrary to optimal linear associative memory models, is able to develop nonbipolar attractors as well as bipolar attractors. Moreover, the model is able to develop less spurious attractors and has a better recall performance under random noise than any other Hopfield type neural network. Those performances are obtained by a simple Hebbian/anti-Hebbian online learning rule that directly incorporates feedback from a specific nonlinear transmission rule. Several computer simulations show the model's distinguishing properties.
Advances and limitations of visual conditioning protocols in harnessed bees.
Avarguès-Weber, Aurore; Mota, Theo
2016-10-01
Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees. Copyright © 2016 Elsevier Ltd. All rights reserved.
Akram, Nimra; Khan, Naheed; Ameen, Mehreen; Mahmood, Shahmeera; Shamim, Komal; Amin, Marium; Rana, Qurrat Ul Ain
2018-05-15
Several studies have focused on determining the effect of chronotype and learning approach on academic achievement separately indicating that morning types have an academic advantage over the evening types and so have the deep learners over the surface learners. But, surprisingly none have assessed the possible relationship between chronotype and learning approach. So, the current study aimed to evaluate this association and their individual influence on academic performance as indicated by the Cumulative Grade Point Average (CGPA) as well as the effect of their interaction on academic performance. The study included 345 undergraduate medical students who responded to reduced Morningness-Eveningness Questionnaire and Biggs Revised Two-Factor Study Process Questionnaire. Morning types indulged in deep learning while evening types in surface learning. Morning and evening types did not differ on academic performance but deep learners had better academic outcomes than their counterparts. The interaction between chronotype and learning approach was significant on determining academic achievement. Our findings gave the impression that chronotype could have an impact on academic performance not directly but indirectly through learning approaches.
Areepattamannil, Shaljan; Caleon, Imelda S
2013-01-01
The authors examined the relationships of cognitive (i.e., memorization and elaboration) and metacognitive learning strategies (i.e., control strategies) to mathematics achievement among 15-year-old students in 4 high-performing East Asian education systems: Shanghai-China, Hong Kong-China, Korea, and Singapore. In all 4 East Asian education systems, memorization strategies were negatively associated with mathematics achievement, whereas control strategies were positively associated with mathematics achievement. However, the association between elaboration strategies and mathematics achievement was a mixed bag. In Shanghai-China and Korea, elaboration strategies were not associated with mathematics achievement. In Hong Kong-China and Singapore, on the other hand, elaboration strategies were negatively associated with mathematics achievement. Implications of these findings are briefly discussed.
Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.).
Scheiner, R; Erber, J; Page, R E
1999-07-01
Using the proboscis extension response we conditioned pollen and nectar foragers of the honey bee (Apis mellifera L.) to tactile patterns under laboratory conditions. Pollen foragers demonstrated better acquisition, extinction, and reversal learning than nectar foragers. We tested whether the known differences in response thresholds to sucrose between pollen and nectar foragers could explain the observed differences in learning and found that nectar foragers with low response thresholds performed better during acquisition and extinction than ones with higher thresholds. Conditioning pollen and nectar foragers with similar response thresholds did not yield differences in their learning performance. These results suggest that differences in the learning performance of pollen and nectar foragers are a consequence of differences in their perception of sucrose. Furthermore, we analysed the effect which the perception of sucrose reward has on associative learning. Nectar foragers with uniform low response thresholds were conditioned using varying concentrations of sucrose. We found significant positive correlations between the concentrations of the sucrose rewards and the performance during acquisition and extinction. The results are summarised in a model which describes the relationships between learning performance, response threshold to sucrose, concentration of sucrose and the number of rewards.
It's Time for Summer: An Analysis of Recent Policy and Funding Opportunities
ERIC Educational Resources Information Center
Fairchild, Ron; Smink, Jeff; Stewart, Ashley B.
2009-01-01
The National Summer Learning Association is the only national organization that focuses exclusively on learning during the summer months. It works to ensure that children and youth in high-poverty communities have access to quality summer learning opportunities that support their academic performance and healthy development through hands-on…
What Can Errors Tell Us about Differences between Monolingual and Bilingual Vocabulary Learning?
ERIC Educational Resources Information Center
Kaushanskaya, Margarita
2018-01-01
Error patterns in vocabulary learning data were used as a window into the mechanisms that underlie vocabulary learning performance in bilinguals vs. monolinguals. English--Spanish bilinguals (n = 18) and English-speaking monolinguals (n = 18) were taught novel vocabulary items in association with English translations. At testing, participants…
Kim, Roger H; Gilbert, Timothy; Ristig, Kyle
2015-01-01
There is a growing body of literature that suggests that learners assimilate information differently, depending on their preferred learning style. The VARK model categorizes learners as visual (V), aural (A), read/write (R), kinesthetic (K), or multimodal (MM). We hypothesized that resident VARK learning style preferences and American Board of Surgery In-Training Examination (ABSITE) performance are associated. The Fleming VARK learning styles inventory was administered to all general surgery residents at a university hospital-based program each year to determine their preferred learning style. Resident scores from the 2012 and 2013 ABSITE were examined to identify any correlation with learning style preferences. Over a 2-year period, residents completed 53 VARK inventory assessments. Most (51%) had a multimodal preference. Dominant aural and read/write learners had the lowest and highest mean ABSITE scores, respectively (p = 0.03). Residents with dominant read/write learning preferences perform better on the ABSITE than their peers did, whereas residents with dominant aural learning preferences underperform on the ABSITE. This may reflect an inherent and inadvertent bias of the examination against residents who prefer to learn via aural modalities. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Impaired discrimination learning in interneuronal NMDAR-GluN2B mutant mice.
Brigman, Jonathan L; Daut, Rachel A; Saksida, Lisa; Bussey, Timothy J; Nakazawa, Kazu; Holmes, Andrew
2015-06-17
Previous studies have established a role for N-methyl-D-aspartate receptor (NMDAR) containing the GluN2B subunit in efficient learning behavior on a variety of tasks. Recent findings have suggested that NMDAR on GABAergic interneurons may underlie the modulation of striatal function necessary to balance efficient action with cortical excitatory input. Here we investigated how loss of GluN2B-containing NMDAR on GABAergic interneurons altered corticostriatal-mediated associative learning. Mutant mice (floxed-GluN2B×Ppp1r2-Cre) were generated to produce loss of GluN2B on forebrain interneurons and phenotyped on a touchscreen-based pairwise visual learning paradigm. We found that the mutants showed normal performance during Pavlovian and instrumental pretraining, but were significantly impaired on a discrimination learning task. Detailed analysis of the microstructure of discrimination performance revealed reduced win→stay behavior in the mutants. These results further support the role of NMDAR, and GluN2B in particular, on modulation of striatal function necessary for efficient choice behavior and suggest that NMDAR on interneurons may play a critical role in associative learning.
Pravosudov, Vladimir V; Lavenex, Pierre; Omanska, Alicja
2005-10-01
Development rates vary among individuals, often as a result of direct competition for food. Survival of young might depend on their learning abilities, but it remains unclear whether learning abilities are affected by nutrition during development. The authors demonstrated that compared with controls, 1-year-old Western scrub jays (Aphelocoma californica) that experienced nutritional deficits during early posthatching development had smaller hippocampi with fewer neurons and performed worse in a cache recovery task and in a spatial version of an associative learning task. In contrast, performance of nutritionally deprived birds was similar to that of controls in 2 color versions of an associative learning task. These findings suggest that nutritional deficits during early development have long-term consequences for hippocampal structure and spatial memory, which, in turn, are likely to have a strong impact on animals' future fitness.
Stimulus-Reward Association and Reversal Learning in Individuals with Asperger Syndrome
ERIC Educational Resources Information Center
Zalla, Tiziana; Sav, Anca-Maria; Leboyer, Marion
2009-01-01
In the present study, performance of a group of adults with Asperger Syndrome (AS) on two series of object reversal and extinction was compared with that of a group of adults with typical development. Participants were requested to learn a stimulus-reward association rule and monitor changes in reward value of stimuli in order to gain as many…
Systematic review of effectiveness of situated e-learning on medical and nursing education.
Feng, Jui-Ying; Chang, Yi-Ting; Chang, Hsin-Yi; Erdley, William Scott; Lin, Chyi-Her; Chang, Ying-Ju
2013-08-01
Because of the complexity of clinical situations, traditional didactic education is limited in providing opportunity for student-patient interaction. Situated e-learning can enhance learners' knowledge and associated abilities through a variety of activities. Healthcare providers who interact with virtual patients in designed situations may avoid unnecessary risks and encounters with real patients. However, the effectiveness of situated e-learning is inconsistent. The purpose of this study is to determine the effectiveness of situated e-learning in prelicensure and postlicensure medical and nursing education. Literature databases of PubMed, Medline, CINAHL, ERIC, and Cochrane Library were searched. The study eligibility criteria included articles published in English, which examined the effectiveness of situated e-learning on the outcomes of knowledge and performance for clinicians or students in medicine and nursing. Effect sizes were calculated with 95% confidence intervals. Fourteen articles were included for meta-analysis. Situated e-learning could effectively enhance learners' knowledge and performance when the control group received no training. Compared to traditional learning, the effectiveness of situated e-learning on performance diminished but still remained significant whereas the effect become insignificant on knowledge. The subgroup analyses indicate the situated e-learning program significantly improved students' clinical performance but not for clinicians. Situated e-learning is an effective method to improve novice learners' performance. The effect of situated e-learning on the improvement of cognitive ability is limited when compared to traditional learning. Situated e-learning is a useful adjunct to traditional learning for medical and nursing students. © 2013 Sigma Theta Tau International.
Chiu, Ming-Jang; Liu, Kristina; Hsieh, Ming H; Hwu, Hai-Gwo
2005-12-12
Implicit learning was reported to be intact in schizophrenia using artificial grammar learning. However, emerging evidence indicates that artificial grammar learning is not a unitary process. The authors used dual coding stimuli and schizophrenia clinical symptom dimensions to re-evaluate the effect of schizophrenia on various components of artificial grammar learning. Letter string and color pattern artificial grammar learning performances were compared between 63 schizophrenic patients and 27 comparison subjects. Four symptom dimensions derived from a Chinese Positive and Negative Symptom Scale ratings were correlated with patients' artificial grammar implicit learning performances along the two stimulus dimensions. Patients' explicit memory performances were assessed by verbal paired associates and visual reproduction subtests of the Wechsler Memory Scales Revised Version to provide a contrast to their implicit memory function. Schizophrenia severely hindered color pattern artificial grammar learning while the disease affected lexical string artificial grammar learning to a lesser degree after correcting the influences from age, education and the performance of explicit memory function of both verbal and visual modalities. Both learning performances correlated significantly with the severity of patients' schizophrenic clinical symptom dimensions that reflect poor abstract thinking, disorganized thinking, and stereotyped thinking. The results of this study suggested that schizophrenia affects various mechanisms of artificial grammar learning differently. Implicit learning, knowledge acquisition in the absence of conscious awareness, is not entirely intact in patients with schizophrenia. Schizophrenia affects implicit learning through an impairment of the ability of making abstractions from rules and at least in part decreasing the capacity for perceptual learning.
ERIC Educational Resources Information Center
Vuijk, Pieter Jelle; Hartman, Esther; Mombarg, Remo; Scherder, Erik; Visscher, Chris
2011-01-01
A heterogeneous sample of 137 school-aged children with learning disabilities (IQ greater than 80) attending special needs schools was examined on the "Movement Assessment Battery for Children" (MABC). The results show that compared to the available norm scores, 52.6% of the children tested performed below the 15th percentile on manual…
ERIC Educational Resources Information Center
Raska, David
2014-01-01
This research explores and tests the effect of an innovative performance feedback practice--feedback supplemented with web-based peer benchmarking--through a lens of social cognitive framework for self-regulated learning. The results suggest that providing performance feedback with references to exemplary peer output is positively associated with…
Verbal and non-verbal memory and hippocampal volumes in a memory clinic population.
Bonner-Jackson, Aaron; Mahmoud, Shamseldeen; Miller, Justin; Banks, Sarah J
2015-10-15
Better characterization of the relationship between episodic memory and hippocampal volumes is crucial in early detection of neurodegenerative disease. We examined these relationships in a memory clinic population. Participants (n = 226) underwent structural magnetic resonance imaging and tests of verbal (Hopkins Verbal Learning Test-Revised, HVLT-R) and non-verbal (Brief Visuospatial Memory Test-Revised, BVMT-R) memory. Correlational analyses were performed, and analyses on clinical subgroups (i.e., amnestic Mild Cognitive Impairment, non-amnestic Mild Cognitive Impairment, probable Alzheimer's disease, intact memory) were conducted. Positive associations were identified between bilateral hippocampal volumes and both memory measures, and BVMT-R learning slope was more strongly positively associated with hippocampal volumes than HVLT-R learning slope. Amnestic Mild Cognitive Impairment (aMCI) participants showed specific positive associations between BVMT-R performance and hippocampal volumes bilaterally. Additionally, analyses of the aMCI group showed trend-level evidence of material-specific lateralization, such that retention of verbal information was positively associated with left hippocampal volume, whereas learning curve and retention of non-verbal information was positively associated with right hippocampal volume. Findings support the link between episodic memory and hippocampal volumes in a memory clinic population. Non-verbal memory measures also may have higher diagnostic value, particularly in individuals at elevated risk for Alzheimer's disease.
Singing can facilitate foreign language learning.
Ludke, Karen M; Ferreira, Fernanda; Overy, Katie
2014-01-01
This study presents the first experimental evidence that singing can facilitate short-term paired-associate phrase learning in an unfamiliar language (Hungarian). Sixty adult participants were randomly assigned to one of three "listen-and-repeat" learning conditions: speaking, rhythmic speaking, or singing. Participants in the singing condition showed superior overall performance on a collection of Hungarian language tests after a 15-min learning period, as compared with participants in the speaking and rhythmic speaking conditions. This superior performance was statistically significant (p < .05) for the two tests that required participants to recall and produce spoken Hungarian phrases. The differences in performance were not explained by potentially influencing factors such as age, gender, mood, phonological working memory ability, or musical ability and training. These results suggest that a "listen-and-sing" learning method can facilitate verbatim memory for spoken foreign language phrases.
Hester, Robert; Murphy, Kevin; Brown, Felicity L; Skilleter, Ashley J
2010-11-17
Punishing an error to shape subsequent performance is a major tenet of individual and societal level behavioral interventions. Recent work examining error-related neural activity has identified that the magnitude of activity in the posterior medial frontal cortex (pMFC) is predictive of learning from an error, whereby greater activity in this region predicts adaptive changes in future cognitive performance. It remains unclear how punishment influences error-related neural mechanisms to effect behavior change, particularly in key regions such as pMFC, which previous work has demonstrated to be insensitive to punishment. Using an associative learning task that provided monetary reward and punishment for recall performance, we observed that when recall errors were categorized by subsequent performance--whether the failure to accurately recall a number-location association was corrected at the next presentation of the same trial--the magnitude of error-related pMFC activity predicted future correction. However, the pMFC region was insensitive to the magnitude of punishment an error received and it was the left insula cortex that predicted learning from the most aversive outcomes. These findings add further evidence to the hypothesis that error-related pMFC activity may reflect more than a prediction error in representing the value of an outcome. The novel role identified here for the insular cortex in learning from punishment appears particularly compelling for our understanding of psychiatric and neurologic conditions that feature both insular cortex dysfunction and a diminished capacity for learning from negative feedback or punishment.
Domain-specific and domain-general constraints on word and sequence learning.
Archibald, Lisa M D; Joanisse, Marc F
2013-02-01
The relative influences of language-related and memory-related constraints on the learning of novel words and sequences were examined by comparing individual differences in performance of children with and without specific deficits in either language or working memory. Children recalled lists of words in a Hebbian learning protocol in which occasional lists repeated, yielding improved recall over the course of the task on the repeated lists. The task involved presentation of pictures of common nouns followed immediately by equivalent presentations of the spoken names. The same participants also completed a paired-associate learning task involving word-picture and nonword-picture pairs. Hebbian learning was observed for all groups. Domain-general working memory constrained immediate recall, whereas language abilities impacted recall in the auditory modality only. In addition, working memory constrained paired-associate learning generally, whereas language abilities disproportionately impacted novel word learning. Overall, all of the learning tasks were highly correlated with domain-general working memory. The learning of nonwords was additionally related to general intelligence, phonological short-term memory, language abilities, and implicit learning. The results suggest that distinct associations between language- and memory-related mechanisms support learning of familiar and unfamiliar phonological forms and sequences.
Rapid learning dynamics in individual honeybees during classical conditioning.
Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P
2014-01-01
Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.
Rapid learning dynamics in individual honeybees during classical conditioning
Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P.
2014-01-01
Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla–Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled. PMID:25309366
Developmental Approach for Behavior Learning Using Primitive Motion Skills.
Dawood, Farhan; Loo, Chu Kiong
2018-05-01
Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.
Effects of Intrinsic Motivation on Feedback Processing During Learning
DePasque, Samantha; Tricomi, Elizabeth
2015-01-01
Learning commonly requires feedback about the consequences of one’s actions, which can drive learners to modify their behavior. Motivation may determine how sensitive an individual might be to such feedback, particularly in educational contexts where some students value academic achievement more than others. Thus, motivation for a task might influence the value placed on performance feedback and how effectively it is used to improve learning. To investigate the interplay between intrinsic motivation and feedback processing, we used functional magnetic resonance imaging (fMRI) during feedback-based learning before and after a novel manipulation based on motivational interviewing, a technique for enhancing treatment motivation in mental health settings. Because of its role in the reinforcement learning system, the striatum is situated to play a significant role in the modulation of learning based on motivation. Consistent with this idea, motivation levels during the task were associated with sensitivity to positive versus negative feedback in the striatum. Additionally, heightened motivation following a brief motivational interview was associated with increases in feedback sensitivity in the left medial temporal lobe. Our results suggest that motivation modulates neural responses to performance-related feedback, and furthermore that changes in motivation facilitates processing in areas that support learning and memory. PMID:26112370
The neural correlates of implicit sequence learning in schizophrenia.
Marvel, Cherie L; Turner, Beth M; O'Leary, Daniel S; Johnson, Hans J; Pierson, Ronald K; Ponto, Laura L Boles; Andreasen, Nancy C
2007-11-01
Twenty-seven schizophrenia spectrum patients and 25 healthy controls performed a probabilistic version of the serial reaction time task (SRT) that included sequence trials embedded within random trials. Patients showed diminished, yet measurable, sequence learning. Postexperimental analyses revealed that a group of patients performed above chance when generating short spans of the sequence. This high-generation group showed SRT learning that was similar in magnitude to that of controls. Their learning was evident from the very 1st block; however, unlike controls, learning did not develop further with continued testing. A subset of 12 patients and 11 controls performed the SRT in conjunction with positron emission tomography. High-generation performance, which corresponded to SRT learning in patients, correlated to activity in the premotor cortex and parahippocampus. These areas have been associated with stimulus-driven visuospatial processing. Taken together, these results suggest that a subset of patients who showed moderate success on the SRT used an explicit stimulus-driven strategy to process the sequential stimuli. This adaptive strategy facilitated sequence learning but may have interfered with conventional implicit learning of the overall stimulus pattern. PsycINFO Database Record (c) 2007 APA, all rights reserved.
Children's associative learning: automatic and deliberate encoding of meaningful associations.
Guttentag, R
1995-01-01
Three experiments were conducted examining 10- and 11-year-old children's deliberate and automatic encoding of meaningful associative relationships on a paired-associate learning task. Subjects in Experiment 1 were presented pairs of related and unrelated words under deliberate memorization and item-specific incidental-learning conditions. Cued-recall performance was superior with related relative to unrelated pairs under both instructional conditions, suggesting that the encoding of an association between items occurred automatically with meaningfully related words. In Experiment 2, it was found that execution of a verbal elaboration strategy required more time with unrelated than with related pairs, suggesting greater ease of elaboration strategy execution with related materials. Experiment 3 monitored strategy use online using a think-aloud procedure. Cued-recall performance was superior with related pairs when subjects used rehearsal. In contrast, elaboration produced equivalent levels of recall with both types of items, but subjects executed the strategy successfully more often with related than with unrelated pairs. These findings are discussed in terms of the role of automatic processes and the effort demands of strategy execution in children's strategy use.
Li, Yuh-Shiow; Yu, Wen-Pin; Liu, Chin-Fang; Shieh, Sue-Heui; Yang, Bao-Huan
2014-01-01
Abstract Background: Learning style is a major consideration in planning for effective and efficient instruction and learning. Learning style has been shown to influence academic performance in the previous research. Little is known about Taiwanese students' learning styles, particularly in the field of nursing education. This purpose of this study was to identify the relationship between learning styles and academic performance among nursing students in a 5-year associate degree of nursing (ADN) program and a 2-year bachelor of science in nursing (BSN) program in Taiwan. This study employed a descriptive and exploratory design. The Chinese version of the Myers-Briggs type indicator Form M was an instrument. Data such as grade point average were obtained from the Office of Academic Affairs and the Registrar computerized records. Descriptive statistics, one-way analysis of variance and chi-square statistical analysis were used to explore the relationship between academic performance and learning style in Taiwanese nursing students. The study sample included 285 nursing students: 96 students in a 2-year BSN program, and 189 students in a 5-year ADN program. Two common learning styles were found: Introversion, sensing, thinking, and judging; and introversion, sensing, feeling, and judging. A sensing-judging pair was identified in 43.3% of the participants. Academic performance was significantly related to learning style (p < 0.05, df = 15). The results of this study can help educators devise classroom and clinical instructional strategies that respond to individual needs in order to maximize academic performance and enhance student success. A large sample is recommended for further research. Understanding the learning style preferences of students can enhance learning for those who are under performing in their academic studies, thereby enhancing nursing education.
Chuk, Tim; Chan, Antoni B; Hsiao, Janet H
2017-12-01
The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reconfiguration of parietal circuits with cognitive tutoring in elementary school children
Jolles, Dietsje; Supekar, Kaustubh; Richardson, Jennifer; Tenison, Caitlin; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Fuchs, Lynn; Menon, Vinod
2016-01-01
Cognitive development is shaped by brain plasticity during childhood, yet little is known about changes in large-scale functional circuits associated with learning in academically relevant cognitive domains such as mathematics. Here, we investigate plasticity of intrinsic brain circuits associated with one-on-one math tutoring and its relation to individual differences in children’s learning. We focused on functional circuits associated with the intraparietal sulcus (IPS) and angular gyrus (AG), cytoarchitectonically distinct subdivisions of the human parietal cortex with different roles in numerical cognition. Tutoring improved performance and strengthened IPS connectivity with the lateral prefrontal cortex, ventral temporal-occipital cortex, and hippocampus. Crucially, increased IPS connectivity was associated with individual performance gains, highlighting the behavioral significance of plasticity in IPS circuits. Tutoring-related changes in IPS connectivity were distinct from those of the adjacent AG, which did not predict performance gains. Our findings provide new insights into plasticity of functional brain circuits associated with the development of specialized cognitive skills in children. PMID:27618765
Reconfiguration of parietal circuits with cognitive tutoring in elementary school children.
Jolles, Dietsje; Supekar, Kaustubh; Richardson, Jennifer; Tenison, Caitlin; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Fuchs, Lynn; Menon, Vinod
2016-10-01
Cognitive development is shaped by brain plasticity during childhood, yet little is known about changes in large-scale functional circuits associated with learning in academically relevant cognitive domains such as mathematics. Here, we investigate plasticity of intrinsic brain circuits associated with one-on-one math tutoring and its relation to individual differences in children's learning. We focused on functional circuits associated with the intraparietal sulcus (IPS) and angular gyrus (AG), cytoarchitectonically distinct subdivisions of the human parietal cortex with different roles in numerical cognition. Tutoring improved performance and strengthened IPS connectivity with the lateral prefrontal cortex, ventral temporal-occipital cortex, and hippocampus. Crucially, increased IPS connectivity was associated with individual performance gains, highlighting the behavioral significance of plasticity in IPS circuits. Tutoring-related changes in IPS connectivity were distinct from those of the adjacent AG, which did not predict performance gains. Our findings provide new insights into plasticity of functional brain circuits associated with the development of specialized cognitive skills in children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shephard, Elizabeth; Jackson, Georgina M; Groom, Madeleine J
2016-06-01
Altered reinforcement learning is implicated in the causes of Tourette syndrome (TS) and attention-deficit/hyperactivity disorder (ADHD). TS and ADHD frequently co-occur but how this affects reinforcement learning has not been investigated. We examined the ability of young people with TS (n=18), TS+ADHD (N=17), ADHD (n=13) and typically developing controls (n=20) to learn and reverse stimulus-response (S-R) associations based on positive and negative reinforcement feedback. We used a 2 (TS-yes, TS-no)×2 (ADHD-yes, ADHD-no) factorial design to assess the effects of TS, ADHD, and their interaction on behavioural (accuracy, RT) and event-related potential (stimulus-locked P3, feedback-locked P2, feedback-related negativity, FRN) indices of learning and reversing the S-R associations. TS was associated with intact learning and reversal performance and largely typical ERP amplitudes. ADHD was associated with lower accuracy during S-R learning and impaired reversal learning (significantly reduced accuracy and a trend for smaller P3 amplitude). The results indicate that co-occurring ADHD symptoms impair reversal learning in TS+ADHD. The implications of these findings for behavioural tic therapies are discussed. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.
Never forget a name: white matter connectivity predicts person memory
Metoki, Athanasia; Alm, Kylie H.; Wang, Yin; Ngo, Chi T.; Olson, Ingrid R.
2018-01-01
Through learning and practice, we can acquire numerous skills, ranging from the simple (whistling) to the complex (memorizing operettas in a foreign language). It has been proposed that complex learning requires a network of brain regions that interact with one another via white matter pathways. One candidate white matter pathway, the uncinate fasciculus (UF), has exhibited mixed results for this hypothesis: some studies have shown UF involvement across a range of memory tasks, while other studies report null results. Here, we tested the hypothesis that the UF supports associative memory processes and that this tract can be parcellated into subtracts that support specific types of memory. Healthy young adults performed behavioral tasks (two face-name learning tasks, one word pair memory task) and underwent a diffusion-weighted imaging scan. Our results revealed that variation in UF microstructure was significantly associated with individual differences in performance on both face-name tasks, as well as the word association memory task. A UF sub-tract, functionally defined by its connectivity between face-selective regions in the anterior temporal lobe and orbitofrontal cortex, selectively predicted face-name learning. In contrast, connectivity between the fusiform face patch and both anterior face patches had no predictive validity. These findings suggest that there is a robust and replicable relationship between the UF and associative learning and memory. Moreover, this large white matter pathway can be subdivided to reveal discrete functional profiles. PMID:28646241
Taha, Haitham
2017-01-01
Executive functions (EFs) measures of 27 asthmatic children, with general learning difficulties, were tested by using the Wisconsin card sorting test (WCST), and were compared to the performances of 30 non-asthmatic children with general learning difficulties. The results revealed that the asthmatic group has poor performance through all the WCST psychometric parameters and especially the perseverative errors one. The results were discussed in light of the postulation that poor EFs could be associated with the learning difficulties of asthmatic children. Neurophysiological framework has been suggested to explain the etiology of poor EFs among children with moderate into severe asthma.
ERIC Educational Resources Information Center
Baxter, Lisa; Mattick, Karen; Kuyken, Willem
2013-01-01
Inventories that measure approaches to learning have revealed that certain approaches are associated with better academic performance. However, these inventories were developed primarily with higher education students on non-vocational courses and recent research shows they fail to capture the full range of healthcare students' intentions and…
Is Active Learning Like Broccoli? Student Perceptions of Active Learning in Large Lecture Classes
ERIC Educational Resources Information Center
Smith, C. Veronica; Cardaciotto, LeeAnn
2011-01-01
Although research suggests that active learning is associated with positive outcomes (e.g., memory, test performance), use of such techniques can be difficult to implement in large lecture-based classes. In the current study, 1,091 students completed out-of-class group exercises to complement course material in an Introductory Psychology class.…
Reading to Learn or Learning to Read? Engaging College Students in Course Readings
ERIC Educational Resources Information Center
Kerr, Mary Margaret; Frese, Kristen M.
2017-01-01
Despite instructors' belief that class readings are integral to the learning process, only 20-30% of undergraduate students complete required readings. Failure to complete course reading has been associated with declines in exam and research performance. This article first offers a brief review of the literature on why students do not complete…
ERIC Educational Resources Information Center
Ku, Lisbeth; Dittmar, Helga; Banerjee, Robin
2012-01-01
Is materialism systematically related to teenagers' learning motivation as well as actual learning outcomes? The reported research tested a theoretical model of associations among materialism, achievement goals, and exam performance among teenagers. Study 1 tested the theoretical model in 4 groups of teenagers drawn from 2 different educational…
ERIC Educational Resources Information Center
Gamino, Jacquelyn F.; Chapman, Sandra B.; Cook, Lori G.
2009-01-01
Little is known about strategic learning ability in preteens and adolescents with traumatic brain injury (TBI). Strategic learning is the ability to combine and synthesize details to form abstracted gist-based meanings, a higher-order cognitive skill associated with frontal lobe functions and higher classroom performance. Summarization tasks were…
Mind racing: The influence of exercise on long-term memory consolidation.
McNerney, M Windy; Radvansky, Gabriel A
2015-01-01
Over time, regular exercise can lower the risk for age-related decline in cognition. However, the immediate effects of exercise on memory consolidation in younger adults have not been fully investigated. In two experiments, the effects of exercise were assessed on three different memory tasks. These included paired-associate learning, procedural learning and text memory. Results indicate that performance on procedural learning and situation model memory was increased with exercise, regardless of if participants exercised before or after encoding. No benefit of exercise was found for paired-associate learning. These findings suggest that intense exercise may benefit certain types of memory consolidation.
NASA Astrophysics Data System (ADS)
Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.
2018-05-01
As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.
Reske, Martina; Eidt, Carolyn A.; Delis, Dean C.; Paulus, Martin P.
2010-01-01
Background Stimulants are used increasingly to enhance social (cocaine) or cognitive performance (stimulants normally prescribed, prescription stimulants, e.g. methylphenidate, amphetamines). Chronic use, on the other hand, has been associated with significant verbal memory and learning deficits. This study sought to determine whether subtle learning and memory problems characterize individuals who exhibit occasional but not chronic use of stimulants. Methods 154 young (age 18–25) occasional, non-dependent stimulant users and 48 stimulant naïve comparison subjects performed the California Verbal Learning test (CVLT-II). Lifetime uses of stimulants and co-use of marijuana were considered in correlation and median split analyses. Results Compared to stimulant naïve subjects, occasional stimulant users showed significant performance deficits, most pronounced in the verbal recall and recognition domains. Lifetime uses of stimulants and marijuana did not affect CVLT-II performance. The type of stimulant used, however, was of major relevance: users of cocaine only were less impaired, while cumulative use of prescription stimulants was associated with impaired verbal learning and memory capacities. Conclusions These results support the hypothesis of subtle and possibly pre-existing neurocognitive deficiencies in occasional users of stimulants, which may be related to the motivation of using these drugs. More importantly, despite beneficial short-term effects, cumulative use, particularly of prescription amphetamines and methylphenidate, intensifies these deficits. PMID:20605137
ERIC Educational Resources Information Center
Lam, Joseph W. I.; Cheung, Wai Ming; Lam, Raymond Y. H.
2009-01-01
Being literate is fundamental for learning most school subjects. The International Association for the Evaluation of Educational Achievement (IEA) conducts a regular cycle of studies of children's reading literacy and the factors associated with literacy acquisition in countries around the world. The Progress in International Reading Literacy…
Learning about learning: Mining human brain sub-network biomarkers from fMRI data
Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Singh, Ambuj K.
2017-01-01
Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in “resting state” employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions. PMID:29016686
Learning about learning: Mining human brain sub-network biomarkers from fMRI data.
Bogdanov, Petko; Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S; Wymbs, Nicholas F; Grafton, Scott T; Singh, Ambuj K
2017-01-01
Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in "resting state" employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions.
Eiriksdottir, Elsa; Catrambone, Richard
2011-12-01
The goal of this article is to investigate how instructions can be constructed to enhance performance and learning of procedural tasks. Important determinants of the effectiveness of instructions are type of instructions (procedural information, principles, and examples) and pedagogical goal (initial performance, learning, and transfer). Procedural instructions describe how to complete tasks in a stepwise manner, principles describe rules governing the tasks, and examples demonstrate how instances of the task are carried out. The authors review the research literature associated with each type of instruction to identify factors determining effectiveness for different pedagogical goals. The results suggest a trade-off between usability and learnability. Specific instructions help initial performance, whereas more general instructions, requiring problem solving, help learning and transfer. Learning from instructions takes cognitive effort, and research suggests that learners typically opt for low effort. However, it is possible to meet both goals of good initial performance and learning with methods such as fading and by combining different types of instructions. How instructions are constructed influences their effectiveness for the goals of good initial performance, learning, and transfer, and it is therefore important for researchers and practitioners alike to define the pedagogical goal of instructions. If the goal is good initial performance, then instructions should highly resemble the task at hand (e.g., in the form of detailed procedural instructions and examples), but if the goal is good learning and transfer, then instructions should be more abstract, inducing learners to expend the necessary cognitive effort for learning.
The influence of cue-task association and location on switch cost and alternating-switch cost.
Arbuthnott, Katherine D; Woodward, Todd S
2002-03-01
Task-switching performance is strongly influenced by whether the imperative stimulus uniquely specifies which task to perform: Switch cost is substantial with bivalent stimuli but is greatly reduced with univalent stimuli, suggesting that available contextual information influences processing in task-switching situations. The present study examined whether task-relevant information provided by task cues influences the magnitude of switch cost in a parallel manner. Cues presented 500 ms prior to a trivalent stimulus indicated which of three tasks to perform. These cues either had a preexisting association with the to-be-performed task (verbal cues), or a recently learned association with the task (spatial and shape cues). The results paralleled the effects of stimulus bivalence: substantial switch cost with recently learned cue-task associations and greatly reduced switch cost with preexisting cue-task associations. This suggests that both stimulus-based and cue-based information can activate the relevant task set, possibly providing external support to endogenous control processes. Alternating-switch cost, a greater cost for switching back to a recently abandoned task, was also observed with both preexisting and recently learned cue-task associations, but only when all tasks were presented in a consistent spatial location. When spatial location was used to cue the to-be-performed tasks, no alternating-switch cost was observed, suggesting that different processes may be involved when tasks are uniquely located in space. Specification of the nature of these processes may prove to be complex, as post-hoc inspection of the data suggested that for the spatial cue condition, the alternating-switch cost may oscillate between cost and benefit, depending on the relevant task.
Eleazer, Courtney D; Scopa Kelso, Rebecca
2018-01-04
Many pre-health professional programs require completion of an undergraduate anatomy course with a laboratory component, yet grades in these courses are often low. Many students perceive anatomy as a more challenging subject than other coursework, and the resulting anxiety surrounding this perception may be a significant contributor to poor performance. Well-planned and deliberate guidance from instructors, as well as thoughtful course design, may be necessary to assist students in finding the best approach to studying for anatomy. This article assesses which study habits are associated with course success and whether course design influences study habits. Surveys (n = 1,274) were administered to students enrolled in three undergraduate human anatomy laboratory courses with varying levels of cooperative learning and structured guidance. The surveys collected information on potential predictors of performance, including student demographics, educational background, self-assessment ability, and study methods (e.g., flashcards, textbooks, diagrams). Compared to low performers, high performers perceive studying in laboratory, asking the instructor questions, quizzing alone, and quizzing others as more effective for learning. Additionally, students co-enrolled in a flipped, active lecture anatomy course achieve higher grades and find active learning activities (e.g., quizzing alone and in groups) more helpful for their learning in the laboratory. These results strengthen previous research suggesting that student performance is more greatly enhanced by an active classroom environment that practices successful study strategies rather than one that simply encourages students to employ such strategies inside and outside the classroom. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.
Hernández-Torrano, Daniel; Ali, Syed; Chan, Chee-Kai
2017-08-08
Students commencing their medical training arrive with different educational backgrounds and a diverse range of learning experiences. Consequently, students would have developed preferred approaches to acquiring and processing information or learning style preferences. Understanding first-year students' learning style preferences is important to success in learning. However, little is understood about how learning styles impact learning and performance across different subjects within the medical curriculum. Greater understanding of the relationship between students' learning style preferences and academic performance in specific medical subjects would be valuable. This cross-sectional study examined the learning style preferences of first-year medical students and how they differ across gender. This research also analyzed the effect of learning styles on academic performance across different subjects within a medical education program in a Central Asian university. A total of 52 students (57.7% females) from two batches of first-year medical school completed the Index of Learning Styles Questionnaire, which measures four dimensions of learning styles: sensing-intuitive; visual-verbal; active-reflective; sequential-global. First-year medical students reported preferences for visual (80.8%) and sequential (60.5%) learning styles, suggesting that these students preferred to learn through demonstrations and diagrams and in a linear and sequential way. Our results indicate that male medical students have higher preference for visual learning style over verbal, while females seemed to have a higher preference for sequential learning style over global. Significant associations were found between sensing-intuitive learning styles and performance in Genetics [β = -0.46, B = -0.44, p < 0.01] and Anatomy [β = -0.41, B = -0.61, p < 0.05] and between sequential-global styles and performance in Genetics [β = 0.36, B = 0.43, p < 0.05]. More specifically, sensing learners were more likely to perform better than intuitive learners in the two subjects and global learners were more likely to perform better than sequential learners in Genetics. This knowledge will be helpful to individual students to improve their performance in these subjects by adopting new sensing learning techniques. Instructors can also benefit by modifying and adapting more appropriate teaching approaches in these subjects. Future studies to validate this observation will be valuable.
Brembs, Björn; Hempel de Ibarra, Natalie
2006-01-01
We have used a genetically tractable model system, the fruit fly Drosophila melanogaster to study the interdependence between sensory processing and associative processing on learning performance. We investigated the influence of variations in the physical and predictive properties of color stimuli in several different operant-conditioning procedures on the subsequent learning performance. These procedures included context and stimulus generalization as well as color, compound, and conditional discrimination (colors and patterns). A surprisingly complex dependence of the learning performance on the colors' physical and predictive properties emerged, which was clarified by taking into account the fly-subjective perception of the color stimuli. Based on estimates of the stimuli's color and brightness values, we propose that the different tasks are supported by different parameters of the color stimuli; generalization occurs only if the chromaticity is sufficiently similar, whereas discrimination learning relies on brightness differences.
Self-regulation and performance level of elite and non-elite youth soccer players.
Toering, T T; Elferink-Gemser, M T; Jordet, G; Visscher, C
2009-12-01
In learning and development, self-regulation can be described as the extent to which individuals are metacognitively, motivationally, and behaviourally proactive participants in their learning process (Zimmerman, 1989, 2006). We examined the relationship between self-regulation and performance level in elite (n = 159) and non-elite (n = 285) youth soccer players aged 11-17 years (mean 14.5 years, s = 1.4). The players completed a questionnaire that assessed planning, self-monitoring, evaluation, reflection, effort, and self-efficacy. A logistic regression analysis was performed (controlling for age) to determine which self-regulatory aspects were associated with players' performance level (elite vs. non-elite). High scores on reflection and effort were associated with a higher level of performance. Findings suggest that elite players may be more aware of their strong and weak points as well as better able to translate this awareness into action. In addition, elite players appear to be more willing to invest effort into practice and competition. It is suggested that these better developed self-regulatory skills may translate into a more effective learning environment and ultimately result in an increased capacity for performance in elite players relative to their non-elite peers.
Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W E M; Girardelli, Marta M; Mackay, Georgina R N; Merckelbach, Harald
2013-03-01
The dual-representation model of posttraumatic stress disorder (PTSD; Brewin, Gregory, Lipton, & Burgess, Psychological Review, 117, 210-232 2010) argues that intrusions occur when people fail to construct context-based representations during adverse experiences. The present study tested a specific prediction flowing from this model. In particular, we investigated whether the efficiency of temporal-lobe-based spatial configuration learning would account for individual differences in intrusive experiences and physiological reactivity in the laboratory. Participants (N = 82) completed the contextual cuing paradigm, which assesses spatial configuration learning that is believed to depend on associative encoding in the parahippocampus. They were then shown a trauma film. Afterward, startle responses were quantified during presentation of trauma reminder pictures versus unrelated neutral and emotional pictures. PTSD symptoms were recorded in the week following participation. Better configuration learning performance was associated with fewer perceptual intrusions, r = -.33, p < .01, but was unrelated to physiological responses to trauma reminder images (ps > .46) and had no direct effect on intrusion-related distress and overall PTSD symptoms, rs > -.12, ps > .29. However, configuration learning performance tended to be associated with reduced physiological responses to unrelated negative images, r = -.20, p = .07. Thus, while spatial configuration learning appears to be unrelated to affective responding to trauma reminders, our overall findings support the idea that the context-based memory system helps to reduce intrusions.
Wulf, Gabriele; Lewthwaite, Rebecca
2016-10-01
Effective motor performance is important for surviving and thriving, and skilled movement is critical in many activities. Much theorizing over the past few decades has focused on how certain practice conditions affect the processing of task-related information to affect learning. Yet, existing theoretical perspectives do not accommodate significant recent lines of evidence demonstrating motivational and attentional effects on performance and learning. These include research on (a) conditions that enhance expectancies for future performance, (b) variables that influence learners' autonomy, and (c) an external focus of attention on the intended movement effect. We propose the OPTIMAL (Optimizing Performance through Intrinsic Motivation and Attention for Learning) theory of motor learning. We suggest that motivational and attentional factors contribute to performance and learning by strengthening the coupling of goals to actions. We provide explanations for the performance and learning advantages of these variables on psychological and neuroscientific grounds. We describe a plausible mechanism for expectancy effects rooted in responses of dopamine to the anticipation of positive experience and temporally associated with skill practice. Learner autonomy acts perhaps largely through an enhanced expectancy pathway. Furthermore, we consider the influence of an external focus for the establishment of efficient functional connections across brain networks that subserve skilled movement. We speculate that enhanced expectancies and an external focus propel performers' cognitive and motor systems in productive "forward" directions and prevent "backsliding" into self- and non-task focused states. Expected success presumably breeds further success and helps consolidate memories. We discuss practical implications and future research directions.
Event-related brain potentials in memory: correlates of episodic, semantic and implicit memory.
Wieser, Stephan; Wieser, Heinz Gregor
2003-06-01
To study cognitive evoked potentials, recorded from scalp EEG and foramen ovale electrodes, during activation of explicit and implicit memory. The subgroups of explicit memory, episodic and semantic memory, are looked at separately. A word-learning task was used, which has been shown to activate hippocampus in H(2)(15)O positron emission tomography studies. Subjects had to study and remember word pairs using different learning strategies: (i) associative word learning (AWL), which activates the episodic memory, (ii) deep single word encoding (DSWE), which activates the semantic memory, and (iii) shallow single word encoding (SSWE), which activates the implicit memory and serves as a baseline. The test included the 'remember/know' paradigm as a behavioural learning control. During the task condition, a 10-20 scalp EEG with additional electrodes in both temporal lobes regions was recorded from 11 healthy volunteers. In one patient with mesiotemporal lobe epilepsy, the EEG was recorded from bilateral foramen ovale electrodes directly from mesial temporal lobe structures. Event-related potentials (ERPs) were calculated off-line and visual and statistical analyses were made. Associative learning strategy produced the best memory performance and the best noetic awareness experience, whereas shallow single word encoding produced the worst performance and the smallest noetic awareness. Deep single word encoding performance was in between. ERPs differed according to the test condition, during both encoding and retrieval, from both the scalp EEG and the foramen ovale electrode recordings. Encoding showed significant differences between the shallow single word encoding (SSWE), which is mainly a function of graphical characteristics, and the other two strategies, deep single word (DSWE) and associative learning (AWL), in which there is a semantic processing of the meaning. ERPs generated by these two categories, which are both functions of explicit memory, differed as well, indicating the presence or the absence of associative binding. Retrieval showed a significant test effect between the word pairs learned by association (AWL) and the ones learned by encoding the words in isolation of each other (DSWE and SSWE). The comparison of the ERPs generated by autonoetic awareness ('remember') and noetic awareness ('know') exhibited a significant test effect as well. The results of behavioural data, in particular that of the 'remember/know' procedure, are evidence that the task paradigm was efficient in activating different kinds of memory. Associative word learning generated a high degree of autonoetic awareness, which is a result of the episodic memory, whereas both kinds of single word learning generated less. AWL, DSWE and SSWE resulted in different electrophysiological correlates, both for encoding as well as retrieval, indicating that different brain structures were activated in different temporal sequence.
Should I trust you? Learning and memory of social interactions in dementia.
Wong, Stephanie; Irish, Muireann; O'Callaghan, Claire; Kumfor, Fiona; Savage, Greg; Hodges, John R; Piguet, Olivier; Hornberger, Michael
2017-09-01
Social relevance has an enhancing effect on learning and subsequent memory retrieval. The ability to learn from and remember social interactions may impact on susceptibility to financial exploitation, which is elevated in individuals with dementia. The current study aimed to investigate learning and memory of social interactions, the relationship between performance and financial vulnerability and the neural substrates underpinning performance in 14 Alzheimer's disease (AD) and 20 behavioural-variant frontotemporal dementia (bvFTD) patients and 20 age-matched healthy controls. On a "trust game" task, participants invested virtual money with counterparts who acted either in a trustworthy or untrustworthy manner over repeated interactions. A non-social "lottery" condition was also included. Participants' learning of trust/distrust responses and subsequent memory for the counterparts and nature of the interactions was assessed. Carer-rated profiles of financial vulnerability were also collected. Relative to controls, both patient groups showed attenuated learning of trust/distrust responses, and lower overall memory for social interactions. Despite poor learning performance, both AD and bvFTD patients showed better memory of social compared to non-social interactions. Importantly, better memory for social interactions was associated with lower financial vulnerability in AD, but not bvFTD. Learning and memory of social interactions was associated with medial temporal and temporoparietal atrophy in AD, whereas a wider network of frontostriatal, insular, fusiform and medial temporal regions was implicated in bvFTD. Our findings suggest that although social relevance influences memory to an extent in both AD and bvFTD, this is associated with vulnerability to financial exploitation in AD only, and is underpinned by changes to different neural substrates. Theoretically, these findings provide novel insights into potential mechanisms that give rise to vulnerability in people with dementia, and open avenues for possible interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
2017-01-01
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons’ outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several–but not all–types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life. PMID:28640825
Rubin, Leah H; Meyer, Vanessa J; J Conant, Rhoda; Sundermann, Erin E; Wu, Minjie; Weber, Kathleen M; Cohen, Mardge H; Little, Deborah M; Maki, Pauline M
2016-08-01
Deficits in verbal learning and memory are a prominent feature of neurocognitive function in HIV-infected women, and are associated with high levels of perceived stress. To understand the neurobiological factors contributing to this stress-related memory impairment, we examined the association between stress, verbal memory, and brain volumes in HIV-infected women. Participants included 38 HIV-infected women (Mean age=43.9years) from the Chicago Consortium of the Women's Interagency HIV Study (WIHS). Participants underwent structural magnetic resonance imaging (MRI) and completed standardized measures of verbal learning and memory and stress (Perceived Stress Scale-10; PSS-10). Brain volumes were evaluated in a priori regions of interest, including the medial temporal lobe (MTL) and prefrontal cortex (PFC). Compared to HIV-infected women with lower stress (PSS-10 scores in lower two tertiles), HIV-infected women with higher stress (scores in the top tertile), performed worse on measures of verbal learning and memory and showed smaller volumes bilaterally in the parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, and inferior frontal gyrus (p's<0.05). Reduced volumes in the inferior frontal gyrus, middle frontal gyrus, and superior frontal gyrus (all right hemisphere) were negatively associated with verbal learning and memory performance. Prefrontal cortical atrophy is associated with stress-related deficits in verbal learning and memory in HIV-infected women. The time course of these volume losses in relation to memory deficits has yet to be elucidated, but the magnitude of the volumetric differences between women with higher versus lower stress suggests a prolonged vulnerability due to chronic stress and/or early life trauma. Copyright © 2015 Elsevier Inc. All rights reserved.
MaBouDi, HaDi; Shimazaki, Hideaki; Giurfa, Martin; Chittka, Lars
2017-06-01
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.
Borich, Michael R; Brown, Katlyn E; Boyd, Lara A
2014-07-01
Imaging advances allow investigation of white matter after stroke; a growing body of literature has shown links between diffusion-based measures of white matter microstructure and motor function. However, the relationship between these measures and motor skill learning has not been considered in individuals with stroke. The aim of this study was to investigate the relationships between posttraining white matter microstructural status, as indexed by diffusion tensor imaging within the ipsilesional posterior limb of the internal capsule (PLIC), and learning of a novel motor task in individuals with chronic stroke. A total of 13 participants with chronic stroke and 9 healthy controls practiced a visuomotor pursuit task across 5 sessions. Change in motor behavior associated with learning was indexed by comparing baseline performance with a delayed retention test. Fractional anisotropy (FA) indexed at the retention test was the primary diffusion tensor imaging-derived outcome measure. In individuals with chronic stroke, we discovered an association between posttraining ipsilesional PLIC FA and the magnitude of change associated with motor learning; hierarchical multiple linear regression analyses revealed that the combination of age, time poststroke, and ipsilesional PLIC FA posttraining was associated with motor learning-related change (R = 0.649; P = 0.02). Baseline motor performance was not related to posttraining ipsilesional PLIC FA. Diffusion characteristics of posttraining ipsilesional PLIC were linked to the magnitude of change in skilled motor behavior. These results imply that the microstructural properties of regional white matter indexed by diffusion behavior may be an important factor to consider when determining potential response to rehabilitation in persons with stroke. (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A59) for more insights from the authors.
Wang, Honglei; Guan, Bichen
2018-01-01
Based on goal setting theory, this study explores the positive effect and influencing process of authoritarian leadership on employee performance, as well as the moderating role of individual power distance in this process. Data from 211 supervisor-subordinate dyads in Chinese organizations indicates that authoritarian leadership is positively associated with employee performance, and learning goal orientation mediates this relationship. Furthermore, power distance moderates the effect of authoritarian leadership on learning goal orientation, such that the effect was stronger when individual power distance was higher. The indirect effect of authoritarian leadership on employee performance via learning goal orientation is also moderated by power distance. Theoretical and managerial implications and future directions are also discussed.
Wang, Honglei; Guan, Bichen
2018-01-01
Based on goal setting theory, this study explores the positive effect and influencing process of authoritarian leadership on employee performance, as well as the moderating role of individual power distance in this process. Data from 211 supervisor-subordinate dyads in Chinese organizations indicates that authoritarian leadership is positively associated with employee performance, and learning goal orientation mediates this relationship. Furthermore, power distance moderates the effect of authoritarian leadership on learning goal orientation, such that the effect was stronger when individual power distance was higher. The indirect effect of authoritarian leadership on employee performance via learning goal orientation is also moderated by power distance. Theoretical and managerial implications and future directions are also discussed. PMID:29628902
Rannikko, Irina; Jääskeläinen, Erika; Miettunen, Jouko; Ahmed, Anthony O; Veijola, Juha; Remes, Anne M; Murray, Graham K; Husa, Anja P; Järvelin, Marjo-Riitta; Isohanni, Matti; Haapea, Marianne
2016-01-01
Several social life events and challenges have an impact on cognitive development. Our goal was to analyze the predictors of change in cognitive performance in early midlife in a general population sample. Additionally, systematic literature review was performed. The study sample was drawn from the Northern Finland Birth Cohort 1966 at the ages of 34 and 43 years. Primary school performance, sociodemographic factors and body mass index (BMI) were used to predict change in cognitive performance measured by the California Verbal Learning Test, Visual Object Learning Test, and Abstraction Inhibition and Working Memory task. Analyses were weighted by gender and education, and p-values were corrected for multiple comparisons using Benjamini-Hochberg procedure (B-H). Male gender predicted decrease in episodic memory. Poor school marks of practical subjects, having no children, and increase in BMI were associated with decrease in episodic memory, though non-significantly after B-H. Better school marks, and higher occupational class were associated with preserved performance in visual object learning. Higher vocational education predicted preserved performance in visual object learning test, though non-significantly after B-H. Likewise, having children predicted decreased performance in executive functioning but non-significantly after B-H. Adolescent cognitive ability, change in BMI and several sociodemographic factors appear to predict cognitive changes in early midlife. The key advantage of present study is the exploration of possible predictors of change in cognitive performance among general population in the early midlife, a developmental period that has been earlier overlooked.
Parkington, Karisa B; Clements, Rebecca J; Landry, Oriane; Chouinard, Philippe A
2015-10-01
We examined how performance on an associative learning task changes in a sample of undergraduate students as a function of their autism-spectrum quotient (AQ) score. The participants, without any prior knowledge of the Japanese language, learned to associate hiragana characters with button responses. In the novel condition, 50 participants learned visual-motor associations without any prior exposure to the stimuli's visual attributes. In the familiar condition, a different set of 50 participants completed a session in which they first became familiar with the stimuli's visual appearance prior to completing the visual-motor association learning task. Participants with higher AQ scores had a clear advantage in the novel condition; the amount of training required reaching learning criterion correlated negatively with AQ. In contrast, participants with lower AQ scores had a clear advantage in the familiar condition; the amount of training required to reach learning criterion correlated positively with AQ. An examination of how each of the AQ subscales correlated with these learning patterns revealed that abilities in visual discrimination-which is known to depend on the visual ventral-stream system-may have afforded an advantage in the novel condition for the participants with the higher AQ scores, whereas abilities in attention switching-which are known to require mechanisms in the prefrontal cortex-may have afforded an advantage in the familiar condition for the participants with the lower AQ scores.
Associative Learning during Early Adulthood Enhances Later Memory Retention in Honeybees
Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.
2009-01-01
Background Cognitive experiences during the early stages of life play an important role in shaping the future behavior in mammals but also in insects, in which precocious learning can directly modify behaviors later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet. Methodology Groups of adult honeybee workers that experienced an odor paired with a sucrose solution 5 to 8 days or 9 to 12 days after emergence were previously exposed to (i) a rewarded experience through the offering of scented food, or (ii) a non-rewarded experience with a pure volatile compound in the rearing environment. Principal Findings Early rewarded experiences (either at 1–4 or 5–8 days of adult age) enhanced retention performance in 9–12-day-conditioned bees when they were tested at 17 days of age. The highest retention levels at this age, which could not be improved with prior rewarded experiences, were found for memories established at 5–8 days of adult age. Associative memories acquired at 9–12 days of age showed a weak effect on retention for some pure pre-exposed volatile compounds; whereas the sole exposure of an odor at any younger age did not promote long-term effects on learning performance. Conclusions The associative learning events that occurred a few days after adult emergence improved memorizing in middle-aged bees. In addition, both the timing and the nature of early sensory inputs interact to enhance retention of new learning events acquired later in life, an important matter in the social life of honeybees. PMID:19956575
McMurray, Bob; Horst, Jessica S; Samuelson, Larissa K
2012-10-01
Classic approaches to word learning emphasize referential ambiguity: In naming situations, a novel word could refer to many possible objects, properties, actions, and so forth. To solve this, researchers have posited constraints, and inference strategies, but assume that determining the referent of a novel word is isomorphic to learning. We present an alternative in which referent selection is an online process and independent of long-term learning. We illustrate this theoretical approach with a dynamic associative model in which referent selection emerges from real-time competition between referents and learning is associative (Hebbian). This model accounts for a range of findings including the differences in expressive and receptive vocabulary, cross-situational learning under high degrees of ambiguity, accelerating (vocabulary explosion) and decelerating (power law) learning, fast mapping by mutual exclusivity (and differences in bilinguals), improvements in familiar word recognition with development, and correlations between speed of processing and learning. Together it suggests that (a) association learning buttressed by dynamic competition can account for much of the literature; (b) familiar word recognition is subserved by the same processes that identify the referents of novel words (fast mapping); (c) online competition may allow the children to leverage information available in the task to augment performance despite slow learning; (d) in complex systems, associative learning is highly multifaceted; and (e) learning and referent selection, though logically distinct, can be subtly related. It suggests more sophisticated ways of describing the interaction between situation- and developmental-time processes and points to the need for considering such interactions as a primary determinant of development. PsycINFO Database Record (c) 2012 APA, all rights reserved.
From feedback- to response-based performance monitoring in active and observational learning.
Bellebaum, Christian; Colosio, Marco
2014-09-01
Humans can adapt their behavior by learning from the consequences of their own actions or by observing others. Gradual active learning of action-outcome contingencies is accompanied by a shift from feedback- to response-based performance monitoring. This shift is reflected by complementary learning-related changes of two ACC-driven ERP components, the feedback-related negativity (FRN) and the error-related negativity (ERN), which have both been suggested to signal events "worse than expected," that is, a negative prediction error. Although recent research has identified comparable components for observed behavior and outcomes (observational ERN and FRN), it is as yet unknown, whether these components are similarly modulated by prediction errors and thus also reflect behavioral adaptation. In this study, two groups of 15 participants learned action-outcome contingencies either actively or by observation. In active learners, FRN amplitude for negative feedback decreased and ERN amplitude in response to erroneous actions increased with learning, whereas observational ERN and FRN in observational learners did not exhibit learning-related changes. Learning performance, assessed in test trials without feedback, was comparable between groups, as was the ERN following actively performed errors during test trials. In summary, the results show that action-outcome associations can be learned similarly well actively and by observation. The mechanisms involved appear to differ, with the FRN in active learning reflecting the integration of information about own actions and the accompanying outcomes.
NASA Astrophysics Data System (ADS)
Lee, Ahlam
2011-12-01
Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students should receive all possible opportunities to use computers to enhance their math self-efficacy, be encouraged to review math materials, and concentrate on listening to math teachers' lectures. While all selected math-learning activities should be embraced in math instruction, computer and individual-based learning activities, which reflect student-driven learning, should be emphasized in the high school instruction. Likewise, students should be encouraged to frequently engage in individual-based learning activities to improve their math performance.
Age differences in spatial working memory contributions to visuomotor adaptation and transfer.
Langan, Jeanne; Seidler, Rachael D
2011-11-20
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer [10]. Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults [16]. Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings [12]. Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. Copyright © 2011 Elsevier B.V. All rights reserved.
Age differences in spatial working memory contributions to visuomotor adaptation and transfer
Langan, Jeanne; Seidler, Rachael. D.
2011-01-01
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer (Seidler, 2007). Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults (Anguera et al., 2011). Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings (Anguera et al., 2010). Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. PMID:21784106
Imp, Brandon M.; Rubin, Leah H.; Tien, Phyllis C.; Plankey, Michael W.; Golub, Elizabeth T.; French, Audrey L.; Valcour, Victor G.
2017-01-01
Background. Cognitive impairment persists despite suppression of plasma human immunodeficiency virus (HIV) RNA. Monocyte-related immune activation is a likely mechanism. We examined immune activation and cognition in a cohort of HIV-infected and uninfected women from the Women's Interagency HIV Study (WIHS). Methods. Blood levels of activation markers, soluble CD163 (sCD163), soluble CD14 (sCD14), CRP, IL-6, and a gut microbial translocation marker (intestinal fatty acid binding protein (I-FABP)) were measured in 253 women (73% HIV-infected). Markers were compared to concurrent (within ± one semiannual visit) neuropsychological testing performance. Results. Higher sCD163 levels were associated with worse overall performance and worse verbal learning, verbal memory, executive function, psychomotor speed, and fine motor skills (P < .05 for all comparisons). Higher sCD14 levels were associated with worse verbal learning, verbal memory, executive function, and psychomotor speed (P < .05 for all comparisons). Among women with virological suppression, sCD163 remained associated with overall performance, verbal memory, psychomotor speed, and fine motor skills, and sCD164 remained associated with executive function (P < .05 for all comparisons). CRP, IL-6, and I-FABP were not associated with worse cognitive performance. Conclusions. Monocyte activation was associated with worse cognitive performance, and associations persisted despite viral suppression. Persistent inflammatory mechanisms related to monocytes correlate to clinically pertinent brain outcomes. PMID:27789726
The learning curve: Implications of a quantitative analysis
Gallistel, Charles R.; Fairhurst, Stephen; Balsam, Peter
2004-01-01
The negatively accelerated, gradually increasing learning curve is an artifact of group averaging in several commonly used basic learning paradigms (pigeon autoshaping, delay- and trace-eye-blink conditioning in the rabbit and rat, autoshaped hopper entry in the rat, plus maze performance in the rat, and water maze performance in the mouse). The learning curves for individual subjects show an abrupt, often step-like increase from the untrained level of responding to the level seen in the well trained subject. The rise is at least as abrupt as that commonly seen in psychometric functions in stimulus detection experiments. It may indicate that the appearance of conditioned behavior is mediated by an evidence-based decision process, as in stimulus detection experiments. If the appearance of conditioned behavior is taken instead to reflect the increase in an underlying associative strength, then a negligible portion of the function relating associative strength to amount of experience is behaviorally visible. Consequently, rate of learning cannot be estimated from the group-average curve; the best measure is latency to the onset of responding, determined for each subject individually. PMID:15331782
The learning curve: implications of a quantitative analysis.
Gallistel, Charles R; Fairhurst, Stephen; Balsam, Peter
2004-09-07
The negatively accelerated, gradually increasing learning curve is an artifact of group averaging in several commonly used basic learning paradigms (pigeon autoshaping, delay- and trace-eye-blink conditioning in the rabbit and rat, autoshaped hopper entry in the rat, plus maze performance in the rat, and water maze performance in the mouse). The learning curves for individual subjects show an abrupt, often step-like increase from the untrained level of responding to the level seen in the well trained subject. The rise is at least as abrupt as that commonly seen in psychometric functions in stimulus detection experiments. It may indicate that the appearance of conditioned behavior is mediated by an evidence-based decision process, as in stimulus detection experiments. If the appearance of conditioned behavior is taken instead to reflect the increase in an underlying associative strength, then a negligible portion of the function relating associative strength to amount of experience is behaviorally visible. Consequently, rate of learning cannot be estimated from the group-average curve; the best measure is latency to the onset of responding, determined for each subject individually.
ERIC Educational Resources Information Center
Murray, Jo-Anne; Boyd, Sharon
2015-01-01
Collaborative assessment has well-recognised benefits in higher education and, in online distance learning, this type of assessment may be integral to collaborative e-learning and may have a strong influence on the student's relationship with learning. While there are known benefits associated with collaborative assessment, the main drawback is…
ERIC Educational Resources Information Center
Waber, Deborah P.; Weiler, Michael D.; Forbes, Peter W.; Bernstein, Jane H.; Bellinger, David C.; Rappaport, Leonard
2003-01-01
Comparison of community children referred for learning disability evaluation (CR, n=17) with children not-referred in community general education (CGE, n=161), community special education (CSE, n=30), or from outpatient hospital referrals (HR). CR group performance was equivalent to that of CSE and HR groups. Results suggest conceptualizing…
Predicting Student Grades in Learning Management Systems with Multiple Instance Genetic Programming
ERIC Educational Resources Information Center
Zafra, Amelia; Ventura, Sebastian
2009-01-01
The ability to predict a student's performance could be useful in a great number of different ways associated with university-level learning. In this paper, a grammar guided genetic programming algorithm, G3P-MI, has been applied to predict if the student will fail or pass a certain course and identifies activities to promote learning in a…
Comparison of Learning Curves for Major and Minor Laparoscopic Liver Resection.
Lee, Woohyung; Woo, Jung-Woo; Lee, Jin-Kwon; Park, Ji-Ho; Kim, Ju-Yeon; Kwag, Seung-Jin; Park, Taejin; Jeong, Sang-Ho; Ju, Young-Tae; Jeong, Eun-Jung; Lee, Young-Joon; Choi, Sang-Kyung; Hong, Soon-Chan; Jeong, Chi-Young
2016-06-01
Because laparoscopic liver resection (LLR) has a steep learning curve, analyzing experience is important for trainees. Several authors have described the learning curve of LLR, without comparing the learning curves between major and minor LLR. Perioperative data were retrieved from the medical records of 170 consecutive patients who underwent LLR by a single surgeon at a tertiary hospital. Learning curves were generated and compared between major and minor LLR using cumulative sum control charts and the moving average. Major and minor LLR was performed in 96 and 74 patients, respectively. The learning curves showed a steady state after case 50 for major LLR. Because of discordant results in minor LLR, subgroup analyses were performed, showing competency in LLR after cases 25 and 35 for left lateral sectionectomy and tumorectomy, respectively. Transfused red blood cell volume (0.6 versus 2.2 packs, P < .001) decreased after achievement of competence in major LLR. Blood loss exceeding 500 mL (odds ratio 2.395, 95% confidence interval 1.096-5.233, P = .028) was independently associated with LLR failure. The number of cases required to accomplish LLR differed according to the extent of resection. Extensive blood loss was independently associated with LLR failure.
Ell, Shawn W; Cosley, Brandon; McCoy, Shannon K
2011-02-01
The way in which we respond to everyday stressors can have a profound impact on cognitive functioning. Maladaptive stress responses in particular are generally associated with impaired cognitive performance. We argue, however, that the cognitive system mediating task performance is also a critical determinant of the stress-cognition relationship. Consistent with this prediction, we observed that stress reactivity consistent with a maladaptive, threat response differentially predicted performance on two categorization tasks. Increased threat reactivity predicted enhanced performance on an information-integration task (i.e., learning is thought to depend upon a procedural-based memory system), and a (nonsignificant) trend for impaired performance on a rule-based task (i.e., learning is thought to depend upon a hypothesis-testing system). These data suggest that it is critical to consider both variability in the stress response and variability in the cognitive system mediating task performance in order to fully understand the stress-cognition relationship.
Plath, Jenny A.; Entler, Brian V.; Kirkerud, Nicholas H.; Schlegel, Ulrike; Galizia, C. Giovanni; Barron, Andrew B.
2017-01-01
The honey bee is an excellent visual learner, but we know little about how and why it performs so well, or how visual information is learned by the bee brain. Here we examined the different roles of two key integrative regions of the brain in visual learning: the mushroom bodies and the central complex. We tested bees' learning performance in a new assay of color learning that used electric shock as punishment. In this assay a light field was paired with electric shock. The other half of the conditioning chamber was illuminated with light of a different wavelength and not paired with shocks. The unrestrained bee could run away from the light stimulus and thereby associate one wavelength with punishment, and the other with safety. We compared learning performance of bees in which either the central complex or mushroom bodies had been transiently inactivated by microinjection of the reversible anesthetic procaine. Control bees learned to escape the shock-paired light field and to spend more time in the safe light field after a few trials. When ventral lobe neurons of the mushroom bodies were silenced, bees were no longer able to associate one light field with shock. By contrast, silencing of one collar region of the mushroom body calyx did not alter behavior in the learning assay in comparison to control treatment. Bees with silenced central complex neurons did not leave the shock-paired light field in the middle trials of training, even after a few seconds of being shocked. We discussed how mushroom bodies and the central complex both contribute to aversive visual learning with an operant component. PMID:28611605
Farkas, Gary J.; Mazurek, Ewa; Marone, Jane R.
2016-01-01
The VARK learning style is a pedagogical focus in health care education. This study examines relationships of course performance vs. VARK learning preference, study time, and career plan among students enrolled in an undergraduate anatomy and physiology course at a large urban university. Students (n = 492) from the fall semester course completed a survey consisting of the VARK questionnaire, gender, academic year, career plans, and estimated hours spent per week in combined classroom and study time. Seventy-eight percent of students reported spending 15 or fewer hours per week studying. Study time and overall course score correlated significantly for the class as a whole (r = 0.111, P = 0.013), which was mainly due to lecture (r = 0.118, P = 0.009) performance. No significant differences were found among students grouped by learning styles. When corrected for academic year, overall course scores (mean ± SEM) for students planning to enter “medicines” (79.89 ± 0.88%) were significantly higher than those of students planning to enter physical/occupational therapies (74.53 ± 1.15%; P = 0.033), as well as nurse/physician assistant programs (73.60 ± 1.3%; P = 0.040). Time spent studying was not significantly associated with either learning style or career choice. Our findings suggest that specific career goals and study time, not learning preferences, are associated with better performance among a diverse group of students in an undergraduate anatomy/physiology course. However, the extent to which prior academic preparation, cultural norms, and socioeconomic factors influenced these results requires further investigation. PMID:26301828
Melchers, Martin; Montag, Christian; Markett, Sebastian; Niazy, Nawael; Groß-Bölting, Johanna; Zimmermann, Jelena; Reuter, Martin
2017-06-30
Oxytocin is an important messenger in the brain that has been linked to a variety of social functions in pharmacological studies. Besides, functional genetic variations on the oxytocin receptor gene have been repeatedly associated with social processing and functioning. Despite this knowledge, there are very few studies investigating the mechanisms that may explain the link between oxytocin and social functions. In the endeavor to fill this gap in the literature, the current study searches for associations between the prominent rs2268498 polymorphism on the oxytocin receptor gene and participants' ability to perceive and store implicit social information, which is a fundamental function in social information processing. N=121 healthy participants were experimentally tested with an implicit learning paradigm, answered questionnaires assessing empathy and autistic traits, and were genotyped for the rs2268498 polymorphism. T-allele carriers (TT and TC genotypes) exhibited significantly better implicit learning performance than carriers of the CC-genotype, and learning performance was positively associated with self-reported empathy and negatively with self-reported autistic traits. Results indicate that differences in implicit perception and storing of environmental details while watching social interactions could be an important mechanism to explain the association between differences in endogenous oxytocin activity and social functioning. Copyright © 2017 Elsevier B.V. All rights reserved.
Learning Disabilities and Emotional Intelligence.
Zysberg, Leehu; Kasler, Jon
2017-07-04
The literature is conflicted around the subject of the emotional abilities of individuals with Specific Learning Disabilities (SLDs): While many claim cognitive challenges are associated with emotional difficulties, some suggest emotional and interpersonal abilities are not compromised in such disorders and may help individuals compensate and cope effectively with the challenges they meet in learning environments. Two studies explored differences in emotional intelligence (EI) between young adults with and without SLD. Two samples (matched on gender, approximate age, and program of study; n = 100, and unmatched; n = 584) of college students took self-report and performance-based tests of EI (Ability-EI) as well as a measure of self-esteem and demographics associated with college performance (e.g.: SAT scores, gender, etc.). The results showed that while SAT scores and ability emotional intelligence (Ability-EI) were associated with college GPA, Ability-EI did not differ between the two groups, while self-report measures of EI and self-esteem did show differences, with the group with learning disabilities ranking lower. The effects remained stable when we controlled for demographics and potential intervening factors. The results suggest that EI may play a protective role in the association between background variables and college attainment in students with SLD. The results may provide a basis for interventions to empower students with SLD in academia.
A method for integrating neuroimaging into genetic models of learning performance.
Mehta, Chintan M; Gruen, Jeffrey R; Zhang, Heping
2017-01-01
Specific learning disorders (SLD) are an archetypal example of how clinical neuropsychological (NP) traits can differ from underlying genetic and neurobiological risk factors. Disparate environmental influences and pathologies impact learning performance assessed through cognitive examinations and clinical evaluations, the primary diagnostic tools for SLD. We propose a neurobiological risk for SLD with neuroimaging biomarkers, which is integrated into a genome-wide association study (GWAS) of learning performance in a cohort of 479 European individuals between 8 and 21 years of age. We first identified six regions of interest (ROIs) in temporal and anterior cingulate regions where the group diagnosed with learning disability has the least overall variation, relative to the other group, in thickness, area, and volume measurements. Although we used the three imaging measures, the thickness was the leading contributor. Hence, we calculated the Euclidean distances between any two individuals based on their thickness measures in the six ROIs. Then, we defined the relative similarity of one individual according to the averaged ranking of pairwise distances from the individuals to those in the SLD group. The inverse of this relative similarity is called the neurobiological risk for the individual. Single nucleotide polymorphisms in the AGBL1 gene on chromosome 15 had a significant association with learning performance at a genome-wide level. This finding was supported in an independent cohort of 2,327 individuals of the same demographic profile. Our statistical approach for integrating genetic and neuroimaging biomarkers can be extended into studying the biological basis of other NP traits. © 2016 WILEY PERIODICALS, INC.
Effects of intrinsic motivation on feedback processing during learning.
DePasque, Samantha; Tricomi, Elizabeth
2015-10-01
Learning commonly requires feedback about the consequences of one's actions, which can drive learners to modify their behavior. Motivation may determine how sensitive an individual might be to such feedback, particularly in educational contexts where some students value academic achievement more than others. Thus, motivation for a task might influence the value placed on performance feedback and how effectively it is used to improve learning. To investigate the interplay between intrinsic motivation and feedback processing, we used functional magnetic resonance imaging (fMRI) during feedback-based learning before and after a novel manipulation based on motivational interviewing, a technique for enhancing treatment motivation in mental health settings. Because of its role in the reinforcement learning system, the striatum is situated to play a significant role in the modulation of learning based on motivation. Consistent with this idea, motivation levels during the task were associated with sensitivity to positive versus negative feedback in the striatum. Additionally, heightened motivation following a brief motivational interview was associated with increases in feedback sensitivity in the left medial temporal lobe. Our results suggest that motivation modulates neural responses to performance-related feedback, and furthermore that changes in motivation facilitate processing in areas that support learning and memory. Copyright © 2015. Published by Elsevier Inc.
Learning disabilities in Darier's disease patients.
Dodiuk-Gad, R; Lerner, M; Breznitz, Z; Cohen-Barak, E; Ziv, M; Shani-Adir, A; Amichai, B; Zlotogorski, A; Shalev, S; Rozenman, D
2014-03-01
Neuropsychiatric features and intellectual difficulties have been reported in studies of Darier's disease. Learning disabilities have never been reported or evaluated systematically in these patients. To assess the prevalence of learning disabilities in 76 patients with Darier's disease, and cognitive functioning in 19 of them. The data were collected by two methods: a questionnaire, as part of a larger study on the clinical characteristics of 76 patients; and neuropsychological measures for the assessment of learning disabilities in 19 of them. Thirty-one of the 76 patients reported learning disabilities (41%) and 56 (74%) reported a family history of learning disabilities. Significant differences were found between the 19 patients evaluated on cognitive tasks and a control group of 42 skilled learners on subtraction and multiplication tasks. Six (32%) of the 19 were identified as having reading difficulties and five (26%) exhibited low performance on the Concentration Performance Test. All patients had general cognitive ability in the average range. Findings suggest an association between Darier's disease and learning disabilities, a heretofore unreported association, pointing to the need to obtain personal and family history of such disabilities in order to refer cases of clinical concern for further study. © 2013 The Authors Journal of the European Academy of Dermatology and Venereology © 2013 European Academy of Dermatology and Venereology.
The effect of learning climate on snack consumption and ego depletion among undergraduate students.
Magaraggia, Christian; Dimmock, James A; Jackson, Ben
2013-10-01
We explored the effect of controlled and autonomous learning choices on the consumption of a high-energy snack food, and also examined whether snack consumption during a controlled choice learning activity could 'up-regulate' subsequent performance on a self-regulation task. Participants were randomly assigned to a controlled choice learning condition in which food was provided, a controlled choice learning condition in which food was not provided, or an autonomous choice learning condition in which food was provided. Results indicated that the autonomous choice group consumed significantly less snack food than the controlled-choice-and-food group. Participants in the autonomous choice condition also performed better on the subsequent self-regulation task than the controlled-choice-and-food group, even after controlling for the amount of food consumed. Furthermore, within the controlled-choice-and-food condition, there was no association between food consumption and subsequent self-regulation task performance. Discussion focuses on the potential impact of a controlled learning climate on snack food consumption and on the degradation of self-regulation capacities. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Impaired associative learning in schizophrenia: behavioral and computational studies
Diwadkar, Vaibhav A.; Flaugher, Brad; Jones, Trevor; Zalányi, László; Ujfalussy, Balázs; Keshavan, Matcheri S.
2008-01-01
Associative learning is a central building block of human cognition and in large part depends on mechanisms of synaptic plasticity, memory capacity and fronto–hippocampal interactions. A disorder like schizophrenia is thought to be characterized by altered plasticity, and impaired frontal and hippocampal function. Understanding the expression of this dysfunction through appropriate experimental studies, and understanding the processes that may give rise to impaired behavior through biologically plausible computational models will help clarify the nature of these deficits. We present a preliminary computational model designed to capture learning dynamics in healthy control and schizophrenia subjects. Experimental data was collected on a spatial-object paired-associate learning task. The task evinces classic patterns of negatively accelerated learning in both healthy control subjects and patients, with patients demonstrating lower rates of learning than controls. Our rudimentary computational model of the task was based on biologically plausible assumptions, including the separation of dorsal/spatial and ventral/object visual streams, implementation of rules of learning, the explicit parameterization of learning rates (a plausible surrogate for synaptic plasticity), and learning capacity (a plausible surrogate for memory capacity). Reductions in learning dynamics in schizophrenia were well-modeled by reductions in learning rate and learning capacity. The synergy between experimental research and a detailed computational model of performance provides a framework within which to infer plausible biological bases of impaired learning dynamics in schizophrenia. PMID:19003486
Abdollahimohammad, Abdolghani; Ja’afar, Rogayah
2015-01-01
Purpose: The goal of the current study was to identify associations between the learning style of nursing students and their cultural values and demographic characteristics. Methods: A non-probability purposive sampling method was used to gather data from two populations. All 156 participants were female, Muslim, and full-time degree students. Data were collected from April to June 2010 using two reliable and validated questionnaires: the Learning Style Scales and the Values Survey Module 2008 (VSM 08). A simple linear regression was run for each predictor before conducting multiple linear regression analysis. The forward selection method was used for variable selection. P-values ≤0.05 and ≤0.1 were considered to indicate significance and marginal significance, respectively. Moreover, multi-group confirmatory factor analysis was performed to determine the invariance of the Farsi and English versions of the VSM 08. Results: The perceptive learning style was found to have a significant negative relationship with the power distance and monumentalism indices of the VSM 08. Moreover, a significant negative association was observed between the solitary learning style and the power distance index. However, no significant association was found between the analytic, competitive, and imaginative learning styles and cultural values (P>0.05). Likewise, no significant associations were observed between learning style, including the perceptive, solitary, analytic, competitive, and imaginative learning styles, and year of study or age (P>0.05). Conclusion: Students who reported low values on the power distance and monumentalism indices are more likely to prefer perceptive and solitary learning styles. Within each group of students in our study sample from the same school the year of study and age did not show any significant associations with learning style. PMID:26268831
Abdollahimohammad, Abdolghani; Ja'afar, Rogayah
2015-01-01
The goal of the current study was to identify associations between the learning style of nursing students and their cultural values and demographic characteristics. A non-probability purposive sampling method was used to gather data from two populations. All 156 participants were female, Muslim, and full-time degree students. Data were collected from April to June 2010 using two reliable and validated questionnaires: the Learning Style Scales and the Values Survey Module 2008 (VSM 08). A simple linear regression was run for each predictor before conducting multiple linear regression analysis. The forward selection method was used for variable selection. P-values ≤0.05 and ≤0.1 were considered to indicate significance and marginal significance, respectively. Moreover, multi-group confirmatory factor analysis was performed to determine the invariance of the Farsi and English versions of the VSM 08. The perceptive learning style was found to have a significant negative relationship with the power distance and monumentalism indices of the VSM 08. Moreover, a significant negative association was observed between the solitary learning style and the power distance index. However, no significant association was found between the analytic, competitive, and imaginative learning styles and cultural values (P>0.05). Likewise, no significant associations were observed between learning style, including the perceptive, solitary, analytic, competitive, and imaginative learning styles, and year of study or age (P>0.05). Students who reported low values on the power distance and monumentalism indices are more likely to prefer perceptive and solitary learning styles. Within each group of students in our study sample from the same school the year of study and age did not show any significant associations with learning style.
Fifteen years of portfolio assessment of dental hygiene student competency: lessons learned.
Gadbury-Amyot, Cynthia C; Bray, Kimberly Krust; Austin, Kylie J
2014-10-01
Adoption of portfolio assessment in the educational environment is gaining attention as a means to incorporate self-assessment into the curriculum and to use evidence to support learning outcomes and to demonstrate competency. Portfolios provide a medium for students to demonstrate and document their personal and professional growth across the curriculum. The purpose of this literature review is to discuss the drivers for portfolio education, the benefits to both students and program faculty/administrators, the barriers associated with portfolio use, and suggested solutions that have been determined through several years of "lessons learned." The University of Missouri Kansas City School of Dentistry, Division of Dental Hygiene department has been utilizing portfolio assessment for over 15 years and has collected data related to portfolio performance since 2001. Results from correlational statistics calculated on the 312 dental hygiene students that graduated from 2001 to 2013 demonstrate a positive and significant relationship between portfolio performance and overall GPA as well as portfolio performance and NBDHE scores. Copyright © 2014 The American Dental Hygienists’ Association.
Neural correlates of reward-based spatial learning in persons with cocaine dependence.
Tau, Gregory Z; Marsh, Rachel; Wang, Zhishun; Torres-Sanchez, Tania; Graniello, Barbara; Hao, Xuejun; Xu, Dongrong; Packard, Mark G; Duan, Yunsuo; Kangarlu, Alayar; Martinez, Diana; Peterson, Bradley S
2014-02-01
Dysfunctional learning systems are thought to be central to the pathogenesis of and impair recovery from addictions. The functioning of the brain circuits for episodic memory or learning that support goal-directed behavior has not been studied previously in persons with cocaine dependence (CD). Thirteen abstinent CD and 13 healthy participants underwent MRI scanning while performing a task that requires the use of spatial cues to navigate a virtual-reality environment and find monetary rewards, allowing the functional assessment of the brain systems for spatial learning, a form of episodic memory. Whereas both groups performed similarly on the reward-based spatial learning task, we identified disturbances in brain regions involved in learning and reward in CD participants. In particular, CD was associated with impaired functioning of medial temporal lobe (MTL), a brain region that is crucial for spatial learning (and episodic memory) with concomitant recruitment of striatum (which normally participates in stimulus-response, or habit, learning), and prefrontal cortex. CD was also associated with enhanced sensitivity of the ventral striatum to unexpected rewards but not to expected rewards earned during spatial learning. We provide evidence that spatial learning in CD is characterized by disturbances in functioning of an MTL-based system for episodic memory and a striatum-based system for stimulus-response learning and reward. We have found additional abnormalities in distributed cortical regions. Consistent with findings from animal studies, we provide the first evidence in humans describing the disruptive effects of cocaine on the coordinated functioning of multiple neural systems for learning and memory.
Alemozaffar, Mehrdad; Duclos, Antoine; Hevelone, Nathanael D; Lipsitz, Stuart R; Borza, Tudor; Yu, Hua-Yin; Kowalczyk, Keith J; Hu, Jim C
2012-06-01
While radical prostatectomy surgeon learning curves have characterized less blood loss, shorter operative times, and fewer positive margins, there is a dearth of studies characterizing learning curves for improving sexual function. Additionally, while learning curve studies often define volume thresholds for improvement, few of these studies demonstrate specific technical modifications that allow reproducibility of improved outcomes. Demonstrate and quantify the learning curve for improving sexual function outcomes based on technical refinements that reduce neurovascular bundle displacement during nerve-sparing robot-assisted radical prostatectomy (RARP). We performed a retrospective study of 400 consecutive RARPs, categorized into groups of 50, performed after elimination of continuous surgeon/assistant neurovascular bundle countertraction. Our approach to RARP has been described previously. A single-console robotic system was used for all cases. Expanded Prostate Cancer Index Composite sexual function was measured within 1 yr of RARP. Linear regression was performed to determine factors influencing the recovery of sexual function. Greater surgeon experience was associated with better 5-mo sexual function (p = 0.007) and a trend for better 12-mo sexual function (p = 0.061), with improvement plateauing after 250-300 cases. Additionally, younger patient age (both p<0.02) and better preoperative sexual function (<0.001) were associated with better 5- and 12-mo sexual function. Moreover, trainee robotic console time during nerve sparing was associated with worse 12-mo sexual function (p=0.021), while unilateral nerve sparing/non-nerve sparing was associated with worse 5-mo sexual function (p = 0.009). Limitations include the retrospective single-surgeon design. With greater surgeon experience, attenuating lateral displacement of the neurovascular bundle and resultant neurapraxia improve postoperative sexual function. However, to maximize outcomes, appropriate patient selection must be exercised when allowing trainee nerve-sparing involvement. Copyright © 2012 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Ictal mnemestic aura and verbal memory function.
Vederman, Aaron C; Holtzer, Roee; Zimmerman, Molly E; Devinsky, Orrin; Barr, William B
2010-04-01
Déjà vu aura is a well-known phenomenon experienced by some patients with epilepsy. This study sought to explore the relationship between verbal memory and the experience of déjà vu or other types of mnemestic auras in 42 individuals with intractable seizures and 42 age- and education-matched patient controls. Verbal memory was assessed with indices of learning, long delay recall, and recognition from the California Verbal Learning Test. Results indicated that auras of any type were not associated with memory performance on the California Verbal Learning Test. As expected, age and education were related to verbal memory performance. Mnemestic auras were associated with clinical indices of illness, suggesting that the presence of these auras may be regarded as a risk factor for greater chronicity and severity in epilepsy. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Solving and Learning Soft Temporal Constraints: Experimental Setting and Results
NASA Technical Reports Server (NTRS)
Rossi, F.; Sperduti, A.; Venable, K. B.; Khatib, L.; Morris, P.; Morris, R.; Clancy, Daniel (Technical Monitor)
2002-01-01
Soft temporal constraints problems allow to describe in a natural way scenarios where events happen over time and preferences are associated to event distances and durations. However, sometimes such local preferences are difficult to set, and it may be easier instead to associate preferences to some complete solutions of the problem. Machine learning techniques can be useful in this respect. In this paper we describe two solvers (one more general and the other one more efficient) for tractable subclasses of soft temporal problems, and we show some experimental results. The random generator used to build the problems on which tests are performed is also described. We also compare the two solvers highlighting the tradeoff between performance and representational power. Finally, we present a learning module and we show its behavior on randomly-generated examples.
Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.
Tanabe, Hiroki C; Honda, Manabu; Sadato, Norihiro
2005-07-06
To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.
Dollé, Laurent; Chavarriaga, Ricardo
2018-01-01
We present a computational model of spatial navigation comprising different learning mechanisms in mammals, i.e., associative, cognitive mapping and parallel systems. This model is able to reproduce a large number of experimental results in different variants of the Morris water maze task, including standard associative phenomena (spatial generalization gradient and blocking), as well as navigation based on cognitive mapping. Furthermore, we show that competitive and cooperative patterns between different navigation strategies in the model allow to explain previous apparently contradictory results supporting either associative or cognitive mechanisms for spatial learning. The key computational mechanism to reconcile experimental results showing different influences of distal and proximal cues on the behavior, different learning times, and different abilities of individuals to alternatively perform spatial and response strategies, relies in the dynamic coordination of navigation strategies, whose performance is evaluated online with a common currency through a modular approach. We provide a set of concrete experimental predictions to further test the computational model. Overall, this computational work sheds new light on inter-individual differences in navigation learning, and provides a formal and mechanistic approach to test various theories of spatial cognition in mammals. PMID:29630600
Saeed, Usman; Mirza, Saira S; MacIntosh, Bradley J; Herrmann, Nathan; Keith, Julia; Ramirez, Joel; Nestor, Sean M; Yu, Qinggang; Knight, Jo; Swardfager, Walter; Potkin, Steven G; Rogaeva, Ekaterina; George-Hyslop, Peter St; Black, Sandra E; Masellis, Mario
2018-05-18
Although the apolipoprotein E ε4-allele (APOE-ε4) is a susceptibility factor for Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), its relationship with imaging and cognitive measures across the AD/DLB spectrum remains unexplored. We studied 298 patients (AD = 250, DLB = 48; 38 autopsy confirmed; NCT01800214) using neuropsychological testing, volumetric magnetic resonance imaging, and APOE genotyping to investigate the association of APOE-ε4 with hippocampal volume and learning/memory phenotypes, irrespective of diagnosis. Across the AD/DLB spectrum: (1) hippocampal volumes were smaller with increasing APOE-ε4 dosage (no genotype × diagnosis interaction observed), (2) learning performance as assessed by total recall scores was associated with hippocampal volumes only among APOE-ε4 carriers, and (3) APOE-ε4 carriers performed worse on long-delay free word recall. These findings provide evidence that APOE-ε4 is linked to hippocampal atrophy and learning/memory phenotypes across the AD/DLB spectrum, which could be useful as biomarkers of disease progression in therapeutic trials of mixed disease. Copyright © 2018. Published by Elsevier Inc.
Age-related changes in the cerebral substrates of cognitive procedural learning.
Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis
2009-04-01
Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative, and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus, and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, the engagement of frontal and cingulate regions persisted in the older group as learning continued, whereas it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure. 2008 Wiley-Liss, Inc.
Enhancing health leadership performance using neurotherapy.
Swingle, Paul G; Hartney, Elizabeth
2018-05-01
The discovery of neuroplasticity means the brain can change, functionally, in response to the environment and to learning. While individuals can develop harmful patterns of brain activity in response to stressors, they can also learn to modify or control neurological conditions associated with specific behaviors. Neurotherapy is one way of changing brain functioning to modify troubling conditions which can impair leadership performance, through responding to feedback on their own brain activity, and enhancing optimal leadership functioning through learning to maximize such cognitive strengths as mental efficiency, focus, creativity, perseverance, and executive functioning. The present article outlines the application of the concept of optimal performance training to organizational leadership in a healthcare context, by describing approaches to neurotherapy and illustrating their application through a case study of a health leader learning to overcome the neurological and emotional sequelae of workplace stress and trauma.
NASA Astrophysics Data System (ADS)
Micari, Marina; Van Winkle, Zachary; Pazos, Pilar
2016-08-01
In this study, we investigate the relationship between academic-preparedness diversity within small learning groups and individual academic performance in science, technology, engineering, and mathematics (STEM) university courses. We further examine whether academic-preparedness diversity impacts academically more- and less-prepared students differently. We use data from 5367 university students nested within 1141 science, engineering, and mathematics learning groups and use a regression analysis to estimate the effect of group diversity, measured in two ways, on course performance. Our results indicate that academic-preparedness diversity is generally associated with positive learning outcomes, that academically less-prepared students derive greater benefit, and that less-prepared students fare best when they are not alone in a group of highly prepared students. Implications for teaching and small-group facilitation are addressed.
No evidence that 'fast-mapping' benefits novel learning in healthy Older adults.
Greve, Andrea; Cooper, Elisa; Henson, Richard N
2014-07-01
Much evidence suggests that the Hippocampus is necessary for learning novel associations. Contrary to this, Sharon, Moscovitch, and Gilboa (2011) reported four amnesic patients with Hippocampal damage who maintained the capacity to learn novel object-name associations when trained with a 'fast-mapping' (FM) technique. This technique therefore potentially offers an alternative route for learning novel information in populations experiencing memory problems. We examined this potential in healthy ageing, by comparing 24 Older and 24 Young participants who completed a FM procedure very similar to Sharon et al. (2011). As expected, the Older group showed worse memory than the Young group under standard explicit encoding (EE) instructions. However, the Older group continued to show worse performance under the FM procedure, with no evidence that FM alleviated their memory deficit. Indeed, performance was worse for the FM than EE condition in both groups. Structural MRI scans confirmed reduced Hippocampal grey-matter volume in the Older group, which correlated with memory performance across both groups and both EE/FM conditions. We conclude FM does not help memory problems that occur with normal ageing, and discuss theoretical implications for memory theories. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
A rat in the sewer: How mental imagery interacts with object recognition
Hamburger, Kai
2018-01-01
The role of mental imagery has been puzzling researchers for more than two millennia. Both positive and negative effects of mental imagery on information processing have been discussed. The aim of this work was to examine how mental imagery affects object recognition and associative learning. Based on different perceptual and cognitive accounts we tested our imagery-induced interaction hypothesis in a series of two experiments. According to that, mental imagery could lead to (1) a superior performance in object recognition and associative learning if these objects are imagery-congruent (semantically) and to (2) an inferior performance if these objects are imagery-incongruent. In the first experiment, we used a static environment and tested associative learning. In the second experiment, subjects encoded object information in a dynamic environment by means of a virtual sewer system. Our results demonstrate that subjects who received a role adoption task (by means of guided mental imagery) performed better when imagery-congruent objects were used and worse when imagery-incongruent objects were used. We finally discuss our findings also with respect to alternative accounts and plead for a multi-methodological approach for future research in order to solve this issue. PMID:29590161
A rat in the sewer: How mental imagery interacts with object recognition.
Karimpur, Harun; Hamburger, Kai
2018-01-01
The role of mental imagery has been puzzling researchers for more than two millennia. Both positive and negative effects of mental imagery on information processing have been discussed. The aim of this work was to examine how mental imagery affects object recognition and associative learning. Based on different perceptual and cognitive accounts we tested our imagery-induced interaction hypothesis in a series of two experiments. According to that, mental imagery could lead to (1) a superior performance in object recognition and associative learning if these objects are imagery-congruent (semantically) and to (2) an inferior performance if these objects are imagery-incongruent. In the first experiment, we used a static environment and tested associative learning. In the second experiment, subjects encoded object information in a dynamic environment by means of a virtual sewer system. Our results demonstrate that subjects who received a role adoption task (by means of guided mental imagery) performed better when imagery-congruent objects were used and worse when imagery-incongruent objects were used. We finally discuss our findings also with respect to alternative accounts and plead for a multi-methodological approach for future research in order to solve this issue.
MCMAC-cVT: a novel on-line associative memory based CVT transmission control system.
Ang, K K; Quek, C; Wahab, A
2002-03-01
This paper describes a novel application of an associative memory called the Modified Cerebellar Articulation Controller (MCMAC) (Int. J. Artif. Intell. Engng, 10 (1996) 135) in a continuous variable transmission (CVT) control system. It allows the on-line tuning of the associative memory and produces an effective gain-schedule for the automatic selection of the CVT gear ratio. Various control algorithms are investigated to control the CVT gear ratio to maintain the engine speed within a narrow range of efficient operating speed independently of the vehicle velocity. Extensive simulation results are presented to evaluate the control performance of a direct digital PID control algorithm with auto-tuning (Trans. ASME, 64 (1942)) and anti-windup mechanism. In particular, these results are contrasted against the control performance produced using the MCMAC (Int. J. Artif. Intell. Engng, 10 (1996) 135) with momentum, neighborhood learning and Averaged Trapezoidal Output (MCMAC-ATO) as the neural control algorithm for controlling the CVT. Simulation results are presented that show the reduced control fluctuations and improved learning capability of the MCMAC-ATO without incurring greater memory requirement. In particular, MCMAC-ATO is able to learn and control the CVT simultaneously while still maintaining acceptable control performance.
Sons learn songs from their social fathers in a cooperatively breeding bird
Greig, Emma I.; Taft, Benjamin N.; Pruett-Jones, Stephen
2012-01-01
Song learning is hypothesized to allow social adaptation to a local song neighbourhood. Maintaining social associations is particularly important in cooperative breeders, yet vocal learning in such species has only been assessed in systems where social association was correlated with relatedness. Thus, benefits of vocal learning as a means of maintaining social associations could not be disentangled from benefits of kin recognition. We assessed genetic and cultural contributions to song in a species where social association was not strongly correlated with kinship: the cooperatively breeding, reproductively promiscuous splendid fairy-wren (Malurus splendens). We found that song characters of socially associated father–son pairs were more strongly correlated (and thus songs were more similar) than songs of father–son pairs with a genetic, but no social, association (i.e. cuckolding fathers). Song transmission was, therefore, vertical and cultural, with minimal signatures of kinship. Additionally, song characters were not correlated with several phenotypic indicators of male quality, supporting the idea that there may be a tradeoff between accurate copying of tutors and quality signalling via maximizing song performance, particularly when social and genetic relationships are decoupled. Our results lend support to the hypothesis that song learning facilitates the maintenance of social associations by permitting unrelated individuals to acquire similar signal phenotypes. PMID:22593105
Sons learn songs from their social fathers in a cooperatively breeding bird.
Greig, Emma I; Taft, Benjamin N; Pruett-Jones, Stephen
2012-08-22
Song learning is hypothesized to allow social adaptation to a local song neighbourhood. Maintaining social associations is particularly important in cooperative breeders, yet vocal learning in such species has only been assessed in systems where social association was correlated with relatedness. Thus, benefits of vocal learning as a means of maintaining social associations could not be disentangled from benefits of kin recognition. We assessed genetic and cultural contributions to song in a species where social association was not strongly correlated with kinship: the cooperatively breeding, reproductively promiscuous splendid fairy-wren (Malurus splendens). We found that song characters of socially associated father-son pairs were more strongly correlated (and thus songs were more similar) than songs of father-son pairs with a genetic, but no social, association (i.e. cuckolding fathers). Song transmission was, therefore, vertical and cultural, with minimal signatures of kinship. Additionally, song characters were not correlated with several phenotypic indicators of male quality, supporting the idea that there may be a tradeoff between accurate copying of tutors and quality signalling via maximizing song performance, particularly when social and genetic relationships are decoupled. Our results lend support to the hypothesis that song learning facilitates the maintenance of social associations by permitting unrelated individuals to acquire similar signal phenotypes.
Neurocognitive performance in unmedicated patients with hoarding disorder.
Sumner, Jennifer M; Noack, Carolyn G; Filoteo, J Vincent; Maddox, W Todd; Saxena, Sanjaya
2016-02-01
Hoarding disorder (HD) is an often incapacitating psychiatric illness associated with a wide range of neurocognitive abnormalities. Some prior neuropsychological studies have found executive dysfunction in HD, but no clear pattern has emerged. One potential reason for discrepant results in previous studies might be the inclusion of patients on psychotropic and other medications that can affect neurocognitive performance. Therefore, we examined neurocognitive functioning in medication-free HD patients. We also added a novel investigation of implicit learning, which has been found to be abnormal in obsessive-compulsive disorder (OCD) and related disorders. Twenty-six participants meeting the Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5; American Psychiatric Association, 2013) diagnostic criteria for HD and 23 normal controls were administered a battery of neuropsychological tests and symptom rating scales. All participants were free of psychotropic medications for at least 6 weeks prior to the study. HD participants showed no significant differences from normal controls on measures of verbal memory, attention, or executive functioning, including response inhibition, planning, organization, and decision making. However, HD participants demonstrated a trend toward less implicit learning and greater use of explicit learning strategies during perceptual categorization compared to normal controls. HD participants who used an implicit strategy performed significantly worse than controls who used an implicit strategy. Hoarding symptom severity was not associated with neurocognitive performance. HD patients may have a tendency to use explicit rather than implicit learning strategies for perceptual categorization but perform as well as normal controls on many other neurocognitive measures. Future studies should assess unmedicated participants and examine test strategies, not just outcomes. PsycINFO Database Record (c) 2016 APA, all rights reserved.
ERIC Educational Resources Information Center
Chizhik, Estella Williams; Chizhik, Alexander Williams; Close, Catherine; Gallego, Margaret
2017-01-01
Student-teaching field placements play an important role in preparing teacher candidates, many of whom rate the practice as the most authentic and relevant learning experience associated with their teacher-education programs. As a part of these field experiences, teacher candidates have opportunities to learn instructional and class management…
ERIC Educational Resources Information Center
Farkas, Gary J.; Mazurek, Ewa; Marone, Jane R.
2016-01-01
The VARK learning style is a pedagogical focus in health care education. This study examines relationships of course performance vs. VARK learning preference, study time, and career plan among students enrolled in an undergraduate anatomy and physiology course at a large urban university. Students (n?=?492) from the fall semester course completed…
ERIC Educational Resources Information Center
Abel, Omalley, Ed.; And Others
1997-01-01
This proceedings volume contains 57 papers. Subjects addressed include: cooperative technology education; children's learning strategies with hypermedia lessons; problem-based learning; instructional methodologies for lifelong learning; interactive television (ITV) design; theoretical bases for Human Performance Technology (HPT); use of cognitive…
Fera, Francesco; Passamonti, Luca; Herzallah, Mohammad M; Myers, Catherine E; Veltri, Pierangelo; Morganti, Giuseppina; Quattrone, Aldo; Gluck, Mark A
2014-07-01
To test a prediction of our previous computational model of cortico-hippocampal interaction (Gluck and Myers [1993, 2001]) for characterizing individual differences in category learning, we studied young healthy subjects using an fMRI-adapted category-learning task that has two phases, an initial phase in which associations are learned through trial-and-error feedback followed by a generalization phase in which previously learned rules can be applied to novel associations (Myers et al. [2003]). As expected by our model, we found a negative correlation between learning-related hippocampal responses and accuracy during transfer, demonstrating that hippocampal adaptation during learning is associated with better behavioral scores during transfer generalization. In addition, we found an inverse relationship between Blood Oxygenation Level Dependent (BOLD) activity in the striatum and that in the hippocampal formation and the orbitofrontal cortex during the initial learning phase. Conversely, activity in the dorsolateral prefrontal cortex, orbitofrontal cortex and parietal lobes dominated over that of the hippocampal formation during the generalization phase. These findings provide evidence in support of theories of the neural substrates of category learning which argue that the hippocampal region plays a critical role during learning for appropriately encoding and representing newly learned information so that that this learning can be successfully applied and generalized to subsequent novel task demands. Copyright © 2013 Wiley Periodicals, Inc.
Parenting a Child with a Learning Disability: A Qualitative Approach
ERIC Educational Resources Information Center
Fernández-Alcántara, Manuel; Correa-Delgado, Cayetana; Muñoz, Ángela; Salvatierra, María Teresa; Fuentes-Hélices, Tadeo; Laynez-Rubio, Carolina
2017-01-01
The present study describes experiences associated with parenting children diagnosed with learning disabilities. Parents whose children were diagnosed with Attention Deficit Hyperactivity Disorder, dyslexia/language problems, and Asperger syndrome, related to poor performance at school, took part in the study. A qualitative study design was…
(De)constructing Student Engagement for Pre-Service Teacher Learning
ERIC Educational Resources Information Center
Beasley, Jennifer G.; Gist, Conra D.; Imbeau, Marcia B.
2014-01-01
Learning to teach is a complex intellectual and adaptive performance act. Student engagement is the cornerstone of effective instruction. Current education reform policies, such as Common Core State Standards (National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010) and Teacher Effectiveness…
ERIC Educational Resources Information Center
Swanson, James; And Others
1978-01-01
Examined was the time response effect of methylphenidate (Ritalin) on the learning task performance of 53 hyperactive children (mean age 10 years). Arthur Retlaw and Associates, Inc., Suite 2080, 1603 Orrington Avenue, Evanston, Illinois 60201. (CL)
Atir-Sharon, Tali; Gilboa, Asaf; Hazan, Hananel; Koilis, Ester; Manevitz, Larry M
2015-01-01
Neocortical structures typically only support slow acquisition of declarative memory; however, learning through fast mapping may facilitate rapid learning-induced cortical plasticity and hippocampal-independent integration of novel associations into existing semantic networks. During fast mapping the meaning of new words and concepts is inferred, and durable novel associations are incidentally formed, a process thought to support early childhood's exuberant learning. The anterior temporal lobe, a cortical semantic memory hub, may critically support such learning. We investigated encoding of semantic associations through fast mapping using fMRI and multivoxel pattern analysis. Subsequent memory performance following fast mapping was more efficiently predicted using anterior temporal lobe than hippocampal voxels, while standard explicit encoding was best predicted by hippocampal activity. Searchlight algorithms revealed additional activity patterns that predicted successful fast mapping semantic learning located in lateral occipitotemporal and parietotemporal neocortex and ventrolateral prefrontal cortex. By contrast, successful explicit encoding could be classified by activity in medial and dorsolateral prefrontal and parahippocampal cortices. We propose that fast mapping promotes incidental rapid integration of new associations into existing neocortical semantic networks by activating related, nonoverlapping conceptual knowledge. In healthy adults, this is better captured by unique anterior and lateral temporal lobe activity patterns, while hippocampal involvement is less predictive of this kind of learning.
Ketchum, Myles J; Weyand, Theodore G; Weed, Peter F; Winsauer, Peter J
2016-05-01
Learning is believed to be reflected in the activity of the hippocampus. However, neural correlates of learning have been difficult to characterize because hippocampal activity is integrated with ongoing behavior. To address this issue, male rats (n = 5) implanted with electrodes (n = 14) in the CA1 subfield responded during two tasks within a single test session. In one task, subjects acquired a new 3-response sequence (acquisition), whereas in the other task, subjects completed a well-rehearsed 3-response sequence (performance). Both tasks though could be completed using an identical response topography and used the same sensory stimuli and schedule of reinforcement. More important, comparing neural patterns during sequence acquisition to those during sequence performance allows for a subtractive approach whereby activity associated with learning could potentially be dissociated from the activity associated with ongoing behavior. At sites where CA1 activity was closely associated with behavior, the patterns of activity were differentially modulated by key position and the serial position of a response within the schedule of reinforcement. Temporal shifts between peak activity and responding on particular keys also occurred during sequence acquisition, but not during sequence performance. Ethanol disrupted CA1 activity while producing rate-decreasing effects in both tasks and error-increasing effects that were more selective for sequence acquisition than sequence performance. Ethanol also produced alterations in the magnitude of modulations and temporal pattern of CA1 activity, although these effects were not selective for sequence acquisition. Similar to ethanol, hippocampal micro-stimulation decreased response rate in both tasks and selectively increased the percentage of errors during sequence acquisition, and provided a more direct demonstration of hippocampal involvement during sequence acquisition. Together, these results strongly support the notion that ethanol disrupts sequence acquisition by disrupting hippocampal activity and that the hippocampus is necessary for the conditioned associations required for sequence acquisition. © 2015 Wiley Periodicals, Inc.
Ketchum, Myles J.; Weyand, Theodore G.; Weed, Peter F.; Winsauer, Peter J.
2015-01-01
Learning is believed to be reflected in the activity of the hippocampus. However, neural correlates of learning have been difficult to characterize because hippocampal activity is integrated with ongoing behavior. To address this issue, male rats (n=5) implanted with electrodes (n=14) in the CA1 subfield responded during two tasks within a single test session. In one task, subjects acquired a new 3-response sequence (acquisition), whereas in the other task, subjects completed a well-rehearsed 3-response sequence (performance). Both tasks though could be completed using an identical response topography and used the same sensory stimuli and schedule of reinforcement. More important, comparing neural patterns during sequence acquisition to those during sequence performance allows for a subtractive approach whereby activity associated with learning could potentially be dissociated from the activity associated with ongoing behavior. At sites where CA1 activity was closely associated with behavior, the patterns of activity were differentially modulated by key position and the serial position of a response within the schedule of reinforcement. Temporal shifts between peak activity and responding on particular keys also occurred during sequence acquisition, but not during sequence performance. Ethanol disrupted CA1 activity while producing rate-decreasing effects in both tasks and error-increasing effects that were more selective for sequence acquisition than sequence performance. Ethanol also produced alterations in the magnitude of modulations and temporal pattern of CA1 activity, although these effects were not selective for sequence acquisition. Similar to ethanol, hippocampal micro-stimulation decreased response rate in both tasks and selectively increased the percentage of errors during sequence acquisition, and provided a more direct demonstration of hippocampal involvement during sequence acquisition. Together, these results strongly support the notion that ethanol disrupts sequence acquisition by disrupting hippocampal activity and that the hippocampus is necessary for the conditioned associations required for sequence acquisition. PMID:26482846
Hu, Jiehui; Qi, Song; Becker, Benjamin; Luo, Lizhu; Gao, Shan; Gong, Qiyong; Hurlemann, René; Kendrick, Keith M
2015-06-01
In male Caucasian subjects, learning is facilitated by receipt of social compared with non-social feedback, and the neuropeptide oxytocin (OXT) facilitates this effect. In this study, we have first shown a cultural difference in that male Chinese subjects actually perform significantly worse in the same reinforcement associated learning task with social (emotional faces) compared with non-social feedback. Nevertheless, in two independent double-blind placebo (PLC) controlled between-subject design experiments we found OXT still selectively facilitated learning with social feedback. Similar to Caucasian subjects this OXT effect was strongest with feedback using female rather than male faces. One experiment performed in conjunction with functional magnetic resonance imaging showed that during the response, but not feedback phase of the task, OXT selectively increased activity in the amygdala, hippocampus, parahippocampal gyrus and putamen during the social feedback condition, and functional connectivity between the amygdala and insula and caudate. Therefore, OXT may be increasing the salience and reward value of anticipated social feedback. In the PLC group, response times and state anxiety scores during social feedback were associated with signal changes in these same regions but not in the OXT group. OXT may therefore have also facilitated learning by reducing anxiety in the social feedback condition. Overall our results provide the first evidence for cultural differences in social facilitation of learning per se, but a similar selective enhancement of learning with social feedback under OXT. This effect of OXT may be associated with enhanced responses and functional connectivity in emotional memory and reward processing regions. © 2015 Wiley Periodicals, Inc.
Li, Yuh-Shiow; Yu, Wen-Pin; Liu, Chin-Fang; Shieh, Sue-Heui; Yang, Bao-Huan
2014-10-27
Abstract Background: Learning style is a major consideration in planning for effective and efficient instruction and learning. Learning style has been shown to influence academic performance in the previous research. Little is known about Taiwanese students' learning styles, particularly in the field of nursing education. Aim: This purpose of this study was to identify the relationship between learning styles and academic performance among nursing students in a five-year associate degree of nursing (ADN) program and a two-year bachelor of science in nursing (BSN) program in Taiwan. Methods/Design: This study employed a descriptive and exploratory design. The Chinese version of the Myers-Briggs Type Indicator (MBTI) Form M was an instrument. Data such as grade point average (GPA) were obtained from the Office of Academic Affairs and the Registrar computerized records. Descriptive statistics, one-way analysis of variance ANOVA) and chi-square statistical analysis were used to explore the relationship between academic performance and learning style in Taiwanese nursing students. Results/Findings: The study sample included 285 nursing students: 96 students in a two-year BSN program, and 189 students in a five-year ADN program. Two common learning styles were found: introversion, sensing, thinking, and judging (ISTJ); and introversion, sensing, feeling, and judging (ISFJ). A sensing-judging pair was identified in 43.3% of the participants. Academic performance was significantly related to learning style (p < 0.05, d.f. = 15). Conclusion: The results of this study can help educators devise classroom and clinical instructional strategies that respond to individual needs in order to maximize academic performance and enhance student success. A large sample is recommended for further research. Understanding the learning style preferences of students can enhance learning for those who are under performing in their academic studies, thereby enhancing nursing education.
Hawley, Wayne R; Witty, Christine F; Daniel, Jill M; Dohanich, Gary P
2015-08-01
One principle of the multiple memory systems hypothesis posits that the hippocampus-based and striatum-based memory systems compete for control over learning. Consistent with this notion, previous research indicates that the cholinergic system of the hippocampus plays a role in modulating the preference for a hippocampus-based place learning strategy over a striatum-based stimulus--response learning strategy. Interestingly, in the hippocampus, greater activity and higher protein levels of choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine, are associated with better performance on hippocampus-based learning and memory tasks. With this in mind, the primary aim of the current study was to determine if higher levels of ChAT and the high-affinity choline uptake transporter (CHT) in the hippocampus were associated with a preference for a hippocampus-based place learning strategy on a task that also could be solved by relying on a striatum-based stimulus--response learning strategy. Results confirmed that levels of ChAT in the dorsal region of the hippocampus were associated with a preference for a place learning strategy on a water maze task that could also be solved by adopting a stimulus-response learning strategy. Consistent with previous studies, the current results support the hypothesis that the cholinergic system of the hippocampus plays a role in balancing competition between memory systems that modulate learning strategy preference. Copyright © 2015 Elsevier B.V. All rights reserved.
Learning trajectories for speech motor performance in children with specific language impairment.
Richtsmeier, Peter T; Goffman, Lisa
2015-01-01
Children with specific language impairment (SLI) often perform below expected levels, including on tests of motor skill and in learning tasks, particularly procedural learning. In this experiment we examined the possibility that children with SLI might also have a motor learning deficit. Twelve children with SLI and thirteen children with typical development (TD) produced complex nonwords in an imitation task. Productions were collected across three blocks, with the first and second blocks on the same day and the third block one week later. Children's lip movements while producing the nonwords were recorded using an Optotrak camera system. Movements were then analyzed for production duration and stability. Movement analyses indicated that both groups of children produced shorter productions in later blocks (corroborated by an acoustic analysis), and the rate of change was comparable for the TD and SLI groups. A nonsignificant trend for more stable productions was also observed in both groups. SLI is regularly accompanied by a motor deficit, and this study does not dispute that. However, children with SLI learned to make more efficient productions at a rate similar to their peers with TD, revealing some modification of the motor deficit associated with SLI. The reader will learn about deficits commonly associated with specific language impairment (SLI) that often occur alongside the hallmark language deficit. The authors present an experiment showing that children with SLI improved speech motor performance at a similar rate compared to typically developing children. The implication is that speech motor learning is not impaired in children with SLI. Copyright © 2015 Elsevier Inc. All rights reserved.
Calhoun, Susan L.; Fernandez-Mendoza, Julio; Vgontzas, Alexandros N.; Mayes, Susan D.; Tsaoussoglou, Marina; Rodriguez-Muñoz, Alfredo; Bixler, Edward O.
2012-01-01
Study Objectives: Although excessive daytime sleepiness (EDS) is a common problem in children, with estimates of 15%; few studies have investigated the sequelae of EDS in young children. We investigated the association of EDS with objective neurocognitive measures and parent reported learning, attention/hyperactivity, and conduct problems in a large general population sample of children. Design: Cross-sectional. Setting: Population based. Participants: 508 children from The Penn State Child Cohort. Interventions: N/A. Measurements and Results: Children underwent a 9-h polysomnogram, comprehensive neurocognitive testing, and parent rating scales. Children were divided into 2 groups: those with and without parent-reported EDS. Structural equation modeling was used to examine whether processing speed and working memory performance would mediate the relationship between EDS and learning, attention/hyperactivity, and conduct problems. Logistic regression models suggest that parent-reported learning, attention/hyperactivity, and conduct problems, as well as objective measurement of processing speed and working memory are significant sequelae of EDS, even when controlling for AHI and objective markers of sleep. Path analysis demonstrates that processing speed and working memory performance are strong mediators of the association of EDS with learning and attention/hyperactivity problems, while to a slightly lesser degree are mediators from EDS to conduct problems. Conclusions: This study suggests that in a large general population sample of young children, parent-reported EDS is associated with neurobehavioral (learning, attention/hyperactivity, conduct) problems and poorer performance in processing speed and working memory. Impairment due to EDS in daytime cognitive and behavioral functioning can have a significant impact on children's development. Citation: Calhoun SL; Fernandez-Mendoza J; Vgontzas AN; Mayes SD; Tsaoussoglou M; Rodriguez-Muñoz A; Bixler EO. Learning, attention/hyperactivity, and conduct problems as sequelae of excessive daytime sleepiness in a general population study of young children. SLEEP 2012;35(5):627-632. PMID:22547888
Executive Function Is Associated With Off-Line Motor Learning in People With Chronic Stroke.
Al-Dughmi, Mayis; Al-Sharman, Alham; Stevens, Suzanne; Siengsukon, Catherine F
2017-04-01
Sleep has been shown to promote off-line motor learning in individuals following stroke. Executive function ability has been shown to be a predictor of participation in rehabilitation and motor recovery following stroke. The purpose of this study was to explore the association between executive function and off-line motor learning in individuals with chronic stroke compared with healthy control participants. Seventeen individuals with chronic stroke (>6 months poststroke) and 9 healthy adults were included in the study. Participants underwent 3 consecutive nights of polysomnography, practiced a continuous tracking task the morning of the third day, and underwent a retention test the morning after the third night. Participants underwent testing on 4 executive function tests after the continuous tracking task retention test. Participants with stroke showed a significant positive correlation between the off-line motor learning score and performance on the Trail-Making Test from Delis-Kaplan Executive Function System (r = 0.652; P = 0.005), while the healthy control participants did not. Regression analysis showed that the Trail-Making Test-Delis-Kaplan Executive Function System is a significant predictor of off-line motor learning (P = 0.008). This is the first study to demonstrate that better performance on an executive function test of attention and set-shifting predicts a higher magnitude of off-line motor learning in individuals with chronic stroke. This emphasizes the need to consider attention and set-shifting abilities of individuals following stroke as these abilities are associated with motor learning. This in turn could affect learning of activities of daily living and impact functional recovery following stroke.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A166).
Gifford, Katherine A; Phillips, Jeffrey S; Samuels, Lauren R; Lane, Elizabeth M; Bell, Susan P; Liu, Dandan; Hohman, Timothy J; Romano, Raymond R; Fritzsche, Laura R; Lu, Zengqi; Jefferson, Angela L
2015-07-01
A symptom of mild cognitive impairment (MCI) and Alzheimer's disease (AD) is a flat learning profile. Learning slope calculation methods vary, and the optimal method for capturing neuroanatomical changes associated with MCI and early AD pathology is unclear. This study cross-sectionally compared four different learning slope measures from the Rey Auditory Verbal Learning Test (simple slope, regression-based slope, two-slope method, peak slope) to structural neuroimaging markers of early AD neurodegeneration (hippocampal volume, cortical thickness in parahippocampal gyrus, precuneus, and lateral prefrontal cortex) across the cognitive aging spectrum [normal control (NC); (n=198; age=76±5), MCI (n=370; age=75±7), and AD (n=171; age=76±7)] in ADNI. Within diagnostic group, general linear models related slope methods individually to neuroimaging variables, adjusting for age, sex, education, and APOE4 status. Among MCI, better learning performance on simple slope, regression-based slope, and late slope (Trial 2-5) from the two-slope method related to larger parahippocampal thickness (all p-values<.01) and hippocampal volume (p<.01). Better regression-based slope (p<.01) and late slope (p<.01) were related to larger ventrolateral prefrontal cortex in MCI. No significant associations emerged between any slope and neuroimaging variables for NC (p-values ≥.05) or AD (p-values ≥.02). Better learning performances related to larger medial temporal lobe (i.e., hippocampal volume, parahippocampal gyrus thickness) and ventrolateral prefrontal cortex in MCI only. Regression-based and late slope were most highly correlated with neuroimaging markers and explained more variance above and beyond other common memory indices, such as total learning. Simple slope may offer an acceptable alternative given its ease of calculation.
The dynamic network subserving the three phases of cognitive procedural learning.
Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Danion, Jean-Marie; Viader, Fausto; Desgranges, Béatrice
2007-12-01
Cognitive procedural learning is characterized by three phases (cognitive, associative, and autonomous), each involving distinct processes. We performed a behavioral study and a positron emission tomography (PET) activation study using the Tower of Toronto task. The aim of the behavioral study was to determine cognitive predictors for the length of each of the three learning phases, in order to preselect subjects for the PET study. The objective of the second study was to describe the cerebral substrates subtending these three phases. Contrasted with a reference (motor) task, the cognitive phase activated the prefrontal cortex, cerebellum, and parietal regions, all of which became less active as learning progressed. The associative phase was characterized by the activation of the occipital regions, right thalamus, and caudate nucleus. During the autonomous phase, new regions were involved, including the left thalamus and an anterior part of the cerebellum. These results, by employing a direct comparison between phases, provide the first evidence of the involvement and the time course of activation of different regions in each learning phase, in accordance with current models of cognitive procedural learning. The involvement of a frontoparietal network suggests the use of strategies in problem solving during the cognitive phase. The involvement of the occipital regions during the associative and autonomous phase suggests the intervention of mental imagery. Lastly, the activation of the cerebellum during the autonomous phase is consistent with the fact that performance in this phase is determined by psychomotor abilities. (copyright) 2007 Wiley-Liss, Inc.
Molina, Michael; Plaza, Victoria; Fuentes, Luis J.; Estévez, Angeles F.
2015-01-01
Memory for medical recommendations is a prerequisite for good adherence to treatment, and therefore to ameliorate the negative effects of the disease, a problem that mainly affects people with memory deficits. We conducted a simulated study to test the utility of a procedure (the differential outcomes procedure, DOP) that may improve adherence to treatment by increasing the patient’s learning and retention of medical recommendations regarding medication. The DOP requires the structure of a conditional discriminative learning task in which correct choice responses to specific stimulus–stimulus associations are reinforced with a particular reinforcer or outcome. In two experiments, participants had to learn and retain in their memory the pills that were associated with particular disorders. To assess whether the DOP improved long-term retention of the learned disorder/pill associations, participants were asked to perform two recognition memory tests, 1 h and 1 week after completing the learning phase. The results showed that compared with the standard non-differential outcomes procedure, the DOP produced better learning and long-term retention of the previously learned associations. These findings suggest that the DOP can be used as a useful complementary technique in intervention programs targeted at increasing adherence to clinical recommendations. PMID:26913010
[New trends in the evaluation of mathematics learning disabilities. The role of metacognition].
Miranda-Casas, A; Acosta-Escareño, G; Tarraga-Minguez, R; Fernández, M I; Rosel-Remírez, J
2005-01-15
The current trends in the evaluation of mathematics learning disabilities (MLD), based on cognitive and empirical models, are oriented towards combining procedures involving the criteria and the evaluation of cognitive and metacognitive processes, associated to performance in mathematical tasks. The objective of this study is to analyse the metacognitive skills of prediction and evaluation in performing maths tasks and to compare metacognitive performance among pupils with MLD and younger pupils without MLD, who have the same level of mathematical performance. Likewise, we analyse these pupils' desire to learn. Subjects and methods. We compare a total of 44 pupils from the second cycle of primary education (8-10 years old) with and without mathematics learning disabilities. Significant differences are observed between pupils with and without mathematics learning disabilities in their capacity to predict and assess all of the tasks evaluated. As regards their 'desire to learn', no significant differences were found between pupils with and without MLD, which indicated that those with MLD assess their chances of successfully performing maths tasks in the same way as those without MLD. Finally, the findings reveal a similar metacognitive profile in pupils with MLD and the younger pupils with no mathematics learning disabilities. In future studies we consider it important to analyse the influence of the socio-affective belief system in the use of metacognitive skills.
Estimating learning outcomes from pre- and posttest student self-assessments: a longitudinal study.
Schiekirka, Sarah; Reinhardt, Deborah; Beißbarth, Tim; Anders, Sven; Pukrop, Tobias; Raupach, Tobias
2013-03-01
Learning outcome is an important measure for overall teaching quality and should be addressed by comprehensive evaluation tools. The authors evaluated the validity of a novel evaluation tool based on student self-assessments, which may help identify specific strengths and weaknesses of a particular course. In 2011, the authors asked 145 fourth-year students at Göttingen Medical School to self-assess their knowledge on 33 specific learning objectives in a pretest and posttest as part of a cardiorespiratory module. The authors compared performance gain calculated from self-assessments with performance gain derived from formative examinations that were closely matched to these 33 learning objectives. Eighty-three students (57.2%) completed the assessment. There was good agreement between performance gain derived from subjective data and performance gain derived from objective examinations (Pearson r=0.78; P<.0001) on the group level. The association between the two measures was much weaker when data were analyzed on the individual level. Further analysis determined a quality cutoff for performance gain derived from aggregated student self-assessments. When using this cutoff, the evaluation tool was highly sensitive in identifying specific learning objectives with favorable or suboptimal objective performance gains. The tool is easy to implement, takes initial performance levels into account, and does not require extensive pre-post testing. By providing valid estimates of actual performance gain obtained during a teaching module, it may assist medical teachers in identifying strengths and weaknesses of a particular course on the level of specific learning objectives.
Neural substrates underlying stimulation-enhanced motor skill learning after stroke
Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques
2015-01-01
Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the ‘circuit game’, involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention’s enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. PMID:25488186
Role of beliefs and emotions in numerical problem solving in university physics education
NASA Astrophysics Data System (ADS)
Bodin, Madelen; Winberg, Mikael
2012-06-01
Numerical problem solving in classical mechanics in university physics education offers a learning situation where students have many possibilities of control and creativity. In this study, expertlike beliefs about physics and learning physics together with prior knowledge were the most important predictors of the quality of performance of a task with many degrees of freedom. Feelings corresponding to control and concentration, i.e., emotions that are expected to trigger students’ intrinsic motivation, were also important in predicting performance. Unexpectedly, intrinsic motivation, as indicated by enjoyment and interest, together with students’ personal interest and utility value beliefs did not predict performance. This indicates that although a certain degree of enjoyment is probably necessary, motivated behavior is rather regulated by integration and identification of expertlike beliefs about learning and are more strongly associated with concentration and control during learning and, ultimately, with high performance. The results suggest that the development of students’ epistemological beliefs is important for students’ ability to learn from realistic problem-solving situations with many degrees of freedom in physics education.
Implicit Value Updating Explains Transitive Inference Performance: The Betasort Model
Jensen, Greg; Muñoz, Fabian; Alkan, Yelda; Ferrera, Vincent P.; Terrace, Herbert S.
2015-01-01
Transitive inference (the ability to infer that B > D given that B > C and C > D) is a widespread characteristic of serial learning, observed in dozens of species. Despite these robust behavioral effects, reinforcement learning models reliant on reward prediction error or associative strength routinely fail to perform these inferences. We propose an algorithm called betasort, inspired by cognitive processes, which performs transitive inference at low computational cost. This is accomplished by (1) representing stimulus positions along a unit span using beta distributions, (2) treating positive and negative feedback asymmetrically, and (3) updating the position of every stimulus during every trial, whether that stimulus was visible or not. Performance was compared for rhesus macaques, humans, and the betasort algorithm, as well as Q-learning, an established reward-prediction error (RPE) model. Of these, only Q-learning failed to respond above chance during critical test trials. Betasort’s success (when compared to RPE models) and its computational efficiency (when compared to full Markov decision process implementations) suggests that the study of reinforcement learning in organisms will be best served by a feature-driven approach to comparing formal models. PMID:26407227
Implicit Value Updating Explains Transitive Inference Performance: The Betasort Model.
Jensen, Greg; Muñoz, Fabian; Alkan, Yelda; Ferrera, Vincent P; Terrace, Herbert S
2015-01-01
Transitive inference (the ability to infer that B > D given that B > C and C > D) is a widespread characteristic of serial learning, observed in dozens of species. Despite these robust behavioral effects, reinforcement learning models reliant on reward prediction error or associative strength routinely fail to perform these inferences. We propose an algorithm called betasort, inspired by cognitive processes, which performs transitive inference at low computational cost. This is accomplished by (1) representing stimulus positions along a unit span using beta distributions, (2) treating positive and negative feedback asymmetrically, and (3) updating the position of every stimulus during every trial, whether that stimulus was visible or not. Performance was compared for rhesus macaques, humans, and the betasort algorithm, as well as Q-learning, an established reward-prediction error (RPE) model. Of these, only Q-learning failed to respond above chance during critical test trials. Betasort's success (when compared to RPE models) and its computational efficiency (when compared to full Markov decision process implementations) suggests that the study of reinforcement learning in organisms will be best served by a feature-driven approach to comparing formal models.
Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.
Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall
2014-10-01
Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.
Facilitating role of 3D multimodal visualization and learning rehearsal in memory recall.
Do, Phuong T; Moreland, John R
2014-04-01
The present study investigated the influence of 3D multimodal visualization and learning rehearsal on memory recall. Participants (N = 175 college students ranging from 21 to 25 years) were assigned to different training conditions and rehearsal processes to learn a list of 14 terms associated with construction of a wood-frame house. They then completed a memory test determining their cognitive ability to free recall the definitions of the 14 studied terms immediately after training and rehearsal. The audiovisual modality training condition was associated with the highest accuracy, and the visual- and auditory-modality conditions with lower accuracy rates. The no-training condition indicated little learning acquisition. A statistically significant increase in performance accuracy for the audiovisual condition as a function of rehearsal suggested the relative importance of rehearsal strategies in 3D observational learning. Findings revealed the potential application of integrating virtual reality and cognitive sciences to enhance learning and teaching effectiveness.
Speech Motor Sequence Learning: Acquisition and Retention in Parkinson Disease and Normal Aging.
Whitfield, Jason A; Goberman, Alexander M
2017-06-10
The aim of the current investigation was to examine speech motor sequence learning in neurologically healthy younger adults, neurologically healthy older adults, and individuals with Parkinson disease (PD) over a 2-day period. A sequential nonword repetition task was used to examine learning over 2 days. Participants practiced a sequence of 6 monosyllabic nonwords that was retested following nighttime sleep. The speed and accuracy of the nonword sequence were measured, and learning was inferred by examining performance within and between sessions. Though all groups exhibited comparable improvements of the nonword sequence performance during the initial session, between-session retention of the nonword sequence differed between groups. Younger adult controls exhibited offline gains, characterized by an increase in the speed and accuracy of nonword sequence performance across sessions, whereas older adults exhibited stable between-session performance. Individuals with PD exhibited offline losses, marked by an increase in sequence duration between sessions. The current results demonstrate that both PD and normal aging affect retention of speech motor learning. Furthermore, these data suggest that basal ganglia dysfunction associated with PD may affect the later stages of speech motor learning. Findings from the current investigation are discussed in relation to studies examining consolidation of nonspeech motor learning.
2018-01-01
Purpose The present study aimed to identify the learning preferences of dental students and to characterize their relationship with academic performance at a dental school in Isfahan, Iran. Methods This cross-sectional descriptive study included 200 undergraduate dental students from October to November 2016. Data were collected using a 2-part questionnaire. The first part included demographic data, and the second part was a Persian-language version of the visual, aural, read/write, and kinesthetic questionnaire. Data analysis was conducted with the chi-square test, 1-way analysis of variance, and multiple linear regression. Results The response rate was 86.6%. Approximately half of the students (51.5%) had multimodal learning preferences. Among the unimodal group (48.5%), the most common mode was aural (24.0%), followed by kinesthetic (15.5%), reading-writing (8.0%), and visual (1.0%). There was a significant association between academic performance and the reading/writing learning style preference (P< 0.01). Conclusion Multimodal learning styles were the most preferred. Among single-mode learning styles, the aural style was most common, followed by the kinesthetic style. Students with a reading/writing preference had better academic performance. The results of this study provide useful information for preparing a more problem-based curriculum with active learning strategies. PMID:29575848
A Longitudinal Study in Learning Preferences and Academic Performance in First Year Medical School.
Hu, Yenya; Gao, Hong; Wofford, Marcia M; Violato, Claudio
2017-12-18
This is a longitudinal study of first year medical students that investigates the relationship between the pattern change of the learning preferences and academic performance. Using the visual, auditory, reading-writing, and kinesthetic inventory at the beginning of the first and second year for the same class, it was found that within the first year, 36% of the class remained unimodal (single) modality learners (SS), 14% changed from unimodal to multimodality learners (SM), 27% changed from multimodality to unimodal modality learners (MS) and 21% remained as multimodality learners (MM). Among the academic performance through subsequent didactic blocks from Clinical Anatomy, Cell and Subcellular Processes to Medical Neuroscience during first year, the SM group made more significant improvement compared to the SS group. Semi-structured interview results from the SM group showed that students made this transition between the Clinical Anatomy course and the middle of the Medical Neuroscience course, in an effort to improve their performance. This study suggests that the transition from unimodal to multimodality learning among academically struggling students improved their academic performance in the first year of medical school. Therefore, this may be considered as part of academic advising tools for struggling students to improve their academic performances. Anat Sci Educ. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Stimulating Multiple-Demand Cortex Enhances Vocabulary Learning
Wise, Richard J.S.; Geranmayeh, Fatemeh; Hampshire, Adam
2017-01-01
It is well established that networks within multiple-demand cortex (MDC) become active when diverse skills and behaviors are being learnt. However, their causal role in learning remains to be established. In the present study, we first performed functional magnetic resonance imaging on healthy female and male human participants to confirm that MDC was most active in the initial stages of learning a novel vocabulary, consisting of pronounceable nonwords (pseudowords), each associated with a picture of a real object. We then examined, in healthy female and male human participants, whether repetitive transcranial magnetic stimulation of a frontal midline node of the cingulo-opercular MDC affected learning rates specifically during the initial stages of learning. We report that stimulation of this node, but not a control brain region, substantially improved both accuracy and response times during the earliest stage of learning pseudoword–object associations. This stimulation had no effect on the processing of established vocabulary, tested by the accuracy and response times when participants decided whether a real word was accurately paired with a picture of an object. These results provide evidence that noninvasive stimulation to MDC nodes can enhance learning rates, thereby demonstrating their causal role in the learning process. We propose that this causal role makes MDC candidate target for experimental therapeutics; for example, in stroke patients with aphasia attempting to reacquire a vocabulary. SIGNIFICANCE STATEMENT Learning a task involves the brain system within which that specific task becomes established. Therefore, successfully learning a new vocabulary establishes the novel words in the language system. However, there is evidence that in the early stages of learning, networks within multiple-demand cortex (MDC), which control higher cognitive functions, such as working memory, attention, and monitoring of performance, become active. This activity declines once the task is learnt. The present study demonstrated that a node within MDC, located in midline frontal cortex, becomes active during the early stage of learning a novel vocabulary. Importantly, noninvasive brain stimulation of this node improved performance during this stage of learning. This observation demonstrated that MDC activity is important for learning. PMID:28676576
Task complexity, student perceptions of vocabulary learning in EFL, and task performance.
Wu, Xiaoli; Lowyck, Joost; Sercu, Lies; Elen, Jan
2013-03-01
The study deepened our understanding of how students' self-efficacy beliefs contribute to the context of teaching English as a foreign language in the framework of cognitive mediational paradigm at a fine-tuned task-specific level. The aim was to examine the relationship among task complexity, self-efficacy beliefs, domain-related prior knowledge, learning strategy use, and task performance as they were applied to English vocabulary learning from reading tasks. Participants were 120 second-year university students (mean age 21) from a Chinese university. This experiment had two conditions (simple/complex). A vocabulary level test was first conducted to measure participants' prior knowledge of English vocabulary. Participants were then randomly assigned to one of the learning tasks. Participants were administered task booklets together with the self-efficacy scales, measures of learning strategy use, and post-tests. Data obtained were submitted to multivariate analysis of variance (MANOVA) and path analysis. Results from the MANOVA model showed a significant effect of vocabulary level on self-efficacy beliefs, learning strategy use, and task performance. Task complexity showed no significant effect; however, an interaction effect between vocabulary level and task complexity emerged. Results from the path analysis showed self-efficacy beliefs had an indirect effect on performance. Our results highlighted the mediating role of self-efficacy beliefs and learning strategy use. Our findings indicate that students' prior knowledge plays a crucial role on both self-efficacy beliefs and task performance, and the predictive power of self-efficacy on task performance may lie in its association with learning strategy use. © 2011 The British Psychological Society.
Conative aptitudes in science learning
NASA Astrophysics Data System (ADS)
Jackson, Douglas Northrop, III
2000-09-01
The conative domain of aptitude constructs spans the domains of individual differences in motivation and volition. This research sampled a broad range of conative constructs, including achievement motivation, anxiety, goal orientations, and interest, among others. The purpose was threefold: (a) to explore relationships among conative constructs hypothesized to affect student commitment to learning and subsequent performance, (b) to determine whether or not individual differences in conative constructs were associated with the learning activities and time-on-task of students learning science, and (c) to ascertain whether or not the conative constructs and the time and activity variables were associated with performance differences in a paper-and-pencil science recall measure. This research consisted of three separate studies. Study I involved 60 U.S. college students. In Study II, 234 Canadian high school students participated. These two studies investigated the construct validity of a selection of conative constructs. A principal components analysis of the measures was undertaken and yielded seven components: Pursuit of Excellence, Evaluation Anxiety, Self-Reported Grades, Science Confidence, Science Interest vs. Science Ambivalence, Performance Orientation, and Verbal Ability. For Study III, 82 Canadian high school students completed the same conative questionnaires as were administered in Study II. A computerized environment patterned after an internet browser allowed students to learn about disease-causing microbes. The environment yielded aggregate measures of the time spent learning science, the time spent playing games, the number of games played, and the number of science-related learning activities engaged in by each student. Following administration of the computerized learning environment, students were administered a paper-and pencil science recall measure. Study III found support for the educational importance of the conative variables. Among the principal components, the strongest positive relationship was found between Science Interest vs. Science Ambivalence and performance on the recall measure. Scores on the conative variables were also correlated with both the time and activity variables from the computerized learning task. The implications of the findings are discussed with regard to the construct validation of conative constructs, the use of conative constructs for future educational research, and the design of computerized learning environments for both educational research and applied use.
Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J
2014-01-01
Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term-born controls. Neonatal brain abnormalities, and in particular deep grey-matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function.
Lejeune, Caroline; Wansard, Murielle; Geurten, Marie; Meulemans, Thierry
2016-01-01
The aim of this study was to explore the differences in procedural learning abilities between children with DCD and typically developing children by investigating the steps that lead to skill automatization (i.e., the stages of fast learning, consolidation, and slow learning). Transfer of the skill to a new situation was also assessed. We tested 34 children aged 6-12 years with and without DCD on a perceptuomotor adaptation task, a form of procedural learning that is thought to involve the cerebellum and the basal ganglia (regions whose impairment has been associated with DCD) but also other brain areas including frontal regions. The results showed similar rates of learning, consolidation, and transfer in DCD and control children. However, the DCD children's performance remained slower than that of controls throughout the procedural task and they reached a lower asymptotic performance level; the difficulties observed at the outset did not diminish with practice.
Correlates of individual, and age-related, differences in short-term learning.
Zhang, Zhiyong; Davis, Hasker P; Salthouse, Timothy A; Tucker-Drob, Elliot M
2007-07-01
Latent growth models were applied to data on multitrial verbal and spatial learning tasks from two independent studies. Although significant individual differences in both initial level of performance and subsequent learning were found in both tasks, age differences were found only in mean initial level, and not in mean learning. In neither task was fluid or crystallized intelligence associated with learning. Although there were moderate correlations among the level parameters across the verbal and spatial tasks, the learning parameters were not significantly correlated with one another across task modalities. These results are inconsistent with the existence of a general (e.g., material-independent) learning ability.
Raymond, Jane E; O'Brien, Jennifer L
2009-08-01
Learning to associate the probability and value of behavioral outcomes with specific stimuli (value learning) is essential for rational decision making. However, in demanding cognitive conditions, access to learned values might be constrained by limited attentional capacity. We measured recognition of briefly presented faces seen previously in a value-learning task involving monetary wins and losses; the recognition task was performed both with and without constraints on available attention. Regardless of available attention, recognition was substantially enhanced for motivationally salient stimuli (i.e., stimuli highly predictive of outcomes), compared with equally familiar stimuli that had weak or no motivational salience, and this effect was found regardless of valence (win or loss). However, when attention was constrained (because stimuli were presented during an attentional blink, AB), valence determined recognition; win-associated faces showed no AB, but all other faces showed large ABs. Motivational salience acts independently of attention to modulate simple perceptual decisions, but when attention is limited, visual processing is biased in favor of reward-associated stimuli.
Schiff, Rachel; Katan, Pesia; Sasson, Ayelet; Kahta, Shani
2017-07-01
There's a long held view that chunks play a crucial role in artificial grammar learning performance. We compared chunk strength influences on performance, in high and low topological entropy (a measure of complexity) grammar systems, with dyslexic children, age-matched and reading-level-matched control participants. Findings show that age-matched control participants' performance reflected equivalent influence of chunk strength in the two topological entropy conditions, as typically found in artificial grammar learning experiments. By contrast, dyslexic children and reading-level-matched controls' performance reflected knowledge of chunk strength only under the low topological entropy condition. In the low topological entropy grammar system, they appeared completely unable to utilize chunk strength to make appropriate test item selections. In line with previous research, this study suggests that for typically developing children, it is the chunks that are attended during artificial grammar learning and create a foundation on which implicit associative learning mechanisms operate, and these chunks are unitized to different strengths. However, for children with dyslexia, it is complexity that may influence the subsequent memorability of chunks, independently of their strength.
Intrinsic Motivation: An Overlooked Component for Student Success
ERIC Educational Resources Information Center
Augustyniak, Robert A.; Ables, Adrienne Z.; Guilford, Philip; Lujan, Heidi L.; Cortright, Ronald N.; DiCarlo, Stephen E.
2016-01-01
Intrinsic motivation to learn involves engaging in learning opportunities because they are seen as enjoyable, interesting, or relevant to meeting one's core psychological needs. As a result, intrinsic motivation is associated with high levels of effort and task performance. Students with greater levels of intrinsic motivation demonstrate strong…
A Guide to Using Case-Based Learning in Biochemistry Education
ERIC Educational Resources Information Center
Kulak, Verena; Newton, Genevieve
2014-01-01
Studies indicate that the majority of students in undergraduate biochemistry take a surface approach to learning, associated with rote memorization of material, rather than a deep approach, which implies higher cognitive processing. This behavior relates to poorer outcomes, including impaired course performance and reduced knowledge retention. The…
APA, Meet Google: Graduate Students' Approaches to Learning Citation Style
ERIC Educational Resources Information Center
Van Note Chism, Nancy; Weerakoon, Shrinika
2012-01-01
Inspired by Perkins' Theories of Difficulty concept, this exploratory study examined the learning patterns of graduate students as they grappled with using the style sheet of the American Psychological Association (APA). The researchers employed task performance analysis of three APA formatting tasks, interviews, and observation during a "think…
Factors Related to Competency Test Performance for High School Learning Disabled Students.
ERIC Educational Resources Information Center
Hall, Julia; And Others
1985-01-01
This study explored some factors associated with learning disabled high school students who passed the North Carolina Minimum Competency Test on the second administration. Factors examined include reading score on the first competency test, intelligence quotient, locus of control, mother's education, teacher support, student/teacher ratio, and…
ERIC Educational Resources Information Center
Stanton, Julie Dangremond; Neider, Xyanthe N.; Gallegos, Isaura J.; Clark, Nicole C.
2015-01-01
Strong metacognition skills are associated with learning outcomes and student performance. Metacognition includes metacognitive knowledge--our awareness of our thinking--and metacognitive regulation--how we control our thinking to facilitate learning. In this study, we targeted metacognitive regulation by guiding students through self-evaluation…
Correlates of Inquiry Learning in Science: Constructing Concepts of Density and Buoyancy.
ERIC Educational Resources Information Center
Mastropieri, Margo A.; Scruggs, Thomas E.; Boon, Richard; Carter, Karen Butcher
2001-01-01
A study involving 75 elementary students, 51 with high-incidence disabilities, investigated variables associated with learning in an inquiry-oriented approach to the study of density and buoyancy. Preconceptions, scientific predictions, and academic achievement measures were not predictive of task performance. However, grade level and IQ were…
Cognitive Strategy Use as an Index of Developmental Differences in Neural Responses to Feedback
ERIC Educational Resources Information Center
Andersen, Lau M.; Visser, Ingmar; Crone, Eveline A.; Koolschijn, P. Cédric M. P.; Raijmakers, Maartje E. J.
2014-01-01
Developmental differences in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and superior parietal cortex (SPC) activation are associated with differences in how children, adolescents, and adults learn from performance feedback in rule-learning tasks (Crone, Zanolie, Leijenhorst, Westenberg, & Rombouts, 2008). Both…
ERIC Educational Resources Information Center
Remley, Dirk
2009-01-01
Carter (2007) identifies four meta-genres associated with writing activities that can help students learn discipline-specific writing skills relative to standards within a given field: these include problem solving, empirical approaches to analysis, selection of sources to use within research, and production of materials that meet accepted…
Attentional Modulation in Visual Cortex Is Modified during Perceptual Learning
ERIC Educational Resources Information Center
Bartolucci, Marco; Smith, Andrew T.
2011-01-01
Practicing a visual task commonly results in improved performance. Often the improvement does not transfer well to a new retinal location, suggesting that it is mediated by changes occurring in early visual cortex, and indeed neuroimaging and neurophysiological studies both demonstrate that perceptual learning is associated with altered activity…
ERIC Educational Resources Information Center
Brembs, Bjorn; de Ibarra, Natalie Hempel
2006-01-01
We have used a genetically tractable model system, the fruit fly "Drosophila melanogaster" to study the interdependence between sensory processing and associative processing on learning performance. We investigated the influence of variations in the physical and predictive properties of color stimuli in several different operant-conditioning…
Long-term memory biases auditory spatial attention.
Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude
2017-10-01
Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants heard audio clips, some of which included a lateralized target (p = 50%). On each trial participants indicated whether the target was presented from the left, right, or was absent. Following a 1 hr retention interval, participants were presented with the same audio clips, which now all included a target. In Experiment 1, participants showed memory-based gains in response time and d'. Experiment 2 showed that temporal expectations modulate attention, with greater memory-guided attention effects on performance when temporal context was reinstated from learning (i.e., when timing of the target within audio clips was not changed from initially learned timing). Experiment 3 showed that while conscious recall of target locations was modulated by exposure to target-context associations during learning (i.e., better recall with higher number of learning blocks), the influence of LTM associations on spatial attention was not reduced (i.e., number of learning blocks did not affect memory-guided attention). Both Experiments 2 and 3 showed gains in performance related to target-context associations, even for associations that were not explicitly remembered. Together, these findings indicate that memory for audio clips is acquired quickly and is surprisingly robust; both implicit and explicit LTM for the location of a faint target tone modulated auditory spatial attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Africanized honeybees are slower learners than their European counterparts
NASA Astrophysics Data System (ADS)
Couvillon, Margaret J.; Degrandi-Hoffman, Gloria; Gronenberg, Wulfila
2010-02-01
Does cognitive ability always correlate with a positive fitness consequence? Previous research in both vertebrates and invertebrates provides mixed results. Here, we compare the learning and memory abilities of Africanized honeybees ( Apis mellifera scutellata hybrid) and European honeybees ( Apis mellifera ligustica). The range of the Africanized honeybee continues to expand, superseding the European honeybee, which led us to hypothesize that they might possess greater cognitive capabilities as revealed by a classical conditioning assay. Surprisingly, we found that fewer Africanized honeybees learn to associate an odor with a reward. Additionally, fewer Africanized honeybees remembered the association a day later. While Africanized honeybees are replacing European honeybees, our results show that they do so despite displaying a relatively poorer performance on an associative learning paradigm.
Majerus, Steve; Boukebza, Claire
2013-12-01
Although recent studies suggest a strong association between short-term memory (STM) for serial order and lexical development, the precise mechanisms linking the two domains remain to be determined. This study explored the nature of these mechanisms via a microanalysis of performance on serial order STM and novel word learning tasks. In the experiment, 6- and 7-year-old children were administered tasks maximizing STM for either item or serial order information as well as paired-associate learning tasks involving the learning of novel words, visual symbols, or familiar word pair associations. Learning abilities for novel words were specifically predicted by serial order STM abilities. A measure estimating the precision of serial order coding predicted the rate of correct repetitions and the rate of phoneme migration errors during the novel word learning process. In line with recent theoretical accounts, these results suggest that serial order STM supports vocabulary development via ordered and detailed reactivation of the novel phonological sequences that characterize new words. Copyright © 2013 Elsevier Inc. All rights reserved.
García-García, Raquel; Cruz-Gómez, Álvaro Javier; Urios, Amparo; Mangas-Losada, Alba; Forn, Cristina; Escudero-García, Desamparados; Kosenko, Elena; Torregrosa, Isidro; Tosca, Joan; Giner-Durán, Remedios; Serra, Miguel Angel; Avila, César; Belloch, Vicente; Felipo, Vicente; Montoliu, Carmina
2018-06-25
Patients with minimal hepatic encephalopathy (MHE) show mild cognitive impairment associated with alterations in attentional and executive networks. There are no studies evaluating the relationship between memory in MHE and structural and functional connectivity (FC) changes in the hippocampal system. This study aimed to evaluate verbal learning and long-term memory in cirrhotic patients with (C-MHE) and without MHE (C-NMHE) and healthy controls. We assessed the relationship between alterations in memory and the structural integrity and FC of the hippocampal system. C-MHE patients showed impairments in learning, long-term memory, and recognition, compared to C-NMHE patients and controls. Cirrhotic patients showed reduced fimbria volume compared to controls. Larger volumes in hippocampus subfields were related to better memory performance in C-NMHE patients and controls. C-MHE patients presented lower FC between the L-presubiculum and L-precuneus than C-NMHE patients. Compared to controls, C-MHE patients had reduced FC between L-presubiculum and subiculum seeds and bilateral precuneus, which correlated with cognitive impairment and memory performance. Alterations in the FC of the hippocampal system could contribute to learning and long-term memory impairments in C-MHE patients. This study demonstrates the association between alterations in learning and long-term memory and structural and FC disturbances in hippocampal structures in cirrhotic patients.
Derksen, B J; Duff, M C; Weldon, K; Zhang, J; Zamba, K D; Tranel, D; Denburg, N L
2015-01-01
Learning and memory abilities tend to decline as people age. The current study examines the question of whether a learning situation that emphasises collaborative social interaction might help older persons overcome age-related learning and memory changes and thus perform similarly to younger persons. Younger and Older participants (n = 34 in each group) completed the Barrier Task (BT), a game-like social interaction where partners work together to develop labels for a set of abstract tangrams. Participants were also administered standard clinical neuropsychological measures of memory, on which the Older group showed expected inferiority to the Younger group. On the BT, the Older group performed less well than the Younger group early on, but as the task progressed, the performance of the Older group caught up and became statistically indistinguishable from that of the Younger group. These results can be taken to suggest that a learning milieu characterised by collaborative social interaction can attenuate some of the typical memory disadvantages associated with being older.
Learning the Language of Copernicus.
Lubowitz, James H; Provencher, Matthew T; Brand, Jefferson C; Rossi, Michael J
2015-08-01
The Copernicus Initiative was a bold and important undertaking by the Arthroscopy Association of North America to help further our learning the art of arthroscopy in a controlled setting. Understanding arthroscopic learning, training, and simulation research requires mastery of a lexicon of new terms, which AANA Copernicus researchers define in a glossary. Learning requires practice to develop proficiency. Developing new ability is a rewarding challenge. Metrics may be used to quantitatively measure objective performance, and is a key component of the Copernicus Initiative. A dedicated group of AANA researchers and educators have taken on an important and challenging task to help us improve in the realm of surgical education. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Motz, Benjamin A; de Leeuw, Joshua R; Carvalho, Paulo F; Liang, Kaley L; Goldstone, Robert L
2017-01-01
Despite widespread assertions that enthusiasm is an important quality of effective teaching, empirical research on the effect of enthusiasm on learning and memory is mixed and largely inconclusive. To help resolve these inconsistencies, we conducted a carefully-controlled laboratory experiment, investigating whether enthusiastic instructions for a memory task would improve recall accuracy. Scripted videos, either enthusiastic or neutral, were used to manipulate the delivery of task instructions. We also manipulated the sequence of learning items, replicating the spacing effect, a known cognitive technique for memory improvement. Although spaced study reliably improved test performance, we found no reliable effect of enthusiasm on memory performance across two experiments. We did, however, find that enthusiastic instructions caused participants to respond to more item prompts, leaving fewer test questions blank, an outcome typically associated with increased task motivation. We find no support for the popular claim that enthusiastic instruction will improve learning, although it may still improve engagement. This dissociation between motivation and learning is discussed, as well as its implications for education and future research on student learning.
de Leeuw, Joshua R.; Carvalho, Paulo F.; Liang, Kaley L.; Goldstone, Robert L.
2017-01-01
Despite widespread assertions that enthusiasm is an important quality of effective teaching, empirical research on the effect of enthusiasm on learning and memory is mixed and largely inconclusive. To help resolve these inconsistencies, we conducted a carefully-controlled laboratory experiment, investigating whether enthusiastic instructions for a memory task would improve recall accuracy. Scripted videos, either enthusiastic or neutral, were used to manipulate the delivery of task instructions. We also manipulated the sequence of learning items, replicating the spacing effect, a known cognitive technique for memory improvement. Although spaced study reliably improved test performance, we found no reliable effect of enthusiasm on memory performance across two experiments. We did, however, find that enthusiastic instructions caused participants to respond to more item prompts, leaving fewer test questions blank, an outcome typically associated with increased task motivation. We find no support for the popular claim that enthusiastic instruction will improve learning, although it may still improve engagement. This dissociation between motivation and learning is discussed, as well as its implications for education and future research on student learning. PMID:28732087
Selective attention: psi performance in children with learning disabilities.
Garcia, Vera Lúcia; Pereira, Liliane Desgualdo; Fukuda, Yotaka
2007-01-01
Selective attention is essential for learning how to write and read. The objective of this study was to examine the process of selective auditory attention in children with learning disabilities. Group I included forty subjects aged between 9 years and six months and 10 years and eleven months, who had a low risk of altered hearing, language and learning development. Group II included 20 subjects aged between 9 years and five months and 11 years and ten months, who presented learning disabilities. A prospective study was done using the Pediatric Speech Intelligibility Test (PSI). Right ear PSI with an ipsilateral competing message at speech/noise ratios of 0 and -10 was sufficient to differentiate Group I and Group II. Special attention should be given to the performance of Group II on the first tested ear, which may substantiate important signs of improvements in performance and rehabilitation. The PSI - MCI of the right ear at speech/noise ratios of 0 and -10 was appropriate to differentiate Groups I and II. There was an association with the group that presented learning disabilities: this group showed problems in selective attention.
Does test-enhanced learning transfer for triple associates?
Pan, Steven C; Wong, Carol M; Potter, Zachary E; Mejia, Jonathan; Rickard, Timothy C
2016-01-01
Test-enhanced learning and transfer for triple-associate word stimuli was assessed in three experiments. In each experiment, training and final-test trials involved the presentation of two words per triple associate (triplet), with the third word having to be retrieved. In agreement with the prior literature on different stimuli, training through testing with feedback yielded markedly better final-test performance than did restudy. However, in contrast to the positive transfer reported for paired associate stimuli, minimal or no positive transfer was observed, relative to a restudy control, from a trained cue combination (e.g., A, B, ?) to other cue combinations from the same triplet that required a different response (e.g., B, C, ?). That result also held when two unique cue combinations per triplet were tested during training, and for triplets with low and high average associative strengths. Supplementary analyses provided insight into the overall transfer effect: An incorrect response during training appears to yield positive transfer relative to restudy, whereas a correct response appears to yield no, or even negative, transfer. Cross-experiment analyses indicated that test-enhanced learning is not diminished when two or three cue combinations are presented during training. Thus, even though learning through testing is highly specific, testing on all possible stimulus-response combinations remains the most efficient strategy for the learning of triple associates.
Adiabatic quantum optimization for associative memory recall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seddiqi, Hadayat; Humble, Travis S.
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less
Adiabatic Quantum Optimization for Associative Memory Recall
NASA Astrophysics Data System (ADS)
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less
Mirror neurons: from origin to function.
Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia
2014-04-01
This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.
ERIC Educational Resources Information Center
Stein, Joan Lerner; Budoff, Milton
Compared were performances of 39 educable mentally retarded (EMR) Ss, mean chronological age (CA) 11 1/2 years, mean mental age (MA) 7 3/4 years; 25 fifth graders matched on CA; and 27 second graders matched on MA to determine whether children of different ages and IQ spontaneously demonstrate learning strategies after repeated practice with…
Soto, Fabian A.; Bassett, Danielle S.; Ashby, F. Gregory
2016-01-01
Recent work has shown that multimodal association areas–including frontal, temporal and parietal cortex–are focal points of functional network reconfiguration during human learning and performance of cognitive tasks. On the other hand, neurocomputational theories of category learning suggest that the basal ganglia and related subcortical structures are focal points of functional network reconfiguration during early learning of some categorization tasks, but become less so with the development of automatic categorization performance. Using a combination of network science and multilevel regression, we explore how changes in the connectivity of small brain regions can predict behavioral changes during training in a visual categorization task. We find that initial category learning, as indexed by changes in accuracy, is predicted by increasingly efficient integrative processing in subcortical areas, with higher functional specialization, more efficient integration across modules, but a lower cost in terms of redundancy of information processing. The development of automaticity, as indexed by changes in the speed of correct responses, was predicted by lower clustering (particularly in subcortical areas), higher strength (highest in cortical areas) and higher betweenness centrality. By combining neurocomputational theories and network scientific methods, these results synthesize the dissociative roles of multimodal association areas and subcortical structures in the development of automaticity during category learning. PMID:27453156
Lissek, Silke; Vallana, Guido S.; Schlaffke, Lara; Lenz, Melanie; Dinse, Hubert R.; Tegenthoff, Martin
2014-01-01
The dopaminergic system is involved in learning and participates in the modulation of cortical excitability (CE). CE has been suggested as a marker of learning and use-dependent plasticity. However, results from separate studies on either motor CE or motor learning challenge this notion, suggesting opposing effects of dopaminergic modulation upon these parameters: while agonists decrease and antagonists increase CE, motor learning is enhanced by agonists and disturbed by antagonists. To examine whether this discrepancy persists when complex motor learning and motor CE are measured in the same experimental setup, we investigated the effects of dopaminergic (DA) antagonism upon both parameters and upon task-associated brain activation. Our results demonstrate that DA-antagonism has opposing effects upon motor CE and motor sequence learning. Tiapride did not alter baseline CE, but increased CE post training of a complex motor sequence while simultaneously impairing motor learning. Moreover, tiapride reduced activation in several brain regions associated with motor sequence performance, i.e., dorsolateral PFC (dlPFC), supplementary motor area (SMA), Broca's area, cingulate and caudate body. Blood-oxygenation-level-dependent (BOLD) intensity in anterior cingulate and caudate body, but not CE, correlated with performance across groups. In summary, our results do not support a concept of CE as a general marker of motor learning, since they demonstrate that a straightforward relation of increased CE and higher learning success does not apply to all instances of motor learning. At least for complex motor tasks that recruit a network of brain regions outside motor cortex, CE in primary motor cortex is probably no central determinant for learning success. PMID:24994972
Bellebaum, C; Jokisch, D; Gizewski, E R; Forsting, M; Daum, I
2012-02-01
Successful adaptation to the environment requires the learning of stimulus-response-outcome associations. Such associations can be learned actively by trial and error or by observing the behaviour and accompanying outcomes in other persons. The present study investigated similarities and differences in the neural mechanisms of active and observational learning from monetary feedback using functional magnetic resonance imaging. Two groups of 15 subjects each - active and observational learners - participated in the experiment. On every trial, active learners chose between two stimuli and received monetary feedback. Each observational learner observed the choices and outcomes of one active learner. Learning performance as assessed via active test trials without feedback was comparable between groups. Different activation patterns were observed for the processing of unexpected vs. expected monetary feedback in active and observational learners, particularly for positive outcomes. Activity for unexpected vs. expected reward was stronger in the right striatum in active learning, while activity in the hippocampus was bilaterally enhanced in observational and reduced in active learning. Modulation of activity by prediction error (PE) magnitude was observed in the right putamen in both types of learning, whereas PE related activations in the right anterior caudate nucleus and in the medial orbitofrontal cortex were stronger for active learning. The striatum and orbitofrontal cortex thus appear to link reward stimuli to own behavioural reactions and are less strongly involved when the behavioural outcome refers to another person's action. Alternative explanations such as differences in reward value between active and observational learning are also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Casaletto, K B; Marx, G; Dutt, S; Neuhaus, J; Saloner, R; Kritikos, L; Miller, B; Kramer, J H
2017-07-28
Although commonly interpreted as a marker of episodic memory during neuropsychological exams, relatively little is known regarding the neurobehavior of "total learning" immediate recall scores. Medial temporal lobes are clearly associated with delayed recall performances, yet immediate recall may necessitate networks beyond traditional episodic memory. We aimed to operationalize cognitive and neuroanatomic correlates of total immediate recall in several aging syndromes. Demographically-matched neurologically normal adults (n=91), individuals with Alzheimer's disease (n=566), logopenic variant primary progressive aphasia (PPA) (n=34), behavioral variant frontotemporal dementia (n=97), semantic variant PPA (n=71), or nonfluent/agrammatic variant PPA (n=39) completed a neurocognitive battery, including the CVLT-Short Form trials 1-4 Total Immediate Recall; a majority subset also completed a brain MRI. Regressions covaried for age and sex, and MMSE in cognitive and total intracranial volume in neuroanatomic models. Neurologically normal adults demonstrated a heterogeneous pattern of cognitive associations with total immediate recall (executive, speed, delayed recall), such that no singular cognitive or neuroanatomic correlate uniquely predicted performance. Within the clinical cohorts, there were syndrome-specific cognitive and neural associations with total immediate recall; e.g., semantic processing was the strongest cognitive correlate in svPPA (partial r=0.41), while frontal volumes was the only meaningful neural correlate in bvFTD (partial r=0.20). Medial temporal lobes were not independently associated with total immediate recall in any group (ps>0.05). Multiple neurobehavioral systems are associated with "total learning" immediate recall scores that importantly differ across distinct clinical syndromes. Conventional memory networks may not be sufficient or even importantly contribute to total immediate recall in many syndromes. Interpreting learning scores as equivalent to episodic memory may be erroneous. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cognitive effects of methylphenidate and levodopa in healthy volunteers.
Linssen, A M W; Sambeth, A; Vuurman, E F P M; Riedel, W J
2014-02-01
Our previous study showed enhanced declarative memory consolidation after acute methylphenidate (MPH) administration. The primary aim of the current study was to investigate the duration of this effect. Secondary, the dopaminergic contribution of MPH effects, the electrophysiological correlates of declarative memory, and the specificity of memory enhancing effects of MPH to declarative memory were assessed. Effects of 40 mg of MPH on memory performance were compared to 100mg of levodopa (LEV) in a placebo-controlled crossover study with 30 healthy volunteers. Memory performance testing included a word learning test, the Sternberg memory scanning task, a paired associates learning task, and a spatial working memory task. During the word learning test, event-related brain potentials (ERPs) were measured. MPH failed to enhance retention of words at a 30 min delay, but it improved 24 h delayed memory recall relative to PLA and LEV. Furthermore, during encoding, the P3b and P600 ERP latencies were prolonged and the P600 amplitude was larger after LEV compared to PLA and MPH. MPH speeded response times on the Sternberg Memory Scanning task and improved performance on the Paired Associates Learning task, relative to LEV, but not PLA. Performance on the Spatial working memory task was not affected by the treatments. These findings suggest that MPH and LEV might have opposite effects on memory. © 2013 Published by Elsevier B.V. and ECNP.
Schutz, Christine M; Dalton, Leanne; Tepe, Rodger E
2013-01-01
This study was designed to extend research on the relationship between chiropractic students' learning and study strategies and national board examination performance. Sixty-nine first trimester chiropractic students self-administered the Learning and Study Strategies Inventory (LASSI). Linear trends tests (for continuous variables) and Mantel-Haenszel trend tests (for categorical variables) were utilized to determine if the 10 LASSI subtests and 3 factors predicted low, medium and high levels of National Board of Chiropractic Examiners (NBCE) Part 1 scores. Multiple regression was performed to predict overall mean NBCE examination scores using the 3 LASSI factors as predictor variables. Four LASSI subtests (Anxiety, Concentration, Selecting Main Ideas, Test Strategies) and one factor (Goal Orientation) were significantly associated with NBCE examination levels. One factor (Goal Orientation) was a significant predictor of overall mean NBCE examination performance. Learning and study strategies are predictive of NBCE Part 1 examination performance in chiropractic students. The current study found LASSI subtests Anxiety, Concentration, Selecting Main Ideas, and Test Strategies, and the Goal-Orientation factor to be significant predictors of NBCE scores. The LASSI may be useful to educators in preparing students for academic success. Further research is warranted to explore the effects of learning and study strategies training on GPA and NBCE performance.
Selective cognitive impairments associated with NMDA receptor blockade in humans.
Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A
2005-03-01
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.
The effect of content delivery style on student performance in anatomy.
White, Lloyd J; McGowan, Heath W; McDonald, Aaron C
2018-04-12
The development of new technologies and ensuing pedagogical research has led many tertiary institutions to integrate and adopt online learning strategies. The authors of this study have incorporated online learning strategies into existing educational practices of a second year anatomy course, resulting in half of the course content delivered via face-to-face lectures, and half delivered online via tailored video vignettes, with accompanying worksheets and activities. The effect of the content delivery mode on student learning was analyzed by tailoring questions to content presented either face-to-face or online. Four practical tests were conducted across the semester with each consisting of four questions. Within each test, two questions were based on content delivered face-to-face, and two questions were based on content delivered online. Examination multiple choice questions were similarly divided and assessed. Findings indicate that student learning is consistent regardless of the mode of content delivery. However, student viewing habits had a significant impact on learning, with students who viewed videos multiple times achieving higher marks than those less engaged with the online content. Student comments also indicated that content delivery mode was not an influence on learning. Therefore student engagement, rather than the mode of content delivery, is a determinant of student learning and performance in human anatomy. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.
Predictors of Sensitivity to Perceptual Learning in Children With Infantile Nystagmus.
Huurneman, Bianca; Boonstra, F Nienke; Goossens, Jeroen
2017-08-01
To identify predictors of sensitivity to perceptual learning on a computerized, near-threshold letter discrimination task in children with infantile nystagmus (idiopathic IN: n = 18; oculocutaneous albinism accompanied by IN: n = 18). Children were divided into two age-, acuity-, and diagnosis-matched training groups: a crowded (n = 18) and an uncrowded training group (n = 18). Training consisted of 10 sessions spread out over 5 weeks (grand total of 3500 trials). Baseline performance, age, diagnosis, training condition, and perceived pleasantness of training (training joy) were entered as linear regression predictors of training-induced changes on a single- and a crowded-letter task. An impressive 57% of the variability in improvements of single-letter visual acuity was explained by age, training condition, and training joy. Being older and training with uncrowded letters were associated with larger single-letter visual acuity improvements. More training joy was associated with a larger gain from the uncrowded training and a smaller gain from the crowded training. Fifty-six percent of the variability in crowded-letter task improvements was explained by baseline performance, age, diagnosis, and training condition. After regressing out the variability induced by training condition, baseline performance, and age, perceptual learning proved more effective for children with idiopathic IN than for children with albinism accompanied by IN. Training gains increased with poorer baseline performance in idiopaths, but not in children with albinism accompanied by IN. Age and baseline performance, but not training joy, are important prognostic factors for the effect of perceptual learning in children with IN. However, their predictive value for achieving improvements in single-letter acuity and crowded letter acuity, respectively, differs between diagnostic subgroups and training condition. These findings may help with personalized treatment of individuals likely to benefit from perceptual learning.
Sakadjian, Alex; Panchuk, Derek; Pearce, Alan J
2014-06-01
This study investigated the effectiveness of action observation (AO) on facilitating learning of the power clean technique (kinematics) compared with traditional strength coaching methods and whether improvements in performance (kinetics) were associated with an improvement in lifting technique. Fifteen subjects (age, 20.9 ± 2.3 years) with no experience in performing the power clean exercise attended 12 training and testing sessions over a 4-week period. Subjects were assigned to 2 matched groups, based on preintervention power clean performance and performed 3 sets of 5 repetitions of the power clean exercise at each training session. Subjects in the traditional coaching group (TC; n = 7) received the standard coaching feedback (verbal cues and physical practice), whereas subjects in the AO group (n = 8) received similar verbal coaching cues and physical practice but also observed a video of a skilled model before performing each set. Kinematic data were collected from video recordings of subjects who were fitted with joint center markings during testing, whereas kinetic data were collected from a weightlifting analyzer attached to the barbell. Subjects were tested before intervention, at the end of weeks 2 and 3, and at after intervention at the end of week 4. Faster improvements (3%) were observed in power clean technique with AO-facilitated learning in the first week and performance improvements (mean peak power of the subject's 15 repetitions) over time were significant (p < 0.001). In addition, performance improvement was significantly associated (R = 0.215) with technique improvements. In conclusion, AO combined with verbal coaching and physical practice of the power clean exercise resulted in significantly faster technique improvements and improvement in performance compared with traditional coaching methods.
Rice, Marissa A; Hobbs, Lauren E; Wallace, Kelly J; Ophir, Alexander G
2017-09-01
Sex differences are well documented and are conventionally associated with intense sex-specific selection. For example, spatial memory is frequently better in males, presumably due to males' tendency to navigate large spaces to find mates. Alternatively, monogamy (in which sex-specific selection is relatively relaxed) should diminish or eliminate differences in spatial ability and the mechanisms associated with this behavior. Nevertheless, phenotypic differences between monogamous males and females persist, sometimes cryptically. We hypothesize that sex-specific cognitive demands are present in monogamous species that will influence neural and behavioral phenotypes. The effects of these demands should be observable in spatial learning performance and neural structures associated with spatial learning and memory. We analyzed spatial memory performance, hippocampal volume and cell density, and hippocampal oxytocin receptor (OTR) expression in the socially monogamous prairie vole. Compared to females, males performed better in a spatial memory and spatial learning test. Although we found no sex difference in hippocampal volume or cell density, male OTR density was significantly lower than females, suggesting that performance may be regulated by sub-cellular mechanisms within the hippocampus that are less obvious than classic neuroanatomical features. Our results suggest an expanded role for oxytocin beyond facilitating social interactions, which may function in part to integrate social and spatial information. Copyright © 2017 Elsevier Inc. All rights reserved.
Distinctive neural processes during learning in autism.
Schipul, Sarah E; Williams, Diane L; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam
2012-04-01
This functional magnetic resonance imaging study compared the neural activation patterns of 18 high-functioning individuals with autism and 18 IQ-matched neurotypical control participants as they learned to perform a social judgment task. Participants learned to identify liars among pairs of computer-animated avatars uttering the same sentence but with different facial and vocal expressions, namely those that have previously been associated with lying versus truth-telling. Despite showing a behavioral learning effect similar to the control group, the autism group did not show the same pattern of decreased activation in cortical association areas as they learned the task. Furthermore, the autism group showed a significantly smaller increase in interregion synchronization of activation (functional connectivity) with learning than did the control group. Finally, the autism group had decreased structural connectivity as measured by corpus callosum size, and this measure was reliably related to functional connectivity measures. The findings suggest that cortical underconnectivity in autism may constrain the ability of the brain to rapidly adapt during learning.
Memory as discrimination: a challenge to the encoding-retrieval match principle.
Poirier, Marie; Nairne, James S; Morin, Caroline; Zimmermann, Friederike G S; Koutmeridou, Kyriaki; Fowler, James
2012-01-01
Four experiments contrasted the predictions of a general encoding-retrieval match hypothesis with those of a view claiming that the distinctiveness of the cue-target relationship is the causal factor in retrieval. In Experiments 1, 2, and 4 participants learned the relationships between 4 targets and trios of cues; in Experiment 3 there were 3 targets, each associated with a pair of cues. A learning phase was followed by a cued-recognition task where the correct target had to be identified based on 1 or more of the cues. The main performance measurement was response time. Learning was designed to lead to high accuracy so effects could be attributed to retrieval efficiency rather than to variations in encoding. The nature of the cues and targets was varied across experiments. The critical factor was whether each cue was uniquely associated with the to-be-recalled target. All experiments orthogonally manipulated (a) how discriminative-or uniquely associated with a target-each cue was and (b) the degree of overlap between the cues present during learning and those present at retrieval. The novel finding reported here is that increasing the encoding-retrieval match can hinder performance if the increase simultaneously reduces how well cues predict a target-that is, a cue's diagnostic value. Encoding-retrieval match was not the factor that determined the effectiveness of retrieval. Our findings suggest that increasing the encoding-retrieval match can lead to no change, an increase, or a decrease in retrieval performance.
Physical Education and Academic Performance in Urban African American Girls
ERIC Educational Resources Information Center
Shen, Bo
2017-01-01
This study was designed to examine urban African American girls' participation in physical education and its association with academic performance. One hundred eighty four participants completed questionnaires assessing moderate-to-vigorous physical activity and learning engagement in physical education while their academic performance was based…
Feldmann-Wüstefeld, Tobias; Uengoer, Metin; Schubö, Anna
2015-11-01
Besides visual salience and observers' current intention, prior learning experience may influence deployment of visual attention. Associative learning models postulate that observers pay more attention to stimuli previously experienced as reliable predictors of specific outcomes. To investigate the impact of learning experience on deployment of attention, we combined an associative learning task with a visual search task and measured event-related potentials of the EEG as neural markers of attention deployment. In the learning task, participants categorized stimuli varying in color/shape with only one dimension being predictive of category membership. In the search task, participants searched a shape target while disregarding irrelevant color distractors. Behavioral results showed that color distractors impaired performance to a greater degree when color rather than shape was predictive in the learning task. Neurophysiological results show that the amplified distraction was due to differential attention deployment (N2pc). Experiment 2 showed that when color was predictive for learning, color distractors captured more attention in the search task (ND component) and more suppression of color distractor was required (PD component). The present results thus demonstrate that priority in visual attention is biased toward predictive stimuli, which allows learning experience to shape selection. We also show that learning experience can overrule strong top-down control (blocked tasks, Experiment 3) and that learning experience has a longer-term effect on attention deployment (tasks on two successive days, Experiment 4). © 2015 Society for Psychophysiological Research.
Wahlheim, Christopher N
2011-07-01
Four experiments examined the monitoring accuracy of immediate and delayed judgments of learning (JOLs) under conditions of proactive interference (PI). PI was produced using paired-associate learning tasks that conformed to variations of classic A-B, A-D paradigms. Results revealed that the relative monitoring accuracy of interference items was better for delayed than for immediate JOLs. However, delayed JOLs were overconfident for interference items, but not for items devoid of interference. Intrusions retrieved prior to delayed JOLs produced inflated predictions of performance. These results show that delayed JOLs enhance monitoring accuracy in PI situations, except when intrusions are mistaken for target responses.
Stage 2 Sleep EEG Sigma Activity and Motor Learning in Childhood ADHD: A Pilot Study
Saletin, Jared M.; Coon, William G.; Carskadon, Mary A.
2017-01-01
Objective Attention deficit hyperactivity disorder (ADHD) is associated with deficits in motor learning and sleep. In healthy adults, overnight motor skill learning improvement is associated with sleep spindle activity in the sleep EEG. This association is poorly characterized in children, particularly in pediatric ADHD. Method Polysomnographic sleep was monitored in seven children with ADHD and fourteen typically developing controls. All children trained on a validated motor sequence task (MST) in the evening with retesting the following morning. Analyses focused on MST precision (speed-accuracy trade-off). NREM Stage 2 sleep EEG power spectral analyses focused on spindle-frequency EEG activity in the sigma (12–15 Hz) band. Results The ADHD group demonstrated a selective decrease in power within the sigma band. Evening MST precision was lower in ADHD, yet no difference in performance was observed following sleep. Moreover, ADHD-status moderated the association between slow sleep spindle activity (12–13.5 Hz) and overnight improvement; spindle-frequency EEG activity was positively associated with performance improvements in children with ADHD but not in controls. Conclusions These data highlight the importance of sleep in supporting next day behavior in ADHD, while indicating that differences in sleep neurophysiology may, in part, underlie cognitive deficits in this population. PMID:27267670
Punishment sensitivity modulates the processing of negative feedback but not error-induced learning.
Unger, Kerstin; Heintz, Sonja; Kray, Jutta
2012-01-01
Accumulating evidence suggests that individual differences in punishment and reward sensitivity are associated with functional alterations in neural systems underlying error and feedback processing. In particular, individuals highly sensitive to punishment have been found to be characterized by larger mediofrontal error signals as reflected in the error negativity/error-related negativity (Ne/ERN) and the feedback-related negativity (FRN). By contrast, reward sensitivity has been shown to relate to the error positivity (Pe). Given that Ne/ERN, FRN, and Pe have been functionally linked to flexible behavioral adaptation, the aim of the present research was to examine how these electrophysiological reflections of error and feedback processing vary as a function of punishment and reward sensitivity during reinforcement learning. We applied a probabilistic learning task that involved three different conditions of feedback validity (100%, 80%, and 50%). In contrast to prior studies using response competition tasks, we did not find reliable correlations between punishment sensitivity and the Ne/ERN. Instead, higher punishment sensitivity predicted larger FRN amplitudes, irrespective of feedback validity. Moreover, higher reward sensitivity was associated with a larger Pe. However, only reward sensitivity was related to better overall learning performance and higher post-error accuracy, whereas highly punishment sensitive participants showed impaired learning performance, suggesting that larger negative feedback-related error signals were not beneficial for learning or even reflected maladaptive information processing in these individuals. Thus, although our findings indicate that individual differences in reward and punishment sensitivity are related to electrophysiological correlates of error and feedback processing, we found less evidence for influences of these personality characteristics on the relation between performance monitoring and feedback-based learning.
Genetic variation of the RASGRF1 regulatory region affects human hippocampus-dependent memory
Barman, Adriana; Assmann, Anne; Richter, Sylvia; Soch, Joram; Schütze, Hartmut; Wüstenberg, Torsten; Deibele, Anna; Klein, Marieke; Richter, Anni; Behnisch, Gusalija; Düzel, Emrah; Zenker, Martin; Seidenbecher, Constanze I.; Schott, Björn H.
2014-01-01
The guanine nucleotide exchange factor RASGRF1 is an important regulator of intracellular signaling and neural plasticity in the brain. RASGRF1-deficient mice exhibit a complex phenotype with learning deficits and ocular abnormalities. Also in humans, a genome-wide association study has identified the single nucleotide polymorphism (SNP) rs8027411 in the putative transcription regulatory region of RASGRF1 as a risk variant of myopia. Here we aimed to assess whether, in line with the RASGRF1 knockout mouse phenotype, rs8027411 might also be associated with human memory function. We performed computer-based neuropsychological learning experiments in two independent cohorts of young, healthy participants. Tests included the Verbal Learning and Memory Test (VLMT) and the logical memory section of the Wechsler Memory Scale (WMS). Two sub-cohorts additionally participated in functional magnetic resonance imaging (fMRI) studies of hippocampus function. 119 participants performed a novelty encoding task that had previously been shown to engage the hippocampus, and 63 subjects participated in a reward-related memory encoding study. RASGRF1 rs8027411 genotype was indeed associated with memory performance in an allele dosage-dependent manner, with carriers of the T allele (i.e., the myopia risk allele) showing better memory performance in the early encoding phase of the VLMT and in the recall phase of the WMS logical memory section. In fMRI, T allele carriers exhibited increased hippocampal activation during presentation of novel images and during encoding of pictures associated with monetary reward. Taken together, our results provide evidence for a role of the RASGRF1 gene locus in hippocampus-dependent memory and, along with the previous association with myopia, point toward pleitropic effects of RASGRF1 genetic variations on complex neural function in humans. PMID:24808846
ERIC Educational Resources Information Center
Charteris, Jennifer
2016-01-01
Neoliberal policy objectives perpetuate an audit culture at both school and system levels. The associated focus on performativity and accountability can result in reductive and procedural interpretations of classroom assessment for learning (AfL) practices. Set in a New Zealand AfL professional development context, this research takes an…
ERIC Educational Resources Information Center
Mustafa, Hassan M. H.; Tourkia, Fadhel Ben; Ramadan, Ramadan Mohamed
2017-01-01
The objective of this piece of research is to interpret and investigate systematically an observed brain functional phenomenon which is associated with proceeding of e-learning processes. More specifically, this work addresses an interesting and challenging educational issue concerned with dynamical evaluation of elearning performance considering…
Beyond the Criteria: Evidence of Teacher Learning in a Performance Assessment
ERIC Educational Resources Information Center
Stewart, Anissa R.; Scalzo, Jennifer N.; Merino, Nicole; Nilsen, Katherine
2015-01-01
U.S. Secretary of Education Arne Duncan (2009) underscored the need for better assessments of the pedagogical skills of new teachers when he identified the efforts of the American Association of Colleges for Teacher Education (AACTE) and its 800 colleges and universities to improve student learning through developing a national assessment of…
ERIC Educational Resources Information Center
Hansen, Michael; Gonzalez, Thomas
2014-01-01
Science, technology, engineering and math (STEM) advocates commonly emphasize an interdisciplinary, authentic, project-based, and technology-based approach to learning, though the strength of prior research varies. This study examines the association between a range of classroom activities and academic performance gains in math and science. Using…
ERIC Educational Resources Information Center
Bembenutty, Hefer; Zimmerman, Barry J.
This study examined individual differences in the ways students responded to a self-regulation learning training. It was predicted that students' motivational beliefs would be associated with at-risk college students' use of self-regulated learning strategies, homework completion, and academic performance. Participants were 58 college students in…
Learning Semantics of Gestural Instructions for Human-Robot Collaboration
Shukla, Dadhichi; Erkent, Özgür; Piater, Justus
2018-01-01
Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions. PMID:29615888
Learning Semantics of Gestural Instructions for Human-Robot Collaboration.
Shukla, Dadhichi; Erkent, Özgür; Piater, Justus
2018-01-01
Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions.
Whitfield, Jason A; Goberman, Alexander M
2017-06-22
Everyday communication is carried out concurrently with other tasks. Therefore, determining how dual tasks interfere with newly learned speech motor skills can offer insight into the cognitive mechanisms underlying speech motor learning in Parkinson disease (PD). The current investigation examines a recently learned speech motor sequence under dual-task conditions. A previously learned sequence of 6 monosyllabic nonwords was examined using a dual-task paradigm. Participants repeated the sequence while concurrently performing a visuomotor task, and performance on both tasks was measured in single- and dual-task conditions. The younger adult group exhibited little to no dual-task interference on the accuracy and duration of the sequence. The older adult group exhibited variability in dual-task costs, with the group as a whole exhibiting an intermediate, though significant, amount of dual-task interference. The PD group exhibited the largest degree of bidirectional dual-task interference among all the groups. These data suggest that PD affects the later stages of speech motor learning, as the dual-task condition interfered with production of the recently learned sequence beyond the effect of normal aging. Because the basal ganglia is critical for the later stages of motor sequence learning, the observed deficits may result from the underlying neural dysfunction associated with PD.
Changes of motor-cortical oscillations associated with motor learning.
Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A
2014-09-05
Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning
Quercia, Angelica; Zappasodi, Filippo; Committeri, Giorgia; Ferrara, Michele
2018-01-01
Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in wakefulness, associated with performance failures, could be functionally linked to learning-related cortical plasticity. PMID:29666574
Prolonged maturation of auditory perception and learning in gerbils
Sarro, Emma C.; Sanes, Dan H.
2011-01-01
In humans, auditory perception reaches maturity over a broad age range, extending through adolescence. Despite this slow maturation, children are considered to be outstanding learners, suggesting that immature perceptual skills might actually be advantageous to improvement on an acoustic task as a result of training (perceptual learning). Previous non-human studies have not employed an identical task when comparing perceptual performance of young and mature subjects, making it difficult to assess learning. Here, we used an identical procedure on juvenile and adult gerbils to examine the perception of amplitude modulation (AM), a stimulus feature that is an important component of most natural sounds. On average, Adult animals could detect smaller fluctuations in amplitude (i.e. smaller modulation depths) than Juveniles, indicating immature perceptual skills in Juveniles. However, the population variance was much greater for Juveniles, a few animals displaying adult-like AM detection. To determine whether immature perceptual skills facilitated learning, we compared naïve performance on the AM detection task with the amount of improvement following additional training. The amount of improvement in Adults correlated with naïve performance: those with the poorest naïve performance improved the most. In contrast, the naïve performance of Juveniles did not predict the amount of learning. Those Juveniles with immature AM detection thresholds did not display greater learning than Adults. Furthermore, for several of the Juveniles with adult-like thresholds, AM detection deteriorated with repeated testing. Thus, immature perceptual skills in young animals were not associated with greater learning. PMID:20506133
Punishment insensitivity and impaired reinforcement learning in preschoolers.
Briggs-Gowan, Margaret J; Nichols, Sara R; Voss, Joel; Zobel, Elvira; Carter, Alice S; McCarthy, Kimberly J; Pine, Daniel S; Blair, James; Wakschlag, Lauren S
2014-01-01
Youth and adults with psychopathic traits display disrupted reinforcement learning. Advances in measurement now enable examination of this association in preschoolers. The current study examines relations between reinforcement learning in preschoolers and parent ratings of reduced responsiveness to socialization, conceptualized as a developmental vulnerability to psychopathic traits. One hundred and fifty-seven preschoolers (mean age 4.7 ± 0.8 years) participated in a substudy that was embedded within a larger project. Children completed the 'Stars-in-Jars' task, which involved learning to select rewarded jars and avoid punished jars. Maternal report of responsiveness to socialization was assessed with the Punishment Insensitivity and Low Concern for Others scales of the Multidimensional Assessment of Preschool Disruptive Behavior (MAP-DB). Punishment Insensitivity, but not Low Concern for Others, was significantly associated with reinforcement learning in multivariate models that accounted for age and sex. Specifically, higher Punishment Insensitivity was associated with significantly lower overall performance and more errors on punished trials ('passive avoidance'). Impairments in reinforcement learning manifest in preschoolers who are high in maternal ratings of Punishment Insensitivity. If replicated, these findings may help to pinpoint the neurodevelopmental antecedents of psychopathic tendencies and suggest novel intervention targets beginning in early childhood. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.
Cheung, Mei-Chun; Chan, Agnes S; Liu, Ying; Law, Derry; Wong, Christina W Y
2017-01-01
Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation.
Cheung, Mei-chun; Chan, Agnes S.; Liu, Ying; Law, Derry; Wong, Christina W. Y.
2017-01-01
Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation. PMID:28358852
Mayor-Dubois, Claire; Zesiger, Pascal; Van der Linden, Martial; Roulet-Perez, Eliane
2016-01-01
In this study, we investigated motor and cognitive procedural learning in typically developing children aged 8-12 years with a serial reaction time (SRT) task and a probabilistic classification learning (PCL) task. The aims were to replicate and extend the results of previous SRT studies, to investigate PCL in school-aged children, to explore the contribution of declarative knowledge to SRT and PCL performance, to explore the strategies used by children in the PCL task via a mathematical model, and to see whether performances obtained in motor and cognitive tasks correlated. The results showed similar learning effects in the three age groups in the SRT and in the first half of the PCL tasks. Participants did not develop explicit knowledge in the SRT task whereas declarative knowledge of the cue-outcome associations correlated with the performances in the second half of the PCL task, suggesting a participation of explicit knowledge after some time of exposure in PCL. An increasing proportion of the optimal strategy use with increasing age was observed in the PCL task. Finally, no correlation appeared between cognitive and motor performance. In conclusion, we extended the hypothesis of age invariance from motor to cognitive procedural learning, which had not been done previously. The ability to adopt more efficient learning strategies with age may rely on the maturation of the fronto-striatal loops. The lack of correlation between performance in the SRT task and the first part of the PCL task suggests dissociable developmental trajectories within the procedural memory system.
Prefrontal Cortex Networks Shift from External to Internal Modes during Learning.
Brincat, Scott L; Miller, Earl K
2016-09-14
As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with "internal" memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)-regions critical for sensory associations-of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11-27 Hz) oscillatory power and synchrony associated with "top-down" or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired "top-down" knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. Copyright © 2016 the authors 0270-6474/16/369739-16$15.00/0.
Criterion for correct recalls in associative-memory neural networks
NASA Astrophysics Data System (ADS)
Ji, Han-Bing
1992-12-01
A novel weighted outer-product learning (WOPL) scheme for associative memory neural networks (AMNNs) is presented. In the scheme, each fundamental memory is allocated a learning weight to direct its correct recall. Both the Hopfield and multiple training models are instances of the WOPL model with certain sets of learning weights. A necessary condition of choosing learning weights for the convergence property of the WOPL model is obtained through neural dynamics. A criterion for choosing learning weights for correct associative recalls of the fundamental memories is proposed. In this paper, an important parameter called signal to noise ratio gain (SNRG) is devised, and it is found out empirically that SNRGs have their own threshold values which means that any fundamental memory can be correctly recalled when its corresponding SNRG is greater than or equal to its threshold value. Furthermore, a theorem is given and some theoretical results on the conditions of SNRGs and learning weights for good associative recall performance of the WOPL model are accordingly obtained. In principle, when all SNRGs or learning weights chosen satisfy the theoretically obtained conditions, the asymptotic storage capacity of the WOPL model will grow at the greatest rate under certain known stochastic meaning for AMNNs, and thus the WOPL model can achieve correct recalls for all fundamental memories. The representative computer simulations confirm the criterion and theoretical analysis.
Category Learning Strategies in Younger and Older Adults: Rule Abstraction and Memorization
Wahlheim, Christopher N.; McDaniel, Mark A.; Little, Jeri L.
2016-01-01
Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, both age groups had comparable frequencies of rule- and exemplar-based learners, but older adults had a higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies). Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. PMID:26950225
Langfield, Tracey; Colthorpe, Kay; Ainscough, Louise
2017-12-04
Allied health professionals concur that a sound knowledge of practical gross anatomy is vital for the clinician, however, human anatomy courses in allied health programs have been identified as high-risk for attrition and failure. While anatomists and clinicians agree that learning anatomy via human cadaveric instruction is the preferred method, students vary in their reaction to the cadaveric learning experience and have differing levels of anatomy self-efficacy. This study investigated whether student self-efficacy had an effect on student usage of supplemental instructional videos and whether the use of videos had an impact on student self-efficacy and/or learning. Anatomy self-efficacy differed based on gender and prior performance. Student usage of the videos varied widely and students with lower self-efficacy were more inclined to use the resources. The provision of the videos did not improve overall cohort performance as compared to a historical cohort, however, those students that accessed all video sets experienced a greater normalized learning gain compared to students that used none or one of the four sets of videos. Student reports and usage patterns indicate that the videos were primarily used for practical class preparation and revision. Potentially, the videos represent a passive mode of teaching whereas active learning has been demonstrated to result in greater learning gains. Adapting the videos into interactive tutorials which will provide opportunity for feedback and the development of students' self-evaluation may be more appropriate. Anat Sci Educ. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Can the learning curve of totally endoscopic robotic mitral valve repair be short-circuited?
Yaffee, David W; Loulmet, Didier F; Kelly, Lauren A; Ward, Alison F; Ursomanno, Patricia A; Rabinovich, Annette E; Neuburger, Peter J; Krishnan, Sandeep; Hill, Frederick T; Grossi, Eugene A
2014-01-01
A concern with the initiation of totally endoscopic robotic mitral valve repair (TERMR) programs has been the risk for the learning curve. To minimize this risk, we initiated a TERMR program with a defined team and structured learning approach before clinical implementation. A dedicated team (two surgeons, one cardiac anesthesiologist, one perfusionist, and two nurses) was trained with clinical scenarios, simulations, wet laboratories, and "expert" observation for 3 months. This team then performed a series of TERMRs of varying complexity. Thirty-two isolated TERMRs were performed during the first programmatic year. All operations included mitral valve repair, left atrial appendage exclusion, and annuloplasty device implantation. Additional procedures included leaflet resection, neochordae insertion, atrial ablation, and papillary muscle shortening. Longer clamp times were associated with number of neochordae (P < 0.01), papillary muscle procedures (P < 0.01), and leaflet resection (P = 0.06). Sequential case number had no impact on cross-clamp time (P = 0.3). Analysis of nonclamp time demonstrated a 71.3% learning percentage (P < 0.01; ie, 28.7% reduction in nonclamp time with each doubling of case number). There were no hospital deaths or incidences of stroke, myocardial infarction, unplanned reoperation, respiratory failure, or renal failure. Median length of stay was 4 days. All patients were discharged home. Totally endoscopic robotic mitral valve repair can be safely performed after a pretraining regimen with emphasis on experts' current practice and team training. After a pretraining regimen, cross-clamp times were not subject to learning curve phenomena but were dependent on procedural complexity. Nonclamp times were associated with a short learning curve.
Assessing student engagement and self-regulated learning in a medical gross anatomy course.
Pizzimenti, Marc A; Axelson, Rick D
2015-01-01
In courses with large enrollment, faculty members sometimes struggle with an understanding of how individual students are engaging in their courses. Information about the level of student engagement that instructors would likely find most useful can be linked to: (1) the learning strategies that students are using; (2) the barriers to learning that students are encountering; and (3) whether the course materials and activities are yielding the intended learning outcomes. This study drew upon self-regulated learning theory (SRL) to specify relevant information about learning engagement, and how the measures of particular scales might prove useful for student/faculty reflection. We tested the quality of such information as collected via the Motivated Strategies for Learning Questionnaire (MSLQ). MSLQ items were administered through a web-based survey to 150 students in a first-year medical gross anatomy course. The resulting 66 responses (44% response rate) were examined for information quality (internal reliability and predictive validity) and usefulness of the results to the course instructor. Students' final grades in the course were correlated with their MSLQ scale scores to assess the predictive validity of the measures. These results were consistent with the course design and expectations, showing that greater use of learning strategies such as elaboration and critical thinking was associated with higher levels of performance in the course. Motivation subscales for learning were also correlated with the higher levels of performance in the course. The extent to which these scales capture valid and reliable information in other institutional settings and courses needs further investigation. © 2014 American Association of Anatomists.
A Novel Connectionist Network for Solving Long Time-Lag Prediction Tasks
NASA Astrophysics Data System (ADS)
Johnson, Keith; MacNish, Cara
Traditional Recurrent Neural Networks (RNNs) perform poorly on learning tasks involving long time-lag dependencies. More recent approaches such as LSTM and its variants significantly improve on RNNs ability to learn this type of problem. We present an alternative approach to encoding temporal dependencies that associates temporal features with nodes rather than state values, where the nodes explicitly encode dependencies over variable time delays. We show promising results comparing the network's performance to LSTM variants on an extended Reber grammar task.
Hammerschmidt, Wiebke; Kagan, Igor; Kulke, Louisa; Schacht, Annekathrin
2018-06-22
The present study aimed at investigating whether associated motivational salience causes preferential processing of inherently neutral faces similar to emotional expressions by means of event-related brain potentials (ERPs) and changes of the pupil size. To this aim, neutral faces were implicitly associated with monetary outcome, while participants (N = 44) performed a masked prime face-matching task that ensured performance around chance level and thus an equal proportion of gain, loss, and zero outcomes. Motivational context strongly impacted the processing of the fixation, prime and mask stimuli prior to the target face, indicated by enhanced amplitudes of subsequent ERP components and increased pupil size. In a separate test session, previously associated faces as well as novel faces with emotional expressions were presented within the same task but without motivational context and performance feedback. Most importantly, previously gain-associated faces amplified the LPC, although the individually contingent face-outcome assignments were not made explicit during the learning session. Emotional expressions impacted the N170 and EPN components. Modulations of the pupil size were absent in both motivationally-associated and emotional conditions. Our findings demonstrate that neural representations of neutral stimuli can acquire increased salience via implicit learning, with an advantage for gain over loss associations. Copyright © 2018. Published by Elsevier Inc.
Subclinical cerebrovascular disease inversely associates with learning ability
Glazer, Hilary; Dong, Chuanhui; Yoshita, Mitsuhiro; Rundek, Tatjana; Elkind, Mitchell S.V.; Sacco, Ralph L.; DeCarli, Charles; Stern, Yaakov
2015-01-01
Objective: Memory has been examined in subjects with imaging markers of cerebrovascular disease, but learning has been less well studied. We examined the relationship among subclinical cerebrovascular disease, cerebral volumes, and verbal learning in an ethnically and racially diverse community sample. Methods: A clinically stroke-free subset of Northern Manhattan Study participants underwent cognitive testing and brain MRI with quantification of white matter hyperintensity volume (WMHV) and total cerebral volume (TCV) using semiautomated segmentation. We used generalized linear regression and mixed models to examine the association between imaging findings and verbal learning. Results: There were 1,272 participants (61% women, mean age 70 ± 9 years). Participants with greater WMHV and smaller TCV remembered fewer total words on a list-learning task (β = −0.83 per SD change in WMHV, 95% confidence interval [CI] = −1.22 to −0.45, p < 0.0001; and β = 0.48 per SD change in TCV, 95% CI = 0.05 to 0.90, p = 0.03, respectively). Subclinical brain infarction (SBI) was not associated with total words learned (β = −0.04, 95% CI = −1.08 to 1.00, p = 0.94). Those with greater WMHV had increased odds of a flatter learning slope. After excluding participants with SBI, the association between total words learned and WMHV remained significant. All measurements were adjusted for age, education, race/ethnicity, medical insurance status, and the presence of SBI. Conclusions: White matter hyperintensities, a marker of cerebral small vessel disease, may have an impact on learning slope. This suggests that verbal learning performance can be incorporated into neuropsychological measures for vascular cognitive impairment and that cerebrovascular disease discovered on imaging affects the ability to learn new information. PMID:26002489
A rational model of function learning.
Lucas, Christopher G; Griffiths, Thomas L; Williams, Joseph J; Kalish, Michael L
2015-10-01
Theories of how people learn relationships between continuous variables have tended to focus on two possibilities: one, that people are estimating explicit functions, or two that they are performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, which provide a probabilistic basis for similarity-based function learning, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a rational model of human function learning that combines the strengths of both approaches and accounts for a wide variety of experimental results.
Academic performance and comparative effectiveness of computer- and textbook-based self-instruction.
Kurihara, Yukio; Kuramoto, Shu; Matsuura, Kimio; Miki, Yoichiro; Oda, Katsushi; Seo, Hiromi; Watabe, Teruaki; Qayumi, A Karim
2004-01-01
We intended to clarify the influence of student academic ability on the effectiveness of CAI, using data of a study to assess the effectiveness of a new type of CAI software, cyberPatient (CP), at Kochi Medical School (KMS). A total of 59 third-year students were randomly assigned to four groups: Group-1 used a textbook for self-instruction, Group-2 used CP, Group-3 used both types of learning materials, and Group-4 did not learn. Learning performance was evaluated by multiple-choice examination and OSCE. In order to clarify the influence of students' academic ability on the effectiveness of CAI, statistical analyses were conducted, assigning students as either high or medium or low performance students. High performance students from Group-1, -2 and -3 did not differ significantly in test performance after self-instruction. However, low performance students in Group-1 scored significantly lower than those in Group-2 and -3. All students in Group-2 and -3 reported that CP stimulated willingness to learn and assisted understanding. The present analysis suggested that effectiveness of CAI might be associated with the academic ability of students.
Contextual remapping in visual search after predictable target-location changes.
Conci, Markus; Sun, Luning; Müller, Hermann J
2011-07-01
Invariant spatial context can facilitate visual search. For instance, detection of a target is faster if it is presented within a repeatedly encountered, as compared to a novel, layout of nontargets, demonstrating a role of contextual learning for attentional guidance ('contextual cueing'). Here, we investigated how context-based learning adapts to target location (and identity) changes. Three experiments were performed in which, in an initial learning phase, observers learned to associate a given context with a given target location. A subsequent test phase then introduced identity and/or location changes to the target. The results showed that contextual cueing could not compensate for target changes that were not 'predictable' (i.e. learnable). However, for predictable changes, contextual cueing remained effective even immediately after the change. These findings demonstrate that contextual cueing is adaptive to predictable target location changes. Under these conditions, learned contextual associations can be effectively 'remapped' to accommodate new task requirements.
Parental involvement, adolescents' self-determined learning and academic achievement in Urban China.
Wang, Hongyu; Cai, Tianji
2017-02-01
Self-determined learning is essential to academic success. The motivational resources development model argues that parents promote academic success in their children indirectly by nurturing self-determined learner. In this study, applying a structural equation modelling and using data collected from 8th graders in Zhuhai, China (n = 1009) in 2012, we aim to answer 2 research questions: (a) What forms of parental involvement are highly correlated with self-determined learning and (b) Can self-determined learning fully mediate the relationship between parental involvement and students' academic performance? We find that parental leisure involvement is positively and significantly associated with the development of self-determined learning, which in turn is significantly and positively correlated with academic achievement. Parental provision of structure or parental academic assistance is not significantly associated with students' self-regulation and students' academic achievement. © 2015 International Union of Psychological Science.
Freedberg, Michael; Schacherer, Jonathan; Chen, Kuan-Hua; Uc, Ergun Y; Narayanan, Nandakumar S; Hazeltine, Eliot
2017-06-01
Parkinson's disease (PD) is associated with procedural learning deficits. Nonetheless, studies have demonstrated that reward-related learning is comparable between patients with PD and controls (Bódi et al., Brain, 132(9), 2385-2395, 2009; Frank, Seeberger, & O'Reilly, Science, 306(5703), 1940-1943, 2004; Palminteri et al., Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19179-19184, 2009). However, because these studies do not separate the effect of reward from the effect of practice, it is difficult to determine whether the effect of reward on learning is distinct from the effect of corrective feedback on learning. Thus, it is unknown whether these group differences in learning are due to reward processing or learning in general. Here, we compared the performance of medicated PD patients to demographically matched healthy controls (HCs) on a task where the effect of reward can be examined separately from the effect of practice. We found that patients with PD showed significantly less reward-related learning improvements compared to HCs. In addition, stronger learning of rewarded associations over unrewarded associations was significantly correlated with smaller skin-conductance responses for HCs but not PD patients. These results demonstrate that when separating the effect of reward from the effect of corrective feedback, PD patients do not benefit from reward.
Association, inhibition, and object permanence in dogs' (Canis familiaris) spatial search.
Ashton, Rebecca L; De Lillo, Carlo
2011-05-01
The relative role of associative processes and the use of explicit cues about object location in search behavior in dogs (Canis familiaris) was assessed by using a spatial binary discrimination reversal paradigm in which reversal conditions featured: (1) a previously rewarded location and a novel location, (2) a previously nonrewarded location and a novel location, or (3) a previously rewarded location and a previously nonrewarded location. Rule mediated learning predicts a similar performance in these different reversal conditions whereas associative learning predicts the worst performance in Condition 3. Evidence for an associative control of search emerged when no explicit cues about food location were provided (Experiment 1) but also when dogs witnessed the hiding of food in the reversal trials (Experiment 2) and when they did so in both the prereversal and the reversal trials (Experiment 3). Nevertheless, dogs performed better in the prereversal phase of Experiment 3 indicating that their search could be informed by the knowledge of the food location. Experiment 4 confirmed the results of Experiments 1 and 2, under a different arrangement of search locations. We conclude that knowledge about object location guides search behavior in dogs but it cannot override associative processes. 2011 APA, all rights reserved
Progesterone After Estradiol Modulates Shuttle-Cage Escape by Facilitating Volition
Mayeaux, Darryl J.; Tandle, Sarah M.; Cilano, Sean M.; Fitzharris, Matthew J.
2015-01-01
In animal models of depression, depression is defined as performance on a learning task. That task is typically escaping a mild electric shock in a shuttle cage by moving from one side of the cage to the other. Ovarian hormones influence learning in other kinds of tasks, and these hormones are associated with depressive symptoms in humans. The role of these hormones in shuttle-cage escape learning, however, is less clear. This study manipulated estradiol and progesterone in ovariectomized female rats to examine their performance in shuttle-cage escape learning without intentionally inducing a depressive-like state. Progesterone, not estradiol, within four hours of testing affected latencies to escape. The improvement produced by progesterone was in the decision to act, not in the speed of learning or speed of escaping. This parallels depression in humans in that depressed people are slower in volition, in their decisions to take action. PMID:26823653
Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†
Bonney, Kevin M.
2015-01-01
Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses. PMID:25949753
Case study teaching method improves student performance and perceptions of learning gains.
Bonney, Kevin M
2015-05-01
Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses.
Alves, Débora Cristina; Casella, Erasmo Barbante; Ferraro, Alexandre Arcanjo
2016-04-01
Purpose to analyze and classify the spelling performance according to the semiology of spelling error of children with developmental dyslexia (DD) and with developmental dyslexia associated to attention deficit disorder and hyperactivity(DD and ADHD) comparing them to a group of children without learning process complaints. Methods Seventy students, from the third to fifth grade, participated in this study divided as follows: 32 children without complaints of learning difficulties (GI), mean age 9.5 years; 22 students with developmental dyslexia (GII), mean age 10 years; 16 scholars with developmental dyslexia associated to attention deficit disorders and hyperactivity (GIII), mean age 9.9. Spelling skills were assessed through a standardized word dictation task. Results Data indicated that GII and GIII children presented lower performance when compared with typically developed children. There was no statistical difference between the performance of GII and GIII children regarding the score reached in spelling, although GIII children presented the lowest performance. We observed differences between GII and GIII only in the type of misspelling. Conclusion Data from this research contribute to develop better programs for intervention in the studied population.
Rule-Based Category Learning in Children: The Role of Age and Executive Functioning
Rabi, Rahel; Minda, John Paul
2014-01-01
Rule-based category learning was examined in 4–11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning. PMID:24489658
NASA Astrophysics Data System (ADS)
Rosero-Zambrano, Carlos Andrés; Avila, Alba; Osorio, Luz Adriana; Aguirre, Sandra
2018-04-01
The coupling of the traditional classroom instruction and a virtual learning environment (VLE) in an engineering course is critical to stimulating the learning process and to encouraging students to develop competencies outside of the classroom. This can be achieved through planned activities and the use of information and communication technologies (ICTs), resources designed to complement students' autonomous learning needs. A quantitative analysis of students' academic performance using final course grades was performed for a fundamentals of electronics course and we examine students' perception of their autonomy using surveys. The students' progress and attitudes were monitored over four consecutive semesters. The first began with the design of the intervention and the following three consisted in the implementation. The strategy was focused on the development of course competencies through autonomous learning with ICT tools presented in the VLE. Findings indicate that the students who did the activities in the VLE showed an increase in performance scores in comparison with students who did not do them. The strategy used in this study, which enhanced perceived autonomy, was associated with a positive effect on their learning process. This research shows that a technology-enhanced course supported by ICT activities can both improve academic performance and foster autonomy in students.
Neger, Thordis M.; Rietveld, Toni; Janse, Esther
2014-01-01
Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly. PMID:25225475
Neger, Thordis M; Rietveld, Toni; Janse, Esther
2014-01-01
Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.
DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions.
Liang, Zhaohui; Huang, Jimmy Xiangji; Zeng, Xing; Zhang, Gang
2016-08-10
Genomic variations are associated with the metabolism and the occurrence of adverse reactions of many therapeutic agents. The polymorphisms on over 2000 locations of cytochrome P450 enzymes (CYP) due to many factors such as ethnicity, mutations, and inheritance attribute to the diversity of response and side effects of various drugs. The associations of the single nucleotide polymorphisms (SNPs), the internal pharmacokinetic patterns and the vulnerability of specific adverse reactions become one of the research interests of pharmacogenomics. The conventional genomewide association studies (GWAS) mainly focuses on the relation of single or multiple SNPs to a specific risk factors which are a one-to-many relation. However, there are no robust methods to establish a many-to-many network which can combine the direct and indirect associations between multiple SNPs and a serial of events (e.g. adverse reactions, metabolic patterns, prognostic factors etc.). In this paper, we present a novel deep learning model based on generative stochastic networks and hidden Markov chain to classify the observed samples with SNPs on five loci of two genes (CYP2D6 and CYP1A2) respectively to the vulnerable population of 14 types of adverse reactions. A supervised deep learning model is proposed in this study. The revised generative stochastic networks (GSN) model with transited by the hidden Markov chain is used. The data of the training set are collected from clinical observation. The training set is composed of 83 observations of blood samples with the genotypes respectively on CYP2D6*2, *10, *14 and CYP1A2*1C, *1 F. The samples are genotyped by the polymerase chain reaction (PCR) method. A hidden Markov chain is used as the transition operator to simulate the probabilistic distribution. The model can perform learning at lower cost compared to the conventional maximal likelihood method because the transition distribution is conditional on the previous state of the hidden Markov chain. A least square loss (LASSO) algorithm and a k-Nearest Neighbors (kNN) algorithm are used as the baselines for comparison and to evaluate the performance of our proposed deep learning model. There are 53 adverse reactions reported during the observation. They are assigned to 14 categories. In the comparison of classification accuracy, the deep learning model shows superiority over the LASSO and kNN model with a rate over 80 %. In the comparison of reliability, the deep learning model shows the best stability among the three models. Machine learning provides a new method to explore the complex associations among genomic variations and multiple events in pharmacogenomics studies. The new deep learning algorithm is capable of classifying various SNPs to the corresponding adverse reactions. We expect that as more genomic variations are added as features and more observations are made, the deep learning model can improve its performance and can act as a black-box but reliable verifier for other GWAS studies.
Learning and memory in the honeybee.
Hammer, M; Menzel, R
1995-03-01
Insects are favorable subjects for neuroethological studies. Their nervous systems are relatively small and contain many individually identifiable cells. The CNS is highly compartmentalized with clear separations between multisensory higher order neuropiles in the brain and neuropiles serving sensory-motor routines in the ventral cord (Huber, 1974). The rich behavior of insects includes orientation in space and time, visual, chemical, and mechanical communication, and complex motor routines for flying, walking, swimming, nest building, defense, and attack. Learning and memory, though, are not usually considered to be a strong point of insects. Rather, insect behavior is often regarded as highly stereotyped and under tight control of genetically programmed neural circuits. This view, however, does not do justice to the insect order of Hymenoptera (bees, wasps, ants). Most Hymenopteran species care for their brood either as individual females or as a social group of females. Consequently, they regularly return to their nest site to feed, protect, and nurse the larvae, store food, and hide from adverse environmental conditions. Since they search for food (prey; nectar and pollen on flowers) at unpredictable sites, they have to learn the celestial and terrestrial cues that guide their foraging trips over long distances and allow them to find their nest sites (central place foraging; von Frisch, 1967; Seeley, 1985). They learn to relate the sun's position and sky pattern of polarized light to the time of the day (Lindauer, 1959), and landmarks are learned in relationship to the nest site within the framework of the time-compensated sun compass. The honeybee communicates direction and distance of a feeding place to hive mates by performing a ritualized body movement, the waggle dance (von Frisch, 1967). Associative learning is an essential component of the bee's central place foraging behavior and dance communication. Hive mates attending a dance performance learn the odor emanating from the dancing bee and seek it at the indicated food site. The odor, color, and shape of flowers are learned when the bee experiences these stimuli shortly before it finds food (nectar, pollen). This appetitive learning in bees has many characteristics of associative learning well known from mammalian learning studies (Menzel, 1985, 1990; Bitterman, 1988). It follows the rules of classical and operant conditioning, respectively, so that stimuli or behavioral acts are associated with evaluating stimuli. Since associative learning, especially of the classical type, is well described at the phenomenological and operational level (Rescorla, 1988), it provides a favorable approach in the search for the neural substrate underlying learning and memory.(ABSTRACT TRUNCATED AT 400 WORDS)
Moutsopoulou, Karolina; Waszak, Florian
2013-05-01
It has been shown that in associative learning it is possible to disentangle the effects caused on behaviour by the associations between a stimulus and a classification (S-C) and the associations between a stimulus and the action performed towards it (S-A). Such evidence has been provided using ex-Gaussian distribution analysis to show that different parameters of the reaction time distribution reflect the different processes. Here, using this method, we investigate another difference between these two types of associations: What is the relative durability of these associations across time? Using a task-switching paradigm and by manipulating the lag between the point of the creation of the associations and the test phase, we show that S-A associations have stronger effects on behaviour when the lag between the two repetitions of a stimulus is short. However, classification learning affects behaviour not only in short-term lags but also (and equally so) when the lag between prime and probe is long and the same stimuli are repeatedly presented within a different classification task, demonstrating a remarkable durability of S-C associations.
Strauss, Gregory P; Thaler, Nicholas S; Matveeva, Tatyana M; Vogel, Sally J; Sutton, Griffin P; Lee, Bern G; Allen, Daniel N
2015-08-01
There is increasing evidence that schizophrenia (SZ) and bipolar disorder (BD) share a number of cognitive, neurobiological, and genetic markers. Shared features may be most prevalent among SZ and BD with a history of psychosis. This study extended this literature by examining reinforcement learning (RL) performance in individuals with SZ (n = 29), BD with a history of psychosis (BD+; n = 24), BD without a history of psychosis (BD-; n = 23), and healthy controls (HC; n = 24). RL was assessed through a probabilistic stimulus selection task with acquisition and test phases. Computational modeling evaluated competing accounts of the data. Each participant's trial-by-trial decision-making behavior was fit to 3 computational models of RL: (a) a standard actor-critic model simulating pure basal ganglia-dependent learning, (b) a pure Q-learning model simulating action selection as a function of learned expected reward value, and (c) a hybrid model where an actor-critic is "augmented" by a Q-learning component, meant to capture the top-down influence of orbitofrontal cortex value representations on the striatum. The SZ group demonstrated greater reinforcement learning impairments at acquisition and test phases than the BD+, BD-, and HC groups. The BD+ and BD- groups displayed comparable performance at acquisition and test phases. Collapsing across diagnostic categories, greater severity of current psychosis was associated with poorer acquisition of the most rewarding stimuli as well as poor go/no-go learning at test. Model fits revealed that reinforcement learning in SZ was best characterized by a pure actor-critic model where learning is driven by prediction error signaling alone. In contrast, BD-, BD+, and HC were best fit by a hybrid model where prediction errors are influenced by top-down expected value representations that guide decision making. These findings suggest that abnormalities in the reward system are more prominent in SZ than BD; however, current psychotic symptoms may be associated with reinforcement learning deficits regardless of a Diagnostic and Statistical Manual of Mental Disorders (5th Edition; American Psychiatric Association, 2013) diagnosis. (c) 2015 APA, all rights reserved).
ERIC Educational Resources Information Center
Kotey, Bernice; Anderson, Philip H.
2005-01-01
The performance of distant students in a simulation exercise for a Small Business Management (SBM) course was compared with that of internal students and the demographic and psychological variables associated with the performance of each student group were examined. Distant students matched or exceeded the performance of internal students in…
Neural substrates underlying stimulation-enhanced motor skill learning after stroke.
Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves
2015-01-01
Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Food approach conditioning and discrimination learning using sound cues in benthic sharks.
Vila Pouca, Catarina; Brown, Culum
2018-07-01
The marine environment is filled with biotic and abiotic sounds. Some of these sounds predict important events that influence fitness while others are unimportant. Individuals can learn specific sound cues and 'soundscapes' and use them for vital activities such as foraging, predator avoidance, communication and orientation. Most research with sounds in elasmobranchs has focused on hearing thresholds and attractiveness to sound sources, but very little is known about their abilities to learn about sounds, especially in benthic species. Here we investigated if juvenile Port Jackson sharks could learn to associate a musical stimulus with a food reward, discriminate between two distinct musical stimuli, and whether individual personality traits were linked to cognitive performance. Five out of eight sharks were successfully conditioned to associate a jazz song with a food reward delivered in a specific corner of the tank. We observed repeatable individual differences in activity and boldness in all eight sharks, but these personality traits were not linked to the learning performance assays we examined. These sharks were later trained in a discrimination task, where they had to distinguish between the same jazz and a novel classical music song, and swim to opposite corners of the tank according to the stimulus played. The sharks' performance to the jazz stimulus declined to chance levels in the discrimination task. Interestingly, some sharks developed a strong side bias to the right, which in some cases was not the correct side for the jazz stimulus.
Discontinuous categories affect information-integration but not rule-based category learning.
Maddox, W Todd; Filoteo, J Vincent; Lauritzen, J Scott; Connally, Emily; Hejl, Kelli D
2005-07-01
Three experiments were conducted that provide a direct examination of within-category discontinuity manipulations on the implicit, procedural-based learning and the explicit, hypothesis-testing systems proposed in F. G. Ashby, L. A. Alfonso-Reese, A. U. Turken, and E. M. Waldron's (1998) competition between verbal and implicit systems model. Discontinuous categories adversely affected information-integration but not rule-based category learning. Increasing the magnitude of the discontinuity did not lead to a significant decline in performance. The distance to the bound provides a reasonable description of the generalization profile associated with the hypothesis-testing system, whereas the distance to the bound plus the distance to the trained response region provides a reasonable description of the generalization profile associated with the procedural-based learning system. These results suggest that within-category discontinuity differentially impacts information-integration but not rule-based category learning and provides information regarding the detailed processing characteristics of each category learning system. ((c) 2005 APA, all rights reserved).
The impact of effort-reward imbalance and learning motivation on teachers' sickness absence.
Derycke, Hanne; Vlerick, Peter; Van de Ven, Bart; Rots, Isabel; Clays, Els
2013-02-01
The aim of this study was to analyse the impact of the effort-reward imbalance and learning motivation on sickness absence duration and sickness absence frequency among beginning teachers in Flanders (Belgium). A total of 603 teachers, who recently graduated, participated in this study. Effort-reward imbalance and learning motivation were assessed by means of self-administered questionnaires. Prospective data of registered sickness absence during 12 months follow-up were collected. Multivariate logistic regression analyses were performed. An imbalance between high efforts and low rewards (extrinsic hypothesis) was associated with longer sickness absence duration and more frequent absences. A low level of learning motivation (intrinsic hypothesis) was not associated with longer sickness absence duration but was significantly positively associated with sickness absence frequency. No significant results were obtained for the interaction hypothesis between imbalance and learning motivation. Further research is needed to deepen our understanding of the impact of psychosocial work conditions and personal resources on both sickness absence duration and frequency. Specifically, attention could be given to optimizing or reducing efforts spent at work, increasing rewards and stimulating learning motivation to influence sickness absence. Copyright © 2012 John Wiley & Sons, Ltd.
Trust and Reflection in Primary Care Practice Redesign.
Lanham, Holly Jordan; Palmer, Raymond F; Leykum, Luci K; McDaniel, Reuben R; Nutting, Paul A; Stange, Kurt C; Crabtree, Benjamin F; Miller, William L; Jaén, Carlos Roberto
2016-08-01
To test a conceptual model of relationships, reflection, sensemaking, and learning in primary care practices transitioning to patient-centered medical homes (PCMH). Primary data were collected as part of the American Academy of Family Physicians' National Demonstration Project of the PCMH. We conducted a cross-sectional survey of clinicians and staff from 36 family medicine practices across the United States. Surveys measured seven characteristics of practice relationships (trust, diversity, mindfulness, heedful interrelation, respectful interaction, social/task relatedness, and rich and lean communication) and three organizational attributes (reflection, sensemaking, and learning) of practices. We surveyed 396 clinicians and practice staff. We performed a multigroup path analysis of the data. Parameter estimates were calculated using a Bayesian estimation method. Trust and reflection were important in explaining the characteristics of practice relationships and their associations with sensemaking and learning. The strongest associations between relationships, sensemaking, and learning were found under conditions of high trust and reflection. The weakest associations were found under conditions of low trust and reflection. Trust and reflection appear to play a key role in moderating relationships, sensemaking, and learning in practices undergoing practice redesign. © Health Research and Educational Trust.
Watts, Alain; Gritton, Howard J; Sweigart, Jamie; Poe, Gina R
2012-09-26
Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.
Watts, Alain; Gritton, Howard J.; Sweigart, Jamie
2012-01-01
Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State–performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS. PMID:23015432
Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J
2014-01-01
Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term born controls. Neonatal brain abnormalities, and in particular deep grey matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children, especially global, white-matter, grey-matter and cerebellar abnormalities. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function. PMID:23805915
A Meta-Analysis Suggests Different Neural Correlates for Implicit and Explicit Learning.
Loonis, Roman F; Brincat, Scott L; Antzoulatos, Evan G; Miller, Earl K
2017-10-11
A meta-analysis of non-human primates performing three different tasks (Object-Match, Category-Match, and Category-Saccade associations) revealed signatures of explicit and implicit learning. Performance improved equally following correct and error trials in the Match (explicit) tasks, but it improved more after correct trials in the Saccade (implicit) task, a signature of explicit versus implicit learning. Likewise, error-related negativity, a marker for error processing, was greater in the Match (explicit) tasks. All tasks showed an increase in alpha/beta (10-30 Hz) synchrony after correct choices. However, only the implicit task showed an increase in theta (3-7 Hz) synchrony after correct choices that decreased with learning. In contrast, in the explicit tasks, alpha/beta synchrony increased with learning and decreased thereafter. Our results suggest that explicit versus implicit learning engages different neural mechanisms that rely on different patterns of oscillatory synchrony. Copyright © 2017 Elsevier Inc. All rights reserved.
Non-linguistic learning in aphasia: Effects of training method and stimulus characteristics
Vallila-Rohter, Sofia; Kiran, Swathi
2013-01-01
Purpose The purpose of the current study was to explore non-linguistic learning ability in patients with aphasia, examining the impact of stimulus typicality and feedback on success with learning. Method Eighteen patients with aphasia and eight healthy controls participated in this study. All participants completed four computerized, non-linguistic category-learning tasks. We probed learning ability under two methods of instruction: feedback-based (FB) and paired-associate (PA). We also examined the impact of task complexity on learning ability, comparing two stimulus conditions: typical (Typ) and atypical (Atyp). Performance was compared between groups and across conditions. Results Results demonstrated that healthy controls were able to successfully learn categories under all conditions. For our patients with aphasia, two patterns of performance arose. One subgroup of patients was able to maintain learning across task manipulations and conditions. The other subgroup of patients demonstrated a sensitivity to task complexity, learning successfully only in the typical training conditions. Conclusions Results support the hypothesis that impairments of general learning are present in aphasia. Some patients demonstrated the ability to extract category information under complex training conditions, while others learned only under conditions that were simplified and emphasized salient category features. Overall, the typical training condition facilitated learning for all participants. Findings have implications for therapy, which are discussed. PMID:23695914
1980-12-01
instructional skills and tasks viewed in greater accord with student learning and retention performance objectives, their instruction has gained added...research reports to evaluate higher levels of cognitive learning and communications abilities . However, the primary interest of this paper is the use of...would gain freedom of expression in answering items. c. Students could better demonstrate higher levels of cognitive learning . d. Students could
Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou
2013-01-01
A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.
Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou
2013-01-01
A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789
Martínez, Emilio G; Tuesca, Rafael
2014-01-01
As part of an institutional program sponsored by the Centre for Teaching Excellence at the Universidad del Norte, Barranquilla, Colombia, we developed an educational research study on two sessions of human anatomy in which we combined team-based learning (TBL) and the use of iPads. Study data included the TBL, assessments applied during the course, student's grades on mid-term examinations and students' perceptions of their experiences. Students reported a positive attitude toward the use of the TBL sessions, and the results showed a significant improvement in their learning between the first and second sessions. Significantly positive correlations (P < 0.05) were obtained between (a) the individual students' readiness test performance 1 and mid-term examination 1, (b) the individual readiness test performances from Session 1 to Session 2, and (c) the group readiness test performances from the first and second sessions. These results point to positive learning experiences for these students. Analyses of the students' reflections on their activities also pointed toward future challenges. © 2014 American Association of Anatomists.
Derksen, B.J.; Duff, M.C.; Weldon, K.; Zhang, J.; Zamba, G.; Tranel, D.; Denburg, N.L.
2014-01-01
Learning and memory abilities tend to decline as people age. The current study examines the question of whether a learning situation that emphasizes collaborative social interaction might help older persons overcome age-related learning and memory changes and thus perform similarly to younger persons. Younger and Older participants (n = 34 in each group) completed the Barrier Task, a game-like social interaction where partners work together to develop labels for a set of abstract tangrams. Participants were also administered standard clinical neuropsychological measures of memory, on which the Older group showed expected inferiority to the Younger group. On the Barrier Task, the Older group performed less well than the Younger group early on, but as the task progressed, the performance of the Older group caught up and became statistically indistinguishable from that of the Younger group. These results can be taken to suggest that a learning milieu characterized by collaborative social interaction can attenuate some of the typical memory disadvantages associated with being older. PMID:24841619
A Neurophysiological examination of quality of learning in a feedback-based learning task.
Arbel, Yael; Wu, Hao
2016-12-01
The efficiency with which one processes external feedback contributes to the speed and quality of one's learning. Previous findings that the feedback related negativity (FRN) event related potential (ERP) is modulated by learning outcomes suggested that this ERP reflects the extent to which feedback is used by the learner to improve performance. To further test this suggestion, we measured whether the FRN and the fronto-central positivity (FCP) that follows it are modulated by learning slopes, and as a function of individual differences in learning outcomes. Participants were tasked with learning names (non-words) of 42 novel objects in a two-choice feedback-based visual learning task. The items were divided into three sets of 14 items, each presented in five learning blocks and a sixth test block. Individual learning slopes based on performance on the task, as well as FRN and FCP slopes based on positive and negative feedback related activation in each block were created for 53 participants. Our data pointed to an interaction between slopes of the FRN elicited by negative feedback and learning slopes, such that a sharper decrease in the amplitude of the FRN to negative feedback was associated with sharper learning slopes. We further examined the predictive power of the FRN and FCP elicited in the training blocks on the learning outcomes as measured by performance on the test blocks. We found that small FRN to negative feedback, large FRN to positive feedback, and large FCP to negative feedback in the first training block predicted better learning outcomes. These results add to the growing evidence that the processes giving rise to the FRN and FCP are sensitive to individual differences in the extent to which feedback is used for learning. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Comparison between Learning Style Preferences and Sex, Status, and Course Performance
ERIC Educational Resources Information Center
Dobson, John L.
2010-01-01
Students have learning style preferences that are often classified according to their visual (V), aural (A), read-write (R), and/or kinesthetic (K) sensory modality preferences (SMP). The purposes of this investigation were to compare student perceived and assessed SMPs and examine the associations between those SMPs and status (i.e.,…
ERIC Educational Resources Information Center
Kaczorowski, Catherine C.; Disterhoft, John F.
2009-01-01
Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…
ERIC Educational Resources Information Center
Goette, William F.; Delello, Julie A.; Schmitt, Andrew L.; Sullivan, Jeremy R.; Rangel, Angelica
2017-01-01
This study compares the academic performance and perceptions of 114 undergraduate students enrolled in an abnormal psychology course. Specifically, this study focuses on whether face-to-face (F2F) or blended modalities are associated with student learning outcomes. In this study, data analysis was based upon the examination of end-of-course…
ERIC Educational Resources Information Center
Subiaul, Francys; Patterson, Eric M.; Schilder, Brian; Renner, Elizabeth; Barr, Rachel
2015-01-01
In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation)--involving a demonstration--and two…
Differential associative training enhances olfactory acuity in Drosophila melanogaster.
Barth, Jonas; Dipt, Shubham; Pech, Ulrike; Hermann, Moritz; Riemensperger, Thomas; Fiala, André
2014-01-29
Training can improve the ability to discriminate between similar, confusable stimuli, including odors. One possibility of enhancing behaviorally expressed discrimination (i.e., sensory acuity) relies on differential associative learning, during which animals are forced to detect the differences between similar stimuli. Drosophila represents a key model organism for analyzing neuronal mechanisms underlying both odor processing and olfactory learning. However, the ability of flies to enhance fine discrimination between similar odors through differential associative learning has not been analyzed in detail. We performed associative conditioning experiments using chemically similar odorants that we show to evoke overlapping neuronal activity in the fly's antennal lobes and highly correlated activity in mushroom body lobes. We compared the animals' performance in discriminating between these odors after subjecting them to one of two types of training: either absolute conditioning, in which only one odor is reinforced, or differential conditioning, in which one odor is reinforced and a second odor is explicitly not reinforced. First, we show that differential conditioning decreases behavioral generalization of similar odorants in a choice situation. Second, we demonstrate that this learned enhancement in olfactory acuity relies on both conditioned excitation and conditioned inhibition. Third, inhibitory local interneurons in the antennal lobes are shown to be required for behavioral fine discrimination between the two similar odors. Fourth, differential, but not absolute, training causes decorrelation of odor representations in the mushroom body. In conclusion, differential training with similar odors ultimately induces a behaviorally expressed contrast enhancement between the two similar stimuli that facilitates fine discrimination.
Kusnir, Flor; Thut, Gregor
2012-12-01
Grapheme-colour synaesthesia is a well-characterized phenomenon in which achromatic letters and/or digits automatically and systematically trigger specific colour sensations. Models of its underlying mechanisms diverge on a central question: whether triggered sensations reflect (1) an overdeveloped capacity in normal cross-modal processing (i.e., sharing characteristics with the general population), or rather (2) qualitatively deviant processing (i.e., unique to a few individuals). To test to what extent synaesthesia-like (automatic) letter-colour associations may be learned by non-synaesthetes into adulthood, implied by (1), we developed a learning paradigm that aimed to implicitly train such associations via a visual search task that employed statistical probability learning of specific letter-colour pairs. In contrast to previous synaesthesia-training studies (Cohen Kadosh, Henik, Catena, Walsh, & Fuentes, 2009; Meier & Rothen, 2009), here all participants were naïve as to the end-goal of the experiment (i.e., the formation of letter-colour associations), mimicking the learning conditions of acquired grapheme-colour synaesthesia (Hancock, 2006; Witthoft & Winawer, 2006). In two experiments, we found evidence for significant binding of colours to letters by non-synaesthetes. These newly-formed associations showed synaesthesia-like characteristics, because they correlated in strength with performance on individual synaesthetic Stroop-tasks (experiment 1), and because interference between the learned (associated) colour and the real colour during letter processing depended on their relative positions in colour space (opponent vs. non-opponent colours, experiment 2) suggesting automatic formation on a perceptual rather than conceptual level, analogous to synaesthesia. Although not evoking conscious colour percepts, these learned, synaesthesia-like associations in non-synaesthetes support that common mechanisms may underlie letter-colour associations in synaesthetes and non-synaesthetes. Copyright © 2012 Elsevier Ltd. All rights reserved.
The effect of strategic memory training in older adults: who benefits most?
Rosi, Alessia; Del Signore, Federica; Canelli, Elisa; Allegri, Nicola; Bottiroli, Sara; Vecchi, Tomaso; Cavallini, Elena
2017-12-07
Previous research has suggested that there is a degree of variability among older adults' response to memory training, such that some individuals benefit more than others. The aim of the present study was to identify the profile of older adults who were likely to benefit most from a strategic memory training program that has previously proved to be effective in improving memory in healthy older adults. In total, 44 older adults (60-83 years) participated in a strategic memory training. We examined memory training benefits by measuring changes in memory practiced (word list learning) and non-practiced tasks (grocery list and associative learning). In addition, a battery of cognitive measures was administered in order to assess crystallized and fluid abilities, short-term memory, working memory, and processing speed. Results confirmed the efficacy of the training in improving performance in both practiced and non-practiced memory tasks. For the practiced memory tasks, results showed that memory baseline performance and crystallized ability predicted training gains. For the non-practiced memory tasks, analyses showed that memory baseline performance was a significant predictor of gain in the grocery list learning task. For the associative learning task, the significant predictors were memory baseline performance, processing speed, and marginally the age. Our results indicate that older adults with a higher baseline memory capacity and with more efficient cognitive resources were those who tended to benefit most from the training. The present study provides new avenues in designing personalized intervention according to the older adults' cognitive profile.
Effects of a cognitive training on spatial learning and associated functional brain activations
2013-01-01
Background Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40–55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). Results Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. Conclusions Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults. PMID:23870447
Resaland, G K; Moe, V F; Bartholomew, J B; Andersen, L B; McKay, H A; Anderssen, S A; Aadland, E
2018-01-01
Active learning combines academic content with physical activity (PA) to increase child PA and academic performance, but the impact of active learning is mixed. It may be that this is a moderated relationship in which active learning is beneficial for only some children. This paper examine the impact of baseline academic performance and gender as moderators for the effects of active learning on children's academic performance. In the ASK-study, 1129 fifth-graders from 57 Norwegian elementary schools were randomized by school to intervention or control in a physical activity intervention between November 2014 and June 2015. Academic performance in numeracy, reading, and English was measured and a composite score was calculated. Children were split into low, middle and high academic performing tertiles. 3-way-interactions for group (intervention, control)∗gender (boys, girls)∗academic performance (tertiles) were investigated using mixed model regression. There was a significant, 3-way-interaction (p=0.044). Both boys (ES=0.11) and girls (ES=0.18) in the low performing tertile had a similar beneficial trend. In contrast, middle (ES=0.03) and high performing boys (ES=0.09) responded with small beneficial trends, while middle (ES=-0.11) and high performing girls (ES=-0.06) responded with negative trends. ASK was associated with a significant increase in academic performance for low performing children. It is likely that active learning benefited children most in need of adapted education but it may have a null or negative effect for those girls who are already performing well in the sedentary classroom. Differences in gendered responses are discussed as a possible explanation for these results. Clinicaltrials.gov registry, trial registration number: NCT02132494. Copyright © 2017 Elsevier Inc. All rights reserved.
Hadj-Bouziane, Fadila; Benatru, Isabelle; Brovelli, Andrea; Klinger, Hélène; Thobois, Stéphane; Broussolle, Emmanuel; Boussaoud, Driss; Meunier, Martine
2013-01-01
The present behavioral study re-addresses the question of habit learning in Parkinson's disease (PD). Patients were early onset, non-demented, dopa-responsive, candidates for surgical treatment, similar to those we found earlier as suffering greater dopamine depletion in the putamen than in the caudate nucleus. The task was the same conditional associative learning task as that used previously in monkeys and healthy humans to unveil the striatum involvement in habit learning. Sixteen patients and 20 age- and education-matched healthy control subjects learned sets of 3 visuo-motor associations between complex patterns and joystick displacements during two testing sessions separated by a few hours. We distinguished errors preceding vs. following the first correct response to compare patients' performance during the earliest phase of learning dominated by goal-directed actions with that observed later on, when responses start to become habitual. The disease significantly retarded both learning phases, especially in patients under 60 years of age. However, only the late phase deficit was disease severity-dependent and persisted on the second testing session. These findings provide the first corroboration in Parkinson patients of two ideas well-established in the animal literature. The first is the idea that associating visual stimuli to motor acts is a form of habit learning that engages the striatum. It is confirmed here by the global impairment in visuo-motor learning induced by PD. The second idea is that goal-directed behaviors are predominantly caudate-dependent whereas habitual responses are primarily putamen-dependent. At the advanced PD stages tested here, dopamine depletion is greater in the putamen than in the caudate nucleus. Accordingly, the late phase of learning corresponding to the emergence of habitual responses was more vulnerable to the disease than the early phase dominated by goal-directed actions. PMID:23386815
Macnamara, Brooke N; Frank, David J
2018-05-01
For well over a century, scientists have investigated individual differences in performance. The majority of studies have focused on either differences in practice, or differences in cognitive resources. However, the predictive ability of either practice or cognitive resources varies considerably across tasks. We are the first to examine task characteristics' impact on learning and performance in a complex task while controlling for other task characteristics. In 2 experiments we test key theoretical task characteristic thought to moderate the relationship between practice, cognitive resources, and performance. We devised a task where each of several key task characteristics can be manipulated independently. Participants played 5 rounds of a game similar to the popular tower defense videogame Plants vs. Zombies where both cognitive load and game characteristics were manipulated. In Experiment 1, participants either played a consistently mapped version-the stimuli and the associated meaning of their properties were constant across the 5 rounds-or played a variably mapped version-the stimuli and the associated meaning of their properties changed every few minutes. In Experiment 2, participants either played a static version-that is, turn taking with no time pressure-or played a dynamic version-that is, the stimuli moved regardless of participants' response rates. In Experiment 1, participants' accuracy and efficiency were substantially hindered in the variably mapped conditions. In Experiment 2, learning and performance accuracy were hindered in the dynamic conditions, especially when under cognitive load. Our results suggest that task characteristics impact the relative importance of cognitive resources and practice on predicting learning and performance. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Ishihara, Toru; Morita, Noriteru; Nakajima, Toshihiro; Okita, Koichi; Sagawa, Masato; Yamatsu, Koji
2018-04-25
The aim of this study was to determine, using structural equation modeling, the comprehensive relationships of achievement motivation (self-fulfillment achievement motivation [SFAM] and competitive achievement motivation [CAM]), daily behaviors (exercise habits, screen time, and learning duration), body mass index [BMI], and cardiorespiratory fitness [CRF]) with academic performance among schoolchildren. Three hundred twenty-five schoolchildren (172 males and 153 females; 12-13 years old) were recruited. Academic performance was assessed using the total grade points in 8 academic subjects (GP8); CRF using the 20-m shuttle run; and achievement motivation, daily behaviors, and socioeconomic status using questionnaires. Socioeconomic status was included as a control variable. In males, two cascade associations of achievement motivation to GP8 were detected: (1) SFAM → screen time/learning duration → GP8, and (2) CAM → exercise habit → CRF → GP8 (χ 2 = 8.72, p = .19, AGFI = .92). In females, two cascade associations were also detected: (1) SFAM → screen time/learning habit → GP8, and (2) exercise habit → BMI 2 → GP8 (χ 2 = 6.17, p = .41, AGFI = .93). Our results suggest that greater achievement motivation is associated with academic success via various physiological/behavioral factors, and that these associations differ by gender. Copyright © 2018. Published by Elsevier Inc.
Self-Control of Haptic Assistance for Motor Learning: Influences of Frequency and Opinion of Utility
Williams, Camille K.; Tseung, Victrine; Carnahan, Heather
2017-01-01
Studies of self-controlled practice have shown benefits when learners controlled feedback schedule, use of assistive devices and task difficulty, with benefits attributed to information processing and motivational advantages of self-control. Although haptic assistance serves as feedback, aids task performance and modifies task difficulty, researchers have yet to explore whether self-control over haptic assistance could be beneficial for learning. We explored whether self-control of haptic assistance would be beneficial for learning a tracing task. Self-controlled participants selected practice blocks on which they would receive haptic assistance, while participants in a yoked group received haptic assistance on blocks determined by a matched self-controlled participant. We inferred learning from performance on retention tests without haptic assistance. From qualitative analysis of open-ended questions related to rationales for/experiences of the haptic assistance that was chosen/provided, themes emerged regarding participants’ views of the utility of haptic assistance for performance and learning. Results showed that learning was directly impacted by the frequency of haptic assistance for self-controlled participants only and view of haptic assistance. Furthermore, self-controlled participants’ views were significantly associated with their requested haptic assistance frequency. We discuss these findings as further support for the beneficial role of self-controlled practice for motor learning. PMID:29255438
Lu, Hanna; Xi, Ni; Fung, Ada W T; Lam, Linda C W
2018-06-09
Memory and learning, as the core brain function, shows controversial results across studies focusing on aging and dementia. One of the reasons is because of the multi-faceted nature of memory and learning. However, there is still a dearth of comparable proxies with psychometric and morphometric portrait in clinical and non-clinical populations. We aim to investigate the proxies of memory and learning function with direct and derived measures and examine their associations with morphometric features in senior adults with different cognitive status. Based on two modality-driven tests, we assessed the component-specific memory and learning in the individuals with high performing (HP), normal aging, and neurocognitive disorders (NCD) (n = 488). Structural magnetic resonance imaging was used to measure the regional cortical thickness with surface-based morphometry analysis in a subsample (n = 52). Compared with HP elderly, the ones with normal aging and minor NCD showed declined recognition memory and working memory, whereas had better learning performance (derived scores). Meanwhile, major NCD patients showed more breakdowns of memory and learning function. The correlation between proxies of memory and learning and cortical thickness exhibited the overlapped and unique neural underpinnings. The proxies of memory and learning could be characterized by component-specific constructs with psychometric and morphometric bases. Overall, the constructs of memory are more likely related to the pathological changes, and the constructs of learning tend to reflect the cognitive abilities of compensation.
Reddy, Lena Felice; Waltz, James A; Green, Michael F; Wynn, Jonathan K; Horan, William P
2016-07-01
Although individuals with schizophrenia show impaired feedback-driven learning on probabilistic reversal learning (PRL) tasks, the specific factors that contribute to these deficits remain unknown. Recent work has suggested several potential causes including neurocognitive impairments, clinical symptoms, and specific types of feedback-related errors. To examine this issue, we administered a PRL task to 126 stable schizophrenia outpatients and 72 matched controls, and patients were retested 4 weeks later. The task involved an initial probabilistic discrimination learning phase and subsequent reversal phases in which subjects had to adjust their responses to sudden shifts in the reinforcement contingencies. Patients showed poorer performance than controls for both the initial discrimination and reversal learning phases of the task, and performance overall showed good test-retest reliability among patients. A subgroup analysis of patients (n = 64) and controls (n = 49) with good initial discrimination learning revealed no between-group differences in reversal learning, indicating that the patients who were able to achieve all of the initial probabilistic discriminations were not impaired in reversal learning. Regarding potential contributors to impaired discrimination learning, several factors were associated with poor PRL, including higher levels of neurocognitive impairment, poor learning from both positive and negative feedback, and higher levels of indiscriminate response shifting. The results suggest that poor PRL performance in schizophrenia can be the product of multiple mechanisms. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Pavlovian reward learning underlies value driven attentional capture.
Bucker, Berno; Theeuwes, Jan
2017-02-01
Recent evidence shows that distractors that signal high compared to low reward availability elicit stronger attentional capture, even when this is detrimental for task-performance. This suggests that simply correlating stimuli with reward administration, rather than their instrumental relationship with obtaining reward, produces value-driven attentional capture. However, in previous studies, reward delivery was never response independent, as only correct responses were rewarded, nor was it completely task-irrelevant, as the distractor signaled the magnitude of reward that could be earned on that trial. In two experiments, we ensured that associative reward learning was completely response independent by letting participants perform a task at fixation, while high and low rewards were automatically administered following the presentation of task-irrelevant colored stimuli in the periphery (Experiment 1) or at fixation (Experiment 2). In a following non-reward test phase, using the additional singleton paradigm, the previously reward signaling stimuli were presented as distractors to assess truly task-irrelevant value driven attentional capture. The results showed that high compared to low reward-value associated distractors impaired performance, and thus captured attention more strongly. This suggests that genuine Pavlovian conditioning of stimulus-reward contingencies is sufficient to obtain value-driven attentional capture. Furthermore, value-driven attentional capture can occur following associative reward learning of temporally and spatially task-irrelevant distractors that signal the magnitude of available reward (Experiment 1), and is independent of training spatial shifts of attention towards the reward signaling stimuli (Experiment 2). This confirms and strengthens the idea that Pavlovian reward learning underlies value driven attentional capture.
Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour.
Herbert, Lucila T; Vázquez, Diego E; Arenas, Andrés; Farina, Walter M
2014-10-01
Glyphosate (GLY) is a broad-spectrum herbicide used for weed control. The sub-lethal impact of GLY on non-target organisms such as insect pollinators has not yet been evaluated. Apis mellifera is the main pollinator in agricultural environments and is a well-known model for behavioural research. Honeybees are also accurate biosensors of environmental pollutants and their appetitive behavioural response is a suitable tool with which to test sub-lethal effects of agrochemicals. We studied the effects of field-realistic doses of GLY on honeybees exposed chronically or acutely to the herbicide. We focused on sucrose sensitivity, elemental and non-elemental associative olfactory conditioning of the proboscis extension response (PER), and foraging-related behaviour. We found a reduced sensitivity to sucrose and learning performance for the groups chronically exposed to GLY concentrations within the range of recommended doses. When olfactory PER conditioning was performed with sucrose reward with the same GLY concentrations (acute exposure), elemental learning and short-term memory retention decreased significantly compared with controls. Non-elemental associative learning was also impaired by an acute exposure to GLY traces. Altogether, these results imply that GLY at concentrations found in agro-ecosystems as a result of standard spraying can reduce sensitivity to nectar reward and impair associative learning in honeybees. However, no effect on foraging-related behaviour was found. Therefore, we speculate that successful forager bees could become a source of constant inflow of nectar with GLY traces that could then be distributed among nestmates, stored in the hive and have long-term negative consequences on colony performance. © 2014. Published by The Company of Biologists Ltd.
6- And 8-Year-Olds' Performance Evaluations: Do They Differ between Self And Unknown Others?
ERIC Educational Resources Information Center
Destan, Nesrin; Spiess, Manuela A.; de Bruin, Anique; van Loon, Mariëtte; Roebers, Claudia M.
2017-01-01
The current study investigated kindergarteners and second graders' ability to monitor and evaluate their own and a virtual peer's performance in a paired-associate learning task. Participants provided confidence judgments (CJs) for their own responses and performance-based judgments (judgments provided "after" receiving feedback on their…
Why do beliefs about intelligence influence learning success? A social cognitive neuroscience model
Mangels, Jennifer A.; Butterfield, Brady; Lamb, Justin; Good, Catherine; Dweck, Carol S.
2006-01-01
Students’ beliefs and goals can powerfully influence their learning success. Those who believe intelligence is a fixed entity (entity theorists) tend to emphasize ‘performance goals,’ leaving them vulnerable to negative feedback and likely to disengage from challenging learning opportunities. In contrast, students who believe intelligence is malleable (incremental theorists) tend to emphasize ‘learning goals’ and rebound better from occasional failures. Guided by cognitive neuroscience models of top–down, goal-directed behavior, we use event-related potentials (ERPs) to understand how these beliefs influence attention to information associated with successful error correction. Focusing on waveforms associated with conflict detection and error correction in a test of general knowledge, we found evidence indicating that entity theorists oriented differently toward negative performance feedback, as indicated by an enhanced anterior frontal P3 that was also positively correlated with concerns about proving ability relative to others. Yet, following negative feedback, entity theorists demonstrated less sustained memory-related activity (left temporal negativity) to corrective information, suggesting reduced effortful conceptual encoding of this material–a strategic approach that may have contributed to their reduced error correction on a subsequent surprise retest. These results suggest that beliefs can influence learning success through top–down biasing of attention and conceptual processing toward goal-congruent information. PMID:17392928
Malhotra, Neha; Poolton, Jamie M; Wilson, Mark R; Fan, Joe K M; Masters, Rich S W
2014-01-01
Identifying personality factors that account for individual differences in surgical training and performance has practical implications for surgical education. Movement-specific reinvestment is a potentially relevant personality factor that has a moderating effect on laparoscopic performance under time pressure. Movement-specific reinvestment has 2 dimensions, which represent an individual's propensity to consciously control movements (conscious motor processing) or to consciously monitor their 'style' of movement (movement self-consciousness). This study aimed at investigating the moderating effects of the 2 dimensions of movement-specific reinvestment in the learning and updating (cross-handed technique) of laparoscopic skills. Medical students completed the Movement-Specific Reinvestment Scale, a psychometric assessment tool that evaluates the conscious motor processing and movement self-consciousness dimensions of movement-specific reinvestment. They were then trained to a criterion level of proficiency on a fundamental laparoscopic skills task and were tested on a novel cross-handed technique. Completion times were recorded for early-learning, late-learning, and cross-handed trials. Propensity for movement self-consciousness but not conscious motor processing was a significant predictor of task completion times both early (p = 0.036) and late (p = 0.002) in learning, but completion times during the cross-handed trials were predicted by the propensity for conscious motor processing (p = 0.04) rather than movement self-consciousness (p = 0.21). Higher propensity for movement self-consciousness is associated with slower performance times on novel and well-practiced laparoscopic tasks. For complex surgical techniques, however, conscious motor processing plays a more influential role in performance than movement self-consciousness. The findings imply that these 2 dimensions of movement-specific reinvestment have a differential influence in the learning and updating of laparoscopic skills. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Games people play: How video games improve probabilistic learning.
Schenk, Sabrina; Lech, Robert K; Suchan, Boris
2017-09-29
Recent research suggests that video game playing is associated with many cognitive benefits. However, little is known about the neural mechanisms mediating such effects, especially with regard to probabilistic categorization learning, which is a widely unexplored area in gaming research. Therefore, the present study aimed to investigate the neural correlates of probabilistic classification learning in video gamers in comparison to non-gamers. Subjects were scanned in a 3T magnetic resonance imaging (MRI) scanner while performing a modified version of the weather prediction task. Behavioral data yielded evidence for better categorization performance of video gamers, particularly under conditions characterized by stronger uncertainty. Furthermore, a post-experimental questionnaire showed that video gamers had acquired higher declarative knowledge about the card combinations and the related weather outcomes. Functional imaging data revealed for video gamers stronger activation clusters in the hippocampus, the precuneus, the cingulate gyrus and the middle temporal gyrus as well as in occipital visual areas and in areas related to attentional processes. All these areas are connected with each other and represent critical nodes for semantic memory, visual imagery and cognitive control. Apart from this, and in line with previous studies, both groups showed activation in brain areas that are related to attention and executive functions as well as in the basal ganglia and in memory-associated regions of the medial temporal lobe. These results suggest that playing video games might enhance the usage of declarative knowledge as well as hippocampal involvement and enhances overall learning performance during probabilistic learning. In contrast to non-gamers, video gamers showed better categorization performance, independently of the uncertainty of the condition. Copyright © 2017 Elsevier B.V. All rights reserved.
Calhoun, Michael E; Fletcher, Bonnie R; Yi, Stella; Zentko, Diana C; Gallagher, Michela; Rapp, Peter R
2008-08-01
Age-related impairments in hippocampus-dependent learning and memory tasks are not associated with a loss of hippocampal neurons, but may be related to alterations in synaptic integrity. Here we used stereological techniques to estimate spine number in hippocampal subfields using immunostaining for the spine-associated protein, spinophilin, as a marker. Quantification of the immunoreactive profiles was performed using the optical disector/fractionator technique. Aging was associated with a modest increase in spine number in the molecular layer of the dentate gyrus and CA1 stratum lacunosum-moleculare. By comparison, spinophilin protein levels in the hippocampus, measured by Western blot analysis, failed to differ as a function of age. Neither the morphological nor the protein level data were correlated with spatial learning ability across individual aged rats. The results extend current evidence on synaptic integrity in the aged brain, indicating that a substantial loss of dendritic spines and spinophilin protein in the hippocampus are unlikely to contribute to age-related impairment in spatial learning.
Smith, B H; Abramson, C I; Tobin, T R
1991-12-01
Proboscis extension conditioning of honeybee workers was used to test the ability of bees to respond to appetitive and aversive stimuli while restrained in a harness that allows subjects to move their antennae and mouthparts (Kuwabara, 1957; Menzel, Erber, & Masuhr, 1974). Subjects were conditioned to discriminate between two odors, one associated with sucrose feeding and the other associated with a 10 V AC shock if they responded to the sucrose unconditioned stimulus (US) in the context of that odor. Most Ss readily learned to respond to the odor followed by sucrose feeding and not to the odor associated with sucrose stimulation plus shock. Furthermore, in the context of the odor associated with shock, significantly more subjects withheld or delayed proboscis extension on stimulation with the sucrose US than they did in the context of the odor associated with feeding. Thus, restrained honeybees can readily learn to avoid shock according to an odor context by withholding proboscis extension to a normally powerful releaser. Analysis of individual learning curves revealed that subjects differed markedly in performance on this task. Some learn the discrimination quickly, whereas others show different kinds of response patterns.
McCaskie, Andrew W; Kenny, Dianna T; Deshmukh, Sandeep
2011-05-02
Trainee surgeons must acquire expert status in the context of reduced hours, reduced operating room time and the need to learn complex skills involving screen-mediated techniques, computers and robotics. Ever more sophisticated surgical simulation strategies have been helpful in providing surgeons with the opportunity to practise, but not all of these strategies are widely available. Similarities in the motor skills required in skilled musical performance and surgery suggest that models of music learning, and particularly skilled motor development, may be applicable in training surgeons. More attention should be paid to factors associated with optimal arousal and optimal performance in surgical training - lessons learned from helping anxious musicians optimise performance and manage anxiety may also be transferable to trainee surgeons. The ways in which the trainee surgeon moves from novice to expert need to be better understood so that this process can be expedited using current knowledge in other disciplines requiring the performance of complex fine motor tasks with high cognitive load under pressure.
Social learning of floral odours inside the honeybee hive.
Farina, Walter M; Grüter, Christoph; Díaz, Paula C
2005-09-22
A honeybee hive serves as an information centre in which communication among bees allows the colony to exploit the most profitable resources in a continuously changing environment. The best-studied communication behaviour in this context is the waggle dance performed by returning foragers, which encodes information about the distance and direction to the food source. It has been suggested that another information cue, floral scents transferred within the hive, is also important for recruitment to food sources, as bee recruits are more strongly attracted to odours previously brought back by foragers in both honeybees and bumble-bees. These observations suggested that honeybees learn the odour from successful foragers before leaving the hive. However, this has never been shown directly and the mechanisms and properties of the learning process remain obscure. We tested the learning and memory of recruited bees in the laboratory using the proboscis extension response (PER) paradigm, and show that recruits indeed learn the nectar odours brought back by foragers by associative learning and retrieve this memory in the PER paradigm. The associative nature of this learning reveals that information was gained during mouth-to-mouth contacts among bees (trophallaxis). Results further suggest that the information is transferred to long-term memory. Associative learning of food odours in a social context may help recruits to find a particular food source faster.
Selvig, Daniel; Holaday, Louisa W; Purkiss, Joel; Hortsch, Michael
2015-01-01
Histology is a traditional core basic science component of most medical and dental education programs and presents a didactic challenge for many students. Identifying students that are likely to struggle with histology would allow for early intervention to support and encourage their learning success. To identify student characteristics that are associated with learning success in histology, three first-year medical school classes at the University of Michigan (>440 students) were surveyed about their educational background, attitudes toward learning histology, and their use of histology learning strategies and resources. These characteristics were linked with the students' quiz and examination results in histology. Students who reported previous experience in histology or pathology and hold science or biomedical science college degrees usually did well in histology. Learning success in histology was also positively associated with students' perception that histology is important for their professional career. Other positive indicators were in-person participation in teacher-guided learning experiences, specifically lecture and laboratory sessions. In contrast, students who relied on watching histology lectures by video rather than going to lectures in-person performed significantly worse. These characteristics and learning strategies of students who did well in this very visual and challenging study subject should be of help for identifying and advising students early, who might be at risk of failing a histology course or component. © 2014 American Association of Anatomists.
dos Santos Mendes, Felipe Augusto; Pompeu, José Eduardo; Modenesi Lobo, Alexandra; Guedes da Silva, Keyte; Oliveira, Tatiana de Paula; Peterson Zomignani, Andrea; Pimentel Piemonte, Maria Elisa
2012-09-01
To evaluate the learning, retention and transfer of performance improvements after Nintendo Wii Fit™ training in patients with Parkinson's disease and healthy elderly people. Longitudinal, controlled clinical study. Sixteen patients with early-stage Parkinson's disease and 11 healthy elderly people. Warm-up exercises and Wii Fit training that involved training motor (shifts centre of gravity and step alternation) and cognitive skills. A follow-up evaluative Wii Fit session was held 60 days after the end of training. Participants performed a functional reach test before and after training as a measure of learning transfer. Learning and retention were determined based on the scores of 10 Wii Fit games over eight sessions. Transfer of learning was assessed after training using the functional reach test. Patients with Parkinson's disease showed no deficit in learning or retention on seven of the 10 games, despite showing poorer performance on five games compared with the healthy elderly group. Patients with Parkinson's disease showed marked learning deficits on three other games, independent of poorer initial performance. This deficit appears to be associated with cognitive demands of the games which require decision-making, response inhibition, divided attention and working memory. Finally, patients with Parkinson's disease were able to transfer motor ability trained on the games to a similar untrained task. The ability of patients with Parkinson's disease to learn, retain and transfer performance improvements after training on the Nintendo Wii Fit depends largely on the demands, particularly cognitive demands, of the games involved, reiterating the importance of game selection for rehabilitation purposes. Copyright © 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.
Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A
2015-12-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.
The skeletons in our closet: E-learning tools and what happens when one side does not fit all.
Van Nuland, Sonya E; Rogers, Kem A
2017-11-01
In the anatomical sciences, e-learning tools have become a critical component of teaching anatomy when physical space and cadaveric resources are limited. However, studies that use empirical evidence to compare their efficacy to visual-kinesthetic learning modalities are scarce. The study examined how a visual-kinesthetic experience, involving a physical skeleton, impacts learning when compared with virtual manipulation of a simple two-dimensional (2D) e-learning tool, A.D.A.M. Interactive Anatomy. Students from The University of Western Ontario, Canada (n = 77) participated in a dual-task study to: (1) investigate if a dual-task paradigm is an effective tool for measuring cognitive load across these different learning modalities; and (2) to assess the impact of knowledge recall and spatial ability when using them. Students were assessed using knowledge scores, Stroop task reaction times, and mental rotation test scores. Results demonstrated that the dual-task paradigm was not an effective tool for measuring cognitive load across different learning modalities with respect to kinesthetic learning. However, our study highlighted that handing physical specimens yielded major, positive impacts on performance that a simple commercial e-learning tool failed to deliver (P < 0.001). Furthermore, students with low spatial ability were significantly disadvantaged when they studied the bony joint and were tested on contralateral images (P = 0.046, R = 0.326). This suggests that, despite limbs being mirror images, students should be taught the anatomy of, as well as procedures on, both sides of the human body, enhancing the ability of all students, regardless of spatial ability, to take anatomical knowledge into the clinic and perform successfully. Anat Sci Educ 10: 570-588. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.
2010-01-01
Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908
Representations in learning new faces: evidence from prosopagnosia.
Polster, M R; Rapcsak, S Z
1996-05-01
We report the performance of a prosopagnosic patient on face learning tasks under different encoding instructions (i.e., levels of processing manipulations). R.J. performs at chance when given no encoding instructions or when given "shallow" encoding instruction to focus on facial features. By contrast, he performs relatively well with "deep" encoding instructions to rate faces in terms of personality traits or when provided with semantic and name information during the study phase. We propose that the improvement associated with deep encoding instructions may be related to the establishment of distinct visually derived and identity-specific semantic codes. The benefit associated with deep encoding in R.J., however, was found to be restricted to the specific view of the face presented at study and did not generalize to other views of the same face. These observations suggest that deep encoding instructions may enhance memory for concrete or pictorial representations of faces in patients with prosopagnosia, but that these patients cannot compensate for the inability to construct abstract structural codes that normally allow faces to be recognized from different orientations. We postulate further that R.J.'s poor performance on face learning tasks may be attributable to excessive reliance on a feature-based left hemisphere face processing system that operates primarily on view-specific representations.
Ramm, Dianne; Kane, Ros
2011-11-01
This paper is a report of a study exploring the lived experiences and emotional responses of female patients learning to perform clean intermittent self-catheterisation (CISC). There is general consensus that CISC should be considered in preference to in-dwelling catheterisation wherever feasible. Published literature has tended to focus on quality of life issues and technical and physical aspects. There has been less investigation into patients' initial perceptions of CISC and into their subsequent experiences of learning the technique. This qualitative study used a phenomenological research design. A series of semi-structured, in-depth interviews were held with a purposive sample of adult female patients performing CISC aged 34-64 years. Interviews were tape recorded and transcribed verbatim. Data were analysed using the 'Framework' method. This study identified six recurrent themes: grief and loss, lack of knowledge (regarding female anatomy, bladder dysfunction and catheters), negative associations and stigma, psychological aversion and embarrassment, nursing approaches and coping mechanisms. Loss of normal bladder function may represent a devastating event and trigger emotional responses associated with grief and loss. Patients may experience a range of reactions whilst learning CISC, including embarrassment and aversion, which may not dissipate over time. However, psychological distress is not inevitable and varies enormously between individuals. The nursing approach is vital, as individualised, empathic care is recognised and valued. This study adds to an emerging body of knowledge providing an enhanced understanding of the lived experiences of patients learning CISC. Nurses need to be alert to a range of potential emotional responses. This will facilitate the adoption of individualised teaching and learning strategies, designed to optimise the patient's assimilation of CISC into their lifestyle, promoting physical health, psychological wellbeing and independent living. © 2011 Blackwell Publishing Ltd.
Schreiner, Simon J; Kirchner, Thomas; Wyss, Michael; Van Bergen, Jiri M G; Quevenco, Frances C; Steininger, Stefanie C; Griffith, Erica Y; Meier, Irene; Michels, Lars; Gietl, Anton F; Leh, Sandra E; Brickman, Adam M; Hock, Christoph; Nitsch, Roger M; Pruessmann, Klaas P; Henning, Anke; Unschuld, Paul G
2016-12-01
Low episodic memory performance characterizes elderly subjects at increased risk for Alzheimer's disease (AD) and may reflect neuronal dysfunction within the posterior cingulate cortex and precuneus (PCP) region. To investigate a potential association between cerebral neurometabolism and low episodic memory in the absence of cognitive impairment, tissue-specific magnetic resonance spectroscopic imaging at ultrahigh field strength of 7 Tesla was used to investigate the PCP region in a healthy elderly study population (n = 30, age 70 ± 5.7 years, Mini-Mental State Examination 29.4 ± 4.1). The Verbal Learning and Memory Test (VLMT) was administered as part of a neuropsychological battery for assessment of episodic memory performance. Significant differences between PCP gray and white matter could be observed for glutamate-glutamine (p = 0.001), choline (p = 0.01), and myo-inositol (p = 0.02). Low Verbal Learning and Memory Test performance was associated with high N-acetylaspartate in PCP gray matter (p = 0.01) but not in PCP white matter. Our data suggest that subtle decreases in episodic memory performance in the elderly may be associated with increased levels of N-acetylaspartate as a reflection of increased mitochondrial energy capacity in PCP gray matter. Copyright © 2016 Elsevier Inc. All rights reserved.
Dignam, Jade; Copland, David; Rawlings, Alicia; O'Brien, Kate; Burfein, Penni; Rodriguez, Amy D
2016-01-29
Learning capacity may influence an individual's response to aphasia rehabilitation. However, investigations into the relationship between novel word learning ability and response to anomia therapy are lacking. The aim of the present study was to evaluate the novel word learning ability in post-stroke aphasia and to establish the relationship between learning ability and anomia treatment outcomes. We also explored the influence of locus of language breakdown on novel word learning ability and anomia treatment response. 30 adults (6F; 24M) with chronic, post-stroke aphasia were recruited to the study. Prior to treatment, participants underwent an assessment of language, which included the Comprehensive Aphasia Test and three baseline confrontation naming probes in order to develop sets of treated and untreated items. We also administered the novel word learning paradigm, in which participants learnt novel names associated with unfamiliar objects and were immediately tested on recall (expressive) and recognition (receptive) tasks. Participants completed 48 h of Aphasia Language Impairment and Functioning Therapy (Aphasia LIFT) over a 3 week (intensive) or 8 week (distributed) schedule. Therapy primarily targeted the remediation of word retrieval deficits, so naming of treated and untreated items immediately post-therapy and at 1 month follow-up was used to determine therapeutic response. Performance on recall and recognition tasks demonstrated that participants were able to learn novel words; however, performance was variable and was influenced by participants' aphasia severity, lexical-semantic processing and locus of language breakdown. Novel word learning performance was significantly correlated with participants' response to therapy for treated items at post-therapy. In contrast, participants' novel word learning performance was not correlated with therapy gains for treated items at 1 month follow-up or for untreated items at either time point. Therapy intensity did not influence treatment outcomes. This is the first group study to directly examine the relationship between novel word learning and therapy outcomes for anomia rehabilitation in adults with aphasia. Importantly, we found that novel word learning performance was correlated with therapy outcomes. We propose that novel word learning ability may contribute to the initial acquisition of treatment gains in anomia rehabilitation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Malem-Shinitski, Noa; Zhang, Yingzhuo; Gray, Daniel T; Burke, Sara N; Smith, Anne C; Barnes, Carol A; Ba, Demba
2018-04-18
The study of learning in populations of subjects can provide insights into the changes that occur in the brain with aging, drug intervention, and psychiatric disease. We introduce a separable two-dimensional (2D) random field (RF) model for analyzing binary response data acquired during the learning of object-reward associations across multiple days. The method can quantify the variability of performance within a day and across days, and can capture abrupt changes in learning. We apply the method to data from young and aged macaque monkeys performing a reversal-learning task. The method provides an estimate of performance within a day for each age group, and a learning rate across days for each monkey. We find that, as a group, the older monkeys require more trials to learn the object discriminations than do the young monkeys, and that the cognitive flexibility of the younger group is higher. We also use the model estimates of performance as features for clustering the monkeys into two groups. The clustering results in two groups that, for the most part, coincide with those formed by the age groups. Simulation studies suggest that clustering captures inter-individual differences in performance levels. In comparison with generalized linear models, this method is better able to capture the inherent two-dimensional nature of the data and find between group differences. Applied to binary response data from groups of individuals performing multi-day behavioral experiments, the model discriminates between-group differences and identifies subgroups. Copyright © 2018. Published by Elsevier B.V.
Pornpattananangkul, Narun; Nusslock, Robin
2016-01-01
While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals completed a behavioral delay-discounting task. Reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation stage (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and at the reward-outcome stage (including, feedback-locked delta, theta and beta power). Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials for 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta was associated with a greater preference for larger-but-delayed rewards. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these associations occur. PMID:27477630
Resting-state connectivity predicts visuo-motor skill learning.
Manuel, Aurélie L; Guggisberg, Adrian G; Thézé, Raphaël; Turri, Francesco; Schnider, Armin
2018-08-01
Spontaneous brain activity at rest is highly organized even when the brain is not explicitly engaged in a task. Functional connectivity (FC) in the alpha frequency band (α, 8-12 Hz) during rest is associated with improved performance on various cognitive and motor tasks. In this study we explored how FC is associated with visuo-motor skill learning and offline consolidation. We tested two hypotheses by which resting-state FC might achieve its impact on behavior: preparing the brain for an upcoming task or consolidating training gains. Twenty-four healthy participants were assigned to one of two groups: The experimental group (n = 12) performed a computerized mirror-drawing task. The control group (n = 12) performed a similar task but with concordant cursor direction. High-density 156-channel resting-state EEG was recorded before and after learning. Subjects were tested for offline consolidation 24h later. The Experimental group improved during training and showed offline consolidation. Increased α-FC between the left superior parietal cortex and the rest of the brain before training and decreased α-FC in the same region after training predicted learning. Resting-state FC following training did not predict offline consolidation and none of these effects were present in controls. These findings indicate that resting-state alpha-band FC is primarily implicated in providing optimal neural resources for upcoming tasks. Copyright © 2018 Elsevier Inc. All rights reserved.
Consolidating the effects of waking and sleep on motor-sequence learning.
Brawn, Timothy P; Fenn, Kimberly M; Nusbaum, Howard C; Margoliash, Daniel
2010-10-20
Sleep is widely believed to play a critical role in memory consolidation. Sleep-dependent consolidation has been studied extensively in humans using an explicit motor-sequence learning paradigm. In this task, performance has been reported to remain stable across wakefulness and improve significantly after sleep, making motor-sequence learning the definitive example of sleep-dependent enhancement. Recent work, however, has shown that enhancement disappears when the task is modified to reduce task-related inhibition that develops over a training session, thus questioning whether sleep actively consolidates motor learning. Here we use the same motor-sequence task to demonstrate sleep-dependent consolidation for motor-sequence learning and explain the discrepancies in results across studies. We show that when training begins in the morning, motor-sequence performance deteriorates across wakefulness and recovers after sleep, whereas performance remains stable across both sleep and subsequent waking with evening training. This pattern of results challenges an influential model of memory consolidation defined by a time-dependent stabilization phase and a sleep-dependent enhancement phase. Moreover, the present results support a new account of the behavioral effects of waking and sleep on explicit motor-sequence learning that is consistent across a wide range of tasks. These observations indicate that current theories of memory consolidation that have been formulated to explain sleep-dependent performance enhancements are insufficient to explain the range of behavioral changes associated with sleep.
Murty, Vishnu P; LaBar, Kevin S; Hamilton, Derek A; Adcock, R Alison
2011-01-01
The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants' skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance-motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning.
Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison
2011-01-01
The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants’ skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance–motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning. PMID:22021253
The Computational Development of Reinforcement Learning during Adolescence
Palminteri, Stefano; Coricelli, Giorgio; Blakemore, Sarah-Jayne
2016-01-01
Adolescence is a period of life characterised by changes in learning and decision-making. Learning and decision-making do not rely on a unitary system, but instead require the coordination of different cognitive processes that can be mathematically formalised as dissociable computational modules. Here, we aimed to trace the developmental time-course of the computational modules responsible for learning from reward or punishment, and learning from counterfactual feedback. Adolescents and adults carried out a novel reinforcement learning paradigm in which participants learned the association between cues and probabilistic outcomes, where the outcomes differed in valence (reward versus punishment) and feedback was either partial or complete (either the outcome of the chosen option only, or the outcomes of both the chosen and unchosen option, were displayed). Computational strategies changed during development: whereas adolescents’ behaviour was better explained by a basic reinforcement learning algorithm, adults’ behaviour integrated increasingly complex computational features, namely a counterfactual learning module (enabling enhanced performance in the presence of complete feedback) and a value contextualisation module (enabling symmetrical reward and punishment learning). Unlike adults, adolescent performance did not benefit from counterfactual (complete) feedback. In addition, while adults learned symmetrically from both reward and punishment, adolescents learned from reward but were less likely to learn from punishment. This tendency to rely on rewards and not to consider alternative consequences of actions might contribute to our understanding of decision-making in adolescence. PMID:27322574
Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.
Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C
2017-02-15
Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness. SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that are modulated by the brain chemical dopamine are sensitive to reward variability. Here, we aimed to directly relate dopamine to learning about variable rewards, and the neural encoding of associated teaching signals. We perturbed dopamine in healthy individuals using dopaminergic medication and asked them to predict variable rewards while we made brain scans. Dopamine perturbations impaired learning and the neural encoding of reward variability, thus establishing a direct link between dopamine and adaptation to reward variability. These results aid our understanding of clinical conditions associated with dopaminergic dysfunction, such as psychosis. Copyright © 2017 Diederen et al.
Berg, Jody-Lynn; Swan, Natasha M; Banks, Sarah J; Miller, Justin B
2016-09-01
Cognitive set shifting requires flexible application of lower level processes. The Delis-Kaplan Executive Functioning System (DKEFS) Color-Word Interference Test (CWIT) is commonly used to clinically assess cognitive set shifting. An atypical pattern of performance has been observed on the CWIT; a subset of individuals perform faster, with equal or fewer errors, on the more difficult inhibition/switching than the inhibition trial. This study seeks to explore the cognitive underpinnings of this atypical pattern. It is hypothesized that atypical patterns on CWIT will be associated with better performance on underlying cognitive measures of attention, working memory, and learning when compared to typical CWIT patterns. Records from 239 clinical referrals (age: M = 68.09 years, SD = 10.62; education: M = 14.87 years, SD = 2.73) seen for a neuropsychological evaluation as part of diagnostic work up in an outpatient dementia and movement disorders clinic were sampled. The standard battery of tests included measures of attention, learning, fluency, executive functioning, and working memory. Analyses of variance (ANOVAs) were conducted to compare the cognitive performance of those with typical versus atypical CWIT patterns. An atypical pattern of performance was confirmed in 23% of our sample. Analyses revealed a significant group difference in acquisition of information on both nonverbal (Brief Visuospatial Memory Test-Revised, BVMT-R total recall), F(1, 213) = 16.61, p < .001, and verbal (Hopkins Verbal Learning Test-Revised, HVLT-R total recall) learning tasks, F(1, 181) = 6.43, p < .01, and semantic fluency (Animal Naming), F(1, 232) = 7.57, p = .006, with the atypical group performing better on each task. Effect sizes were larger for nonverbal (Cohen's d = 0.66) than verbal learning (Cohen's d = 0.47) and semantic fluency (Cohen's d = 0.43). Individuals demonstrating an atypical pattern of performance on the CWIT inhibition/switching trial also demonstrated relative strengths in semantic fluency and learning.
Does Spatial Ability Help the Learning of Anatomy in a Biomedical Science Course?
ERIC Educational Resources Information Center
Sweeney, Kevin; Hayes, Jennifer A.; Chiavaroli, Neville
2014-01-01
A three-dimensional appreciation of the human body is the cornerstone of clinical anatomy. Spatial ability has previously been found to be associated with students' ability to learn anatomy and their examination performance. The teaching of anatomy has been the subject of major change over the last two decades with the reduction in time spent…
ERIC Educational Resources Information Center
Zhao, Jingming; Yuping, Wei; Maideen, Ismail; Moe, Zan Khin; Nasirudeen, A. M. A.
2018-01-01
The use of smartphone for socialising and learning has become a norm among students in Singapore. Educational institutions are creating lessons and applications for use on mobile platforms. However, the effectiveness of smartphones for learning has not been well studied in Singapore. This study was conducted to understand the association between…
ERIC Educational Resources Information Center
Marques, Joan; Garrett, Nathan
2012-01-01
Assurance of Learning (AoL) practices can be implemented in a variety of ways, as long as they are geared toward business schools' missions and curricula. The authors first address the purpose of implementing AoL, and briefly evaluate the ongoing debate about the pros and cons of the Association to Advance Collegiate Schools of Business's policies…
Rehabilitation Associate Training for Employed Staff. Task Analysis (RA-2).
ERIC Educational Resources Information Center
Davis, Michael J.; Jensen, Mary
This learning module, which is intended for use in in-service training for vocational rehabilitation counselors, deals with writing a task analysis. Step-by-step guidelines are provided for breaking down a task into small teachable steps by analyzing the task in terms of the way in which it will be performed once learned (method), the steps to be…
Behmer, Lawrence P; Fournier, Lisa R
2016-11-01
Questions regarding the malleability of the mirror neuron system (MNS) continue to be debated. MNS activation has been reported when people observe another person performing biological goal-directed behaviors, such as grasping a cup. These findings support the importance of mapping goal-directed biological behavior onto one's motor repertoire as a means of understanding the actions of others. Still, other evidence supports the Associative Sequence Learning (ASL) model which predicts that the MNS responds to a variety of stimuli after sensorimotor learning, not simply biological behavior. MNS activity develops as a consequence of developing stimulus-response associations between a stimulus and its motor outcome. Findings from the ideomotor literature indicate that stimuli that are more ideomotor compatible with a response are accompanied by an increase in response activation compared to less compatible stimuli; however, non-compatible stimuli robustly activate a constituent response after sensorimotor learning. Here, we measured changes in the mu-rhythm, an EEG marker thought to index MNS activity, predicting that stimuli that differ along dimensions of ideomotor compatibility should show changes in mirror neuron activation as participants learn the respective stimulus-response associations. We observed robust mu-suppression for ideomotor-compatible hand actions and partially compatible dot animations prior to learning; however, compatible stimuli showed greater mu-suppression than partially or non-compatible stimuli after explicit learning. Additionally, non-compatible abstract stimuli exceeded baseline only after participants explicitly learned the motor responses associated with the stimuli. We conclude that the empirical differences between the biological and ASL accounts of the MNS can be explained by Ideomotor Theory. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Hen, Meirav; Goroshit, Marina
2014-01-01
Academic procrastination has been seen as an impediment to students' academic success. Research findings suggest that it is related to lower levels of self-regulated learning and academic self-efficacy and associated with higher levels of anxiety, stress, and illness. Emotional intelligence (EI) is the ability to assess, regulate, and utilize emotions and has been found to be associated with academic self-efficacy and a variety of better outcomes, including academic performance. Students with learning disabilities (LD) are well acquainted with academic difficulty and maladaptive academic behavior. In comparison to students without LD, they exhibit high levels of learned helplessness, including diminished persistence, lower academic expectations, and negative affect. This study examined the relationships among academic procrastination, EI, and academic performance as mediated by academic self-efficacy in 287 LD and non-LD students. Results indicated that the indirect effect of EI on academic procrastination and GPA was stronger in LD students than in non-LD students. In addition, results indicated that LD students scored lower than non-LD students on both EI and academic self-efficacy and higher on academic procrastination. No difference was found in GPA.
Effects of personality traits on collaborative performance in problem-based learning tutorials
Jang, Hye Won; Park, Seung Won
2016-01-01
Objectives To examine the relationship between students’ collaborative performance in a problem-based learning (PBL) environment and their personality traits. Methods This retrospective, cross-sectional study was conducted using student data of a PBL program between 2013 and 2014 at Sungkyunkwan University School of Medicine, Seoul, South Korea. Eighty students were included in the study. Student data from the Temperament and Character Inventory were used as a measure of their personality traits. Peer evaluation scores during PBL were used as a measure of students’ collaborative performance. Results Simple regression analyses indicated that participation was negatively related to harm avoidance and positively related to persistence, whereas preparedness for the group work was negatively related to reward dependence. On multiple regression analyses, low reward dependence remained a significant predictor of preparedness. Grade-point average (GPA) was negatively associated with novelty seeking and cooperativeness and was positively associated with persistence. Conclusion Medical students who are less dependent on social reward are more likely to complete assigned independent work to prepare for the PBL tutorials. The findings of this study can help educators better understand and support medical students who are at risk of struggling in collaborative learning environments. PMID:27874153
Effects of personality traits on collaborative performance in problem-based learning tutorials.
Jang, Hye Won; Park, Seung Won
2016-12-01
To examine the relationship between students' collaborative performance in a problem-based learning (PBL) environment and their personality traits. Methods:This retrospective, cross-sectional study was conducted using student data of a PBL program between 2013 and 2014 at Sungkyunkwan University School of Medicine, Seoul, South Korea. Eighty students were included in the study. Student data from the Temperament and Character Inventory were used as a measure of their personality traits. Peer evaluation scores during PBL were used as a measure of students' collaborative performance. Results: Simple regression analyses indicated that participation was negatively related to harm avoidance and positively related to persistence, whereas preparedness for the group work was negatively related to reward dependence. On multiple regression analyses, low reward dependence remained a significant predictor of preparedness. Grade-point average (GPA) was negatively associated with novelty seeking and cooperativeness and was positively associated with persistence. Conclusion: Medical students who are less dependent on social reward are more likely to complete assigned independent work to prepare for the PBL tutorials. The findings of this study can help educators better understand and support medical students who are at risk of struggling in collaborative learning environments.
Valenchon, Mathilde; Lévy, Frédéric; Prunier, Armelle; Moussu, Chantal; Calandreau, Ludovic; Lansade, Léa
2013-01-01
The present study investigates how the temperament of the animal affects the influence of acute stress on the acquisition and reacquisition processes of a learning task. After temperament was assessed, horses were subjected to a stressor before or after the acquisition session of an instrumental task. Eight days later, horses were subjected to a reacquisition session without any stressor. Stress before acquisition tended to enhance the number of successes at the beginning of the acquisition session. Eight days later, during the reacquisition session, contrary to non-stressed animals, horses stressed after acquisition, and, to a lesser extent, horses stressed before acquisition, did not improve their performance between acquisition and reacquisition sessions. Temperament influenced learning performances in stressed horses only. Particularly, locomotor activity improved performances whereas fearfulness impaired them under stressful conditions. Results suggest that direct exposure to a stressor tended to increase acquisition performances, whereas a state of stress induced by the memory of a stressor, because it has been previously associated with the learning context, impaired reacquisition performances. The negative effect of a state of stress on reacquisition performances appeared to be stronger when exposure to the stressor occurred after rather than before the acquisition session. Temperament had an impact on both acquisition and reacquisition processes, but under stressful conditions only. These results suggest that stress is necessary to reveal the influence of temperament on cognitive performances. PMID:23626801
Gosselin, Nadia; De Beaumont, Louis; Gagnon, Katia; Baril, Andrée-Ann; Mongrain, Valérie; Blais, Hélène; Montplaisir, Jacques; Gagnon, Jean-François; Pelleieux, Sandra; Poirier, Judes; Carrier, Julie
2016-08-10
It is hypothesized that a fundamental function of sleep is to restore an individual's day-to-day ability to learn and to constantly adapt to a changing environment through brain plasticity. Brain-derived neurotrophic factor (BDNF) is among the key regulators that shape brain plasticity. However, advancing age and carrying the BDNF Met allele were both identified as factors that potentially reduce BDNF secretion, brain plasticity, and memory. Here, we investigated the moderating role of BDNF polymorphism on sleep and next-morning learning ability in 107 nondemented individuals who were between 55 and 84 years of age. All subjects were tested with 1 night of in-laboratory polysomnography followed by a cognitive evaluation the next morning. We found that in subjects carrying the BDNF Val66Val polymorphism, consolidated sleep was associated with significantly better performance on hippocampus-dependent episodic memory tasks the next morning (β-values from 0.290 to 0.434, p ≤ 0.01). In subjects carrying at least one copy of the BDNF Met allele, a more consolidated sleep was not associated with better memory performance in most memory tests (β-values from -0.309 to -0.392, p values from 0.06 to 0.15). Strikingly, increased sleep consolidation was associated with poorer performance in learning a short story presented verbally in Met allele carriers (β = -0.585, p = 0.005). This study provides new evidence regarding the interacting roles of consolidated sleep and BDNF polymorphism in the ability to learn and stresses the importance of considering BDNF polymorphism when studying how sleep affects cognition. Individuals with the BDNF Val/Val (valine allele) polymorphism showed better memory performance after a night of consolidated sleep. However, we observed that middle-aged and older individuals who are carriers of the BDNF Met allele displayed no positive association between sleep quality and their ability to learn the next morning. This interaction between sleep and BDNF polymorphism was more salient for hippocampus-dependent tasks than for other cognitive tasks. Our results support the hypothesis that reduced activity-dependent secretion of BDNF impairs the benefits of sleep on synaptic plasticity and next-day memory. Our work advances the field by revealing new evidence of a clear genetic heterogeneity in how sleep consolidation contributes to the ability to learn. Copyright © 2016 the authors 0270-6474/16/368391-09$15.00/0.
Measuring learning potential in people with schizophrenia: A comparison of two tasks.
Rempfer, Melisa V; McDowd, Joan M; Brown, Catana E
2017-12-01
Learning potential measures utilize dynamic assessment methods to capture performance changes following training on a cognitive task. Learning potential has been explored in schizophrenia research as a predictor of functional outcome and there have been calls for psychometric development in this area. Because the majority of learning potential studies have utilized the Wisconsin Card Sorting Test (WCST), we extended this work using a novel measure, the Rey Osterrieth Complex Figure Test (ROCFT). This study had the following aims: 1) to examine relationships among different learning potential indices for two dynamic assessment tasks, 2) to examine the association between WCST and ROCFT learning potential measures, and 3) to address concurrent validity with a performance-based measure of functioning (Test of Grocery Shopping Skills; TOGSS). Eighty-one adults with schizophrenia or schizoaffective disorder completed WCST and ROCFT learning measures and the TOGSS. Results indicated the various learning potential computational indices are intercorrelated and, similar to other studies, we found support for regression residuals and post-test scores as optimal indices. Further, we found modest relationships between the two learning potential measures and the TOGSS. These findings suggest learning potential includes both general and task-specific constructs but future research is needed to further explore this question. Copyright © 2017 Elsevier B.V. All rights reserved.
Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease.
Meissner, Sarah Nadine; Südmeyer, Martin; Keitel, Ariane; Pollok, Bettina; Bellebaum, Christian
2016-10-15
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.
Face-Name Association Learning and Brain Structural Substrates in Alcoholism
Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V.
2011-01-01
Background Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Methods Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent a 3T structural MRI. Results Compared with controls, alcoholics had poorer associative and single-item recognition, each impaired to the same extent. Level of processing at encoding had little effect on recognition performance but affected reaction time. Correlations with brain volumes were generally modest and based primarily on reaction time in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task reaction times correlated modestly with volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Conclusions Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster reaction times and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded reaction time occurred at the expense of accuracy and was related most robustly to cerebellar volumes. PMID:22509954
Support Parents to Improve Student Learning
ERIC Educational Resources Information Center
Cattanach, Joanna
2013-01-01
By all rights, Hispanic children should be performing better than test scores show. Strong parent-child relationships at home should equal student success, yet Hispanic students remain the least educated group in the country. The Hispanic family structure epitomizes the values normally associated with high academic performance. Hispanic families…
Practice-based learning can improve osteoporosis care.
Hess, Brian J; Johnston, Mary M; Iobst, William F; Lipner, Rebecca S
2013-10-01
To examine physician engagement in practice-based learning using a self-evaluation module to assess and improve their care of individuals with or at risk of osteoporosis. Retrospective cohort study. Internal medicine and subspecialty clinics. Eight hundred fifty U.S. physicians with time-limited certification in general internal medicine or a subspecialty. Performance rates on 23 process measures and seven practice system domain scores were obtained from the American Board of Internal Medicine (ABIM) Osteoporosis Practice Improvement Module (PIM), an Internet-based self-assessment module that physicians use to improve performance on one targeted measure. Physicians remeasured performance on their targeted measures by conducting another medical chart review. Variability in performance on measures was found, with observed differences between general internists, geriatricians, and rheumatologists. Some practice system elements were modestly associated with measure performance; the largest association was between providing patient-centered self-care support and documentation of calcium intake and vitamin D estimation and counseling (correlation coefficients from 0.20 to 0.28, Ps < .002). For all practice types, the most commonly selected measure targeted for improvement was documentation of vitamin D level (38% of physicians). On average, physicians reported significant and large increases in performance on measures targeted for improvement. Gaps exist in the quality of osteoporosis care, and physicians can apply practice-based learning using the ABIM PIM to take action to improve the quality of care. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.
McArthur, R A; Carfagna, N; Banfi, L; Cavanus, S; Cervini, M A; Fariello, R; Post, C
1997-01-01
The effects of chronic oral administration of nicergoline (5.0 mg/kg; bid) on locomotor activity, eight-arm radial maze performance plus striatal, cortical, and hippocampal acetylcholine (ACh) levels were examined in young and aged Wistar rats. Chronic nicergoline administration did not modify either the locomotor activity or radial maze learning in young rats. Young rats learned the radial maze procedure rapidly and improved their performance throughout the successive training sessions. Radial maze performance in young rats was characterised by very few arm reentries. Aged rats were hypoactive and did not explore or enter the radial maze arms, and consequently performed poorly in the radial maze throughout the training sessions. Nicergoline treatment did not significantly modify locomotor activity in aged rats. Aged rats treated with nicergoline also performed poorly initially but improved with repeated training in the radial maze. This improvement was associated with an increasing number of arms being entered and very few arm reentries. Reduced acetylcholine (ACh) levels were also associated with age. Aged rats had significantly reduced levels of ACh in the straitum and cortex, but not the hippocampus as compared to young rats. Nicergoline treatment did not change ACh levels in young rats, but substantially restored the reduced ACh levels in aged rats. These results indicate that nicergoline is an effective cognitive enhancer in a learning model of age-related deficits and that these results may be related to changes in the cholinergic system.
ERIC Educational Resources Information Center
Mabry, Christie Knittel; O'Driscoll, Tony
2003-01-01
Technologically Enhanced Performance (TEP) is the application of technology to improve the performance of knowledge workers. TEP is both an intellectual and ideological complement to the field of Adult Education. As such, much can be learned about ethical issues associated with implementing TEP from the established research and literature base in…
Verbal and Visuospatial Performance in Male Alcoholics: A Test of the Premature-Aging Hypothesis.
ERIC Educational Resources Information Center
Shelton, M. D.; And Others
1984-01-01
Compared the levels and patterns of performance of middle-aged, hospitalized chronic alcoholics (N=36), nonalcoholic peer controls (N=36), and a group of elderly nonalcoholic men (N=24) on a paired-associate learning task. Results showed that both the alcoholics and elderly performed significantly poorer than the middle-aged control subjects. (LLL)
Orhan, A Emin; Ma, Wei Ji
2017-07-26
Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks. Probabilistic inference requires trial-to-trial representation of the uncertainties associated with task variables and subsequent use of this representation. Previous work has implemented such computations using neural networks with hand-crafted and task-dependent operations. We show that generic neural networks trained with a simple error-based learning rule perform near-optimal probabilistic inference in nine common psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic network simultaneously explains a monkey's learning curve and the evolution of qualitative aspects of its choice behavior. In all tasks, the number of neurons required for a given level of performance grows sublinearly with the input population size, a substantial improvement on previous implementations of probabilistic inference. The trained networks develop a novel sparsity-based probabilistic population code. Our results suggest that probabilistic inference emerges naturally in generic neural networks trained with error-based learning rules.Behavioural tasks often require probability distributions to be inferred about task specific variables. Here, the authors demonstrate that generic neural networks can be trained using a simple error-based learning rule to perform such probabilistic computations efficiently without any need for task specific operations.
Frontal Hyperconnectivity Related to Discounting and Reversal Learning in Cocaine Subjects
Camchong, Jazmin; MacDonald, Angus W; Nelson, Brent; Bell, Christopher; Mueller, Bryon A; Specker, Sheila; Lim, Kelvin O
2011-01-01
BACKGROUND Functional neuroimaging studies suggest that chronic cocaine use is associated with frontal lobe abnormalities. Functional connectivity (FC) alterations of cocaine dependent individuals (CD), however, are not yet clear. This is the first study to our knowledge that examines resting FC of anterior cingulate cortex (ACC) in CD. Because ACC is known to integrate inputs from different brain regions to regulate behavior, we hypothesize that CD will have connectivity abnormalities in ACC networks. In addition, we hypothesized that abnormalities would be associated with poor performance in delayed discounting and reversal learning tasks. METHODS Resting functional magnetic resonance imaging data were collected to look for FC differences between twenty-seven cocaine dependent individuals (CD) (5 females, age: M=39.73, SD=6.14) and twenty-four controls (5 females, age: M=39.76, SD = 7.09). Participants were assessed with delayed discounting and reversal learning tasks. Using seed-based FC measures, we examined FC in CD and controls within five ACC connectivity networks with seeds in subgenual, caudal, dorsal, rostral, and perigenual ACC. RESULTS CD showed increased FC within the perigenual ACC network in left middle frontal gyrus, ACC and middle temporal gyrus when compared to controls. FC abnormalities were significantly positively correlated with task performance in delayed discounting and reversal learning tasks in CD. CONCLUSIONS The present study shows that participants with chronic cocaine-dependency have hyperconnectivity within an ACC network known to be involved in social processing and mentalizing. In addition, FC abnormalities found in CD were associated with difficulties with delay rewards and slower adaptive learning. PMID:21371689
Forster, Sarah E; Zirnheld, Patrick; Shekhar, Anantha; Steinhauer, Stuart R; O'Donnell, Brian F; Hetrick, William P
2017-09-01
Signals carried by the mesencephalic dopamine system and conveyed to anterior cingulate cortex are critically implicated in probabilistic reward learning and performance monitoring. A common evaluative mechanism purportedly subserves both functions, giving rise to homologous medial frontal negativities in feedback- and response-locked event-related brain potentials (the feedback-related negativity (FRN) and the error-related negativity (ERN), respectively), reflecting dopamine-dependent prediction error signals to unexpectedly negative events. Consistent with this model, the dopamine receptor antagonist, haloperidol, attenuates the ERN, but effects on FRN have not yet been evaluated. ERN and FRN were recorded during a temporal interval learning task (TILT) following randomized, double-blind administration of haloperidol (3 mg; n = 18), diphenhydramine (an active control for haloperidol; 25 mg; n = 20), or placebo (n = 21) to healthy controls. Centroparietal positivities, the Pe and feedback-locked P300, were also measured and correlations between ERP measures and behavioral indices of learning, overall accuracy, and post-error compensatory behavior were evaluated. We hypothesized that haloperidol would reduce ERN and FRN, but that ERN would uniquely track automatic, error-related performance adjustments, while FRN would be associated with learning and overall accuracy. As predicted, ERN was reduced by haloperidol and in those exhibiting less adaptive post-error performance; however, these effects were limited to ERNs following fast timing errors. In contrast, the FRN was not affected by drug condition, although increased FRN amplitude was associated with improved accuracy. Significant drug effects on centroparietal positivities were also absent. Our results support a functional and neurobiological dissociation between the ERN and FRN.
Kuschpel, Maxim S; Liu, Shuyan; Schad, Daniel J; Heinzel, Stephan; Heinz, Andreas; Rapp, Michael A
2015-01-01
The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game "Angry Birds" before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the "Angry Birds" video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity.
Kuschpel, Maxim S.; Liu, Shuyan; Schad, Daniel J.; Heinzel, Stephan; Heinz, Andreas; Rapp, Michael A.
2015-01-01
The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game “Angry Birds” before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the “Angry Birds” video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity. PMID:26579055
Arthur, Michael W; Brown, Eric C; Briney, John S; Hawkins, J David; Abbott, Robert D; Catalano, Richard F; Becker, Linda; Langer, Michael; Mueller, Martin T
2015-08-01
School administrators and teachers face difficult decisions about how best to use school resources to meet academic achievement goals. Many are hesitant to adopt prevention curricula that are not focused directly on academic achievement. Yet, some have hypothesized that prevention curricula can remove barriers to learning and, thus, promote achievement. We examined relationships among school levels of student substance use and risk and protective factors that predict adolescent problem behaviors and achievement test performance. Hierarchical generalized linear models were used to predict associations involving school-averaged levels of substance use and risk and protective factors and students' likelihood of meeting achievement test standards on the Washington Assessment of Student Learning, statistically controlling for demographic and economic factors known to be associated with achievement. Levels of substance use and risk/protective factors predicted the academic test score performance of students. Many of these effects remained significant even after controlling for model covariates. Implementing prevention programs that target empirically identified risk and protective factors has the potential to have a favorable effect on students' academic achievement. © 2015, American School Health Association.
Cardillo, Ramona; Garcia, Ricardo Basso; Mammarella, Irene C; Cornoldi, Cesare
2017-03-15
The present study aims to find empirical evidence of deficits in linguistic pragmatic skills and theory of mind (ToM) in children with dyslexia with associated language difficulties or nonverbal learning disabilities (NLD), when compared with a group of typically developing (TD) children matched for age and gender. Our results indicate that children with dyslexia perform less well than TD children in most of the tasks measuring pragmatics of language, and in one of the tasks measuring ToM. In contrast, children with NLD generally performed better than the dyslexia group, and performed significantly worse than the TD children only in a metaphors task based on visual stimuli. A discriminant function analysis confirmed the crucial role of the metaphors subtest and the verbal ToM task in distinguishing between the groups. We concluded that, contrary to a generally-held assumption, children with dyslexia and associated language difficulties may be weaker than children with NLD in linguistic pragmatics and ToM, especially when language is crucially involved. The educational and clinical implications of these findings are discussed.
CD process control through machine learning
NASA Astrophysics Data System (ADS)
Utzny, Clemens
2016-10-01
For the specific requirements of the 14nm and 20nm site applications a new CD map approach was developed at the AMTC. This approach relies on a well established machine learning technique called recursive partitioning. Recursive partitioning is a powerful technique which creates a decision tree by successively testing whether the quantity of interest can be explained by one of the supplied covariates. The test performed is generally a statistical test with a pre-supplied significance level. Once the test indicates significant association between the variable of interest and a covariate a split performed at a threshold value which minimizes the variation within the newly attained groups. This partitioning is recurred until either no significant association can be detected or the resulting sub group size falls below a pre-supplied level.