Stalpers, Dewi; van der Linden, Dimitri; Kaljouw, Marian J; Schuurmans, Marieke J
2016-01-01
Deliberate screening allows detection of health risks that are otherwise not noticeable and allows expedient intervention to minimize complications and optimize outcomes, especially during critical events like hospitalization. Little research has evaluated the usefulness of screening performance and outcome indicators as measures to differentiate nursing quality, although policymakers are using them to benchmark hospitals. The aims of this study were to examine hospital performance based on nursing-sensitive screening indicators and to assess associations with hospital characteristics and nursing-sensitive outcomes for patients. A secondary use of nursing-sensitive data from the Dutch Health Care Inspectorate was performed, including the mandatory screening and outcome indicators related to delirium, malnutrition, pain and pressure ulcers. The sample consisted of all 93 hospitals in the Netherlands in 2011. High- and low-performing hospitals were determined based on the overall proportion of screened patients. Descriptive statistics and analysis of variance were used to examine screening performances in relation to hospital characteristics and nursing-sensitive outcomes. Over all hospitals, the average screening rates ranged from 59% (delirium) to 94% (pain). Organizational characteristics were not different in high- and low-performing hospitals. The hospitals with the best overall screening performances had significantly better results regarding protein intake within malnourished patients (p < .01). For mortality, marginal significant effects did not remain after controlling for organizational structures. No associations were found with prevalence of pressure ulcers and patient self-reported pain scores. The screening for patient risks is an important nursing task. Our findings suggest that nursing-sensitive screening indicators may be relevant measures for benchmarking nursing quality in hospitals. Time-trend studies are required to support our findings and to further investigate relations with nursing-sensitive outcomes.
NASA Astrophysics Data System (ADS)
Ganesan, A.; Alakhras, M.; Brennan, P. C.; Lee, W.; Tapia, K.; Mello-Thoms, C.
2018-03-01
Purpose: To determine the impact of Breast Screen Reader Assessment Strategy (BREAST) over time in improving radiologists' breast cancer detection performance, and to identify the group of radiologists that benefit the most by using BREAST as a training tool. Materials and Methods: Thirty-six radiologists who completed three case-sets offered by BREAST were included in this study. The case-sets were arranged in radiologists' chronological order of completion and five performance measures (sensitivity, specificity, location sensitivity, receiver operating characteristics area under the curve (ROC AUC) and jackknife alternative free-response receiver operating characteristic (JAFROC) figure-of-merit (FOM)), available from BREAST, were compared between case-sets to determine the level of improvement achieved. The radiologists were then grouped based on their characteristics and the above performance measures between the case-sets were compared. Paired t-tests or Wilcoxon signed-rank tests with statistical significance set at p < 0.05 were used to compare the performance measures. Results: Significant improvement was demonstrated in radiologists' case-set performance in terms of location sensitivity and JAFROC FOM over the years, and radiologists' location sensitivity and JAFROC FOM showed significant improvement irrespective of their characteristics. In terms of ROC AUC, significant improvement was shown for radiologists who were reading screen mammograms for more than 7 years and spent more than 9 hours per week reading mammograms. Conclusion: Engaging with case-sets appears to enhance radiologists' performance suggesting the important value of initiatives such as BREAST. However, such performance enhancement was not shown for everyone, highlighting the need to tailor the BREAST platform to benefit all radiologists.
Measurement and estimation of performance characteristics (i.e., precision, bias, performance range, interferences and sensitivity) are often neglected in the development and use of new biological sampling methods. However, knowledge of this information is critical in enabling p...
Technique for Measuring Speed and Visual Motion Sensitivity in Lizards
ERIC Educational Resources Information Center
Woo, Kevin L.; Burke, Darren
2008-01-01
Testing sensory characteristics on herpetological species has been difficult due to a range of properties related to physiology, responsiveness, performance ability, and the type of reinforcer used. Using the Jacky lizard as a model, we outline a successfully established procedure in which to test the visual sensitivity to motion characteristics.…
Relating Standardized Visual Perception Measures to Simulator Visual System Performance
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Sweet, Barbara T.
2013-01-01
Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).
Loewenstein, Anat; Ferencz, Joseph R; Lang, Yaron; Yeshurun, Itamar; Pollack, Ayala; Siegal, Ruth; Lifshitz, Tova; Karp, Joseph; Roth, Daniel; Bronner, Guri; Brown, Justin; Mansour, Sam; Friedman, Scott; Michels, Mark; Johnston, Richards; Rapp, Moshe; Havilio, Moshe; Rafaeli, Omer; Manor, Yair
2010-01-01
The primary purpose of this study was to evaluate the ability of a home device preferential hyperacuity perimeter to discriminate between patients with choroidal neovascularization (CNV) and intermediate age-related macular degeneration (AMD), and the secondary purpose was to investigate the dependence of sensitivity on lesion characteristics. All participants were tested with the home device in an unsupervised mode. The first part of this work was retrospective using tests performed by patients with intermediate AMD and newly diagnosed CNV. In the second part, the classifier was prospectively challenged with tests performed by patients with intermediate AMD and newly diagnosed CNV. The dependence of sensitivity on lesion characteristics was estimated with tests performed by patients with CNV of both parts. In 66 eyes with CNV and 65 eyes with intermediate AMD, both sensitivity and specificity were 0.85. In the retrospective part (34 CNV and 43 intermediate AMD), sensitivity and specificity were 0.85 +/- 0.12 (95% confidence interval) and 0.84 +/- 0.11 (95% confidence interval), respectively. In the prospective part (32 CNV and 22 intermediate AMD), sensitivity and specificity were 0.84 +/- 0.13 (95% confidence interval) and 0.86 +/- 0.14 (95% confidence interval), respectively. Chi-square analysis showed no dependence of sensitivity on type (P = 0.44), location (P = 0.243), or size (P = 0.73) of the CNV lesions. A home device preferential hyperacuity perimeter has good sensitivity and specificity in discriminating between patients with newly diagnosed CNV and intermediate AMD. Sensitivity is not dependent on lesion characteristics.
Performance characteristics of digital vs film screen mammography in community practice.
Dabbous, Firas; Dolecek, Therese A; Friedewald, Sarah M; Tossas-Milligan, Katherine Y; Macarol, Tere; Summerfelt, Wm Thomas; Rauscher, Garth H
2018-05-01
We compared the performance characteristics of 297 629 full field digital (FFDM) and 416 791 screen film mammograms (SFM). Sensitivity increased with age, decreased with breast density, and was lower for more aggressive and lobular tumors. While sensitivity did not differ significantly by modality, specificity was generally 1%-2% points higher for FFDM than for SFM across age and breast density categories. The lower recall rate for FFDM vs SFM in our study may partially explain performance differences by modality. In this large health care organization, modest gains in performance were achieved with the introduction of FFDM as a replacement for SFM. © 2017 Wiley Periodicals, Inc.
Design of piezoelectric probe for measurement of longitudinal and shear components of elastic wave
NASA Astrophysics Data System (ADS)
Aoyanagi, Masafumi; Wakatsuki, Naoto; Mizutani, Koichi; Ebihara, Tadashi
2017-07-01
We focus on ultrasonic probes for nondestructive tests and evaluation. Transient characteristics of probes are important for nondestructive tests such as the pulse echo method. We previously reported the principle of measurement using a piezoelectric probe with triaxial sensitivities. In the results, it was calculated that the probe could transmit and receive particle displacement which contains normal and tangential components. It was confirmed that the probe had sensitivities in triaxial directions. However, its performance in terms of frequency and transient characteristics has not been evaluated. The purpose of this study is to design a probe by changing its shape to obtain better performance. The transient characteristics of probes in longitudinal and shear driving were evaluated by the inverse Fourier transformation of frequency responses of longitudinal and shear components, using the two-dimensional finite element method. As a result, the sensitivities at the dips of frequency characteristics increased when using our probe compared with those measured using conventional probes in longitudinal and shear driving. Hence, the performance in terms of the frequency response was improved by more than 3 dB under the conditions in this simulation. Also, the pulse width of impulse response was decreased by half compared with that of probes with conventional shapes.
NASA Technical Reports Server (NTRS)
Ko, William L.
2004-01-01
Heat-transfer, thermal bending, and mechanical buckling analyses have been performed on a superalloy "honeycomb" thermal protection system (TPS) for future hypersonic flight vehicles. The studies focus on the effect of honeycomb cell geometry on the TPS heat-shielding performance, honeycomb cell wall buckling characteristics, and the effect of boundary conditions on the TPS thermal bending behavior. The results of the study show that the heat-shielding performance of a TPS panel is very sensitive to change in honeycomb core depth, but insensitive to change in honeycomb cell cross-sectional shape. The thermal deformations and thermal stresses in the TPS panel are found to be very sensitive to the edge support conditions. Slight corrugation of the honeycomb cell walls can greatly increase their buckling strength.
Comparing hospital costs: what is gained by accounting for more than a case-mix index?
Hvenegaard, Anne; Street, Andrew; Sørensen, Torben Højmark; Gyrd-Hansen, Dorte
2009-08-01
We explore what effect controlling for various patient characteristics beyond a case-mix index (DRG) has on inferences drawn about the relative cost performance of hospital departments. We estimate fixed effect cost models in which 3754 patients are clustered within six Danish vascular departments. We compare a basic model including a DRG index only with models also including age and gender, health related characteristics, such as smoking status, diabetes, and American Society of Anesthesiogists score (ASA-score), and socioeconomic characteristics such as income, employment and whether the patient lives alone. We find that the DRG index is a robust and important explanatory factor and adding other routinely collected characteristics such as age and gender and other health related or socioeconomic characteristics do not seem to alter the results significantly. The results are more sensitive to choice of functional form, i.e. in particular to whether costs are log transformed. Our results suggest that the routinely collected characteristics such as DRG index, age and gender are sufficient when drawing inferences about relative cost performance. Adding health related or socioeconomic patient characteristics only slightly improves our model in terms of explanatory power but not when drawing inferences about relative performance. The results are, however, sensitive to whether costs are log transformed.
Jahan-Tigh, Richard R; Chinn, Garrett M; Rapini, Ronald P
2016-01-01
The incorporation of high-resolution cameras into smartphones has allowed for a variety of medical applications including the use of lens attachments that provide telescopic, macroscopic, and dermatoscopic data, but the feasibility and performance characteristics of such a platform for use in dermatopathology have not been described. To determine the diagnostic performance of a smartphone microscope compared to traditional light microscopy in dermatopathology specimens. A simple smartphone microscope constructed with a 3-mm ball lens was used to prospectively evaluate 1021 consecutive dermatopathology cases in a blinded fashion. Referred, consecutive specimens from the community were evaluated at a single university hospital. The performance characteristics of the smartphone platform were calculated by using conventional light microscopy as the gold standard. The sensitivity and specificity for the diagnosis of melanoma, nonmelanoma skin cancers, and other miscellaneous conditions by the phone microscopy platform, as compared with traditional light microscopy, were calculated. For basal cell carcinoma (n = 136), the sensitivity and specificity of smartphone microscopy were 95.6% and 98.1%, respectively. The sensitivity and specificity for squamous cell carcinoma (n = 94) were 89.4% and 97.3%, respectively. The lowest sensitivity was found in melanoma (n = 15) at 60%, although the specificity was high at 99.1%. The accuracy of diagnosis of inflammatory conditions and other neoplasms was variable. Mobile phone-based microscopy has excellent performance characteristics for the inexpensive diagnosis of nonmelanoma skin cancers in a setting where a traditional microscope is not available.
Hamel, Perrine; Falinski, Kim; Sharp, Richard; Auerbach, Daniel A; Sánchez-Canales, María; Dennedy-Frank, P James
2017-02-15
Geospatial models are commonly used to quantify sediment contributions at the watershed scale. However, the sensitivity of these models to variation in hydrological and geomorphological features, in particular to land use and topography data, remains uncertain. Here, we assessed the performance of one such model, the InVEST sediment delivery model, for six sites comprising a total of 28 watersheds varying in area (6-13,500km 2 ), climate (tropical, subtropical, mediterranean), topography, and land use/land cover. For each site, we compared uncalibrated and calibrated model predictions with observations and alternative models. We then performed correlation analyses between model outputs and watershed characteristics, followed by sensitivity analyses on the digital elevation model (DEM) resolution. Model performance varied across sites (overall r 2 =0.47), but estimates of the magnitude of specific sediment export were as or more accurate than global models. We found significant correlations between metrics of sediment delivery and watershed characteristics, including erosivity, suggesting that empirical relationships may ultimately be developed for ungauged watersheds. Model sensitivity to DEM resolution varied across and within sites, but did not correlate with other observed watershed variables. These results were corroborated by sensitivity analyses performed on synthetic watersheds ranging in mean slope and DEM resolution. Our study provides modelers using InVEST or similar geospatial sediment models with practical insights into model behavior and structural uncertainty: first, comparison of model predictions across regions is possible when environmental conditions differ significantly; second, local knowledge on the sediment budget is needed for calibration; and third, model outputs often show significant sensitivity to DEM resolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Price, C L; Brace-McDonnell, S J; Stallard, N; Bleetman, A; Maconochie, I; Perkins, G D
2016-05-01
Context Triage tools are an essential component of the emergency response to a major incident. Although fortunately rare, mass casualty incidents involving children are possible which mandate reliable triage tools to determine the priority of treatment. To determine the performance characteristics of five major incident triage tools amongst paediatric casualties who have sustained traumatic injuries. Retrospective observational cohort study using data from 31,292 patients aged less than 16 years who sustained a traumatic injury. Data were obtained from the UK Trauma Audit and Research Network (TARN) database. Interventions Statistical evaluation of five triage tools (JumpSTART, START, CareFlight, Paediatric Triage Tape/Sieve and Triage Sort) to predict death or severe traumatic injury (injury severity score >15). Main outcome measures Performance characteristics of triage tools (sensitivity, specificity and level of agreement between triage tools) to identify patients at high risk of death or severe injury. Of the 31,292 cases, 1029 died (3.3%), 6842 (21.9%) had major trauma (defined by an injury severity score >15) and 14,711 (47%) were aged 8 years or younger. There was variation in the performance accuracy of the tools to predict major trauma or death (sensitivities ranging between 36.4 and 96.2%; specificities 66.0-89.8%). Performance characteristics varied with the age of the child. CareFlight had the best overall performance at predicting death, with the following sensitivity and specificity (95% CI) respectively: 95.3% (93.8-96.8) and 80.4% (80.0-80.9). JumpSTART was superior for the triaging of children under 8 years; sensitivity and specificity (95% CI) respectively: 86.3% (83.1-89.5) and 84.8% (84.2-85.5). The triage tools were generally better at identifying patients who would die than those with non-fatal severe injury. This statistical evaluation has demonstrated variability in the accuracy of triage tools at predicting outcomes for children who sustain traumatic injuries. No single tool performed consistently well across all evaluated scenarios. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stereo chromatic contrast sensitivity model to blue-yellow gratings.
Yang, Jiachen; Lin, Yancong; Liu, Yun
2016-03-07
As a fundamental metric of human visual system (HVS), contrast sensitivity function (CSF) is typically measured by sinusoidal gratings at the detection of thresholds for psychophysically defined cardinal channels: luminance, red-green, and blue-yellow. Chromatic CSF, which is a quick and valid index to measure human visual performance and various retinal diseases in two-dimensional (2D) space, can not be directly applied into the measurement of human stereo visual performance. And no existing perception model considers the influence of chromatic CSF of inclined planes on depth perception in three-dimensional (3D) space. The main aim of this research is to extend traditional chromatic contrast sensitivity characteristics to 3D space and build a model applicable in 3D space, for example, strengthening stereo quality of 3D images. This research also attempts to build a vision model or method to check human visual characteristics of stereo blindness. In this paper, CRT screen was clockwise and anti-clockwise rotated respectively to form the inclined planes. Four inclined planes were selected to investigate human chromatic vision in 3D space and contrast threshold of each inclined plane was measured with 18 observers. Stimuli were isoluminant blue-yellow sinusoidal gratings. Horizontal spatial frequencies ranged from 0.05 to 5 c/d. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. According to the relationship between spatial frequency of inclined plane and horizontal spatial frequency, the chromatic contrast sensitivity characteristics in 3D space have been modeled based on the experimental data. The results show that the proposed model can well predicted human chromatic contrast sensitivity characteristics in 3D space.
Receiver operating characteristic analysis of age-related changes in lineup performance.
Humphries, Joyce E; Flowe, Heather D
2015-04-01
In the basic face memory literature, support has been found for the late maturation hypothesis, which holds that face recognition ability is not fully developed until at least adolescence. Support for the late maturation hypothesis in the criminal lineup identification literature, however, has been equivocal because of the analytic approach that has been used to examine age-related changes in identification performance. Recently, receiver operator characteristic (ROC) analysis was applied for the first time in the adult eyewitness memory literature to examine whether memory sensitivity differs across different types of lineup tests. ROC analysis allows for the separation of memory sensitivity from response bias in the analysis of recognition data. Here, we have made the first ROC-based comparison of adults' and children's (5- and 6-year-olds and 9- and 10-year-olds) memory performance on lineups by reanalyzing data from Humphries, Holliday, and Flowe (2012). In line with the late maturation hypothesis, memory sensitivity was significantly greater for adults compared with young children. Memory sensitivity for older children was similar to that for adults. The results indicate that the late maturation hypothesis can be generalized to account for age-related performance differences on an eyewitness memory task. The implications for developmental eyewitness memory research are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Peripheral resolution and contrast sensitivity: Effects of stimulus drift.
Venkataraman, Abinaya Priya; Lewis, Peter; Unsbo, Peter; Lundström, Linda
2017-04-01
Optimal temporal modulation of the stimulus can improve foveal contrast sensitivity. This study evaluates the characteristics of the peripheral spatiotemporal contrast sensitivity function in normal-sighted subjects. The purpose is to identify a temporal modulation that can potentially improve the remaining peripheral visual function in subjects with central visual field loss. High contrast resolution cut-off for grating stimuli with four temporal frequencies (0, 5, 10 and 15Hz drift) was first evaluated in the 10° nasal visual field. Resolution contrast sensitivity for all temporal frequencies was then measured at four spatial frequencies between 0.5 cycles per degree (cpd) and the measured stationary cut-off. All measurements were performed with eccentric optical correction. Similar to foveal vision, peripheral contrast sensitivity is highest for a combination of low spatial frequency and 5-10Hz drift. At higher spatial frequencies, there was a decrease in contrast sensitivity with 15Hz drift. Despite this decrease, the resolution cut-off did not vary largely between the different temporal frequencies tested. Additional measurements of contrast sensitivity at 0.5 cpd and resolution cut-off for stationary (0Hz) and 7.5Hz stimuli performed at 10, 15, 20 and 25° in the nasal visual field also showed the same characteristics across eccentricities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cherpanath, Thomas G V; Hirsch, Alexander; Geerts, Bart F; Lagrand, Wim K; Leeflang, Mariska M; Schultz, Marcus J; Groeneveld, A B Johan
2016-05-01
Passive leg raising creates a reversible increase in venous return allowing for the prediction of fluid responsiveness. However, the amount of venous return may vary in various clinical settings potentially affecting the diagnostic performance of passive leg raising. Therefore we performed a systematic meta-analysis determining the diagnostic performance of passive leg raising in different clinical settings with exploration of patient characteristics, measurement techniques, and outcome variables. PubMed, EMBASE, the Cochrane Database of Systematic Reviews, and citation tracking of relevant articles. Clinical trials were selected when passive leg raising was performed in combination with a fluid challenge as gold standard to define fluid responders and non-responders. Trials were included if data were reported allowing the extraction of sensitivity, specificity, and area under the receiver operating characteristic curve. Twenty-three studies with a total of 1,013 patients and 1,034 fluid challenges were included. The analysis demonstrated a pooled sensitivity of 86% (95% CI, 79-92), pooled specificity of 92% (95% CI, 88-96), and a summary area under the receiver operating characteristic curve of 0.95 (95% CI, 0.92-0.98). Mode of ventilation, type of fluid used, passive leg raising starting position, and measurement technique did not affect the diagnostic performance of passive leg raising. The use of changes in pulse pressure on passive leg raising showed a lower diagnostic performance when compared with passive leg raising-induced changes in flow variables, such as cardiac output or its direct derivatives (sensitivity of 58% [95% CI, 44-70] and specificity of 83% [95% CI, 68-92] vs sensitivity of 85% [95% CI, 78-90] and specificity of 92% [95% CI, 87-94], respectively; p < 0.001). Passive leg raising retains a high diagnostic performance in various clinical settings and patient groups. The predictive value of a change in pulse pressure on passive leg raising is inferior to a passive leg raising-induced change in a flow variable.
Impact of Breast Reader Assessment Strategy on mammographic radiologists' test reading performance.
Suleiman, Wasfi I; Rawashdeh, Mohammad A; Lewis, Sarah J; McEntee, Mark F; Lee, Warwick; Tapia, Kriscia; Brennan, Patrick C
2016-06-01
The detection of breast cancer is somewhat limited by human factors, and thus there is a need to improve reader performance. This study assesses whether radiologists who regularly undertake the education in the form of the Breast Reader Assessment Strategy (BREAST) demonstrate any changes in mammography interpretation performance over time. In 2011, 2012 and 2013, 14 radiologists independently assessed a year-specific BREAST mammographic test-set. Radiologists read a different single test-set once each year, with each comprising 60 digital mammogram cases. Radiologists marked the location of suspected lesions without computer-aided diagnosis (CAD) and assigned a confidence rating of 2 for benign and 3-5 for malignant lesions. The mean sensitivity, specificity, location sensitivity, JAFROC FOM and ROC AUC were calculated. A Kruskal-Wallis test was used to compare the readings for the 14 radiologists across the 3 years. Wilcoxon signed rank test was used to assess comparison between pairs of years. Relationships between changes in performance and radiologist characteristics were examined using a Spearman's test. Significant increases were noted in mean sensitivity (P = 0.01), specificity (P = 0.01), location sensitivity (P = 0.001) and JAFROC FOM (P = 0.001) between 2011 and 2012. Between 2012 and 2013, significant improvements were noted in mean sensitivity (P = 0.003), specificity (P = 0.002), location sensitivity (P = 0.02), JAFROC FOM (P = 0.005) and ROC AUC (P = 0.008). No statistically significant correlations were shown between the levels of improvement and radiologists' characteristics. Radiologists' who undertake the BREAST programme demonstrate significant improvements in test-set performance during a 3-year period, highlighting the value of ongoing education through the use of test-set. © 2016 The Royal Australian and New Zealand College of Radiologists.
Didier, Ryne A; Hopkins, Katharine L; Coakley, Fergus V; Krishnaswami, Sanjay; Spiro, David M; Foster, Bryan R
2017-09-01
Magnetic resonance imaging (MRI) has emerged as a promising modality for evaluating pediatric appendicitis. However optimal imaging protocols, including roles of contrast agents and sedation, have not been established and diagnostic criteria have not been fully evaluated. To investigate performance characteristics of rapid MRI without contrast agents or sedation in the diagnosis of pediatric appendicitis. We included patients ages 4-18 years with suspicion of appendicitis who underwent rapid MRI between October 2013 and March 2015 without contrast agent or sedation. After two-radiologist review, we determined performance characteristics of individual diagnostic criteria and aggregate diagnostic criteria by comparing MRI results to clinical outcomes. We used receiver operating characteristic (ROC) curves to determine cut-points for appendiceal diameter and wall thickness for optimization of predictive power, and we calculated area under the curve (AUC) as a measure of test accuracy. Ninety-eight MRI examinations were performed in 97 subjects. Overall, MRI had a 94% sensitivity, 95% specificity, 91% positive predictive value and 97% negative predictive value. Optimal cut-points for appendiceal diameter and wall thickness were ≥7 mm and ≥2 mm, respectively. Independently, those cut-points produced sensitivities of 91% and 84% and specificities of 84% and 43%. Presence of intraluminal fluid (30/33) or localized periappendiceal fluid (32/33) showed a significant association with acute appendicitis (P<0.01), with sensitivities of 91% and 97% and specificities of 60% and 50%. For examinations in which the appendix was not identified by one or both reviewers (23/98), the clinical outcome was negative. Rapid MRI without contrast agents or sedation is accurate for diagnosis of pediatric appendicitis when multiple diagnostic criteria are considered in aggregate. Individual diagnostic criteria including optimized cut-points of ≥7 mm for diameter and ≥2 mm for wall thickness demonstrate high sensitivities but relatively low specificities. Nonvisualization of the appendix favors a negative diagnosis.
Dalbeth, Nicola; Schumacher, H Ralph; Fransen, Jaap; Neogi, Tuhina; Jansen, Tim L; Brown, Melanie; Louthrenoo, Worawit; Vazquez-Mellado, Janitzia; Eliseev, Maxim; McCarthy, Geraldine; Stamp, Lisa K; Perez-Ruiz, Fernando; Sivera, Francisca; Ea, Hang-Korng; Gerritsen, Martijn; Scire, Carlo A; Cavagna, Lorenzo; Lin, Chingtsai; Chou, Yin-Yi; Tausche, Anne-Kathrin; da Rocha Castelar-Pinheiro, Geraldo; Janssen, Matthijs; Chen, Jiunn-Horng; Cimmino, Marco A; Uhlig, Till; Taylor, William J
2016-12-01
To identify the best-performing survey definition of gout from items commonly available in epidemiologic studies. Survey definitions of gout were identified from 34 epidemiologic studies contributing to the Global Urate Genetics Consortium (GUGC) genome-wide association study. Data from the Study for Updated Gout Classification Criteria (SUGAR) were randomly divided into development and test data sets. A data-driven case definition was formed using logistic regression in the development data set. This definition, along with definitions used in GUGC studies and the 2015 American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) gout classification criteria were applied to the test data set, using monosodium urate crystal identification as the gold standard. For all tested GUGC definitions, the simple definition of "self-report of gout or urate-lowering therapy use" had the best test performance characteristics (sensitivity 82%, specificity 72%). The simple definition had similar performance to a SUGAR data-driven case definition with 5 weighted items: self-report, self-report of doctor diagnosis, colchicine use, urate-lowering therapy use, and hyperuricemia (sensitivity 87%, specificity 70%). Both of these definitions performed better than the 1977 American Rheumatism Association survey criteria (sensitivity 82%, specificity 67%). Of all tested definitions, the 2015 ACR/EULAR criteria had the best performance (sensitivity 92%, specificity 89%). A simple definition of "self-report of gout or urate-lowering therapy use" has the best test performance characteristics of existing definitions that use routinely available data. A more complex combination of features is more sensitive, but still lacks good specificity. If a more accurate case definition is required for a particular study, the 2015 ACR/EULAR gout classification criteria should be considered. © 2016, American College of Rheumatology.
NASA Technical Reports Server (NTRS)
Traversi, M.
1979-01-01
Data are presented on the sensitivity of: (1) mission analysis results to the boundary values given for number of passenger cars and average annual vehicle miles traveled per car; (2) vehicle characteristics and performance to specifications; and (3) tradeoff study results to the expected parameters.
Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane
The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However,more » it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy.« less
Institutional and Economic Determinants of Public Health System Performance
Mays, Glen P.; McHugh, Megan C.; Shim, Kyumin; Perry, Natalie; Lenaway, Dennis; Halverson, Paul K.; Moonesinghe, Ramal
2006-01-01
Objectives. Although a growing body of evidence demonstrates that availability and quality of essential public health services vary widely across communities, relatively little is known about the factors that give rise to these variations. We examined the association of institutional, financial, and community characteristics of local public health delivery systems and the performance of essential services. Methods. Performance measures were collected from local public health systems in 7 states and combined with secondary data sources. Multivariate, linear, and nonlinear regression models were used to estimate associations between system characteristics and the performance of essential services. Results. Performance varied significantly with the size, financial resources, and organizational structure of local public health systems, with some public health services appearing more sensitive to these characteristics than others. Staffing levels and community characteristics also appeared to be related to the performance of selected services. Conclusions. Reconfiguring the organization and financing of public health systems in some communities—such as through consolidation and enhanced intergovernmental coordination—may hold promise for improving the performance of essential services. PMID:16449584
Performance modeling of terahertz (THz) and millimeter waves (mmW) pupil plane imaging
NASA Astrophysics Data System (ADS)
Mohammadian, Nafiseh; Furxhi, Orges; Zhang, Lei; Offermans, Peter; Ghazi, Galia; Driggers, Ronald
2018-05-01
Terahertz- (THz) and millimeter-wave sensors are becoming more important in industrial, security, medical, and defense applications. A major problem in these sensing areas is the resolution, sensitivity, and visual acuity of the imaging systems. There are different fundamental parameters in designing a system that have significant effects on the imaging performance. The performance of THz systems can be discussed in terms of two characteristics: sensitivity and spatial resolution. New approaches for design and manufacturing of THz imagers are a vital basis for developing future applications. Photonics solutions have been at the technological forefront in THz band applications. A single scan antenna does not provide reasonable resolution, sensitivity, and speed. An effective approach to imaging is placing a high-performance antenna in a two-dimensional antenna array to achieve higher radiation efficiency and higher resolution in the imaging systems. Here, we present the performance modeling of a pupil plane imaging system to find the resolution and sensitivity efficiency of the imaging system.
Allergen Sensitization Pattern by Sex: A Cluster Analysis in Korea.
Ohn, Jungyoon; Paik, Seung Hwan; Doh, Eun Jin; Park, Hyun-Sun; Yoon, Hyun-Sun; Cho, Soyun
2017-12-01
Allergens tend to sensitize simultaneously. Etiology of this phenomenon has been suggested to be allergen cross-reactivity or concurrent exposure. However, little is known about specific allergen sensitization patterns. To investigate the allergen sensitization characteristics according to gender. Multiple allergen simultaneous test (MAST) is widely used as a screening tool for detecting allergen sensitization in dermatologic clinics. We retrospectively reviewed the medical records of patients with MAST results between 2008 and 2014 in our Department of Dermatology. A cluster analysis was performed to elucidate the allergen-specific immunoglobulin (Ig)E cluster pattern. The results of MAST (39 allergen-specific IgEs) from 4,360 cases were analyzed. By cluster analysis, 39items were grouped into 8 clusters. Each cluster had characteristic features. When compared with female, the male group tended to be sensitized more frequently to all tested allergens, except for fungus allergens cluster. The cluster and comparative analysis results demonstrate that the allergen sensitization is clustered, manifesting allergen similarity or co-exposure. Only the fungus cluster allergens tend to sensitize female group more frequently than male group.
Kim, Daniel J; Francispragasam, Mario; Docherty, Gavin; Silver, Byron; Prager, Ross; Lee, Donna; Maberley, David
2018-05-18
Previous studies of point of care ultrasound (POCUS) have reported high sensitivities and specificities for retinal detachment (RD). Our primary objective was to assess the test characteristics of POCUS performed by a large heterogeneous group of emergency physicians (EPs) for the diagnosis of RD. This was a prospective diagnostic test assessment of POCUS performed by EPs with varying ultrasound experience on a convenience sample of emergency department (ED) patients presenting with flashes or floaters in one or both eyes. After standard ED assessment, EPs performed an ocular POCUS scan targeted to detect the presence or absence of RD. After completing their ED visit, all patients were assessed by a retina specialist who was blinded to the results of the POCUS scan. We calculated sensitivity and specificity with associated exact binomial confidence intervals (CI) using the retina specialist's final diagnosis as the reference standard. A total of 30 EPs enrolled 115 patients, with median age of 60 years and 64% female. The retina specialist diagnosed RD in 16 (14%) cases. The sensitivity and specificity of POCUS for detecting RD was 75% (95% CI 48%-93%) and 94% (95% CI 87%-98%), respectively. The positive likelihood ratio was 12.4 (95% CI 5.4-28.3), and negative likelihood ratio was 0.27 (95% CI 0.11-0.62). A large heterogeneous group of EPs can perform POCUS with high specificity but only intermediate sensitivity for RD. A negative POCUS scan in the ED performed by a heterogeneous group of providers after a one-hour POCUS didactic is not sufficiently sensitive to rule out RD in a patient with new onset flashes or floaters. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Korenblit, Jason; Tholey, Danielle M.; Tolin, Joanna; Loren, David; Kowalski, Thomas; Adler, Douglas G.; Davolos, Julie; Siddiqui, Ali A.
2016-01-01
Background and Objectives: Recent reports have indicated that the time of day may impact the detection rate of abnormal cytology on gynecologic cytology samples. The aim of this study was to determine if procedure time or queue position affected the performance characteristics of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) for diagnosing solid pancreatic malignancies. Patients and Methods: We conducted a retrospective study evaluating patients with solid pancreatic lesions in whom EUS-FNA was performed. Three timing variables were evaluated as surrogate markers for endoscopist fatigue: Procedure start times, morning versus afternoon procedures, and endoscopy queue position. Statistical analyses were performed to determine whether the timing variables predicted performance characteristics of EUS-FNA. Results: We identified 609 patients (mean age: 65.8 years, 52.1% males) with solid pancreatic lesions who underwent EUS-FNA. The sensitivity of EUS-FNA was 100% for procedures that started at 7 AM while cases that started at 4 PM had a sensitivity of 81%. Using start time on a continuous scale, each elapsed hour was associated with a 1.9% decrease in EUS-FNA sensitivity (P = 0.003). Similarly, a 10% reduction in EUS-FNA sensitivity was detected between morning and afternoon procedures (92% vs. 82% respectively, P = 0.0006). A linear regression comparing the procedure start time and diagnostic accuracy revealed a decrease of approximately 1.7% in procedure accuracy for every hour later a procedure was started. A 16% reduction in EUS-FNA accuracy was detected between morning and afternoon procedures (100% vs. 84% respectively, P = 0.0009). When the queue position was assessed, a 2.4% reduction in accuracy was noted for each increase in the queue position (P = 0.013). Conclusion: Sensitivity and diagnostic accuracy of EUS-FNA for solid pancreatic lesions decline with progressively later EUS starting times and increasing numbers of procedures before a given EUS, potentially from endoscopist fatigue and cytotechnologist fatigue. PMID:27080605
Nanographite-TiO2 photoanode for dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Sharma, S. S.; Sharma, Khushboo; Sharma, Vinay
2016-05-01
Nanographite-TiO2 (NG-TiO2) composite was successfully synthesized by the hydrothermal method and its performance as the photoanode for dye-sensitized solar cells (DSSCs) was investigated. Environmental Scanning electron microscope (E-SEM) micrographs show the uniform distribution of TiO2 nanoflowers deposited over nanographite sheets. The average performance characteristics of the assembled cell in terms of short-ciruit current density (JSC), open circuit voltage (VOC), fill factor (FF) and photoelectric conversion efficiency (η) were measured.
NASA Astrophysics Data System (ADS)
Hossain, Md. Khalid; Pervez, M. Firoz; Mia, M. N. H.; Mortuza, A. A.; Rahaman, M. S.; Karim, M. R.; Islam, Jahid M. M.; Ahmed, Farid; Khan, Mubarak A.
In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric) sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV-Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell's (DSSC) photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric.
Measures of accuracy and performance of diagnostic tests.
Drobatz, Kenneth J
2009-05-01
Diagnostic tests are integral to the practice of veterinary cardiology, any other specialty, and general veterinary medicine. Developing and understanding diagnostic tests is one of the cornerstones of clinical research. This manuscript describes the diagnostic test properties including sensitivity, specificity, predictive value, likelihood ratio, receiver operating characteristic curve. Review of practical book chapters and standard statistics manuscripts. Diagnostics such as sensitivity, specificity, predictive value, likelihood ratio, and receiver operating characteristic curve are described and illustrated. Basic understanding of how diagnostic tests are developed and interpreted is essential in reviewing clinical scientific papers and understanding evidence based medicine.
Le Strat, Yann
2017-01-01
The objective of this paper is to evaluate a panel of statistical algorithms for temporal outbreak detection. Based on a large dataset of simulated weekly surveillance time series, we performed a systematic assessment of 21 statistical algorithms, 19 implemented in the R package surveillance and two other methods. We estimated false positive rate (FPR), probability of detection (POD), probability of detection during the first week, sensitivity, specificity, negative and positive predictive values and F1-measure for each detection method. Then, to identify the factors associated with these performance measures, we ran multivariate Poisson regression models adjusted for the characteristics of the simulated time series (trend, seasonality, dispersion, outbreak sizes, etc.). The FPR ranged from 0.7% to 59.9% and the POD from 43.3% to 88.7%. Some methods had a very high specificity, up to 99.4%, but a low sensitivity. Methods with a high sensitivity (up to 79.5%) had a low specificity. All methods had a high negative predictive value, over 94%, while positive predictive values ranged from 6.5% to 68.4%. Multivariate Poisson regression models showed that performance measures were strongly influenced by the characteristics of time series. Past or current outbreak size and duration strongly influenced detection performances. PMID:28715489
NASA Astrophysics Data System (ADS)
Fang, Juan; Hao, Xiaoting; Fan, Qingwen; Chang, Zeqing; Song, Shuying
2017-05-01
In the Heterogeneous multi-core architecture, CPU and GPU processor are integrated on the same chip, which poses a new challenge to the last-level cache management. In this architecture, the CPU application and the GPU application execute concurrently, accessing the last-level cache. CPU and GPU have different memory access characteristics, so that they have differences in the sensitivity of last-level cache (LLC) capacity. For many CPU applications, a reduced share of the LLC could lead to significant performance degradation. On the contrary, GPU applications can tolerate increase in memory access latency when there is sufficient thread-level parallelism. Taking into account the GPU program memory latency tolerance characteristics, this paper presents a method that let GPU applications can access to memory directly, leaving lots of LLC space for CPU applications, in improving the performance of CPU applications and does not affect the performance of GPU applications. When the CPU application is cache sensitive, and the GPU application is insensitive to the cache, the overall performance of the system is improved significantly.
Performance of terahertz metamaterials as high-sensitivity sensor
NASA Astrophysics Data System (ADS)
He, Yanan; Zhang, Bo; Shen, Jingling
2017-09-01
A high-sensitivity sensor based on the resonant transmission characteristics of terahertz (THz) metamaterials was investigated, with the proposal and fabrication of rectangular bar arrays of THz metamaterials exhibiting a period of 180 μm on a 25 μm thick flexible polyimide. Varying the size of the metamaterial structure revealed that the length of the rectangular unit modulated the resonant frequency, which was verified by both experiment and simulation. The sensing characteristics upon varying the surrounding media in the sample were tested by simulation and experiment. Changing the surrounding medium from that of air to that of alcohol or oil produced resonant frequency redshifts of 80 GHz or 150 GHz, respectively, which indicates that the sensor possessed a high sensitivity of 667 GHz per unit of refractive index. Finally, the influence of the sample substrate thickness on the sensor sensitivity was investigated by simulation. It may be a reference for future sensor design.
Teoh, Jeremy Yc; Yuen, Steffi Kk; Tsu, James Hl; Wong, Charles Kw; Ho, Brian Sh; Ng, Ada Tl; Ma, Wai-Kit; Ho, Kwan-Lun; Yiu, Ming-Kwong
2017-01-01
We investigated the performance characteristics of prostate-specific antigen (PSA) and PSA density (PSAD) in Chinese men. All Chinese men who underwent transrectal ultrasound-guided prostate biopsy (TRUS-PB) from year 2000 to 2013 were included. The receiver operating characteristic (ROC) curves for both PSA and PSAD were analyzed. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) at different cut-off levels were calculated. A total of 2606 Chinese men were included. For the ROC, the area under curve was 0.770 for PSA (P < 0.001) and 0.823 for PSAD (P < 0.001). PSA of 4.5 ng ml-1 had sensitivity of 94.4%, specificity of 14.1%, PPV of 29.5%, and NPV of 86.9%; PSAD of 0.12 ng ml-1 cc-1 had sensitivity of 94.5%, specificity of 26.6%, PPV of 32.8%, and NPV of 92.7%. On multivariate logistic regression analyses, PSA cut-off at 4.5 ng ml-1 (OR 1.61, 95% CI 1.05-2.45, P= 0.029) and PSAD cut-off at 0.12 ng ml-1 cc-1 (OR 6.22, 95% CI 4.20-9.22, P< 0.001) were significant predictors for prostate cancer detection on TRUS-PB. In conclusion, the performances of PSA and PSAD at different cut-off levels in Chinese men were very different from those in Caucasians. PSA of 4.5 ng ml-1 and PSAD of 0.12 ng ml-1 cc-1 had near 95% sensitivity and were significant predictors of prostate cancer detection in Chinese men.
Wang, Huei-Tang; Taufany, Fadlilatul; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang
2014-05-01
The development of ruthenium dye-sensitizers with highly effective metal-to-ligand charge transfer (MLCT) characteristics and narrowed transition energy gaps are essential for the new generation of dye-sensitized solar cells. Here, we designed a novel anchoring ligand by inserting the cyanovinyl-branches inside the anchoring ligands of selected highly efficient dye-sensitizers and studied their intrinsic optical properties using theoretical methods. Our calculated results show that the designed ruthenium dyes provide good performances as sensitizers compared to the selected efficient dyes, because of their red-shift in the UV-visible absorption spectra with an increase in the absorption intensity, smaller energy gaps and thereby enhancing MLCT transitions. We found that, the designed anchoring ligand acts as an efficient "electron-acceptor" which boosts electron-transfer from a -NCS ligand to this ligand via a Ru-bridge, thus providing a way to lower the transition energy gap and enhance the MLCT transitions.
Ma, Chunming; Liu, Yue; Lu, Qiang; Lu, Na; Liu, Xiaoli; Tian, Yiming; Wang, Rui; Yin, Fuzai
2016-02-01
The blood pressure-to-height ratio (BPHR) has been shown to be an accurate index for screening hypertension in children and adolescents. The aim of the present study was to perform a meta-analysis to assess the performance of BPHR for the assessment of hypertension. Electronic and manual searches were performed to identify studies of the BPHR. After methodological quality assessment and data extraction, pooled estimates of the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, area under the receiver operating characteristic curve and summary receiver operating characteristics were assessed systematically. The extent of heterogeneity for it was assessed. Six studies were identified for analysis. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio values of BPHR, for assessment of hypertension, were 96% [95% confidence interval (CI)=0.95-0.97], 90% (95% CI=0.90-0.91), 10.68 (95% CI=8.03-14.21), 0.04 (95% CI=0.03-0.07) and 247.82 (95% CI=114.50-536.34), respectively. The area under the receiver operating characteristic curve was 0.9472. The BPHR had higher diagnostic accuracies for identifying hypertension in children and adolescents.
Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie
2015-09-01
The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.
An empirical comparison of key statistical attributes among potential ICU quality indicators.
Brown, Sydney E S; Ratcliffe, Sarah J; Halpern, Scott D
2014-08-01
Good quality indicators should have face validity, relevance to patients, and be able to be measured reliably. Beyond these general requirements, good quality indicators should also have certain statistical properties, including sufficient variability to identify poor performers, relative insensitivity to severity adjustment, and the ability to capture what providers do rather than patients' characteristics. We assessed the performance of candidate indicators of ICU quality on these criteria. Indicators included ICU readmission, mortality, several length of stay outcomes, and the processes of venous-thromboembolism and stress ulcer prophylaxis provision. Retrospective cohort study. One hundred thirty-eight U.S. ICUs from 2001-2008 in the Project IMPACT database. Two hundred sixty-eight thousand eight hundred twenty-four patients discharged from U.S. ICUs. None. We assessed indicators' (1) variability across ICU-years; (2) degree of influence by patient vs. ICU and hospital characteristics using the Omega statistic; (3) sensitivity to severity adjustment by comparing the area under the receiver operating characteristic curve (AUC) between models including vs. excluding patient variables, and (4) correlation between risk adjusted quality indicators using a Spearman correlation. Large ranges of among-ICU variability were noted for all quality indicators, particularly for prolonged length of stay (4.7-71.3%) and the proportion of patients discharged home (30.6-82.0%), and ICU and hospital characteristics outweighed patient characteristics for stress ulcer prophylaxis (ω, 0.43; 95% CI, 0.34-0.54), venous thromboembolism prophylaxis (ω, 0.57; 95% CI, 0.53-0.61), and ICU readmissions (ω, 0.69; 95% CI, 0.52-0.90). Mortality measures were the most sensitive to severity adjustment (area under the receiver operating characteristic curve % difference, 29.6%); process measures were the least sensitive (area under the receiver operating characteristic curve % differences: venous thromboembolism prophylaxis, 3.4%; stress ulcer prophylaxis, 2.1%). None of the 10 indicators was clearly and consistently correlated with a majority of the other nine indicators. No indicator performed optimally across assessments. Future research should seek to define and operationalize quality in a way that is relevant to both patients and providers.
Suh, Chong Hyun; Yun, Seong Jong; Jin, Wook; Lee, Sun Hwa; Park, So Young; Ryu, Chang-Woo
2018-07-01
To assess the sensitivity and specificity of quantitative assessment of the apparent diffusion coefficient (ADC) for differentiating benign and malignant vertebral bone marrow lesions (BMLs) and compression fractures (CFs) METHODS: An electronic literature search of MEDLINE and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver operating characteristic modelling were performed to evaluate the diagnostic performance of ADC for differentiating vertebral BMLs. Subgroup analysis was performed for differentiating benign and malignant vertebral CFs. Meta-regression analyses according to subject, study and diffusion-weighted imaging (DWI) characteristics were performed. Twelve eligible studies (748 lesions, 661 patients) were included. The ADC exhibited a pooled sensitivity of 0.89 (95% confidence interval [CI] 0.80-0.94) and a pooled specificity of 0.87 (95% CI 0.78-0.93) for differentiating benign and malignant vertebral BMLs. In addition, the pooled sensitivity and specificity for differentiating benign and malignant CFs were 0.92 (95% CI 0.82-0.97) and 0.91 (95% CI 0.87-0.94), respectively. In the meta-regression analysis, the DWI slice thickness was a significant factor affecting heterogeneity (p < 0.01); thinner slice thickness (< 5 mm) showed higher specificity (95%) than thicker slice thickness (81%). Quantitative assessment of ADC is a useful diagnostic tool for differentiating benign and malignant vertebral BMLs and CFs. • Quantitative assessment of ADC is useful in differentiating vertebral BMLs. • Quantitative ADC assessment for BMLs had sensitivity of 89%, specificity of 87%. • Quantitative ADC assessment for CFs had sensitivity of 92%, specificity of 91%. • The specificity is highest (95%) with thinner (< 5 mm) DWI slice thickness.
Kirk, Katherine M; McGuire, Annabel; Nasveld, Peter E; Treloar, Susan A
2012-04-01
To investigate the relationship between self-reported and audiometrically-measured hearing loss in a sample of Australian Defence Force personnel. Responses to a question regarding hearing problems were compared with contemporaneous audiometric data. 3335 members of the Australian Defence Force for whom anonymised medical records were available. The sensitivity of self-report data to identify higher-frequency hearing loss was lower than sensitivity at other frequencies, and positive predictive values were moderate to poor at all frequencies. Performance characteristics of self-report compared with audiometric data also varied with age, sex, and rank. While self-report hearing loss data have good performance characteristics for estimating prevalence of hearing loss as defined by audiometric criteria, this study indicates that the usefulness of self-report data in identifying individuals with hearing loss may be limited in this population.
Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.
2017-06-14
We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhancemore » cell efficiency.« less
Accuracy of Screening Mammography Interpretation by Characteristics of Radiologists
Barlow, William E.; Chi, Chen; Carney, Patricia A.; Taplin, Stephen H.; D’Orsi, Carl; Cutter, Gary; Hendrick, R. Edward; Elmore, Joann G.
2011-01-01
Background Radiologists differ in their ability to interpret screening mammograms accurately. We investigated the relationship of radiologist characteristics to actual performance from 1996 to 2001. Methods Screening mammograms (n = 469 512) interpreted by 124 radiologists were linked to cancer outcome data. The radiologists completed a survey that included questions on demographics, malpractice concerns, years of experience interpreting mammograms, and the number of mammograms read annually. We used receiver operating characteristics (ROC) analysis to analyze variables associated with sensitivity, specificity, and the combination of the two, adjusting for patient variables that affect performance. All P values are two-sided. Results Within 1 year of the mammogram, 2402 breast cancers were identified. Relative to low annual interpretive volume (≤1000 mammograms), greater interpretive volume was associated with higher sensitivity (P = .001; odds ratio [OR] for moderate volume [1001–2000] = 1.68, 95% CI = 1.18 to 2.39; OR for high volume [>2000] = 1.89, 95% CI = 1.36 to 2.63). Specificity decreased with volume (OR for 1001–2000 = 0.65, 95% CI = 0.52 to 0.83; OR for more than 2000 = 0.76, 95% CI = 0.60 to 0.96), compared with 1000 or less (P = .002). Greater number of years of experience interpreting mammograms was associated with lower sensitivity (P = .001), but higher specificity (P = .003). ROC analysis using the ordinal BI-RADS interpretation showed an association between accuracy and both previous mammographic history (P = .012) and breast density (P<.001). No association was observed between accuracy and years interpreting mammograms (P = .34) or mammography volume (P = .94), after adjusting for variables that affect the threshold for calling a mammogram positive. Conclusions We found no evidence that greater volume or experience at interpreting mammograms is associated with better performance. However, they may affect sensitivity and specificity, possibly by determining the threshold for calling a mammogram positive. Increasing volume requirements is unlikely to improve overall mammography performance. PMID:15601640
Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells.
Brewster, Timothy P; Konezny, Steven J; Sheehan, Stafford W; Martini, Lauren A; Schmuttenmaer, Charles A; Batista, Victor S; Crabtree, Robert H
2013-06-03
We present the first analysis of performance of hydroxamate linkers as compared to carboxylate and phosphonate groups when anchoring ruthenium-polypyridyl dyes to TiO2 surfaces in dye-sensitized solar cells (DSSCs). The study provides fundamental insight into structure/function relationships that are critical for cell performance. Our DSSCs have been produced by using newly synthesized dye molecules and characterized by combining measurements and simulations of experimental current density-voltage (J-V) characteristic curves. We show that the choice of anchoring group has a direct effect on the overall sunlight-to-electricity conversion efficiency (η), with hydroxamate anchors showing the best performance. Solar cells based on the pyridyl-hydroxamate complex exhibit higher efficiency since they suppress electron transfer from the photoanode to the electrolyte and have superior photoinjection characteristics. These findings suggest that hydroxamate anchoring groups should be particularly valuable in DSSCs and photocatalytic applications based on molecular adsorbates covalently bound to semiconductor surfaces. In contrast, analogous acetylacetonate anchors might undergo decomposition under similar conditions suggesting limited potential in future applications.
NASA Technical Reports Server (NTRS)
Ghaffari, Farhad
1999-01-01
Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a High Speed Civil Transport (HSCT) configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at M (sub infinity) = 2.4 for a range of angles-of-attack and sideslip. Although all the present computations are performed for the complete TCA configuration, appropriate assumptions derived from the fundamental supersonic aerodynamic principles have been made to extract aerodynamic predictions to complement the experimental data obtained from a 1.675%-scaled truncated (aft fuselage/empennage components removed) TCA model. The validity of the computational results, derived from the latter assumptions, are thoroughly addressed and discussed in detail. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex flow structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics for the truncated TCA configuration are shown to correlate very well with the corresponding wind-tunnel data across the examined range of angles-of-attack and sideslip. The complementary computational results for the longitudinal and lateral/directional performance characteristics for the complete TCA configuration are also presented along with the aerodynamic effects due to empennage components. Results are also presented to assess the computational method performance, solution sensitivity to grid refinement, and solution convergence characteristics.
3D printed sensing patches with embedded polymer optical fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.; Nielsen, K.; Bang, O.
2016-05-01
The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.
Individual Differences in Visual Word Recognition: Insights from the English Lexicon Project
Yap, Melvin J.; Balota, David A.; Sibley, Daragh E.; Ratcliff, Roger
2011-01-01
Empirical work and models of visual word recognition have traditionally focused on group-level performance. Despite the emphasis on the prototypical reader, there is clear evidence that variation in reading skill modulates word recognition performance. In the present study, we examined differences between individuals who contributed to the English Lexicon Project (http://elexicon.wustl.edu), an online behavioral database containing nearly four million word recognition (speeded pronunciation and lexical decision) trials from over 1,200 participants. We observed considerable within- and between-session reliability across distinct sets of items, in terms of overall mean response time (RT), RT distributional characteristics, diffusion model parameters (Ratcliff, Gomez, & McKoon, 2004), and sensitivity to underlying lexical dimensions. This indicates reliably detectable individual differences in word recognition performance. In addition, higher vocabulary knowledge was associated with faster, more accurate word recognition performance, attenuated sensitivity to stimuli characteristics, and more efficient accumulation of information. Finally, in contrast to suggestions in the literature, we did not find evidence that individuals were trading-off in their utilization of lexical and nonlexical information. PMID:21728459
Yo, Chia-Hung; Lee, Si-Huei; Chang, Shy-Shin; Lee, Matthew Chien-Hung; Lee, Chien-Chang
2014-02-20
We performed a systematic review and meta-analysis of studies on high-sensitivity C-reactive protein (hs-CRP) assays to see whether these tests are predictive of atrial fibrillation (AF) recurrence after cardioversion. Systematic review and meta-analysis. PubMed, EMBASE and Cochrane databases as well as a hand search of the reference lists in the retrieved articles from inception to December 2013. This review selected observational studies in which the measurements of serum CRP were used to predict AF recurrence. An hs-CRP assay was defined as any CRP test capable of measuring serum CRP to below 0.6 mg/dL. We summarised test performance characteristics with the use of forest plots, hierarchical summary receiver operating characteristic curves and bivariate random effects models. Meta-regression analysis was performed to explore the source of heterogeneity. We included nine qualifying studies comprising a total of 347 patients with AF recurrence and 335 controls. A CRP level higher than the optimal cut-off point was an independent predictor of AF recurrence after cardioversion (summary adjusted OR: 3.33; 95% CI 2.10 to 5.28). The estimated pooled sensitivity and specificity for hs-CRP was 71.0% (95% CI 63% to 78%) and 72.0% (61% to 81%), respectively. Most studies used a CRP cut-off point of 1.9 mg/L to predict long-term AF recurrence (77% sensitivity, 65% specificity), and 3 mg/L to predict short-term AF recurrence (73% sensitivity, 71% specificity). hs-CRP assays are moderately accurate in predicting AF recurrence after successful cardioversion.
Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.
Gvoždík, Lumír; Smolinský, Radovan
2015-11-02
Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.
NASA Astrophysics Data System (ADS)
Shojaeifar, Mohsen; Mohajerani, Ezeddin; Fathollahi, Mohammadreza
2018-01-01
Herein, we report the application of electric field assisted sintering (EFAS) procedure in dye sensitized solar cells (DSSCs). The EFAS process improved DSSC performance by enhancing optical and electrical characteristics simultaneously. The EFAS procedure is shown to be capable of reducing the TiO2 nanoparticle aggregation leading to the higher surface area for dye molecules adsorbates. Lower nanoparticle aggregation can be evidently observed by field emission scanning electron microscopy imaging. By applying an external electric field, the current density and conversion efficiency improved significantly about 30% and 45%, respectively. UV-Visible spectra of the desorbed dye molecules on the porous nanoparticles bedding confirm a higher amount of dye loading in the presence of an external electric field. Correspondingly, comprehensive J-V characteristics modeling reveals the enhancement of the diffusion coefficient by EFAS process. The proposed method can be applied to improve the efficiency of the mesostructured hybrid perovskite solar cells, photodetectors, and quantum dot-sensitized solar cells, as well as reduction of the surface area loss in all porous media.
Fujita, Takaaki; Sato, Atsushi; Tsuchiya, Kenji; Ohashi, Takuro; Yamane, Kazuhiro; Yamamoto, Yuichi; Iokawa, Kazuaki; Ohira, Yoko; Otsuki, Koji; Tozato, Fusae
2017-12-01
This study aimed to elucidate the relationship between grooming performance of stroke patients and various motor and cognitive functions and to examine the cognitive and physical functional standards required for grooming independence. We retrospectively analyzed the data of 96 hospitalized patients with first stroke in a rehabilitation hospital ward. Logistic regression analysis and receiver operating characteristic curves were used to investigate the related cognitive and motor functions with grooming performance and to calculate the cutoff values for independence and supervision levels in grooming. For analysis between the independent and supervision-dependent groups, the only item with an area under the curve (AUC) of .9 or higher was the Berg Balance Scale, and the calculated cutoff value was 41/40 (sensitivity, 83.6%; specificity, 87.8%). For analysis between the independent-supervision and dependent groups, the items with an AUC of .9 or higher were the Simple Test for Evaluating Hand Function (STEF) on the nonaffected side, Vitality Index (VI), and FIM ® cognition. The cutoff values were 68/67 for the STEF (sensitivity, 100%; specificity, 72.2%), 9/8 points for the VI (sensitivity, 92.3%; specificity, 88.9%), and 23/22 points for FIM ® cognition (sensitivity, 91.0%; specificity, 88.9%). Our results suggest that upper-extremity functions on the nonaffected side, motivation, and cognitive functions are particularly important to achieve the supervision level and that balance is important to reach the independence level. The effective improvement of grooming performance is possible by performing therapeutic or compensatory intervention on functions that have not achieved these cutoff values. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yin, X.; Chen, G.; Li, W.; Huthchins, D. A.
2013-01-01
Previous work indicated that the capacitive imaging (CI) technique is a useful NDE tool which can be used on a wide range of materials, including metals, glass/carbon fibre composite materials and concrete. The imaging performance of the CI technique for a given application is determined by design parameters and characteristics of the CI probe. In this paper, a rapid method for calculating the whole probe sensitivity distribution based on the finite element model (FEM) is presented to provide a direct view of the imaging capabilities of the planar CI probe. Sensitivity distributions of CI probes with different geometries were obtained. Influencing factors on sensitivity distribution were studied. Comparisons between CI probes with point-to-point triangular electrode pair and back-to-back triangular electrode pair were made based on the analysis of the corresponding sensitivity distributions. The results indicated that the sensitivity distribution could be useful for optimising the probe design parameters and predicting the imaging performance.
Espino, Fe Esperanza; Bibit, Jo-Anne; Sornillo, Johanna Beulah; Tan, Alvin; von Seidlein, Lorenz; Ley, Benedikt
2016-01-01
We evaluated a battery of Glucose-6-Phosphate Dehydrogenase diagnostic point-of-care tests (PoC) to assess the most suitable product in terms of performance and operational characteristics for remote areas. Samples were collected in Puerto Princesa City, Palawan, Philippines and tested for G6PD deficiency with a fluorescent spot test (FST; Procedure 203, Trinity Biotech, Ireland), the semiquantitative WST8/1-methoxy PMS (WST; Dojindo, Japan) and the Carestart G6PD Rapid Diagnostic Test (CSG; AccessBio, USA). Results were compared to spectrophotometry (Procedure 345, Trinity Biotech, Ireland). Sensitivity and specificity were calculated for each test with cut-off activities of 10%, 20%, 30% and 60% of the adjusted male median. The adjusted male median was 270.5 IU/10(12) RBC. FST and WST were tested on 621 capillary blood samples, the CSG was tested on venous and capillary blood on 302 samples. At 30% G6PD activity, sensitivity for the FST was between 87.7% (95%CI: 76.8% to 93.9%) and 96.5% (95%CI: 87.9% to 99.5%) depending on definition of intermediate results; the WST was 84.2% (95%CI: 72.1% to 92.5%); and the CSG was between 68.8% (95%CI: 41.3% to 89.0%) and 93.8% (95%CI: 69.8% to 99.8%) when the test was performed on capillary or venous blood respectively. Sensitivity of FST and CSG (tested with venous blood) were comparable (p>0.05). The analysis of venous blood samples by the CSG yielded significantly higher results than FST and CSG performed on capillary blood (p<0.05). Sensitivity of the CSG varied depending on source of blood used (p<0.05). The operational characteristics of the CSG were superior to all other test formats. Performance and operational characteristics of the CSG performed on venous blood suggest the test to be a good alternative to the FST.
Espino, Fe Esperanza; Sornillo, Johanna Beulah; Tan, Alvin; von Seidlein, Lorenz
2016-01-01
Objective We evaluated a battery of Glucose-6-Phosphate Dehydrogenase diagnostic point-of-care tests (PoC) to assess the most suitable product in terms of performance and operational characteristics for remote areas. Methods Samples were collected in Puerto Princesa City, Palawan, Philippines and tested for G6PD deficiency with a fluorescent spot test (FST; Procedure 203, Trinity Biotech, Ireland), the semiquantitative WST8/1-methoxy PMS (WST; Dojindo, Japan) and the Carestart G6PD Rapid Diagnostic Test (CSG; AccessBio, USA). Results were compared to spectrophotometry (Procedure 345, Trinity Biotech, Ireland). Sensitivity and specificity were calculated for each test with cut-off activities of 10%, 20%, 30% and 60% of the adjusted male median. Results The adjusted male median was 270.5 IU/1012 RBC. FST and WST were tested on 621 capillary blood samples, the CSG was tested on venous and capillary blood on 302 samples. At 30% G6PD activity, sensitivity for the FST was between 87.7% (95%CI: 76.8% to 93.9%) and 96.5% (95%CI: 87.9% to 99.5%) depending on definition of intermediate results; the WST was 84.2% (95%CI: 72.1% to 92.5%); and the CSG was between 68.8% (95%CI: 41.3% to 89.0%) and 93.8% (95%CI: 69.8% to 99.8%) when the test was performed on capillary or venous blood respectively. Sensitivity of FST and CSG (tested with venous blood) were comparable (p>0.05). The analysis of venous blood samples by the CSG yielded significantly higher results than FST and CSG performed on capillary blood (p<0.05). Sensitivity of the CSG varied depending on source of blood used (p<0.05). Conclusion The operational characteristics of the CSG were superior to all other test formats. Performance and operational characteristics of the CSG performed on venous blood suggest the test to be a good alternative to the FST. PMID:26849445
Photometric and colorimetric measurements of CRT and TFT monitors for vision research
NASA Astrophysics Data System (ADS)
Klein, Johann; Zlatkova, Margarita; Lauritzen, Jan; Pierscionek, Barbara
2013-08-01
Visual displays have various limitations that can affect the results of vision research experiments. This study compares several characteristics of CRT (Hewlett Packard 7650) and TFT (LG Flatron L227 WT and Samsung 2233 RZ) monitors, including luminance and colour spatial homogeneity, luminance changes with viewing angle, contrast linearity and warm-up characteristics. In addition, the psychophysical performance in grating contrast sensitivity test for both CRT and TFT monitors was compared. The TFT monitors demonstrated spatial non-homogeneity ('mura') with up to 50% of luminance change across the screen and a more significant luminance viewing angle dependence compared with CRT. The chromaticity of the white point showed negligible variation across the screen. Both types of monitors required a warm-up time of the order of 60 min. Despite the physical differences between monitors, visual contrast sensitivity performance measured with the two types of monitors was similar using both static and flickering gratings.
Color constancy: enhancing von Kries adaption via sensor transformations
NASA Astrophysics Data System (ADS)
Finlayson, Graham D.; Drew, Mark S.; Funt, Brian V.
1993-09-01
Von Kries adaptation has long been considered a reasonable vehicle for color constancy. Since the color constancy performance attainable via the von Kries rule strongly depends on the spectral response characteristics of the human cones, we consider the possibility of enhancing von Kries performance by constructing new `sensors' as linear combinations of the fixed cone sensitivity functions. We show that if surface reflectances are well-modeled by 3 basis functions and illuminants by 2 basis functions then there exists a set of new sensors for which von Kries adaptation can yield perfect color constancy. These new sensors can (like the cones) be described as long-, medium-, and short-wave sensitive; however, both the new long- and medium-wave sensors have sharpened sensitivities -- their support is more concentrated. The new short-wave sensor remains relatively unchanged. A similar sharpening of cone sensitivities has previously been observed in test and field spectral sensitivities measured for the human eye. We present simulation results demonstrating improved von Kries performance using the new sensors even when the restrictions on the illumination and reflectance are relaxed.
Antiknock evaluation of hydrocarbons and ethers as aviation fuel components
NASA Technical Reports Server (NTRS)
Barnett, Henry C
1950-01-01
The results of a NACA investigation conducted over a period of several years to evaluate the anti-knock characteristics of organic compounds are summarized. Included are data for 18 branched paraffins and olefins, 27 aromatics, and 22 ethers. The factors of performance investigated were blending characteristics, temperature sensitivity, lead response, and relation between molecular structure and antiknock ratings. Four engines were used.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Weiland, Kenneth E.
2003-01-01
This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.
2018-01-01
Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user’s subjective knowledge or their familiarity with the method, rather than following a predefined selection rule. This study investigates the performance sensitivity of two detection methods, with respect to status signal characteristics of given systems: abrupt variance, characteristic indicator, discernable frequency, and discernable index. Relation between key characteristics indicators from four different real-world systems and the performance of two fault detection methods using pattern recognition are evaluated. PMID:29316731
The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies
NASA Astrophysics Data System (ADS)
Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration
2008-03-01
The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.
Study on the Fabrication of Paint-Type Si Quantum Dot-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Seo, Hyunwoong; Son, Min-Kyu; Kim, Hee-Je; Wang, Yuting; Uchida, Giichiro; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu
2013-10-01
Quantum dots (QDs) have attracted much attention with their quantum characteristics in the research field of photochemical solar cells. Si QD was introduced as one of alternatives to conventional QD materials. However, their large particles could not penetrate inside TiO2 layer. Therefore, this work proposed the paint-type Si QD-sensitized solar cell. Its heat durability was suitable for the fabrication of paint-type solar cell. Si QDs were fabricated by multihollow discharge plasma chemical vapor deposition and characterized. The paste type, sintering temperature, and Si ratio were controlled and analyzed for better performance. Finally, its performance was enhanced by ZnS surface modification and the whole process was much simplified without sensitizing process.
Titon, Braz; Gomes, Fernando Ribeiro
2017-06-01
Interspecific variation in patterns of geographical distribution of phylogenetically related species of amphibians might be related to physiological adaptation to different climatic conditions. In this way, a comparative study of resistance to evaporative water loss, rehydration rates and sensitivity of locomotor performance to variations on hydration level and temperature was performed for five species of Bufonidae toads (Rhinella granulosa, R. jimi, R. ornata, R. schneideri and R. icterica) inhabiting different Brazilian biomes. The hypotheses tested were that, when compared to species inhabiting mesic environments, species living at hot and dry areas would show: (1) greater resistance to evaporative water loss, (2) higher rates of water uptake, (3) lower sensitivity of locomotor performance to dehydration and (4) lower sensitivity of locomotor performance at higher temperatures and higher sensitivity of locomotor performance at lower temperatures. This comparative analysis showed relations between body mass and interspecific variation in rehydration rates and resistance to evaporative water loss in opposite directions. These results might represent a functional compensation associated with relatively lower absorption areas in larger toads and higher evaporative areas in smaller ones. Moreover, species from the semi-arid Caatinga showed locomotor performance less sensitive to dehydration but highly affected by lower temperatures, as well greater resistance to evaporative water loss, when compared to the other species from the mesic Atlantic Forest and the savannah-like area called Cerrado. These results suggest adaptation patterns to environmental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Age-Related Visual Changes and Their Impications for the Motor Skill Performance of Older Adults.
ERIC Educational Resources Information Center
Haywood, Kathleen M.; Trick, Linda R.
Physical changes in and conditions of the eye associated with the normal aging process are discussed with reference to their impact on performance in physical and recreational activities. Descriptions are given of characteristic changes in visual acuity in the areas of: (1) presbyopia (inability to clearly focus near images); (2) sensitivity to…
Effects of noise upon human information processing
NASA Technical Reports Server (NTRS)
Cohen, H. H.; Conrad, D. W.; Obrien, J. F.; Pearson, R. G.
1974-01-01
Studies of noise effects upon human information processing are described which investigated whether or not effects of noise upon performance are dependent upon specific characteristics of noise stimulation and their interaction with task conditions. The difficulty of predicting noise effects was emphasized. Arousal theory was considered to have explanatory value in interpreting the findings of all the studies. Performance under noise was found to involve a psychophysiological cost, measured by vasoconstriction response, with the degree of response cost being related to scores on a noise annoyance sensitivity scale. Noise sensitive subjects showed a greater autonomic response under noise stimulation.
High sensitivity pressure transducer based on the phase characteristics of GMI magnetic sensors
NASA Astrophysics Data System (ADS)
Benavides, L. S.; Costa Silva, E.; Costa Monteiro, E.; Hall Barbosa, C. R.
2018-03-01
This paper presents a new configuration for a GMI pressure transducer based on the reading of the phase characteristics of GMI sensor, intended for biomedical applications. The development process of this new class of magnetic field transducers is discussed, beginning with the definition of the ideal conditioning of the GMI sensor elements (dc level and frequency of the excitation current and sample length) and continuing with computational simulations of the full electronic circuit performed using the experimental data obtained from measured GMI curves, and have shown that the improvement in the sensitivity of GMI magnetometers is larger when phase-based transducers are used instead of magnitude-based transducers. Parameters of interest of the developed prototype are thoroughly analyzed, such as: sensitivity, linearity and frequency response. Also, the spectral noise density of the developed pressure transducer is evaluated and its resolution in the passband is estimated. A low-cost GMI pressure transducer was developed, presenting high resolution, high sensitivity and a frequency bandwidth compatible to the desired biomedical applications.
Dual-Wavelength Sensitized Photopolymer for Holographic Data Storage
NASA Astrophysics Data System (ADS)
Tao, Shiquan; Zhao, Yuxia; Wan, Yuhong; Zhai, Qianli; Liu, Pengfei; Wang, Dayong; Wu, Feipeng
2010-08-01
Novel photopolymers for holographic storage were investigated by combining acrylate monomers and/or vinyl monomers as recording media and liquid epoxy resins plus an amine harder as binder. In order to improve the holographic performances of the material at blue-green wavelength band two novel dyes were used as sensitizer. The methods of evaluating the holographic performances of the material, including the shrinkage and noise characteristics, are described in detail. Preliminary experiments show that samples with optimized composite have good holographic performances, and it is possible to record dual-wavelength hologram simultaneously in this photopolymer by sharing the same optical system, thus the storage density and data rate can be doubly increased.
Development of Multiobjective Optimization Techniques for Sonic Boom Minimization
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.
1996-01-01
A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.
Moisture sensitivity of hot mix asphalt (HMA) mixtures in Nebraska : phase II.
DOT National Transportation Integrated Search
2009-12-01
As a consequential effort to the previous NDOR research project (P564) on moisture damage, this report presents : outcomes from this project incorporated with the previous project. Performance changes and fundamental material : characteristics associ...
To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jyoti, Divya, E-mail: divyabathla17@gmail.com; Mohan, Devendra
2016-05-06
Dye-Sensitized solar cells based on TiO{sub 2} nanocrystal and TiO{sub 2} nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.
Sensitivity of Space Station alpha joint robust controller to structural modal parameter variations
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Cooper, Paul A.; Lim, Tae W.
1991-01-01
The photovoltaic array sun tracking control system of Space Station Freedom is described. A synthesis procedure for determining optimized values of the design variables of the control system is developed using a constrained optimization technique. The synthesis is performed to provide a given level of stability margin, to achieve the most responsive tracking performance, and to meet other design requirements. Performance of the baseline design, which is synthesized using predicted structural characteristics, is discussed and the sensitivity of the stability margin is examined for variations of the frequencies, mode shapes and damping ratios of dominant structural modes. The design provides enough robustness to tolerate a sizeable error in the predicted modal parameters. A study was made of the sensitivity of performance indicators as the modal parameters of the dominant modes vary. The design variables are resynthesized for varying modal parameters in order to achieve the most responsive tracking performance while satisfying the design requirements. This procedure of reoptimization design parameters would be useful in improving the control system performance if accurate model data are provided.
Yo, Chia-Hung; Lee, Si-Huei; Chang, Shy-Shin; Lee, Matthew Chien-Hung; Lee, Chien-Chang
2014-01-01
Objectives We performed a systematic review and meta-analysis of studies on high-sensitivity C-reactive protein (hs-CRP) assays to see whether these tests are predictive of atrial fibrillation (AF) recurrence after cardioversion. Design Systematic review and meta-analysis. Data sources PubMed, EMBASE and Cochrane databases as well as a hand search of the reference lists in the retrieved articles from inception to December 2013. Study eligibility criteria This review selected observational studies in which the measurements of serum CRP were used to predict AF recurrence. An hs-CRP assay was defined as any CRP test capable of measuring serum CRP to below 0.6 mg/dL. Primary and secondary outcome measures We summarised test performance characteristics with the use of forest plots, hierarchical summary receiver operating characteristic curves and bivariate random effects models. Meta-regression analysis was performed to explore the source of heterogeneity. Results We included nine qualifying studies comprising a total of 347 patients with AF recurrence and 335 controls. A CRP level higher than the optimal cut-off point was an independent predictor of AF recurrence after cardioversion (summary adjusted OR: 3.33; 95% CI 2.10 to 5.28). The estimated pooled sensitivity and specificity for hs-CRP was 71.0% (95% CI 63% to 78%) and 72.0% (61% to 81%), respectively. Most studies used a CRP cut-off point of 1.9 mg/L to predict long-term AF recurrence (77% sensitivity, 65% specificity), and 3 mg/L to predict short-term AF recurrence (73% sensitivity, 71% specificity). Conclusions hs-CRP assays are moderately accurate in predicting AF recurrence after successful cardioversion. PMID:24556243
Characterization of iron-doped lithium niobate for holographic storage applications
NASA Technical Reports Server (NTRS)
Shah, R. R.; Kim, D. M.; Rabson, T. A.; Tittel, F. K.
1976-01-01
A comprehensive characterization of chemical and holographic properties of eight systematically chosen Fe:LiNbO3 crystals is performed in order to determine optimum performance of the crystals in holographic storage and display applications. The discussion covers determination of Fe(2+) and Fe(3+) ion concentrations in Fe:LiNbO3 system from optical absorption and EPR measurements; establishment of the relation between the photorefractive sensitivity of Fe(2+) and Fe(3+) concentrations; study of the spectral dependence, the effect of oxygen annealing, and of other impurities on the photorefractive sensitivity; analysis of the diffraction efficiency curves for different crystals and corresponding sensitivities with the dynamic theory of hologram formation; and determination of the bulk photovoltaic fields as a function of Fe(2+) concentrations. In addition to the absolute Fe(2+) concentration, the relative concentrations of Fe(2+) and Fe(3+) ions are also important in determining the photorefractive sensitivity. There exists an optimal set of crystal characteristics for which the photorefractive sensitivity is most favorable.
On the sensitivity analysis of porous material models
NASA Astrophysics Data System (ADS)
Ouisse, Morvan; Ichchou, Mohamed; Chedly, Slaheddine; Collet, Manuel
2012-11-01
Porous materials are used in many vibroacoustic applications. Different available models describe their behaviors according to materials' intrinsic characteristics. For instance, in the case of porous material with rigid frame, and according to the Champoux-Allard model, five parameters are employed. In this paper, an investigation about this model sensitivity to parameters according to frequency is conducted. Sobol and FAST algorithms are used for sensitivity analysis. A strong parametric frequency dependent hierarchy is shown. Sensitivity investigations confirm that resistivity is the most influent parameter when acoustic absorption and surface impedance of porous materials with rigid frame are considered. The analysis is first performed on a wide category of porous materials, and then restricted to a polyurethane foam analysis in order to illustrate the impact of the reduction of the design space. In a second part, a sensitivity analysis is performed using the Biot-Allard model with nine parameters including mechanical effects of the frame and conclusions are drawn through numerical simulations.
Study on thin wideband applicator for detecting blood characteristics in human body
NASA Astrophysics Data System (ADS)
Bamba, Kazuki; Kuki, Takao; Nikawa, Yoshio
2016-11-01
Preventive care as well as early detection method and monitoring technique for diseases are highly attracted attention to increase quality of life. Noninvasive measurement method for blood characteristics in body is expected by patients with kidney dysfunction. Complex permittivity of blood is changed a few present at 6GHz. This change is caused by the change of water and albumin contents in blood. In this study, to detect blood characteristics in human body, experiments with phantom model has been performed using thin wideband applicator for examining microwave transmission up to 6GHz. The thin wideband applicator has advantages for detecting living body information in detail. The thin wideband applicator is designed based on Antipodal Vivaldi Antenna and is not required any balun and is very easy handling. Using developed Antipodal Vivaldi Antenna, transmission coefficient can be obtained as a function of thickness of phantom model with high sensitivity. Using this method, highly sensitive sensor for obtaining characteristics of blood in body can be developed.
NASA Technical Reports Server (NTRS)
1972-01-01
A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.
NASA Astrophysics Data System (ADS)
Pandey, A. K.; Ahmad, Muhammad Shakeel; Alizadeh, Mahdi; Rahim, Nasrudin Abd
2018-07-01
The combined effect of dual sensitization and hetero-junction symmetry has been investigated on the performance of TiO2 based dye sensitized solar cell. CdTe nanoparticles have been introduced in TiO2 matrix to function as sensitizer as well as act as hetero-junction between D719 dye and TiO2 nanoarchitecture. Four concentrations of CdTe i.e. 0.5 wt%, 2 wt%, 5 wt% and 8 wt% have been investigated. Morphological and compositional studies have been conducted using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. Light absorption characteristics have been investigated by employing Uv-vis spectroscopy and the overall performance has been studied using solar simulator and electrochemical impedance spectroscopy (EIS). Performance has been found to be increased with the addition of CdTe due to high electron density and reduction in recombination reactions. An increase of 41.73% in incident photo conversion efficiency (IPCE) and 75.57% in short circuit current density (Jsc) have been recorded for the specimens containing 5 wt% CdTe compared to bare TiO2 based DSSCs. Further addition of CdTe leads to reduction in overall performance of DSSCs.
Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
Otte, Marinus A; Sepúlveda, Borja; Ni, Weihai; Juste, Jorge Pérez; Liz-Marzán, Luis M; Lechuga, Laura M
2010-01-26
We present a theoretical and experimental study involving the sensing characteristics of wavelength-interrogated plasmonic sensors based on surface plasmon polaritons (SPP) in planar gold films and on localized surface plasmon resonances (LSPR) of single gold nanorods. The tunability of both sensing platforms allowed us to analyze their bulk and surface sensing characteristics as a function of the plasmon resonance position. We demonstrate that a general figure of merit (FOM), which is equivalent in wavelength and energy scales, can be employed to mutually compare both sensing schemes. Most interestingly, this FOM has revealed a spectral region for which the surface sensitivity performance of both sensor types is optimized, which we attribute to the intrinsic dielectric properties of plasmonic materials. Additionally, in good agreement with theoretical predictions, we experimentally demonstrate that, although the SPP sensor offers a much better bulk sensitivity, the LSPR sensor shows an approximately 15% better performance for surface sensitivity measurements when its FOM is optimized. However, optimization of the substrate refractive index and the accessibility of the relevant molecules to the nanoparticles can lead to a total 3-fold improvement of the FOM in LSPR sensors.
Performance characteristics of broth-only cultures after revision total joint arthroplasty.
Smith, Eric B; Cai, Jenny; Wynne, Rachael; Maltenfort, Mitchell; Good, Robert P
2014-11-01
Surgeons frequently obtain intraoperative cultures at the time of revision total joint arthroplasty. The use of broth or liquid medium before applying the sample to the agar medium may be associated with contamination and false-positive cultures; however, the degree to which this is the case is not known. We (1) calculated the performance characteristics of broth-only cultures (sensitivity, specificity, positive predictive value, and negative predictive value) and (2) characterized the organisms identified in broth to determine whether a specific organism showed increased proclivity for true-positive periprosthetic joint infection (PJI). A single-institution retrospective chart review was performed on 257 revision total joint arthroplasties from 2009 through 2010. One hundred ninety (74%) had cultures for review. All culture results, as well as treatment, if any, were documented and patients were followed for a minimum of 1 year for evidence of PJI. Cultures were measured as either positive from the broth only or broth negative. The true diagnosis of infection was determined by the Musculoskeletal Infection Society criteria during the preoperative workup or postoperatively at 1 year for purposes of calculating the performance characteristics of the broth-only culture. The sensitivity, specificity, positive predictive value, and negative predictive value were 19%, 88%, 13%, and 92%, respectively. The most common organism identified was coagulase-negative Staphylococcus (16 of 24 cases, 67%). Coagulase-negative Staphylococcus was present in all three true-positive cases; however, it was also found in 13 of the false-positive cases. The broth-only positive cultures showed poor sensitivity and positive predictive value but good specificity and negative predictive value. The good specificity indicates that it can help to rule in the presence of PJI; however, the poor sensitivity makes broth-only culture an unreliable screening test. We recommend that broth-only culture results be carefully scrutinized and decisions on the diagnosis and treatment of infection should be based specifically on the Musculoskeletal Infection Society criteria. Level IV, diagnostic study. See Instructions for Authors for a complete description of levels of evidence.
NASA Astrophysics Data System (ADS)
Chen, Wang-Chao; Kong, Fan-Tai; Ghadari, Rahim; Li, Zhao-Qian; Guo, Fu-Ling; Liu, Xue-Peng; Huang, Yang; Yu, Ting; Hayat, Tasawar; Dai, Song-Yuan
2017-04-01
We report a systematic research to understand the structural-electronic impact of the arylamine electron-donating antennas on the performances of the ruthenium complexes for dye-sensitized solar cells. Three ruthenium complexes functionalized with different arylamine electron-donating antennas (N,N-diethyl-aniline in RC-31, julolidine in RC-32 and N,N-dibenzyl-aniline in RC-36) are designed and synthesized. The photoelectric properties of RC dyes exhibit apparent discrepancy, which are ascribed to different structural nature and electronic delocalization ability of these arylamine electron-donating system. In conjunction with TiO2 microspheres photoanode and a typical coadsorbent DPA, the devices sensitized by RC-36 achieve the best conversion efficiency of 10.23%. The UV-Vis absorption, electrochemical measurement, incident photon-to-current conversion efficiency and transient absorption spectra confirm that the excellent performance of RC-36 is induced by synergistically structural-electronic impacts from enhanced absorption capacity and well-tuned electronic characteristics. These observations provide valuable insights into the molecular engineering methodology based on fine tuning structural-electronic impact of electron-donating antenna in efficient ruthenium sensitizers.
Sumino, Kaharu; Sugar, Elizabeth A; Irvin, Charles G; Kaminsky, David A; Shade, Dave; Wei, Christine Y; Holbrook, Janet T; Wise, Robert A; Castro, Mario
2012-07-01
The methacholine challenge test (MCT) is commonly used to assess airway hyperresponsiveness, but the diagnostic characteristics have not been well studied in asthmatic patients receiving controller medications after the use of high-potency inhaled corticosteroids became common. We investigated the ability of the MCT to differentiate participants with a physician's diagnosis of asthma from nonasthmatic participants. We conducted a cohort-control study in asthmatic participants (n= 126) who were receiving regular controller medications and nonasthmatic control participants (n= 93) to evaluate the sensitivity and specificity of the MCT. The overall sensitivity was 77% and the specificity was 96% with a threshold PC(20) (the provocative concentration of methacholine that results in a 20% drop in FEV(1)) of 8 mg/mL. The sensitivity was significantly lower in white than in African American participants (69% vs 95%, P= .015) and higher in atopic compared with nonatopic (82% vs 52%, P= .005). Increasing the PC(20) threshold from 8 to 16 mg/mL did not noticeably improve the performance characteristics of the test. African American race, presence of atopy, and lower percent predicted FEV(1) were associated with a positive test result. The utility of the MCT to rule out a diagnosis of asthma depends on racial and atopic characteristics. Clinicians should take into account the reduced sensitivity of the MCT in white and nonatopic asthmatic patients when using this test for the diagnosis of asthma. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Nursing students' understanding of factors influencing ethical sensitivity: A qualitative study.
Borhani, Fariba; Abbaszadeh, Abbas; Mohsenpour, Mohaddeseh
2013-07-01
Ethical sensitivity is considered as a component of professional competency of nurses. Its effects on improvement of nurses' ethical performance and the therapeutic relationship between nurses and patients have been reported. However, very limited studies have evaluated ethical sensitivity. Since no previous Iranian research has been conducted in this regard, the present study aimed to review nursing students' understanding of effective factors on ethical sensitivity. This qualitative study was performed in Kerman, Iran, during 2009. It used semi-structured individual interviews with eight MSc nursing students to assess their viewpoints. It also included two focus groups. Purposive sampling was continued until data saturation. Data were analyzed using manifest content analysis. The students' understanding of factors influencing ethical sensitivity were summarized in five main themes including individual and spiritual characteristics, education, mutual understanding, internal and external controls, and experience of an immoral act. The findings of this study create a unique framework for sensitization of nurses in professional performance. The application of these factors in human resource management is reinforcement of positive aspects and decrease in negative aspects, in education can use for educational objectives setting, and in research can designing studies based on this framework and making related tools. It is noteworthy that presented classification was influenced by students themselves and mentioned to a kind of learning activity by them.
Bujakowska, Kinga M.; Sousa, Maria E.; Fonseca-Kelly, Zoë D.; Taub, Daniel G.; Janessian, Maria; Wang, Dan Yi; Au, Elizabeth D.; Sims, Katherine B.; Sweetser, David A.; Fulton, Anne B.; Liu, Qin; Wiggs, Janey L.; Gai, Xiaowu; Pierce, Eric A.
2015-01-01
Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing. PMID:25412400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, E. Costa, E-mail: edusilva@ele.puc-rio.br; Gusmão, L. A. P.; Barbosa, C. R. Hall
2014-08-15
Recently, our research group at PUC-Rio discovered that magnetic transducers based on the impedance phase characteristics of GMI sensors have the potential to multiply by one hundred the sensitivity values when compared to magnitude-based GMI transducers. Those GMI sensors can be employed in the measurement of ultra-weak magnetic fields, which intensities are even lower than the environmental magnetic noise. A traditional solution for cancelling the electromagnetic noise and interference makes use of gradiometric configurations, but the performance is strongly tied to the homogeneity of the sensing elements. This paper presents a new method that uses electronic circuits to modify themore » equivalent impedance of the GMI samples, aiming at homogenizing their phase characteristics and, consequently, improving the performance of gradiometric configurations based on GMI samples. It is also shown a performance comparison between this new method and another homogenization method previously developed.« less
A Single Polyaniline Nanofiber Field Effect Transistor and Its Gas Sensing Mechanisms
Chen, Dajing; Lei, Sheng; Chen, Yuquan
2011-01-01
A single polyaniline nanofiber field effect transistor (FET) gas sensor fabricated by means of electrospinning was investigated to understand its sensing mechanisms and optimize its performance. We studied the morphology, field effect characteristics and gas sensitivity of conductive nanofibers. The fibers showed Schottky and Ohmic contacts based on different electrode materials. Higher applied gate voltage contributes to an increase in gas sensitivity. The nanofiber transistor showed a 7% reversible resistance change to 1 ppm NH3 with 10 V gate voltage. The FET characteristics of the sensor when exposed to different gas concentrations indicate that adsorption of NH3 molecules reduces the carrier mobility in the polyaniline nanofiber. As such, nanofiber-based sensors could be promising for environmental and industrial applications. PMID:22163969
3D scanning characteristics of an amorphous silicon position sensitive detector array system.
Contreras, Javier; Gomes, Luis; Filonovich, Sergej; Correia, Nuno; Fortunato, Elvira; Martins, Rodrigo; Ferreira, Isabel
2012-02-13
The 3D scanning electro-optical characteristics of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) were analyzed. The system was mounted on a platform for imaging 3D objects using the triangulation principle with a sheet-of-light laser. New obtained results reveal a minimum possible gap or simulated defect detection of approximately 350 μm. Furthermore, a first study of the angle for 3D scanning was also performed, allowing for a broad range of angles to be used in the process. The relationship between the scanning angle of the incident light onto the object and the image displacement distance on the sensor was determined for the first time in this system setup. Rendering of 3D object profiles was performed at a significantly higher number of frames than in the past and was possible for an incident light angle range of 15 ° to 85 °.
Marquezin, Maria Carolina Salomé; Pedroni-Pereira, Aline; Araujo, Darlle Santos; Rosar, João Vicente; Barbosa, Taís S; Castelo, Paula Midori
2016-08-01
The objective of this study is to better understand salivary and masticatory characteristics, this study evaluated the relationship among salivary parameters, bite force (BF), masticatory performance (MP) and gustatory sensitivity in healthy children. The secondary outcome was to evaluate possible gender differences. One hundred and sixteen eutrophic subjects aged 7-11 years old were evaluated, caries-free and with no definite need of orthodontic treatment. Salivary flow rate and pH, total protein (TP), alpha-amylase (AMY), calcium (CA) and phosphate (PHO) concentrations were determined in stimulated (SS) and unstimulated saliva (US). BF and MP were evaluated using digital gnathodynamometer and fractional sieving method, respectively. Gustatory sensitivity was determined by detecting the four primary tastes (sweet, salty, sour and bitter) in three different concentrations. Data were evaluated using descriptive statistics, Mann-Whitney/t-test, Spearman correlation and multiple regression analysis, considering α = 0.05. Significant positive correlation between taste and age was observed. CA and PHO concentrations correlated negatively with salivary flow and pH; sweet taste scores correlated with AMY concentrations and bitter taste sensitivity correlated with US flow rate (p < 0.05). No significant difference between genders in salivary, masticatory characteristics and gustatory sensitivity was observed. The regression analysis showed a weak relationship between the distribution of chewed particles among the different sieves and BF. The concentration of some analytes was influenced by salivary flow and pH. Age, saliva flow and AMY concentrations influenced gustatory sensitivity. In addition, salivary, masticatory and taste characteristics did not differ between genders, and only a weak relation between MP and BF was observed.
Mixed kernel function support vector regression for global sensitivity analysis
NASA Astrophysics Data System (ADS)
Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng
2017-11-01
Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.
Ali, Innocent M; Bigoga, Jude D; Forsah, Dorothy A; Cho-Ngwa, Fidelis; Tchinda, Vivian; Moor, Vicky Ama; Fogako, Josephine; Nyongalema, Philomena; Nkoa, Theresa; Same-Ekobo, Albert; Mbede, Joseph; Fondjo, Etienne; Mbacham, Wilfred F; Leke, Rose G F
2016-01-20
All suspected cases of malaria should receive a diagnostic test prior to treatment with artemisinin-based combinations based on the new WHO malaria treatment guidelines. This study compared the accuracy and some operational characteristics of 22 different immunochromatographic antigen capture point-of- malaria tests (RDTs) in Cameroon to inform test procurement prior to deployment of artemisinin-based combinations for malaria treatment. One hundred human blood samples (50 positive and 50 negative) collected from consenting febrile patients in two health centres at Yaoundé were used for evaluation of the 22 RDTs categorized as "Pf Only" (9) or "Pf + PAN" (13) based on parasite antigen captured [histidine rich protein II (HRP2) or lactate dehydrogenase (pLDH) or aldolase]. RDTs were coded to blind technicians performing the tests. The sensitivity, specificity, and predictive values of the positive and negative tests (PPV and NPV) as well as the likelihood ratios were assessed. The reliability and some operational characteristics were determined as the mean values from two assessors, and the Cohen's kappa statistic was then used to compare agreement. Light microscopy was the referent. Of all RDTs tested, 94.2 % (21/22) had sensitivity values greater than 90% among which 14 (63.6%) were 'Pf + PAN' RDTs. The specificity was generally lower than the sensitivity for all RDTs and poorer for "Pf Only" RDTs. The predictive values and likelihood ratios were better for non-HRP2 analytes for "Pf + PAN" RDTs. The Kappa value for most of the tests obtained was around 67% (95% CI 50-69%), corresponding to a moderate agreement. Overall, 94.2% (21/22) of RDTs tested had accuracy within the range recommended by the WHO, while one performed poorly, below acceptable levels. Seven "Pf + PAN" and 3 "Pf Only" RDTs were selected for further assessment based on performance characteristics. Harmonizing RDT test presentation and procedures would prevent mistakes of test performance and interpretation.
Grosso, Matthew J; Frangiamore, Salvatore J; Ricchetti, Eric T; Bauer, Thomas W; Iannotti, Joseph P
2014-03-19
Propionibacterium acnes is a clinically relevant pathogen with total shoulder arthroplasty. The purpose of this study was to determine the sensitivity of frozen section histology in identifying patients with Propionibacterium acnes infection during revision total shoulder arthroplasty and investigate various diagnostic thresholds of acute inflammation that may improve frozen section performance. We reviewed the results of forty-five patients who underwent revision total shoulder arthroplasty. Patients were divided into the non-infection group (n = 15), the Propionibacterium acnes infection group (n = 18), and the other infection group (n = 12). Routine preoperative testing was performed and intraoperative tissue culture and frozen section histology were collected for each patient. The histologic diagnosis was determined by one pathologist for each of the four different thresholds. The absolute maximum polymorphonuclear leukocyte concentration was used to construct a receiver operating characteristics curve to determine a new potential optimal threshold. Using the current thresholds for grading frozen section histology, the sensitivity was lower for the Propionibacterium acnes infection group (50%) compared with the other infection group (67%). The specificity of frozen section was 100%. Using a receiver operating characteristics curve, an optimized threshold was found at a total of ten polymorphonuclear leukocytes in five high-power fields (400×). Using this threshold, the sensitivity of frozen section for Propionibacterium acnes was increased to 72%, and the specificity remained at 100%. Using current histopathology grading systems, frozen sections were specific but showed low sensitivity with respect to the Propionibacterium acnes infection. A new threshold value of a total of ten or more polymorphonuclear leukocytes in five high-power fields may increase the sensitivity of frozen section, with minimal impact on specificity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markovic, M; Stathakis, S; Jurkovic, I
Purpose The aim for the study was to compare intrinsic characteristics of the nine detectors and evaluate their performance in non-equilibrium radiation dosimetry. Methods The intrinsic characteristics of the nine detectors that were evaluated are based on the composition and size of the active volume, operating voltage, initial recombination of the collected charge, temperature, the effective cross section of the detectors. The shortterm stability and collection efficiency has been investigated. The minimum radiation detection sensitivity and detectors leakage current has been measured. The sensitivity to changes in energy spectrum as well as change in incident beam angles were measured anmore » analyzed. Results The short-term stability of the measurements within every detector showed consistency in the measured values with the highest value of the standard deviation of the mean not exceeding 0.5%. Air ion chamber detectors showed minimum sensitivity to change in incident beam angles while diode detectors underestimated measurements up to 16%. Comparing the slope of the tangents for detector’s sensitivity curve, diode detectors illustrate more sensitivity to change in photon spectrum than ion chamber detectors. The change in radiation detection sensitivity with increase in dose delivered has been observed for semiconductor detectors with maximum deviation 0.01% for doses between 1 Gy and 10 Gy. Leakage current has been mainly influenced by bias voltage (ion chamber detectors) and room light intensity (diode detectors). With dose per pulse varying from 1.47E−4 to 5.1E−4 Gy/pulse the maximum change in collection efficiency was 1.4% for the air ion chambers up to 8% for liquid filled ion chamber. Conclusion Broad range of measurements performed showed all the detectors susceptible to some limitations and while they are suitable for use in broad scope of applications, careful selection has to be made for particular range of measurements.« less
NASA Technical Reports Server (NTRS)
Alexandridis, A. A.; Repa, B. S.; Wierwille, W. W.
1978-01-01
The effects of changes in understeer, control sensitivity, and location of the lateral aerodynamic center of pressure (c.p.) of a typical passenger car on the driver's opinion and on the performance of the driver-vehicle system were studied in a moving-base driving simulator. Twelve subjects with no prior experience on the simulator and no special driving skills performed regulation tasks in the presence of both random and step wind gusts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Knopp, MV; Miller, M
2016-06-15
Purpose: Replacement of conventional PMT-based detector with next generation digital photon counting (DPC) detector is a technology leap for PET imaging. This study evaluated the performance and characteristics of the DPC system and its stability within a 1 year time window following its installation focusing on the medical physics basis for clinical applications. Methods: A digital PET/CT scanner using 1:1 coupling of 23,040 crystal: detector elements was introduced and became operational at OSU. We tested and evaluated system performance and characteristics using NEMA NU2-2012. System stabilities in timing resolution, energy resolution, detector temperature and humidity (T&H) were monitored over 1-yr.more » Timing, energy and spatial resolution were characterized across clinically relevant count rate range. CQIE uniformity PET and NEMA IEC-Body PET with hot spheres varying with sizes and contrasts were performed. PET reconstructed in standard(4mm), High(2mm) and Ultra-High(1mm) definitions were evaluated. Results: NEMA results showed PET spatial resolution (mm-FWHM) from 4.01&4.14 at 1cm to 5.82&6.17 at 20cm in transverse & axial. 322±3ps timing and 11.0% energy resolution were measured. 5.7kcps/MBq system sensitivity with 24kcps/MBq effective sensitivity was obtained. The peak-NECR was ∼171kcps with the effective peak-NECR >650kcps@50kBq/mL. Scatter fraction was ∼30%, and the maximum trues was >900kcps. NEMA IQ demonstrated hot sphere contrast ranging from ∼62%±2%(10mm) to ∼88%±2%(22mm), cold sphere contrast of ∼86%±2%(28mm) and ∼89%±3%(37mm) and excellent uniformity. Monitoring 1-yr stability, it revealed ∼1% change in timing, ±0.4% change in energy resolution, and <10% variations in T&H. CQIE PET gave <3% SUV variances in axial. 60%–100% recovery coefficients across sphere sizes and contrast levels were achieved. Conclusion: Characteristics and stability of the next generation DPC PET detector system over an 1-yr time window was excellent and better than prior experiences. It demonstrated improved and robust system characteristics and performance in spatial resolution, sensitivity, timing and energy resolution, count rate and image quality. Michael Miller is an employee of Philips Healthcare.« less
RPC PET: Status and perspectives
NASA Astrophysics Data System (ADS)
Couceiro, M.; Blanco, A.; Ferreira, Nuno C.; Ferreira Marques, R.; Fonte, P.; Lopes, L.
2007-10-01
The status of the resistive plate chamber (RPC)-PET technology for small animals is briefly reviewed and its sensitivity performance for human PET studied through Monte-Carlo simulations. The cost-effectiveness of these detectors and their very good timing characteristics open the possibility to build affordable Time of Flight (TOF)-PET systems with very large fields of view. Simulations suggest that the sensitivity of such systems for human whole-body screening, under reasonable assumptions, may exceed the present crystal-based PET technology by a factor up to 20.
The Advanced Gamma-ray Imaging System (AGIS)-Simulation Studies
NASA Astrophysics Data System (ADS)
Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V. V.
2008-12-01
The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.
Rao, Gottipaty N; Karpf, Andreas
2010-09-10
A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO(2), we report a sensitivity of 1.2 ppb for the detection of NO(2) in Zero Air.
Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell
NASA Astrophysics Data System (ADS)
Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee
Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.
MHD performance calculations with oxygen enrichment
NASA Technical Reports Server (NTRS)
Pian, C. C. P.; Staiger, P. J.; Seikel, G. R.
1979-01-01
The impact of oxygen enrichment of the combustion air on the generator and overall plant performance was studied for the ECAS-scale MHD/steam plants. A channel optimization technique is described and the results of generator performance calculations using this technique are presented. Performance maps were generated to assess the impact of various generator parameters. Directly and separately preheated plant performance with varying O2 enrichment was calculated. The optimal level of enrichment was a function of plant type and preheat temperature. The sensitivity of overall plant performance to critical channel assumptions and oxygen plant performance characteristics was also examined.
Amorim, Edilberto; Williamson, Craig A; Moura, Lidia M V R; Shafi, Mouhsin M; Gaspard, Nicolas; Rosenthal, Eric S; Guanci, Mary M; Rajajee, Venkatakrishna; Westover, M Brandon
2017-07-01
Continuous EEG screening using spectrograms or compressed spectral arrays (CSAs) by neurophysiologists has shorter review times with minimal loss of sensitivity for seizure detection when compared with visual analysis of raw EEG. Limited data are available on the performance characteristics of CSA-based seizure detection by neurocritical care nurses. This is a prospective cross-sectional study that was conducted in two academic neurocritical care units and involved 33 neurointensive care unit nurses and four neurophysiologists. All nurses underwent a brief training session before testing. Forty two-hour CSA segments of continuous EEG were reviewed and rated for the presence of seizures. Two experienced clinical neurophysiologists masked to the CSA data performed conventional visual analysis of the raw EEG and served as the gold standard. The overall accuracy was 55.7% among nurses and 67.5% among neurophysiologists. Nurse seizure detection sensitivity was 73.8%, and the false-positive rate was 1-per-3.2 hours. Sensitivity and false-alarm rate for the neurophysiologists was 66.3% and 1-per-6.4 hours, respectively. Interrater agreement for seizure screening was fair for nurses (Gwet AC1 statistic: 43.4%) and neurophysiologists (AC1: 46.3%). Training nurses to perform seizure screening utilizing continuous EEG CSA displays is feasible and associated with moderate sensitivity. Nurses and neurophysiologists had comparable sensitivities, but nurses had a higher false-positive rate. Further work is needed to improve sensitivity and reduce false-alarm rates.
Prasad, Rajendra M B; Pathan, Habib M
2016-04-08
In spite of the promising design and architecture, quantum dot sensitized solar cells (QDSSCs) have a long way to go before they attain the actual projected photoconversion efficiencies. Such an inferior performance displayed by QDSSCs is primarily because of many unwanted recombination losses of charge carriers at various interfaces of the cell. Electron recombination due to back electron transfer at the photoanode/electrolyte interface is an important one that needs to be addressed, to improve the efficiency of these third generation nanostructured solar cells. The present work highlights the importance of conformal coverage of CdS quantum dots (QDs) on the surface of the nanocrystalline titania photoanode in arresting such recombinations, leading to improvement in the performance of the cells. Using the successive ionic layer adsorption and reaction (SILAR) process, photoanodes are subjected to different amounts of CdS QD sensitization by varying the number of cycles of deposition. The sensitized electrodes are characterized using UV-visible spectroscopy, cyclic voltammetry and transmission electron microscopy to evaluate the extent of surface coverage of titania electrodes by QDs. Sandwich solar cells are then fabricated using these electrodes and characterized employing electrochemical impedance spectroscopy and J-V characteristics. It is observed that maximum solar cell efficiency is obtained for photoanodes with conformal coating of QDs and any further deposition of sensitizer leads to QD aggregation and so reduces the performance of the solar cells.
Narayanan, Deepa; Kalinyak, Judith E.; The, Juliette; Velasquez, Maria Victoria; Kahn, Simone; Saady, Matthew; Mahal, Ravinder; Chrystal, Larraine
2010-01-01
Purpose The objective of this study was to compare the performance characteristics of 18F-fluorodeoxyglucose (FDG) positron emission mammography (PEM) with breast magnetic resonance imaging (MRI) as a presurgical imaging and planning option for index and ipsilateral lesions in patients with newly diagnosed, biopsy-proven breast cancer. Methods Two hundred and eight women >25 years of age (median age = 59.7 ± 14.1 years) with biopsy-proven primary breast cancer enrolled in this prospective, single-site study. MRI, PEM, and whole-body positron emission tomography (WBPET) were conducted on each patient within 7 business days. PEM and WBPET images were acquired on the same day after intravenous administration of 370 MBq of FDG (median = 432.9 MBq). PEM and MRI images were blindly evaluated, compared with final surgical histopathology, and the sensitivity determined. Substudy analysis compared the sensitivity of PEM versus MRI in patients with different menopausal status, breast density, and use of hormone replacement therapy (HRT) as well as determination of performance characteristics for additional ipsilateral lesion detection. Results Two hundred and eight patients enrolled in the study of which 87% (182/208) were analyzable. Of these analyzable patients, 26.4% (48/182), 7.1% (13/182), and 64.2% (120/182) were pre-, peri-, and postmenopausal, respectively, and 48.4% (88/182) had extremely or heterogeneously dense breast tissue, while 33.5% (61/182) had a history of HRT use. Ninety-two percent (167/182) underwent core biopsy for index lesion diagnosis. Invasive cancer was found in 77.5% (141/182), while ductal carcinoma in situ (DCIS) and/or Paget’s disease were found in 22.5% (41/182) of patients. Both PEM and MRI had index lesion depiction sensitivity of 92.8% and both were significantly better than WBPET (67.9%, p < 0.001, McNemar’s test). For index lesions, PEM and MRI had equivalent sensitivity of various tumors, categorized by tumor stage as well as similar invasive tumor size predictions with Spearman's correlation coefficient of 0.61 for both PEM and MRI compared to surgical pathology. Menopausal status, breast density, and HRT did not influence the sensitivity of PEM or MRI. For 67 additional unsuspected ipsilateral lesions or multifocal lesions, PEM had sensitivity of 85% (34/40) and specificity of 74%, (20/27) compared to MRI's sensitivity of 98% (39/40) and specificity of 48% (13/27) [p = 0.074, for sensitivity; p = 0.096 for specificity] Conclusion PEM is a good alternative to MRI as a presurgical breast imaging option and its performance characteristics are not affected by patient menopausal/hormonal status or breast density. PMID:20871992
Schilling, Kathy; Narayanan, Deepa; Kalinyak, Judith E; The, Juliette; Velasquez, Maria Victoria; Kahn, Simone; Saady, Matthew; Mahal, Ravinder; Chrystal, Larraine
2011-01-01
The objective of this study was to compare the performance characteristics of (18)F-fluorodeoxyglucose (FDG) positron emission mammography (PEM) with breast magnetic resonance imaging (MRI) as a presurgical imaging and planning option for index and ipsilateral lesions in patients with newly diagnosed, biopsy-proven breast cancer. Two hundred and eight women >25 years of age (median age = 59.7 ± 14.1 years) with biopsy-proven primary breast cancer enrolled in this prospective, single-site study. MRI, PEM, and whole-body positron emission tomography (WBPET) were conducted on each patient within 7 business days. PEM and WBPET images were acquired on the same day after intravenous administration of 370 MBq of FDG (median = 432.9 MBq). PEM and MRI images were blindly evaluated, compared with final surgical histopathology, and the sensitivity determined. Substudy analysis compared the sensitivity of PEM versus MRI in patients with different menopausal status, breast density, and use of hormone replacement therapy (HRT) as well as determination of performance characteristics for additional ipsilateral lesion detection. Two hundred and eight patients enrolled in the study of which 87% (182/208) were analyzable. Of these analyzable patients, 26.4% (48/182), 7.1% (13/182), and 64.2% (120/182) were pre-, peri-, and postmenopausal, respectively, and 48.4% (88/182) had extremely or heterogeneously dense breast tissue, while 33.5% (61/182) had a history of HRT use. Ninety-two percent (167/182) underwent core biopsy for index lesion diagnosis. Invasive cancer was found in 77.5% (141/182), while ductal carcinoma in situ (DCIS) and/or Paget's disease were found in 22.5% (41/182) of patients. Both PEM and MRI had index lesion depiction sensitivity of 92.8% and both were significantly better than WBPET (67.9%, p < 0.001, McNemar's test). For index lesions, PEM and MRI had equivalent sensitivity of various tumors, categorized by tumor stage as well as similar invasive tumor size predictions with Spearman's correlation coefficient of 0.61 for both PEM and MRI compared to surgical pathology. Menopausal status, breast density, and HRT did not influence the sensitivity of PEM or MRI. For 67 additional unsuspected ipsilateral lesions or multifocal lesions, PEM had sensitivity of 85% (34/40) and specificity of 74%, (20/27) compared to MRI's sensitivity of 98% (39/40) and specificity of 48% (13/27) [p = 0.074, for sensitivity; p = 0.096 for specificity] PEM is a good alternative to MRI as a presurgical breast imaging option and its performance characteristics are not affected by patient menopausal/hormonal status or breast density.
NASA Astrophysics Data System (ADS)
Wang, Yuanqiang; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi
2015-03-01
In an aqueous-phase system, AgInS2 quantum dot (QD) sensitized TiO2 photoanodes were prepared in situ by the reaction of β-In2S3 nanocrystals and as-prepared TiO2/Ag2S-QD electrodes, followed by a covering process with a ZnS passivation layer. A facile successive ionic layer adsorption and reaction (SILAR) method was adopted to obtain TiO2/Ag2S-QD electrodes. β-In2S3 nanocrystals synthesized by the chemical bath deposition (CBD) process serve as the reactant of AgInS2 as well as a buffer layer between the interfaces of TiO2 and AgInS2-QDs. A polysulfide electrolyte and a Pt-coated FTO glass count electrode were used to test the photovoltaic performance of the constructed devices. The characteristics of the sensitized photoelectrodes were studied in more detail by electron microscopy, X-ray techniques, and optical and photoelectric performance measurements. AgInS2 is the main photo-sensitizer for TiO2/AgInS2-QD/In2S3 electrodes and excess In2S3 appears on the surface of the electrodes. Based on the optimal Ag2S SILAR cycle, the best photovoltaic performance of the prepared TiO2/AgInS2-QD/In2S3 electrode with the short-circuit photocurrent density (Jsc) of 7.87 mA cm-2 and power conversion efficiency (η) of 0.70% under full one-sun illumination was achieved.In an aqueous-phase system, AgInS2 quantum dot (QD) sensitized TiO2 photoanodes were prepared in situ by the reaction of β-In2S3 nanocrystals and as-prepared TiO2/Ag2S-QD electrodes, followed by a covering process with a ZnS passivation layer. A facile successive ionic layer adsorption and reaction (SILAR) method was adopted to obtain TiO2/Ag2S-QD electrodes. β-In2S3 nanocrystals synthesized by the chemical bath deposition (CBD) process serve as the reactant of AgInS2 as well as a buffer layer between the interfaces of TiO2 and AgInS2-QDs. A polysulfide electrolyte and a Pt-coated FTO glass count electrode were used to test the photovoltaic performance of the constructed devices. The characteristics of the sensitized photoelectrodes were studied in more detail by electron microscopy, X-ray techniques, and optical and photoelectric performance measurements. AgInS2 is the main photo-sensitizer for TiO2/AgInS2-QD/In2S3 electrodes and excess In2S3 appears on the surface of the electrodes. Based on the optimal Ag2S SILAR cycle, the best photovoltaic performance of the prepared TiO2/AgInS2-QD/In2S3 electrode with the short-circuit photocurrent density (Jsc) of 7.87 mA cm-2 and power conversion efficiency (η) of 0.70% under full one-sun illumination was achieved. Electronic supplementary information (ESI) available: Photograph images, FESEM images, optical absorption spectra, photocurrent voltage characteristics of the photoelectrodes obtained by CBD of In2S3 and in situ reaction with different cycles of Ag2S SILAR deposition on TiO2 films. See DOI: 10.1039/c4nr06458e
Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C
2016-04-01
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giusi, G.; Giordano, O.; Scandurra, G.
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less
Unsteady characteristics of low-Re flow past two tandem cylinders
NASA Astrophysics Data System (ADS)
Zhang, Wei; Dou, Hua-Shu; Zhu, Zuchao; Li, Yi
2018-06-01
This study investigated the two-dimensional flow past two tandem circular or square cylinders at Re = 100 and D / d = 4-10, where D is the center-to-center distance and d is the cylinder diameter. Numerical simulation was performed to comparably study the effect of cylinder geometry and spacing on the aerodynamic characteristics, unsteady flow patterns, time-averaged flow characteristics and flow unsteadiness. We also provided the first global linear stability analysis and sensitivity analysis on the physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of the cylinder geometry and spacing on the characteristic quantities. Numerical results reveal that there is wake flow transition for both geometries depending on the spacing. The characteristic quantities, including the time-averaged and fluctuating streamwise velocity and pressure coefficient, are quite similar to that of the single cylinder case for the upstream cylinder, while an entirely different variation pattern is observed for the downstream cylinder. The global linear stability analysis shows that the spatial structure of perturbation is mainly observed in the wake of the downstream cylinder for small spacing, while moves upstream with reduced size and is also observed after the upstream cylinder for large spacing. The sensitivity analysis reflects that the temporal growth rate of perturbation is the most sensitive to the near-wake flow of downstream cylinder for small spacing and upstream cylinder for large spacing.
Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.
Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong
2018-05-30
Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.
Punishment sensitivity modulates the processing of negative feedback but not error-induced learning.
Unger, Kerstin; Heintz, Sonja; Kray, Jutta
2012-01-01
Accumulating evidence suggests that individual differences in punishment and reward sensitivity are associated with functional alterations in neural systems underlying error and feedback processing. In particular, individuals highly sensitive to punishment have been found to be characterized by larger mediofrontal error signals as reflected in the error negativity/error-related negativity (Ne/ERN) and the feedback-related negativity (FRN). By contrast, reward sensitivity has been shown to relate to the error positivity (Pe). Given that Ne/ERN, FRN, and Pe have been functionally linked to flexible behavioral adaptation, the aim of the present research was to examine how these electrophysiological reflections of error and feedback processing vary as a function of punishment and reward sensitivity during reinforcement learning. We applied a probabilistic learning task that involved three different conditions of feedback validity (100%, 80%, and 50%). In contrast to prior studies using response competition tasks, we did not find reliable correlations between punishment sensitivity and the Ne/ERN. Instead, higher punishment sensitivity predicted larger FRN amplitudes, irrespective of feedback validity. Moreover, higher reward sensitivity was associated with a larger Pe. However, only reward sensitivity was related to better overall learning performance and higher post-error accuracy, whereas highly punishment sensitive participants showed impaired learning performance, suggesting that larger negative feedback-related error signals were not beneficial for learning or even reflected maladaptive information processing in these individuals. Thus, although our findings indicate that individual differences in reward and punishment sensitivity are related to electrophysiological correlates of error and feedback processing, we found less evidence for influences of these personality characteristics on the relation between performance monitoring and feedback-based learning.
Action-perception dissociation in response to target acceleration.
Dubrowski, Adam; Carnahan, Heather
2002-05-01
The purpose of this study was to investigate whether information about the acceleration characteristics of a moving target can be used for both action and perception. Also of interest was whether prior movement experience altered perceptual judgements. Participants manually intercepted targets moving with various acceleration, velocity and movement time characteristics. They also made perceptual judgements about the acceleration characteristics of these targets either with or without prior manual interception experience. Results showed that while aiming kinematics were sensitive to the acceleration characteristics of the target, participants were only able to perceptually discriminate the velocity characteristics of target motion, even after performing interceptive actions to the same targets. These results are discussed in terms of a two channel (action-perception) model of visuomotor control.
Performance of thermally-chargeable supercapacitors in different solvents.
Lim, Hyuck; Zhao, Cang; Qiao, Yu
2014-07-07
The influence of solvent on the temperature sensitivity of the electrode potential of thermally-chargeable supercapacitors (TCSs) is investigated. For large electrodes, the output voltage is positively correlated with the dielectric constant of solvent. When nanoporous carbon electrodes are used, different characteristics of system performance are observed, suggesting that possible size effects must be taken into consideration when the solvent molecules and solvated ions are confined in a nanoenvironment.
Girman, Cynthia J; Faries, Douglas; Ryan, Patrick; Rotelli, Matt; Belger, Mark; Binkowitz, Bruce; O'Neill, Robert
2014-05-01
The use of healthcare databases for comparative effectiveness research (CER) is increasing exponentially despite its challenges. Researchers must understand their data source and whether outcomes, exposures and confounding factors are captured sufficiently to address the research question. They must also assess whether bias and confounding can be adequately minimized. Many study design characteristics may impact on the results; however, minimal if any sensitivity analyses are typically conducted, and those performed are post hoc. We propose pre-study steps for CER feasibility assessment and to identify sensitivity analyses that might be most important to pre-specify to help ensure that CER produces valid interpretable results.
The Cluster Sensitivity Index: A Basic Measure of Classification Robustness
ERIC Educational Resources Information Center
Hom, Willard C.
2010-01-01
Analysts of institutional performance have occasionally used a peer grouping approach in which they compared institutions only to other institutions with similar characteristics. Because analysts historically have used cluster analysis to define peer groups (i.e., the group of comparable institutions), the author proposes and demonstrates with…
USDA-ARS?s Scientific Manuscript database
Spectral scattering is useful for nondestructive sensing of fruit firmness. Prediction models, however, are typically built using multivariate statistical methods such as partial least squares regression (PLSR), whose performance generally depends on the characteristics of the data. The aim of this ...
USDA-ARS?s Scientific Manuscript database
Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...
Monte Carlo simulation of Ray-Scan 64 PET system and performance evaluation using GATE toolkit
NASA Astrophysics Data System (ADS)
Li, Suying; Zhang, Qiushi; Vuletic, Ivan; Xie, Zhaoheng; Yang, Kun; Ren, Qiushi
2017-02-01
In this study, we aimed to develop a GATE model for the simulation of Ray-Scan 64 PET scanner and model its performance characteristics. A detailed implementation of system geometry and physical process were included in the simulation model. Then we modeled the performance characteristics of Ray-Scan 64 PET system for the first time, based on National Electrical Manufacturers Association (NEMA) NU-2 2007 protocols and validated the model against experimental measurement, including spatial resolution, sensitivity, counting rates and noise equivalent count rate (NECR). Moreover, an accurate dead time module was investigated to simulate the counting rate performance. Overall results showed reasonable agreement between simulation and experimental data. The validation results showed the reliability and feasibility of the GATE model to evaluate major performance of Ray-Scan 64 PET system. It provided a useful tool for a wide range of research applications.
NASA Astrophysics Data System (ADS)
Wang, Weiying; Dong, Xinran; Chu, Dongkai; Hu, Youwang; Sun, Xiaoyan; Duan, Ji-An
2018-05-01
A high refractive index (RI) sensor based on an in-line Mach-Zehnder mode interferometer (MZI) is proposed. The sensor was realized by splicing a 2-cm length of cladding-etched thin core fiber (TCF) between two single mode fibers (SMFs). The TCF-structured MZI exhibited good fringe visibility as high as 15 dB in air and the high RI sensitivity attained a value of 1143.89 nm/RIU at a RI of 1.447. The experimental data revealed that the MZI has high RI sensitivity after HF etching realizing 2599.66 nm/RIU. Studies were performed on the temperature characteristics of the device. It is anticipated that this high RI sensor will be deployed in new and diverse applications in the chemical and biological fields.
Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States
NASA Astrophysics Data System (ADS)
Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.
2013-12-01
The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.
Tafiadis, Dionysios; Chronopoulos, Spyridon K; Kosma, Evangelia I; Voniati, Louiza; Raptis, Vasilis; Siafaka, Vasiliki; Ziavra, Nausica
2017-07-11
Voice performance is an inextricable key factor of everyday life. Obviously, the deterioration of voice quality can cause various problems to human communication and can therefore reduce the performance of social skills (relevant to voice). The deterioration could be originated from changes inside the system of the vocal tract and larynx. Various prognostic methods exist, and among them is the Voice Handicap Index (VHI). This tool includes self-reported questionnaires, used for determining the cutoff points of total score and of its three domains relevant to young male Greek smokers. The interpretation of the calculated cutoff points can serve as a strong indicator of imminent or future evaluation by a clinician. Consistent with previous calculation, the VHI can also act as a feedback for smokers' voice condition and as monitoring procedure toward smoking cessation. Specifically, the sample consisted of 130 male nondysphonic smokers (aged 18-33 years) who all participated in the VHI test procedure. The test results (through receiver operating characteristic analysis) concluded to a total cutoff point score of 19.50 (sensitivity: 0.838, 1-specificity: 0). Also, in terms of constructs, the Functional domain was equal to 7.50 (sensitivity: 0.676, 1-specificity: 0.032), the Physical domain was equal to 7.50 (sensitivity: 0.706, 1-specificity: 0.032), and the Emotional domain was equal to 6.50 (sensitivity: 0.809, 1-specificity: 0.048). Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Boehnke, Mitchell; Patel, Nayana; McKinney, Kristin; Clark, Toshimasa
The Society of Radiologists in Ultrasound (SRU 2005) and American Thyroid Association (ATA 2009 and ATA 2015) have published algorithms regarding thyroid nodule management. Kwak et al. and other groups have described models that estimate thyroid nodules' malignancy risk. The aim of our study is to use Kwak's model to evaluate the tradeoffs of both sensitivity and specificity of SRU 2005, ATA 2009 and ATA 2015 management algorithms. 1,000,000 thyroid nodules were modeled in MATLAB. Ultrasound characteristics were modeled after published data. Malignancy risk was estimated per Kwak's model and assigned as a binary variable. All nodules were then assessed using the published management algorithms. With the malignancy variable as condition positivity and algorithms' recommendation for FNA as test positivity, diagnostic performance was calculated. Modeled nodule characteristics mimic those of Kwak et al. 12.8% nodules were assigned as malignant (malignancy risk range of 2.0-98%). FNA was recommended for 41% of nodules by SRU 2005, 66% by ATA 2009, and 82% by ATA 2015. Sensitivity and specificity is significantly different (< 0.0001): 49% and 60% for SRU; 81% and 36% for ATA 2009; and 95% and 20% for ATA 2015. SRU 2005, ATA 2009 and ATA 2015 algorithms are used routinely in clinical practice to determine whether thyroid nodule biopsy is indicated. We demonstrate significant differences in these algorithms' diagnostic performance, which result in a compromise between sensitivity and specificity. Copyright © 2017 Elsevier Inc. All rights reserved.
Paveglio, Travis B; Prato, Tony; Edgeley, Catrin; Nalle, Darek
2016-09-01
A large body of research focuses on identifying patterns of human populations most at risk from hazards and the factors that help explain performance of mitigations that can help reduce that risk. One common concept in such studies is social vulnerability-human populations' potential exposure to, sensitivity from and ability to reduce negative impacts from a hazard. While there is growing interest in social vulnerability for wildfire, few studies have critically evaluated the characteristics that scholars often indicate influence social vulnerability to that hazard. This research utilizes surveys, wildfire simulations, and GIS data to test the relationships between select demographic, perceptual and parcel characteristics of property owners against empirically simulated metrics for wildfire exposure or wildfire-related damages and their performance of mitigation actions. Our results from Flathead County, MT, USA, suggest that parcel characteristics such as property value, building value, and the year structures were built explaining a significant amount of the variance in elements of social vulnerability. Demographic characteristics commonly used in social vulnerability analysis did not have significant relationships with measures of wildfire exposure or vulnerability. Part-time or full-time residency, age, perceived property risk, and year of development were among the few significant determinants of residents' performance of fuel reduction mitigations, although the significance of these factors varied across the levels of fuel reduction performed by homeowners. We use these and other results to argue for a renewed focus on the finer-scale characteristics that expose some populations to wildfire risk more than others.
NASA Astrophysics Data System (ADS)
Paveglio, Travis B.; Prato, Tony; Edgeley, Catrin; Nalle, Darek
2016-09-01
A large body of research focuses on identifying patterns of human populations most at risk from hazards and the factors that help explain performance of mitigations that can help reduce that risk. One common concept in such studies is social vulnerability—human populations' potential exposure to, sensitivity from and ability to reduce negative impacts from a hazard. While there is growing interest in social vulnerability for wildfire, few studies have critically evaluated the characteristics that scholars often indicate influence social vulnerability to that hazard. This research utilizes surveys, wildfire simulations, and GIS data to test the relationships between select demographic, perceptual and parcel characteristics of property owners against empirically simulated metrics for wildfire exposure or wildfire-related damages and their performance of mitigation actions. Our results from Flathead County, MT, USA, suggest that parcel characteristics such as property value, building value, and the year structures were built explaining a significant amount of the variance in elements of social vulnerability. Demographic characteristics commonly used in social vulnerability analysis did not have significant relationships with measures of wildfire exposure or vulnerability. Part-time or full-time residency, age, perceived property risk, and year of development were among the few significant determinants of residents' performance of fuel reduction mitigations, although the significance of these factors varied across the levels of fuel reduction performed by homeowners. We use these and other results to argue for a renewed focus on the finer-scale characteristics that expose some populations to wildfire risk more than others.
Development of a Mars Airplane Entry, Descent, and Flight Trajectory
NASA Technical Reports Server (NTRS)
Murray, James E.; Tartabini, Paul V.
2001-01-01
An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.
Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever.
Boisen, Matthew L; Hartnett, Jessica N; Shaffer, Jeffrey G; Goba, Augustine; Momoh, Mambu; Sandi, John Demby; Fullah, Mohamed; Nelson, Diana K S; Bush, Duane J; Rowland, Megan M; Heinrich, Megan L; Koval, Anatoliy P; Cross, Robert W; Barnes, Kayla G; Lachenauer, Anna E; Lin, Aaron E; Nekoui, Mahan; Kotliar, Dylan; Winnicki, Sarah M; Siddle, Katherine J; Gbakie, Michael; Fonnie, Mbalu; Koroma, Veronica J; Kanneh, Lansana; Kulakosky, Peter C; Hastie, Kathryn M; Wilson, Russell B; Andersen, Kristian G; Folarin, Onikepe O; Happi, Christian T; Sabeti, Pardis C; Geisbert, Thomas W; Saphire, Erica Ollmann; Khan, S Humarr; Grant, Donald S; Schieffelin, John S; Branco, Luis M; Garry, Robert F
2018-04-12
Lassa fever, a hemorrhagic fever caused by Lassa virus (LASV), is endemic in West Africa. It is difficult to distinguish febrile illnesses that are common in West Africa from Lassa fever based solely on a patient's clinical presentation. The field performance of recombinant antigen-based Lassa fever immunoassays was compared to that of quantitative polymerase chain assays (qPCRs) using samples from subjects meeting the case definition of Lassa fever presenting to Kenema Government Hospital in Sierra Leone. The recombinant Lassa virus (ReLASV) enzyme-linked immunosorbant assay (ELISA) for detection of viral antigen in blood performed with 95% sensitivity and 97% specificity using a diagnostic standard that combined results of the immunoassays and qPCR. The ReLASV rapid diagnostic test (RDT), a lateral flow immunoassay based on paired monoclonal antibodies to the Josiah strain of LASV (lineage IV), performed with 90% sensitivity and 100% specificity. ReLASV immunoassays performed better than the most robust qPCR currently available, which had 82% sensitivity and 95% specificity. The performance characteristics of recombinant antigen-based Lassa virus immunoassays indicate that they can aid in the diagnosis of LASV Infection and inform the clinical management of Lassa fever patients.
Choi, Young Jun; Baek, Jung Hwan; Park, Hye Sun; Shim, Woo Hyun; Kim, Tae Yong; Shong, Young Kee; Lee, Jeong Hyun
2017-04-01
An initial clinical assessment is described of a new, commercially available, computer-aided diagnosis (CAD) system using artificial intelligence (AI) for thyroid ultrasound, and its performance is evaluated in the diagnosis of malignant thyroid nodules and categorization of nodule characteristics. Patients with thyroid nodules with decisive diagnosis, whether benign or malignant, were consecutively enrolled from November 2015 to February 2016. An experienced radiologist reviewed the ultrasound image characteristics of the thyroid nodules, while another radiologist assessed the same thyroid nodules using the CAD system, providing ultrasound characteristics and a diagnosis of whether nodules were benign or malignant. The diagnostic performance and agreement of US characteristics between the experienced radiologist and the CAD system were compared. In total, 102 thyroid nodules from 89 patients were included; 59 (57.8%) were benign and 43 (42.2%) were malignant. The CAD system showed a similar sensitivity as the experienced radiologist (90.7% vs. 88.4%, p > 0.99), but a lower specificity and a lower area under the receiver operating characteristic (AUROC) curve (specificity: 74.6% vs. 94.9%, p = 0.002; AUROC: 0.83 vs. 0.92, p = 0.021). Classifications of the ultrasound characteristics (composition, orientation, echogenicity, and spongiform) between radiologist and CAD system were in substantial agreement (κ = 0.659, 0.740, 0.733, and 0.658, respectively), while the margin showed a fair agreement (κ = 0.239). The sensitivity of the CAD system using AI for malignant thyroid nodules was as good as that of the experienced radiologist, while specificity and accuracy were lower than those of the experienced radiologist. The CAD system showed an acceptable agreement with the experienced radiologist for characterization of thyroid nodules.
Quantitative Ultrasound for Measuring Obstructive Severity in Children with Hydronephrosis.
Cerrolaza, Juan J; Peters, Craig A; Martin, Aaron D; Myers, Emmarie; Safdar, Nabile; Linguraru, Marius George
2016-04-01
We define sonographic biomarkers for hydronephrotic renal units that can predict the necessity of diuretic nuclear renography. We selected a cohort of 50 consecutive patients with hydronephrosis of varying severity in whom 2-dimensional sonography and diuretic mercaptoacetyltriglycine renography had been performed. A total of 131 morphological parameters were computed using quantitative image analysis algorithms. Machine learning techniques were then applied to identify ultrasound based safety thresholds that agreed with the t½ for washout. A best fit model was then derived for each threshold level of t½ that would be clinically relevant at 20, 30 and 40 minutes. Receiver operating characteristic curve analysis was performed. Sensitivity, specificity and area under the receiver operating characteristic curve were determined. Improvement obtained by the quantitative imaging method compared to the Society for Fetal Urology grading system and the hydronephrosis index was statistically verified. For the 3 thresholds considered and at 100% sensitivity the specificities of the quantitative imaging method were 94%, 70% and 74%, respectively. Corresponding area under the receiver operating characteristic curve values were 0.98, 0.94 and 0.94, respectively. Improvement obtained by the quantitative imaging method over the Society for Fetal Urology grade and hydronephrosis index was statistically significant (p <0.05 in all cases). Quantitative imaging analysis of renal sonograms in children with hydronephrosis can identify thresholds of clinically significant washout times with 100% sensitivity to decrease the number of diuretic renograms in up to 62% of children. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting.
Chen, Chia-Yuan; Jian, Zih-Hong; Huang, Shih-Han; Lee, Kun-Mu; Kao, Ming-Hsuan; Shen, Chang-Hong; Shieh, Jia-Min; Wang, Chin-Li; Chang, Chiung-Wen; Lin, Bo-Zhi; Lin, Ching-Yao; Chang, Ting-Kuang; Chi, Yun; Chi, Cheng-Yu; Wang, Wei-Ting; Tai, Yian; Lu, Ming-De; Tung, Yung-Liang; Chou, Po-Ting; Wu, Wen-Ti; Chow, Tahsin J; Chen, Peter; Luo, Xiang-Hao; Lee, Yuh-Lang; Wu, Chih-Chung; Chen, Chih-Ming; Yeh, Chen-Yu; Fan, Miao-Syuan; Peng, Jia-De; Ho, Kuo-Chuan; Liu, Yu-Nan; Lee, Hsiao-Yi; Chen, Chien-Yu; Lin, Hao-Wu; Yen, Chia-Te; Huang, Yu-Ching; Tsao, Cheng-Si; Ting, Yu-Chien; Wei, Tzu-Chien; Wu, Chun-Guey
2017-04-20
Indoor utilization of emerging photovoltaics is promising; however, efficiency characterization under room lighting is challenging. We report the first round-robin interlaboratory study of performance measurement for dye-sensitized photovoltaics (cells and mini-modules) and one silicon solar cell under a fluorescent dim light. Among 15 research groups, the relative deviation in power conversion efficiency (PCE) of the samples reaches an unprecedented 152%. On the basis of the comprehensive results, the gap between photometry and radiometry measurements and the response of devices to the dim illumination are identified as critical obstacles to the correct PCE. Therefore, we use an illuminometer as a prime standard with a spectroradiometer to quantify the intensity of indoor lighting and adopt the reverse-biased current-voltage (I-V) characteristics as an indicator to qualify the I-V sampling time for dye-sensitized photovoltaics. The recommendations can brighten the prospects of emerging photovoltaics for indoor applications.
Vandorpe, Barbara; Vandendriessche, Joric B; Vaeyens, Roel; Pion, Johan; Lefevre, Johan; Philippaerts, Renaat M; Lenoir, Matthieu
2012-01-01
Gymnastics talent identification focuses on the identification of young gymnasts who display characteristics for potential success in the future. The aim of this study was to identify which current performance characteristics are related to performance in competition 2 years later. Twenty-three female gymnasts aged 7-8 years completed a multidimensional test battery measuring anthropometric, physical, and coordinative characteristics and were technically evaluated by expert coaches. Two years later, the all-around competition results of those gymnasts now participating in elite (n = 12) and sub-elite (n = 11) competition were obtained. None of the initial measurements significantly correlated with the results of the sub-elite gymnasts 2 years later. For the elite gymnasts, a non-sport-specific motor test battery correlated strongly with the competition result, with more than 40% of the variation in competition performance being explained by the result on that test 2 years earlier. Neither the coaches' judgement nor the anthropometric and physical characteristics were sensitive enough to predict performance. A motor coordination test might be valuable in the early identification of gymnasts, as its discriminative and predictive qualities might be sufficiently powerful for selection within a relatively homogeneous population of gymnasts exhibiting similar anthropometric and physical profiles.
NASA Astrophysics Data System (ADS)
Kaewunruen, Sakdirat; Remennikov, Alex M.
2006-11-01
The vibration of in situ concrete sleepers in a railway track structure is a major factor causing cracking of prestressed concrete sleepers and excessive railway track maintenance cost. Not only does the ballast interact with the sleepers, but the rail pads also take part in affecting their free vibration characteristics. This paper presents a sensitivity analysis of free vibration behaviors of an in situ railway concrete sleeper (standard gauge sleeper), incorporating sleeper/ballast interaction, subjected to the variations of rail pad properties. Through finite element analysis, Timoshenko-beam and spring elements were used in the in situ railway concrete sleeper modeling. This model highlights the influence of rail pad parameters on the free vibration characteristics of in situ sleepers. In addition, information on the first five flexural vibration modes indicates the dynamic performance of railway track when using different types of rail pads, as it plays a vital role in the cracking deterioration of concrete sleepers.
Elliott, D.G.; Applegate, L.J.; Murray, A.L.; Purcell, M.K.; McKibben, C.L.
2013-01-01
No gold standard assay exhibiting error-free classification of results has been identified for detection of Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease. Validation of diagnostic assays for R. salmoninarum has been hindered by its unique characteristics and biology, and difficulties in locating suitable populations of reference test animals. Infection status of fish in test populations is often unknown, and it is commonly assumed that the assay yielding the most positive results has the highest diagnostic accuracy, without consideration of misclassification of results. In this research, quantification of R. salmoninarum in samples by bacteriological culture provided a standardized measure of viable bacteria to evaluate analytical performance characteristics (sensitivity, specificity and repeatability) of non-culture assays in three matrices (phosphate-buffered saline, ovarian fluid and kidney tissue). Non-culture assays included polyclonal enzyme-linked immunosorbent assay (ELISA), direct smear fluorescent antibody technique (FAT), membrane-filtration FAT, nested polymerase chain reaction (nested PCR) and three real-time quantitative PCR assays. Injection challenge of specific pathogen-free Chinook salmon, Oncorhynchus tshawytscha (Walbaum), with R. salmoninarum was used to estimate diagnostic sensitivity and specificity. Results did not identify a single assay demonstrating the highest analytical and diagnostic performance characteristics, but revealed strengths and weaknesses of each test.
Mathew, Ribu; Sankar, A Ravi
2018-05-01
In this paper, we present the design and optimization of a rectangular piezoresistive composite silicon dioxide nanocantilever sensor. Unlike the conventional design approach, we perform the sensor optimization by not only considering its electro-mechanical response but also incorporating the impact of self-heating induced thermal drift in its terminal characteristics. Through extensive simulations first we comprehend and quantify the inaccuracies due to self-heating effect induced by the geometrical and intrinsic parameters of the piezoresistor. Then, by optimizing the ratio of electrical sensitivity to thermal sensitivity defined as the sensitivity ratio (υ) we improve the sensor performance and measurement reliability. Results show that to ensure υ ≥ 1, shorter and wider piezoresistors are better. In addition, it is observed that unlike the general belief that high doping concentration of piezoresistor reduces thermal sensitivity in piezoresistive sensors, to ensure υ ≥ 1 doping concentration (p) should be in the range: 1E18 cm-3 ≤ p ≤ 1E19 cm-3. Finally, we provide a set of design guidelines that will help NEMS engineers to optimize the performance of such sensors for chemical and biological sensing applications.
Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.
Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee
2014-05-21
Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%. Copyright © 2014 Elsevier B.V. All rights reserved.
Mitchell, J M; Yee, A J; McNab, W B; Griffiths, M W; McEwen, S A
1999-01-01
LacTek tests are competitive enzyme-linked immunosorbent assays intended for rapid detection of antimicrobial residues in bovine milk. In this study, the LacTek test protocol was modified for use with extracts of bovine tissue to detect beta-lactam, tetracycline, and sulfamethazine residues. Test performance characteristics--precision, accuracy, ruggedness, practicability, and analytical specificity and sensitivity--were investigated. Results suggest that LacTek tests can be easily adapted to detect antimicrobial residues in extracts of lean ground beef. However, positive samples may not contain residues at violative concentrations (i.e., Canadian maximum residue limits), and therefore, additional analysis would be required for final confirmation and quantitation (e.g., chromatography).
The development and test of ultra-large-format multi-anode microchannel array detector systems
NASA Technical Reports Server (NTRS)
Timothy, J. G.
1984-01-01
The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.
Present status of aircraft instruments
NASA Technical Reports Server (NTRS)
1932-01-01
This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.
Vinuesa, Víctor; Navarro, David; Poujois, Sandrine; Zaragoza, Susana; Borrás, Rafael
2016-03-01
The performance of the Abbott Real Time MTB assay for detection of Mycobacterium tuberculosis complex in respiratory specimens was evaluated using a standard culture as the reference. The overall concordance between both methods was 0.95. The assay displayed an excellent sensitivity (100% for smear-positive/92.3% for smear-negative specimens) and specificity (100%). Copyright © 2015 Elsevier Inc. All rights reserved.
[Diagnostic test scale SI5: Assessment of sacroiliac joint dysfunction].
Acevedo González, Juan C; Quintero Oliveros, Silvia
2015-01-01
Sacroiliac joint dysfunction is a known cause of low back pain. We think that a diagnostic score scale (SI5) may be performed to assess diagnostic utility of clinical signs of sacroiliac joint dysfunction. The primary aim of the present study was to conduct the pilot study of our new diagnostic score scale, the SI5, for sacroiliac joint syndrome. We reviewed the literature on clinical characteristics, diagnostic tests and imaging most commonly used in diagnosing sacroiliac joint dysfunction. Our group evaluated the diagnostic utility of these aspects and we used those considered most representative to develop the SI5 diagnostic scale. The SI5 scale was applied to 22 patients with low back pain; afterwards, the standard test for diagnosing this pathology (selective blockage of the SI joint) was also performed on these patients. The sensitivity and specificity for each sign were also assessed and the diagnostic scale called SI5 was then proposed, based on these data. The most sensitive clinical tests for diagnosing SI joint dysfunction were 2 patient-reported clinical characteristics, the Laguerre Test, sacroiliac rocking test and Yeomans test (greater than 80% sensitivity). The tests with greatest diagnostic specificity (>80%) were the Lewitt test, Piedallu test and Gillet test. The proposed SI5 test score scale showed sensitivity of 73% and specificity of 71%. Sacroiliac joint syndrome has been shown to produce low back pain frequently; however, the diagnostic value of examination tests for sacroiliac joint pain has been questioned by other authors. The pilot study on the SI5 diagnostic score scale showed good sensitivity and specificity. However, the process of statistical validation of the SI5 needs to be continued. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Cighetti, Giuliana; Bamonti, Fabrizia; Aman, Caroline S; Gregori, Dario; De Giuseppe, Rachele; Novembrino, Cristina; de Liso, Federica; Maiavacca, Rita; Paroni, Rita
2015-01-01
To test the performance of different analytical approaches in highlighting the occurrence of deregulated redox status in various physio-pathological situations. 35 light and 61 heavy smokers, 19 chronic renal failure, 59 kidney transplanted patients, and 87 healthy controls were retrospectively considered for the study. Serum oxidative stress and antioxidant status, assessed by spectrophotometric Reactive Oxygen Metabolites (d-ROMs) and Total Antioxidant Capacity (TAC) tests, respectively, were compared with plasma free (F-MDA) and total (T-MDA) malondialdehyde, both quantified by isotope-dilution-gas chromatography-mass spectrometry (ID-GC-MS). Sensitivity, specificity and cut-off points of T-MDA, F-MDA, d-ROMs and TAC were evaluated by both Receiver Operating Characteristic (ROC) analyses and area under the ROC curve (AUC). Only T-MDA assay showed a clear absence of oxidative stress in controls and significant increase in all patients (AUC 1.00, sensitivity and specificity 100%). Accuracy was good for d-ROMs (AUC 0.87, sensitivity 72.8%, specificity 100%) and F-MDA (AUC 0.82, sensitivity 74.7%, specificity 83.9%), but not high enough for TAC to show in patients impaired antioxidant defense (AUC 0.66, sensitivity 52.0%, specificity 92.9%). This study reveals T-MDA as the best marker to detect oxidative stress, shows the ability of d-ROMs to identify modified oxidative status particularly in the presence of high damages, and evidences the poor TAC performance. d-ROMs and TAC assays could be useful for routine purposes; however, for an accurate clinical data evaluation, their comparison versus a "gold standard method" is required. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Xiaoxue; Chen, Xin; Nie, Hongrui; Yang, Daquan
2018-01-01
Recently, due to its superior characteristics and simple manufacture, such as small size, low loss, high sensitivity and convenience to couple, the optical fiber sensor has become one of the most promising sensors. In order to achieve the most effective realization of light propagation by changing the structure of sensors, FOM(S •Q/λres) ,which is determined by two significant variables Q-factor and sensitivity, as a trade-off parameter should be optimized to a high value. In typical sensors, a high Q can be achieved by confining the optical field in the high refractive index dielectric region to make an interaction between analytes and evanescent field of the resonant mode. However, the ignored sensitivity is relatively low with a high Q achieved, which means that the resonant wavelength shift changes non-obviously when the refractive index increases. Meanwhile, the sensitivity also leads to a less desirable FOM. Therefore, a gradient structure, which can enhance the performance of sensors by achieving high Q and high sensitivity, has been developed by Kim et al. later. Here, by introducing parabolic-tapered structure, the light field localized overlaps strongly and sufficiently with analytes. And based on a one-dimensional photonic-crystal nanofiber air-mode cavity, a creative optical fiber sensor is proposed by combining good stability and transmission characteristics of fiber and strengths of tapered structure, realizing excellent FOM {4.7 x 105 with high Q-factors (Q{106) and high sensitivities (<700 nm/RIU).
NASA Technical Reports Server (NTRS)
Unal, Resit
1999-01-01
Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.
Tribological Technology. Volume II.
1982-09-01
rolling bearings, gears, and sliding bearings produce distinctive particles. An atlas of such particles is available2 9 . Atlases of characteristic...Gravitational methods cover both sedimentation and elutration techniques. Inertial type separators perform cyclonic classification. Ferrography is the...generated after each size exposure of contaminant. This can be done today using Ferrography . Standard contaminant sensitivity tests require test
Quantitative and Sensitive Detection of Chloramphenicol by Surface-Enhanced Raman Scattering
Ding, Yufeng; Yin, Hongjun; Meng, Qingyun; Zhao, Yongmei; Liu, Luo; Wu, Zhenglong; Xu, Haijun
2017-01-01
We used surface-enhanced Raman scattering (SERS) for the quantitative and sensitive detection of chloramphenicol (CAP). Using 30 nm colloidal Au nanoparticles (NPs), a low detection limit for CAP of 10−8 M was obtained. The characteristic Raman peak of CAP centered at 1344 cm−1 was used for the rapid quantitative detection of CAP in three different types of CAP eye drops, and the accuracy of the measurement result was verified by high-performance liquid chromatography (HPLC). The experimental results reveal that the SERS technique based on colloidal Au NPs is accurate and sensitive, and can be used for the rapid detection of various antibiotics. PMID:29261161
Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy
NASA Astrophysics Data System (ADS)
Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris
2018-04-01
We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.
Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy.
Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris
2018-04-06
We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.
Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches
NASA Technical Reports Server (NTRS)
Schwarze, G. E.; Frasca, A. J.
1991-01-01
Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN bipolar junction transistors (BJTs), metal-oxide-semiconductor field effect transistors (MOSFETs), and static induction transistors (SITs) are given. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Postirradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.
Herbst, Meghan K.; Rosenberg, Graeme; Daniels, Brock; Gross, Cary P.; Singh, Dinesh; Molinaro, Annette M.; Luty, Seth; Moore, Christopher L.
2016-01-01
Study objective Hydronephrosis is readily visible on ultrasonography and is a strong predictor of ureteral stones, but ultrasonography is a user-dependent technology and the test characteristics of clinician-performed ultrasonography for hydronephrosis are incompletely characterized, as is the effect of ultrasound fellowship training on predictive accuracy. We seek to determine the test characteristics of ultrasonography for detecting hydronephrosis when performed by clinicians with a wide range of experience under conditions of direct patient care. Methods This was a prospective study of patients presenting to an academic medical center emergency department with suspected renal colic. Before computed tomography (CT) results, an emergency clinician performed bedside ultrasonography, recording the presence and degree of hydronephrosis. CT data were abstracted from the dictated radiology report by an investigator blinded to the bedside ultrasonographic results. Test characteristics of bedside ultrasonography for hydronephrosis were calculated with the CT scan as the reference standard, with test characteristics compared by clinician experience stratified into 4 levels: attending physicians with emergency ultrasound fellowship training, attending physicians without emergency ultrasound fellowship training, ultrasound experienced non–attending physician clinicians (at least 2 weeks of ultrasound training), and ultrasound inexperienced non–attending physician clinicians (physician assistants, nurse practitioners, off-service rotators, and first-year emergency medicine residents with fewer than 2 weeks of ultrasound training). Results There were 670 interpretable bedside ultrasonographic tests performed by 144 unique clinicians, 80.9% of which were performed by clinicians directly involved in the care of the patient. On CT, 47.5% of all subjects had hydronephrosis and 47.0% had a ureteral stone. Among all clinicians, ultrasonography had a sensitivity of 72.6% (95% confidence interval [CI] 65.4% to 78.9%), specificity of 73.3% (95% CI 66.1% to 79.4%), positive likelihood ratio of 2.72 (95% CI 2.25 to 3.27), and negative likelihood ratio of 0.37 (95% CI 0.31 to 0.44) for hydronephrosis, using hydronephrosis on CT as the criterion standard. Among attending physicians with fellowship training, ultrasonography had sensitivity of 92.7% (95% CI 83.8% to 96.9%), positive likelihood ratio of 4.97 (95% CI 2.90 to 8.51), and negative likelihood ratio of 0.08 (95% CI 0.03 to 0.23). Conclusion Overall, ultrasonography performed by emergency clinicians was moderately sensitive and specific for detection of hydronephrosis as seen on CT in patients with suspected renal colic. However, presence or absence of hydronephrosis as determined by emergency physicians with fellowship training in ultrasonography yielded more definitive test results. For clinicians without fellowship training, there was no significant difference between groups in the predictive accuracy of the application according to experience level. PMID:24630203
Herbst, Meghan K; Rosenberg, Graeme; Daniels, Brock; Gross, Cary P; Singh, Dinesh; Molinaro, Annette M; Luty, Seth; Moore, Christopher L
2014-09-01
Hydronephrosis is readily visible on ultrasonography and is a strong predictor of ureteral stones, but ultrasonography is a user-dependent technology and the test characteristics of clinician-performed ultrasonography for hydronephrosis are incompletely characterized, as is the effect of ultrasound fellowship training on predictive accuracy. We seek to determine the test characteristics of ultrasonography for detecting hydronephrosis when performed by clinicians with a wide range of experience under conditions of direct patient care. This was a prospective study of patients presenting to an academic medical center emergency department with suspected renal colic. Before computed tomography (CT) results, an emergency clinician performed bedside ultrasonography, recording the presence and degree of hydronephrosis. CT data were abstracted from the dictated radiology report by an investigator blinded to the bedside ultrasonographic results. Test characteristics of bedside ultrasonography for hydronephrosis were calculated with the CT scan as the reference standard, with test characteristics compared by clinician experience stratified into 4 levels: attending physicians with emergency ultrasound fellowship training, attending physicians without emergency ultrasound fellowship training, ultrasound experienced non-attending physician clinicians (at least 2 weeks of ultrasound training), and ultrasound inexperienced non-attending physician clinicians (physician assistants, nurse practitioners, off-service rotators, and first-year emergency medicine residents with fewer than 2 weeks of ultrasound training). There were 670 interpretable bedside ultrasonographic tests performed by 144 unique clinicians, 80.9% of which were performed by clinicians directly involved in the care of the patient. On CT, 47.5% of all subjects had hydronephrosis and 47.0% had a ureteral stone. Among all clinicians, ultrasonography had a sensitivity of 72.6% (95% confidence interval [CI] 65.4% to 78.9%), specificity of 73.3% (95% CI 66.1% to 79.4%), positive likelihood ratio of 2.72 (95% CI 2.25 to 3.27), and negative likelihood ratio of 0.37 (95% CI 0.31 to 0.44) for hydronephrosis, using hydronephrosis on CT as the criterion standard. Among attending physicians with fellowship training, ultrasonography had sensitivity of 92.7% (95% CI 83.8% to 96.9%), positive likelihood ratio of 4.97 (95% CI 2.90 to 8.51), and negative likelihood ratio of 0.08 (95% CI 0.03 to 0.23). Overall, ultrasonography performed by emergency clinicians was moderately sensitive and specific for detection of hydronephrosis as seen on CT in patients with suspected renal colic. However, presence or absence of hydronephrosis as determined by emergency physicians with fellowship training in ultrasonography yielded more definitive test results. For clinicians without fellowship training, there was no significant difference between groups in the predictive accuracy of the application according to experience level. Copyright © 2014 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Alqahtani, Moteb M; Ali, Atif M; Harraz, Farid A; Faisal, M; Ismail, Adel A; Sayed, Mahmoud A; Al-Assiri, M S
2018-05-21
Mesoporous α-Fe 2 O 3 has been synthesized via a simple sol-gel procedure in the presence of Pluronic (F-127) triblock copolymer as structure directing agent. Silver (Ag) nanoparticles were deposited onto α-Fe 2 O 3 matrix by the photochemical reduction approach. Morphological analysis revealed the formation of Ag nanoparticles with small sizes < 20 nm onto the mesoporous structure of α-Fe 2 O 3 possessing < 50 nm semi-spherical shape. The XRD, FTIR, Raman, UV-vis, PL, and N 2 sorption isotherm studies confirmed the high crystallinity, mesoporosity, and optical characteristics of the synthesized product. The electrochemical sensing toward liquid ethanol has been performed using the current devolved Ag/α-Fe 2 O 3 -modified glassy carbon electrode (GCE) by cyclic voltammetry (CV) and current potential (I-V) techniques, and the obtained results were compared with bare GCE or pure α-Fe 2 O 3 . Mesoporous Ag/α-Fe 2 O 3 was found to largely enhance the sensor sensitivity and it exhibited excellent sensing characteristics during the precision detection of low concentrations of ethanol. High and reproducible sensitivity of 41.27 μAmM - 1 cm - 2 at lower ethanol concentration region (0.05 to 0.8 mM) and 2.93 μAmM - 1 cm - 2 at higher concentration zone (0.8 to 15 mM), with a limit of detection (LOD) of 15.4 μM have been achieved. Investigation on reaction kinetics revealed a characteristic behavior of mixed surface and diffusion-controlled processes. Detailed sensing studies revealed also that the sensitivity toward ethanol was higher than that of methanol or isopropanol. With further effort in developing the synthesis and fabrication approaches, a proper utility for the current proposed protocol for fabricating a better sensor device performance is possible.
NASA Astrophysics Data System (ADS)
Alqahtani, Moteb M.; Ali, Atif M.; Harraz, Farid A.; Faisal, M.; Ismail, Adel A.; Sayed, Mahmoud A.; Al-Assiri, M. S.
2018-05-01
Mesoporous α-Fe2O3 has been synthesized via a simple sol-gel procedure in the presence of Pluronic (F-127) triblock copolymer as structure directing agent. Silver (Ag) nanoparticles were deposited onto α-Fe2O3 matrix by the photochemical reduction approach. Morphological analysis revealed the formation of Ag nanoparticles with small sizes < 20 nm onto the mesoporous structure of α-Fe2O3 possessing < 50 nm semi-spherical shape. The XRD, FTIR, Raman, UV-vis, PL, and N2 sorption isotherm studies confirmed the high crystallinity, mesoporosity, and optical characteristics of the synthesized product. The electrochemical sensing toward liquid ethanol has been performed using the current devolved Ag/α-Fe2O3-modified glassy carbon electrode (GCE) by cyclic voltammetry ( CV) and current potential ( I-V) techniques, and the obtained results were compared with bare GCE or pure α-Fe2O3. Mesoporous Ag/α-Fe2O3 was found to largely enhance the sensor sensitivity and it exhibited excellent sensing characteristics during the precision detection of low concentrations of ethanol. High and reproducible sensitivity of 41.27 μAmM- 1 cm- 2 at lower ethanol concentration region (0.05 to 0.8 mM) and 2.93 μAmM- 1 cm- 2 at higher concentration zone (0.8 to 15 mM), with a limit of detection (LOD) of 15.4 μM have been achieved. Investigation on reaction kinetics revealed a characteristic behavior of mixed surface and diffusion-controlled processes. Detailed sensing studies revealed also that the sensitivity toward ethanol was higher than that of methanol or isopropanol. With further effort in developing the synthesis and fabrication approaches, a proper utility for the current proposed protocol for fabricating a better sensor device performance is possible.
Crain, Ellen F; Walter, Michelle; O'Connor, George T; Mitchell, Herman; Gruchalla, Rebecca S; Kattan, Meyer; Malindzak, George S; Enright, Paul; Evans, Richard; Morgan, Wayne; Stout, James W
2002-01-01
Most published environmental remediation interventions have been directed at single allergens and have employed demanding strategies; few have been performed in the homes of inner-city children disproportionately burdened by asthma. Our objective was a) to describe the allergen sensitivities, environmental tobacco smoke (ETS) exposure, and home environmental characteristics of a national sample of inner-city children with moderate to severe asthma and b) to develop and implement a multifaceted, home-based comprehensive intervention to reduce home allergens and ETS, tailored to the specific sensitization and exposure profiles of those children. Allergen skin testing and a home evaluation were performed to determine the presence of ETS and factors known to be associated with increased indoor allergen levels. Based on published remediation techniques, a home environmental intervention, organized into modules, each addressing one of five specific allergen groups or ETS, was designed. Of 994 allergic children from seven U.S. urban communities, 937 successfully completed baseline interviews and home allergen surveys and were enrolled. More than 50% of children had positive skin tests to three or more allergen groups. Cockroaches were reported in 58% of homes, wall-to-wall carpeting in the child's bedroom in 55%, a smoker in 48%, mice or rats in 40%, and furry pets in 28%. More than 60% of enrolled families received four or more modules, and between 94% and 98% of all modules were completed. We conclude that most inner-city children with moderate to severe asthma are sensitized to multiple indoor allergens and that environmental factors known to be associated with asthma severity are commonly present in their homes. The intervention developed for the Inner-City Asthma Study employs accepted methods to address an array of allergens and ETS exposure while ensuring that the intervention is tailored to the specific sensitization profiles and home characteristics of these children. PMID:12204830
Management of oil spill contamination in the Gulf of Patras caused by an accidental subsea blowout.
Makatounis, Panagiotis Eleftherios; Skancke, Jørgen; Florou, Evanthia; Stamou, Anastasios; Brandvik, Per Johan
2017-12-01
A methodology is presented and applied to assess the oil contamination probability in the Gulf of Patras and the environmental impacts on the environmentally sensitive area of Mesolongi - Aitoliko coastal lagoons, and to examine the effectiveness of response systems. The procedure consists of the following steps: (1) Determination of the computational domain and the main areas of interest, (2) determination of the drilling sites and oil release characteristics, (3) selection of the simulation periods and collection of environmental data, (4) identification of the species of interest and their characteristics, (5) performance of stochastic calculations and oil contamination probability analysis, (6) determination of the worst-cases, (7) determination of the characteristics of response systems, (8) performance of deterministic calculations, and (9) assessment of the impact of oil spill in the areas of interest. Stochastic calculations that were performed for three typical seasonal weather variations of the year 2015, three oil release sites and specific oil characteristics, showed that there is a considerable probability of oil pollution that reaches 30% in the Mesolongi - Aitoliko lagoons. Based on a simplified approach regarding the characteristic of the sensitive birds and fish in the lagoons, deterministic calculations showed that 78-90% of the bird population and 2-4% of the fish population are expected to be contaminated in the case of an oil spill without any intervention. The use of dispersants reduced the amount of stranded oil by approximately 16-21% and the contaminated bird population of the lagoons to approximately 70%; however, the affected fish population increased to 6-8.5% due to the higher oil concentration in the water column. Mechanical recovery with skimmers "cleaned" almost 10% of the released oil quantity, but it did not have any noticeable effect on the stranded oil and the impacted bird and fish populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Raifu, Amidu O.; El-Zein, Mariam; Sangwa-Lugoma, Ghislain; Ramanakumar, Agnihotram; Walter, Stephen D.
2017-01-01
Background Visual inspection with acetic acid (VIA) and Lugol’s iodine (VILI) are used to screen women for cervical cancer in low-resource settings. Little is known about correlates of their diagnostic accuracy by healthcare provider. We examined determinants of VIA and VILI screening accuracy by examiner in a cross-sectional screening study of 1528 women aged 30 years or older in a suburb of Kinshasa, Democratic Republic of Congo. Methods We used a logistic regression model for sensitivity and specificity to estimate the diagnostic accuracy of VIA and VILI, independently performed by nurse and physician, as a function of sociodemographic and reproductive health characteristics. Results Nurses rated tests as positive more often than physicians (36.3% vs 30.2% for VIA, 26.2% vs 25.2% for VILI). Women’s age was the most important determinant of performance. It was inversely associated with sensitivity (nurse’s VIA: p<0.001, nurse’s VILI: p = 0.018, physician’s VIA: p = 0.005, physician’s VILI: p = 0.006) but positively associated with specificity (all four combinations: p<0.001). Increasing parity adversely affected sensitivity and specificity, but the effects on sensitivity were significant for nurses only. The screening performance of physician’s assessment was significantly better than the nurse’s (difference in sensitivity: VIA = 13%, VILI = 16%; difference in specificity: VIA = 6%, VILI = 1%). Conclusions Age and parity influence the performance of visual tests for cervical cancer screening. Proper training of local healthcare providers in the conduct of these tests should take into account these factors for improved performance of VIA and VILI in detecting cervical precancerous lesions among women in limited-resource settings. PMID:28107486
Lee, Ho-Won; Muniyappa, Ranganath; Yan, Xu; Yue, Lilly Q.; Linden, Ellen H.; Chen, Hui; Hansen, Barbara C.
2011-01-01
The euglycemic glucose clamp is the reference method for assessing insulin sensitivity in humans and animals. However, clamps are ill-suited for large studies because of extensive requirements for cost, time, labor, and technical expertise. Simple surrogate indexes of insulin sensitivity/resistance including quantitative insulin-sensitivity check index (QUICKI) and homeostasis model assessment (HOMA) have been developed and validated in humans. However, validation studies of QUICKI and HOMA in both rats and mice suggest that differences in metabolic physiology between rodents and humans limit their value in rodents. Rhesus monkeys are a species more similar to humans than rodents. Therefore, in the present study, we evaluated data from 199 glucose clamp studies obtained from a large cohort of 86 monkeys with a broad range of insulin sensitivity. Data were used to evaluate simple surrogate indexes of insulin sensitivity/resistance (QUICKI, HOMA, Log HOMA, 1/HOMA, and 1/Fasting insulin) with respect to linear regression, predictive accuracy using a calibration model, and diagnostic performance using receiver operating characteristic. Most surrogates had modest linear correlations with SIClamp (r ≈ 0.4–0.64) with comparable correlation coefficients. Predictive accuracy determined by calibration model analysis demonstrated better predictive accuracy of QUICKI than HOMA and Log HOMA. Receiver operating characteristic analysis showed equivalent sensitivity and specificity of most surrogate indexes to detect insulin resistance. Thus, unlike in rodents but similar to humans, surrogate indexes of insulin sensitivity/resistance including QUICKI and log HOMA may be reasonable to use in large studies of rhesus monkeys where it may be impractical to conduct glucose clamp studies. PMID:21209021
Cervical VEMP threshold response curve in the identification of Ménière's disease.
Zhu, Yi; McPherson, James; Beatty, Charles; Driscoll, Colin; Neff, Brian; Eggers, Scott; Shepard, Neil T
2014-03-01
To investigate the sensitivity/specificity of a shift upward in the most sensitive frequency of the cervical vestibular evoked myogenic potential (cVEMP) threshold-response curve in the identification of Ménière's disease (MD). A secondary purpose was to investigate the clinical characteristics that had an impact on the sensitivity/specificity and to adjust the criteria for a positive shift upward in the cVEMP curve to maximize performance of the test. A retrospective review of patients diagnosed with MD and those without MD. Two hundred ninety-four patients met the inclusion criteria of symptom complaints of spontaneous events of vertigo and a full vestibular and balance evaluation with cVEMP threshold-response curve testing. Two hundred six of these patients were diagnosed with MD, and 88 patients were determined to be non-MD. Review of the patients' medical records was used to extract data on the results of the cVEMP curve, age, gender, duration from time of onset of spontaneous events, pure tone average from hearing test, and water caloric asymmetry. Student's t-test, χ² test, receiver operating characteristic (ROC) curve with area under the curve (AUC), Pearson correlation coefficient, and sensitivity/specificity from 2 × 2 tables were all used in the analysis. Basic sensitivity/specificity for a shift upward in the most sensitive frequency to 1000 Hz in the cVEMP threshold-response curve was 0.47/0.64 respectively. Clinical characteristics that were found to have a significant impact on the sensitivity/specificity were age equal to or above 60 yr and a caloric asymmetry ≥25%. Various combinations of age and caloric with the requirement of a shift upward in the cVEMP curve most sensitive frequency to 1000 Hz resulted in significant but modest improvements in sensitivity/specificity. However, the overall performance was not shown acceptable for routine clinical use with maximum sensitivity at 0.73. Therefore, placing an emphasis on specificity over sensitivity results showed specificity of 0.95 for those under 60 yr and 0.90 for those 60 yr of age or older with sensitivity at 0.20, but only in the context of a ≥25% caloric asymmetry. We recommend the use of the shift upward to 1000 Hz with a caloric asymmetry as the clinical protocol to maximize the use of the cVEMP threshold-response curve for assistance in the identification of MD, in the context of a ≥25% caloric asymmetry. This implies that if the test is negative no interpretation of identification of MD can be made. If the test is positive the results can be used to increase the argument for MD since the probability of the result being a false positive is only 5-10%. American Academy of Audiology.
ZnS/Al2S3 Layer as a Blocking Layer in Quantum Dot Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Vafapoor, Borzoo; Fathi, Davood; Eskandari, Mehdi
2017-12-01
In this research, the effect of treatment of the CdS/CdSe sensitized ZnO photoanode by ZnS, Al2S3, and ZnS/Al2S3 nanoparticles as a barrier layer on the performance of quantum dot sensitized solar cell is investigated. Current density-voltage (J-V) characteristics show that cell efficiency is enhanced from 3.62% to 4.82% with treatment of a CdS/CdSe/ZnS sensitized ZnO photoanode by Al2S3 nanoparticles. In addition, short- circuit current density (J sc) is increased from 11.5 mA/cm2 to 14.8 mA/cm2. The results extracted from electrochemical impedance spectroscopy indicate that charge transfer resistance (R ct) in photoanode/electrolyte interfaces decreases with deposition of Al2S3 nanoparticles on CdS/CdSe/ZnS sensitized ZnO photoanodes, while the chemical capacitance of photoanode (C μ ) and electron lifetime (t n) increase. Also, results revealed that cell performance is considerably decreased with the treatment of the AL2S3 blocking layer incorporated between ZnO nanorods and CdS/CdSe QDs.
ZnS/Al2S3 Layer as a Blocking Layer in Quantum Dot Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Vafapoor, Borzoo; Fathi, Davood; Eskandari, Mehdi
2018-03-01
In this research, the effect of treatment of the CdS/CdSe sensitized ZnO photoanode by ZnS, Al2S3, and ZnS/Al2S3 nanoparticles as a barrier layer on the performance of quantum dot sensitized solar cell is investigated. Current density-voltage ( J- V) characteristics show that cell efficiency is enhanced from 3.62% to 4.82% with treatment of a CdS/CdSe/ZnS sensitized ZnO photoanode by Al2S3 nanoparticles. In addition, short- circuit current density ( J sc) is increased from 11.5 mA/cm2 to 14.8 mA/cm2. The results extracted from electrochemical impedance spectroscopy indicate that charge transfer resistance ( R ct) in photoanode/electrolyte interfaces decreases with deposition of Al2S3 nanoparticles on CdS/CdSe/ZnS sensitized ZnO photoanodes, while the chemical capacitance of photoanode ( C μ ) and electron lifetime ( t n) increase. Also, results revealed that cell performance is considerably decreased with the treatment of the AL2S3 blocking layer incorporated between ZnO nanorods and CdS/CdSe QDs.
Performance enhancement of dye-sensitized solar cells (DSSCs) using a natural sensitizer
NASA Astrophysics Data System (ADS)
Arifin, Zainal; Soeparman, Sudjito; Widhiyanuriyawan, Denny; Sutanto, Bayu; Suyitno
2017-01-01
Dye-sensitized solar cells (DSSCs) based on natural sensitizers have become a topic of significant research because of their urgency and importance in the energy conversion field and the following advantages: ease of fabrication, low-cost solar cell, and usage of nontoxic materials. The natural sensitizer in DSSCs is responsible for the absorption of light as well as the injection of charges to the conduction band of the semiconductor such as TiO2 nanoparticles. In this study, the chlorophyll extracted from papaya leaves was used as a natural sensitizer. Dye molecules were adsorbed by TiO2 nanoparticle surfaces when submerged in the dye solution for 24 h. The concentration of the dye solution influences both the amount of dye loading and the DSSC performance. The amount of adsorbed dye molecules by TiO2 nanoparticle was calculated using a desorption method. As the concentration of dye solution was increased, the dye loading capacity and power conversion efficiency increased. Above 90 mM dye solution concentration, however, the DSSC efficiency decreased because dye precipitated on the TiO2 nanostructure. These characteristics of DSSCs were analyzed under the irradiation of 100 mW/cm2. The best performance of DSSCs was obtained at 90 mM dye solution, with the values of Voc, Jsc, FF, and efficiency of DSSCs being 0.561 V, 0.402 mA/cm2, 41.65%, and 0.094%, respectively.
WFIRST Observatory Performance
NASA Technical Reports Server (NTRS)
Kruk, Jeffrey W.
2012-01-01
The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.
Fazio, Rachel L; Sanders, James Forrest; Denney, Robert L
2015-06-01
Compared with the amount of neuropsychological literature surrounding response bias in civil litigation, there is little regarding criminal cases. This study adds to the criminal forensic neuropsychological literature by comparing the Test of Memory Malingering (TOMM) and the Word Memory Test (WMT) in a criminal forensic setting utilizing a criterion-groups design. Subjects were classified into two groups based on their performance on at least two other freestanding performance validity tests. The WMT demonstrated good sensitivity (95.1%) but poor specificity (68.4%) when Genuine Memory Impaired Profiles (GMIPs) were not considered. Inclusion of GMIPs reduced the sensitivity to 56.1% but increased the specificity to 94.7%. The TOMM evidenced better sensitivity but poorer specificity than the WMT with GMIPs. Conjoint use of the tests was also considered. Receiver operating characteristics and other classification statistics for each measure are presented. Results support the use of these measures in a criminal forensic population. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The role of rapid antigen testing for influenza in the era of molecular diagnostics.
Dale, Suzanne E
2010-08-01
Rapid antigen testing for influenza has been both maligned and revered since its conception. Microbiologists have long lamented the lack of sensitivity of commercial rapid influenza detection tests (RIDTs), whereas many clinicians have eschewed their utility by emphasizing the value of definitely diagnosing influenza at the patient's bedside. RIDTs, although quick and easy to perform, are widely accepted as being less sensitive than traditional culture techniques and newer molecular methods, including reverse-transcription polymerase chain reaction (RT-PCR). Moreover, the performance characteristics of RIDTs vary widely, and their applications as clinical diagnostic tools are not well understood. In contrast, traditional techniques are time consuming and require significant expertise to perform. Often, the delay in diagnosing influenza through these methods has little impact on patient care. The benefits of achieving a diagnosis of influenza at the point of care are numerous and include increased access to appropriate antivirals, appropriate patient cohorting for infection control purposes, and better resource utilization. Therefore, it behooves the microbiology community to communicate these issues to clinicians and to work to improve the sensitivity of RIDTs.
Koizumi, Mitsuru; Motegi, Kazuki; Koyama, Masamichi; Terauchi, Takashi; Yuasa, Takeshi; Yonese, Junji
2017-08-01
The computer-assisted diagnostic system for bone scintigraphy (BS) BONENAVI is used to evaluate skeletal metastasis. We investigated its diagnostic performance in prostate cancer patients with and without skeletal metastasis and searched for the problems. An artificial neural network (ANN) value was calculated in 226 prostate cancer patients (124 with skeletal metastasis and 101 without) using BS. Receiver operating characteristic curve analysis was performed and the sensitivity and specificity determined (cutoff ANN = 0.5). Patient's situation at the time of diagnosis of skeletal metastasis, computed tomography (CT) type, extent of disease (EOD), and BS uptake grade were analyzed. False-negative and false-positive results were recorded. BONENAVI showed 82% (102/124) of sensitivity and 83% (84/101) specificity for metastasis detection. There were no significant differences among CT types, although low EOD and faint BS uptake were associated with low ANN values and low sensitivity. Patients showed lower sensitivity during the follow-up period than staging work-up. False-negative lesions were often located in the pelvis or adjacent to it. They comprised not only solitary, faint BS lesions but also overlaying to urinary excretion. BONENAVI with BS has good sensitivity and specificity for detecting prostate cancer's osseous metastasis. Low EOD and faint BS uptake are associated with low sensitivity but not the CT type. Prostate cancer patients likely to have false-negative results during the follow-up period had a solitary lesion in the pelvis with faint BS uptake or lesions overlaying to urinary excretion.
Silva, Richardson Augusto Rosendo da; Costa, Mayara Mirna do Nascimento; Souza, Vinicius Lino de; Silva, Bárbara Coeli Oliveira da; Costa, Cristiane da Silva; Andrade, Itaísa Fernandes Cardoso de
2017-10-30
to evaluate the accuracy of the defining characteristics of the NANDA International nursing diagnosis, noncompliance, in people with HIV. study of diagnostic accuracy, performed in two stages. In the first stage, 113 people with HIV from a hospital of infectious diseases in the Northeast of Brazil were assessed for identification of clinical indicators of noncompliance. In the second, the defining characteristics were evaluated by six specialist nurses, analyzing the presence or absence of the diagnosis. For accuracy of the clinical indicators, the specificity, sensitivity, predictive values and likelihood ratios were measured. the presence of the noncompliance diagnosis was shown in 69% (n=78) of people with HIV. The most sensitive indicator was, missing of appointments (OR: 28.93, 95% CI: 1.112-2.126, p = 0.002). On the other hand, nonadherence behavior (OR: 15.00, 95% CI: 1.829-3.981, p = 0.001) and failure to meet outcomes (OR: 13.41; 95% CI: 1.272-2.508; P = 0.003) achieved higher specificity. the most accurate defining characteristics were nonadherence behavior, missing of appointments, and failure to meet outcomes. Thus, in the presence of these, the nurse can identify, with greater security, the diagnosis studied.
Meng, Xiawei; Zhao, Yulong
2016-01-01
A piezoresistive pressure sensor with a beam-membrane-dual-island structure is developed for micro-pressure monitoring in the field of aviation, which requires great sensitivity and overload resistance capacity. The design, fabrication, and test of the sensor are presented in this paper. By analyzing the stress distribution of sensitive elements using the finite element method, a novel structure incorporating sensitive beams with a traditional bossed diaphragm is built up. The proposed structure proved to be advantageous in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the sensor equations. Fabricated on an n-type single crystal silicon wafer, the sensor chips are wire-bonded to a printed circuit board (PCB) and packaged for experiments. The static and dynamic characteristics are tested and discussed. Experimental results show that the sensor has a sensitivity as high as 17.339 μV/V/Pa in the range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure. Due to the excellent performance, the sensor can be applied in measuring micro-pressure lower than 500 Pa. PMID:27005627
Assessment of energy and economic performance of office building models: a case study
NASA Astrophysics Data System (ADS)
Song, X. Y.; Ye, C. T.; Li, H. S.; Wang, X. L.; Ma, W. B.
2016-08-01
Energy consumption of building accounts for more than 37.3% of total energy consumption while the proportion of energy-saving buildings is just 5% in China. In this paper, in order to save potential energy, an office building in Southern China was selected as a test example for energy consumption characteristics. The base building model was developed by TRNSYS software and validated against the recorded data from the field work in six days out of August-September in 2013. Sensitivity analysis was conducted for energy performance of building envelope retrofitting; five envelope parameters were analyzed for assessing the thermal responses. Results indicated that the key sensitivity factors were obtained for the heat-transfer coefficient of exterior walls (U-wall), infiltration rate and shading coefficient (SC), of which the sum sensitivity factor was about 89.32%. In addition, the results were evaluated in terms of energy and economic analysis. The analysis of sensitivity validated against some important results of previous studies. On the other hand, the cost-effective method improved the efficiency of investment management in building energy.
NASA Technical Reports Server (NTRS)
Hattis, Philip D.; Malchow, Harvey L.
1992-01-01
Horizontal takeoff airbreathing-propulsion launch vehicles require near-optimal guidance and control which takes into account performance sensitivities to atmospheric characteristics while satisfying physically-derived operational constraints. A generic trajectory/control analysis tool that deepens insight into these considerations has been applied to two versions of a winged-cone vehicle model. Information that is critical to the design and trajectory of these vehicles is derived, and several unusual characteristics of the airbreathing propulsion model are shown to have potentially substantial effects on vehicle dynamics.
Hogan, Tiffany P.
2010-01-01
In this study, we examined the influence of word-level phonological and lexical characteristics on early phoneme awareness. Typically-developing children, ages 61–78 months, completed a phoneme-based, odd-one-out task that included consonant-vowel-consonant word sets (e.g., “chair-chain-ship”) that varied orthogonally by a phonological characteristic, sound-contrast similarity (similar vs. dissimilar), and a lexical characteristic, neighborhood density (dense vs. sparse). In a subsample of the participants – those with the highest vocabularies – results were in line with a predicted interactive effect of phonological and lexical characteristics on phoneme awareness performance: word sets contrasting similar sounds were less likely to yield correct responses in words from sparse neighborhoods than words from dense neighborhoods. Word sets contrasting dissimilar sounds were most likely to yield correct responses regardless of the words’ neighborhood density. Based on these findings, theories of early phoneme awareness development should consider both word-level (e.g., phonological and lexical characteristics) and child-level (e.g., vocabulary knowledge) influences on phoneme awareness performance. Attention to these word-level item influences is predicted to result in more sensitive and specific measures of reading risk. PMID:20574064
Understanding the effect of hammering process on the vibration characteristics of cymbals
NASA Astrophysics Data System (ADS)
Kuratani, F.; Yoshida, T.; Koide, T.; Mizuta, T.; Osamura, K.
2016-09-01
Cymbals are thin domed plates used as percussion instruments. When cymbals are struck, they vibrate and radiate sound. Cymbals are made through spin forming, hammering, and lathing. The spin forming creates the basic shape of the cymbal, which determines its basic vibration characteristics. The hammering and lathing produce specific sound adjustments by changing the cymbal's vibration characteristics. In this study, we study how hammering cymbals affects their vibration characteristics. The hammering produces plastic deformation (small, shallow dents) on the cymbal's surface, generating residual stresses throughout it. These residual stresses change the vibration characteristics. We perform finite element analysis of a cymbal to obtain its stress distribution and the resulting change in vibration characteristics. To reproduce the stress distribution, we use thermal stress analysis, and then with this stress distribution we perform vibration analysis. These results show that each of the cymbal's modes has a different sensitivity to the thermal load (i.e., hammering). This difference causes changes in the frequency response and the deflection shape that significantly improves the sound radiation efficiency. In addition, we explain the changes in natural frequencies by the stress and modal strain energy distributions.
Bidari, Ali; Hassanzadeh, Morteza; Ghavidel Parsa, Banafsheh; Kianmehr, Nahid; Kabir, Ali; Pirhadi, Sara; Sayfi, Mohammad; Toutounchi, Mehrangiz; Fattahi, Fariba; Zandi Karimi, Fereidoon
2013-12-01
The aim of this study was to validate the 2010 American College of Rheumatology (ACR) preliminary criteria for fibromyalgia (FM) in an Iranian population. In this multicenter prospective study, we enrolled 168 FM patients and 110 controls. All participants underwent dolorimetry examination by study assessors and completed a questionnaire containing variables of both the ACR 2010 preliminary and ACR 1990 criteria. We compared the performance of the ACR 2010 criteria with the expert diagnosis as well as the ACR 1990 criteria. Receiver operator characteristic analyses and Youden index were used to evaluate the test characteristics of a set of different cutoff points for two subcomponents of ACR 2010 criteria including widespread pain index (WPI) and symptom severity (SS) scale. Considering expert diagnosis as the gold standard, the ACR 2010 criteria showed comparable specificity with ACR 1990 (92.8 vs. 88.3 %, P = 0.073), but lower sensitivity (58.9 vs. 71.4 %, P = 0.003) and a tendency for lower accuracy (72.4 vs. 78.4 %, P = 0.105). Applying the ACR 1990 criteria as the gold standard, we observed a trend toward an increase in overall accuracy (72.4 vs. 79.1 %, P = 0.064). Optimal test characteristics were achieved for WPI ≥6 and SS scale score ≥4 and improved sensitivity and accuracy of ACR 2010 criteria when compared to expert, 76.1 and 81.7, respectively. The preliminary ACR 2010 criteria performed less desirably in terms of sensitivity in our set of Iranian patients. Selecting lower cutoff points as WPI ≥6 and SS scale score ≥4 improved the diagnostic values of the criteria.
van der Stouwe, A M M; Elting, J W; van der Hoeven, J H; van Laar, T; Leenders, K L; Maurits, N M; Tijssen, M A J
2016-09-01
Distinguishing between different tremor disorders can be challenging. Some tremor disorders are thought to have typical tremor characteristics: the current study aims to provide sensitivity and specificity for five 'typical' tremor phenomena. Retrospectively, we examined 210 tremor patients referred for electrophysiological recordings between January 2008 and January 2014. The final clinical diagnosis was used as the gold standard. The first step was to determine whether patients met neurophysiological criteria for their type of tremor. Once established, we focused on 'typical' characteristics: tremor frequency decrease upon loading (enhanced physiological tremor (EPT)), amplitude increase upon loading, distractibility and entrainment (functional tremor (FT)), and intention tremor (essential tremor (ET)). The prevalence of these phenomena in the 'typical' group was compared to the whole group. Most patients (87%) concurred with all core clinical neurophysiological criteria for their tremor type. We found a frequency decrease upon loading to be a specific (95%), but not a sensitive (42%) test for EPT. Distractibility and entrainment both scored high on sensitivity (92%, 91%) and specificity (94%, 91%) in FT, whereas a tremor amplitude increase was specific (92%), but not sensitive (22%). Intention tremor was a specific finding in ET (85%), but not a sensitive test (45%). Combination of characteristics improved sensitivity. In this study, we retrospectively determined sensitivity and specificity for five 'typical' tremor characteristics. Characteristics proved specific, but few were sensitive. These data on tremor phenomenology will help practicing neurologists to improve distinction between different tremor disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Eliseev, A. V.; Mokhov, I. I.; Guseva, M. S.
2006-05-01
The ERA40 and NCEP/NCAR data over 1958 1998 were used to estimate the sensitivity of amplitude-phase characteristics (APCs) of the annual cycle (AC) of the surface air temperature (SAT) T s. The results were compared with outputs of the ECHAM4/OPYC3, HadCM3, and INM RAS general circulation models and the IAP RAS climate model of intermediate complexity, which were run with variations in greenhouse gases and sulfate aerosol specified over 1860 2100. The analysis was performed in terms of the linear regression coefficients b of SAT AC APCs on the local annual mean temperature and in terms of the sensitivity characteristic D = br 2, which takes into account not only the linear regression coefficient but also its statistical significance (via the correlation coefficient r). The reanalysis data were used to reveal the features of the tendencies of change in the SAT AC APCs in various regions, including areas near the snow-ice boundary, storm-track ocean regions, large desert areas, and the tropical Pacific. These results agree with earlier observations. The model computations are in fairly good agreement with the reanalysis data in regions of statistically significant variations in SAT AC APCs. The differences between individual models and the reanalysis data can be explained, in particular, in terms of the features of the sea-ice schemes used in the models. Over the land in the middle and high latitudes of the Northern Hemisphere, the absolute values of D for the fall phase time and the interval of exceeding exhibit a positive intermodel correlation with the absolute value of D for the annual-harmonic amplitude. Over the ocean, the models reproducing larger (in modulus) sensitivity parameters of the SAT annual-harmonic amplitude are generally characterized by larger (in modulus) negative sensitivity values of the semiannual-harmonic amplitude T s, 2, especially at latitudes characteristic of the sea-ice boundary. In contrast to the averaged fields of AC APCs and their interannual standard deviations, the sensitivity parameters of the SAT AC APCs on a regional scale vary noticeably for various types of anthropogenic forcing.
Zhao, Huifang; Heard, Stephen O; Mullen, Marie T; Crawford, Sybil; Goldberg, Robert J; Frendl, Gyorgy; Lilly, Craig M
2012-06-01
Limited research has been conducted to compare the test characteristics of the 1991 and 2001 sepsis consensus definitions. This study assessed the accuracy of the two sepsis consensus definitions among adult critically ill patients compared to sepsis case adjudication by three senior clinicians. Observational study of patients admitted to intensive care units. Seven intensive care units of an academic medical center. A random sample of 960 patients from all adult intensive care unit patients between October 2007 and December 2008. None. Sensitivity, specificity, and the area under the receiver operating characteristic curve for the two consensus definitions were calculated by comparing the number of patients who met or did not meet consensus definitions vs. the number of patients who were or were not diagnosed with sepsis by adjudication. The 1991 sepsis definition had a high sensitivity of 94.6%, but a low specificity of 61.0%. The 2001 sepsis definition had a slightly increased sensitivity but a decreased specificity, which were 96.9% and 58.3%, respectively. The areas under the receiver operating characteristic curve for the two definitions were not statistically different (0.778 and 0.776, respectively). The sensitivities and areas under the receiver operating characteristic curve of both definitions were lower at the 24-hr time window level than those of the intensive care unit stay level, though their specificities increased slightly. Fever, high white blood cell count or immature forms, low Glasgow coma score, edema, positive fluid balance, high cardiac index, low PaO2/FIO2 ratio, and high levels of creatinine and lactate were significantly associated with sepsis by both definitions and adjudication. Both the 1991 and the 2001 sepsis definition have a high sensitivity but low specificity; the 2001 definition has a slightly increased sensitivity but a decreased specificity compared to the 1991 definition. The diagnostic performances of both definitions were suboptimal. A parsimonious set of significant predictors for sepsis diagnosis is likely to improve current sepsis case definitions.
Theoretical studies of system performance and adaptive optics design parameters
NASA Astrophysics Data System (ADS)
Tyson, Robert K.
1990-08-01
The ultimate performance of an adaptive optics (AO) system can be sensitive to specific design parameters of individual components. The type and configuration of a wavefront sensor or the shape of individual deformable mirror actuator influence functions can have a profound effect on the correctability of the AO system. This paper will discuss the results of a theoretical study which employed both closed form analytic solutions and computer models. A parametric analysis of wavefront sensor characteristics, noise, and subaperture geometry are independently evaluated against system response to an aberrated wave characteristic of atmospheric turbulence. Similarly, the shape and extent of the deformable mirror influence function and the placement and number of actuators is evaluated to characterize the effects of fitting error and coupling.
USDA-ARS?s Scientific Manuscript database
Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test for avian influenza. Because of the low analytic sensitivity of LFD tests at low virus concentrations, targeted sampling of sick and dead birds has been proposed in order to increase detection pr...
Quinn, Mark Kenneth; Spinosa, Emanuele; Roberts, David A
2017-07-25
Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.
Water-Based Pressure Sensitive Paint
NASA Technical Reports Server (NTRS)
Oglesby, Donald M.; Ingram, JoAnne L.; Jordan, Jeffrey D.; Watkins, A. Neal; Leighty, Bradley D.
2004-01-01
Preparation and performance of a water-based pressure sensitive paint (PSP) is described. A water emulsion of an oxygen permeable polymer and a platinum porphyrin type luminescent compound were dispersed in a water matrix to produce a PSP that performs well without the use of volatile, toxic solvents. The primary advantages of this PSP are reduced contamination of wind tunnels in which it is used, lower health risk to its users, and easier cleanup and disposal. This also represents a cost reduction by eliminating the need for elaborate ventilation and user protection during application. The water-based PSP described has all the characteristics associated with water-based paints (low toxicity, very low volatile organic chemicals, and easy water cleanup) but also has high performance as a global pressure sensor for PSP measurements in wind tunnels. The use of a water-based PSP virtually eliminates the toxic fumes associated with the application of PSPs to a model in wind tunnels.
Spinosa, Emanuele; Roberts, David A.
2017-01-01
Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access. PMID:28757553
Evaluation of Maryland abutment scour equation through selected threshold velocity methods
Benedict, S.T.
2010-01-01
The U.S. Geological Survey, in cooperation with the Maryland State Highway Administration, used field measurements of scour to evaluate the sensitivity of the Maryland abutment scour equation to the critical (or threshold) velocity variable. Four selected methods for estimating threshold velocity were applied to the Maryland abutment scour equation, and the predicted scour to the field measurements were compared. Results indicated that performance of the Maryland abutment scour equation was sensitive to the threshold velocity with some threshold velocity methods producing better estimates of predicted scour than did others. In addition, results indicated that regional stream characteristics can affect the performance of the Maryland abutment scour equation with moderate-gradient streams performing differently from low-gradient streams. On the basis of the findings of the investigation, guidance for selecting threshold velocity methods for application to the Maryland abutment scour equation are provided, and limitations are noted.
Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches
NASA Technical Reports Server (NTRS)
Schwarze, G. E.; Frasca, A. J.
1991-01-01
The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.
Taniguchi, Daisuke; Hatano, Taku; Kamagata, Koji; Okuzumi, Ayami; Oji, Yutaka; Mori, Akio; Hori, Masaaki; Aoki, Shigeki; Hattori, Nobutaka
2018-05-14
Background Nigral degeneration patterns differ between PSP and PD. However, the relationship between nigral degeneration and midbrain atrophy in PSP remains unclear. Objective We analyzed differences and relationships between nigral degeneration and midbrain atrophy in PSP and PD. Methods Neuromelanin-sensitive MRI and midbrain volumetry were performed in 11 PSP patients, 24 PD patients, and 10 controls to measure the neuromelanin-sensitive SNpc area and midbrain volume. Results The neuromelanin-sensitive SNpc area and midbrain volume were significantly smaller in PSP patients compared with PD patients and controls. Motor deficits were inversely correlated with neuromelanin-sensitive SNpc area in PD, but not PSP patients. There was no significant correlation between neuromelanin-sensitive SNpc area and midbrain volume in either disease group. Midbrain volumetry discriminated PSP from PD. Diagnostic accuracy was improved when neuromelanin-sensitive MRI analysis was added. Conclusions Neuromelanin-sensitive MRI and midbrain volumetry may reflect the clinical and pathological characteristics of PSP and PD. Combining neuromelanin-sensitive MRI and midbrain volumetry may be useful for differentiating PSP from PD. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.
You, Myung-Won; Kim, Kyung Won; Pyo, Junhee; Huh, Jimi; Kim, Hyoung Jung; Lee, So Jung; Park, Seong Ho
2017-01-01
We aimed to evaluate the correlation between liver stiffness measurement using transient elastography (TE-LSM) and hepatic venous pressure gradient and the diagnostic performance of TE-LSM in assessing clinically significant portal hypertension through meta-analysis. Eleven studies were included from thorough literature research and selection processes. The summary correlation coefficient was 0.783 (95% confidence interval [CI], 0.737-0.823). Summary sensitivity, specificity and area under the hierarchical summary receiver operating characteristic curve (AUC) were 87.5% (95% CI, 75.8-93.9%), 85.3 % (95% CI, 76.9-90.9%) and 0.9, respectively. The subgroup with low cut-off values of 13.6-18 kPa had better summary estimates (sensitivity 91.2%, specificity 81.3% and partial AUC 0.921) than the subgroup with high cut-off values of 21-25 kPa (sensitivity 71.2%, specificity 90.9% and partial AUC 0.769). In summary, TE-LSM correlated well with hepatic venous pressure gradient and represented good diagnostic performance in diagnosing clinically significant portal hypertension. For use as a sensitive screening tool, we propose using low cut-off values of 13.6-18 kPa in TE-LSM. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Del Din, Silvia; Godfrey, Alan; Rochester, Lynn
2016-05-01
Measurement of gait is becoming important as a tool to identify disease and disease progression, yet to date its application is limited largely to specialist centers. Wearable devices enables gait to be measured in naturalistic environments, however questions remain regarding validity. Previous research suggests that when compared with a laboratory reference, measurement accuracy is acceptable for mean but not variability or asymmetry gait characteristics. Some fundamental reasons for this have been presented, (e.g., synchronization, different sampling frequencies) but to date this has not been systematically examined. The aims of this study were to: 1) quantify a comprehensive range of gait characteristics measured using a single triaxial accelerometer-based monitor; 2) examine outcomes and monitor performance in measuring gait in older adults and those with Parkinson's disease (PD); and 3) carry out a detailed comparison with those derived from an instrumented walkway to account for any discrepancies. Fourteen gait characteristics were quantified in 30 people with incident PD and 30 healthy age-matched controls. Of the 14 gait characteristics compared, agreement between instruments was excellent for four (ICCs 0.913-0.983); moderate for four (ICCs 0.508-0.766); and poor for six characteristics (ICCs 0.637-0.370). Further analysis revealed that differences reflect an increased sensitivity of accelerometry to detect motion, rather than measurement error. This is most likely because accelerometry measures gait as a continuous activity rather than discrete footfall events, per instrumented tools. The increased sensitivity shown for these characteristics will be of particular interest to researchers keen to interpret "real-world" gait data. In conclusion, use of a body-worn monitor is recommended for the measurement of gait but is likely to yield more sensitive data for asymmetry and variability features.
Kim, Jeong Rye; Suh, Chong Hyun; Yoon, Hee Mang; Lee, Jin Seong; Cho, Young Ah; Jung, Ah Young
2018-03-01
To assess the diagnostic performance of shear-wave elastography for determining the severity of liver fibrosis in children and adolescents. An electronic literature search of PubMed and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver-operating-characteristic modelling were performed to evaluate the diagnostic performance of shear-wave elastography. Meta-regression and subgroup analyses according to the modality of shear-wave imaging and the degree of liver fibrosis were also performed. Twelve eligible studies with 550 patients were included. Shear-wave elastography showed a summary sensitivity of 81 % (95 % CI: 71-88) and a specificity of 91 % (95 % CI: 83-96) for the prediction of significant liver fibrosis. The number of measurements of shear-wave elastography performed was a significant factor influencing study heterogeneity. Subgroup analysis revealed shear-wave elastography to have an excellent diagnostic performance according to each degree of liver fibrosis. Supersonic shear imaging (SSI) had a higher sensitivity (p<.01) and specificity (p<.01) than acoustic radiation force impulse imaging (ARFI). Shear-wave elastography is an excellent modality for the evaluation of the severity of liver fibrosis in children and adolescents. Compared with ARFI, SSI showed better diagnostic performance for prediction of significant liver fibrosis. • Shear-wave elastography is beneficial for determining liver fibrosis severity in children. • Shear-wave elastography showed summary sensitivity of 81 %, specificity of 91 %. • SSI showed better diagnostic performance than ARFI for significant liver fibrosis.
Sensory Optimization by Stochastic Tuning
Jurica, Peter; Gepshtein, Sergei; Tyukin, Ivan; van Leeuwen, Cees
2013-01-01
Individually, visual neurons are each selective for several aspects of stimulation, such as stimulus location, frequency content, and speed. Collectively, the neurons implement the visual system’s preferential sensitivity to some stimuli over others, manifested in behavioral sensitivity functions. We ask how the individual neurons are coordinated to optimize visual sensitivity. We model synaptic plasticity in a generic neural circuit, and find that stochastic changes in strengths of synaptic connections entail fluctuations in parameters of neural receptive fields. The fluctuations correlate with uncertainty of sensory measurement in individual neurons: the higher the uncertainty the larger the amplitude of fluctuation. We show that this simple relationship is sufficient for the stochastic fluctuations to steer sensitivities of neurons toward a characteristic distribution, from which follows a sensitivity function observed in human psychophysics, and which is predicted by a theory of optimal allocation of receptive fields. The optimal allocation arises in our simulations without supervision or feedback about system performance and independently of coupling between neurons, making the system highly adaptive and sensitive to prevailing stimulation. PMID:24219849
Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.
2016-01-01
We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298
Explosive performance of HMX/NTO co-crystal
NASA Astrophysics Data System (ADS)
Li, J. C.; Jiao, Q. J.; Gong, Y. G.; Wang, Y. Y.; Liang, T.; Sun, J.
2018-01-01
A new co-crystal explosive of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and 3-nitro-1, 2, 4-triazol-5-one (NTO) in a molar ratio of 1:1 has been prepared by solvent/anti-solvent method. The SEM photographs show that HMX/NTO co-crystals are distinctly different from HMX and NTO crystals. The co-crystals are prisms with well formed crystal surfaces. Thermal analysis results indicate the melting point of the co-crystal is 29.3 °Chigher than that of NTO. Moreover, the co-crystal exhibits a modified mechanical sensitivity. The characteristic height (H50) of impact sensitivity increases 14.8cm, and the explosion percentage (P) of friction sensitivity decreases by 40% compared with HMX. The HMX/NTO co-crystals possess good thermal property and low sensitivity, which mean huge advantages in blasting engineering.
NASA Technical Reports Server (NTRS)
Turriziani, R. V.
1979-01-01
The sensitivity of several performance characteristics of a proposed design for a microwave-powered, remotely piloted, high-altitude sailplane to changes in independently varied design parameters was investigated. Results were expressed as variations from baseline values of range, final climb altitude and onboard storage of radiated energy. Calculated range decreased with increases in either gross weight or parasite drag coefficient; it also decreased with decreases in lift coefficient, propeller efficiency, or microwave beam density. The sensitivity trends for range and final climb altitude were very similar. The sensitivity trends for stored energy were reversed from those for range, except for decreasing microwave beam density. Some study results for single parameter variations were combined to estimate the effect of the simultaneous variation of several parameters: for two parameters, this appeared to give reasonably accurate results.
Space Shuttle Main Engine (SSME) LOX turbopump pump-end bearing analysis
NASA Technical Reports Server (NTRS)
1986-01-01
A simulation of the shaft/bearing system of the Space Shuttle Main Engine Liquid Oxygen turbopump was developed. The simulation model allows the thermal and mechanical characteristics to interact as a realistic simulation of the bearing operating characteristics. The model accounts for single and two phase coolant conditions, and includes the heat generation from bearing friction and fluid stirring. Using the simulation model, parametric analyses were performed on the 45 mm pump-end bearings to investigate the sensitivity of bearing characteristics to contact friction, axial preload, coolant flow rate, coolant inlet temperature and quality, heat transfer coefficients, outer race clearance and misalignment, and the effects of thermally isolating the outer race from the isolator.
NASA Astrophysics Data System (ADS)
Xue, Bin; Liu, Zhe; Yang, Jie; Feng, Liangsen; Zhang, Ning; Wang, Junxi; Li, Jinmin
2018-03-01
An off-the-shelf green laser diode (LD) was measured to investigate its temperature dependent characteristics. Performance of the device was severely restricted by rising temperature in terms of increasing threshold current and decreasing modulation bandwidth. The observation reveals that dynamic characteristics of the LD is sensitive to temperature. Influence of light attenuation on the modulation bandwidth of the green LD was also studied. The impact of light attenuation on the modulation bandwidth of the LD in short and low turbid water channel was not obvious while slight difference in modulation bandwidth under same injection level was observed between water channel and free space even at short range.
NASA Astrophysics Data System (ADS)
Ojeda, David; Le Rolle, Virginie; Tse Ve Koon, Kevin; Thebault, Christophe; Donal, Erwan; Hernández, Alfredo I.
2013-11-01
In this paper, lumped-parameter models of the cardiovascular system, the cardiac electrical conduction system and a pacemaker are coupled to generate mitral ow pro les for di erent atrio-ventricular delay (AVD) con gurations, in the context of cardiac resynchronization therapy (CRT). First, we perform a local sensitivity analysis of left ventricular and left atrial parameters on mitral ow characteristics, namely E and A wave amplitude, mitral ow duration, and mitral ow time integral. Additionally, a global sensitivity analysis over all model parameters is presented to screen for the most relevant parameters that a ect the same mitral ow characteristics. Results provide insight on the in uence of left ventricle and atrium in uence on mitral ow pro les. This information will be useful for future parameter estimation of the model that could reproduce the mitral ow pro les and cardiovascular hemodynamics of patients undergoing AVD optimization during CRT.
White LED visible light communication technology research
NASA Astrophysics Data System (ADS)
Yang, Chao
2017-03-01
Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.
García Vicente, Ana María; Delgado-Bolton, Roberto C; Amo-Salas, Mariano; López-Fidalgo, Jesús; Caresia Aróztegui, Ana Paula; García Garzón, José Ramón; Orcajo Rincón, Javier; García Velloso, María José; de Arcocha Torres, María; Alvárez Ruíz, Soledad
2017-08-01
The detection of occult cancer in patients suspected of having a paraneoplastic neurological syndrome (PNS) poses a diagnostic challenge. The aim of our study was to perform a systematic review and meta-analysis to assess the diagnostic performance of FDG PET for the detection of occult malignant disease responsible for PNS. A systematic review of the literature (MEDLINE, EMBASE, Cochrane, and DARE) was undertaken to identify studies published in any language. The search strategy was structured after addressing clinical questions regarding the validity or usefulness of the test, following the PICO framework. Inclusion criteria were studies involving patients with PNS in whom FDG PET was performed to detect malignancy, and which reported sufficient primary data to allow calculation of diagnostic accuracy parameters. When possible, a meta-analysis was performed to calculate the joint sensitivity, specificity, and detection rate for malignancy (with 95% confidence intervals [CIs]), as well as a subgroup analysis based on patient characteristics (antibodies, syndrome). The comprehensive literature search revealed 700 references. Sixteen studies met the inclusion criteria and were ultimately selected. Most of the studies were retrospective (12/16). For the quality assessment, the QUADAS-2 tool was applied to assess the risk of bias. Across 16 studies (793 patients), the joint sensitivity, specificity, and detection rate for malignancy with FDG PET were 0.87 (95% CI: 0.80-0.93), 0.86 (95% CI: 0.83-0.89), and 14.9% (95% CI: 11.5-18.7), respectively. The area under the curve (AUC) of the summary ROC curve was 0.917. Homogeneity of results was observed for sensitivity but not for specificity. Some of the individual studies showed large 95% CIs as a result of small sample size. The results of our meta-analysis reveal high diagnostic performance of FDG PET in the detection of malignancy responsible for PNS, not affected by the presence of onconeural antibodies or clinical characteristics.
NASA Astrophysics Data System (ADS)
Ferhati, H.; Djeffal, F.
2017-12-01
In this paper, a new junctionless optical controlled field effect transistor (JL-OCFET) and its comprehensive theoretical model is proposed to achieve high optical performance and low cost fabrication process. Exhaustive study of the device characteristics and comparison between the proposed junctionless design and the conventional inversion mode structure (IM-OCFET) for similar dimensions are performed. Our investigation reveals that the proposed design exhibits an outstanding capability to be an alternative to the IM-OCFET due to the high performance and the weak signal detection benefit offered by this design. Moreover, the developed analytical expressions are exploited to formulate the objective functions to optimize the device performance using Genetic Algorithms (GAs) approach. The optimized JL-OCFET not only demonstrates good performance in terms of derived drain current and responsivity, but also exhibits superior signal to noise ratio, low power consumption, high-sensitivity, high ION/IOFF ratio and high-detectivity as compared to the conventional IM-OCFET counterpart. These characteristics make the optimized JL-OCFET potentially suitable for developing low cost and ultrasensitive photodetectors for high-performance and low cost inter-chips data communication applications.
Calibration of the QCM/SAW Cascade Impactor for Measurement of Ozone
NASA Technical Reports Server (NTRS)
Williams, Cassandra K.; Peterson, C. B.; Morris, V. R.
1997-01-01
The Quartz Crystal Microbalance Surface Acoustic Wave (QCM/SAW) cascade impactor is an instrument designed to collect size-fractionated distributions of aerosols on a series of quartz crystals and employ SAW devices coated with chemical sensors for gas detection. We are calibrating the cascade impactor in our laboratory for future deployment for in-situ experiments to measure ozone. Experiments have been performed to characterize the QCM and SAW mass loading, saturation limits, mass frequency relationships, and sensitivity. The characteristics of mass loading, saturation limits, mass-frequency relationships, sensitivity, and the loss of ozone on different materials have been quantified.
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2011-01-01
Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed
Matthew Fields, J; Davis, Joshua; Alsup, Carl; Bates, Amanda; Au, Arthur; Adhikari, Srikar; Farrell, Isaac
2017-09-01
The use of ultrasonography (US) to diagnose appendicitis is well established. More recently, point-of-care ultrasonography (POCUS) has also been studied for the diagnosis of appendicitis, which may also prove a valuable diagnostic tool. The purpose of this study was through systematic review and meta-analysis to identify the test characteristics of POCUS, specifically US performed by a nonradiologist physician, in accurately diagnosing acute appendicitis in patients of any age. We conducted a thorough and systematic literature search of English language articles published on point-of-care, physician-performed transabdominal US used for the diagnosis of acute appendicitis from 1980 to May, 2015 using OVID MEDLINE In-Process & Other Non-indexed Citations and Scopus. Studies were selected and subsequently independently abstracted by two trained reviewers. A random-effects pooled analysis was used to construct a hierarchical summary receiver operator characteristic curve, and a meta-regression was performed. Quality of studies was assessed using the QUADAS-2 tool. Our search yielded 5,792 unique studies and we included 21 of these in our final review. Prevalence of disease in this study was 29.8%, (range = 6.4%-75.4%). The sensitivity and specificity for POCUS in diagnosing appendicitis were 91% (95% confidence interval [CI] = 83%-96%) and 97% (95% CI = 91%-99%), respectively. The positive and negative predictive values were 91 and 94%, respectively. Studies performed by emergency physicians had slightly lower test characteristics (sensitivity = 80%, specificity = 92%). There was significant heterogeneity between studies (I 2 = 99%, 95% CI = 99%-100%) and the quality of the reported studies was moderate, mostly due to unclear reporting of blinding of physicians and timing of scanning and patient enrollment. Several of the studies were performed by a single operator, and the education and training of the operators were variably reported. Point-of-care US has relatively high sensitivity and specificity for diagnosing acute appendicitis, although the data presented are limited by the quality of the original studies and large CIs. In the hands of an experienced operator, POCUS is an appropriate initial imaging modality for diagnosing appendicitis. Based on our results, it is premature to utilize POCUS as a stand-alone test or to rule out appendicitis. © 2017 by the Society for Academic Emergency Medicine.
NASA Astrophysics Data System (ADS)
Arafa, Safia; Bouchemat, Mohamed; Bouchemat, Touraya; Benmerkhi, Ahlem; Hocini, Abdesselam
2017-02-01
A Bio-sensing platform based on an infiltrated photonic crystal ring shaped holes cavity-coupled waveguide system is proposed for glucose concentration detection. Considering silicon-on-insulator (SOI) technology, it has been demonstrated that the ring shaped holes configuration provides an excellent optical confinement within the cavity region, which further enhances the light-matter interactions at the precise location of the analyte medium. Thus, the sensitivity and the quality factor (Q) can be significantly improved. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte glucose concentration are analyzed by performing finite-difference time-domain (FDTD) simulations. Accordingly, an improved sensitivity of 462 nm/RIU and a Q factor as high as 1.11х105 have been achieved, resulting in a detection limit of 3.03х10-6 RIU. Such combination of attributes makes the designed structure a promising element for performing label-free biosensing in medical diagnosis and environmental monitoring.
Parametric sensitivity analysis of leachate transport simulations at landfills.
Bou-Zeid, E; El-Fadel, M
2004-01-01
This paper presents a case study in simulating leachate generation and transport at a 2000 ton/day landfill facility and assesses leachate migration away from the landfill in order to control associated environmental impacts, particularly on groundwater wells down gradient of the site. The site offers unique characteristics in that it is a former quarry converted to a landfill and is planned to have refuse depths that could reach 100 m, making it one of the deepest in the world. Leachate quantity and potential percolation into the subsurface are estimated using the Hydrologic Evaluation of Landfill Performance (HELP) model. A three-dimensional subsurface model (PORFLOW) was adopted to simulate ground water flow and contaminant transport away from the site. A comprehensive sensitivity analysis to leachate transport control parameters was also conducted. Sensitivity analysis suggests that changes in partition coefficient, source strength, aquifer hydraulic conductivity, and dispersivity have the most significant impact on model output indicating that these parameters should be carefully selected when similar modeling studies are performed. Copyright 2004 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kim, Dokyun; Bravo, Luis; Matusik, Katarzyna; Duke, Daniel; Kastengren, Alan; Swantek, Andy; Powell, Christopher; Ham, Frank
2016-11-01
One of the major concerns in modern direct injection engines is the sensitivity of engine performance to fuel characteristics. Recent works have shown that even slight differences in fuel properties can cause significant changes in efficiency and emission of an engine. Since the combustion process is very sensitive to the fuel/air mixture formation resulting from disintegration of liquid jet, the precise assessment of fuel sensitivity on liquid jet atomization process is required first to study the impact of different fuels on the combustion. In the present study, the breaking process of a liquid jet from a diesel injector injecting into a quiescent gas chamber is investigated numerically and experimentally for different liquid fuels (n-dodecane, iso-octane, CAT A2 and C3). The unsplit geometric Volume-of-Fluid method is employed to capture the phase interface in Large-eddy simulations and results are compared against the radiography measurement from Argonne National Lab including jet penetration, liquid mass distribution and volume fraction. The breakup characteristics will be shown for different fuels as well as droplet PDF statistics to demonstrate the influences of the physical properties on the primary atomization of liquid jet. Supported by HPCMP FRONTIER award, US DOD, Office of the Army.
Nguyen, Van Toan; Nguyen, Viet Chien; Nguyen, Van Duy; Hoang, Si Hong; Hugo, Nguyen; Nguyen, Duc Hoa; Nguyen, Van Hieu
2016-01-15
Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H2 sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO2 thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques. The thicknesses of SnO2 thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25-250 ppm, with a linear dependence to H2 concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H2 among other gases, such as CO, NH3, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.
A 3D Chemically Modified Graphene Hydrogel for Fast, Highly Sensitive, and Selective Gas Sensor.
Wu, Jin; Tao, Kai; Guo, Yuanyuan; Li, Zhong; Wang, Xiaotian; Luo, Zhongzhen; Feng, Shuanglong; Du, Chunlei; Chen, Di; Miao, Jianmin; Norford, Leslie K
2017-03-01
Reduced graphene oxide (RGO) has proved to be a promising candidate in high-performance gas sensing in ambient conditions. However, trace detection of different kinds of gases with simultaneously high sensitivity and selectivity is challenging. Here, a chemiresistor-type sensor based on 3D sulfonated RGO hydrogel (S-RGOH) is reported, which can detect a variety of important gases with high sensitivity, boosted selectivity, fast response, and good reversibility. The NaHSO 3 functionalized RGOH displays remarkable 118.6 and 58.9 times higher responses to NO 2 and NH 3 , respectively, compared with its unmodified RGOH counterpart. In addition, the S-RGOH sensor is highly responsive to volatile organic compounds. More importantly, the characteristic patterns on the linearly fitted response-temperature curves are employed to distinguish various gases for the first time. The temperature of the sensor is elevated rapidly by an imbedded microheater with little power consumption. The 3D S-RGOH is characterized and the sensing mechanisms are proposed. This work gains new insights into boosting the sensitivity of detecting various gases by combining chemical modification and 3D structural engineering of RGO, and improving the selectivity of gas sensing by employing temperature dependent response characteristics of RGO for different gases.
A multi‐centre evaluation of nine rapid, point‐of‐care syphilis tests using archived sera
Herring, A J; Ballard, R C; Pope, V; Adegbola, R A; Changalucha, J; Fitzgerald, D W; Hook, E W; Kubanova, A; Mananwatte, S; Pape, J W; Sturm, A W; West, B; Yin, Y P; Peeling, R W
2006-01-01
Objectives To evaluate nine rapid syphilis tests at eight geographically diverse laboratory sites for their performance and operational characteristics. Methods Tests were compared “head to head” using locally assembled panels of 100 archived (50 positive and 50 negative) sera at each site using as reference standards the Treponema pallidum haemagglutination or the T pallidum particle agglutination test. In addition inter‐site variation, result stability, test reproducibility and test operational characteristics were assessed. Results All nine tests gave good performance relative to the reference standard with sensitivities ranging from 84.5–97.7% and specificities from 84.5–98%. Result stability was variable if result reading was delayed past the recommended period. All the tests were found to be easy to use, especially the lateral flow tests. Conclusions All the tests evaluated have acceptable performance characteristics and could make an impact on the control of syphilis. Tests that can use whole blood and do not require refrigeration were selected for further evaluation in field settings. PMID:17118953
S.S.T.O. performance assessment with in-flight lox collection
NASA Astrophysics Data System (ADS)
Vandenkerckhove, J.; Czysz, P.
1995-10-01
Much attention has recently been given, up to harware development to in-flight oxygen collection as a means to improve considerably the performance of both TSTO & SSTO vehicles. A first assessment suggests that it permits simultaneously to improve much both gross take-off weight (by more than 30%) & dry weight (by more than 15%) of an SSTO and to lower significantly the Mach number of transition scramjet → rocket, from 15 down below 10, thereby reducing dramatically the programmatic development risks. After having compared in-flight lox collection with other SSTO concepts, this paper provides a tentative assessment of the performance of SSTO vehicles taking advantage of it, in particular their sensitivity to changes in system characteristics such as transition Mach number, vehicle slenderness (i.e. Küchemann's parameter τ) or planform loading at take-off and in collection characteristics, in particular collection ratio & specific collection plant weight.
Lai, Y-C; Li, H-Y; Hung, C-S; Lin, M-S; Shih, S-R; Ma, W-Y; Hua, C-H; Chuang, L-M; Sung, F-C; Wei, J-N
2013-03-01
To evaluate whether homeostasis model assessment and high-sensitivity C-reactive protein improve the prediction of isolated post-load hyperglycaemia. The subjects were 1458 adults without self-reported diabetes recruited between 2006 and 2010. Isolated post-load hyperglycaemia was defined as fasting plasma glucose < 7 mmol/l and 2-h post-load plasma glucose ≥ 11.1 mmol/l. Risk scores of isolated post-load hyperglycaemia were constructed by multivariate logistic regression. An independent group (n = 154) was enrolled from 2010 to 2011 to validate the models' performance. One hundred and twenty-three subjects (8.28%) were newly diagnosed as having diabetes mellitus. Among those with undiagnosed diabetes, 64 subjects (52%) had isolated post-load hyperglycaemia. Subjects with isolated post-load hyperglycaemia were older, more centrally obese and had higher blood pressure, HbA(1c), fasting plasma glucose, triglycerides, LDL cholesterol, high-sensitivity C-reactive protein and homeostasis model assessment of insulin resistance and lower homeostasis model assessment of β-cell function than those without diabetes. The risk scores included age, gender, BMI, homeostasis model assessment, high-sensitivity C-reactive protein and HbA(1c). The full model had high sensitivity (84%) and specificity (87%) and area under the receiver operating characteristic curve (0.91), with a cut-off point of 23.81; validation in an independent data set showed 88% sensitivity, 77% specificity and an area under curve of 0.89. Over half of those with undiagnosed diabetes had isolated post-load hyperglycaemia. Homeostasis model assessment and high-sensitivity C-reactive protein are useful to identify subjects with isolated post-load hyperglycaemia, with improved performance over fasting plasma glucose or HbA(1c) alone. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin
2016-07-01
Extreme ultraviolet lithography (EUVL, λ=13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high-power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity [S or best energy (BE)], and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (line width roughness, resolution and sensitivity trade-off) among these parameters for chemically amplified resists (CARs). We present early proof-of-principle results for a multiexposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a "Photosensitized Chemically Amplified Resist™" (PSCAR™). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV-flood exposure (λ=365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR, and EL high-performance requirements with the aim of resolving line space (L/S) features for the 7- and 5-nm logic node [16- and 13-nm half-pitch (HP), respectively] for HVM. Several CARs were additionally found to be well resolved down to 12- and 11-nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated was compared to the CAR performance at and below 16-nm HP resolution, demonstrating the need for alternative resist solutions at 13-nm resolution and below. EUV interference lithography (IL) has provided and continues to provide a simple yet powerful platform for academic and industrial research, enabling the characterization and development of resist materials before commercial EUV exposure tools become available. Our experiments have been performed at the EUV-IL set-up in the Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI).
NASA Astrophysics Data System (ADS)
Ripamonti, Giancarlo; Lacaita, Andrea L.
1993-03-01
The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.
Cacho, J; Sevillano, J; de Castro, J; Herrera, E; Ramos, M P
2008-11-01
Insulin resistance plays a role in the pathogenesis of diabetes, including gestational diabetes. The glucose clamp is considered the gold standard for determining in vivo insulin sensitivity, both in human and in animal models. However, the clamp is laborious, time consuming and, in animals, requires anesthesia and collection of multiple blood samples. In human studies, a number of simple indexes, derived from fasting glucose and insulin levels, have been obtained and validated against the glucose clamp. However, these indexes have not been validated in rats and their accuracy in predicting altered insulin sensitivity remains to be established. In the present study, we have evaluated whether indirect estimates based on fasting glucose and insulin levels are valid predictors of insulin sensitivity in nonpregnant and 20-day-pregnant Wistar and Sprague-Dawley rats. We have analyzed the homeostasis model assessment of insulin resistance (HOMA-IR), the quantitative insulin sensitivity check index (QUICKI), and the fasting glucose-to-insulin ratio (FGIR) by comparing them with the insulin sensitivity (SI(Clamp)) values obtained during the hyperinsulinemic-isoglycemic clamp. We have performed a calibration analysis to evaluate the ability of these indexes to accurately predict insulin sensitivity as determined by the reference glucose clamp. Finally, to assess the reliability of these indexes for the identification of animals with impaired insulin sensitivity, performance of the indexes was analyzed by receiver operating characteristic (ROC) curves in Wistar and Sprague-Dawley rats. We found that HOMA-IR, QUICKI, and FGIR correlated significantly with SI(Clamp), exhibited good sensitivity and specificity, accurately predicted SI(Clamp), and yielded lower insulin sensitivity in pregnant than in nonpregnant rats. Together, our data demonstrate that these indexes provide an easy and accurate measure of insulin sensitivity during pregnancy in the rat.
NASA Technical Reports Server (NTRS)
Klein, R. H.; Mcruer, D. T.; Weir, D.
1975-01-01
A maneuver complex and related performance measures used to evaluate driver/vehicle system responses as effected by variations in the directional response characteristics of passenger cars are described. The complex consists of normal and emergency maneuvers (including random and discrete disturbances) which, taken as a whole, represent all classes of steering functions and all modes of driver response behavior. Measures of driver/vehicle system response and performance in regulation tasks included direct describing function measurements and rms yaw velocity. In transient maneuvers, measures such as steering activity and cone strikes were used.
Kostera, Joshua; Leckie, Gregor; Tang, Ning; Lampinen, John; Szostak, Magdalena; Abravaya, Klara; Wang, Hong
2016-12-01
Clinical management of drug-resistant tuberculosis patients continues to present significant challenges to global health. To tackle these challenges, the Abbott RealTime MTB RIF/INH Resistance assay was developed to accelerate the diagnosis of rifampicin and/or isoniazid resistant tuberculosis to within a day. This article summarizes the performance of the Abbott RealTime MTB RIF/INH Resistance assay; including reliability, analytical sensitivity, and clinical sensitivity/specificity as compared to Cepheid GeneXpert MTB/RIF version 1.0 and Hain MTBDRplus version 2.0. The limit of detection (LOD) of the Abbott RealTime MTB RIF/INH Resistance assay was determined to be 32 colony forming units/milliliter (cfu/mL) using the Mycobacterium tuberculosis (MTB) strain H37Rv cell line. For rifampicin resistance detection, the Abbott RealTime MTB RIF/INH Resistance assay demonstrated statistically equivalent clinical sensitivity and specificity as compared to Cepheid GeneXpert MTB/RIF. For isoniazid resistance detection, the assay demonstrated statistically equivalent clinical sensitivity and specificity as compared to Hain MTBDRplus. The performance data presented herein demonstrate that the Abbott RealTime MTB RIF/INH Resistance assay is a sensitive, robust, and reliable test for realtime simultaneous detection of first line anti-tuberculosis antibiotics rifampicin and isoniazid in patient specimens. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahman, M. Saifur; Anower, Md. Shamim; Hasan, Md. Rabiul; Hossain, Md. Biplob; Haque, Md. Ismail
2017-08-01
We demonstrate a highly sensitive Au-MoS2-Graphene based hybrid surface plasmon resonance (SPR) biosensor for the detection of DNA hybridization. The performance parameters of the proposed sensor are investigated in terms of sensitivity, detection accuracy and quality factor at operating wavelength of 633 nm. We observed in the numerical study that sensitivity can be greatly increased by adding MoS2 layer in the middle of a Graphene-on-Au layer. It is shown that by using single layer of MoS2 in between gold and graphene layer, the proposed biosensor exhibits simultaneously high sensitivity of 87.8 deg/RIU, high detection accuracy of 1.28 and quality factor of 17.56 with gold layer thickness of 50 nm. This increased performance is due to the absorption ability and optical characteristics of graphene biomolecules and high fluorescence quenching ability of MoS2. On the basis of changing in SPR angle and minimum reflectance, the proposed sensor can sense nucleotides bonding happened between double-stranded DNA (dsDNA) helix structures. Therefore, this sensor can successfully detect the hybridization of target DNAs to the probe DNAs pre-immobilized on the Au-MoS2-Graphene hybrid with capability of distinguishing single-base mismatch.
Gennetian, Lisaa A; Lopoo, Leonard M; London, Andrew S
2008-02-01
We examine how changes in maternal work hours affect adolescent children's school participation and performance outcomes using data from interviews in 1998 and 2001 with approximately 1700 women who, in May 1995, were welfare-reliant, single mothers of adolescents living in neighborhoods of concentrated poverty in Cuyahoga (Cleveland), Los Angeles, Miami-Dade, and Philadelphia counties. Analyses control for a broad array of mothers' characteristics, including their psychological and physical health, experiences with domestic violence and substance abuse, as well as unobserved time-invariant characteristics. In fixed-effects models, we find unfavorable effects of increased maternal work hours on three of six outcomes: skipping school, performing above average, and parental contact about behavior problems. Adolescent-aged sons seem to be particularly sensitive to changes in mothers' hours of work.
Applications using high-Tc superconducting terahertz emitters
Nakade, Kurama; Kashiwagi, Takanari; Saiwai, Yoshihiko; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo
2016-01-01
Using recently-developed THz emitters constructed from single crystals of the high-Tc superconductor Bi2Sr2CaCu2O8+δ, we performed three prototype tests of the devices to demonstrate their unique characteristic properties for various practical applications. The first is a compact and simple transmission type of THz imaging system using a Stirling cryocooler. The second is a high-resolution Michelson interferometer used as a phase-sensitive reflection-type imaging system. The third is a system with precise temperature control to measure the liquid absorption coefficient. The detailed characteristics of these systems are discussed. PMID:26983905
Manner, Virginia W.; Cawkwell, Marc; Kober, Edward M.; ...
2018-03-09
The sensitivity of explosives is controlled by factors that span from intrinsic chemical reactivity and chemical intramolecular effects to mesoscale structure and defects, and has been a topic of extensive study for over 50 years. Due to these complex competing chemical and physical elements, a unifying relationship between molecular framework, crystal structure, and sensitivity has yet to be developed. In order to move towards this goal, ideally experimental studies should be performed on systems with small, systematic structural modifications, with modeling utilized to interpret experimental results. Pentaerythritol tetranitrate (PETN) is a common nitrate ester explosive that has been widely studiedmore » due to its use in military and commercial explosives. We have synthesized PETN derivatives with modified sensitivity characteristics by substituting the CCH 2ONO 2 moiety with other substituents, including CH, CNH 2, CNH3X, CCH 3, and PO. We relate the handling sensitivity properties of each PETN derivative to its structural properties, and discuss the potential roles of thermodynamic properties such as heat capacity and heat of formation, thermal stability, crystal structure, compressibility, and inter- and intramolecular hydrogen bonding on impact sensitivity. Reactive molecular dynamics (MD) simulations of the C/H/N/O-based PETN-derivatives have been performed under cook-off conditions that mimic those accessed in impact tests. These simulations infer how changes in chemistry affect the subsequent decomposition pathways.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manner, Virginia W.; Cawkwell, Marc; Kober, Edward M.
The sensitivity of explosives is controlled by factors that span from intrinsic chemical reactivity and chemical intramolecular effects to mesoscale structure and defects, and has been a topic of extensive study for over 50 years. Due to these complex competing chemical and physical elements, a unifying relationship between molecular framework, crystal structure, and sensitivity has yet to be developed. In order to move towards this goal, ideally experimental studies should be performed on systems with small, systematic structural modifications, with modeling utilized to interpret experimental results. Pentaerythritol tetranitrate (PETN) is a common nitrate ester explosive that has been widely studiedmore » due to its use in military and commercial explosives. We have synthesized PETN derivatives with modified sensitivity characteristics by substituting the CCH 2ONO 2 moiety with other substituents, including CH, CNH 2, CNH3X, CCH 3, and PO. We relate the handling sensitivity properties of each PETN derivative to its structural properties, and discuss the potential roles of thermodynamic properties such as heat capacity and heat of formation, thermal stability, crystal structure, compressibility, and inter- and intramolecular hydrogen bonding on impact sensitivity. Reactive molecular dynamics (MD) simulations of the C/H/N/O-based PETN-derivatives have been performed under cook-off conditions that mimic those accessed in impact tests. These simulations infer how changes in chemistry affect the subsequent decomposition pathways.« less
Near-infrared fluorescence image quality test methods for standardized performance evaluation
NASA Astrophysics Data System (ADS)
Kanniyappan, Udayakumar; Wang, Bohan; Yang, Charles; Ghassemi, Pejhman; Wang, Quanzeng; Chen, Yu; Pfefer, Joshua
2017-03-01
Near-infrared fluorescence (NIRF) imaging has gained much attention as a clinical method for enhancing visualization of cancers, perfusion and biological structures in surgical applications where a fluorescent dye is monitored by an imaging system. In order to address the emerging need for standardization of this innovative technology, it is necessary to develop and validate test methods suitable for objective, quantitative assessment of device performance. Towards this goal, we develop target-based test methods and investigate best practices for key NIRF imaging system performance characteristics including spatial resolution, depth of field and sensitivity. Characterization of fluorescence properties was performed by generating excitation-emission matrix properties of indocyanine green and quantum dots in biological solutions and matrix materials. A turbid, fluorophore-doped target was used, along with a resolution target for assessing image sharpness. Multi-well plates filled with either liquid or solid targets were generated to explore best practices for evaluating detection sensitivity. Overall, our results demonstrate the utility of objective, quantitative, target-based testing approaches as well as the need to consider a wide range of factors in establishing standardized approaches for NIRF imaging system performance.
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.
Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.
The Super Tuesday Outbreak: Forecast Sensitivities to Single-Moment Microphysics Schemes
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.; Lapenta, William M.
2008-01-01
Forecast precipitation and radar characteristics are used by operational centers to guide the issuance of advisory products. As operational numerical weather prediction is performed at increasingly finer spatial resolution, convective precipitation traditionally represented by sub-grid scale parameterization schemes is now being determined explicitly through single- or multi-moment bulk water microphysics routines. Gains in forecasting skill are expected through improved simulation of clouds and their microphysical processes. High resolution model grids and advanced parameterizations are now available through steady increases in computer resources. As with any parameterization, their reliability must be measured through performance metrics, with errors noted and targeted for improvement. Furthermore, the use of these schemes within an operational framework requires an understanding of limitations and an estimate of biases so that forecasters and model development teams can be aware of potential errors. The National Severe Storms Laboratory (NSSL) Spring Experiments have produced daily, high resolution forecasts used to evaluate forecast skill among an ensemble with varied physical parameterizations and data assimilation techniques. In this research, high resolution forecasts of the 5-6 February 2008 Super Tuesday Outbreak are replicated using the NSSL configuration in order to evaluate two components of simulated convection on a large domain: sensitivities of quantitative precipitation forecasts to assumptions within a single-moment bulk water microphysics scheme, and to determine if these schemes accurately depict the reflectivity characteristics of well-simulated, organized, cold frontal convection. As radar returns are sensitive to the amount of hydrometeor mass and the distribution of mass among variably sized targets, radar comparisons may guide potential improvements to a single-moment scheme. In addition, object-based verification metrics are evaluated for their utility in gauging model performance and QPF variability.
Wan, Bing; Wang, Siqi; Tu, Mengqi; Wu, Bo; Han, Ping; Xu, Haibo
2017-03-01
The purpose of this meta-analysis was to evaluate the diagnostic accuracy of perfusion magnetic resonance imaging (MRI) as a method for differentiating glioma recurrence from pseudoprogression. The PubMed, Embase, Cochrane Library, and Chinese Biomedical databases were searched comprehensively for relevant studies up to August 3, 2016 according to specific inclusion and exclusion criteria. The quality of the included studies was assessed according to the quality assessment of diagnostic accuracy studies (QUADAS-2). After performing heterogeneity and threshold effect tests, pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. Publication bias was evaluated visually by a funnel plot and quantitatively using Deek funnel plot asymmetry test. The area under the summary receiver operating characteristic curve was calculated to demonstrate the diagnostic performance of perfusion MRI. Eleven studies covering 416 patients and 418 lesions were included in this meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.88 (95% confidence interval [CI] 0.84-0.92), 0.77 (95% CI 0.69-0.84), 3.93 (95% CI 2.83-5.46), 0.16 (95% CI 0.11-0.22), and 27.17 (95% CI 14.96-49.35), respectively. The area under the summary receiver operating characteristic curve was 0.8899. There was no notable publication bias. Sensitivity analysis showed that the meta-analysis results were stable and credible. While perfusion MRI is not the ideal diagnostic method for differentiating glioma recurrence from pseudoprogression, it could improve diagnostic accuracy. Therefore, further research on combining perfusion MRI with other imaging modalities is warranted.
Tucker, Natalia S.; Cyr, Amy E.; Ademuyiwa, Foluso O.; Tabchy, Adel; George, Krystl; Sharma, Piyush; Jin, Linda X.; Sanati, Souzan; Aft, Rebecca; Gao, Feng; Margenthaler, Julie A.; Gillanders, William E.
2016-01-01
Objective Assess the performance characteristics of axillary ultrasound (AUS) for accurate exclusion of clinically significant axillary lymph node (ALN) disease. Background Sentinel lymph node biopsy (SLNB) is currently the standard of care for staging the axilla in patients with clinical T1–T2, N0 breast cancer. AUS is a noninvasive alternative to SLNB for staging the axilla. Methods Patients were identified using a prospectively maintained database. Sensitivity, specificity, and negative predictive value (NPV) were calculated by comparing AUS findings to pathology results. Multivariate analyses were performed to identify patient and/or tumor characteristics associated with false negative (FN) AUS. A blinded review of FN and matched true negative cases was performed by two independent medical oncologists to compare treatment recommendations and actual treatment received. Recurrence-free survival was described using Kaplan-Meier product limit methods. Results 647 patients with clinical T1–T2, N0 breast cancer underwent AUS between January, 2008 and March, 2013. AUS had a sensitivity of 70%, NPV of 84% and PPV of 56% for the detection of ALN disease. For detection of clinically significant disease (> 2.0 mm), AUS had a sensitivity of 76% and NPV of 89%. FN AUS did not significantly impact adjuvant medical decision making. Patients with FN AUS had recurrence-free survival equivalent to patients with pathologic N0 disease. Conclusions AUS accurately excludes clinically significant ALN disease in patients with clinical T1–T2, N0 breast cancer. AUS may be an alternative to SLNB in these patients where axillary surgery is no longer considered therapeutic, and predictors of tumor biology are increasingly used to make adjuvant therapy decisions. PMID:26779976
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis
Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification. PMID:27224653
Performance characteristics of the ARCHITECT anti-HCV assay.
Jonas, Gesa; Pelzer, Claudia; Beckert, Christian; Hausmann, Michael; Kapprell, Hans-Peter
2005-10-01
The ARCHITECT Anti-HCV assay is a fully automated high throughput chemiluminescent microparticle immunoassay (CMIA) for the detection of antibodies to structural and nonstructural proteins of the hepatitis C virus (HCV). To further enhance the performance of this test, the assay was modified to improve the specificity for blood donor specimens. The specificity of the enhanced ARCHITECT Anti-HCV assay was evaluated by screening blood donor samples randomly collected from various German blood banks, as well as hospitalized patient samples derived from Germany and the US. Additionally, antibody sensitivity was determined on commercially available anti-HCV seroconversion panels and on a commercially available worldwide anti-HCV genotype performance panel. Apparent specificity of the modified ARCHITECT Anti-HCV assay in a blood donor population consisting of 3811 specimens was 99.92%, compared to 99.76% for the current on-market assay. Additionally, antibody sensitivity was determined on commercially available anti-HCV seroconversion panels. Seroconversion sensitivity equivalent to or better than the current on-market product was observed by testing 33 seroconversion panels. This study demonstrates that the modified version of the ARCHITECT Anti-HCV assay shows improved specificity for blood donor specimens compared to the current assay on market without compromising sensitivity. With the availability of the improved ARCHITECT Anti-HCV assay and the recent launch of the ARCHITECT HIV Ag/Ab Combo assay, the ARCHITECT system now offers a full hepatitis/retrovirus menu with excellent performance on a high throughput, random access, automated analyzer, ideally suited for blood screening and diagnostic applications.
Performance of Stratified and Subgrouped Disproportionality Analyses in Spontaneous Databases.
Seabroke, Suzie; Candore, Gianmario; Juhlin, Kristina; Quarcoo, Naashika; Wisniewski, Antoni; Arani, Ramin; Painter, Jeffery; Tregunno, Philip; Norén, G Niklas; Slattery, Jim
2016-04-01
Disproportionality analyses are used in many organisations to identify adverse drug reactions (ADRs) from spontaneous report data. Reporting patterns vary over time, with patient demographics, and between different geographical regions, and therefore subgroup analyses or adjustment by stratification may be beneficial. The objective of this study was to evaluate the performance of subgroup and stratified disproportionality analyses for a number of key covariates within spontaneous report databases of differing sizes and characteristics. Using a reference set of established ADRs, signal detection performance (sensitivity and precision) was compared for stratified, subgroup and crude (unadjusted) analyses within five spontaneous report databases (two company, one national and two international databases). Analyses were repeated for a range of covariates: age, sex, country/region of origin, calendar time period, event seriousness, vaccine/non-vaccine, reporter qualification and report source. Subgroup analyses consistently performed better than stratified analyses in all databases. Subgroup analyses also showed benefits in both sensitivity and precision over crude analyses for the larger international databases, whilst for the smaller databases a gain in precision tended to result in some loss of sensitivity. Additionally, stratified analyses did not increase sensitivity or precision beyond that associated with analytical artefacts of the analysis. The most promising subgroup covariates were age and region/country of origin, although this varied between databases. Subgroup analyses perform better than stratified analyses and should be considered over the latter in routine first-pass signal detection. Subgroup analyses are also clearly beneficial over crude analyses for larger databases, but further validation is required for smaller databases.
NASA Technical Reports Server (NTRS)
Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo
1995-01-01
Premixed combustors, which are being considered for low NOx engines, are susceptible to instabilities due to feedback between pressure perturbations and combustion. This feedback can cause damaging mechanical vibrations of the system as well as degrade the emissions characteristics and combustion efficiency. In a lean combustor instabilities can also lead to blowout. A model was developed to perform linear combustion-acoustic stability analysis using detailed chemical kinetic mechanisms. The Lewis Kinetics and Sensitivity Analysis Code, LSENS, was used to calculate the sensitivities of the heat release rate to perturbations in density and temperature. In the present work, an assumption was made that the mean flow velocity was small relative to the speed of sound. Results of this model showed the regions of growth of perturbations to be most sensitive to the reflectivity of the boundary when reflectivities were close to unity.
Photocurrent generation by dye-sensitized solar cells using natural pigments.
Armendáriz-Mireles, Eddie Nahúm; Rocha-Rangel, Enrique; Caballero-Rico, Frida; Ramírez-de-León, José Alberto; Vázquez, Manuel
2017-01-01
The development of photovoltaic panels has improved the conversion of solar radiation into electrical energy. This paper deals with the electrical and thermal characteristics (voltage, current, and temperature) of photovoltaic solar cells sensitized with natural pigments (dye-sensitized solar cell, DSSC) based on a titanium dioxide semiconductor. Several natural pigments (blackberry, beets, eggplant skin, spinach, flame tree flower, papaya leaf, and grass extracts) were evaluated to determine their sensitizing effect on titanium dioxide. The results showed the great potential of natural pigments for use in solar cells. The best results were obtained with the blackberry pigment, reaching a value of 7.1 mA current, open-circuit voltage (V oc ) of 0.72 V in 2 cm 2 , and fill factor (ff) of 0.51 in the DSSC. This performance is well above than that currently offers by actual cells. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Poisson and negative binomial item count techniques for surveys with sensitive question.
Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin
2017-04-01
Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.
On-Road Driving Performance by Persons with Hemianopia and Quadrantanopia
Wood, Joanne M.; McGwin, Gerald; Elgin, Jennifer; Vaphiades, Michael S.; Braswell, Ronald A.; DeCarlo, Dawn K.; Kline, Lanning B.; Meek, G. Christine; Searcey, Karen; Owsley, Cynthia
2009-01-01
Purpose This study was designed to examine the on-road driving performance of drivers with hemianopia and quadrantanopia compared with age-matched controls. Methods Participants included persons with hemianopia or quadrantanopia and those with normal visual fields. Visual and cognitive function tests were administered, including confirmation of hemianopia and quadrantanopia through visual field testing. Driving performance was assessed using a dual-brake vehicle and monitored by a certified driving rehabilitation specialist. The route was 14.1 miles of city and interstate driving. Two “back-seat” evaluators masked to drivers’ clinical characteristics independently assessed driving performance using a standard scoring system. Results Participants were 22 persons with hemianopia and 8 with quadrantanopia (mean age, 53 ± 20 years) and 30 participants with normal fields (mean age, 52 ± 19 years). Inter-rater agreement for back-seat evaluators was 96%. All drivers with normal fields were rated as safe to drive, while 73% (16/22) of hemianopic and 88% (7/8) of quadrantanopic drivers received safe ratings. Drivers with hemianopia or quadrantanopia who displayed on-road performance problems tended to have difficulty with lane position, steering steadiness, and gap judgment compared to controls. Clinical characteristics associated with unsafe driving were slowed visual processing speed, reduced contrast sensitivity and visual field sensitivity. Conclusions Some drivers with hemianopia or quadrantanopia are fit to drive compared with age-matched control drivers. Results call into question the fairness of governmental policies that categorically deny licensure to persons with hemianopia or quadrantanopia without the opportunity for on-road evaluation. PMID:18936138
da Silva, Richardson Augusto Rosendo; Costa, Mayara Mirna do Nascimento; de Souza, Vinicius Lino; da Silva, Bárbara Coeli Oliveira; Costa, Cristiane da Silva; de Andrade, Itaísa Fernandes Cardoso
2017-01-01
ABSTRACT Objective: to evaluate the accuracy of the defining characteristics of the NANDA International nursing diagnosis, noncompliance, in people with HIV. Method: study of diagnostic accuracy, performed in two stages. In the first stage, 113 people with HIV from a hospital of infectious diseases in the Northeast of Brazil were assessed for identification of clinical indicators of noncompliance. In the second, the defining characteristics were evaluated by six specialist nurses, analyzing the presence or absence of the diagnosis. For accuracy of the clinical indicators, the specificity, sensitivity, predictive values and likelihood ratios were measured. Results: the presence of the noncompliance diagnosis was shown in 69% (n=78) of people with HIV. The most sensitive indicator was, missing of appointments (OR: 28.93, 95% CI: 1.112-2.126, p = 0.002). On the other hand, nonadherence behavior (OR: 15.00, 95% CI: 1.829-3.981, p = 0.001) and failure to meet outcomes (OR: 13.41; 95% CI: 1.272-2.508; P = 0.003) achieved higher specificity. Conclusion: the most accurate defining characteristics were nonadherence behavior, missing of appointments, and failure to meet outcomes. Thus, in the presence of these, the nurse can identify, with greater security, the diagnosis studied. PMID:29091125
Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu
2016-01-01
Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions—laboratory, in the field off-line and during on-site operation—were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory. PMID:27537895
Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu
2016-08-16
Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions-laboratory, in the field off-line and during on-site operation-were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory.
Spectral sensitivity characteristics simulation for silicon p-i-n photodiode
NASA Astrophysics Data System (ADS)
Urchuk, S. U.; Legotin, S. A.; Osipov, U. V.; Elnikov, D. S.; Didenko, S. I.; Astahov, V. P.; Rabinovich, O. I.; Yaromskiy, V. P.; Kuzmina, K. A.
2015-11-01
In this paper the simulation results of the spectral sensitivity characteristics of silicon p-i-n-photodiodes are presented. The analysis of the characteristics of the semiconductor material (the doping level, lifetime, surface recombination velocity), the construction and operation modes on the characteristics of photosensitive structures in order to optimize them was carried out.
Man, Wanrong; Hu, Jianqiang; Zhao, Zhijing; Zhang, Mingming; Wang, Tingting; Lin, Jie; Duan, Yu; Wang, Ling; Wang, Haichang; Sun, Dongdong; Li, Yan
2016-09-01
The instantaneous wave-free ratio (iFR) is a new vasodilator-free index of coronary stenosis severity. The aim of this meta-analysis is to assess the diagnostic performance of iFR for the evaluation of coronary stenosis severity with fractional flow reserve as standard reference. We searched PubMed, EMBASE, CENTRAL, ProQuest, Web of Science, and International Clinical Trials Registry Platform (ICTRP) for publications concerning the diagnostic value of iFR. We used a random-effects covariate to synthesize the available data of sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR). Overall test performance was summarized by the summary receiver operating characteristic curve (sROC) and the area under the curve (AUC). Eight studies with 1611 subjects were included in the meta-analysis. The pooled sensitivity, specificity, LR+, LR-, and DOR for iFR were respectively 73.3% (70.1-76.2%), 86.4% (84.3-88.3%), 5.71 (4.43-7.37), 0.29 (0.22-0.38), and 20.54 (16.11-26.20). The area under the summary receiver operating characteristic curves for iFR was 0.8786. No publication bias was identified. The available evidence suggests that iFR may be a new, simple, and promising technology for coronary stenosis physiological assessment.
Mischlinger, Johannes; Pitzinger, Paul; Veletzky, Luzia; Groger, Mirjam; Zoleko-Manego, Rella; Adegnika, Ayola A; Agnandji, Selidji T; Lell, Bertrand; Kremsner, Peter G; Tannich, Egbert; Mombo-Ngoma, Ghyslain; Mordmüller, Benjamin; Ramharter, Michael
2018-05-25
Diagnosis of malaria is usually based on samples of peripheral blood. However, it is unclear whether capillary (CAP) or venous (VEN) blood samples provide better diagnostic performance. Quantitative differences of parasitemia between CAP and VEN blood and diagnostic performance characteristics were investigated. Patients were recruited between September 2015 and February 2016 in Gabon. Light microscopy and qPCR quantified parasitemia of paired CAP and VEN samples, whose preparation followed the exact same methodology. CAP and VEN performance characteristics using microscopy were evaluated against a qPCR gold-standard. Microscopy revealed a median (IQR) parasites/L of 495 (853,243) in CAP and 429 (524,074) in VEN samples manifesting in a +16.6% (p=0.04) higher CAPparasitemia compared with VENparasitemia. Concordantly, qPCR demonstrated that -0.278 (p=0.006) cycles were required for signal detection in CAP samples. CAPsensitivity of microscopy relative to the gold-standard was 81.5% (77.485.6%) versus VENsensitivity of 73.4% (68.878.1%), while CAPspecificity and VENspecificity were 91%. CAPsensitivity and VENsensitivity dropped to 63.3% and 45.9%, respectively for a sub-population of low-level parasitemias while specificities were 92%. CAP sampling leads to higher parasitemias compared to VEN sampling and improves diagnostic sensitivity. These findings may have important implications for routine diagnostics, research and elimination campaigns of malaria.
Machine learning-based patient specific prompt-gamma dose monitoring in proton therapy
NASA Astrophysics Data System (ADS)
Gueth, P.; Dauvergne, D.; Freud, N.; Létang, J. M.; Ray, C.; Testa, E.; Sarrut, D.
2013-07-01
Online dose monitoring in proton therapy is currently being investigated with prompt-gamma (PG) devices. PG emission was shown to be correlated with dose deposition. This relationship is mostly unknown under real conditions. We propose a machine learning approach based on simulations to create optimized treatment-specific classifiers that detect discrepancies between planned and delivered dose. Simulations were performed with the Monte-Carlo platform Gate/Geant4 for a spot-scanning proton therapy treatment and a PG camera prototype currently under investigation. The method first builds a learning set of perturbed situations corresponding to a range of patient translation. This set is then used to train a combined classifier using distal falloff and registered correlation measures. Classifier performances were evaluated using receiver operating characteristic curves and maximum associated specificity and sensitivity. A leave-one-out study showed that it is possible to detect discrepancies of 5 mm with specificity and sensitivity of 85% whereas using only distal falloff decreases the sensitivity down to 77% on the same data set. The proposed method could help to evaluate performance and to optimize the design of PG monitoring devices. It is generic: other learning sets of deviations, other measures and other types of classifiers could be studied to potentially reach better performance. At the moment, the main limitation lies in the computation time needed to perform the simulations.
Descriptive and sensitivity analyses of WATBALI: A dynamic soil water model
NASA Technical Reports Server (NTRS)
Hildreth, W. W. (Principal Investigator)
1981-01-01
A soil water computer model that uses the IBM Continuous System Modeling Program III to solve the dynamic equations representing the soil, plant, and atmospheric physical or physiological processes considered is presented and discussed. Using values describing the soil-plant-atmosphere characteristics, the model predicts evaporation, transpiration, drainage, and soil water profile changes from an initial soil water profile and daily meteorological data. The model characteristics and simulations that were performed to determine the nature of the response to controlled variations in the input are described the results of the simulations are included and a change that makes the response of the model more closely represent the observed characteristics of evapotranspiration and profile changes for dry soil conditions is examined.
NEMA NU 2-2007 performance measurements of the Siemens Inveon™ preclinical small animal PET system
Kemp, Brad J; Hruska, Carrie B; McFarland, Aaron R; Lenox, Mark W; Lowe, Val J
2010-01-01
National Electrical Manufacturers Association (NEMA) NU 2-2007 performance measurements were conducted on the Inveon™ preclinical small animal PET system developed by Siemens Medical Solutions. The scanner uses 1.51 × 1.51 × 10 mm LSO crystals grouped in 20 × 20 blocks; a tapered light guide couples the LSO crystals of a block to a position-sensitive photomultiplier tube. There are 80 rings with 320 crystals per ring and the ring diameter is 161 mm. The transaxial and axial fields of view (FOVs) are 100 and 127 mm, respectively. The scanner can be docked to a CT scanner; the performance characteristics of the CT component are not included herein. Performance measurements of spatial resolution, sensitivity, scatter fraction and count rate performance were obtained for different energy windows and coincidence timing window widths. For brevity, the results described here are for an energy window of 350–650 keV and a coincidence timing window of 3.43 ns. The spatial resolution at the center of the transaxial and axial FOVs was 1.56, 1.62 and 2.12 mm in the tangential, radial and axial directions, respectively, and the system sensitivity was 36.2 cps kBq−1 for a line source (7.2% for a point source). For mouse- and rat-sized phantoms, the scatter fraction was 5.7% and 14.6%, respectively. The peak noise equivalent count rate with a noisy randoms estimate was 1475 kcps at 130 MBq for the mouse-sized phantom and 583 kcps at 74 MBq for the rat-sized phantom. The performance measurements indicate that the Inveon™ PET scanner is a high-resolution tomograph with excellent sensitivity that is capable of imaging at a high count rate. PMID:19321924
NEMA NU 2-2007 performance measurements of the Siemens Inveon™ preclinical small animal PET system
NASA Astrophysics Data System (ADS)
Kemp, Brad J.; Hruska, Carrie B.; McFarland, Aaron R.; Lenox, Mark W.; Lowe, Val J.
2009-04-01
National Electrical Manufacturers Association (NEMA) NU 2-2007 performance measurements were conducted on the Inveon™ preclinical small animal PET system developed by Siemens Medical Solutions. The scanner uses 1.51 × 1.51 × 10 mm LSO crystals grouped in 20 × 20 blocks; a tapered light guide couples the LSO crystals of a block to a position-sensitive photomultiplier tube. There are 80 rings with 320 crystals per ring and the ring diameter is 161 mm. The transaxial and axial fields of view (FOVs) are 100 and 127 mm, respectively. The scanner can be docked to a CT scanner; the performance characteristics of the CT component are not included herein. Performance measurements of spatial resolution, sensitivity, scatter fraction and count rate performance were obtained for different energy windows and coincidence timing window widths. For brevity, the results described here are for an energy window of 350-650 keV and a coincidence timing window of 3.43 ns. The spatial resolution at the center of the transaxial and axial FOVs was 1.56, 1.62 and 2.12 mm in the tangential, radial and axial directions, respectively, and the system sensitivity was 36.2 cps kBq-1 for a line source (7.2% for a point source). For mouse- and rat-sized phantoms, the scatter fraction was 5.7% and 14.6%, respectively. The peak noise equivalent count rate with a noisy randoms estimate was 1475 kcps at 130 MBq for the mouse-sized phantom and 583 kcps at 74 MBq for the rat-sized phantom. The performance measurements indicate that the Inveon™ PET scanner is a high-resolution tomograph with excellent sensitivity that is capable of imaging at a high count rate.
NASA Astrophysics Data System (ADS)
Meng, Fei; Shi, Peng; Karimi, Hamid Reza; Zhang, Hui
2016-02-01
The main objective of this paper is to investigate the sensitivity analysis and optimal design of a proportional solenoid valve (PSV) operated pressure reducing valve (PRV) for heavy-duty automatic transmission clutch actuators. The nonlinear electro-hydraulic valve model is developed based on fluid dynamics. In order to implement the sensitivity analysis and optimization for the PRV, the PSV model is validated by comparing the results with data obtained from a real test-bench. The sensitivity of the PSV pressure response with regard to the structural parameters is investigated by using Sobol's method. Finally, simulations and experimental investigations are performed on the optimized prototype and the results reveal that the dynamical characteristics of the valve have been improved in comparison with the original valve.
Anthropometric and performance measures to study talent detection in youth volleyball.
Melchiorri, Giovanni; Viero, Valerio; Triossi, Tamara; Annino, Giuseppe; Padua, Elvira; Tancredi, Virginia
2017-12-01
The aim of this work was to study anthropometric and performance measurements in 60 young male volleyball players (YV) and 60 youth not active in the sport (YNA) to assess which of these would be more useful to study the characteristics of potential performers. Eight measures to assess anthropometric characteristics, six performance measures and two tests for joint mobility were used. Also relative age and level of maturation were assessed. The anthropometric variables, relative age and level of maturation measured did not show statistically significant differences between groups. The YV and YNA groups showed differences in the performance measures. YV group was characterized by a better performance of the ability to repeat short sprints, of the upper limbs, abdominal muscles and lower limbs, with a medium effect size (Shuttle Running Test: 0.6; Push-Up: 0.5; Sit-Up: 0.4; counter movement jump: 0.4). These performance variables were very sensitive and specific: the SRT measurement had the best positive likelihood ratio that indicates the utility of the test in identifying type of players (YV and YNA). In talent detection in youth volleyball, in the 11-13 age range, performance variables should be preferred to anthropometric ones.
Some characteristics of the international space channel
NASA Technical Reports Server (NTRS)
Noack, T. L.; Poland, W. B., Jr.
1975-01-01
Some physical characteristics of radio transmission links and the technology of PCM modulation combine with the Radio Regulations of the International Telecommunications Union to define a communications channel having a determinable channel capacity, error rate, and sensitivity to interference. These characteristics and the corresponding limitations on EIRP, power flux density, and power spectral density for space service applications are described. The ITU regulations create a critical height of 1027 km where some parameters of the limitation rules change. The nature of restraints on power spectral density are discussed and an approach to a standardized representation of Necessary Bandwidth for the Space Services is described. It is shown that, given the PFD (power flux density) and PSD (power spectral density) limitations of radio regulations, the channel performance is determined by the ratio of effective receiving antenna aperture to system noise temperature. Based on this approach, the method for a quantitative trade-off between spectrum spreading and system performance is presented. Finally, the effects of radio frequency interference between standard systems is analyzed.
Lewicky-Gaupp, Christina; Blaivas, Jerry; Clark, Amanda; McGuire, Edward J; Schaer, Gabriel; Tumbarello, Julie; Tunn, Ralf; DeLancey, John O L
2009-02-01
This study was carried out to determine whether five experts in female stress urinary incontinence (SUI) could discover a pattern of urethrovesical movement characteristic of SUI on dynamic perineal ultrasound. A secondary analysis of data from a case-control study was performed. Ultrasounds from 31 cases (daily SUI) and 42 controls (continent volunteers) of similar age and parity were analyzed. Perineal ultrasound was performed during a single cough. The five experts, blinded to continence status and urodynamics, classified each woman as stress continent or incontinent. Correct responses ranged from 45.7% to 65.8% (mean 57.4 +/- 7.6). Sensitivity was 53.0 +/- 8.8% and specificity 61.2 +/- 12.4%. The positive predictive value was 48.8 +/- 8.2% and negative predictive value was 65.0 +/- 7.3%. Inter-rater reliability, evaluated by Cohen's kappa statistic, averaged 0.47 [95% CI 0.40-0.50]. Experts could not identify a pattern of urethrovesical movement characteristic of SUI on ultrasound.
LEWICKY-GAUPP, Christina; BLAIVAS, Jerry; CLARK, Amanda; McGUIRE, Edward J.; SCHAER, Gabriel; TUMBARELLO, Julie; TUNN, Ralf; DeLANCEY, John O.L.
2009-01-01
Introduction and Hypothesis To determine if 5 experts in female stress urinary incontinence (SUI) could discover a pattern of urethrovesical movement characteristic of SUI on dynamic perineal ultrasound. Methods A secondary analysis of data from a case-control study was performed. Ultrasounds from 31 cases (daily SUI) and 42 controls (continent volunteers) of similar age and parity were analyzed. Perineal ultrasound was performed during a single cough. The 5 experts, blinded to continence status and urodynamics, classified each woman as stress continent or incontinent. Results Correct responses ranged from 45.7% to 65.8% (mean 57.4 ± 7.6). Sensitivity was 53.0 ± 8.8% and specificity 61.2 ± 12.4%. The positive predictive value was 48.8 ± 8.2% and negative predictive value was 65.0 ± 7.3%. Inter-rater reliability, evaluated by Cohen's kappa statistic, averaged 0.47 [95% CI 0.40 – 0.50]. Conclusions Experts could not identify a pattern of urethrovesical movement characteristic of SUI on ultrasound. PMID:18850057
Berlin, Conny; Blanch, Carles; Lewis, David J; Maladorno, Dionigi D; Michel, Christiane; Petrin, Michael; Sarp, Severine; Close, Philippe
2012-06-01
The detection of safety signals with medicines is an essential activity to protect public health. Despite widespread acceptance, it is unclear whether recently applied statistical algorithms provide enhanced performance characteristics when compared with traditional systems. Novartis has adopted a novel system for automated signal detection on the basis of disproportionality methods within a safety data mining application (Empirica™ Signal System [ESS]). ESS uses two algorithms for routine analyses: empirical Bayes Multi-item Gamma Poisson Shrinker and logistic regression (LR). A model was developed comprising 14 medicines, categorized as "new" or "established." A standard was prepared on the basis of safety findings selected from traditional sources. ESS results were compared with the standard to calculate the positive predictive value (PPV), specificity, and sensitivity. PPVs of the lower one-sided 5% and 0.05% confidence limits of the Bayes geometric mean (EB05) and of the LR odds ratio (LR0005) almost coincided for all the drug-event combinations studied. There was no obvious difference comparing the PPV of the leading Medical Dictionary for Regulatory Activities (MedDRA) terms to the PPV for all terms. The PPV of narrow MedDRA query searches was higher than that for broad searches. The widely used threshold value of EB05 = 2.0 or LR0005 = 2.0 together with more than three spontaneous reports of the drug-event combination produced balanced results for PPV, sensitivity, and specificity. Consequently, performance characteristics were best for leading terms with narrow MedDRA query searches irrespective of applying Multi-item Gamma Poisson Shrinker or LR at a threshold value of 2.0. This research formed the basis for the configuration of ESS for signal detection at Novartis. Copyright © 2011 John Wiley & Sons, Ltd.
Labor characteristics and program costs of a successful diabetes disease management program.
Rothman, Russell L; So, Stephanie A; Shin, John; Malone, Robert M; Bryant, Betsy; Dewalt, Darren A; Pignone, Michael P; Dittus, Robert S
2006-05-01
Organizations have invested in disease management programs to improve quality and to reduce costs, but little is known about the labor characteristics and the program costs necessary to implement a program. To examine the labor characteristics and the program costs of a successful diabetes disease management program. We performed a labor and cost analysis within a randomized controlled trial of a primary care-based diabetes disease management intervention. Participants included 217 patients with type 2 diabetes mellitus and poor glycemic control (glycosylated hemoglobin levels, > or = 8.0%). The intervention group received 12 months of intensive management from clinical pharmacists and a diabetes care coordinator who provided education, applied algorithms for medication management, and addressed barriers to care. The control group attended a single session led by pharmacists, followed by usual care from their primary providers. The process outcomes included the number of patient care-related activities, time spent per patient, and number of drug titrations or additions. The program costs were calculated based on Bureau of Labor Statistics wage data using a sensitivity analysis. The disease management team performed a mean of 4.0 care-related activities for a mean of 38.6 minutes per patient per month for intervention patients and performed a mean of 1.1 care-related activities for a mean of 10.7 minutes per patient per month for control patients (P < .001). Intervention patients had a median of 7 drug titrations or additions during the study. The incremental program cost for the intervention was 36.97 dollars (sensitivity analysis, 6.22 dollars-88.56 dollars) per patient per month. A successful diabetes disease management program can be integrated into an academic clinic for modest labor and cost.
Roy, Jean-Sébastien; Braën, Caroline; Leblond, Jean; Desmeules, François; Dionne, Clermont E; MacDermid, Joy C; Bureau, Nathalie J; Frémont, Pierre
2015-01-01
Background Different diagnostic imaging modalities, such as ultrasonography (US), MRI, MR arthrography (MRA) are commonly used for the characterisation of rotator cuff (RC) disorders. Since the most recent systematic reviews on medical imaging, multiple diagnostic studies have been published, most using more advanced technological characteristics. The first objective was to perform a meta-analysis on the diagnostic accuracy of medical imaging for characterisation of RC disorders. Since US is used at the point of care in environments such as sports medicine, a secondary analysis assessed accuracy by radiologists and non-radiologists. Methods A systematic search in three databases was conducted. Two raters performed data extraction and evaluation of risk of bias independently, and agreement was achieved by consensus. Hierarchical summary receiver-operating characteristic package was used to calculate pooled estimates of included diagnostic studies. Results Diagnostic accuracy of US, MRI and MRA in the characterisation of full-thickness RC tears was high with overall estimates of sensitivity and specificity over 0.90. As for partial RC tears and tendinopathy, overall estimates of specificity were also high (>0.90), while sensitivity was lower (0.67–0.83). Diagnostic accuracy of US was similar whether a trained radiologist, sonographer or orthopaedist performed it. Conclusions Our results show the diagnostic accuracy of US, MRI and MRA in the characterisation of full-thickness RC tears. Since full thickness tear constitutes a key consideration for surgical repair, this is an important characteristic when selecting an imaging modality for RC disorder. When considering accuracy, cost, and safety, US is the best option. PMID:25677796
Assuring the required spectroradiometric characteristics of the Fragment multispectral system
NASA Astrophysics Data System (ADS)
Bogdanov, A. A.; Kuzmin, V. I.; Mosevnina, L. G.; Popkov, A. V.; Sychev, A. G.; Tarnopolskii, V. I.
The paper examines methods and equipment for assuring the required spectroradiometric characteristics of the satellite-borne Fragment multispectral scanning system during development, fabrication, and autonomous and complex testing. These characteristics comprise: (1) the integrated sensitivity of the measuring channels to the spectral density of brightness (SDB): (2) the relative spectral sensitivity of the channels; (3) the effective spectral width of the sensitivity intervals and their position in the spectral range; (4) maximum values of SDB measured by the system in each spectral interval of sensitivity; (5) the SNR in each measuring channel; and (6) the relative rms of SDB measurements.
Schlattmann, Peter; Verba, Maryna; Dewey, Marc; Walther, Mario
2015-01-01
Bivariate linear and generalized linear random effects are frequently used to perform a diagnostic meta-analysis. The objective of this article was to apply a finite mixture model of bivariate normal distributions that can be used for the construction of componentwise summary receiver operating characteristic (sROC) curves. Bivariate linear random effects and a bivariate finite mixture model are used. The latter model is developed as an extension of a univariate finite mixture model. Two examples, computed tomography (CT) angiography for ruling out coronary artery disease and procalcitonin as a diagnostic marker for sepsis, are used to estimate mean sensitivity and mean specificity and to construct sROC curves. The suggested approach of a bivariate finite mixture model identifies two latent classes of diagnostic accuracy for the CT angiography example. Both classes show high sensitivity but mainly two different levels of specificity. For the procalcitonin example, this approach identifies three latent classes of diagnostic accuracy. Here, sensitivities and specificities are quite different as such that sensitivity increases with decreasing specificity. Additionally, the model is used to construct componentwise sROC curves and to classify individual studies. The proposed method offers an alternative approach to model between-study heterogeneity in a diagnostic meta-analysis. Furthermore, it is possible to construct sROC curves even if a positive correlation between sensitivity and specificity is present. Copyright © 2015 Elsevier Inc. All rights reserved.
Seo, Hyunwoong; Ichida, Daiki; Hashimoto, Shinji; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Nam, Sang-Hun; Boo, Jin-Hyo
2016-05-01
The multiple exciton generation characteristics of quantum dots have been expected to enhance the performance of photochemical solar cells. In previous work, we first introduced Si quantum dot for sensitized solar cells. The Si quantum dots were fabricated by multi-hollow discharge plasma chemical vapor deposition, and were characterized optically and morphologically. The Si quantum dot-sensitized solar cells had poor performance due to significant electron loss by charge recombination. Although the large Si particle size resulted in the exposure of a large TiO2 surface area, there was a limit to ho much the particle size could be decreased due to the reduced absorbance of small particles. Therefore, this work focused on decreasing the internal impedance to improve charge transfer. TiO2 was electronically modified by doping with vanadium, which can improve electron transfer in the TiO2 network, and which is stable in the redox electrolyte. Photogenerated electrons can more easily arrive at the conductive electrode due to the decreased internal impedance. The dark photovoltaic properties confirmed the reduction of charge recombination, and the photon-to-current conversion efficiency reflected the improved electron transfer. Impedance analysis confirmed a decrease in internal impedance and an increased electron lifetime. Consequently, these improvements by vanadium doping enhanced the overall performance of Si quantum dot-sensitized solar cells.
Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai
2018-01-01
A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.
Effects of Anxiety Sensitivity and Hearing Loss on Tinnitus Symptom Severity
Moon, Kyung Ray; Park, Subin; Jung, YouJi; Lee, AhReum
2018-01-01
Objective The aim of the present study was to examine the relative role of anxiety sensitivity and hearing loss on the tinnitus symptoms severity in a large clinical sample of patients with tinnitus. Methods A total of 1,705 patients with tinnitus who visited the tinnitus clinic underwent the pure-tone audiometric testing and a battery of self-report questionnaires. Multiple linear regression analyses were performed to identify the relationship of anxiety sensitivity and hearing loss to tinnitus symptoms severity. Results Both anxiety sensitivity and hearing loss were a significant association with of annoyance (anxiety sensitivity β=0.11, p=0.010; hearing loss β=0.09, p=0.005) and THI score (anxiety sensitivity β=0.21, p<0.001; hearing loss β=0.10, p<0.001) after adjusting for confounding factors. Meanwhile, the awareness time (β=0.19, p<0.001) and loudness (β=0.11, p<0.001) of tinnitus was associated with only the hearing loss but not with anxiety sensitivity. Conclusion Our results indicate that both hearing loss and anxiety sensitivity were associated with increased tinnitus symptom severity. Furthermore, these associations could be different according to the characteristics of tinnitus symptoms. PMID:29422923
Aerodynamic performance investigation on waverider with variable blunt radius in hypersonic flows
NASA Astrophysics Data System (ADS)
Li, Shibin; Wang, Zhenguo; Huang, Wei; Xu, Shenren; Yan, Li
2017-08-01
Waverider is an important candidate for the design of hypersonic vehicles. However, the ideal waverider cannot be manufactured because of its sharp leading edge, so the leading edge should be blunted. In the paper, the HMB solver and laminar flow model have been utilized to obtain the flow field properties around the blunt waverider with the freestream Mach number being 8.0, and several novel strategies have been suggested to improve the aerodynamic performance of blunt waverider. The numerical method has been validated against experimental data, and the Stanton number(St) of the predicted result has been analyzed. The obtained results show good agreement with the experimental data. Stmax decreases by 58% and L/D decreases by 8.2% when the blunt radius increases from 0.0002 m to 0.001 m. ;Variable blunt waverider; is a good compromise for aerodynamic performance and thermal insulation. The aero-heating characteristics are very sensitive to Rmax. The position of the smallest blunt radius has a great effect on the aerodynamic performance. In addition, the type of blunt leading edge has a great effect on the aero-heating characteristics when Rmax is fixed. Therefore, out of several designs, Type 4is the best way to achieve the good overall performance. The ;Variable blunt waverider; not only improves the aerodynamic performance, but also makes the aero-heating become evenly-distributed, leading to better aero-heating characteristics.
Albuquerque, Andreia; Sheaff, Michael; Stirrup, Oliver; Cappello, Carmelina; Bowring, Julie; Cuming, Tamzin; de Masi, Anke; Rosenthal, Adam N; Nathan, Mayura
2018-04-05
Information on the performance of anal cytology in women who are high-risk for human papillomavirus-related lesions and the factors that might influence it are largely lacking. Evaluate the performance of anal cytology in women with lower anogenital tract neoplasia. retrospective study including all new referrals of women with a previous history of anogenital neoplasia, from January 2012 to July 2017, with concomitant anal cytology and high-resolution anoscopy with or without biopsies. 636 anal cytology samples and 323 biopsies were obtained from 278 women. Overall sensitivity and specificity of 'any abnormality' on anal cytology to predict 'any abnormality' in histology was 47% (95% CI 41-54%) and 84% (95% CI 73-91%), respectively. For detecting high-grade squamous intraepithelial lesions (HSIL)/cancer, sensitivity was 71% (95% CI 61-79%) and specificity was 73% (95% CI 66-79%). There was a poor concordance between cytological and histological grades (κ=0.147). Cytology had a higher sensitivity to predict HSIL/cancer in immunosuppressed vs. non-immunosuppressed patients (92% vs. 60%, P=0.002). The sensitivity for HSIL detection was higher when two or more quadrants were affected in comparison with only one (86% vs. 57%, P=0.006). A previous history of vulvar HSIL/cancer (OR 1.71, 1.08-2.73; P=0.023), immunosuppression (OR 1.88, 1.17-3.03; P=0.009) and concomitant genital HSIL/cancer (OR 2.51, 1.47-4.29; P=0.001) were risk factors for abnormal cytology. Patient characteristics can influence the performance of anal cytology in women. The sensitivity for detecting anal HSIL/cancer was higher in those immunosuppressed and with more extensive disease.
Decision making for pancreatic resection in patients with intraductal papillary mucinous neoplasms.
Xu, Bin; Ding, Wei-Xing; Jin, Da-Yong; Wang, Dan-Song; Lou, Wen-Hui
2013-03-07
To identify a practical approach for preoperative decision-making in patients with intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. Between March 1999 and November 2006, the clinical characteristics, pathological data and computed tomography/magnetic resonance imaging (CT/MRI) of 54 IPMNs cases were retrieved and analyzed. The relationships between the above data and decision-making for pancreatic resection were analyzed using SPSS 13.0 software. Univariate analysis of risk factors for malignant or invasive IPMNs was performed with regard to the following variables: carcinoembryonic antigen, carbohydrate antigen 19-9 (CA19-9) and the characteristics from CT/MRI images. Receiver operating characteristic (ROC) curve analysis for pancreatic resection was performed using significant factors from the univariate analysis. CT/MRI images, including main and mixed duct IPMNs, tumor size > 30 mm or a solid component appearance in the lesion, and preoperative serum CA19-9 > 37 U/mL had good predictive value for determining pancreatic resection (P < 0.05), but with limitations. Combining the above factors (CT/MRI images and CA19-9) improved the accuracy and sensitivity for determining pancreatic resection in IPMNs. Using ROC analysis, the area under the curve reached 0.893 (P < 0.01, 95%CI: 0.763-1.023), with a sensitivity, specificity, positive predictive value and negative predictive value of 95.2%, 83.3%, 95.2% and 83.3%, respectively. Combining preoperative CT/MRI images and CA19-9 level may provide useful information for surgical decision-making in IPMNs.
Optical skin friction measurement technique in hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie
2016-10-01
Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.
Expendable bubble tiltmeter for geophysical monitoring
Westphal, J.A.; Carr, M.A.; Miller, W.F.; Dzurisin, D.
1983-01-01
An unusually rugged highly sensitive and inexpensive bubble tiltmeter has been designed, tested, and built in quantity. These tiltmeters are presently used on two volcanoes and an Alaskan glacier, where they continuously monitor surface tilts of geological interest. This paper discusses the mechanical, thermal, and electric details of the meter, and illustrates its performance characteristics in both large (>10-4 radian) and small (<10-6 radian) tilt environments. The meter's ultimate sensitivity is better than 2??10-8 radians rms for short periods (hours), and its useful dynamic range is greater than 10 4. Included is a short description of field use of the instrument for volcano monitoring.
NASA Astrophysics Data System (ADS)
Collados, Maria Victoria; Arias, Isabel; García, Ana; Atencia, Jesús; Quintanilla, Manuel
2003-02-01
In this work we study the feasibility of using silver halide sensitized gelatin based on PFG-01 (Slavich) emulsions to construct uniaxial compound lenses. This processing is able to introduce variations in the thickness and refractive index of the emulsion. We prove that these changes are not sufficient to provide the observed variations in Bragg conditions in the reconstruction and that a shear-type effect must exist to explain the performance of processed emulsions. We study the characteristics of a compound lens, obtaining acceptable image quality, good resolution, and the typical field limitation of volume holographic elements.
Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells.
Tan, Shuxin; Zhai, Jin; Xue, Bofei; Wan, Meixiang; Meng, Qingbo; Li, Yuliang; Jiang, Lei; Zhu, Daoben
2004-03-30
The influence of polyanilines (PANIs) as hole conductors on the photovoltaic behaviors of dye-sensitized solar cells is studied. The current-voltage (I-V) characteristics and the incident photon to current conversion efficiency (IPCE) curves of the devices are determined as the function of different conductivities and morphologies of PANIs. The results show that the conductivity of PANIs affects the performance of the devices greatly, and PANI with the intermediate conductivity value (3.5 S/cm) is optimum. In addition, the effects of both the film formation property and the cluster size of polyanilines on the photovoltaic behaviors of the devices are also discussed.
Sensory Innervation of the Gills: O2-Sensitive Chemoreceptors and Mechanoreceptors
Burleson, Mark L.
2009-01-01
Summary Physical characteristics of water (O2 solubility and capacitance) dictate that cardiovascular and ventilatory performance be controlled primarily by the need for oxygen uptake rather than carbon dioxide excretion, making O2 receptors more important in fish than in terrestrial vertebrates. An understanding of the anatomy and physiology of mechanoreception and O2 chemoreception in fishes is important, because water breathing is the primitive template upon which the forces of evolution have modified into the various cardioventilatory modalities we see in extant terrestrial species. Key to these changes are the O2-sensitive chemoreceptors and mechanoreceptors, their mechanisms and central pathways. PMID:19193399
Experimental and analytical studies for the NASA carbon fiber risk assessment
NASA Technical Reports Server (NTRS)
1980-01-01
Various experimental and analytical studies performed for the NASA carbon fiber risk assessment program are described with emphasis on carbon fiber characteristics, sensitivity of electrical equipment and components to shorting or arcing by carbon fibers, attenuation effect of carbon fibers on aircraft landing aids, impact of carbon fibers on industrial facilities. A simple method of estimating damage from airborne carbon fibers is presented.
Gibson, Jane; Schechter-Perkins, Elissa M; Mitchell, Patricia; Mace, Sharon; Tian, Yu; Williams, Kemi; Luo, Robert; Yen-Lieberman, Belinda
2017-10-01
Point of Care Testing (POCT) provides the capability for rapid laboratory test results in patient care environments where a traditional clinical laboratory is not available. POCTs have shorter turn-around times (TATs), they may be performed by non-laboratory personnel, and the need for transport time is eliminated. The Food and Drug Administration (FDA) recently granted Clinical Laboratory Improvements Amendment (CLIA) waiver status to the cobas ® Influenza A/B & RSV assay, a rapid, accurate point-of-care test for Influenza and respiratory syncytial virus (RSV) performed on the Liat ® System. The performance characteristics of this test were determined though a multi-site study consisting of different point of care testing environments. Prospectively collected Nasopharyngeal (NP) swabs from 1361 patients seen at 8 primary care clinics and 4 emergency departments (EDs) and 295 retrospectively identified specimens were tested for Influenza A/B and RSV on the cobas ® Liat ® platform. Performance characteristics were determined through comparison to ProFlu+, a laboratory-based PCR test for Influenza A/B and RSV (reference test). Discordant specimens were adjudicated following bi-directional sequencing. The cobas ® Influenza A/B and RSV assay showed sensitivities of 99.6%, 99.3%, and 96.8% for Influenza A, Influenza B, and RSV, respectively as determined from percent positive agreement (PPA) following comparison to the reference test. Sequencing confirmed cobas ® Influenza A/B and RSV results in 49.2% of reference test discordant specimens, while crossing threshold data suggest increased sensitivity compared to the reference test. The cobas ® Influenza A/B and RSV assay was found to be a rapid, sensitive POCT for the detection of these viruses, and provides laboratory-quality PCR-based diagnostic results in point of care settings. Copyright © 2017 Elsevier B.V. All rights reserved.
Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE).
Trzciński, Waldemar A; Cudziło, Stanisław; Chyłek, Zbigniew; Szymańczyk, Leszek
2008-09-15
1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7) is an explosive of current interest. In our work, an advanced study of detonation characteristics of this explosive was performed. DADNE was prepared and recrystallized on a laboratory scale. Some sensitivity and detonation properties of DADNE were determined. The detonation performance was established by measurements of the detonation wave velocity, detonation pressure and calorimetric heat of explosion as well as the accelerating ability. The JWL (Jones-Wilkins-Lee) isentrope and the constant-gamma isentrope for the detonation products of DADNE were also found.
Sensory optimization by stochastic tuning.
Jurica, Peter; Gepshtein, Sergei; Tyukin, Ivan; van Leeuwen, Cees
2013-10-01
Individually, visual neurons are each selective for several aspects of stimulation, such as stimulus location, frequency content, and speed. Collectively, the neurons implement the visual system's preferential sensitivity to some stimuli over others, manifested in behavioral sensitivity functions. We ask how the individual neurons are coordinated to optimize visual sensitivity. We model synaptic plasticity in a generic neural circuit and find that stochastic changes in strengths of synaptic connections entail fluctuations in parameters of neural receptive fields. The fluctuations correlate with uncertainty of sensory measurement in individual neurons: The higher the uncertainty the larger the amplitude of fluctuation. We show that this simple relationship is sufficient for the stochastic fluctuations to steer sensitivities of neurons toward a characteristic distribution, from which follows a sensitivity function observed in human psychophysics and which is predicted by a theory of optimal allocation of receptive fields. The optimal allocation arises in our simulations without supervision or feedback about system performance and independently of coupling between neurons, making the system highly adaptive and sensitive to prevailing stimulation. PsycINFO Database Record (c) 2013 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl
2008-01-01
The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.
Liles, Elizabeth G; Perrin, Nancy; Rosales, Ana G; Smith, David H; Feldstein, Adrianne C; Mosen, David M; Levin, Theodore R
2018-05-02
The fecal immunochemical test (FIT) is easier to use and more sensitive than the guaiac fecal occult blood test, but it is unclear how to optimize FIT performance. We compared the sensitivity and specificity for detecting advanced colorectal neoplasia between single-sample (1-FIT) and two-sample (2-FIT) FIT protocols at a range of hemoglobin concentration cutoffs for a positive test. We recruited 2,761 average-risk men and women ages 49-75 referred for colonoscopy within a large nonprofit, group-model health maintenance organization (HMO), and asked them to complete two separate single-sample FITs. We generated receiver-operating characteristic (ROC) curves to compare sensitivity and specificity estimates for 1-FIT and 2-FIT protocols among those who completed both FIT kits and colonoscopy. We similarly compared sensitivity and specificity between hemoglobin concentration cutoffs for a single-sample FIT. Differences in sensitivity and specificity between the 1-FIT and 2-FIT protocols were not statistically significant at any of the pre-specified hemoglobin concentration cutoffs (10, 15, 20, 25, and 30 μg/g). There was a significant difference in test performance of the one-sample FIT between 50 ng/ml (10 μg/g) and each of the higher pre-specified cutoffs. Disease prevalence was low. A two-sample FIT is not superior to a one-sample FIT in detection of advanced adenomas; the one-sample FIT at a hemoglobin concentration cutoff of 50 ng/ml (10 μg/g) is significantly more sensitive for advanced adenomas than at higher cutoffs. These findings apply to a population of younger, average-risk patients in a U.S. integrated care system with high rates of prior screening.
A Microseismometer for Terrestrial and Extraterrestrial Applications
NASA Technical Reports Server (NTRS)
Banerdt, W.; Kaiser, W.; Vanzandt, T.
1993-01-01
The scientific and technical requirements of extraterrestrial seismology place severe demands on instrumentation. Performance in terms of sensitivity, stability, and frequency band must match that of the best terrestrial instruments, at a fraction of the size, mass, and power. In addition, this performance must be realized without operator intervention in harsh temperature, shock, and radiation environments. These constraints have forced us to examine some fundamental limits of accelerometer design in order to produce a small, rugged, sensitive seismometer. Silicon micromachined sensor technology offers techniques for the fabrication of monolithic, robust, compact, low-power and -mass accelerometers. However, currently available sensors offer inadequate sensitivity and bandwidth. Our implementation of an advanced silicon micro machined seismometer is based on principles developed at JPL for high-sensitivity position sensor technology. The use of silicon micro machining technology with these new principles should enable the fabrication of a 10(exp -11) g sensitivity seismometer with a bandwidth of at least 0.01 to 20 Hz. The low Q properties of pure single-crystal silicon are essential in order to minimize the Brownian thermal noise limitations generally characteristic of seismometers with small proof masses. A seismometer consists of a spring-supported proof mass and a transducer for measuring its motion. For long period motion a position sensor is generally used, for which the displacement is proportional to the ground acceleration. The mechanical sensitivity can be increased either by increasing the proof mass or decreasing the spring stiffness, neither of which is desirable for planetary applications. Our approach has been to use an ultra sensitive capacitive position sensor with a sensitivity of better than 10(exp -13) m/Hz(exp 1/2). This allows the use of a stiffer suspension and a smaller proof mass. We have built several prototypes using these principles, and tests show that these devices can exhibit performance comparable to state-of-the-art instruments.
Cong, Rui; Li, Jing; Wang, Xuejiao
2017-10-01
We determined the diagnostic performance of combinations of shear wave elastography (SWE) and B-mode ultrasound (US) in differentiating malignant from benign breast masses, and we investigated whether performance is affected by mass size. In this prospective study of 315 consecutive patients with 326 breast masses, US and SWE were performed before biopsy. Masses were categorized into two subgroups on the basis of mass size (≤15 mm and >15 mm), and the optimal thresholds for the SWE parameters were determined for each subgroup using receiver operating characteristic curves. The combination proposed here achieved an area under the receiver operating characteristic curve of 0.943, 95.00% sensitivity and 81.18% specificity, which approximated the diagnostic performance of US alone. The performance of the combinations using the subgroups' thresholds did not differ significantly from those based on the entire study group's thresholds, but the optimal thresholds were higher in the subgroup of larger masses. Further research is needed to determine whether mass size affects the performance of combinations of SWE and US. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Gelaw, Baye; Shiferaw, Yitayal; Alemayehu, Marta; Bashaw, Abate Assefa
2017-01-17
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading causes of death from infectious diseases worldwide. Sputum smear microscopy remains the most widely available pulmonary TB diagnostic tool particularly in resource limited settings. A highly sensitive diagnostic with minimal infrastructure, cost and training is required. Hence, we assessed the diagnostic performance of Loop-mediated isothermal amplification (LAMP) assay in detecting M.tuberculosis infection in sputum sample compared to LED fluorescent smear microscopy and culture. A cross-sectional study was conducted at the University of Gondar Hospital from June 01, 2015 to August 30, 2015. Pulmonary TB diagnosis using sputum LED fluorescence smear microscopy, TB-LAMP assay and culture were done. A descriptive analysis was used to determine demographic characteristics of the study participants. Analysis of sensitivity and specificity for smear microscopy and TB-LAMP compared with culture as a reference test was performed. Cohen's kappa was calculated as a measure of agreement between the tests. A total of 78 pulmonary presumptive TB patients sputum sample were analyzed. The overall sensitivity and specificity of LAMP were 75 and 98%, respectively. Among smear negative sputum samples, 33.3% sensitivity and 100% specificity of LAMP were observed. Smear microscopy showed 78.6% sensitivity and 98% specificity. LAMP and smear in series had sensitivity of 67.8% and specificity of 100%. LAMP and smear in parallel had sensitivity of 85.7% and specificity of 96%. The agreement between LAMP and fluorescent smear microscopy tests was very good (κ = 0.83, P-value ≤0.0001). TB-LAMP showed similar specificity but a slightly lower sensitivity with LED fluorescence microscopy. The specificity of LAMP and smear microscopy in series was high. The sensitivity of LAMP was insufficient for smear negative sputum samples.
Study of aerodynamic technology for VSTOL fighter/attack aircraft, phase 1
NASA Technical Reports Server (NTRS)
Driggers, H. H.
1978-01-01
A conceptual design study was performed of a vertical attitude takeoff and landing (VATOL) fighter/attack aircraft. The configuration has a close-coupled canard-delta wing, side two-dimensional ramp inlets, and two augmented turbofan engines with thrust vectoring capability. Performance and sensitivities to objective requirements were calculated. Aerodynamic characteristics were estimated based on contractor and NASA wind tunnel data. Computer simulations of VATOL transitions were performed. Successful transitions can be made, even with series post-stall instabilities, if reaction controls are properly phased. Principal aerodynamic uncertainties identified were post-stall aerodynamics, transonic aerodynamics with thrust vectoring and inlet performance in VATOL transition. A wind tunnel research program was recommended to resolve the aerodynamic uncertainties.
Wear-Out Sensitivity Analysis Project Abstract
NASA Technical Reports Server (NTRS)
Harris, Adam
2015-01-01
During the course of the Summer 2015 internship session, I worked in the Reliability and Maintainability group of the ISS Safety and Mission Assurance department. My project was a statistical analysis of how sensitive ORU's (Orbital Replacement Units) are to a reliability parameter called the wear-out characteristic. The intended goal of this was to determine a worst case scenario of how many spares would be needed if multiple systems started exhibiting wear-out characteristics simultaneously. The goal was also to determine which parts would be most likely to do so. In order to do this, my duties were to take historical data of operational times and failure times of these ORU's and use them to build predictive models of failure using probability distribution functions, mainly the Weibull distribution. Then, I ran Monte Carlo Simulations to see how an entire population of these components would perform. From here, my final duty was to vary the wear-out characteristic from the intrinsic value, to extremely high wear-out values and determine how much the probability of sufficiency of the population would shift. This was done for around 30 different ORU populations on board the ISS.
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin
2016-03-01
Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity (S or best energy BE) and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (LRS trade-off) among these parameters for chemically amplified resists (CARs). Here we present early proof-of-principle results for a multi-exposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a Photosensitized Chemically Amplified Resist (PSCAR). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV flood exposure (λ = 365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR and EL high performance requirements with the aim of resolving line space (L/S) features for the 7 and 5 nm logic node (16 nm and 13 nm half-pitch HP, respectively) for HVM. Several CARs were additionally found to be well resolved down to 12 nm and 11 nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated was compared to the CAR performance at and below 16 nm HP resolution, demonstrating the need for alternative resist solutions at 13 nm resolution and below. EUV interference lithography (IL) has provided and continues to provide a simple yet powerful platform for academic and industrial research enabling the characterization and development of new resist materials before commercial EUV exposure tools become available. Our experiments have been performed at the EUV-IL set-up in the Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI).
Gilhuley, Kathleen; Cianciminio-Bordelon, Diane; Tang, Yi-Wei
2012-01-01
We compared the performance characteristics of culture and the Cepheid Xpert vanA assay for routine surveillance of vancomycin-resistant enterococci (VRE) from rectal swabs in patients at high risk for VRE carriage. The Cepheid Xpert vanA assay had a limit of detection of 100 CFU/ml and correctly detected 101 well-characterized clinical VRE isolates with no cross-reactivity in 27 non-VRE and related culture isolates. The clinical sensitivity, specificity, positive predictive value, and negative predictive value of the Xpert vanA PCR assay were 100%, 96.9%, 91.3%, and 100%, respectively, when tested on 300 consecutively collected rectal swabs. This assay provides excellent predictive values for prompt identification of VRE-colonized patients in hospitals with relatively high rates of VRE carriage. PMID:22972822
An alternative respiratory sounds classification system utilizing artificial neural networks.
Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen
2015-01-01
Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.
Turbulent stresses in the surf-zone: Which way is up?
Haines, John W.; Gelfenbaum, Guy; Edge, B.L
1997-01-01
Velocity observations from a vertical stack of three-component Acoustic Doppler Velocimeters (ADVs) within the energetic surf-zone are presented. Rapid temporal sampling and small sampling volume provide observations suitable for investigation of the role of turbulent fluctuations in surf-zone dynamics. While sensor performance was good, failure to recover reliable measures of tilt from the vertical compromise the data value. We will present some cursory observations supporting the ADV performance, and examine the sensitivity of stress estimates to uncertainty in the sensor orientation. It is well known that turbulent stress estimates are highly sensitive to orientation relative to vertical when wave motions are dominant. Analyses presented examine the potential to use observed flow-field characteristics to constrain sensor orientation. Results show that such an approach may provide a consistent orientation to a fraction of a degree, but the inherent sensitivity of stress estimates requires a still more restrictive constraint. Regardless, the observations indicate the degree to which stress estimates are dependent on orientation, and provide some indication of the temporal variability in time-averaged stress estimates.
Loring, David W; Larrabee, Glenn J
2006-06-01
The Halstead-Reitan Battery has been instrumental in the development of neuropsychological practice in the United States. Although Reitan administered both the Wechsler-Bellevue Intelligence Scale and Halstead's test battery when evaluating Halstead's theory of biologic intelligence, the relative sensitivity of each test battery to brain damage continues to be an area of controversy. Because Reitan did not perform direct parametric analysis to contrast group performances, we reanalyze Reitan's original validation data from both Halstead (Reitan, 1955) and Wechsler batteries (Reitan, 1959a) and calculate effect sizes and probability levels using traditional parametric approaches. Eight of the 10 tests comprising Halstead's original Impairment Index, as well as the Impairment Index itself, statistically differentiated patients with unequivocal brain damage from controls. In addition, 13 of 14 Wechsler measures including Full-Scale IQ also differed statistically between groups (Brain Damage Full-Scale IQ = 96.2; Control Group Full Scale IQ = 112.6). We suggest that differences in the statistical properties of each battery (e.g., raw scores vs. standardized scores) likely contribute to classification characteristics including test sensitivity and specificity.
Penetrating Colorectal Injuries: Diagnostic Performance of Multidetector CT with Trajectography.
Dreizin, David; Boscak, Alexis R; Anstadt, Michael J; Tirada, Nikki; Chiu, William C; Munera, Felipe; Bodanapally, Uttam K; Hornick, Michael; Stein, Deborah M
2016-12-01
Purpose To determine the diagnostic performance of multidetector computed tomography (CT) with trajectography for penetrating colorectal injuries. Materials and Methods This institutional review board-approved and HIPAA-compliant study was a 6-year blinded retrospective review by two independent readers of 182 consecutive patients who preoperatively underwent 40- or 64-row multidetector CT for penetrating torso trauma below the diaphragm and had surgically confirmed findings. Colorectal perforation was present in 42 patients. Trajectory analysis with postprocessing software was used for all studies. Additional signs evaluated were rectal contrast agent leak, collections of extruded fecal material, mural defect, wall thickening, abnormal enhancement, free fluid or stranding, and free air. The quality of the colorectal contrast agent administration was recorded. Sensitivity, specificity, predictive values, areas under the receiver operating characteristic curves (AUCs), and Cohen κ were determined. Results In patients with rectal contrast agent administration (n = 151), AUCs were 0.90-0.91, which indicated excellent accuracy. Trajectory was sensitive (88%-91%). For single wounds (n = 104), sensitivity of trajectory was 96% for both readers, but was only 80% for multiple wounds (n = 47). Contrast agent leak was highly specific (96%-98%), but insensitive (42%-46%). Improved diagnostic performance was observed in patients with poor colonic distension or opacification. Accuracy remained high (AUC, 0.86-0.99) in the group without rectal contrast agent administration (n = 31). Conclusion Trajectory had excellent sensitivity, while rectal contrast agent leak was specific but insensitive. Sensitivity of trajectory was lower for multiple wounds. Accuracy remained high in patients without rectal contrast agent administration. © RSNA, 2016.
The Relationship Between Intensity Coding and Binaural Sensitivity in Adults With Cochlear Implants.
Todd, Ann E; Goupell, Matthew J; Litovsky, Ruth Y
Many bilateral cochlear implant users show sensitivity to binaural information when stimulation is provided using a pair of synchronized electrodes. However, there is large variability in binaural sensitivity between and within participants across stimulation sites in the cochlea. It was hypothesized that within-participant variability in binaural sensitivity is in part affected by limitations and characteristics of the auditory periphery which may be reflected by monaural hearing performance. The objective of this study was to examine the relationship between monaural and binaural hearing performance within participants with bilateral cochlear implants. Binaural measures included dichotic signal detection and interaural time difference discrimination thresholds. Diotic signal detection thresholds were also measured. Monaural measures included dynamic range and amplitude modulation detection. In addition, loudness growth was compared between ears. Measures were made at three stimulation sites per listener. Greater binaural sensitivity was found with larger dynamic ranges. Poorer interaural time difference discrimination was found with larger difference between comfortable levels of the two ears. In addition, poorer diotic signal detection thresholds were found with larger differences between the dynamic ranges of the two ears. No relationship was found between amplitude modulation detection thresholds or symmetry of loudness growth and the binaural measures. The results suggest that some of the variability in binaural hearing performance within listeners across stimulation sites can be explained by factors nonspecific to binaural processing. The results are consistent with the idea that dynamic range and comfortable levels relate to peripheral neural survival and the width of the excitation pattern which could affect the fidelity with which central binaural nuclei process bilateral inputs.
Evaluation of the Diagnostic Utility of the Traditional and Revised WHO Dengue Case Definitions
Gutiérrez, Gamaliel; Gresh, Lionel; Pérez, María Ángeles; Elizondo, Douglas; Avilés, William; Kuan, Guillermina; Balmaseda, Ángel; Harris, Eva
2013-01-01
Dengue, a mosquito-borne viral illness, is a major public health problem worldwide, and its incidence continues to increase. In 2009, the World Health Organization published guidelines that included a revision of the dengue case definition. Compared to the traditional definition, the revised case definition relies more on signs than on symptoms, making it more applicable to young children. We evaluated the diagnostic utility of both case definitions in two studies of pediatric dengue in Managua, Nicaragua. In a community-based cohort study, we included data from 3,407 suspected dengue cases, of which 476 were laboratory-confirmed. In the second study, we collected information from 1,160 participants recruited at the national pediatric reference hospital (723 laboratory-confirmed). In the cohort study, the traditional definition had 89.3% sensitivity and 43.1% specificity, while the revised definition yielded similar sensitivity (86.6%) and higher specificity (55.2%, p<0.001). In the hospital study, the traditional case definition yielded 96.7% sensitivity and 22.0% specificity, whereas the revised case definition had higher sensitivity (99.3%, p<0.001) but lower specificity (8.5%, p<0.001). We then evaluated the performance of two diagnostic models based on the signs/symptoms included in each definition by analyzing the effect of increasing numbers of signs/symptoms on the sensitivity and specificity of case capture. Receiver operating characteristic analysis showed a slightly better performance for the revised model in both studies. Interestingly, despite containing less symptoms that cannot be readily expressed by children aged less than 4 years, the revised definition did not perform better in this age group. Overall, our results indicate that both case definitions have similar capacity to diagnose dengue. Owing to their high sensitivity and low specificity, they should be primarily used for screening purposes. However, in a primary care setting, neither of the case definitions performed well as a screening test in younger children. PMID:23991237
NASA Astrophysics Data System (ADS)
Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.
2008-11-01
Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.
NASA Astrophysics Data System (ADS)
Kwon, Seong-Cheol; Jeon, Young-Hyeon; Oh, Hyun-Ung
2017-10-01
In this study, the primary design objective is to develop a passive isolator that can guarantee structural safety of the cooler assembly in a launch vibration environment without a launch locking mechanism, while effectively isolating the cooler-induced micro-jitter during the on-orbit operation of the cooler. To achieve the design objective, we focused on the utilization of characteristics of the hyperelastic shape memory effects. The major advantage of the isolator is that the micro-jitter isolation performance is much less sensitive to the aligned position of the isolator in comparison with the conventional isolator. Moreover, implementation of an additional 0g compensation device during a satellite level on-ground test, such as a jitter measurement test, is not required. In this study, the basic characteristics of the isolator were measured using the torque test and free vibration test. The micro-jitter attenuation capability and position sensitivity of the proposed isolator design were validated by the micro-jitter measurement test.
Paveglio, Travis B; Edgeley, Catrin M; Stasiewicz, Amanda M
2018-05-01
A growing body of research focuses on identifying patterns among human populations most at risk from hazards such as wildfire and the factors that help explain performance of mitigations that can help reduce that risk. Emerging policy surrounding wildfire management emphasizes the need to better understand such social vulnerability-or human populations' potential exposure to and sensitivity from wildfire-related impacts, including their ability to reduce negative impacts from the hazard. Studies of social vulnerability to wildfire often pair secondary demographic data with a variety of vegetation and wildfire simulation models to map potential risk. However, many of the assumptions made by those researchers about the demographic, spatial or perceptual factors that influence social vulnerability to wildfire have not been fully evaluated or tested against objective measures of potential wildfire risk. The research presented here utilizes self-reported surveys, GIS data, and wildfire simulations to test the relationships between select perceptual, demographic, and property characteristics of property owners against empirically simulated metrics for potential wildfire related damages or exposure. We also evaluate how those characteristics relate to property owners' performance of mitigations or support for fire management. Our results suggest that parcel characteristics provide the most significant explanation of variability in wildfire exposure, sensitivity and overall wildfire risk, while the positive relationship between income or property values and components of social vulnerability stands in contrast to typical assumptions from existing literature. Respondents' views about agency or government management helped explain a significant amount of variance in wildfire sensitivity, while the importance of wildfire risk in selecting a residence was an important influence on mitigation action. We use these and other results from our effort to discuss updated considerations for determining social vulnerability to wildfire and articulate alternative means to collect such information. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fu, Fan; Sun, Shengjun; Liu, Liping; Li, Jianying; Su, Yaping; Li, Yingying
2018-04-19
The computed tomography angiography (CTA) spot sign is a validated predictor of haematoma expansion (HE) in spontaneous intracerebral haemorrhage (SICH). We investigated whether defining the iodine concentration (IC) inside the spot sign and the haematoma on Gemstone spectral imaging (GSI) would improve its sensitivity and specificity for predicting HE. From 2014 to 2016, we prospectively enrolled 65 SICH patients who underwent single-phase spectral CTA within 6 h. Logistic regression was performed to assess the risk factors for HE. The predictive performance of individual spot sign characteristics was examined via receiver operating characteristic (ROC) analysis. The spot sign was detected in 46.1% (30/65) of patients. ROC analysis indicated that IC inside the spot sign had the greatest area under the ROC curve for HE (0.858; 95% confidence interval, 0.727-0.989; p = 0.003). Multivariate analysis found that spot sign with higher IC (i.e. IC > 7.82 100 μg/ml) was an independent predictor of HE (odds ratio = 34.27; 95% confidence interval, 5.608-209.41; p < 0.001) with sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 0.81, 0.75, 0.90 and 0.60, respectively; while the spot sign showed sensitivity, specificity, PPV and NPV of 0.81, 0.79, 0.73 and 0.86. Logistic regression analysis indicated that the IC in haematomas was independently associated with HE (odds ratio = 1.525; 95% confidence interval, 1.041-2.235; p = 0.030). ICs in haematoma and in spot sign were all independently associated with HE. IC analysis in spectral imaging may help to identify SICH patients for targeted haemostatic therapy. • Iodine concentration in spot sign and haematoma can predict haematoma expansion • Spectral imaging could measure the IC inside the spot sign and haematoma • IC in spot sign improved the positive predictive value (PPV) cf. CTA.
Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method
NASA Astrophysics Data System (ADS)
Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.
2018-03-01
This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.
Yamada, Yoshitake; Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Abe, Takayuki; Kuribayashi, Sachio; Ogawa, Kenji
2013-08-01
To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA-950) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P < 0.0001) of tomosynthesis than radiography for the detection of pulmonary emphysema. The average sensitivity, specificity, positive predictive value and negative predictive value of tomosynthesis were 0.875, 0.968, 0.955 and 0.910, respectively, whereas the values for radiography were 0.479, 0.913, 0.815 and 0.697, respectively. For both tomosynthesis and radiography, the sensitivity increased with increasing LAA-950. The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA-950. • Tomosynthesis showed significantly better diagnostic performance for pulmonary emphysema than radiography. • Interobserver agreement for tomosynthesis was significantly higher than that for radiography. • Sensitivity increased with increasing LAA -950 in both tomosynthesis and radiography. • Tomosynthesis imparts a similar radiation dose to two projection chest radiography. • Radiation dose and cost of tomosynthesis are lower than those of MDCT.
Forkmann, Thomas; Vehren, Thomas; Boecker, Maren; Norra, Christine; Wirtz, Markus; Gauggel, Siegfried
2009-10-01
The Beck Depression Inventory (BDI) is widely used for depression screening in various patient populations. However, there are still insufficient data about its sensitivity and specificity in nonpsychiatric patients. Furthermore, some research suggests that somatic BDI items heighten its sum score artificially in physically ill patients. The aim of the present study was to validate the conventional BDI cut-off score by examination of its sensitivity and specificity in a mixed sample of cardiac inpatients and compare it to a modified "cognitive-emotional" BDI (BDI(c/e)) after exclusion of somatic items. A total of 126 cardiologic inpatients were assessed. Receiver operating characteristic curves (ROC) were calculated for total BDI (BDI(t)) and BDI(c/e). Screening performance of cut-off scores was evaluated using the Youden Index (Y). With the application of the conventional BDI cut-off score, ROC analysis revealed a moderate overall screening performance with Y=52.6 and an area under the curve (AUC) of 0.83. In contrast, Y improved to 57.5 at a cut-off score of >9, but screening performance was still not optimal. BDI(c/e) showed also a moderate screening performance (AUC=.82); Y was maximized at a cut-off score of >8 (Y=0.53.5). Again, no cut-off score provided optimal screening performance. The BDI cannot be recommended as a formal screening instrument in cardiac inpatients since no cut-off score for either BDI(t) or BDI(c/e) combined both sufficiently high sensitivity and specificity. However, the shorter BDI(c/e) could be used as alternative to BDI(t) which may be confounded in physically ill patients. Generally, researchers should consider using alternative screening instruments (e.g., the Hospital Anxiety and Depression Scale) instead.
Performance of a Novel Algorithm Using Automated Digital Microscopy for Diagnosing Tuberculosis.
Ismail, Nazir A; Omar, Shaheed V; Lewis, James J; Dowdy, David W; Dreyer, Andries W; van der Meulen, Hermina; Nconjana, George; Clark, David A; Churchyard, Gavin J
2015-06-15
TBDx automated microscopy is a novel technology that processes digital microscopic images to identify acid-fast bacilli (AFB). Use of TBDx as part of a diagnostic algorithm could improve the diagnosis of tuberculosis (TB), but its performance characteristics have not yet been formally tested. To evaluate the performance of the TBDx automated microscopy system in algorithms for diagnosis of TB. Prospective samples from patients with presumed TB were processed in parallel with conventional smear microscopy, TBDx microscopy, and liquid culture. All TBDx-positive specimens were also tested with the Xpert MTB/RIF (GXP) assay. We evaluated the sensitivity and specificity of two algorithms-(1) TBDx-GXP (TBDx with positive specimens tested by Xpert MTB/RIF) and (2) TBDx alone-against the gold standard liquid media culture. Of 1,210 samples, 1,009 were eligible for evaluation, of which 109 were culture positive for Mycobacterium tuberculosis. The TBDx system identified 70 specimens (68 culture positive) as having 10 or more putative AFB (high positive) and 207 (19 culture positive) as having 1-9 putative AFB (low positive). An algorithm in which "low-positive" results on TBDx were confirmed by GXP had 78% sensitivity (85 of 109) and 99.8% specificity (889 of 900), requiring 21% (207 of 1,009) specimens to be processed by GXP. As a stand-alone test, a "high-positive" result on TBDx had 62% sensitivity and 99.7% specificity. TBDx used in diagnostic algorithms with GXP provided reasonable sensitivity and high specificity for active TB while dramatically reducing the number GXP tests performed. As a stand-alone microscopy system, its performance was equivalent to that of a highly experienced TB microscopist.
Page, Iain D; Richardson, Malcolm D; Denning, David W
2016-02-01
Chronic pulmonary aspergillosis (CPA) is estimated to affect 3 million persons worldwide. Aspergillus-specific IgG is a key component in CPA diagnosis. We aimed to establish the optimal diagnostic cut offs for CPA and the comparative performance of six assays in this context. Sera from 241 patients with CPA and 100 healthy blood donors were tested using five Aspergillus-specific IgG assays plus precipitin testing using Microgen Aspergillus antigens. Receiver operating characteristic (ROC) curve area under the curve (AUC) results were as follows: ThermoFisher Scientific ImmunoCAP 0.996 (95% confidence interval 0.992-1), Siemens Immulite 0.991 (0.982-1), Serion 0.973 (0.960-0.987), Dynamiker 0.918 (0.89-0.946) and Genesis 0.902 (0.871-0.933). Optimal CPA diagnostic cut-offs were; ImmunoCAP 20 mg/L (96% sensitivity, 98% specificity), Immulite 10 mg/L (96% sensitivity, 98% specificity), Serion 35 U/ml (90% sensitivity, 98% specificity), Dynamiker 65 AU/ml (77% sensitivity, 97% specificity) and Genesis 20 U/ml (75% sensitivity, 99% specificity). The precipitin test was 59% sensitive and 100% specific. ImmunoCAP and Immulite were statistically significantly superior to the other assays. Precipitins testing performed poorly. The currently accepted ImmunoCAP cut-off of 40 mg/L appears sub-optimal for CPA diagnosis and may require revision in this context. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Space Shuttle Thermal Protection System Repair Flight Experiment Induced Contamination Impacts
NASA Technical Reports Server (NTRS)
Smith, Kendall A.; Soares, Carlos E.; Mikatarian, Ron; Schmidl, Danny; Campbell, Colin; Koontz, Steven; Engle, Michael; McCroskey, Doug; Garrett, Jeff
2006-01-01
NASA s activities to prepare for Flight LF1 (STS-114) included development of a method to repair the Thermal Protection System (TPS) of the Orbiter s leading edge should it be damaged during ascent by impacts from foam, ice, etc . Reinforced Carbon-Carbon (RCC) is used for the leading edge TPS. The repair material that was developed is named Non- Oxide Adhesive eXperimental (NOAX). NOAX is an uncured adhesive material that acts as an ablative repair material. NOAX completes curing during the Orbiter s descent. The Thermal Protection System (TPS) Detailed Test Objective 848 (DTO 848) performed on Flight LF1 (STS-114) characterized the working life, porosity void size in a micro-gravity environment, and the on-orbit performance of the repairs to pre-damaged samples. DTO 848 is also scheduled for Flight ULF1.1 (STS-121) for further characterization of NOAX on-orbit performance. Due to the high material outgassing rates of the NOAX material and concerns with contamination impacts to optically sensitive surfaces, ASTM E 1559 outgassing tests were performed to determine NOAX condensable outgassing rates as a function of time and temperature. Sensitive surfaces of concern include the Extravehicular Mobility Unit (EMU) visor, cameras, and other sensors in proximity to the experiment during the initial time after application. This paper discusses NOAX outgassing characteristics, how the amount of deposition on optically sensitive surfaces while the NOAX is being manipulated on the pre-damaged RCC samples was determined by analysis, and how flight rules were developed to protect those optically sensitive surfaces from excessive contamination where necessary.
Morphological study of electrophoretically deposited TiO2 film for DSSC application
NASA Astrophysics Data System (ADS)
Patel, Alkesh B.; Patel, K. D.; Soni, S. S.; Sonigara, K. K.
2018-05-01
In the immerging field of eco-friendly and low cost photovoltaic devices, dye sensitized solar cell (DSSC) [1] has been investigated as promising alternative to the conventional silicon-based solar cells. In the DSSC device, photoanode is crucial component that take charge of holding sensitizer on it and inject the electrons from the sensitizer to current collector. Nanoporous TiO2 is the most relevant candidate for the preparation of photoanode in DSSCs. Surface properties, morphology, porosity and thickness of TiO2 film as well as preparation technique determine the performance of device. In the present work we have report the study of an effect of nanoporous anatase titanium dioxide (TiO2) film thickness on DSSC performance. Photoanode TiO2 (P25) film was deposited on conducting substrate by electrophoresis technique (EPD) and film thickness was controlled during deposition by applying different current density for a constant time interval. Thickness and surface morphology of prepared films was studied by SEM and transmittance analysis. The same set of photoanode was utilized in DSSC devices using metal free organic dye sensitizer to evaluate the photovoltaic performance. Devices were characterized through Current-Voltage (I-V) characteristic, electrochemical impedance spectroscopy (EIS) and open circuit voltage decay curves. Dependency of device performance corresponding to TiO2 film thickness is investigated through the lifetime kinetics of electron charge transfer mechanism trough impedance fitting. It is concluded that appropriate thickness along with uniformity and porosity are required to align the dye molecules to respond efficiently the incident light photons.
Sensitivity estimation in time-of-flight list-mode positron emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herraiz, J. L.; Sitek, A., E-mail: sarkadiu@gmail.com
Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data,more » which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.« less
Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology
NASA Astrophysics Data System (ADS)
Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F.
2009-05-01
D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.
NASA Astrophysics Data System (ADS)
Xing, Qianhe; Li, Shuang; Fan, Xueliang; Bian, Anhua; Cao, Shi-Jie; Li, Cheng
2017-09-01
Graphene thermoacoustic loudspeakers, composed of a graphene film on a substrate, generate sound with heat. Improving thermoacoustic efficiency of graphene speakers is a goal for optimal design. In this work, we first modified the existing TA model with respect to small thermal wavelengths, and then built an acoustic platform for model validation. Additionally, sensitivity analyses for influential factors on thermoacoustic efficiency were performed, including the thickness of multilayered graphene films, the thermal effusivity of substrates, and the characteristics of inserted gases. The higher sensitivity coefficients result in the stronger effects on thermoacoustic efficiency. We find that the thickness (5 nm-15 nm) of graphene films plays a trivial role in efficiency, resulting in the sensitivity coefficient less than 0.02. The substrate thermal effusivity, however, has significant effects on efficiency, with the sensitivity coefficient around 1.7. Moreover, substrates with a lower thermal effusivity show better acoustic performances. For influences of ambient gases, the sensitivity coefficients of density ρg, thermal conductivity κg, and specific heat cp,g are 2.7, 0.98, and 0.8, respectively. Furthermore, large magnitudes of both ρg and κg lead to a higher efficiency and the sound pressure level generated by graphene films is approximately proportional to the inverse of cp,g. These findings can refer to the optimal design for graphene thermoacoustic speakers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Cole, Jacqueline M.; Dai, Chencheng
2014-05-28
The optoelectronic properties of four azo dye-sensitized TiO2 interfaces are systematically studied as a function of a changing dye anchoring group: carboxylate, sulfonate, hydroxyl, and pyridyl. The variation in optoelectronic properties of the free dyes and those in dye/TiO 2 nanocomposites are studied both experimentally and computationally, in the context of prospective dye-sensitized solar cell (DSSC) applications. Experimental UV/vis absorption spectroscopy, cyclic voltammetry, and DSSC device performance testing reveal a strong dependence on the nature of the anchor of the optoelectronic properties of these dyes, both in solution and as dye/TiO2 nanocomposites. First-principles calculations on both an isolated dye/TiO2 clustermore » model (using localized basis sets) and each dye modeled onto the surface of a 2D periodic TiO2 nanostructure (using plane wave basis sets) are presented. Detailed examination of these experimental and computational results, in terms of light harvesting, electron conversion and photovoltaic device performance characteristics, indicates that carboxylate is the best anchoring group, and hydroxyl is the worst, whereas sulfonate and pyridyl groups exhibit competing potential. Different sensitization solvents are found to affect critically the extent of dye adsorption achieved in the dye-sensitization of the TiO2 semiconductor, especially where the anchor is a pyridyl group.« less
Sensitivity estimation in time-of-flight list-mode positron emission tomography.
Herraiz, J L; Sitek, A
2015-11-01
An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.
Mendonça, Ivete Lopes de; Batista, Joilson Ferreira; Werneck, Guilherme Loureiro; Soares, Maria Regiane Araújo; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery
2017-01-01
The control of reservoirs for Leishmania infantum -induced zoonotic visceral leishmaniasis requires the identification of dogs posing a population risk. Here, we assessed the performance of several assays to identify Lutzomyia longipalpis infectious dogs. We evaluated 99 dogs that were positive for visceral leishmaniasis based on parasite identification. Serological analyses were performed using an enzyme-linked immunosorbent assay, immunofluorescence antibody tests in 1:40 and 1:80 dilutions, rapid dual path platform tests, immunochromatographic assay with a recombinant rK39 antigen, fast agglutination screening tests, and direct agglutination tests. We also performed PCR to analyze peripheral blood and xenodiagnosis. Forty-six dogs infected at least one L. longipalpis specimen. Although the serological test sensitivities were above 85% for detecting L. longipalpis infectious dogs, none showed a satisfactory performance, as both specificity (0.06 to 13%) and the area under the receiver operating characteristic curve (45 to 53%) were low. The PCR results were also weak, with a sensitivity of 30%, specificity of 72%, and an area under the receiver operating characteristic curve of 51%. The infected L. longipalpis proportion was higher among asymptomatic dogs than symptomatic dogs. Among the symptomatic dogs, those with ulceration-free skin diseases were more infectious, with an odds ratio of 9.3 (confidence interval of 1.10 - 428.5). The larger the number of insects fed, the greater the detected infectiousness. Our study supports the imperative to develop novel technologies for identifying the infectious dogs that transmit L. infantum for the benefit of public health.
Study on photoelectric parameter measurement method of high capacitance solar cell
NASA Astrophysics Data System (ADS)
Zhang, Junchao; Xiong, Limin; Meng, Haifeng; He, Yingwei; Cai, Chuan; Zhang, Bifeng; Li, Xiaohui; Wang, Changshi
2018-01-01
The high efficiency solar cells usually have high capacitance characteristic, so the measurement of their photoelectric performance usually requires long pulse width and long sweep time. The effects of irradiance non-uniformity, probe shielding and spectral mismatch on the IV curve measurement are analyzed experimentally. A compensation method for irradiance loss caused by probe shielding is proposed, and the accurate measurement of the irradiance intensity in the IV curve measurement process of solar cell is realized. Based on the characteristics that the open circuit voltage of solar cell is sensitive to the junction temperature, an accurate measurement method of the temperature of solar cell under continuous irradiation condition is proposed. Finally, a measurement method with the characteristic of high accuracy and wide application range for high capacitance solar cell is presented.
Quantum-chemical studies on hexaazaisowurtzitanes.
Ghule, V D; Jadhav, P M; Patil, R S; Radhakrishnan, S; Soman, T
2010-01-14
Highly nitrated cage molecules constitute a new class of energetic materials that have received a substantial amount of interest. Among them 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a powerful explosive with poor impact and friction characteristics. In the present study we aim to design novel energetic materials by tailoring the molecular structure of CL-20. Important characteristics such as the heat of formation and density have been predicted using density functional theory and packing calculations, respectively. Sensitivity correlations have been established for model compounds by analyzing the charge on the nitro groups. Molecules IDX1, IDX4, and IDX7 have been found to have comparable performance with better insensitivity characteristics and may be explored as CL-20 substitutes in defense applications.
Kumar, A Sathish; Singh, I Rabi Raja; Sharma, S D; Ravindran, B Paul
2015-01-01
The main objective of this study was to investigate the characteristics of metal oxide semiconductor field effect transistor (MOSFET) dosimeter for kilovoltage (kV) X-ray beams in order to perform the in vivo dosimetry during image guidance in radiotherapy. The performance characteristics of high sensitivity MOSFET dosimeters were investigated for 80, 90, 100, 110, 120, and 125 kV X-ray beams used for imaging in radiotherapy. This study was performed using Clinac 2100 C/D medical electron linear accelerator with on-board imaging and kV cone beam computed tomography system. The characteristics studied in this work include energy dependence, angular dependence, and linearity. The X-ray beam outputs were measured as per American Association of Physicists in Medicine (AAPM) TG 61 recommendations using PTW parallel plate (PP) ionization chamber, which was calibrated in terms of air kerma (Nk) by the National Standard Laboratory. The MOSFET dosimeters were calibrated against the PP ionization chamber for all the kV X-ray beams and the calibration coefficient was found to be 0.11 cGy/mV with a standard deviation of about ±1%. The response of MOSFET was found to be energy independent for the kV X-ray energies used in this study. The response of the MOSFET dosimeter was also found independent of angle of incidence for the gantry angles in the range of 0° to 360° in-air as well as at 3 cm depth in tissue equivalent phantom.
Detonation Performance Testing of LX-19
NASA Astrophysics Data System (ADS)
Vincent, Samuel; Aslam, Tariq; Jackson, Scott
2015-06-01
CL-20 was developed at the Naval Surface Weapons Center at China Lake, CA in the mid 80's. Being less sensitive than PETN, but considerably more powerful than HMX, it is the highest energy and density compound known among organic chemicals. LX-19 was developed at LLNL in the early 90's. It is a high-energy plastic bonded explosive, composed of 95.8 wt% CL-20 and 4.2 wt% Estane binder, and is similar to LX-14 (composed of HMX and Estane), but with greater sensitivity characteristics with use of the more energetic CL-20 explosive. We report detonation performance results for unconfined cylindrical rate sticks of LX-19. The experimental diameter effects are shown, along with detonation front shapes, and reaction zone profiles for different test diameters. This data is critical for calibration to Detonation Shock Dynamics (DSD). LA-UR-15-20672.
NASA Technical Reports Server (NTRS)
Burns, Lee; Merry, Carl; Decker, Ryan; Harrington, Brian
2008-01-01
The 2006 Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) is a statistical model summarizing the wind and thermodynamic atmospheric variability from surface to 70 kin. Launches of the National Aeronautics and Space Administration's (NASA) Space Shuttle from Kennedy Space Center utilize CCAFS RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the CCAFS RRA was recently completed. As part of the update, a validation study on the 2006 version was conducted as well as a comparison analysis of the 2006 version to the existing CCAFS RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.
NASA Astrophysics Data System (ADS)
Hardy, Jason; Campbell, Mark; Miller, Isaac; Schimpf, Brian
2008-10-01
The local path planner implemented on Cornell's 2007 DARPA Urban Challenge entry vehicle Skynet utilizes a novel mixture of discrete and continuous path planning steps to facilitate a safe, smooth, and human-like driving behavior. The planner first solves for a feasible path through the local obstacle map using a grid based search algorithm. The resulting path is then refined using a cost-based nonlinear optimization routine with both hard and soft constraints. The behavior of this optimization is influenced by tunable weighting parameters which govern the relative cost contributions assigned to different path characteristics. This paper studies the sensitivity of the vehicle's performance to these path planner weighting parameters using a data driven simulation based on logged data from the National Qualifying Event. The performance of the path planner in both the National Qualifying Event and in the Urban Challenge is also presented and analyzed.
Integration of a Fire Detector into a Spacecraft
NASA Technical Reports Server (NTRS)
Linford, R. M. F.
1972-01-01
A detector sensitive to only the ultraviolet radiation emitted by flames has been selected as the basic element of the NASA Skylab fire detection system. It is sensitive to approximately 10(exp -12)W of radiation and will detect small flames at distances in excess of 3m. The performance of the detector was verified by experiments in an aircraft flying zero-gravity parabolas to simulate the characteristics of a fire which the detector must sense. Extensive investigation and exacting design was necessary to exclude all possible sources of false alarms. Optical measurements were made on all the spacecraft windows to determine the amount of solar radiation transmitted. The lighting systems and the onboard experiments also were appraised for ultraviolet emissions. Proton-accelerator tests were performed to determine the interaction of the Earth's trapped radiation belts with the detectors and the design of the instrument was modified to negate these effects.
An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze
2017-12-01
This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.
An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze
2018-02-01
This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.
Ooyama, Yousuke; Furue, Kensuke; Enoki, Toshiaki; Kanda, Masahiro; Adachi, Yohei; Ohshita, Joji
2016-11-09
A type-I/type-II hybrid dye sensitizer with a pyridyl group and a catechol unit as the anchoring group has been developed and its photovoltaic performance in dye-sensitized solar cells (DSSCs) is investigated. The sensitizer has the ability to adsorb on a TiO 2 electrode through both the coordination bond at Lewis acid sites and the bidentate binuclear bridging linkage at Brønsted acid sites on the TiO 2 surface, which makes it possible to inject an electron into the conduction band of the TiO 2 electrode by the intramolecular charge-transfer (ICT) excitation (type-I pathway) and by the photoexcitation of the dye-to-TiO 2 charge transfer (DTCT) band (type-II pathway). It was found that the type-I/type-II hybrid dye sensitizer adsorbed on TiO 2 film exhibits a broad photoabsorption band originating from ICT and DTCT characteristics. Here we reveal the photophysical and electrochemical properties of the type-I/type-II hybrid dye sensitizer bearing a pyridyl group and a catechol unit, along with its adsorption modes onto TiO 2 film, and its photovoltaic performance in type-I/type-II DSSC, based on optical (photoabsorption and fluorescence spectroscopy) and electrochemical measurements (cyclic voltammetry), density functional theory (DFT) calculation, FT-IR spectroscopy of the dyes adsorbed on TiO 2 film, photocurrent-voltage (I-V) curves, incident photon-to-current conversion efficiency (IPCE) spectra, and electrochemical impedance spectroscopy (EIS) for DSSC.
NASA Technical Reports Server (NTRS)
1990-01-01
The Objectives of NASA's participation in the ROSAT mission are to: a) measure the spatial, spectral, and temporal characteristics of discrete cosmic sources including normal stars, collapsed stellar objects, and active galactic nuclei; b) perform spectroscopic mapping of extended X-ray sources including supernova remnants, galaxies, and clusters of galaxies; and c) conduct the above observations of cosmic sources with unprecedented sensitivity and spatial resolution over the 0.1 - 2.0 keV energy band.
Enhancing Microbolometer Performance at Terahertz Frequencies with Metamaterial Absorbers
2013-09-01
focal plane arrays (FPAs). Indeed, these sensors naturally evolved in snakes in the form of pit organs leading to a high sensitivity, albeit low...materials. Indeed, they can even have characteristics that are not found in nature , such as a negative refractive index [27]. Absorption in these...modes [44], interference of multiple reflections [45], and transmission lines [46]. However, due to the complex nature of metamaterials, these models
Aerodynamics as a subway design parameter
NASA Technical Reports Server (NTRS)
Kurtz, D. W.
1976-01-01
A parametric sensitivity study has been performed on the system operational energy requirement in order to guide subway design strategy. Aerodynamics can play a dominant or trivial role, depending upon the system characteristics. Optimization of the aerodynamic parameters may not minimize the total operational energy. Isolation of the station box from the tunnel and reduction of the inertial power requirements pay the largest dividends in terms of the operational energy requirement.
Yoo, Doo Han; Lee, Jae Shin
2016-07-01
[Purpose] This study examined the clinical usefulness of the clock drawing test applying Rasch analysis for predicting the level of cognitive impairment. [Subjects and Methods] A total of 187 stroke patients with cognitive impairment were enrolled in this study. The 187 patients were evaluated by the clock drawing test developed through Rasch analysis along with the mini-mental state examination of cognitive evaluation tool. An analysis of the variance was performed to examine the significance of the mini-mental state examination and the clock drawing test according to the general characteristics of the subjects. Receiver operating characteristic analysis was performed to determine the cutoff point for cognitive impairment and to calculate the sensitivity and specificity values. [Results] The results of comparison of the clock drawing test with the mini-mental state showed significant differences in according to gender, age, education, and affected side. A total CDT of 10.5, which was selected as the cutoff point to identify cognitive impairement, showed a sensitivity, specificity, Youden index, positive predictive, and negative predicive values of 86.4%, 91.5%, 0.8, 95%, and 88.2%. [Conclusion] The clock drawing test is believed to be useful in assessments and interventions based on its excellent ability to identify cognitive disorders.
Akena, Dickens; Joska, John; Obuku, Ekwaro A; Stein, Dan J
2013-01-01
Depressive disorders are highly prevalent in Africa where diseases such as HIV/AIDS are common. The aim of this study was to assess the validity of commonly used depression screening instruments in a setting characterized by low literacy, where patients may not be able to self-administer depression scales. We explored the validity of the Patient Health Questionaire-9 (PHQ-9), Centre for Epidemiological Surveys for Depression (CES-D), and the Kessler-10 (K-10), using the Mini International Neuropsychiatric Instrument (MINI) as a gold standard in 368 persons living with HIV/AIDS (PLWHA) in Uganda. The shorter versions of the K-10 and PHQ-9 were extracted to assess their performance in comparison to the longer versions. We used STATA 11.2 to analyze the data. The prevalence of a MINI defined depression in this patient sample was 17.4%. The three instruments all performed well, with areas under the curve (AUC) ranging from 0.82 to 0.96. The PHQ-9 showed the best performance characteristics with an AUC of 0.96, a sensitivity of 91.6%, and specificity 81.2%. The extracted versions performed more modestly. All three instruments showed good properties as screening tools; the PHQ-9 has particularly high sensitivity and specificity, and so can be considered useful for screening HIV-positive patients for depression.
Needle Mottle in Eastern White Pine Seedlings: A Selective Parameter for Air Pollution Sensitivity
Leon S. Dochinger; Stanford L. Arner
1978-01-01
Positive correlations were established between morphological characteristics in eastern white pine seedlings and subsequent tolerance or sensitivity to air pollution 5 and 7 years after outplanting in Ohio plantations. Of 11 seedling variables, needle mottling was an accurate indicator of sensitivity or tolerance to air pollution. This characteristic, which may be...
Hamashima, Chisato; Sasazuki, Shizuka; Inoue, Manami; Tsugane, Shoichiro
2017-03-09
Chronic Helicobacter pylori infection plays a central role in the development of gastric cancer as shown by biological and epidemiological studies. The H. pylori antibody and serum pepsinogen (PG) tests have been anticipated to predict gastric cancer development. We determined the predictive sensitivity and specificity of gastric cancer development using these tests. Receiver operating characteristic analysis was performed, and areas under the curve were estimated. The predictive sensitivity and specificity of gastric cancer development were compared among single tests and combined methods using serum pepsinogen and H. pylori antibody tests. From a large-scale population-based cohort of over 100,000 subjects followed between 1990 and 2004, 497 gastric cancer subjects and 497 matched healthy controls were chosen. The predictive sensitivity and specificity were low in all single tests and combination methods. The highest predictive sensitivity and specificity were obtained for the serum PG I/II ratio. The optimal PG I/II cut-off values were 2.5 and 3.0. At a PG I/II cut-off value of 3.0, the sensitivity was 86.9% and the specificity was 39.8%. Even if three biomarkers were combined, the sensitivity was 97.2% and the specificity was 21.1% when the cut-off values were 3.0 for PG I/II, 70 ng/mL for PG I, and 10.0 U/mL for H. pylori antibody. The predictive accuracy of gastric cancer development was low with the serum pepsinogen and H. pylori antibody tests even if these tests were combined. To adopt these biomarkers for gastric cancer screening, a high specificity is required. When these tests are adopted for gastric cancer screening, they should be carefully interpreted with a clear understanding of their limitations.
A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element
Sun, Zhibo; Liu, Jinhao; Yu, Chunzhan; Zheng, Yili
2016-01-01
This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. PMID:27657089
NASA Astrophysics Data System (ADS)
Kashiwagi, Takanari; Tanaka, Taiga; Watanabe, Chiharu; Kubo, Hiroyuki; Komori, Yuki; Yuasa, Takumi; Tanabe, Yuki; Ota, Ryusei; Kuwano, Genki; Nakamura, Kento; Tsujimoto, Manabu; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo
2017-12-01
Joule heating is the central issue in order to develop high-power and high-performance terahertz (THz) emission from mesa devices employing the intrinsic Josephson junctions in a layered high transition-temperature Tc superconductor. Here, we describe a convenient local thermal measurement technique using charge-coupled-device-based thermoreflectance microscopy, with the highest spatial resolution to date. This technique clearly proves that the relative temperature changes of the mesa devices between different bias points on the current-voltage characteristics can be measured very sensitively. In addition, the heating characteristics on the surface of the mesa devices can be detected more directly without any special treatment of the mesa surface such as previous coatings with SiC micro-powders. The results shown here clearly indicate that the contact resistance strongly affects the formation of an inhomogeneous temperature distribution on the mesa structures. Since the temperature and sample dependencies of the Joule heating characteristics can be measured quickly, this simple thermal evaluation technique is a useful tool to check the quality of the electrical contacts, electrical wiring, and sample defects. Thus, this technique could help to reduce the heating problems and to improve the performance of superconducting THz emitter devices.
Comparison of Computed and Measured Vortex Evolution for a UH-60A Rotor in Forward Flight
NASA Technical Reports Server (NTRS)
Ahmad, Jasim Uddin; Yamauchi, Gloria K.; Kao, David L.
2013-01-01
A Computational Fluid Dynamics (CFD) simulation using the Navier-Stokes equations was performed to determine the evolutionary and dynamical characteristics of the vortex flowfield for a highly flexible aeroelastic UH-60A rotor in forward flight. The experimental wake data were acquired using Particle Image Velocimetry (PIV) during a test of the fullscale UH-60A rotor in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The PIV measurements were made in a stationary cross-flow plane at 90 deg rotor azimuth. The CFD simulation was performed using the OVERFLOW CFD solver loosely coupled with the rotorcraft comprehensive code CAMRAD II. Characteristics of vortices captured in the PIV plane from different blades are compared with CFD calculations. The blade airloads were calculated using two different turbulence models. A limited spatial, temporal, and CFD/comprehensive-code coupling sensitivity analysis was performed in order to verify the unsteady helicopter simulations with a moving rotor grid system.
Parametric study of supersonic STOVL flight characteristics
NASA Technical Reports Server (NTRS)
Rapp, David C.
1985-01-01
A number of different control devices and techniques are evaluated to determine their suitability for increasing the short takeoff performance of a supersonic short-takeoff/vertical landing (STOVL) aircraft. Analysis was based on a rigid-body mathematical model of the General Dynamics E-7, a single engine configuration that utilizes ejectors and thrust deflection for propulsive lift. Alternatives investigated include increased static pitch, the addition of a close-coupled canard, use of boundary layer control to increase the takeoff lift coefficient, and the addition of a vectorable aft fan air nozzle. Other performance studies included the impact of individual E-7 features, the sensitivity to ejector performance, the effect of removing the afterburners, and a determination of optional takeoff and landing transition methods. The results pertain to both the E-7 and other configurations. Several alternatives were not as well suited to the E-7 characteristics as they would be to an alternative configuration, and vice versa. A large amount of supporting data for each analysis is included.
Bruner, L H; Carr, G J; Harbell, J W; Curren, R D
2002-06-01
An approach commonly used to measure new toxicity test method (NTM) performance in validation studies is to divide toxicity results into positive and negative classifications, and the identify true positive (TP), true negative (TN), false positive (FP) and false negative (FN) results. After this step is completed, the contingent probability statistics (CPS), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) are calculated. Although these statistics are widely used and often the only statistics used to assess the performance of toxicity test methods, there is little specific guidance in the validation literature on what values for these statistics indicate adequate performance. The purpose of this study was to begin developing data-based answers to this question by characterizing the CPS obtained from an NTM whose data have a completely random association with a reference test method (RTM). Determining the CPS of this worst-case scenario is useful because it provides a lower baseline from which the performance of an NTM can be judged in future validation studies. It also provides an indication of relationships in the CPS that help identify random or near-random relationships in the data. The results from this study of randomly associated tests show that the values obtained for the statistics vary significantly depending on the cut-offs chosen, that high values can be obtained for individual statistics, and that the different measures cannot be considered independently when evaluating the performance of an NTM. When the association between results of an NTM and RTM is random the sum of the complementary pairs of statistics (sensitivity + specificity, NPV + PPV) is approximately 1, and the prevalence (i.e., the proportion of toxic chemicals in the population of chemicals) and PPV are equal. Given that combinations of high sensitivity-low specificity or low specificity-high sensitivity (i.e., the sum of the sensitivity and specificity equal to approximately 1) indicate lack of predictive capacity, an NTM having these performance characteristics should be considered no better for predicting toxicity than by chance alone.
Static and cyclic performance evaluation of sensors for human interface pressure measurement.
Dabling, Jeffrey G; Filatov, Anton; Wheeler, Jason W
2012-01-01
Researchers and clinicians often desire to monitor pressure distributions on soft tissues at interfaces to mechanical devices such as prosthetics, orthotics or shoes. The most common type of sensor used for this type of applications is a Force Sensitive Resistor (FSR) as these are convenient to use and inexpensive. Several other types of sensors exist that may have superior sensing performance but are less ubiquitous or more expensive, such as optical or capacitive sensors. We tested five sensors (two FSRs, one optical, one capacitive and one fluid pressure) in a static drift and cyclic loading configuration. The results show that relative to the important performance characteristics for soft tissue pressure monitoring (i.e. hysteresis, drift), many of the sensors tested have significant limitations. The FSRs exhibited hysteresis, drift and loss of sensitivity under cyclic loading. The capacitive sensor had substantial drift. The optical sensor had some hysteresis and temperature-related drift. The fluid pressure sensor performed well in these tests but is not as flat as the other sensors and is not commercially available. Researchers and clinicians should carefully consider the convenience and performance trade-offs when choosing a sensor for soft-tissue pressure monitoring.
Soble, Jason R; Bain, Kathleen M; Bailey, K Chase; Kirton, Joshua W; Marceaux, Janice C; Critchfield, Edan A; McCoy, Karin J M; O'Rourke, Justin J F
2018-01-08
Embedded performance validity tests (PVTs) allow for continuous assessment of invalid performance throughout neuropsychological test batteries. This study evaluated the utility of the Wechsler Memory Scale-Fourth Edition (WMS-IV) Logical Memory (LM) Recognition score as an embedded PVT using the Advanced Clinical Solutions (ACS) for WAIS-IV/WMS-IV Effort System. This mixed clinical sample was comprised of 97 total participants, 71 of whom were classified as valid and 26 as invalid based on three well-validated, freestanding criterion PVTs. Overall, the LM embedded PVT demonstrated poor concordance with the criterion PVTs and unacceptable psychometric properties using ACS validity base rates (42% sensitivity/79% specificity). Moreover, 15-39% of participants obtained an invalid ACS base rate despite having a normatively-intact age-corrected LM Recognition total score. Receiving operating characteristic curve analysis revealed a Recognition total score cutoff of < 61% correct improved specificity (92%) while sensitivity remained weak (31%). Thus, results indicated the LM Recognition embedded PVT is not appropriate for use from an evidence-based perspective, and that clinicians may be faced with reconciling how a normatively intact cognitive performance on the Recognition subtest could simultaneously reflect invalid performance validity.
The dissociation of subjective measures of mental workload and performance
NASA Technical Reports Server (NTRS)
Yeh, Y. H.; Wickens, C. D.
1984-01-01
Dissociation between performance and subjective workload measures was investigated in the theoretical framework of the multiple resources model. Subjective measures do not preserve the vector characteristics in the multidimensional space described by the model. A theory of dissociation was proposed to locate the sources that may produce dissociation between the two workload measures. According to the theory, performance is affected by every aspect of processing whereas subjective workload is sensitive to the amount of aggregate resource investment and is dominated by the demands on the perceptual/central resources. The proposed theory was tested in three experiments. Results showed that performance improved but subjective workload was elevated with an increasing amount of resource investment. Furthermore, subjective workload was not as sensitive as was performance to differences in the amount of resource competition between two tasks. The demand on perceptual/central resources was found to be the most salient component of subjective workload. Dissociation occurred when the demand on this component was increased by the number of concurrent tasks or by the number of display elements. However, demands on response resources were weighted in subjective introspection as much as demands on perceptual/central resources. The implications of these results for workload practitioners are described.
Wanji, Samuel; Kimbi, Helen K; Eyong, Joan E; Tendongfor, Nicholas; Ndamukong, Judith L
2008-05-22
Rapid and correct diagnosis of malaria is considered an important strategy in the control of the disease. However, it remains to be determined how well these tests can perform in those who harbour the parasite, but are asymptomatic, so that rapid diagnostic tests (RDTs) could be used in rapid mass surveillance in malaria control programmes. Microscopic and immunochromatographic diagnosis of malaria were performed on blood samples from the hyperendemic Mount Cameroon region. Thin and thick blood films were stained with Giemsa and examined under light microscopy for malaria parasites. The RDT was performed on the blood samples for the detection of Plasmodium species. In addition, the performance characteristics of the test were determined using microscopy as gold standard. Results revealed 40.32% to be positive for microscopy and 34.41% to be positive for the RDT. Parasites were detected in a greater proportion of samples as the parasite density increase. Plasmodium falciparum was the predominant Plasmodium species detected in the study population either by microscopy or by the RDT. Overall, the test recorded a sensitivity and specificity of 85.33% and 95.05% respectively, and an accuracy of 91.40%. The sensitivity and specificity of the RDT increased as parasite densities increased. The Hexagon Malaria Combi test showed a high sensitivity and specificity in diagnosing malaria in asymptomatic subjects and so could be suitable for use in mass surveillance programmes for the management and control of malaria.
Validity and reliability of a novel measure of activity performance and participation.
Murgatroyd, Phil; Karimi, Leila
2016-01-01
To develop and evaluate an innovative clinician-rated measure, which produces global numerical ratings of activity performance and participation. Repeated measures study with 48 community-dwelling participants investigating clinical sensibility, comprehensiveness, practicality, inter-rater reliability, responsiveness, sensitivity and concurrent validity with Barthel Index. Important clinimetric characteristics including comprehensiveness and ease of use were rated >8/10 by clinicians. Inter-rater reliability was excellent on the summary scores (intraclass correlation of 0.95-0.98). There was good evidence that the new outcome measure distinguished between known high and low functional scoring groups, including both responsiveness to change and sensitivity at the same time point in numerous tests. Concurrent validity with the Barthel Index was fair to high (Spearman Rank Order Correlation 0.32-0.85, p > 0.05). The new measure's summary scores were nearly twice as responsive to change compared with the Barthel Index. Other more detailed data could also be generated by the new measure. The Activity Performance Measure is an innovative outcome instrument that showed good clinimetric qualities in this initial study. Some of the results were strong, given the sample size, and further trial and evaluation is appropriate. Implications for Rehabilitation The Activity Performance Measure is an innovative outcome measure covering activity performance and participation. In an initial evaluation, it showed good clinimetric qualities including responsiveness to change, sensitivity, practicality, clinical sensibility, item coverage, inter-rater reliability and concurrent validity with the Barthel Index. Further trial and evaluation is appropriate.
Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain
NASA Astrophysics Data System (ADS)
Bucchignani, E.; Cattaneo, L.; Panitz, H.-J.; Mercogliano, P.
2016-02-01
The results of a sensitivity work based on ERA-Interim driven COSMO-CLM simulations over the Middle East-North Africa (CORDEX-MENA) domain are presented. All simulations were performed at 0.44° spatial resolution. The purpose of this study was to ascertain model performances with respect to changes in physical and tuning parameters which are mainly related to surface, convection, radiation and cloud parameterizations. Evaluation was performed for the whole CORDEX-MENA region and six sub-regions, comparing a set of 26 COSMO-CLM runs against a combination of available ground observations, satellite products and reanalysis data to assess temperature, precipitation, cloud cover and mean sea level pressure. The model proved to be very sensitive to changes in physical parameters. The optimized configuration allows COSMO-CLM to improve the simulated main climate features of this area. Its main characteristics consist in the new parameterization of albedo, based on Moderate Resolution Imaging Spectroradiometer data, and the new parameterization of aerosol, based on NASA-GISS AOD distributions. When applying this configuration, Mean Absolute Error values for the considered variables are as follows: about 1.2 °C for temperature, about 15 mm/month for precipitation, about 9 % for total cloud cover, and about 0.6 hPa for mean sea level pressure.
Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W
2015-08-01
Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
A Study of the Relationship Between Personality Characteristics and Ethical Sensitivity in Business.
1992-09-01
Functional Preferences. and Descriptions of the Sixteen Personality Tvyes ISTJ ISFJ INFJ INTJ ISTP ISFP INFP INTP ESTP ESFP ENFP ENTP ESTJ ESFJ ENFJ ENTJ...AD-A258 421lE li(( I U~~l E l iIi - -H AFIT/GCNMLSMI92S-9 A STUDY OF THE RELATIONSHIP BETWEEN PERSONALITY CHARACTERISTICS AND ETHICAL SENSITIVITY IN...Codes Avail and/or Dist Speot8.i AFIT/GCM/LSM/92S-9 A STUDY OF THE RELATIONSHIP BETWEEN PERSONALITY CHARACTERISTICS AND ETHICAL SENSITIVITY IN BUSINESS
Black Molecular Adsorber Coatings for Spaceflight Applications
NASA Technical Reports Server (NTRS)
Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.
2014-01-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Black molecular adsorber coatings for spaceflight applications
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.
2014-09-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster
NASA Technical Reports Server (NTRS)
Ryan, Richard M.; Rothschild, William J.; Christensen, David L.
1998-01-01
The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety, performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key Criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket-engines characteristics. This includes BME impacts on vehicle system weight, performance, design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.
Estimation of hydraulic jump characteristics of channels with sudden diverging side walls via SVM.
Roushangar, Kiyoumars; Valizadeh, Reyhaneh; Ghasempour, Roghayeh
2017-10-01
Sudden diverging channels are one of the energy dissipaters which can dissipate most of the kinetic energy of the flow through a hydraulic jump. An accurate prediction of hydraulic jump characteristics is an important step in designing hydraulic structures. This paper focuses on the capability of the support vector machine (SVM) as a meta-model approach for predicting hydraulic jump characteristics in different sudden diverging stilling basins (i.e. basins with and without appurtenances). In this regard, different models were developed and tested using 1,018 experimental data. The obtained results proved the capability of the SVM technique in predicting hydraulic jump characteristics and it was found that the developed models for a channel with a central block performed more successfully than models for channels without appurtenances or with a negative step. The superior performance for the length of hydraulic jump was obtained for the model with parameters F 1 (Froude number) and (h 2- h 1 )/h 1 (h 1 and h 2 are sequent depth of upstream and downstream respectively). Concerning the relative energy dissipation and sequent depth ratio, the model with parameters F 1 and h 1 /B (B is expansion ratio) led to the best results. According to the outcome of sensitivity analysis, Froude number had the most significant effect on the modeling. Also comparison between SVM and empirical equations indicated the great performance of the SVM.
NASA Technical Reports Server (NTRS)
Woeller, F. H.; Kojiro, D. R.; Carle, G. C.
1984-01-01
The present investigation is concerned with a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design. The ionization detector is to be incorporated in a flight gas chromatograph (GC) for use in the Space Shuttle. The design of the detector is discussed, taking into account studies which verified the sensitivity of the detector. The triaxial design of the detector is compared with a flat-plate style. The obtained results show that the principal goal of developing a miniature, highly sensitive ionization detector for flight applications was achieved. Improved fabrication techniques will utilize glass-to-metal seals and brazing procedures.
Lysenko, O M
2012-01-01
We present the influence of the program of special additional stimulation of work capacity of high-performance athletes on the sensitivity of cardiorespiratory system to hypercapnic and hypoxic shifts in respiratory homeostasis. We found that under the influence of the pre-start complex a decrease in the sensitivity of ventilator responses to CO2-H+ stimuli in combination with a reduction in the thresholds of the reaction take place. This creates conditions for increased mobilization properties of the cardiorespiratory system and economization of its reaction under conditions of changes of respiratory homeostasis characteristic of intense training and competitive loads in the sport.
The prevalence of depression and the accuracy of depression screening tools in migraine patients.
Amoozegar, Farnaz; Patten, Scott B; Becker, Werner J; Bulloch, Andrew G M; Fiest, Kirsten M; Davenport, W Jeptha; Carroll, Christopher R; Jette, Nathalie
2017-09-01
Migraine and depression are common comorbid conditions. The purpose of this study was to assess how well the Patient Health Questionnaire (PHQ-9) and the Hospital Anxiety and Depression Scale (HADS) perform as depression screening tools in patients with migraine. Three hundred consecutive migraine patients were recruited from a large headache center. The PHQ-9 and HADS were self-administered and validated against the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders-IV, a gold standard for the diagnosis of depression. Sensitivity, specificity, positive predictive value, negative predictive value and receiver-operator characteristic curves were calculated for the PHQ-9 and HADS. At the traditional cut-point of 10, the PHQ-9 demonstrated 82.0% sensitivity and 79.9% specificity. At a cut-point of 8, the HADS demonstrated 86.5% sensitivity and specificity. The PHQ-9 algorithm performed poorly (53.8% sensitivity, 94.9% specificity). The point prevalence of depression in this study was 25.0% (95% CI 19.0-31.0), and 17.0% of patients had untreated depression. In this study, the PHQ-9 and HADS performed well in migraine patients attending a headache clinic, but optimal cut-points to screen for depression vary depending on the goals of the assessment. Also, migraine patients attending a headache clinic have a high prevalence of depression and many are inadequately treated. Future studies are needed to confirm these findings and to evaluate the impact of depression screening. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Qinghua; Raghavan, Prashant; Mukherjee, Sugoto; Jameson, Mark J; Patrie, James; Xin, Wenjun; Xian, Junfang; Wang, Zhenchang; Levine, Paul A; Wintermark, Max
2015-10-01
The aim of this study was to systematically compare a comprehensive array of magnetic resonance (MR) imaging features in terms of their sensitivity and specificity to diagnose cervical lymph node metastases in patients with thyroid cancer. The study included 41 patients with thyroid malignancy who underwent surgical excision of cervical lymph nodes and had preoperative MR imaging ≤4weeks prior to surgery. Three head and neck neuroradiologists independently evaluated all the MR images. Using the pathology results as reference, the sensitivity, specificity and interobserver agreement of each MR imaging characteristic were calculated. On multivariate analysis, no single imaging feature was significantly correlated with metastasis. In general, imaging features demonstrated high specificity, but poor sensitivity and moderate interobserver agreement at best. Commonly used MR imaging features have limited sensitivity at correctly identifying cervical lymph node metastases in patients with thyroid cancer. A negative neck MR scan should not dissuade a surgeon from performing a neck dissection in patients with thyroid carcinomas.
Tagliafico, Alberto Stefano; Bignotti, Bianca; Rossi, Federica; Signori, Alessio; Sormani, Maria Pia; Valdora, Francesca; Calabrese, Massimo; Houssami, Nehmat
2016-08-01
To estimate sensitivity and specificity of CESM for breast cancer diagnosis. Systematic review and meta-analysis of the accuracy of CESM in finding breast cancer in highly selected women. We estimated summary receiver operating characteristic curves, sensitivity and specificity according to quality criteria with QUADAS-2. Six hundred four studies were retrieved, 8 of these reporting on 920 patients with 994 lesions, were eligible for inclusion. Estimated sensitivity from all studies was: 0.98 (95% CI: 0.96-1.00). Specificity was estimated from six studies reporting raw data: 0.58 (95% CI: 0.38-0.77). The majority of studies were scored as at high risk of bias due to the very selected populations. CESM has a high sensitivity but very low specificity. The source studies were based on highly selected case series and prone to selection bias. High-quality studies are required to assess the accuracy of CESM in unselected cases. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel
2015-12-01
Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.
NASA Astrophysics Data System (ADS)
Lovell, T. Alan; Schmidt, D. K.
1994-03-01
The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.
NASA Technical Reports Server (NTRS)
Lovell, T. Alan; Schmidt, D. K.
1994-01-01
The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.
Azabou, Eric; Fischer, Catherine; Mauguiere, François; Vaugier, Isabelle; Annane, Djillali; Sharshar, Tarek; Lofaso, Fréderic
2016-01-01
We prospectively studied early bedside standard EEG characteristics in 61 acute postanoxic coma patients. Five simple EEG features, namely, isoelectric, discontinuous, nonreactive to intense auditory and nociceptive stimuli, dominant delta frequency, and occurrence of paroxysms were classified yes or no. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC) of each of these variables for predicting an unfavorable outcome, defined as death, persistent vegetative state, minimally conscious state, or severe neurological disability, as assessed 1 year after coma onset were computed as well as Synek's score. The outcome was unfavorable in 56 (91.8%) patients. Sensitivity, specificity, PPV, NPV, and AUC of nonreactive EEG for predicting an unfavorable outcome were 84%, 80%, 98%, 31%, and 0.82, respectively; and were all very close to the ones of Synek score>3, which were 82%, 80%, 98%, 29%, and 0.81, respectively. Specificities for predicting an unfavorable outcome were 100% for isoelectric, discontinuous, or dominant delta activity EEG. These 3 last features were constantly associated to unfavorable outcome. Absent EEG reactivity strongly predicted an unfavorable outcome in postanoxic coma, and performed as accurate as a Synek score>3. Analyzing characteristics of some simple EEG features may easily help nonneurophysiologist physicians to investigate prognostic issue of postanoxic coma patient. In this study (a) discontinuous, isoelectric, or delta-dominant EEG were constantly associated with unfavorable outcome and (b) nonreactive EEG performed prognostic as accurate as a Synek score>3. © EEG and Clinical Neuroscience Society (ECNS) 2015.
DNP enhanced NMR with flip-back recovery
NASA Astrophysics Data System (ADS)
Björgvinsdóttir, Snædís; Walder, Brennan J.; Pinon, Arthur C.; Yarava, Jayasubba Reddy; Emsley, Lyndon
2018-03-01
DNP methods can provide significant sensitivity enhancements in magic angle spinning solid-state NMR, but in systems with long polarization build up times long recycling periods are required to optimize sensitivity. We show how the sensitivity of such experiments can be improved by the classic flip-back method to recover bulk proton magnetization following continuous wave proton heteronuclear decoupling. Experiments were performed on formulations with characteristic build-up times spanning two orders of magnitude: a bulk BDPA radical doped o-terphenyl glass and microcrystalline samples of theophylline, L-histidine monohydrochloride monohydrate, and salicylic acid impregnated by incipient wetness. For these systems, addition of flip-back is simple, improves the sensitivity beyond that provided by modern heteronuclear decoupling methods such as SPINAL-64, and provides optimal sensitivity at shorter recycle delays. We show how to acquire DNP enhanced 2D refocused CP-INADEQUATE spectra with flip-back recovery, and demonstrate that the flip-back recovery method is particularly useful in rapid recycling regimes. We also report Overhauser effect DNP enhancements of over 70 at 592.6 GHz/900 MHz.
Performance mapping of a 30 cm engineering model thruster
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Vahrenkamp, R. P.
1975-01-01
A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.
Performance of a 100 kW class applied field MPD thruster
NASA Technical Reports Server (NTRS)
Mantenieks, Maris A.; Sovey, James S.; Myers, Roger M.; Haag, Thomas W.; Raitano, Paul; Parkes, James E.
1989-01-01
Performance of a 100 kW, applied field magnetoplasmadynamic (MPD) thruster was evaluated and sensitivities of discharge characteristics to arc current, mass flow rate, and applied magnetic field were investigated. Thermal efficiencies as high as 60 percent, thrust efficiencies up to 21 percent, and specific impulses of up to 1150 s were attained with argon propellant. Thrust levels up to 2.5 N were directly measured with an inverted pendulum thrust stand at discharge input powers up to 57 kW. It was observed that thrust increased monotonically with the product of arc current and magnet current.
Design and development of a multibeam 1.4 GHz pushbroom microwave radiometer
NASA Technical Reports Server (NTRS)
Lawrence, R. W.; Bailey, M. C.; Harrington, R. F.; Hearn, C. P.; Wells, J. G.; Stanley, W. D.
1986-01-01
The design and operation of a multiple beam, digital signal processing radiometer are discussed. The discussion includes a brief description of each major subsystem and an overall explanation of the hardware requirements and operation. A series of flight tests was conducted in which sea-truth sites, as well as an existing radiometer were used to verify the Pushbroom Radiometer performance. The results of these tests indicate that the Pushbroom Radiometer did meet the sensitivity design goal of 1.0 kelvin, and exceeded the accuracy requirement of 2.0 kelvin. Additional performance characteristics and test results are also presented.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.; Nguyen, Nhan T.; Krishakumar, Kalmanje S.
2010-01-01
Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologies
NEMA NU-04-based performance characteristics of the LabPET-8™ small animal PET scanner.
Prasad, Rameshwar; Ratib, Osman; Zaidi, Habib
2011-10-21
The objective of this study is to characterize the performance of the preclinical avalanche photodiode (APD)-based LabPET-8™ subsystem of the fully integrated trimodality PET/SPECT/CT Triumph™ scanner using the National Electrical Manufacturers Association (NEMA) NU 04-2008 protocol. The characterized performance parameters include the spatial resolution, sensitivity, scatter fraction, counts rate performance and image-quality characteristics. The PET system is fully digital using APD-based detector modules with highly integrated electronics. The detector assembly consists of phoswich pairs of Lu(1.9)Y(0.1)SiO(5) (LYSO) and Lu(0.4)Gd(1.6)SiO(5) (LGSO) crystals with dimensions of 2 × 2 × 14 mm(3) having 7.5 cm axial and 10 cm transverse field of view (FOV). The spatial resolution and sensitivity were measured using a small (22)Na point source at different positions in the scanner's FOV. The scatter fraction and count rate characteristics were measured using mouse- and rat-sized phantoms fitted with an (18)F line source. The overall imaging capabilities of the scanner were assessed using the NEMA image-quality phantom and laboratory animal studies. The NEMA-based radial and tangential spatial resolution ranged from 1.7 mm at the center of the FOV to 2.59 mm at a radial offset of 2.5 cm and from 1.85 mm at the center of the FOV to 1.76 mm at a radial offset of 2.5 cm, respectively. Iterative reconstruction improved the spatial resolution to 0.84 mm at the center of the FOV. The total absolute system sensitivity is 12.74% for an energy window of 250-650 keV. For the mouse-sized phantom, the peak noise equivalent count rate (NECR) is 183 kcps at 2.07 MBq cc(-1), whereas the peak true count rate is 320 kcps at 2.5 MBq cc(-1) with a scatter fraction of 19%. The rat-sized phantom had a scatter fraction of 31%, with a peak NECR of 67 kcps at 0.23 MBq cc(-1) and a peak true count rate of 186 kcps at 0.27 MBq cc(-1). The average activity concentration and percentage standard deviation were 126.97 kBq ml(-1) and 7%, respectively. The performance of the LabPET-8™ scanner was characterized based on the NEMA NU 04-2008 standards. The all in all performance demonstrates that the LabPET-8™ system is able to produce high-quality and highly contrasted images in a reasonable time, and as such it is well suited for preclinical molecular imaging-based research.
NEMA NU-04-based performance characteristics of the LabPET-8™ small animal PET scanner
NASA Astrophysics Data System (ADS)
Prasad, Rameshwar; Ratib, Osman; Zaidi, Habib
2011-10-01
The objective of this study is to characterize the performance of the preclinical avalanche photodiode (APD)-based LabPET-8™ subsystem of the fully integrated trimodality PET/SPECT/CT Triumph™ scanner using the National Electrical Manufacturers Association (NEMA) NU 04-2008 protocol. The characterized performance parameters include the spatial resolution, sensitivity, scatter fraction, counts rate performance and image-quality characteristics. The PET system is fully digital using APD-based detector modules with highly integrated electronics. The detector assembly consists of phoswich pairs of Lu1.9Y0.1SiO5 (LYSO) and Lu0.4Gd1.6SiO5 (LGSO) crystals with dimensions of 2 × 2 × 14 mm3 having 7.5 cm axial and 10 cm transverse field of view (FOV). The spatial resolution and sensitivity were measured using a small 22Na point source at different positions in the scanner's FOV. The scatter fraction and count rate characteristics were measured using mouse- and rat-sized phantoms fitted with an18F line source. The overall imaging capabilities of the scanner were assessed using the NEMA image-quality phantom and laboratory animal studies. The NEMA-based radial and tangential spatial resolution ranged from 1.7 mm at the center of the FOV to 2.59 mm at a radial offset of 2.5 cm and from 1.85 mm at the center of the FOV to 1.76 mm at a radial offset of 2.5 cm, respectively. Iterative reconstruction improved the spatial resolution to 0.84 mm at the center of the FOV. The total absolute system sensitivity is 12.74% for an energy window of 250-650 keV. For the mouse-sized phantom, the peak noise equivalent count rate (NECR) is 183 kcps at 2.07 MBq cc-1, whereas the peak true count rate is 320 kcps at 2.5 MBq cc-1 with a scatter fraction of 19%. The rat-sized phantom had a scatter fraction of 31%, with a peak NECR of 67 kcps at 0.23 MBq cc-1 and a peak true count rate of 186 kcps at 0.27 MBq cc-1. The average activity concentration and percentage standard deviation were 126.97 kBq ml-1 and 7%, respectively. The performance of the LabPET-8™ scanner was characterized based on the NEMA NU 04-2008 standards. The all in all performance demonstrates that the LabPET-8™ system is able to produce high-quality and highly contrasted images in a reasonable time, and as such it is well suited for preclinical molecular imaging-based research.
Radiologists’ Interpretive Skills in Screening vs. Diagnostic Mammography: Are They Related?
Elmore, Joann G.; Cook, Andrea J.; Bogart, Andy; Carney, Patricia A.; Geller, Berta; Taplin, Stephen; Buist, Diana SM; Onega, Tracy; Lee, Christoph I.; Miglioretti, Diana L.
2016-01-01
Purpose To determine whether radiologists who perform well in screening also perform well in interpreting diagnostic mammography. Materials & Methods We evaluated the accuracy of 468 radiologists interpreting 2,234,947 screening and 196,164 diagnostic mammograms. Adjusting for site, radiologist, and patient characteristics, we identified radiologists with performance in the highest tertile and compared to those with lower performance. Results A moderate correlation was noted for radiologists’ accuracy when interpreting screening versus their accuracy on diagnostic exams: sensitivity (rspearman=0.51, 95% CI: 0.22, 0.80; P=0.0006), specificity (rspearman=0.40, 95% CI: 0.30, 0.49; P<0.0001). Conclusion Different educational approaches to screening and diagnostic imaging should be considered. PMID:27438069
McCormick, Peter A.; Francis, Lori
2005-01-01
There is debate over the mechanisms that govern the orienting of attention. Some argue that the enhanced performance observed at a cued location is the result of increased perceptual sensitivity or preferential access to decision-making processes. It has also been suggested that these effects may be the result of trades in speed for accuracy on the part of the observers. In the present study, observers performed either an exogenous or an endogenous orienting of attention task under both normal instructions (respond as quickly and as accurately as possible) and speeded instructions that used a deadline procedure to limit the amount of time observers had to complete a choice reaction time (CRT) task. An examination of the speed-accuracy operating characteristics (SAOCs) yielded evidence against the notion that CRT precuing effects are due primarily to a tradeoff of accuracy for speed. PMID:15759078
Effect of handling characteristics on minimum time cornering with torque vectoring
NASA Astrophysics Data System (ADS)
Smith, E. N.; Velenis, E.; Tavernini, D.; Cao, D.
2018-02-01
In this paper, the effect of both passive and actively-modified vehicle handling characteristics on minimum time manoeuvring for vehicles with 4-wheel torque vectoring (TV) capability is studied. First, a baseline optimal TV strategy is sought, independent of any causal control law. An optimal control problem (OCP) is initially formulated considering 4 independent wheel torque inputs, together with the steering angle rate, as the control variables. Using this formulation, the performance benefit using TV against an electric drive train with a fixed torque distribution, is demonstrated. The sensitivity of TV-controlled manoeuvre time to the passive understeer gradient of the vehicle is then studied. A second formulation of the OCP is introduced where a closed-loop TV controller is incorporated into the system dynamics of the OCP. This formulation allows the effect of actively modifying a vehicle's handling characteristic via TV on its minimum time cornering performance of the vehicle to be assessed. In particular, the effect of the target understeer gradient as the key tuning parameter of the literature-standard steady-state linear single-track model yaw rate reference is analysed.
Turner, Travis H
2005-03-30
An increasingly large corpus of clinical and experimental neuropsychological research has demonstrated the utility of measuring visual contrast sensitivity. Unfortunately, existing means of measuring contrast sensitivity can be prohibitively expensive, difficult to standardize, or lack reliability. Additionally, most existing tests do not allow full control over important characteristics, such as off-angle rotations, waveform, contrast, and spatial frequency. Ideally, researchers could manipulate characteristics and display stimuli in a computerized task designed to meet experimental needs. Thus far, 256-bit color limitation in standard cathode ray tube (CRT) monitors has been preclusive. To this end, the pointillism method (PM) was developed. Using MATLAB software, stimuli are created based on both mathematical and stochastic components, such that differences in regional luminance values of the gradient field closely approximate the desired contrast. This paper describes the method and examines its performance in sine and square-wave image sets from a range of contrast values. Results suggest the utility of the method for most experimental applications. Weaknesses in the current version, the need for validation and reliability studies, and considerations regarding applications are discussed. Syntax for the program is provided in an appendix, and a version of the program independent of MATLAB is available from the author.
Analytical description of the modern steam automobile
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1974-01-01
The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.
Preliminary design of a mini-Brayton Compressor-Alternator-Turbine (CAT)
NASA Technical Reports Server (NTRS)
1973-01-01
The preliminary design of a mini-Brayton compressor-alternator-turbine system is discussed. The program design goals are listed. The optimum system characteristics over the entire range of power output were determined by performing a wide-range parametric study. The ability to develop the required components to the degree necessary within the limitations of present technology is evaluated. The sensitivity of the system to various individual design parameters was analyzed.
Zur, RM; Roy, LM; Ito, S; Beyene, J; Carew, C; Ungar, WJ
2016-01-01
Thiopurine S-methyltransferase (TPMT) deficiency increases the risk of serious adverse events in persons receiving thiopurines. The objective was to synthesize reported sensitivity and specificity of TPMT phenotyping and genotyping using a latent class hierarchical summary receiver operating characteristic meta-analysis. In 27 studies, pooled sensitivity and specificity of phenotyping for deficient individuals was 75.9% (95% credible interval (CrI), 58.3–87.0%) and 98.9% (96.3–100%), respectively. For genotype tests evaluating TPMT*2 and TPMT*3, sensitivity and specificity was 90.4% (79.1–99.4%) and 100.0% (99.9–100%), respectively. For individuals with deficient or intermediate activity, phenotype sensitivity and specificity was 91.3% (86.4–95.5%) and 92.6% (86.5–96.6%), respectively. For genotype tests evaluating TPMT*2 and TPMT*3, sensitivity and specificity was 88.9% (81.6–97.5%) and 99.2% (98.4–99.9%), respectively. Genotyping has higher sensitivity as long as TPMT*2 and TPMT*3 are tested. Both approaches display high specificity. Latent class meta-analysis is a useful method for synthesizing diagnostic test performance data for clinical practice guidelines. PMID:27217052
How to specify and measure sensitivity in Distributed Acoustic Sensing (DAS)?
NASA Astrophysics Data System (ADS)
Gabai, Haniel; Eyal, Avishay
2017-04-01
In Rayleigh-scattering-based Distributed Acoustic Sensing (DAS) an optical fiber is transformed into an array of thousands of 'virtual microphones'. This approach has gained tremendous popularity in recent years and is one of the most successful examples of a fiber-optic sensing method which made its way from the academia to the market. Despite the great amount of work done in this field, sensitivity, which is ones of the most critical parameters of any sensing technique, was rarely investigated in this context. In particular, little attention was given to its random characteristics. Without careful consideration of the random aspects of DAS, any attempt to specify its sensitivity or to compare between different DAS modalities is of limited value. Recently we introduced a new statistical parameter which defines DAS sensitivity and enables comparison between the performances of different DAS systems. In this paper we generalize the previous parameter and give a broader, simple and intuitive definition to DAS sensitivity. An important attribute of these parameters is that they can be easily extracted from the static backscatter profile of the sensing fiber. In the paper we derive the relation between DAS sensitivity and the static backscatter profile and present an experimental verification of this relation.
Baheza, Richard A.; Welch, E. Brian; Gochberg, Daniel F.; Sanders, Melinda; Harvey, Sara; Gore, John C.; Yankeelov, Thomas E.
2015-01-01
Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragments within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm)3 and (0.6 mm)3. In images acquired at 7 T with voxel sizes of (0.2 mm)3–(0.4 mm)3, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12 min, and voxel sizes of (0.4 mm)3–(0.6 mm)3, simulated microcalcifications with sizes of 0.6–1.0 mm were detected with a sensitivity, specificity, and AUC of 75%–87%, 54%–87%, and 0.76%–0.90%, respectively. However, different microcalcification shapes were indistinguishable. Conclusions: The new method is promising for detecting relatively large microcalcifications (i.e., 0.6–0.9 mm) within the breast at 7 T in reasonable times. Detection of smaller deposits at high field may be possible with higher spatial resolution, but such images require relatively long scan times. Although mammography can detect and distinguish the shape of smaller microcalcifications with superior sensitivity and specificity, this alternative method does not expose tissue to ionizing radiation, is not affected by breast density, and can be combined with other MRI methods (e.g., dynamic contrast-enhanced MRI and diffusion weighted MRI), to potentially improve diagnostic performance. PMID:25735297
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baheza, Richard A.; Welch, E. Brian; Gochberg, Daniel F.
Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragmentsmore » within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm){sup 3} and (0.6 mm){sup 3}. In images acquired at 7 T with voxel sizes of (0.2 mm){sup 3}–(0.4 mm){sup 3}, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12 min, and voxel sizes of (0.4 mm){sup 3}–(0.6 mm){sup 3}, simulated microcalcifications with sizes of 0.6–1.0 mm were detected with a sensitivity, specificity, and AUC of 75%–87%, 54%–87%, and 0.76%–0.90%, respectively. However, different microcalcification shapes were indistinguishable. Conclusions: The new method is promising for detecting relatively large microcalcifications (i.e., 0.6–0.9 mm) within the breast at 7 T in reasonable times. Detection of smaller deposits at high field may be possible with higher spatial resolution, but such images require relatively long scan times. Although mammography can detect and distinguish the shape of smaller microcalcifications with superior sensitivity and specificity, this alternative method does not expose tissue to ionizing radiation, is not affected by breast density, and can be combined with other MRI methods (e.g., dynamic contrast-enhanced MRI and diffusion weighted MRI), to potentially improve diagnostic performance.« less
Das, Smita; Jang, Ihn Kyung; Barney, Becky; Peck, Roger; Rek, John C; Arinaitwe, Emmanuel; Adrama, Harriet; Murphy, Maxwell; Imwong, Mallika; Ling, Clare L; Proux, Stephane; Haohankhunnatham, Warat; Rist, Melissa; Seilie, Annette M; Hanron, Amelia; Daza, Glenda; Chang, Ming; Nakamura, Tomoka; Kalnoky, Michael; Labarre, Paul; Murphy, Sean C; McCarthy, James S; Nosten, Francois; Greenhouse, Bryan; Allauzen, Sophie; Domingo, Gonzalo J
2017-11-01
Sensitive field-deployable diagnostic tests can assist malaria programs in achieving elimination. The performance of a new Alere™ Malaria Ag P.f Ultra Sensitive rapid diagnostic test (uRDT) was compared with the currently available SD Bioline Malaria Ag P.f RDT in blood specimens from asymptomatic individuals in Nagongera, Uganda, and in a Karen Village, Myanmar, representative of high- and low-transmission areas, respectively, as well as in pretreatment specimens from study participants from four Plasmodium falciparum -induced blood-stage malaria (IBSM) studies. A quantitative reverse transcription PCR (qRT-PCR) and a highly sensitive enzyme-linked immunosorbent assay (ELISA) test for histidine-rich protein II (HRP2) were used as reference assays. The uRDT showed a greater than 10-fold lower limit of detection for HRP2 compared with the RDT. The sensitivity of the uRDT was 84% and 44% against qRT-PCR in Uganda and Myanmar, respectively, and that of the RDT was 62% and 0% for the same two sites. The specificities of the uRDT were 92% and 99.8% against qRT-PCR for Uganda and Myanmar, respectively, and 99% and 99.8% against the HRP2 reference ELISA. The RDT had specificities of 95% and 100% against qRT-PCR for Uganda and Myanmar, respectively, and 96% and 100% against the HRP2 reference ELISA. The uRDT detected new infections in IBSM study participants 1.5 days sooner than the RDT. The uRDT has the same workflow as currently available RDTs, but improved performance characteristics to identify asymptomatic malaria infections. The uRDT may be a useful tool for malaria elimination strategies.
Das, Smita; Jang, Ihn Kyung; Barney, Becky; Peck, Roger; Rek, John C.; Arinaitwe, Emmanuel; Adrama, Harriet; Murphy, Maxwell; Imwong, Mallika; Ling, Clare L.; Proux, Stephane; Haohankhunnatham, Warat; Rist, Melissa; Seilie, Annette M.; Hanron, Amelia; Daza, Glenda; Chang, Ming; Nakamura, Tomoka; Kalnoky, Michael; Labarre, Paul; Murphy, Sean C.; McCarthy, James S.; Nosten, Francois; Greenhouse, Bryan; Allauzen, Sophie; Domingo, Gonzalo J.
2017-01-01
Abstract. Sensitive field-deployable diagnostic tests can assist malaria programs in achieving elimination. The performance of a new Alere™ Malaria Ag P.f Ultra Sensitive rapid diagnostic test (uRDT) was compared with the currently available SD Bioline Malaria Ag P.f RDT in blood specimens from asymptomatic individuals in Nagongera, Uganda, and in a Karen Village, Myanmar, representative of high- and low-transmission areas, respectively, as well as in pretreatment specimens from study participants from four Plasmodium falciparum-induced blood-stage malaria (IBSM) studies. A quantitative reverse transcription PCR (qRT-PCR) and a highly sensitive enzyme-linked immunosorbent assay (ELISA) test for histidine-rich protein II (HRP2) were used as reference assays. The uRDT showed a greater than 10-fold lower limit of detection for HRP2 compared with the RDT. The sensitivity of the uRDT was 84% and 44% against qRT-PCR in Uganda and Myanmar, respectively, and that of the RDT was 62% and 0% for the same two sites. The specificities of the uRDT were 92% and 99.8% against qRT-PCR for Uganda and Myanmar, respectively, and 99% and 99.8% against the HRP2 reference ELISA. The RDT had specificities of 95% and 100% against qRT-PCR for Uganda and Myanmar, respectively, and 96% and 100% against the HRP2 reference ELISA. The uRDT detected new infections in IBSM study participants 1.5 days sooner than the RDT. The uRDT has the same workflow as currently available RDTs, but improved performance characteristics to identify asymptomatic malaria infections. The uRDT may be a useful tool for malaria elimination strategies. PMID:28820709
2011-01-01
Background Genetic risk models could potentially be useful in identifying high-risk groups for the prevention of complex diseases. We investigated the performance of this risk stratification strategy by examining epidemiological parameters that impact the predictive ability of risk models. Methods We assessed sensitivity, specificity, and positive and negative predictive value for all possible risk thresholds that can define high-risk groups and investigated how these measures depend on the frequency of disease in the population, the frequency of the high-risk group, and the discriminative accuracy of the risk model, as assessed by the area under the receiver-operating characteristic curve (AUC). In a simulation study, we modeled genetic risk scores of 50 genes with equal odds ratios and genotype frequencies, and varied the odds ratios and the disease frequency across scenarios. We also performed a simulation of age-related macular degeneration risk prediction based on published odds ratios and frequencies for six genetic risk variants. Results We show that when the frequency of the high-risk group was lower than the disease frequency, positive predictive value increased with the AUC but sensitivity remained low. When the frequency of the high-risk group was higher than the disease frequency, sensitivity was high but positive predictive value remained low. When both frequencies were equal, both positive predictive value and sensitivity increased with increasing AUC, but higher AUC was needed to maximize both measures. Conclusions The performance of risk stratification is strongly determined by the frequency of the high-risk group relative to the frequency of disease in the population. The identification of high-risk groups with appreciable combinations of sensitivity and positive predictive value requires higher AUC. PMID:21797996
The Relationship Between Intensity Coding and Binaural Sensitivity in Adults With Cochlear Implants
Todd, Ann E.; Goupell, Matthew J.; Litovsky, Ruth Y.
2016-01-01
Objectives Many bilateral cochlear implant users show sensitivity to binaural information when stimulation is provided using a pair of synchronized electrodes. However, there is large variability in binaural sensitivity between and within participants across stimulation sites in the cochlea. It was hypothesized that within-participant variability in binaural sensitivity is in part affected by limitations and characteristics of the auditory periphery which may be reflected by monaural hearing performance. The objective of this study was to examine the relationship between monaural and binaural hearing performance within participants with bilateral cochlear implants. Design Binaural measures included dichotic signal detection and interaural time difference discrimination thresholds. Diotic signal detection thresholds were also measured. Monaural measures included dynamic range and amplitude modulation detection. In addition, loudness growth was compared between ears. Measures were made at three stimulation sites per listener. Results Greater binaural sensitivity was found with larger dynamic ranges. Poorer interaural time difference discrimination was found with larger difference between comfortable levels of the two ears. In addition, poorer diotic signal detection thresholds were found with larger differences between the dynamic ranges of the two ears. No relationship was found between amplitude modulation detection thresholds or symmetry of loudness growth and the binaural measures. Conclusions The results suggest that some of the variability in binaural hearing performance within listeners across stimulation sites can be explained by factors non-specific to binaural processing. The results are consistent with the idea that dynamic range and comfortable levels relate to peripheral neural survival and the width of the excitation pattern which could affect the fidelity with which central binaural nuclei process bilateral inputs. PMID:27787393
Liu, Ting; He, Xiang-ge
2006-05-01
To evaluate the overall diagnostic capabilities of frequency-doubling technology (FDT) in patients of primary glaucoma, with standard automated perimetry (SAP) and/or optic disc appearance as the gold standard. A comprehensive electric search in MEDLINE, EMBASE, Cochrane Library, BIOSIS, Previews, HMIC, IPA, OVID, CNKI, CBMdisc, VIP information, CMCC, CCPD, SSreader and 21dmedia and a manual search in related textbooks, journals, congress articles and their references were performed to identify relevant English and Chinese language articles. Criteria for adaptability were established according to validity criteria for diagnostic research published by the Cochrane Methods Group on Screening and Diagnostic Tests. Quality of the included articles was assessed and relevant materials were extracted for studying. Statistical analysis was performed with Meta Test version 0.6 software. Heterogeneity of the included articles was tested, which was used to select appropriate effect model to calculate pooled weighted sensitivity and specificity. Summary Receiver Operating Characteristic (SROC) curve was established and the area under the curve (AUC) was calculated. Finally, sensitivity analysis was performed. Fifteen English articles (21 studies) of 206 retrieved articles were included in the present study, with a total of 3172 patients. The reported sensitivity of FDT ranged from 0.51 to 1.00, and specificity from 0.58 to 1.00. The pooled weighted sensitivity and specificity for FDT with 95% confidence intervals (95% CI) after correction for standard error were 0.86 (0.80 - 0.90), 0.87 (0.81 - 0.91), respectively. The AUC of SROC was 93.01%. Sensitivity analysis demonstrated no disproportionate influences of individual study. The included articles are of good quality and FDT can be a highly efficient diagnostic test for primary glaucoma based on Meta-analysis. However, a high quality perspective study is still required for further analysis.
Tafiadis, Dionysios; Kosma, Evangelia I; Chronopoulos, Spyridon K; Papadopoulos, Aggelos; Drosos, Konstantinos; Siafaka, Vassiliki; Toki, Eugenia I; Ziavra, Nausica
2018-01-01
The relationship between smoking and alterations of the vocal tract and larynx is well known. This pathology leads to the degradation of voice performance in daily living. Multiple assessment methods of vocal tract and larynx have been developed, and in recent years they were enriched with self-reported questionnaires such as Voice Handicap Index (VHI). This study determined the cutoff points of VHI's total score and its three domains for young female smokers in Greece. These estimated cutoff points could be used by voice specialists as an indicator for further clinical evaluation (foreseeing a potential risk of developing a vocal symptom because of smoking habits). A sample of 120 female nondysphonic smokers (aged 18-31) was recruited. Participants filled out the VHI and Voice Evaluation Form. VHI's cutoff point of total score was calculated at the value of 19.50 (sensitivity: 0.780, 1-specificity: 0.133). Specifically, the construct domain of functional was 7.50 (sensitivity: 0.900, 1-specificity: 0.217), for physical it was 8.50 (sensitivity: 0.867, 1-specificity: 0.483), and for emotional it was 7.50 (sensitivity: 0.833, 1-specificity: 0.200) through the use of receiver operating characteristic. Furthermore, VHI could be used as a monitoring tool for smokers and as a feedback for smoking cessation. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Yang, Rui; Tang, Qiusha; Miao, Fengqin; An, Yanli; Li, Mengfei; Han, Yong; Wang, Xihui; Wang, Juan; Liu, Peidang; Chen, Rong
2015-01-01
Purpose To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. Methods CD90+ LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90+ LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. Results CD90+ LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90+ LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90+ LCSCs to magnetic hyperthermia. Conclusion The inhibition of HSP90 could sensitize CD90+ LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo. PMID:26677324
Etching twin core fiber for the temperature-independent refractive index sensing
NASA Astrophysics Data System (ADS)
Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, Jingjing; Gao, Xuekai; Lin, Heng; Pei, Li
2018-04-01
We proposed an ultra-compact chemically etched twin core fiber (TCF) based optic refractive index (RI) sensor, in which the etched fiber was fabricated by immersing in an aqueous solution of hydrofluoric acid (HF) to etch the cladding. Due to the multipath evolutions of light during the TCF, the mode induced interference pattern can be used for measurement. Numerical simulations were performed, demonstrating that only the cladding mode strongly interacts with the surrounding media, and the higher cladding modes will be more sensitive to external medium. In the experiment demonstration, the RI response characteristics of the sensor were investigated, which shows a relatively high RI sensitivity and a much low temperature cross-sensitivity with about 1.06 × 10-6 RIU °C-1. Due to low cost and easy fabrication, the sensor can be a suitable candidate in the biochemical field.
NASA Astrophysics Data System (ADS)
Valença, J. V. B.; Silveira, I. S.; Silva, A. C. A.; Dantas, N. O.; Antonio, P. L.; Caldas, L. V. E.; d'Errico, F.; Souza, S. O.
2017-11-01
The OSL characteristics of three different borate glass matrices containing magnesia (LMB), quicklime (LCB) or potassium carbonate (LKB) were examined. Five different formulations for each composition were produced using a melt-quenching method and analyzed in terms of both dose-response curves and OSL shape decay. The samples were irradiated using a 90Sr/90Y beta source with doses up to 30 Gy. Dose-response curves were plotted using the initial OSL intensity as the chosen parameter. The OSL analysis showed that LKB glasses are the most sensitive to beta irradiation. For the most sensitive LKB composition, the irradiation process was also done using a 60Co gamma source in a dose range from 200 to 800 Gy. In all cases, no saturation was observed. A fitting process using a three-term exponential function was performed for the most sensitive formulations of each composition, which suggested a similar behavior in the OSL decay.
Morimoto, Takuya; Fujikawa, Naotaka; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi
2016-04-01
Model squaraine dyes having sharp and narrow absorptions mainly in the far-red wavelength region has been logically designed, synthesized and used for their application as sensitizer in the dyesensitized solar cells (DSSC). In order to have fine control on energetics, dyes having same mother core and alkyl chain length varying only in molecular symmetry and position of substituent were designed. It has been found that even keeping all other structural factor constant, only positional variation of substituent leads to not only in the variation of energetics by 0.1 eV but affects the photovoltaic characteristics also. Optimum concentration of dye de-aggregating agent was found to be 100 times with respect to the sensitizing dye concentration. Amongst dyes utilized in this work best performance was obtained for unsymmetrical dye SQ-40 giving a photoconversion efficiency of 4.01% under simulated solar irradiation at global AM 1.5.
Development of a Pediatric Ebola Predictive Score, Sierra Leone1.
Fitzgerald, Felicity; Wing, Kevin; Naveed, Asad; Gbessay, Musa; Ross, J C G; Checchi, Francesco; Youkee, Daniel; Jalloh, Mohamed Boie; Baion, David E; Mustapha, Ayeshatu; Jah, Hawanatu; Lako, Sandra; Oza, Shefali; Boufkhed, Sabah; Feury, Reynold; Bielicki, Julia; Williamson, Elizabeth; Gibb, Diana M; Klein, Nigel; Sahr, Foday; Yeung, Shunmay
2018-02-01
We compared children who were positive for Ebola virus disease (EVD) with those who were negative to derive a pediatric EVD predictor (PEP) score. We collected data on all children <13 years of age admitted to 11 Ebola holding units in Sierra Leone during August 2014-March 2015 and performed multivariable logistic regression. Among 1,054 children, 309 (29%) were EVD positive and 697 (66%) EVD negative, with 48 (5%) missing. Contact history, conjunctivitis, and age were the strongest positive predictors for EVD. The PEP score had an area under receiver operating characteristics curve of 0.80. A PEP score of 7/10 was 92% specific and 44% sensitive; 3/10 was 30% specific, 94% sensitive. The PEP score could correctly classify 79%-90% of children and could be used to facilitate triage into risk categories, depending on the sensitivity or specificity required.
Research on optical biosensor with up-converting phosphor marker
NASA Astrophysics Data System (ADS)
Zhao, Yongkai; Zhou, Lei; Wang, Jing; Huang, Lihua; Yan, Zhongqiang; Huang, Huijie; Yang, Ruifu; Liu, Lei; Ren, Bingqiang; Wang, Xiangzhao
2006-08-01
An optical biosensor with up-converting phosphor (UCP) marker is developed for the sensitive rapid immunoassay to the specific biomolecule. UCP can emit visible light when excited by infrared light. Through detecting and analyzing the content of UCP particles on the test strip after immunoreaction, the concentration of target analyte in the sample can be obtained. The detection sensitivity to plague IgG is better than 5 ng/ml; to plague FI-Ab is better than 100 pg/ml; to plague Yersinia pestis cell is better than 3*10^(4) CFU/ml. Good linear response characteristics and an excellent correlation (R2>=0.95) have been verified by quantitative detection results. In the practical application, detection results to 167 analytic samples have an excellent consistency with those obtained by reverse hemagglutination test. The up-converting phosphor technology (UPT) based biosensor has stable, reliable, and sensitive performances. It can meet the need of various bioassay applications.
NASA Astrophysics Data System (ADS)
Kim, Ji Hye; Ahn, Il Jun; Nam, Woo Hyun; Ra, Jong Beom
2015-02-01
Positron emission tomography (PET) images usually suffer from a noticeable amount of statistical noise. In order to reduce this noise, a post-filtering process is usually adopted. However, the performance of this approach is limited because the denoising process is mostly performed on the basis of the Gaussian random noise. It has been reported that in a PET image reconstructed by the expectation-maximization (EM), the noise variance of each voxel depends on its mean value, unlike in the case of Gaussian noise. In addition, we observe that the variance also varies with the spatial sensitivity distribution in a PET system, which reflects both the solid angle determined by a given scanner geometry and the attenuation information of a scanned object. Thus, if a post-filtering process based on the Gaussian random noise is applied to PET images without consideration of the noise characteristics along with the spatial sensitivity distribution, the spatially variant non-Gaussian noise cannot be reduced effectively. In the proposed framework, to effectively reduce the noise in PET images reconstructed by the 3-D ordinary Poisson ordered subset EM (3-D OP-OSEM), we first denormalize an image according to the sensitivity of each voxel so that the voxel mean value can represent its statistical properties reliably. Based on our observation that each noisy denormalized voxel has a linear relationship between the mean and variance, we try to convert this non-Gaussian noise image to a Gaussian noise image. We then apply a block matching 4-D algorithm that is optimized for noise reduction of the Gaussian noise image, and reconvert and renormalize the result to obtain a final denoised image. Using simulated phantom data and clinical patient data, we demonstrate that the proposed framework can effectively suppress the noise over the whole region of a PET image while minimizing degradation of the image resolution.
Determination of the Characteristic Values and Variation Ratio for Sensitive Soils
NASA Astrophysics Data System (ADS)
Milutinovici, Emilia; Mihailescu, Daniel
2017-12-01
In 2008, Romania adopted Eurocode 7, part II, regarding the geotechnical investigations - called SR EN1997-2/2008. However a previous standard already existed in Romania, by using the mathematical statistics in determination of the calculation values, the requirements of Eurocode can be taken into consideration. The setting of characteristics and calculations values of the geotechnical parameters was finally issued in Romania at the end of 2010 at standard NP122-2010 - “Norm regarding determination of the characteristic and calculation values of the geotechnical parameters”. This standard allows using of data already known from analysed area and setting the calculation values of geotechnical parameters. However, this possibility exist, it is not performed easy in Romania, considering that there isn’t any centralized system of information coming from the geotechnical studies performed for various objectives of private or national interests. Every company performing geotechnical studies tries to organize its own data base, but unfortunately none of them use existing centralized data. When determining the values of calculation, an important role is played by the variation ratio of the characteristic values of a geotechnical parameter. There are recommendations in the mentioned Norm, that could be taken into account, regarding the limits of the variation ratio, but these values are mentioned for Quaternary age soils only, normally consolidated, with a content of organic material < 5%. All of the difficult soils are excluded from the Norm even if they exist and affect the construction foundations on more than a half of the Romania’s surface. A type of difficult soil, extremely widespread on the Romania’s territory, is the contractile soil (with high swelling and contractions, very sensitive to the seasonal moisture variations). This type of material covers and influences the construction foundations in one over third of Romania’s territory. This work is proposing to be a step in determination of limits of the variation ratios for the contractile soils category, for the most used geotechnical parameters in the Romanian engineering practice, namely: the index of consistency and the cohesion.
Pitot-tube flowmeter for quantification of airflow during sleep.
Kirkness, J P; Verma, M; McGinley, B M; Erlacher, M; Schwartz, A R; Smith, P L; Wheatley, J R; Patil, S P; Amis, T C; Schneider, H
2011-02-01
The gold-standard pneumotachograph is not routinely used to quantify airflow during overnight polysomnography due to the size, weight, bulkiness and discomfort of the equipment that must be worn. To overcome these deficiencies that have precluded the use of a pneumotachograph in routine sleep studies, our group developed a lightweight, low dead space 'pitot flowmeter' (based on pitot-tube principle) for use during sleep. We aimed to examine the characteristics and validate the flowmeter for quantifying airflow and detecting hypopneas during polysomnography by performing a head-to-head comparison with a pneumotachograph. Four experimental paradigms were utilized to determine the technical performance characteristics and the clinical usefulness of the pitot flowmeter in a head-to-head comparison with a pneumotachograph. In each study (1-4), the pitot flowmeter was connected in series with a pneumotachograph under either static flow (flow generator inline or on a face model) or dynamic flow (subject breathing via a polyester face model or on a nasal mask) conditions. The technical characteristics of the pitot flowmeter showed that, (1) the airflow resistance ranged from 0.065 ± 0.002 to 0.279 ± 0.004 cm H(2)O L(-1) s(-1) over the airflow rates of 10 to 50 L min(-1). (2) On the polyester face model there was a linear relationship between airflow as measured by the pitot flowmeter output voltage and the calibrated pneumotachograph signal a (β(1) = 1.08 V L(-1) s(-1); β(0) = 2.45 V). The clinically relevant performance characteristics (hypopnea detection) showed that (3) when the pitot flowmeter was connected via a mask to the human face model, both the sensitivity and specificity for detecting a 50% decrease in peak-to-peak airflow amplitude was 99.2%. When tested in sleeping human subjects, (4) the pitot flowmeter signal displayed 94.5% sensitivity and 91.5% specificity for the detection of 50% peak-to-peak reductions in pneumotachograph-measured airflow. Our data validate the pitot flowmeter for quantification of airflow and detecting breathing reduction during polysomnographic sleep studies. We speculate that quantifying airflow during sleep can differentiate phenotypic traits related to sleep disordered breathing.
Li, Bo; Sun, Zhiqiang; Li, Xiaohan; Li, Xiaoxi; Wang, Han; Chen, Weijiao; Chen, Peng; Qiao, Mengran; Mao, Yuanli
2017-04-01
There have been many inconsistent reports about the performance of histidine-rich protein 2 (HRP2) and lactate dehydrogenase (LDH) antigens as rapid diagnostic tests (RDTs) for the diagnosis of past Plasmodium falciparum infections. This meta-analysis was performed to determine the performance of pfHRP2 versus pLDH antigen RDTs in the detection of P. falciparum . After a systematic review of related studies, Meta-DiSc 1.4 software was used to calculate the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Forest plots and summary receiver operating characteristic curve (SROC) analysis were used to summarize the overall test performance. Fourteen studies which met the inclusion criteria were included in the meta-analysis. The summary performances for pfHRP2- and pLDH-based tests in the diagnosis of P. falciparum infections were as follows: pooled sensitivity, 96.3% (95.8-96.7%) vs. 82.6% (81.7-83.5%); specificity, 86.1% (85.3-86.8%) vs. 95.9% (95.4-96.3%); diagnostic odds ratio (DOR), 243.31 (97.679-606.08) vs. 230.59 (114.98-462.42); and area under ROCs, 0.9822 versus 0.9849 (all p < 0.001). The two RDTs performed satisfactorily for the diagnosis of P. falciparum , but the pLDH tests had higher specificity, whereas the pfHRP2 tests had better sensitivity. The pfHRP2 tests had slightly greater accuracy compared to the pLDH tests. A combination of both antigens might be a more reliable approach for the diagnosis of malaria.
Nattabi, Haliimah A; Sharif, Norhafidzah M; Yahya, Noorazrul; Ahmad, Rozilawati; Mohamad, Mazlyfarina; Zaki, Faizah M; Yusoff, Ahmad N
2017-10-17
This study is a dedicated 2D-shear wave elastography (2D-SWE) review aimed at systematically eliciting up-to-date evidence of its clinical value in differential diagnosis of benign and malignant thyroid nodules. PubMed, Web of Science, and Scopus databases were searched for studies assessing the diagnostic value of 2D-SWE for thyroid malignancy risk stratification published until December 2016. The retrieved titles and abstracts were screened and evaluated according to the predefined inclusion and exclusion criteria. Methodological quality of the studies was assessed using the Quality Assessment of Studies of Diagnostic Accuracy included in Systematic Review 2 (QUADAS-2) tool. Extracted 2D-SWE diagnostic performance data were meta-analyzed to assess the summary sensitivity, specificity, and area under the receiver operating characteristic curve. After stepwise review, 14 studies in which 2D-SWE was used to evaluate 2851 thyroid nodules (1092 malignant, 1759 benign) from 2139 patients were selected for the current study. Study quality on QUADAS-2 assessment was moderate to high. The summary sensitivity, specificity and area under the receiver operating characteristic curve of 2D-SWE for differential diagnosis of benign and malignant thyroid nodules were 0.66 (95% confidence interval [CI]: 0.64-0.69), 0.78 (CI: 0.76-0.80), and 0.851 (Q* = 0.85), respectively. The pooled diagnostic odds ratio, negative likelihood ratio, and positive likelihood ratio were 12.73 (CI: 8.80-18.43), 0.31 (CI: 0.22-0.44), and 3.87 (CI: 2.83-5.29), respectively. Diagnostic performance of quantitative 2D-SWE for malignancy risk stratification of thyroid nodules is suboptimal with mediocre sensitivity and specificity, contrary to earlier reports of excellence. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Sensitivity of Hyperdense Basilar Artery Sign on Non-Enhanced Computed Tomography.
Ernst, Marielle; Romero, Javier M; Buhk, Jan-Hendrik; Cheng, Bastian; Herrmann, Jochen; Fiehler, Jens; Groth, Michael
2015-01-01
The hyperdense basilar artery sign (HBAS) is an indicator of vessel occlusion on non contrast-enhanced computer tomography (NECT) in acute stroke patients. Since basilar artery occlusion (BAO) is associated with a high mortality and morbidity, its early detection is of great clinical value. We sought to analyze the influence of density measurement as well as a normalized ratio of Hounsfield unit/hematocrit (HU/Hct) ratio on the detection of BAO on NECT in patients with suspected BAO. 102 patients with clinically suspected BAO were examined with NECT followed immediately by Multidetector computed tomography Angiography. Two observers independently analyzed the images regarding the presence or absence of HBAS on NECT and performed HU measurements in the basilar artery. Receiver operating characteristic curve analysis was performed to determine the optimal density threshold for BAO using attenuation measurements or HU/Hct ratio. Sensitivity of visual detection of the HBAS on NECT was relatively low 81% (95%-CI, 54-95%) while specificity was high 91% (95%-CI, 82-96%). The highest sensitivity was achieved by the combination of visual assessment and additional quantitative attenuation measurements applying a cut-off value of 46.5 HU with 94% sensitivity and 81% specificity for BAO. A HU/Hct ratio >1.32 revealed sensitivity of 88% (95%-CI, 60-98%) and specificity of 84% (95%-CI, 74-90%). In patients with clinically suspected acute BAO the combination of visual assessment and additional attenuation measurement with a cut-off value of 46.5 HU is a reliable approach with high sensitivity in the detection of BAO on NECT.
Banal, F; Dougados, M; Combescure, C; Gossec, L
2009-07-01
To evaluate the ability of the widely used ACR set of criteria (both list and tree format) to diagnose RA compared with expert opinion according to disease duration. A systematic literature review was conducted in PubMed and Embase databases. All articles reporting the prevalence of RA according to ACR criteria and expert opinion in cohorts of early (<1 year duration) or established (>1 year) arthritis were analysed to calculate the sensitivity and specificity of ACR 1987 criteria against the "gold standard" (expert opinion). A meta-analysis using a summary receiver operating characteristic (SROC) curve was performed and pooled sensitivity and specificity were calculated with confidence intervals. Of 138 publications initially identified, 19 were analysable (total 7438 patients, 3883 RA). In early arthritis, pooled sensitivity and specificity of the ACR set of criteria were 77% (68% to 84%) and 77% (68% to 84%) in the list format versus 80% (72% to 88%) and 33% (24% to 43%) in the tree format. In established arthritis, sensitivity and specificity were respectively 79% (71% to 85%) and 90% (84% to 94%) versus 80% (71% to 85%) and 93% (86% to 97%). The SROC meta-analysis confirmed the statistically significant differences, suggesting that diagnostic performances of ACR list criteria are better in established arthritis. The specificity of ACR 1987 criteria in early RA is low, and these criteria should not be used as diagnostic tools. Sensitivity and specificity in established RA are higher, which reflects their use as classification criteria gold standard.
Kim, Jae Heon; Sun, Hwa Yeon; Hwang, Jiyoung; Hong, Seong Sook; Cho, Yong Jin; Doo, Seung Whan; Yang, Won Jae; Song, Yun Seob
2016-10-12
The aim of this study was to investigate the diagnostic accuracy of contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) of small renal masses in real practice. Contrast-enhanced CT and MRI were performed between February 2008 and February 2013 on 68 patients who had suspected small (≤4 cm) renal cell carcinoma (RCC) based on ultrasonographic measurements. CT and MRI radiographs were reviewed, and the findings of small renal masses were re-categorized into five dichotomized scales by the same two radiologists who had interpreted the original images. Receiver operating characteristics curve analysis was performed, and sensitivity and specificity were determined. Among the 68 patients, 60 (88.2 %) had RCC and eight had benign disease. The diagnostic accuracy rates of contrast-enhanced CT and MRI were 79.41 and 88.23 %, respectively. Diagnostic accuracy was greater when using contrast-enhanced MRI because too many masses (67.6 %) were characterized as "4 (probably solid cancer) or 5 (definitely solid cancer)." The sensitivity of contrast-enhanced CT and MRI for predicting RCC were 79.7 and 88.1 %, respectively. The specificities of contrast-enhanced CT and MRI for predicting RCC were 44.4 and 33.3 %, respectively. Fourteen diagnoses (20.5 %) were missed or inconsistent compared with the final pathological diagnoses. One appropriate nephroureterectomy and five unnecessary percutaneous biopsies were performed for RCC. Seven unnecessary partial nephrectomies were performed for benign disease. Although contrast-enhanced CT and MRI showed high sensitivity for detecting small renal masses, specificity remained low.
NASA Astrophysics Data System (ADS)
Mohanty, Shyama Prasad; Bhargava, Parag
2012-11-01
Nanoparticle loaded quasi solid electrolytes are important from the view point of developing electrolytes for dye sensitized solar cells (DSSCs) having long term stability. The present work shows the influence of isoelectric point of nanopowders in electrolyte on the photoelectrochemical characteristics of DSSCs. Electrolytes with nanopowders of silica, alumina and magnesia which have widely differing isoelectric points are used in the study. Adsorption of ions from the electrolyte on the nanopowder surface, characterized by zeta potential measurement, show that cations get adsorbed on silica, alumina surface while anions get adsorbed on magnesia surface. The electrochemical characteristics of nanoparticulate loaded electrolytes are examined through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DSSCs fabricated using liquid, silica or alumina loaded electrolytes exhibit almost similar performance. But interestingly, the magnesia loaded electrolyte-based cell show lower short circuit current density (JSC) and much higher open circuit voltage (VOC), which is attributed to adsorption of anions. Such anionic adsorption prevents the dark reaction in magnesia loaded electrolyte-based cell and thus, enhances the VOC by almost 100 mV as compared to liquid electrolyte based cell. Also, higher electron life time at the titania/electrolyte interface is observed in magnesia loaded electrolyte-based cell as compared to others.
Prospective observation of a new bioactive luting cement: 2-year follow-up.
Jefferies, Steven R; Pameijer, Cornelis H; Appleby, David C; Boston, Daniel; Galbraith, Colin; Lööf, Jesper; Glantz, Per-Olof
2012-01-01
A pilot study was conducted to determine the 2-year clinical performance of a new bioactive dental cement (Ceramir C&B, formerly XeraCem) for permanent cementation. The cement used in this study is a new formulation class, a hybrid material comprising calcium aluminate and glass ionomer. Thirty-eight crowns and fixed partial denture (FPD) abutments were cemented in 17 patients. Thirty-one of the abutment teeth were vital, 7 nonvital. Six reconstructions were FPDs comprising 14 abutment teeth (12 vital/2 nonvital). A two-unit fixed splint was also included. Preparation parameters and cement characteristics (dispensing, working time, seating characteristics, ease of cement removal) were recorded. Baseline and postcementation data were recorded for marginal integrity, marginal discoloration, secondary caries, retention, and gingival inflammation. Tooth sensitivity was assessed at pre- and postcementation time points using categorical and visual analogue scale (VAS) assessment measures. Mixing of the cement was reported as "easy." Clinical working time for this cement was deemed acceptable. Assessment of seating characteristics indicated all restorations were seated completely after cementation. Cement removal was determined to be "easy." Fifteen of 17 subjects were available for 1-year recall examination; 13 patients were available for the 2-year recall examination. Restorations at 2-year recall examination included 17 single-unit, full-coverage crown restorations, four 3-unit FPDs comprising 8 abutments, and one 2-unit splint. No retentive failures or sensitivity were recorded at 2-year recall. Marginal integrities of all restorations/abutments at 2 years were rated in the "alpha" category. Average VAS score for tooth sensitivity decreased from 7.63 mm at baseline to 0.44 mm at 6-month recall, 0.20 mm at 1-year recall, and 0.00 mm at 2-year recall. The average gingival index score for gingival inflammation decreased from 0.56 at baseline to 0.11 at 6-month recall, then 0.16 at 1-year recall, and 0.21 at 2-year recall. Two-year recall data yielded no loss of retention, no secondary caries, no marginal discolorations, and no subjective sensitivity. All restorations rated "alpha" for marginal integrity at the 2-year recall. After periodic recalls up to 2 years, the new bioactive cement tested thus far has performed favorably as a luting agent for permanent cementation. © 2011 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Calzetti, D.; Dickinson, M. E.; Bergeron, L. E.; Colina, L.
1998-12-01
We summarize the performance of the NICMOS instrument and discuss the measured sensitivity, and the photometric performance and stability. We also present a method for removing an instrument artifact termed ``pedestal'', a bias instability that is present at a low level in most NICMOS images. The characteristics of dark frames will also be discussed, in particular as they relate to pedestal correction. NICMOS is capable of achieving the advertised performance in most areas. As an example, typical 3 sigma detection limits for a 5 orbit observation with NIC2 are 1.47 mJy arcsec(-2) in F110W, 1.67 mJy arcsec(-2) in F160W, and 12.6 mJy arcsec(-2) in F222M. The absence of time-dependent backgrounds makes infrared photometry from NICMOS highly stable, reaching an accuracy of 2% or better. NICMOS absolute calibration has been accomplished with a combination of solar analog stars and white dwarf standard stars and achieves 5% absolute photometry. An exception to these accuracies occurs for NIC3 at short wavelengths where intra-pixel sensitivity variations produces variations in relative photometry as large as 20%.
García-Rodríguez, Rodrigo; Villanueva-Cab, Julio; Anta, Juan A.; Oskam, Gerko
2016-01-01
The influence of the thickness of the nanostructured, mesoporous TiO2 film on several parameters determining the performance of a dye-sensitized solar cell is investigated both experimentally and theoretically. We pay special attention to the effect of the exchange current density in the dark, and we compare the values obtained by steady state measurements with values extracted from small perturbation techniques. We also evaluate the influence of exchange current density, the solar cell ideality factor, and the effective absorption coefficient of the cell on the optimal film thickness. The results show that the exchange current density in the dark is proportional to the TiO2 film thickness, however, the effective absorption coefficient is the parameter that ultimately defines the ideal thickness. We illustrate the importance of the exchange current density in the dark on the determination of the current–voltage characteristics and we show how an important improvement of the cell performance can be achieved by decreasing values of the total series resistance and the exchange current density in the dark. PMID:28787833
A hybrid variational ensemble data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)
NASA Astrophysics Data System (ADS)
Gustafsson, N.; Bojarova, J.; Vignes, O.
2014-02-01
A hybrid variational ensemble data assimilation has been developed on top of the HIRLAM variational data assimilation. It provides the possibility of applying a flow-dependent background error covariance model during the data assimilation at the same time as full rank characteristics of the variational data assimilation are preserved. The hybrid formulation is based on an augmentation of the assimilation control variable with localised weights to be assigned to a set of ensemble member perturbations (deviations from the ensemble mean). The flow-dependency of the hybrid assimilation is demonstrated in single simulated observation impact studies and the improved performance of the hybrid assimilation in comparison with pure 3-dimensional variational as well as pure ensemble assimilation is also proven in real observation assimilation experiments. The performance of the hybrid assimilation is comparable to the performance of the 4-dimensional variational data assimilation. The sensitivity to various parameters of the hybrid assimilation scheme and the sensitivity to the applied ensemble generation techniques are also examined. In particular, the inclusion of ensemble perturbations with a lagged validity time has been examined with encouraging results.
Reduced Toxicity, High Performance Monopropellant at the U.S. Air Force Research Laboratory
NASA Astrophysics Data System (ADS)
Hawkins, T. W.; Brand, A. J.; McKay, M. B.; Tinnirello, M.
2010-09-01
Current programs are aiming to develop reduced toxicity monopropellant formulations to replace spacecraft hydrazine monopropellant. The Air Force Research Laboratory's(AFRL's) approach to replacing hydrazine is the synthesis and development of energetic compounds/formulations with substantially less vapor toxicity and superior performance(specific impulse and density). Characterization and testing of these high energy density materials is an essential part of the screening process for viable advanced propellants. Hazardous handling characteristics, undesirable physical properties or unacceptable sensitivity behaviors must also be identified and/or modified to further development by a potential user. AFRL has successfully identified a novel monopropellant(designated AF-M315E) that shows great promise as an avenue toward replacement of hydrazine monopropellant for spacecraft propulsion. Hazard and safety/sensitivity, stability, and toxicity studies have been conducted on the monopropellant and will be described. The results from AF-M315E indicate that a >50% improvement in propulsion system performance over hydrazine is achievable while simultaneously providing a safer environment for the general public, ground personnel, crews and flight participants.
Aeroelastic considerations for torsionally soft rotors
NASA Technical Reports Server (NTRS)
Mantay, W. R.; Yeager, W. T., Jr.
1986-01-01
A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.
Kumar, A. Sathish; Singh, I. Rabi Raja; Sharma, S. D.; Ravindran, B. Paul
2015-01-01
The main objective of this study was to investigate the characteristics of metal oxide semiconductor field effect transistor (MOSFET) dosimeter for kilovoltage (kV) X-ray beams in order to perform the in vivo dosimetry during image guidance in radiotherapy. The performance characteristics of high sensitivity MOSFET dosimeters were investigated for 80, 90, 100, 110, 120, and 125 kV X-ray beams used for imaging in radiotherapy. This study was performed using Clinac 2100 C/D medical electron linear accelerator with on-board imaging and kV cone beam computed tomography system. The characteristics studied in this work include energy dependence, angular dependence, and linearity. The X-ray beam outputs were measured as per American Association of Physicists in Medicine (AAPM) TG 61 recommendations using PTW parallel plate (PP) ionization chamber, which was calibrated in terms of air kerma (Nk) by the National Standard Laboratory. The MOSFET dosimeters were calibrated against the PP ionization chamber for all the kV X-ray beams and the calibration coefficient was found to be 0.11 cGy/mV with a standard deviation of about ±1%. The response of MOSFET was found to be energy independent for the kV X-ray energies used in this study. The response of the MOSFET dosimeter was also found independent of angle of incidence for the gantry angles in the range of 0° to 360° in-air as well as at 3 cm depth in tissue equivalent phantom. PMID:26500397
Meta-analysis of diagnostic accuracy studies in mental health
Takwoingi, Yemisi; Riley, Richard D; Deeks, Jonathan J
2015-01-01
Objectives To explain methods for data synthesis of evidence from diagnostic test accuracy (DTA) studies, and to illustrate different types of analyses that may be performed in a DTA systematic review. Methods We described properties of meta-analytic methods for quantitative synthesis of evidence. We used a DTA review comparing the accuracy of three screening questionnaires for bipolar disorder to illustrate application of the methods for each type of analysis. Results The discriminatory ability of a test is commonly expressed in terms of sensitivity (proportion of those with the condition who test positive) and specificity (proportion of those without the condition who test negative). There is a trade-off between sensitivity and specificity, as an increasing threshold for defining test positivity will decrease sensitivity and increase specificity. Methods recommended for meta-analysis of DTA studies --such as the bivariate or hierarchical summary receiver operating characteristic (HSROC) model --jointly summarise sensitivity and specificity while taking into account this threshold effect, as well as allowing for between study differences in test performance beyond what would be expected by chance. The bivariate model focuses on estimation of a summary sensitivity and specificity at a common threshold while the HSROC model focuses on the estimation of a summary curve from studies that have used different thresholds. Conclusions Meta-analyses of diagnostic accuracy studies can provide answers to important clinical questions. We hope this article will provide clinicians with sufficient understanding of the terminology and methods to aid interpretation of systematic reviews and facilitate better patient care. PMID:26446042
Precision laser automatic tracking system.
Lucy, R F; Peters, C J; McGann, E J; Lang, K T
1966-04-01
A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.
Schneider, George J; Kuper, Kevin G; Abravaya, Klara; Mullen, Carolyn R; Schmidt, Marion; Bunse-Grassmann, Astrid; Sprenger-Haussels, Markus
2009-04-01
Automated sample preparation systems must meet the demands of routine diagnostics laboratories with regard to performance characteristics and compatibility with downstream assays. In this study, the performance of QIAGEN EZ1 DSP Virus Kit on the BioRobot EZ1 DSP was evaluated in combination with the Abbott RealTime HIV-1, HCV, and HBV assays, followed by thermalcycling and detection on the Abbott m2000rt platform. The following performance characteristics were evaluated: linear range and precision, sensitivity, cross-contamination, effects of interfering substances and correlation. Linearity was observed within the tested ranges (for HIV-1: 2.0-6.0 log copies/ml, HCV: 1.3-6.9 log IU/ml, HBV: 1.6-7.6 log copies/ml). Excellent precision was obtained (inter-assay standard deviation for HIV-1: 0.06-0.17 log copies/ml (>2.17 log copies/ml), HCV: 0.05-0.11 log IU/ml (>2.09 log IU/ml), HBV: 0.03-0.07 log copies/ml (>2.55 log copies/ml)), with good sensitivity (95% hit rates for HIV-1: 50 copies/ml, HCV: 12.5 IU/ml, HBV: 10 IU/ml). No cross-contamination was observed, as well as no negative impact of elevated levels of various interfering substances. In addition, HCV and HBV viral load measurements after BioRobot EZ1 DSP extraction correlated well with those obtained after Abbott m2000sp extraction. This evaluation demonstrates that the QIAGEN EZ1 DSP Virus Kit provides an attractive solution for fully automated, low throughput sample preparation for use with the Abbott RealTime HIV-1, HCV, and HBV assays.
NASA Astrophysics Data System (ADS)
Omidvari, N.; Sharma, R.; Ganka, T. R.; Schneider, F. R.; Paul, S.; Ziegler, S. I.
2017-04-01
The design of a positron emission tomography (PET) scanner is specially challenging since it should not compromise high spatial resolution, high sensitivity, high count-rate capability, and good energy and time resolution. The geometrical design of the system alongside the characteristics of the individual PET detector modules contributes to the overall performance of the scanner. The detector performance is mainly influenced by the characteristics of the photo-detector and the scintillation crystal. Although silicon photomultipliers (SiPMs) have already proven to be promising photo-detectors for PET, their performance is highly influenced by micro-cell structure and production technology. Therefore, five types of SiPMs produced by KETEK with an active area size of 1.2 × 1.2 mm2 were characterized in this study. The SiPMs differed in the production technology and had micro-cell sizes of 25, 50, 75, and 100 μm. Performance of the SiPMs was evaluated in terms of their breakdown voltage, temperature sensitivity, dark count rate, and correlated noise probability. Subsequently, energy resolution and coincidence time resolution (CTR) of the SiPMs were measured with five types of crystals, including two Ce:LYSO, two Ce:GAGG, and one Pr:LuAG. Two crystals with a geometry of 1.5 × 1.5 × 6 mm3 were available from each type. The best CTR achieved was ~ 240 ps, which was obtained with the Ce:LYSO crystals coupled to the 50 μm SiPM produced with the trench technology. The best energy resolution for the 511 keV photo-peak was ~ 11% and was obtained with the same SiPM coupled to the Ce:GAGG crystals.
Byrem, T M; Bartlett, P C; Donohue, H; Voisinet, B D; Houseman, J T
2012-11-23
Control of Neospora caninum infection in cattle depends on specific, ante-mortem detection of infected animals and limiting their use as breeding stock or by culling. The objective of the present study was to determine appropriate cut-off values and diagnostic performance of a milk ELISA test using whole and skim milk in a commercial serum ELISA test (IDEXX Neospora Ab). Serum and milk samples were obtained from a total of 475 lactating cows from two herds with and two herds without a previous history of N. caninum-associated abortion. Overall seroprevalence determined by the ELISA was 18.3%. Compared to serum ELISA values, correlation and overall performance assessed by receiver operating characteristic analysis was higher when either whole or skim milk samples were diluted 1:2 compared to undiluted or 1:5 diluted samples. Diagnostic performance for analysis of whole and skim milk was compared at cut-off values that achieved a desired operating characteristic of at least 95% specificity. For whole milk diluted 1:2 and a cut-off of 0.14 (S/P ratio), sensitivity and kappa values were 74.7% (95% CI 64.3-83.4) and 0.70 (95% CI 0.61-0.78), respectively. For skim milk diluted 1:2 and a cut-off of 0.30, sensitivity and kappa values were 77.0% (95% CI 66.8-85.4) and 0.72 (95% CI 0.64-0.80), respectively. Using the selected cut-offs, the IDEXX Neospora Ab Test is equally suited for the analysis of whole and skim milk as a screening tool in neosporosis control programs. Copyright © 2012 Elsevier B.V. All rights reserved.
Barlow, Gavin; Nathwani, Dilip; Davey, Peter
2007-01-01
Background The performance of CURB65 in predicting mortality in community‐acquired pneumonia (CAP) has been tested in two large observational studies. However, it has not been tested against generic sepsis and early warning scores, which are increasingly being advocated for identification of high‐risk patients in acute medical wards. Method A retrospective analysis was performed of data prospectively collected for a CAP quality improvement study. The ability to stratify mortality and performance characteristics (sensitivity, specificity, positive predictive value, negative predictive value and area under the receiver operating curve) were calculated for stratifications of CURB65, CRB65, the systemic inflammatory response syndrome (SIRS) criteria and the standardised early warning score (SEWS). Results 419 patients were included in the main analysis with a median age of 74 years (men = 47%). CURB65 and CRB65 stratified mortality in a more clinically useful way and had more favourable operating characteristics than SIRS or SEWS; for example, mortality in low‐risk patients was 2% when defined by CURB65, but 9% when defined by SEWS and 11–17% when defined by variations of the SIRS criteria. The sensitivity, specificity, positive predictive value and negative predictive value of CURB65 was 71%, 69%, 35% and 91%, respectively, compared with 62%, 73%, 35% and 89% for the best performing version of SIRS and 52%, 67%, 27% and 86% for SEWS. CURB65 had the greatest area under the receiver operating curve (0.78 v 0.73 for CRB65, 0.68 for SIRS and 0.64 for SEWS). Conclusions CURB65 should not be supplanted by SIRS or SEWS for initial prognostic assessment in CAP. Further research to identify better generic prognostic tools is required. PMID:16928720
Larin, Alexander; Womble, Phillip C.; Dobrokhotov, Vladimir
2016-01-01
In this paper, we present a chemiresistive metal oxide (MOX) sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO2/TiO2 oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF) sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM), X-ray diffraction technique (XRD), atomic force microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDAX), UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO2/TiO2 catalytic layer with 10% vol. content of TiO2 demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material’s characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested. PMID:27618900
Barrett, K. E.; Ellis, K. D.; Glass, C. R.; ...
2015-12-01
The goal of the Accident Tolerant Fuel (ATF) program is to develop the next generation of Light Water Reactor (LWR) fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. An irradiation test series has been defined to assess the performance of proposed ATF concepts under normal LWR operating conditions. The Phase I ATF irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL). Design, analysis, and fabrication processes formore » ATR drop-in capsule experiment preparation are presented in this paper to demonstrate the importance of special design considerations, parameter sensitivity analysis, and precise fabrication and inspection techniques for figure innovative materials used in ATF experiment assemblies. A Taylor Series Method sensitivity analysis approach was used to identify the most critical variables in cladding and rodlet stress, temperature, and pressure calculations for design analyses. The results showed that internal rodlet pressure calculations are most sensitive to the fission gas release rate uncertainty while temperature calculations are most sensitive to cladding I.D. and O.D. dimensional uncertainty. The analysis showed that stress calculations are most sensitive to rodlet internal pressure uncertainties, however the results also indicated that the inside radius, outside radius, and internal pressure were all magnified as they propagate through the stress equation. This study demonstrates the importance for ATF concept development teams to provide the fabricators as much information as possible about the material properties and behavior observed in prototype testing, mock-up fabrication and assembly, and chemical and mechanical testing of the materials that may have been performed in the concept development phase. Special handling, machining, welding, and inspection of materials, if known, should also be communicated to the experiment fabrication and inspection team.« less
Li, Chuang; Cordovilla, Francisco; Jagdheesh, R.
2018-01-01
This paper presents a novel structural piezoresistive pressure sensor with four-grooved membrane combined with rood beam to measure low pressure. In this investigation, the design, optimization, fabrication, and measurements of the sensor are involved. By analyzing the stress distribution and deflection of sensitive elements using finite element method, a novel structure featuring high concentrated stress profile (HCSP) and locally stiffened membrane (LSM) is built. Curve fittings of the mechanical stress and deflection based on FEM simulation results are performed to establish the relationship between mechanical performance and structure dimension. A combination of FEM and curve fitting method is carried out to determine the structural dimensions. The optimized sensor chip is fabricated on a SOI wafer by traditional MEMS bulk-micromachining and anodic bonding technology. When the applied pressure is 1 psi, the sensor achieves a sensitivity of 30.9 mV/V/psi, a pressure nonlinearity of 0.21% FSS and an accuracy of 0.30%, and thereby the contradiction between sensitivity and linearity is alleviated. In terms of size, accuracy and high temperature characteristic, the proposed sensor is a proper choice for measuring pressure of less than 1 psi. PMID:29393916
Zhang, Quanxin; Zhang, Geping; Sun, Xiaofeng; Yin, Keyang; Li, Hongguang
2017-05-31
Dye-sensitized solar cells (DSSCs) are highly promising since they can potentially solve global energy issues. The development of new photosensitizers is the key to fully realizing perspectives proposed to DSSCs. Being cheap and nontoxic, carbon quantum dots (CQDs) have emerged as attractive candidates for this purpose. However, current methodologies to build up CQD-sensitized solar cells (CQDSCs) result in an imperfect apparatus with extremely low power conversion efficiencies (PCEs). Herein, we present a simple strategy of growing carbon quantum dots (CQDs) onto TiO₂ surfaces in situ. The CQDs/TiO₂ hybridized photoanode was then used to construct solar cell with an improved PCE of 0.87%, which is higher than all of the reported CQDSCs adopting the simple post-adsorption method. This result indicates that an in situ growing strategy has great advantages in terms of optimizing the performance of CQDSCs. In addition, we have also found that the mechanisms dominating the performance of CQDSCs are different from those behind the solar cells using inorganic semiconductor quantum dots (ISQDs) as the photosensitizers, which re-confirms the conclusion that the characteristics of CQDs differ from those of ISQDs.
Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens
NASA Astrophysics Data System (ADS)
Park, Yoo Min; Lim, Sun Young; Jeong, Soon Woo; Song, Younseong; Bae, Nam Ho; Hong, Seok Bok; Choi, Bong Gill; Lee, Seok Jae; Lee, Kyoung G.
2018-06-01
Flexible and highly ordered nanopillar arrayed electrodes have brought great interest for many electrochemical applications, especially to the biosensors, because of its unique mechanical and topological properties. Herein, we report an advanced method to fabricate highly ordered nanopillar electrodes produced by soft-/photo-lithography and metal evaporation. The highly ordered nanopillar array exhibited the superior electrochemical and mechanical properties in regard with the wide space to response with electrolytes, enabling the sensitive analysis. As-prepared gold and silver electrodes on nanopillar arrays exhibit great and stable electrochemical performance to detect the amplified gene from foodborne pathogen of Escherichia coli O157:H7. Additionally, lightweight, flexible, and USB-connectable nanopillar-based electrochemical sensor platform improves the connectivity, portability, and sensitivity. Moreover, we successfully confirm the performance of genetic analysis using real food, specially designed intercalator, and amplified gene from foodborne pathogens with high reproducibility (6% standard deviation) and sensitivity (10 × 1.01 CFU) within 25 s based on the square wave voltammetry principle. This study confirmed excellent mechanical and chemical characteristics of nanopillar electrodes have a great and considerable electrochemical activity to apply as genetic biosensor platform in the fields of point-of-care testing (POCT).
Performance Evaluation of Different d-Dimer Cutoffs in Bedridden Hospitalized Elderly Patients.
Kassim, Nevine A; Farid, Tamer M; Pessar, Shaimaa Abdelmalik; Shawkat, Salma A
2017-11-01
A rapid and accurate diagnosis of venous thromboembolism (VTE) in the elderly individuals represents a dilemma due to nonspecific clinical presentation, confusing laboratory results, and the hazards of radiological examination in this age-group. d-Dimer test is used mainly in combination with non-high clinical pretest probability (PTP) to exclude VTE. d-Dimer testing retains its sensitivity, however, its specificity decreases in the elderly individuals. Raising the cutoff level improves the specificity of the d-dimer test without compromising its sensitivity. The current study aimed to explore the reliability of higher d-dimer cutoff values for the diagnosis of asymptomatic VTE in a population of bedridden hospitalized elderly patients with non-high clinical PTP. This retrospective study included 252 bedridden hospitalized elderly patients (>65 years) who were admitted to the Ain shams University Specialized Hospital with non-high clinical probability and developed later reduced mobility; all underwent quantitation of d-dimer and Doppler examination. Considering the whole population (>65 years), the age-adjusted cutoff achieved the best performance in comparison with the conventional and receiver operating characteristic (ROC)-derived cutoffs. When stratified according to age, the age-adjusted cutoff showed the best performance in the age-group 65-70 and comparable performance with the ROC-derived cutoff in the age-group 71-80, however, its sensitivity compromised in those older than 80 years. In conclusion, it is recommended to use age-adjusted cutoff value of d-dimer together with the clinical probability score in elderly individuals (65-80 years).
Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun
2017-01-01
To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.
Jin, H; Yuan, L; Li, C; Kan, Y; Hao, R; Yang, J
2014-03-01
The purpose of this study was to systematically review and perform a meta-analysis of published data regarding the diagnostic performance of positron emission tomography (PET) or PET/computed tomography (PET/CT) in prosthetic infection after arthroplasty. A comprehensive computer literature search of studies published through May 31, 2012 regarding PET or PET/CT in patients suspicious of prosthetic infection was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of PET or PET/CT in patients suspicious of prosthetic infection on a per prosthesis-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of PET or PET/CT in patients with suspicious of prosthetic infection. Fourteen studies comprising 838 prosthesis with suspicious of prosthetic infection after arthroplasty were included in this meta-analysis. The pooled sensitivity of PET or PET/CT in detecting prosthetic infection was 86% (95% confidence interval [CI] 82-90%) on a per prosthesis-based analysis. The pooled specificity of PET or PET/CT in detecting prosthetic infection was 86% (95% CI 83-89%) on a per prosthesis-based analysis. The area under the ROC curve was 0.93 on a per prosthesis-based analysis. In patients suspicious of prosthetic infection, FDG PET or PET/CT demonstrated high sensitivity and specificity. FDG PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false positive results and influcing factors should kept in mind.
Brusselaers, Nele; Labeau, Sonia; Vogelaers, Dirk; Blot, Stijn
2013-03-01
In ventilator-associated pneumonia (VAP), early appropriate antimicrobial therapy may be hampered by involvement of multidrug-resistant (MDR) pathogens. A systematic review and diagnostic test accuracy meta-analysis were performed to analyse whether lower respiratory tract surveillance cultures accurately predict the causative pathogens of subsequent VAP in adult patients. Selection and assessment of eligibility were performed by three investigators by mutual consideration. Of the 525 studies retrieved, 14 were eligible for inclusion (all in English; published since 1994), accounting for 791 VAP episodes. The following data were collected: study and population characteristics; in- and exclusion criteria; diagnostic criteria for VAP; microbiological workup of surveillance and diagnostic VAP cultures. Sub-analyses were conducted for VAP caused by Staphylococcus aureus, Pseudomonas spp., and Acinetobacter spp., MDR microorganisms, frequency of sampling, and consideration of all versus the most recent surveillance cultures. The meta-analysis showed a high accuracy of surveillance cultures, with pooled sensitivities up to 0.75 and specificities up to 0.92 in culture-positive VAP. The area under the curve (AUC) of the hierarchical summary receiver-operating characteristic curve demonstrates moderate accuracy (AUC: 0.90) in predicting multidrug resistance. A sampling frequency of >2/week (sensitivity 0.79; specificity 0.96) and consideration of only the most recent surveillance culture (sensitivity 0.78; specificity 0.96) are associated with a higher accuracy of prediction. This study provides evidence for the benefit of surveillance cultures in predicting MDR bacterial pathogens in VAP. However, clinical and statistical heterogeneity, limited samples sizes, and bias remain important limitations of this meta-analysis.
Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters.
Zhou, Zhiguo; Folkert, Michael; Cannon, Nathan; Iyengar, Puneeth; Westover, Kenneth; Zhang, Yuanyuan; Choy, Hak; Timmerman, Robert; Yan, Jingsheng; Xie, Xian-J; Jiang, Steve; Wang, Jing
2016-06-01
The aim of this study is to predict early distant failure in early stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT) using clinical parameters by machine learning algorithms. The dataset used in this work includes 81 early stage NSCLC patients with at least 6months of follow-up who underwent SBRT between 2006 and 2012 at a single institution. The clinical parameters (n=18) for each patient include demographic parameters, tumor characteristics, treatment fraction schemes, and pretreatment medications. Three predictive models were constructed based on different machine learning algorithms: (1) artificial neural network (ANN), (2) logistic regression (LR) and (3) support vector machine (SVM). Furthermore, to select an optimal clinical parameter set for the model construction, three strategies were adopted: (1) clonal selection algorithm (CSA) based selection strategy; (2) sequential forward selection (SFS) method; and (3) statistical analysis (SA) based strategy. 5-cross-validation is used to validate the performance of each predictive model. The accuracy was assessed by area under the receiver operating characteristic (ROC) curve (AUC), sensitivity and specificity of the system was also evaluated. The AUCs for ANN, LR and SVM were 0.75, 0.73, and 0.80, respectively. The sensitivity values for ANN, LR and SVM were 71.2%, 72.9% and 83.1%, while the specificity values for ANN, LR and SVM were 59.1%, 63.6% and 63.6%, respectively. Meanwhile, the CSA based strategy outperformed SFS and SA in terms of AUC, sensitivity and specificity. Based on clinical parameters, the SVM with the CSA optimal parameter set selection strategy achieves better performance than other strategies for predicting distant failure in lung SBRT patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Shuhuan; Du, Xuecheng; Du, Xiaozhi; Zhang, Yao; Mubashiru, Lawal Olarewaju; Luo, Dongyang; yuan, Yuan; Deng, Tianxiang; Li, Zhuoqi; Zang, Hang; Li, Yonghong; He, Chaohui; Ma, Yingqi; Shangguan, Shipeng
2017-09-01
The impacts of the external dynamic memory (DDR3) failures on the performance of 28 nm Xilinx Zynq-7010 SoC based system (MicroZed) were investigated with two sets of 1064 nm laser platforms. The failure sensitive area distributionsons on the back surface of the test DDR3 were primarily localized with a CW laser irradiation platform. During the CW laser scanning on the back surface of the DDR3 of the test board system, various failure modes except SEU and SEL (MBU, SEFI, data storage address error, rebooting, etc) were found in the testing embedded modules (ALU, PL, Register, Cache and DMA, etc) of SoC. Moreover, the experimental results demonstrated that there were 16 failure sensitive blocks symmetrically distributed on the back surface of the DDR3 with every sensitive block area measured was about 1 mm × 0.5 mm. The influence factors on the failure modes of the embedded modules were primarily analyzed and the SEE characteristics of DDR3 induced by the picoseconds pulsed laser were tested. The failure modes of DDR3 found were SEU, SEFI, SEL, test board rebooting by itself, unknown data, etc. Furthermore, the time interval distributions of failure occurrence in DDR3 changes with the pulsed laser irradiation energy and the CPU operating frequency were measured and compared. Meanwhile, the failure characteristics of DDR3 induced by pulsed laser irradiation were primarily explored. The measured results and the testing techniques designed in this paper provide some reference information for evaluating the reliability of the test system or other similar electronic system in harsh environment.
Ultrasound for Distal Forearm Fracture: A Systematic Review and Diagnostic Meta-Analysis
Douma-den Hamer, Djoke; Blanker, Marco H.; Edens, Mireille A.; Buijteweg, Lonneke N.; Boomsma, Martijn F.; van Helden, Sven H.; Mauritz, Gert-Jan
2016-01-01
Study Objective To determine the diagnostic accuracy of ultrasound for detecting distal forearm fractures. Methods A systematic review and diagnostic meta-analysis was performed according to the PRISMA statement. We searched MEDLINE, Web of Science and the Cochrane Library from inception to September 2015. All prospective studies of the diagnostic accuracy of ultrasound versus radiography as the reference standard were included. We excluded studies with a retrospective design and those with evidence of verification bias. We assessed the methodological quality of the included studies with the QUADAS-2 tool. We performed a meta-analysis of studies evaluating ultrasound to calculate the pooled sensitivity and specificity with 95% confidence intervals (CI95%) using a bivariate model with random effects. Subgroup and sensitivity analysis were used to examine the effect of methodological differences and other study characteristics. Results Out of 867 publications we included 16 studies with 1,204 patients and 641 fractures. The pooled test characteristics for ultrasound were: sensitivity 97% (CI95% 93–99%), specificity 95% (CI95% 89–98%), positive likelihood ratio (LR) 20.0 (8.5–47.2) and negative LR 0.03 (0.01–0.08). The corresponding pooled diagnostic odds ratio (DOR) was 667 (142–3,133). Apparent differences were shown for method of viewing, with the 6-view method showing higher specificity, positive LR, and DOR, compared to the 4-view method. Conclusion The present meta-analysis showed that ultrasound has a high accuracy for the diagnosis of distal forearm fractures in children when used by proper viewing method. Based on this, ultrasound should be considered a reliable alternative, which has the advantages of being radiation free. PMID:27196439
Ezeigwe, Nnenna; Ntadom, Godwin; Oladosu, Oladipo O.; Rainwater-Loveth, Kaitlin; O'Meara, Wendy; Okpokoro, Evaezi; Brieger, William
2016-01-01
ABSTRACT The need to expand malaria diagnosis capabilities alongside policy requirements for mandatory testing before treatment motivates exploration of noninvasive rapid diagnostic tests (RDTs). We report the outcome of the first cross-sectional, single-blind clinical performance evaluation of a urine malaria test (UMT) for diagnosis of Plasmodium falciparum malaria in febrile patients. Matched urine and finger-prick blood samples from participants ≥2 years of age with fever (axillary temperature of ≥37.5°C) or with a history of fever in the preceding 48 h were tested with UMT and microscopy (as the gold standard). BinaxNOW (Pf and Pan versions) blood RDTs were done to assess relative performance. Urinalysis and rheumatoid factor (RF) tests were conducted to evaluate possible interference. Diagnostic performance characteristics were computed at 95% confidence intervals (CIs). Of 1,800 participants screened, 1,691 were enrolled; of these 566 (34%) were febrile, and 1,125 (66%) were afebrile. Among enrolled participants, 341 (20%) tested positive by microscopy, 419 (25%) were positive by UMT, 676 (40%) were positive by BinaxNOW Pf, and 368 (22%) were positive by BinaxNow Pan. UMT sensitivity among febrile patients (for whom the test was indicated) was 85%, and specificity was 84%. Among febrile children ≤5 years of age, UMT sensitivity was 93%, and specificity was 83%. The area under the receiver-operator characteristic curve (AUC) of UMT (0.84) was not significantly different from that of BinaxNOW Pf (0.86) or of BinaxNOW Pan (0.87), indicating that the tests do not differ in overall performance. Gender, seasons, and RF did not impact UMT performance. Leukocytes, hematuria, and urobilinogen concentrations in urine were associated with lower UMT specificities. UMT performance was comparable to that of the BinaxNOW Pf/Pan tests, making UMT a promising tool to expand malaria testing in public and private health care settings where there are challenges to blood-based malaria diagnosis testing. PMID:27847373
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsky, Benjamin A.; Sahoo, Malaya K.; Sandlund, Johanna
The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. Our study evaluated the assay’s analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay,more » the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51–97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163–302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. In conclusion, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection is critical.« less
Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.
Yigit, Berk; Pekkan, Kerem
2016-01-01
In Nature, there exist a variety of cardiovascular circulation networks in which the energetic ventricular load has both steady and pulsatile components. Steady load is related to the mean cardiac output (CO) and the haemodynamic resistance of the peripheral vascular system. On the other hand, the pulsatile load is determined by the simultaneous pressure and flow waveforms at the ventricular outlet, which in turn are governed through arterial wave dynamics (transmission) and pulse decay characteristics (windkessel effect). Both the steady and pulsatile contributions of the haemodynamic power load are critical for characterizing/comparing disease states and for predicting the performance of cardiovascular devices. However, haemodynamic performance parameters vary significantly from subject to subject because of body size, heart rate and subject-specific CO. Therefore, a 'normalized' energy dissipation index, as a function of the 'non-dimensional' physical parameters that govern the circulation networks, is needed for comparative/integrative biological studies and clinical decision-making. In this paper, a complete network-independent non-dimensional formulation that incorporates pulsatile flow regimes is developed. Mechanical design variables of cardiovascular flow systems are identified and the Buckingham Pi theorem is formally applied to obtain the corresponding non-dimensional scaling parameter sets. Two scaling approaches are considered to address both the lumped parameter networks and the distributed circulation components. The validity of these non-dimensional number sets is tested extensively through the existing empirical allometric scaling laws of circulation systems. Additional validation studies are performed using a parametric numerical arterial model that represents the transmission and windkessel characteristics, which are adjusted to represent different body sizes and non-dimensional haemodynamic states. Simulations demonstrate that the proposed non-dimensional indices are independent of body size for healthy conditions, but are sensitive to deviations caused by off-design disease states that alter the energetic load. Sensitivity simulations are used to identify the relationship between pulsatile power loss and non-dimensional characteristics, and optimal operational states are computed. © 2016 The Author(s).
Kuo, Pao-Jen; Wu, Shao-Chun; Chien, Peng-Chen; Rau, Cheng-Shyuan; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua
2018-01-01
Objectives This study aimed to build and test the models of machine learning (ML) to predict the mortality of hospitalised motorcycle riders. Setting The study was conducted in a level-1 trauma centre in southern Taiwan. Participants Motorcycle riders who were hospitalised between January 2009 and December 2015 were classified into a training set (n=6306) and test set (n=946). Using the demographic information, injury characteristics and laboratory data of patients, logistic regression (LR), support vector machine (SVM) and decision tree (DT) analyses were performed to determine the mortality of individual motorcycle riders, under different conditions, using all samples or reduced samples, as well as all variables or selected features in the algorithm. Primary and secondary outcome measures The predictive performance of the model was evaluated based on accuracy, sensitivity, specificity and geometric mean, and an analysis of the area under the receiver operating characteristic curves of the two different models was carried out. Results In the training set, both LR and SVM had a significantly higher area under the receiver operating characteristic curve (AUC) than DT. No significant difference was observed in the AUC of LR and SVM, regardless of whether all samples or reduced samples and whether all variables or selected features were used. In the test set, the performance of the SVM model for all samples with selected features was better than that of all other models, with an accuracy of 98.73%, sensitivity of 86.96%, specificity of 99.02%, geometric mean of 92.79% and AUC of 0.9517, in mortality prediction. Conclusion ML can provide a feasible level of accuracy in predicting the mortality of motorcycle riders. Integration of the ML model, particularly the SVM algorithm in the trauma system, may help identify high-risk patients and, therefore, guide appropriate interventions by the clinical staff. PMID:29306885
Pinsky, Benjamin A.; Sahoo, Malaya K.; Sandlund, Johanna; ...
2015-11-12
The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. Our study evaluated the assay’s analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay,more » the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51–97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163–302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. In conclusion, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection is critical.« less
NASA Astrophysics Data System (ADS)
Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.
2015-03-01
Radiolabeled tracer distribution imaging of gamma rays using pinhole collimation is considered promising for small animal imaging. The recent availability of various radiolabeled tracers has enhanced the field of diagnostic study and is simultaneously creating demand for high resolution imaging devices. This paper presents analyses to represent the optimized parameters of a high performance pinhole array detector module using two different characteristics phantoms. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were executed to assess the performance of a four head SPECT system incorporated with pinhole array collimators. The system is based on a pixelated array of NaI(Tl) crystals coupled to an array of position sensitive photomultiplier tubes (PSPMTs). The detector module was simulated to have 48 mm by 48 mm active area along with different pinhole apertures on a tungsten plate. The performance of this system has been evaluated using a uniform shape cylindrical water phantom along with NEMA NU-4 image quality (IQ) phantom filled with 99mTc labeled radiotracers. SPECT images were reconstructed where activity distribution is expected to be well visualized. This system offers the combination of an excellent intrinsic spatial resolution, good sensitivity and signal-to-noise ratio along with high detection efficiency over an energy range between 20-160 keV. Increasing number of heads in a stationary system configuration offers increased sensitivity at a spatial resolution similar to that obtained with the current SPECT system design with four heads.
Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures
NASA Astrophysics Data System (ADS)
Wang, Jyh-Liang; Yang, Po-Yu; Hsieh, Tsang-Yen; Juan, Pi-Chun
2016-01-01
Hydrothermally synthesized aluminum-doped ZnO (AZO) nanostructures have been adopted in extended-gate field-effect transistor (EGFET) sensors to demonstrate the sensitive and stable pH and glucose sensing characteristics of AZO-nanostructured EGFET sensors. The AZO-nanostructured EGFET sensors exhibited the following superior pH sensing characteristics: a high current sensitivity of 0.96 µA1/2/pH, a high linearity of 0.9999, less distortion of output waveforms, a small hysteresis width of 4.83 mV, good long-term repeatability, and a wide sensing range from pHs 1 to 13. The glucose sensing characteristics of AZO-nanostructured biosensors exhibited the desired sensitivity of 60.5 µA·cm-2·mM-1 and a linearity of 0.9996 up to 13.9 mM. The attractive characteristics of high sensitivity, high linearity, and repeatability of using ionic AZO-nanostructured EGFET sensors indicate their potential use as electrochemical and disposable biosensors.
Resonance analysis of a high temperature piezoelectric disc for sensitivity characterization.
Bilgunde, Prathamesh N; Bond, Leonard J
2018-07-01
Ultrasonic transducers for high temperature (200 °C+) applications are a key enabling technology for advanced nuclear power systems and in a range of chemical and petro-chemical industries. Design, fabrication and optimization of such transducers using piezoelectric materials remains a challenge. In this work, experimental data-based analysis is performed to investigate the fundamental causal factors for the resonance characteristics of a piezoelectric disc at elevated temperatures. The effect of all ten temperature-dependent piezoelectric constants (ε 33 , ε 11 , d 33 , d 31 , d 15 , s 11 , s 12 , s 13 , s 33 , s 44 ) is studied numerically on both the radial and thickness mode resonances of a piezoelectric disc. A sensitivity index is defined to quantify the effect of each of the temperature-dependent coefficients on the resonance modes of the modified lead zirconium titanate disc. The temperature dependence of s 33 showed highest sensitivity towards the thickness resonance mode followed by ε 33 , s 11 , s 13 , s 12 , d 31 , d 33 , s 44 , ε 11 , and d 15 in the decreasing order of the sensitivity index. For radial resonance modes, the temperature dependence of ε 33 showed highest sensitivity index followed by s 11 , s 12 and d 31 coefficient. This numerical study demonstrates that the magnitude of d 33 is not the sole factor that affects the resonance characteristics of the piezoelectric disc at high temperatures. It appears that there exists a complex interplay between various temperature dependent piezoelectric coefficients that causes reduction in the thickness mode resonance frequencies which is found to be agreement in with the experimental data at an elevated temperature. Copyright © 2018 Elsevier B.V. All rights reserved.
The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines
Hofving, Tobias; Arvidsson, Yvonne; Almobarak, Bilal; Inge, Linda; Pfragner, Roswitha; Persson, Marta; Stenman, Göran; Kristiansson, Erik; Johanson, Viktor; Nilsson, Ola
2018-01-01
Experimental models of neuroendocrine tumour disease are scarce, and no comprehensive characterisation of existing gastroenteropancreatic neuroendocrine tumour (GEPNET) cell lines has been reported. In this study, we aimed to define the molecular characteristics and therapeutic sensitivity of these cell lines. We therefore performed immunophenotyping, copy number profiling, whole-exome sequencing and a large-scale inhibitor screening of seven GEPNET cell lines. Four cell lines, GOT1, P-STS, BON-1 and QGP-1, displayed a neuroendocrine phenotype while three others, KRJ-I, L-STS and H-STS, did not. Instead, these three cell lines were identified as lymphoblastoid. Characterisation of remaining authentic GEPNET cell lines by copy number profiling showed that GOT1, among other chromosomal alterations, harboured losses on chromosome 18 encompassing the SMAD4 gene, while P-STS had a loss on 11q. BON-1 had a homozygous loss of CDKN2A and CDKN2B, and QGP-1 harboured amplifications of MDM2 and HMGA2. Whole-exome sequencing revealed both disease-characteristic mutations (e.g. ATRX mutation in QGP-1) and, for patient tumours, rare genetic events (e.g. TP53 mutation in P-STS, BON-1 and QGP-1). A large-scale inhibitor screening showed that cell lines from pancreatic NETs to a greater extent, when compared to small intestinal NETs, were sensitive to inhibitors of MEK. Similarly, neuroendocrine NET cells originating from the small intestine were considerably more sensitive to a group of HDAC inhibitors. Taken together, our results provide a comprehensive characterisation of GEPNET cell lines, demonstrate their relevance as neuroendocrine tumour models and explore their therapeutic sensitivity to a broad range of inhibitors. PMID:29444910
NASA Astrophysics Data System (ADS)
Singh, Navjot; Siwatch, Poonam; Arora, Anmol; Sharma, Jadab; Tripathi, S. K.
2018-05-01
Quantum Dot Sensitized Solar Cells are a likely replacement for Silicon-based solar cells. Counter electrodes are a fundamental aspect of QDSSC's performance. NiS being a less expensive material is a decent choice for the purpose. In this paper, we have discussed the synthesis of NiS by Successive Ionic Layer Adsorption Reaction. Optical, Crystallographic and Electrical studies have been presented. Electrical studies of the device with NiS counter electrode is compared with characteristics of the device with CNTs as the counter electrode. SILAR method is easy and less time to consume than chemical bath deposition or any other method. Results show the success of NiS synthesized by SILAR method as the counter electrode.
NASA Astrophysics Data System (ADS)
Ortiz, Dolores; Saiz, Jose M.; González, Francisco
2004-04-01
The presence of local inhomogeneities in corneal tissue after refractive surgery has an influence on visual performance. Here we focus on the corneal ablation associated with Lasik surgery and its effect on the modulation transfer function (MTF) that we obtained by modifying a personalized Kooijman model. Inhomogeneities induced by the ablation occur in the form of Gaussian-distributed refractive-index variations of a given correlation length. We show how variation of refractive-index deviation and correlation length (size) of the inhomogeneities allows us to obtain pairs of values that are able to achieve a MTF evolution similar to that observed for contrast sensitivity in the same patients. An estimate of the characteristics of the local effects is obtained.
Stability and bifurcation for an SEIS epidemic model with the impact of media
NASA Astrophysics Data System (ADS)
Huo, Hai-Feng; Yang, Peng; Xiang, Hong
2018-01-01
A novel SEIS epidemic model with the impact of media is introduced. By analyzing the characteristic equation of equilibrium, the basic reproduction number is obtained and the stability of the steady states is proved. The occurrence of a forward, backward and Hopf bifurcation is derived. Numerical simulations and sensitivity analysis are performed. Our results manifest that media can regard as a good indicator in controlling the emergence and spread of the epidemic disease.
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)
2001-01-01
Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.
The Effect of the MassHealth Hospital Pay-for-Performance Program on Quality
Ryan, Andrew M; Blustein, Jan
2011-01-01
Objective To test the effect of Massachusetts Medicaid's (MassHealth) hospital-based pay-for-performance (P4P) program, implemented in 2008, on quality of care for pneumonia and surgical infection prevention (SIP). Data Hospital Compare process of care quality data from 2004 to 2009 for acute care hospitals in Massachusetts (N = 62) and other states (N = 3,676) and American Hospital Association data on hospital characteristics from 2005. Study Design Panel data models with hospital fixed effects and hospital-specific trends are estimated to test the effect of P4P on composite quality for pneumonia and SIP. This base model is extended to control for the completeness of measure reporting. Further sensitivity checks include estimation with propensity-score matched control hospitals, excluding hospitals in other P4P programs, varying the time period during which the program was assumed to have an effect, and testing the program effect across hospital characteristics. Principal Findings Estimates from our preferred specification, including hospital fixed effects, trends, and the control for measure completeness, indicate small and nonsignificant program effects for pneumonia (−0.67 percentage points, p>.10) and SIP (−0.12 percentage points, p>.10). Sensitivity checks indicate a similar pattern of findings across specifications. Conclusions Despite offering substantial financial incentives, the MassHealth P4P program did not improve quality in the first years of implementation. PMID:21210796
Penno, Erin C; Crump, John A; Baird, Sarah J
2015-10-01
Bacterial sepsis is an important cause of mortality in low- and middle-income countries, yet distinguishing patients with sepsis from those with other illnesses remains a challenge. Currently, management decisions are based on clinical assessment using algorithms such as Integrated Management of Adolescent and Adult Illness. Efforts to develop and evaluate point-of-care tests (POCTs) for sepsis to guide decisions on the use of antimicrobials are underway. To establish the minimum performance characteristics of such a test, we varied the characteristics of a hypothetical POCT for sepsis required for it to be cost-effective and applied a decision tree model to a population of febrile patients presenting at the district hospital level in a low-resource setting. We used a case fatality probability of 20% for appropriately treated sepsis and of 50% for inappropriately treated sepsis. On the basis of clinical assessment for sepsis with established sensitivity of 0.83 and specificity of 0.62, we found that a POCT for sepsis with a sensitivity of 0.83 and a specificity of 0.94 was cost-effective, resulting in parity in survival but costing $1.14 less per live saved. A POCT with accuracy equivalent to the best malaria rapid diagnostic test was cheaper and more effective than clinical assessment. © The American Society of Tropical Medicine and Hygiene.
Chiu, Sydney; Webber, Mayris P; Zeig-Owens, Rachel; Gustave, Jackson; Lee, Roy; Kelly, Kerry J; Rizzotto, Linda; McWilliams, Rita; Schorr, John K; North, Carol S; Prezant, David J
2011-05-01
Since the World Trade Center (WTC) attacks on September 11, 2001, the Fire Department, City of New York Monitoring Program has provided physical and mental health screening services to rescue/recovery workers. This study evaluated performance of the self-report PTSD Checklist (PCL) as a screening tool for risk of posttraumatic stress disorder (PTSD) in firefighters who worked at Ground Zero, compared with the interviewer-administered Diagnostic Interview Schedule (DIS). From December 2005 to July 2007, all retired firefighter enrollees completed the PCL and DIS on the same day. Sensitivity, specificity, receiver operating characteristic (ROC) curves, and Youden index (J) were used to assess properties of the PCL and to identify an optimum cutoff score. Six percent of 1,915 retired male firefighters were diagnosed with PTSD using the DIS to assess DSM-IV criteria. Depending on the PCL cutoff, the prevalence of elevated risk relative to DSM-IV criteria varied from 16% to 22%. Youden index identified an optimal cutoff score of 39, in contrast with the frequently recommended cutoff of 44. At 39, PCL sensitivity was 0.85, specificity was 0.82, and the area under the ROC curve was 0.91 relative to DIS PTSD diagnosis. This is the first study to validate the PCL in retired firefighters and determine the optimal cutoff score to maximize opportunities for PTSD diagnosis and treatment.
Zhou, Bang-Guo; Wang, Dan; Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Liu, Bo-Ji; Wang, Qiao; Chen, Shi-Gao; Alizad, Azra; Xu, Hui-Xiong
2017-08-01
To evaluate the diagnostic performance of shear wave arrival time contour (SWATC) display for the diagnosis of breast lesions and to identify factors associated with the quality of shear wave propagation (QSWP) in breast lesions. This study included 277 pathologically confirmed breast lesions. Conventional B-mode ultrasound characteristics and shear wave elastography parameters were computed. Using the SWATC display, the QSWP of each lesion was assigned to a two-point scale: score 1 (low quality) and score 2 (high quality). Binary logistic regression analysis was performed to identify factors associated with QSWP. The area under the receiver operating characteristic curve (AUROC) for QSWP to differentiate benign from malignant lesions was 0.913, with a sensitivity of 91.9%, a specificity of 90.7%, a positive predictive value (PPV) of 74.0%, and a negative predictive value (NPV) of 97.5%. Compared with using the standard deviation of shear wave speed (SWS SD ) alone, SWS SD combined with QSWP increased the sensitivity from 75.8% to 93.5%, but decreased the specificity from 95.8% to 89.3% (P < 0.05). SWS SD was identified to be the strongest factor associated with the QSWP, followed by tumor malignancy and the depth of the lesion. In conclusion, SWATC display may be useful for characterization of breast lesions.
Systematic review and meta-analysis of flow cytometry in urinary tract infection screening.
Shang, Yan-Jun; Wang, Qian-Qian; Zhang, Jian-Rong; Xu, Yu-Lian; Zhang, Wei-Wei; Chen, Yan; Gu, Ming-Li; Hu, Zhi-De; Deng, An-Mei
2013-09-23
Automated urine sediment analysis of white blood cells (WBCs) and bacteria is a promising approach for urinary tract infections (UTIs) screening. However, available data on their screening efficacy is inconsistent. English articles from Pubmed, EMBASE, and Web of Science published before December 1, 2012 were analyzed. The Quality Assessment for Studies of Diagnostic Accuracy (QUADAS) tool was used to evaluate the quality of eligible studies. Performance characteristics of WBCs and bacteria (sensitivity, specificity, and other measures of accuracy) were pooled and examined by random-effects models. Nineteen studies containing 22,305 samples were included. Pooled sensitivities were 0.87 (95% confidence interval [CI], 0.86-0.89) for WBCs and 0.92 (95% CI, 0.91-0.93) for bacteria. Corresponding pooled specificities were 0.67 (95% CI, 0.66-0.68) for WBCs and 0.60 (95% CI, 0.59-0.61) for bacteria. Areas under the summary receiver operating characteristics curves were 0.87 and 0.93 for WBCs and bacteria, respectively. The major limitation of eligible studies was that enrolled subjects were often not representative of clinical patient populations in which UTI would be suspected. WBC and bacterial measurements by the UF-100 and UF-1000i are useful indicators in UTI screening; however, the performances of these systems should be rigorously evaluated by additional studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Performance monitoring in obsessive-compulsive undergraduates: Effects of task difficulty.
Riesel, Anja; Richter, Anika; Kaufmann, Christian; Kathmann, Norbert; Endrass, Tanja
2015-08-01
Both obsessive-compulsive disorder and subclinical obsessive-compulsive (OC) symptoms seem to be associated with hyperactive error-related brain activity. The current study examined performance monitoring in subjects with subclinical OC symptoms using a new task with different levels of difficulty. Nineteen subjects with high and 18 subjects with low OC characteristics performed a random dot cinematogram (RDC) task with three levels of difficulty. The high and low OC groups did not differ in error-related negativity (ERN), correct-related negativity (CRN) and performance irrespective of task difficulty. The amplitude of the ERN decreased with increasing difficulty whereas the magnitude of CRN did not vary. ERN and CRN approached in size and topography with increasing difficulty, which suggests that errors and correct responses are processed more similarly. These results add to a growing number of studies that fail to replicate hyperactive performance monitoring in individuals with OC symptoms in task with higher difficulty or requiring learning. Together with these findings our results suggest that the relationship between OC symptoms and performance monitoring may be sensitive to type of task and task characteristics and cannot be observed in a RDC that differs from typically used tasks in difficulty and the amount of response-conflict. Copyright © 2015 Elsevier Inc. All rights reserved.
Hubbard, Rebecca A; Benjamin-Johnson, Rhondee; Onega, Tracy; Smith-Bindman, Rebecca; Zhu, Weiwei; Fenton, Joshua J
2015-01-15
Quality assessment is critical for healthcare reform, but data sources are lacking for measurement of many important healthcare outcomes. With over 49 million people covered by Medicare as of 2010, Medicare claims data offer a potentially valuable source that could be used in targeted health care quality improvement efforts. However, little is known about the operating characteristics of provider profiling methods using claims-based outcome measures that may estimate provider performance with error. Motivated by the example of screening mammography performance, we compared approaches to identifying providers failing to meet guideline targets using Medicare claims data. We used data from the Breast Cancer Surveillance Consortium and linked Medicare claims to compare claims-based and clinical estimates of cancer detection rate. We then demonstrated the performance of claim-based estimates across a broad range of operating characteristics using simulation studies. We found that identification of poor performing providers was extremely sensitive to algorithm specificity, with no approach identifying more than 65% of poor performing providers when claims-based measures had specificity of 0.995 or less. We conclude that claims have the potential to contribute important information on healthcare outcomes to quality improvement efforts. However, to achieve this potential, development of highly accurate claims-based outcome measures should remain a priority. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lazarenko, P. I.; Kozyukhin, S. A.; Mokshina, A. I.; Sherchenkov, A. A.; Patrusheva, T. N.; Irgashev, R. A.; Lebedev, E. A.; Kozik, V. V.
2018-05-01
An estimation is made of the internal capacitance of sensitized solar cells (SSCs) manufactured by the method of extraction pyrolysis. The structures under study are characterized by a hysteresis in the current-voltage characteristic obtained in the direct and reverse modes of voltage variation. The investigations of SSCs demonstrate a high inertness of the parameters under connection and disconnection of the light source. The use of a transparent conductive ITO-electrode, manufactured by the extraction pyrolysis, increases the external capacitance of the cell and decelerates the processes of current decay after the light source connection compared to the commercial FTO-electrode. The values of charges, capacitances, and SSC charge conservation efficiencies are calculated and the internal resistance of the SSCs under study is estimated. According to the estimations performed, the specimen with an ITO-layer possesses a capacitance equal to C1 = 1.23·10-3 F, which is by two orders of magnitude higher than that of the specimen with a FTO-layer (C2 = 2.06·10-5 F).
Towards a fully integrated optical gyroscope using whispering gallery modes resonators
NASA Astrophysics Data System (ADS)
Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.
2017-11-01
Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.
Personalized skincare: from molecular basis to clinical and commercial applications.
Markiewicz, Ewa; Idowu, Olusola Clement
2018-01-01
Individual responses of human skin to the environmental stress are determined by differences in the anatomy and physiology that are closely linked to the genetic characteristics such as pigmentation. Ethnic skin phenotypes can be distinguished based on defined genotypic traits, structural organization and compartmentalized sensitivity to distinct extrinsic aging factors. These differences are not only responsible for the variation in skin performance after exposure to damaging conditions, but can also affect the mechanisms of drug absorption, sensitization and other longer term effects. The unique characteristics of the individual skin function and, particularly, of the ethnic skin type are currently considered to shape the future of clinical and pharmacologic interventions as a basis for personalized skincare. Individual approaches to skincare render a novel and actively growing area with a range of biomedical and commercial applications within cosmetics industry. In this review, we summarize the aspects of the molecular and clinical manifestations of the environmental stress on human skin and proposed protective mechanisms that are linked to ethnic differences and pathophysiology of extrinsic skin aging. We subsequently discuss the possible applications and translation of this knowledge into personalized skincare.
Personalized skincare: from molecular basis to clinical and commercial applications
Markiewicz, Ewa; Idowu, Olusola Clement
2018-01-01
Individual responses of human skin to the environmental stress are determined by differences in the anatomy and physiology that are closely linked to the genetic characteristics such as pigmentation. Ethnic skin phenotypes can be distinguished based on defined genotypic traits, structural organization and compartmentalized sensitivity to distinct extrinsic aging factors. These differences are not only responsible for the variation in skin performance after exposure to damaging conditions, but can also affect the mechanisms of drug absorption, sensitization and other longer term effects. The unique characteristics of the individual skin function and, particularly, of the ethnic skin type are currently considered to shape the future of clinical and pharmacologic interventions as a basis for personalized skincare. Individual approaches to skincare render a novel and actively growing area with a range of biomedical and commercial applications within cosmetics industry. In this review, we summarize the aspects of the molecular and clinical manifestations of the environmental stress on human skin and proposed protective mechanisms that are linked to ethnic differences and pathophysiology of extrinsic skin aging. We subsequently discuss the possible applications and translation of this knowledge into personalized skincare. PMID:29692619
NASA Astrophysics Data System (ADS)
Ochiai, Shunsuke; Takayama, Tomohiro; Kishimura, Yukiko; Asada, Hironori; Sonoda, Manae; Iwakuma, Minako; Hoshino, Ryoichi
2016-10-01
In this study, we examine exposure characteristics of a positive tone electron beam resist consisting of methyl α- chloroacrylate and α-methylstyrene by changing the development process conditions. 25/25 nm and 30/30 nm line-andspace (L/S) patterns (design value) are developed in amyl and heptyl acetates. The resist patterns developed at 0ºC for 120 s show the better shapes having the vertical sidewalls than those developed at 22 °C for 60 s. The dose margins of pattern formation for 0°C development become wider, although the sensitivities are lower. The effect of post exposure baking (PEB) on exposure characteristics is also investigated. Adding PEB process performed at 120°C for 2 min, the dose margin also becomes wider although the sensitivity is lower. 20/20 nm L/S patterns are fabricated by using PEB and/or 0°C development. Though the required exposure dose is larger, the resist pattern is improved by PEB and/or 0°C development. The formation of 35 nm pitch pattern is also presented.
What are the governing processes during low-flows in a chalk catchment?
NASA Astrophysics Data System (ADS)
Lubega Musuuza, Jude; Coxon, Gemma; Hutton, Chris; Howden, Nicholas; Woods, Ross; Freer, Jim; Wagener, Thorsten
2016-04-01
Low flows are important because they lead to the prioritisation of different consumptive water usages, imposition of restrictions and bans, raising of water tariffs and higher production costs to industry. The partitioning of precipitation into evaporation, storage and runoff depends on the local variability in meteorological variables and site-specific characteristics e.g., topography, soils and vegetation. The response of chalk catchments to meteorological forcing especially precipitation is of particular interest because of the preferential flow through the weathered formation. This makes the observed stream discharge groundwater-dominated and hence, out of phase with precipitation. One relevant question is how sensitive the low flow characteristics of such a chalk catchment is to changes in climate and land use. It is thus important to understand all the factors that control low stream discharge periods. In this study we present the results from numerical sensitivity analysis experiments performed with a detailed physically-based model on the Kennet, a sub-catchment of the River Thames, in the UK during the historical drought years of the 1970's.
Long-Term Stability of the NIST Conical Reference Transducer.
Fick, Steven E; Proctor, Thomas M
2011-01-01
The National Institute of Standards and Technology (NIST) Conical Reference Transducer (CRT) is designed for purposes requiring frequency response characteristics much more uniform than those attainable with ultrasonic transducers conventionally used for acoustic emission (AE) nondestructive testing. The high performance of the CRT results from the use of design elements radically different from those of conventional transducers. The CRT was offered for sale for 15 years (1985 to 2000). Each CRT was furnished with data which expressed, as a function of frequency, the transducer sensitivity in volts per micrometer of normal displacement on the test block. Of the 22 transducers constructed, eight were reserved for long term research and were stored undisturbed in a laboratory with well controlled temperature and humidity. In 2009, the sensitivities of these eight units were redetermined. The 2009 data have been compared with data from similar tests conducted in 1985. The results of this comparison verify the claim "Results of tests of the long term stability of CRT characteristics indicate that, if proper care is taken, tens of years of service can reasonably be expected." made in the CRT specifications document furnished to prospective customers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.
2008-11-15
Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV.more » In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.« less
Feasibility of a wireless gamma probe in radioguided surgery.
Park, Hye Min; Joo, Koan Sik
2016-06-21
Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using (57)Co, (133)Ba, (22)Na, and (137)Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D) × 130 mm (L).
Feasibility of a wireless gamma probe in radioguided surgery
NASA Astrophysics Data System (ADS)
Park, Hye Min; Joo, Koan Sik
2016-06-01
Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using 57Co, 133Ba, 22Na, and 137Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D) × 130 mm (L).
NASA Astrophysics Data System (ADS)
Sahaar, A. S.; Niemann, J. D.
2016-12-01
Accurate knowledge of root-zone soil moisture is critical for understanding the perpetuation of droughts and managing agricultural water systems. A remote-sensing method based on optical and thermal satellite imagery has been previously proposed to estimate fine-resolution (30 m) root-zone soil moisture over large regions. This method uses Landsat imagery to calculate all the components of the surface energy balance and then calculates the evaporative fraction (Λ) as the ratio of the latent heat flux to the sum of the sensible and latent heat fluxes. Root-zone soil moisture (θ) is then estimated from an empirical relationship with Λ. A similar approach has also been proposed to estimate the degree of saturation. Previous testing of this method for a semiarid region of southeastern Colorado has shown that a single relationship between θ and Λ does not apply universally. The primary objective of this study is to evaluate the impact of regional soil, vegetation, and climatic conditions on the form and strength of the Λ- θ relationship. To accomplish this goal, a global sensitivity analysis is performed using the Extended Fourier Amplitude Sensitivity Test (FAST) and a physically-based model (Hydrus-1D) that simulates both the land-surface energy balance and soil moisture dynamics. The modeling results show that, within a given climatic region, soil characteristics are very important in determining the shape of the Λ-θ relationship, while vegetation characteristics have the largest effect on the strength of the relationship. The modeling results also indicate that the annual average rainfall, which helps determine the climatic region, has a strong effect on both the form and strength of the relationship. From this analysis, the constants that define the Λ-θ relationships are estimated using regional characteristics. This approach allows the remote-sensing method to be adapted to local conditions and has the potential to greatly improve its performance.
Pimkina, Edita; Zablockis, Rolandas; Nikolayevskyy, Vladyslav; Danila, Edvardas; Davidaviciene, Edita
2015-11-01
Drug-resistant tuberculosis (TB) is an important public health problem in Lithuania with MDR rates in new cases reaching 11% in 2012. Currently available diagnostic tools are not fully adequate for an accurate and rapid result for diagnosis of TB and MDR-TB. To evaluate the performance of Xpert(®) MTB/RIF assay for an early diagnosis of TB and detection of rifampicin (RIF) resistance in routine settings in Lithuania. A total of 833 individual respiratory samples obtained from patients previously treated for TB and MDR-TB contacts were tested using the Xpert MTB/RIF assay. Performance characteristics of the assay for TB and RIF resistance detection were calculated using culture and phenotypical DST results as a gold standard. The overall sensitivity and specificity of the Xpert MTB/RIF assay for TB detection were 93.7% and 91.7%, respectively with the sensitivity for smear-negative specimens reaching 82.5%. Resistance to RIF was detected in 81 (20.7%) primary specimens with no false negative results; there were 4/225 (1.8%) false-positives among strains sensitive to rifampicin. Overall sensitivity and specificity of the molecular assay for detection of RIF resistance calculated against phenotypic DST results were 100% and 98.2%, respectively. Our results demonstrate very good performance of the Xpert MTB/RIF assay for the detection of TB and RIF resistance on primary respiratory specimens. It provides strong evidence that implementation of the assay for routine laboratory diagnosis in high drug-resistance settings may improve and facilitate TB diagnosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xue; Li, Xiaohui; Yu, Xin; Chen, Deying; Liu, Aichun
2018-01-01
Diagnosis of malignancies is a challenging clinical issue. In this work, we present quick and robust diagnosis and discrimination of lymphoma and multiple myeloma (MM) using laser-induced breakdown spectroscopy (LIBS) conducted on human serum samples, in combination with chemometric methods. The serum samples collected from lymphoma and MM cancer patients and healthy controls were deposited on filter papers and ablated with a pulsed 1064 nm Nd:YAG laser. 24 atomic lines of Ca, Na, K, H, O, and N were selected for malignancy diagnosis. Principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and k nearest neighbors (kNN) classification were applied to build the malignancy diagnosis and discrimination models. The performances of the models were evaluated using 10-fold cross validation. The discrimination accuracy, confusion matrix and receiver operating characteristic (ROC) curves were obtained. The values of area under the ROC curve (AUC), sensitivity and specificity at the cut-points were determined. The kNN model exhibits the best performances with overall discrimination accuracy of 96.0%. Distinct discrimination between malignancies and healthy controls has been achieved with AUC, sensitivity and specificity for healthy controls all approaching 1. For lymphoma, the best discrimination performance values are AUC = 0.990, sensitivity = 0.970 and specificity = 0.956. For MM, the corresponding values are AUC = 0.986, sensitivity = 0.892 and specificity = 0.994. The results show that the serum-LIBS technique can serve as a quick, less invasive and robust method for diagnosis and discrimination of human malignancies.
An Overview of the HST Advanced Camera for Surveys' On-orbit Performance
NASA Astrophysics Data System (ADS)
Hartig, G. F.; Ford, H. C.; Illingworth, G. D.; Clampin, M.; Bohlin, R. C.; Cox, C.; Krist, J.; Sparks, W. B.; De Marchi, G.; Martel, A. R.; McCann, W. J.; Meurer, G. R.; Sirianni, M.; Tsvetanov, Z.; Bartko, F.; Lindler, D. J.
2002-05-01
The Advanced Camera for Surveys (ACS) was installed in the HST on 7 March 2002 during the fourth servicing mission to the observatory, and is now beginning science operations. The ACS provides HST observers with a considerably more sensitive, higher-resolution camera with wider field and polarimetric, coronagraphic, low-resolution spectrographic and solar-blind FUV capabilities. We review selected results of the early verification and calibration program, comparing the achieved performance with the advertised specifications. Emphasis is placed on the optical characteristics of the camera, including image quality, throughput, geometric distortion and stray-light performance. More detailed analyses of various aspects of the ACS performance are presented in other papers at this meeting. This work was supported by a NASA contract and a NASA grant.
Classification of ASKAP Vast Radio Light Curves
NASA Technical Reports Server (NTRS)
Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.
2012-01-01
The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.
The Morphologies of the Semiconductor Oxides and Their Gas-Sensing Properties
Lv, Xin; Li, Shuang; Wang, Qingji
2017-01-01
Semiconductor oxide chemoresistive gas sensors are widely used for detecting deleterious gases due to low cost, simple preparation, rapid response and high sensitivity. The performance of gas sensor is greatly affected by the morphology of the semiconductor oxide. There are many semiconductor oxide morphologies, including zero-dimensional, one-dimensional, two-dimensional and three-dimensional ones. The semiconductor oxides with different morphologies significantly enhance the gas-sensing performance. Among the various morphologies, hollow nanostructures and core-shell nanostructures are always the focus of research in the field of gas sensors due to their distinctive structural characteristics and superior performance. Herein the morphologies of semiconductor oxides and their gas-sensing properties are reviewed. This review also proposes a potential strategy for the enhancement of gas-sensing performance in the future. PMID:29189714
NASA Astrophysics Data System (ADS)
Paul, M.; Negahban-Azar, M.
2017-12-01
The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).
Conceptual design and analysis of a dynamic scale model of the Space Station Freedom
NASA Technical Reports Server (NTRS)
Davis, D. A.; Gronet, M. J.; Tan, M. K.; Thorne, J.
1994-01-01
This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.
Glanville, E J; Seebacher, F
2006-12-01
Thermoregulating animals are thought to have evolved a preferred body temperature at which thermally sensitive performance is optimised. Even during thermoregulation, however, many animals experience pronounced variability in body temperature, and may regulate to different body temperatures depending on environmental conditions. Here we test the hypothesis that there is a trade-off between regulating to lower body temperatures in cooler conditions and locomotory and metabolic performance. Animals (estuarine crocodiles, Crocodylus porosus) acclimated to cold (N=8) conditions had significantly lower maximum and mean daily body temperatures after 33 days than warm-acclimated animals (N=9), despite performing characteristic thermoregulatory behaviours. Concomitant with behavioural changes, maximum sustained swimming speed (U(crit)) shifted to the respective mean body temperatures during acclimation (cold=20 degrees C, warm=29 degrees C), but there was no difference in the maxima between acclimation groups. Mitochondrial oxygen consumption changed significantly during acclimation, and maximum respiratory control ratios coincided with mean body temperatures in liver, muscle and heart tissues. There were significant changes in the activities of regulatory metabolic enzymes (lactate dehydrogenase, citrate synthase, cytochrome c oxidase) and these were tissue specific. The extraordinary shift in behaviour and locomotory and metabolic performance shows that within individuals, behaviour and physiology covary to maximise performance in different environments.
Dórea, Fernanda C.; McEwen, Beverly J.; McNab, W. Bruce; Revie, Crawford W.; Sanchez, Javier
2013-01-01
Diagnostic test orders to an animal laboratory were explored as a data source for monitoring trends in the incidence of clinical syndromes in cattle. Four years of real data and over 200 simulated outbreak signals were used to compare pre-processing methods that could remove temporal effects in the data, as well as temporal aberration detection algorithms that provided high sensitivity and specificity. Weekly differencing demonstrated solid performance in removing day-of-week effects, even in series with low daily counts. For aberration detection, the results indicated that no single algorithm showed performance superior to all others across the range of outbreak scenarios simulated. Exponentially weighted moving average charts and Holt–Winters exponential smoothing demonstrated complementary performance, with the latter offering an automated method to adjust to changes in the time series that will likely occur in the future. Shewhart charts provided lower sensitivity but earlier detection in some scenarios. Cumulative sum charts did not appear to add value to the system; however, the poor performance of this algorithm was attributed to characteristics of the data monitored. These findings indicate that automated monitoring aimed at early detection of temporal aberrations will likely be most effective when a range of algorithms are implemented in parallel. PMID:23576782
Dórea, Fernanda C; McEwen, Beverly J; McNab, W Bruce; Revie, Crawford W; Sanchez, Javier
2013-06-06
Diagnostic test orders to an animal laboratory were explored as a data source for monitoring trends in the incidence of clinical syndromes in cattle. Four years of real data and over 200 simulated outbreak signals were used to compare pre-processing methods that could remove temporal effects in the data, as well as temporal aberration detection algorithms that provided high sensitivity and specificity. Weekly differencing demonstrated solid performance in removing day-of-week effects, even in series with low daily counts. For aberration detection, the results indicated that no single algorithm showed performance superior to all others across the range of outbreak scenarios simulated. Exponentially weighted moving average charts and Holt-Winters exponential smoothing demonstrated complementary performance, with the latter offering an automated method to adjust to changes in the time series that will likely occur in the future. Shewhart charts provided lower sensitivity but earlier detection in some scenarios. Cumulative sum charts did not appear to add value to the system; however, the poor performance of this algorithm was attributed to characteristics of the data monitored. These findings indicate that automated monitoring aimed at early detection of temporal aberrations will likely be most effective when a range of algorithms are implemented in parallel.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.
2015-07-01
Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.
Futia, Gregory L; Schlaepfer, Isabel R; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A
2017-07-01
Detection of circulating tumor cells (CTCs) in a blood sample is limited by the sensitivity and specificity of the biomarker panel used to identify CTCs over other blood cells. In this work, we present Bayesian theory that shows how test sensitivity and specificity set the rarity of cell that a test can detect. We perform our calculation of sensitivity and specificity on our image cytometry biomarker panel by testing on pure disease positive (D + ) populations (MCF7 cells) and pure disease negative populations (D - ) (leukocytes). In this system, we performed multi-channel confocal fluorescence microscopy to image biomarkers of DNA, lipids, CD45, and Cytokeratin. Using custom software, we segmented our confocal images into regions of interest consisting of individual cells and computed the image metrics of total signal, second spatial moment, spatial frequency second moment, and the product of the spatial-spatial frequency moments. We present our analysis of these 16 features. The best performing of the 16 features produced an average separation of three standard deviations between D + and D - and an average detectable rarity of ∼1 in 200. We performed multivariable regression and feature selection to combine multiple features for increased performance and showed an average separation of seven standard deviations between the D + and D - populations making our average detectable rarity of ∼1 in 480. Histograms and receiver operating characteristics (ROC) curves for these features and regressions are presented. We conclude that simple regression analysis holds promise to further improve the separation of rare cells in cytometry applications. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Chong, Shu-Ling; Ong, Gene Yong-Kwang; Chin, Wendy Yi Wen; Chua, John Mingzhou; Nair, Praseetha; Ong, Alicia Shu Zhen; Ng, Kee Chong; Maconochie, Ian
2018-01-01
Febrile infants younger than 3 months old present a diagnostic dilemma to the emergency physician. We aim to describe a large population of febrile infants less than 3 months old presenting to a pediatric emergency department (ED) and to assess the performance of current heart rate guidelines in the prediction of serious infections (SI). We performed a retrospective review of febrile infants younger than 3 months old, between March 2015 and Feb 2016, in a large tertiary pediatric ED. We documented the primary outcome of SI for each infant, as well as the clinical findings, vital signs, and Severity Index Score (SIS). We assessed the performance of the Paediatric Canadian Triage and Acuity Scale (PaedCTAS), Advanced Pediatric Life Support (APLS) guidelines and Fleming normal reference values, using sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and area under receiver operating characteristics curve (AUC). 1057 infants were analyzed, with 326 (30.6%) infants diagnosed with SI. High temperature, tachycardia, and low SIS score were significantly associated with SI. Item analysis showed that the SIS performance was driven by the presence of mottling (p = 0.003) and high temperature (p<0.001). The APLS guideline had the highest sensitivity (66.0%, 95% CI 60.5-71.1%), NPV (73.3%, 95% CI 69.7-76.5%) and AUC (0.538), while the PaedCTAS (2 standard deviation from normal) had the highest specificity (98.5%, 95% CI 97.3-99.3%) and PPV (55.2%, 95% CI 32.7-71.0%). Current guidelines on infantile heart rates have a variable performance. In our study, the APLS heart rate guidelines performed with the highest sensitivity, but no individual guideline predicted for SIs satisfactorily.
Seena, V; Fernandes, Avil; Pant, Prita; Mukherji, Soumyo; Rao, V Ramgopal
2011-07-22
This paper reports an optimized and highly sensitive piezoresistive SU-8 nanocomposite microcantilever sensor and its application for detection of explosives in vapour phase. The optimization has been in improving its electrical, mechanical and transduction characteristics. We have achieved a better dispersion of carbon black (CB) in the SU-8/CB nanocomposite piezoresistor and arrived at an optimal range of 8-9 vol% CB concentration by performing a systematic mechanical and electrical characterization of polymer nanocomposites. Mechanical characterization of SU-8/CB nanocomposite thin films was performed using the nanoindentation technique with an appropriate substrate effect analysis. Piezoresistive microcantilevers having an optimum carbon black concentration were fabricated using a design aimed at surface stress measurements with reduced fabrication process complexity. The optimal range of 8-9 vol% CB concentration has resulted in an improved sensitivity, low device variability and low noise level. The resonant frequency and spring constant of the microcantilever were found to be 22 kHz and 0.4 N m(-1) respectively. The devices exhibited a surface stress sensitivity of 7.6 ppm (mN m(-1))(-1) and the noise characterization results support their suitability for biochemical sensing applications. This paper also reports the ability of the sensor in detecting TNT vapour concentration down to less than six parts per billion with a sensitivity of 1 mV/ppb.
Chung, Dongil; Yun, Kyongsik; Kim, Jin Ho; Jang, Bosun; Jeong, Jaeseung
2011-02-16
Gifted adolescents are considered to have high IQs with advanced mathematical and logical performances, but are often thought to suffer from social isolation or emotional mal-adaptation to the social group. The underlying mechanisms that cause stereotypic portrayals of gifted adolescents are not well known. We aimed to investigate behavioral performance of gifted adolescents during social decision-making tasks to assess their affective and social/non-social cognitive abilities. We examined cooperation behaviors of 22 gifted and 26 average adolescents during an iterative binary public goods (PG) game, a multi-player social interaction game, and analyzed strategic decision processes that include cooperation and free-riding. We found that the gifted adolescents were more cooperative than average adolescents. Particularly, comparing the strategies for the PG game between the two groups, gifted adolescents were less sensitive to loss, yet were more sensitive to gain. Additionally, the behavioral characteristics of average adolescents, such as low trust of the group and herding behavior, were not found in gifted adolescents. These results imply that gifted adolescents have a high cognitive ability but a low ability to process affective information or to adapt in social groups compared with average adolescents. We conclude that gain/loss sensitivity and the ability to adapt in social groups develop to different degrees in average and gifted adolescents.
Li, Xiangyan; Qi, Xin; Yuan, Geheng; Ju, Shang; Yu, Zhengya; Deng, Wei; Liu, Yanjun; Li, Yufeng; Bu, Xiujun; Ding, Mingchao; Li, Quan; Guo, Xiaohui
2018-02-01
We aimed to define the microbiological characteristics of diabetic foot infection in patients in the Beijing area and to explore the demographic and clinical factors correlated with pathogen distribution. As part of a retrospective multicentre surveillance program conducted in eight hospitals in Beijing 2010-2014, we recruited all inpatients for whom bacterial culture had been performed. Demographic, clinical, laboratory and surgery data were obtained from medical records. Statistical analysis was performed to analyse data on microbiological and clinical characteristics.Results/Key findings. A total of 456 cases were included. The culture positivity was 95.4 %. Among all patients with positive cultures, 88 cases (20.2 %) had polymicrobial infections. Five hundred and fifty-one species were isolated from all specimens, including 39.6 % Gram-positive bacteria and 57.5 % Gram-negative bacteria. Enterobacteriaceae accounted for 41.0 % of all isolates. Staphylococcus aureus (17.1 %), Pseudomonas aeruginosa (13.1 %), Proteus spp. (9.8 %), Escherichia coli (9.3 %) and coagulase-negative Staphylococcus (8.3 %) were the most frequently isolated species. The rate of resistance to methicillin was 24.5 % for S. aureus. The susceptibility of P. aeruginosa to all antibiotics was over 60 %. The rate of extended-spectrum β-lactamase production among E. coli was 52.6 %. P. aeruginosa and Enterobacteriaceae show high sensitivity to piperacillin/tazobactam, carbapenems and amikacin. Multivariate analysis showed that patient age >60 years was independently associated with Gram-negative rods. Enterobacteriaceae were the most frequently isolated organisms in our area. Older patients were more likely to suffer from Gram-negative rod infections. Gram-negative rods show high sensitivity to piperacillin/tazobactam, carbapenems and amikacin.
Interferometric sensor based on the polarization-maintaining fibers
NASA Astrophysics Data System (ADS)
Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Vašinek, Vladimir; Liner, Andrej; Papes, Martin
2012-01-01
The interferometers composed of optical fibers are due to its high sensitivity capable of to measure various influences affecting the fiber. These influences may be bending or different sorts of fiber deformations, vibration, temperature, etc. In this case the vibration is the measured quantity, which is evaluated by analyzing the interference fringes representing changes in the fiber. Was used a Mach-Zehnder interferometer composed of the polarization maintaining elements. The polarization maintaining elements were used because of high sensitivity to polarization state inside the interferometer. The light was splitted into the two optical paths, where the first one is the reference fiber and it is separated from the actual phenomenon, and the second one is measuring fiber, which is directly exposed to vibration transmission from the underlying surface. The light source was narrowband DFB laser serating at a wavelength of 1550nm and as a detector an InGaAs PIN photodiode were used in this measurement. The electrical signal from the photodiode was amplified and fed into the measuring card. On the incoming signal the FFT was applied, which performs the transformation into the frequency domain and the results were further evaluated by software. We were evaluating the characteristic frequencies and their amplitude ratios. The frequency responses are unique for a given phenomenon, thus it is possible to identify recurring events by the characteristic frequencies and their amplitude ratios. The frequency range was limited by the properties of the used speaker, by the frequency characteristics of the filter in the amplifier and used resonant element. For the experiment evaluation the repeated impact of the various spherical objects on the surface board was performed and measured. The stability of amplitude and frequency and also the frequency range was verified in this measurement.
Shields, B M; McDonald, T J; Ellard, S; Campbell, M J; Hyde, C; Hattersley, A T
2012-05-01
Diagnosing MODY is difficult. To date, selection for molecular genetic testing for MODY has used discrete cut-offs of limited clinical characteristics with varying sensitivity and specificity. We aimed to use multiple, weighted, clinical criteria to determine an individual's probability of having MODY, as a crucial tool for rational genetic testing. We developed prediction models using logistic regression on data from 1,191 patients with MODY (n = 594), type 1 diabetes (n = 278) and type 2 diabetes (n = 319). Model performance was assessed by receiver operating characteristic (ROC) curves, cross-validation and validation in a further 350 patients. The models defined an overall probability of MODY using a weighted combination of the most discriminative characteristics. For MODY, compared with type 1 diabetes, these were: lower HbA(1c), parent with diabetes, female sex and older age at diagnosis. MODY was discriminated from type 2 diabetes by: lower BMI, younger age at diagnosis, female sex, lower HbA(1c), parent with diabetes, and not being treated with oral hypoglycaemic agents or insulin. Both models showed excellent discrimination (c-statistic = 0.95 and 0.98, respectively), low rates of cross-validated misclassification (9.2% and 5.3%), and good performance on the external test dataset (c-statistic = 0.95 and 0.94). Using the optimal cut-offs, the probability models improved the sensitivity (91% vs 72%) and specificity (94% vs 91%) for identifying MODY compared with standard criteria of diagnosis <25 years and an affected parent. The models are now available online at www.diabetesgenes.org . We have developed clinical prediction models that calculate an individual's probability of having MODY. This allows an improved and more rational approach to determine who should have molecular genetic testing.
Jeon, Ji Young; Lee, Min Hee; Lee, Sang Hoon; Shin, Myung Jin
2016-01-01
Objective: To evaluate the usefulness of adding diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping to conventional 3.0-T MRI to differentiate between benign and malignant superficial soft-tissue masses (SSTMs). Methods: The institutional review board approved this study and informed consent was waived. The authors retrospectively analyzed conventional MR images including diffusion-weighted images (b-values: 0, 400, 800 s mm−2) in 60 histologically proven SSTMs (35 benign and 25 malignant) excluding lipomas. Two radiologists independently evaluated the conventional MRI alone and again with the additional DWI for the evaluation of malignant masses. The mean ADC values measured within an entire mass and the contrast-enhancing solid portion were used for quantitative analysis. Diagnostic performances were compared using receiver-operating characteristic analysis. Results: For an inexperienced reader, using only conventional MRI, the sensitivity, specificity and accuracy were 84%, 80% and 81.6%, respectively. When combining conventional MRI and DWI, the sensitivity, specificity and accuracy were 96%, 85.7% and 90%, respectively. Additional DWI influenced the improvement of the rate of correct diagnosis by 8.3% (5/60). For an experienced reader, additional DWI revealed the same accuracy of 86.7% without added value on the correct diagnosis. The group mean ADCs of malignant SSTMs were significantly lower than that of benign SSTMs (p < 0.001). The best diagnostic performance with respect to differentiation of SSTMs could be obtained when conventional MRI was assessed in combination with DWI. Conclusion: Adding qualitative and quantitative DWI to conventional MRI can improve the diagnostic performance for the differentiation between benign and malignant SSTMs. Advances in knowledge: Because the imaging characteristics of many malignant superficial soft-tissue lesions overlap with those of benign ones, inadequate surgical resection due to misinterpretation of MRI often occurs. Adding DWI to conventional MRI yields greater diagnostic performances [area under the receiver-operating characteristic curve (AUC), 0.83–0.99] than does the use of conventional MRI alone (AUC, 0.71–0.93) in the evaluation of malignant superficial masses by inexperienced readers. PMID:26892266
NASA Technical Reports Server (NTRS)
Klein, R. H.; Mcruer, D. T.
1975-01-01
A series of discrete maneuver tasks were used to evaluate the effects of steering gain and directional mode dynamic parameters on driver/vehicle responses. The importance and ranking of these parameters were evaluated through changes in subjective driver ratings and performance measures obtained from transient maneuvers such as a double lane change, an emergency lane change, and an unexpected obstacle. The unexpected obstacle maneuver proved more sensitive to individual driver differences than to vehicle differences. Results were based on full scale tests with an experienced test driver evaluating many different dynamic configurations plus seventeen ordinary drivers evaluating six key configurations.
A Study of the Effects of Atmospheric Phenomena on Mars Science Laboratory Entry Performance
NASA Technical Reports Server (NTRS)
Cianciolo, Alicia D.; Way, David W.; Powell, Richard W.
2008-01-01
At Earth during entry the shuttle has experienced what has come to be known as potholes in the sky or regions of the atmosphere where the density changes suddenly. Because of the small data set of atmospheric information where the Mars Science Laboratory (MSL) parachute deploys, the purpose of this study is to examine the effect similar atmospheric pothole characteristics, should they exist at Mars, would have on MSL entry performance. The study considers the sensitivity of entry design metrics, including altitude and range error at parachute deploy and propellant use, to pothole like density and wind phenomena.
NASA Technical Reports Server (NTRS)
Minkin, H. L.
1976-01-01
The performance characteristics of several miniature pressure transducers were determined at centripetal accelerations up to 11,200 g's at a rotational speed of 23,000 rpm. The variation in centripetal acceleration was produced by changing radial position of the transducer relative to the center of rotation. Residual zero outputs and transducer sensitivities were determined at 23,000 rpm and compared with those determined at 0 rpm. The actual pressures at the various transducer locations differ from the center line impressed pressures due to a rotational effect. Corrections for this effect were made. A brief description of the test apparatus is included.
NASA Astrophysics Data System (ADS)
Mallikarjunarao; Ranjan, Rajeev; Pradhan, K. P.; Artola, L.; Sahu, P. K.
2016-09-01
In this paper, a novel N-channel Tunnel Field Effect Transistor (TFET) i.e., Trigate Silicon-ON-Insulator (SOI) N-TFET with high-k spacer is proposed for better Sub-threshold swing (SS) and OFF-state current (IOFF) by keeping in mind the sensitivity towards temperature. The proposed model can achieve a Sub-threshold swing less than 35 mV/decade at various temperatures, which is desirable for designing low power CTFET for digital circuit applications. In N-TFET source doping has a significant effect on the ON-state current (ION) level; therefore more electrons will tunnel from source to channel region. High-k Spacer i.e., HfO2 is used to enhance the device performance and also it avoids overlapping of transistors in an integrated circuits (IC's). We have designed a reliable device by performing the temperature analysis on Transfer characteristics, Drain characteristics and also on various performance metrics like ON-state current (ION), OFF-state current (IOFF), ION/IOFF, Trans-conductance (gm), Trans-conductance Generation Factor (TGF), Sub-threshold Swing (SS) to observe the applications towards harsh temperature environment.
A robotic observatory in the city
NASA Astrophysics Data System (ADS)
Ruch, Gerald T.; Johnston, Martin E.
2012-05-01
The University of St. Thomas (UST) Observatory is an educational facility integrated into UST's undergraduate curriculum as well as the curriculum of several local schools. Three characteristics combine to make the observatory unique. First, the telescope is tied directly to the support structure of a four-story parking ramp instead of an isolated pier. Second, the facility can be operated remotely over an Internet connection and is capable of performing observations without a human operator. Third, the facility is located on campus in the heart of a metropolitan area where light pollution is severe. Our tests indicate that, despite the lack of an isolated pier, vibrations from the ramp do not degrade the image quality at the telescope. The remote capability facilitates long and frequent observing sessions and allows others to use the facility without traveling to UST. Even with the high background due to city lights, the sensitivity and photometric accuracy of the system are sufficient to fulfill our pedagogical goals and to perform a variety of scientific investigations. In this paper, we outline our educational mission, provide a detailed description of the observatory, and discuss its performance characteristics.
Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster
NASA Technical Reports Server (NTRS)
Ryan, Richard M.; Rothschild, William J.; Christensen, David L.
1998-01-01
The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.
Im, Sang Hyuk; Lee, Yong Hui; Seok, Sang Il; Kim, Sung Woo; Kim, Sang-Wook
2010-12-07
We were able to attach CdSe quantum dots (QDs) having a ZnS inorganic glue layer directly to a mesoporous TiO(2) (mp-TiO(2)) surface by spray coating and thermal annealing. Quantum-dot-sensitized solar cells based on CdSe QDs having ZnS as the inorganic glue layer could easily transport generated charge carriers because of the intimate bonding between CdSe and mp-TiO(2). The application of spray pyrolysis deposition (SPD) to obtain additional CdSe layers improved the performance characteristics to V(oc) = 0.45 V, J(sc) = 10.7 mA/cm(2), fill factor = 35.8%, and power conversion efficiency = 1.7%. Furthermore, ZnS post-treatment improved the device performance to V(oc) = 0.57 V, J(sc) = 11.2 mA/cm(2), fill factor = 35.4%, and power conversion efficiency = 2.2%.
Cheng, Xianfu; Lin, Yuqun
2014-01-01
The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.
Dispersion of Heat Flux Sensors Manufactured in Silicon Technology.
Ziouche, Katir; Lejeune, Pascale; Bougrioua, Zahia; Leclercq, Didier
2016-06-09
In this paper, we focus on the dispersion performances related to the manufacturing process of heat flux sensors realized in CMOS (Complementary metal oxide semi-conductor) compatible 3-in technology. In particular, we have studied the performance dispersion of our sensors and linked these to the physical characteristics of dispersion of the materials used. This information is mandatory to ensure low-cost manufacturing and especially to reduce production rejects during the fabrication process. The results obtained show that the measured sensitivity of the sensors is in the range 3.15 to 6.56 μV/(W/m²), associated with measured resistances ranging from 485 to 675 kΩ. The dispersions correspond to a Gaussian-type distribution with more than 90% determined around average sensitivity S e ¯ = 4.5 µV/(W/m²) and electrical resistance R ¯ = 573.5 kΩ within the interval between the average and, more or less, twice the relative standard deviation.
Effects of verbal and nonverbal interference on spatial and object visual working memory.
Postle, Bradley R; Desposito, Mark; Corkin, Suzanne
2005-03-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.
Effects of verbal and nonverbal interference on spatial and object visual working memory
POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE
2005-01-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575
A palm-sized high-sensitivity near-infrared fluorescence imager for laparotomy surgery.
Dorval, Paul; Mangeret, Norman; Guillermet, Stephanie; Atallah, Ihab; Righini, Christian; Barabino, Gabriele; Coll, Jean-Luc; Rizo, Philippe; Poulet, Patrick
2016-01-01
In laparotomy surgery guided by near-infrared fluorescence imaging, the access to the field of operation is limited by the illumination and/or the imaging field. The side of cavities or organs such as the liver or the heart cannot be examined with the systems available on the market, which are too large and too heavy. In this article, we describe and evaluate a palm sized probe, whose properties, weight, size and sensitivity are adapted for guiding laparotomy surgery. Different experiments have been performed to determine its main characteristics, both on the illumination and imaging sides. The device has been tested for fluorescent molecular probe imaging in preclinical procedures, to prove its ability to be used in cancer nodule detection during surgery. This system is now CE certified for clinical procedures and Indocyanine Green imaging has been performed during clinical investigations: lymphedema and surgical resection of liver metastases of colorectal cancers. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Klapötke, Thomas M; Stierstorfer, Jörg
2008-08-07
The highly energetic compound 1,3,5-triaminoguanidinium dinitramide (1) was prepared in high yield (82%) according to a new synthesis by the reaction of potassium dinitramide and triaminoguanidinium perchlorate. The heat of formation was calculated in an extensive computational study (CBS-4M). With this the detonation parameters of compound were computed using the EXPLO5 software: D = 8796 m s(-1), p = 299 kbar. In addition, a full characterization of the chemical properties (single X-ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, mass spectrometry and elemental analysis) as well as of the energetic characteristics (differential scanning calorimetry, thermal safety calorimetry, impact, friction and electrostatic tests) is given in this work. Due to the high impact (2 J) and friction sensitivity (24 N) several attempts to reduce these sensitivities were performed by the addition of wax. The performance of was tested applying a "Koenen" steel sleeve test resulting in a critical diameter of > or =10 mm.
NASA Astrophysics Data System (ADS)
Cao, Dongpu; Khajepour, Amir; Song, Xubin
2011-08-01
Flexible-wheel (FW) suspension concept has been regarded to be one of the novel technologies for future planetary surface vehicles (PSVs). This study develops generalised models for fundamental stiffness and damping properties and power consumption characteristics of the FW suspension with and without considering wheel-hub dimensions. Compliance rolling resistance (CRR) coefficient is also defined and derived for the FW suspension. Based on the generalised models and two dimensionless measures, suspension properties are analysed for two FW suspension configurations. The sensitivity analysis is performed to investigate the effects of the design parameters and operating conditions on the CRR and power consumption characteristic of the FW suspension. The modelling generalisation permits analyses of fundamental properties and power consumption characteristics of different FW suspension designs in a uniform and very convenient manner, which would serve as a theoretical foundation for the design of FW suspensions for future PSVs.
Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm
NASA Astrophysics Data System (ADS)
Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng
2018-06-01
Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.
Martínez-Abundis, E; Pascoe-González, S; González-Ortiz, M; Mora-Martínez, J M; Cabrera-Pivaral, C E
2001-01-01
The aim of this study was to identify the effect of an oral ascorbic acid (AA) supplement on lipid profile and insulin sensitivity in obese people. A randomized double-blind clinical trial placebo controlled was performed in 16 obese male volunteers [body mass index (BMI) 30-40 kg/m2]. Eight received orally 1 g of AA daily for four weeks and the other eight volunteers received placebo by the same scheme and period of time. Before and after the pharmacological intervention were measured total cholesterol, high-density-lipoprotein (HDL) cholesterol, triglycerides, glucose, creatinine and uric acid. Low-density-lipoprotein (LDL) cholesterol and very-low-density-lipoprotein (VLDL) triglycerides were calculated using formulas. In order to assess insulin sensitivity before and after the intervention, the steady-state glucose (SSG) was calculated from the insulin suppression test modified with octreotide. There were not significant differences in clinical characteristics between both groups. Basal metabolic profile and SSG were similar between both groups. There were not significant differences in both groups between before and after the intervention in metabolic profile and insulin sensitivity. AA did not modify the lipid profile nor insulin sensitivity in the group of obese people studied.
Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams
NASA Astrophysics Data System (ADS)
Khachonkham, Suphalak; Dreindl, Ralf; Heilemann, Gerd; Lechner, Wolfgang; Fuchs, Hermann; Palmans, Hugo; Georg, Dietmar; Kuess, Peter
2018-03-01
Recently, a new type of radiochromic film, the EBT-XD film, has been introduced for high dose radiotherapy. The EBT-XD film contains the same structure as the EBT3 film but has a slightly different composition and a thinner active layer. This study benchmarks the EBT-XD against EBT3 film for 6 MV and 10 MV photon beams, as well as for 97.4 MeV and 148.2 MeV proton beams and 15-100 kV x-rays. Dosimetric and film reading characteristics, such as post irradiation darkening, film orientation effect, lateral response artifact (LRA), film sensitivity, energy and beam quality dependency were investigated. Furthermore, quenching effects in the Bragg peak were investigated for a single proton beam energy for both film types, in addition measurements were performed in a spread-out Bragg peak. EBT-XD films showed the same characteristic on film darkening as EBT3. The effects between portrait and landscape orientation were reduced by 3.1% (in pixel value) for EBT-XD compared to EBT3 at a dose of 2000 cGy. The LRA is reduced for EBT-XD films for all investigated dose ranges. The sensitivity of EBT-XD films is superior to EBT3 for doses higher than 500 cGy. In addition, EBT-XD showed a similar dosimetric response for photon and proton irradiation with low energy and beam quality dependency. A quenching effect of 10% was found for both film types. The slight decrease in the thickness of the active layer and different composition configuration of EBT-XD resulted in a reduced film orientation effect and LRA, as well as a sensitivity increase in high-dose regions for both photon and proton beams. Overall, the EBT-XD film improved regarding film reading characteristics and showed advantages in the high-dose region for photon and proton beams.
Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams.
Khachonkham, Suphalak; Dreindl, Ralf; Heilemann, Gerd; Lechner, Wolfgang; Fuchs, Hermann; Palmans, Hugo; Georg, Dietmar; Kuess, Peter
2018-03-15
Recently, a new type of radiochromic film, the EBT-XD film, has been introduced for high dose radiotherapy. The EBT-XD film contains the same structure as the EBT3 film but has a slightly different composition and a thinner active layer. This study benchmarks the EBT-XD against EBT3 film for 6 MV and 10 MV photon beams, as well as for 97.4 MeV and 148.2 MeV proton beams and 15-100 kV x-rays. Dosimetric and film reading characteristics, such as post irradiation darkening, film orientation effect, lateral response artifact (LRA), film sensitivity, energy and beam quality dependency were investigated. Furthermore, quenching effects in the Bragg peak were investigated for a single proton beam energy for both film types, in addition measurements were performed in a spread-out Bragg peak. EBT-XD films showed the same characteristic on film darkening as EBT3. The effects between portrait and landscape orientation were reduced by 3.1% (in pixel value) for EBT-XD compared to EBT3 at a dose of 2000 cGy. The LRA is reduced for EBT-XD films for all investigated dose ranges. The sensitivity of EBT-XD films is superior to EBT3 for doses higher than 500 cGy. In addition, EBT-XD showed a similar dosimetric response for photon and proton irradiation with low energy and beam quality dependency. A quenching effect of 10% was found for both film types. The slight decrease in the thickness of the active layer and different composition configuration of EBT-XD resulted in a reduced film orientation effect and LRA, as well as a sensitivity increase in high-dose regions for both photon and proton beams. Overall, the EBT-XD film improved regarding film reading characteristics and showed advantages in the high-dose region for photon and proton beams.
NASA Astrophysics Data System (ADS)
Sarrazin, Fanny; Hartmann, Andreas; Pianosi, Francesca; Wagener, Thorsten
2017-04-01
Karst aquifers are an important source of drinking water in many regions of the world, but their resources are likely to be affected by changes in climate and land cover. Karst areas are highly permeable and produce large amounts of groundwater recharge, while surface runoff is typically negligible. As a result, recharge in karst systems may be particularly sensitive to environmental changes compared to other less permeable systems. However, current large-scale hydrological models poorly represent karst specificities. They tend to provide an erroneous water balance and to underestimate groundwater recharge over karst areas. A better understanding of karst hydrology and estimating karst groundwater resources at a large-scale is therefore needed for guiding water management in a changing world. The first objective of the present study is to introduce explicit vegetation processes into a previously developed karst recharge model (VarKarst) to better estimate evapotranspiration losses depending on the land cover characteristics. The novelty of the approach for large-scale modelling lies in the assessment of model output uncertainty, and parameter sensitivity to avoid over-parameterisation. We find that the model so modified is able to produce simulations consistent with observations of evapotranspiration and soil moisture at Fluxnet sites located in carbonate rock areas. Secondly, we aim to determine the model sensitivities to climate and land cover characteristics, and to assess the relative influence of changes in climate and land cover on aquifer recharge. We perform virtual experiments using synthetic climate inputs, and varying the value of land cover parameters. In this way, we can control for variations in climate input characteristics (e.g. precipitation intensity, precipitation frequency) and vegetation characteristics (e.g. canopy water storage capacity, rooting depth), and we can isolate the effect that each of these quantities has on recharge. Our results show that these factors are strongly interacting and are generating non-linear responses in recharge.
Espy, K A; Kaufmann, P M; McDiarmid, M D; Glisky, M L
1999-11-01
The A-not-B (AB) task has been hypothesized to measure executive/frontal lobe function; however, the developmental and measurement characteristics of this task have not been investigated. Performances on AB and comparison tasks adapted from developmental and neuroscience literature was examined in 117 preschool children (ages 23-66 months). Age significantly predicted performance on AB, Delayed Alternation, Spatial Reversal, Color Reversal, and Self-Control tasks. A four-factor analytic model best fit task performance data. AB task indices loaded on two factors with measures from the Self-Control and Delayed Alternation tasks, respectively. AB indices did not load with those from the reversal tasks despite similarities in task administration and presumed cognitive demand (working memory). These results indicate that AB is sensitive to individual differences in age-related performance in preschool children and suggest that AB performance is related to both working memory and inhibition processes in this age range.
Nonmaternal Care’s Association With Mother’s Parenting Sensitivity: A Case of Self-Selection Bias?
Nomaguchi, Kei M.; DeMaris, Alfred
2013-01-01
Although attachment theory posits that the use of nonmaternal care undermines quality of mothers’ parenting, empirical evidence for this link is inconclusive. Using data from the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development (N = 1,233), the authors examined the associations between nonmaternal care characteristics and maternal sensitivity during the first 3 years of children’s lives, with special attention to selection effects and moderation by resource levels. Findings from fixed-effects regression models suggested that, on average, there is little relationship between nonmaternal care characteristics and maternal sensitivity, once selection factors are held constant. Some evidence of moderation effects was found, however. Excellent-quality care is related to more sensitivity for mothers with lower family income. Poor-quality care is related to lower sensitivity for single mothers, but not partnered mothers. In sum, nonmaternal care characteristics do not seem to have as much influence on mothers’ parenting as attachment theory claims. PMID:23772093
Sensitivity analysis of static resistance of slender beam under bending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valeš, Jan
2016-06-08
The paper deals with statical and sensitivity analyses of resistance of simply supported I-beams under bending. The resistance was solved by geometrically nonlinear finite element method in the programme Ansys. The beams are modelled with initial geometrical imperfections following the first eigenmode of buckling. Imperfections were, together with geometrical characteristics of cross section, and material characteristics of steel, considered as random quantities. The method Latin Hypercube Sampling was applied to evaluate statistical and sensitivity resistance analyses.
Park, Kyung-Hee; Kim, Tae-Young; Han, Shin; Ko, Hyun-Seok; Lee, Suk-Ho; Song, Yong-Min; Kim, Jung-Hun; Lee, Jae-Wook
2014-07-15
Two natural dyes extracted from gardenia yellow (Gardenia jasminoides) and cochineal (Dactylopius coccus) were used as sensitizers in the assembly of dye-sensitized solar cells (DSSCs) to harvest light over a wide range of wavelengths. The adsorption characteristics, electrochemical properties and photovoltaic efficiencies of the natural DSSCs were investigated. The adsorption kinetics data of the dyes were obtained in a small adsorption chamber and fitted with a pseudo-second-order model. The photovoltaic performance of a photo-electrode adsorbed with single-dye (gardenia or cochineal) or the mixture or successive adsorption of the two dyes, was evaluated from current-voltage measurements. The energy conversion efficiency of the TiO2 electrode with the successive adsorption of cochineal and gardenia dyes was 0.48%, which was enhanced compared to single-dye adsorption. Overall, a double layer of the two natural dyes as sensitizers was successfully formulated on the nanoporous TiO2 surface based on the differences in their adsorption affinities of gardenia and cochineal. Copyright © 2014 Elsevier B.V. All rights reserved.
Diagnostic Value of Cerebrospinal Fluid T-SPOT.TB for Tuberculousis Meningitis in China.
Li, Xue Lian; Xie, Na; Wang, Song Wang; Wu, Qian Hong; Ma, Yan; Shu, Wei; Chen, Hong Mei; Zhang, Li Qun; Wu, Xiao Guang; Ma, Li Ping; Che, Nan Ying; Gao, Meng Qiu
2017-09-01
The aim of this study was to evaluate the diagnostic value of the cerebrospinal fluid (CSF) T-SPOT.TB test for the diagnosis of TB meningitis (TBM). A retrospective analysis of 96 patients with manifested meningitis was conducted; T-SPOT.TB test was performed for diagnosing TBM to determine the diagnostic sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). A receiver operating characteristic (ROC) curve was also drawn to assess the diagnostic accuracy. The sensitivity, specificity, PPV, and NPV of CSF T-SPOT.TB test were 97.8%, 78.0%, 80.3%, and 97.5%, respectively, for 52 patients (54.2%) of the 96 enrolled patients. The area under the curve (AUC) was 0.910, and the sensitivities of CSF T-SPOT.TB for patients with stages I, II, and III of TBM were 96.7%, 97.2%, and 98.9%, respectively. CSF T-SPOT.TB test is a rapid and accurate diagnostic method with higher sensitivity and specificity for diagnosing TBM. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Comparative and developmental patterns of amphibious auditory function in salamanders.
Zeyl, Jeffrey N; Johnston, Carol E
2016-12-01
Early amphibious tetrapods may have detected aquatic sound pressure using sound-induced lung vibrations, but their lack of tympanic middle ears would have restricted aerial sensitivity. Sharing these characteristics, salamanders could be models for the carryover of auditory function across an aquatic-terrestrial boundary without tympanic middle ears. We measured amphibious auditory evoked potential audiograms in five phylogenetically and ecologically distinct salamanders (Amphiuma means, Notophthalmus viridescens, Ambystoma talpoideum, Eurycea spp., and Plethodon glutinosus) and tested whether metamorphosis and terrestrial niche were linked to aerial sensitivity. Threshold differences between media varied between species. A. means' relative aerial sensitivity was greatest at 100 Hz and decreased with increasing frequency. In contrast, all other salamanders retained greater sensitivity up to 500 Hz, and in A. talpoideum and Eurycea, relative sensitivity at 500 Hz was higher than at 100 Hz. Aerial thresholds of terrestrial P. glutinosus above 200 Hz were similar to A. talpoideum and Eurycea, but lower than N. viridescens and A. means. Metamorphosis did not affect aerial sensitivity in N. viridescens or A. talpoideum. These results fail to support a hypothesis of terrestrial hearing specialization across ontogeny or phylogeny. We discuss methodological limitations to our amphibious comparisons and factors affecting variation in amphibious performance.
Marín-Sáez, Julia; Atencia, Jesús; Chemisana, Daniel; Collados, María-Victoria
2016-03-21
Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baliatsas, Christos, E-mail: c.baliatsas@nivel.nl
Epidemiological evidence on the symptomatic profile, health status and illness behavior of people with subjective sensitivity to noise is still scarce. Also, it is unknown to what extent noise sensitivity co-occurs with other environmental sensitivities such as multi-chemical sensitivity and sensitivity to electromagnetic fields (EMF). A cross-sectional study performed in the Netherlands, combining self-administered questionnaires and electronic medical records of non-specific symptoms (NSS) registered by general practitioners (GP) allowed us to explore this further. The study sample consisted of 5806 participants, drawn from 21 general practices. Among participants, 722 (12.5%) responded “absolutely agree” to the statement “I am sensitive tomore » noise”, comprising the high noise-sensitive (HNS) group. Compared to the rest of the sample, people in the HNS group reported significantly higher scores on number and duration of self-reported NSS, increased psychological distress, decreased sleep quality and general health, more negative symptom perceptions and higher prevalence of healthcare contacts, GP-registered NSS and prescriptions for antidepressants and benzodiazepines. These results remained robust after adjustment for demographic, residential and lifestyle characteristics, objectively measured nocturnal noise exposure from road-traffic and GP-registered morbidity. Co-occurrence rates with other environmental sensitivities varied between 9% and 50%. Individuals with self-declared sensitivity to noise are characterized by high prevalence of multiple NSS, poorer health status and increased illness behavior independently of noise exposure levels. Findings support the notion that different types of environmental sensitivities partly overlap. - Highlights: • People with self-reported noise sensitivity experience multiple non-specific symptoms. • They also report comparatively poorer health and increased illness behavior. • Co-occurrence with other environmental sensitivities is moderate to high. • Road-traffic noise and GP-registered morbidity did not account for these results.« less
Sensitivity of Hyperdense Basilar Artery Sign on Non-Enhanced Computed Tomography
Ernst, Marielle; Romero, Javier M.; Buhk, Jan-Hendrik; Cheng, Bastian; Herrmann, Jochen; Fiehler, Jens; Groth, Michael
2015-01-01
Purpose The hyperdense basilar artery sign (HBAS) is an indicator of vessel occlusion on non contrast-enhanced computer tomography (NECT) in acute stroke patients. Since basilar artery occlusion (BAO) is associated with a high mortality and morbidity, its early detection is of great clinical value. We sought to analyze the influence of density measurement as well as a normalized ratio of Hounsfield unit/hematocrit (HU/Hct) ratio on the detection of BAO on NECT in patients with suspected BAO. Materials and Methods 102 patients with clinically suspected BAO were examined with NECT followed immediately by Multidetector computed tomography Angiography. Two observers independently analyzed the images regarding the presence or absence of HBAS on NECT and performed HU measurements in the basilar artery. Receiver operating characteristic curve analysis was performed to determine the optimal density threshold for BAO using attenuation measurements or HU/Hct ratio. Results Sensitivity of visual detection of the HBAS on NECT was relatively low 81% (95%-CI, 54–95%) while specificity was high 91% (95%-CI, 82–96%). The highest sensitivity was achieved by the combination of visual assessment and additional quantitative attenuation measurements applying a cut-off value of 46.5 HU with 94% sensitivity and 81% specificity for BAO. A HU/Hct ratio >1.32 revealed sensitivity of 88% (95%-CI, 60–98%) and specificity of 84% (95%-CI, 74–90%). Conclusion In patients with clinically suspected acute BAO the combination of visual assessment and additional attenuation measurement with a cut-off value of 46.5 HU is a reliable approach with high sensitivity in the detection of BAO on NECT. PMID:26479718
Evaluation of ion-implanted-silicon detectors for use in intraoperative positron-sensitive probes.
Raylman, R R; Wahl, R L
1996-11-01
The continuing development of probes for use with beta (positron and electron) emitting radionuclides may result in more complete excision of tracer-avid tumors. Perhaps one of the most promising radiopharmaceuticals for this task is 18F-labeled-Fluoro-2-Deoxy-D-Glucose (FDG). This positron-emitting agent has been demonstrated to be avidly and rapidly absorbed by many human cancers. We have investigated the use of ion-implanted-silicon detectors in intraoperative positron-sensitive surgical probes for use with FDG. These detectors possess very high positron detection efficiency, while the efficiency for 511 keV photon detection is low. The spatial resolution, as well as positron and annihilation photon detection sensitivity, of an ion-implanted-silicon detector used with 18F was measured at several energy thresholds. In addition, the ability of the device to detect the presence of relatively small amounts of FDG during surgery was evaluated by simulating a surgical field in which some tumor was left intact following lesion excision. The performance of the ion-implanted-silicon detector was compared to the operating characteristics of a positron-sensitive surgical probe which utilizes plastic scintillator. In all areas of performance the ion-implanted-silicon detector proved superior to the plastic scintillator-based probe. At an energy threshold of 14 keV positron sensitivity measured for the ion-implanted-silicon detector was 101.3 cps/kBq, photon sensitivity was 7.4 cps/kBq. In addition, spatial resolution was found to be relatively unaffected by the presence of distant sources of annihilation photon flux. Finally, the detector was demonstrated to be able to localize small amounts of FDG in a simulated tumor bed; indicating that this device has promise as a probe to aid in FDG-guided surgery.
The development and test of multi-anode microchannel array detector systems. 2: Soft X-ray detectors
NASA Technical Reports Server (NTRS)
Timothy, J. G.
1983-01-01
The techniques and procedures for producing very-large-format pulse-counting array detector systems for use in forthcoming high-energy astrophysics facilities were defined, and the structures and performance characteristics of high-sensitivity photocathodes for use at soft X-ray wavelengths between 100 and 1 A were determined. The progress made to date in each of these areas are described and the tasks that will be undertaken when the program is continued are summarized.
Silicon micromachined vibrating gyroscopes
NASA Astrophysics Data System (ADS)
Voss, Ralf
1997-09-01
This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.
2017 Guralp Affinity Digitizer Evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.
Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
Data Reduction and Control Software for Meteor Observing Stations Based on CCD Video Systems
NASA Technical Reports Server (NTRS)
Madiedo, J. M.; Trigo-Rodriguez, J. M.; Lyytinen, E.
2011-01-01
The SPanish Meteor Network (SPMN) is performing a continuous monitoring of meteor activity over Spain and neighbouring countries. The huge amount of data obtained by the 25 video observing stations that this network is currently operating made it necessary to develop new software packages to accomplish some tasks, such as data reduction and remote operation of autonomous systems based on high-sensitivity CCD video devices. The main characteristics of this software are described here.
NASA Technical Reports Server (NTRS)
Corliss, L. D.
1982-01-01
The helicopter configuration with an rpm-governed gas-turbine engine was examined. A wide range of engine response time, vehicle damping and sensitivity, and excess power levels was studied. The data are compared with the existing handling-qualities specifications, MIL-F-83300 and AGARD 577, and in general show a need for higher minimums when performing such NOE maneuvers as a dolphin and bob-up task.
Remagnetization effects due to lateral displacement above a PMG on bulk HTS magnet
NASA Astrophysics Data System (ADS)
Liu, W.; Wang, J. S.; Ma, G. T.; Zheng, J.; Ren, J. F.; Li, L. L.; Yang, X. F.; Ye, C. Q.; Wang, S. Y.
2012-12-01
For a high-Tc superconducting (HTS) maglev system with large force requirements, the use of magnetized bulk high-Tc superconductor magnets (MBSCMs) is a good candidate because of its strong flux pinning ability and corresponding high trapped flux. Different from the rare-earth permanent magnet (PM), the trapped flux of a MBSCM is sustained by the supercurrent produced by a magnetizing process, so the trapped flux is sensitive to variations of the supercurrent. The lateral displacement of a MBSCM above a PM guideway (PMG) will provide disturbance of the applied field and then alter the supercurrent as a process of remagnetization. Different magnetization histories will bring different remagnetization characteristics and consequently diverse levitation performances for a MBSCM during the lateral displacements. When the MBSCMs are applied into the HTS maglev system, the influence of lateral displacements on levitation performance should be taken into consideration. This article investigates the remagnetization characteristics of a MBSCM when it is subject to the lateral displacements above a PMG with different trapped magnetic flux and opposite magnetization polarities. Relevant analyses about the internal supercurrent configuration based on the critical state model are also included to better understand the remagnetization characteristic of a MBSCM.
A Detailed Look at the Performance Characteristics of the Lightning Imaging Sensor
NASA Technical Reports Server (NTRS)
Zhang, Daile; Cummins, Kenneth L.; Bitzer, Phillip; Koshak, William J.
2018-01-01
The Lightning Imaging Sensor (LIS) on board the Tropical Rainfall Measuring Mission (TRMM) effectively reached its end of life on April 15, 2015 after 17+ years of observation. Given the wealth of information in the archived LIS lightning data, and growing use of optical observations of lightning from space throughout the world, it is still of importance to better understand LIS calibration and performance characteristics. In this work, we continue our efforts to quantify the optical characteristics of the LIS pixel array, and to further characterize the detection efficiency and location accuracy of LIS. The LIS pixel array was partitioned into four quadrants, each having its own signal amplifier and digital conversion hardware. In addition, the sensor optics resulted in a decreasing sensitivity with increasing displacement from the center of the array. These engineering limitations resulted in differences in the optical emissions detected across the pixel array. Our work to date has shown a 20% increase in the count of the lightning events detected in one of the LIS quadrants, because of a lower detection threshold. In this study, we will discuss our work in progress on these limitations, and their potential impact on the group- and flash-level parameters.
NASA Astrophysics Data System (ADS)
Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond
2010-01-01
In this paper, the design of MEMS piezoresistive strain sensor is described. ANSYS®, finite element analysis (FEA) software, was used as a tool to model the performance of the silicon-based sensor. The incorporation of stress concentration regions (SCRs), to localize stresses, was explored in detail. This methodology employs the structural design of the sensor silicon carrier. Therefore, the induced strain in the sensing chip yielded stress concentration in the vicinity of the SCRs. Hence, this concept was proved to enhance the sensor sensitivity. Another advantage of the SCRs is to reduce the sensor transverse gauge factor, which offered a great opportunity to develop a MEMS sensor with minimal cross sensitivity. Two basic SCR designs were studied. The depth of the SCRs was also investigated. Moreover, FEA simulation is utilized to investigate the effect of the sensing element depth on the sensor sensitivity. Simulation results showed that the sensor sensitivity is independent of the piezoresistors' depth. The microfabrication process flow was introduced to prototype the different sensor designs. The experiments covered operating temperature range from -50 °C to +50 °C. Finally, packaging scheme and bonding adhesive selection were discussed. The experimental results showed good agreement with the FEA simulation results. The findings of this study confirmed the feasibility of introducing SCRs in the sensor silicon carrier to improve the sensor sensitivity while using relatively high doping levels (5 × 1019 atoms cm-3). The fabricated sensors have a gauge factor about three to four times higher compared to conventional thin-foil strain gauges.
Sensitivity to Envelope Interaural Time Differences at High Modulation Rates
Bleeck, Stefan; McAlpine, David
2015-01-01
Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor—to the point of discrimination thresholds being unattainable—compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners’ sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered. PMID:26721926
Fang, Y G; Chen, N N; Cheng, Y B; Sun, S J; Li, H X; Sun, F; Xiang, Y
2015-12-01
Urinary neutrophil gelatinase-associated lipocalin (uNGAL) is relatively specific in lupus nephritis (LN) patients. However, its diagnostic value has not been evaluated. The aim of this review was to determine the value of uNGAL for diagnosis and estimating activity in LN. A comprehensive search was performed on PubMed, EMBASE, Web of Knowledge, Cochrane electronic databases through December 2014. Meta-analysis of sensitivity and specificity was performed with a random-effects model. Additionally, summary receiver operating characteristic (SROC) curves and area under the curve (AUC) values were calculated. Fourteen studies were selected for this review. With respect to diagnosing LN, the pooled sensitivity and specificity were 73.6% (95% confidence interval (CI), 61.9-83.3) and 78.1% (95% CI, 69.0-85.6), respectively. The SROC-AUC value was 0.8632. Regarding estimating LN activity, the pooled sensitivity and specificity were 66.2% (95% CI, 60.4-71.7) and 62.1% (95% CI, 57.9-66.3), respectively. The SROC-AUC value was 0.7583. In predicting renal flares, the pooled sensitivity and specificity were 77.5% (95% CI, 68.1-85.1) and 65.3% (95% CI, 60.0-70.3), respectively. The SROC-AUC value was 0.7756. In conclusion, this meta-analysis indicates that uNGAL has relatively fair sensitivity and specificity in diagnosing LN, estimating LN activity and predicting renal flares, suggesting that uNGAL is a potential biomarker in diagnosing LN and monitoring LN activity. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Futia, Gregory L.; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A.
2016-04-01
Circulating tumor cell (CTC) identification has applications in both early detection and monitoring of solid cancers. The rarity of CTCs, expected at ~1-50 CTCs per million nucleated blood cells (WBCs), requires identifying methods based on biomarkers with high sensitivity and specificity for accurate identification. Discovery of biomarkers with ever higher sensitivity and specificity to CTCs is always desirable to potentially find more CTCs in cancer patients thus increasing their clinical utility. Here, we investigate quantitative image cytometry measurements of lipids with the biomarker panel of DNA, Cytokeratin (CK), and CD45 commonly used to identify CTCs. We engineered a device for labeling suspended cell samples with fluorescent antibodies and dyes. We used it to prepare samples for 4 channel confocal laser scanning microscopy. The total data acquired at high resolution from one sample is ~ 1.3 GB. We developed software to perform the automated segmentation of these images into regions of interest (ROIs) containing individual cells. We quantified image features of total signal, spatial second moment, spatial frequency second moment, and their product for each ROI. We performed measurements on pure WBCs, cancer cell line MCF7 and mixed samples. Multivariable regressions and feature selection were used to determine combination features that are more sensitive and specific than any individual feature separately. We also demonstrate that computation of spatial characteristics provides higher sensitivity and specificity than intensity alone. Statistical models allowed quantification of the required sensitivity and specificity for detecting small levels of CTCs in a human blood sample.
Rumpf, Hans-Jürgen; Hapke, Ulfert; Meyer, Christian; John, Ulrich
2002-01-01
Most screening questionnaires are developed in clinical settings and there are few data on their performance in the general population. This study provides data on the area under the receiver-operating characteristic (ROC) curve, sensitivity, specificity, and internal consistency of the Alcohol Use Disorders Identification Test (AUDIT), the consumption questions of the AUDIT (AUDIT-C) and the Lübeck Alcohol Dependence and Abuse Screening Test (LAST) among current drinkers (n = 3551) of a general population sample in northern Germany. Alcohol dependence and misuse according to DSM-IV and at-risk drinking served as gold standards to assess sensitivity and specificity and were assessed with the Munich-Composite Diagnostic Interview (M-CIDI). AUDIT and LAST showed insufficient sensitivity for at-risk drinking and alcohol misuse using standard cut-off scores, but satisfactory detection rates for alcohol dependence. The AUDIT-C showed low specificity in all criterion groups with standard cut-off. Adjusted cut-points are recommended. Among a subsample of individuals with previous general hospital admission in the last year, all questionnaires showed higher internal consistency suggesting lower reliability in non-clinical samples. In logistic regression analyses, having had a hospital admission increased the sensitivity in detecting any criterion group of the LAST, and the number of recent general practice visits increased the sensitivity of the AUDIT in detecting alcohol misuse. Women showed lower scores and larger areas under the ROC curves. It is concluded that setting specific instruments (e.g. primary care or general population) or adjusted cut-offs should be used.
Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone.
Hayes, F; Jones, M L M; Mills, G; Ashmore, M
2007-04-01
This study identified 83 species from existing publications suitable for inclusion in a database of sensitivity of species to ozone (OZOVEG database). An index, the relative sensitivity to ozone, was calculated for each species based on changes in biomass in order to test for species traits associated with ozone sensitivity. Meta-analysis of the ozone sensitivity data showed a wide inter-specific range in response to ozone. Some relationships in comparison to plant physiological and ecological characteristics were identified. Plants of the therophyte lifeform were particularly sensitive to ozone. Species with higher mature leaf N concentration were more sensitive to ozone than those with lower leaf N concentration. Some relationships between relative sensitivity to ozone and Ellenberg habitat requirements were also identified. In contrast, no relationships between relative sensitivity to ozone and mature leaf P concentration, Grime's CSR strategy, leaf longevity, flowering season, stomatal density and maximum altitude were found. The relative sensitivity of species and relationships with plant characteristics identified in this study could be used to predict sensitivity to ozone of untested species and communities.
Breast Mass Detection in Digital Mammogram Based on Gestalt Psychology
Bu, Qirong; Liu, Feihong; Zhang, Min; Ren, Yu; Lv, Yi
2018-01-01
Inspired by gestalt psychology, we combine human cognitive characteristics with knowledge of radiologists in medical image analysis. In this paper, a novel framework is proposed to detect breast masses in digitized mammograms. It can be divided into three modules: sensation integration, semantic integration, and verification. After analyzing the progress of radiologist's mammography screening, a series of visual rules based on the morphological characteristics of breast masses are presented and quantified by mathematical methods. The framework can be seen as an effective trade-off between bottom-up sensation and top-down recognition methods. This is a new exploratory method for the automatic detection of lesions. The experiments are performed on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) data sets. The sensitivity reached to 92% at 1.94 false positive per image (FPI) on MIAS and 93.84% at 2.21 FPI on DDSM. Our framework has achieved a better performance compared with other algorithms. PMID:29854359
NASA Astrophysics Data System (ADS)
Hsu, Chao-Hsin; Chu, Cheng-Hsun; Chen, Weichung; Wu, I.-Chen; Wu, Ming Tsang; Kuo, Chie-Tong; Tsiang, Raymond Chien-Chao; Wang, Hsiang-Chen
2016-03-01
We have demonstrated a Cu2O/ZnO nanorods (NRs) array p-n heterostructures photoelectrochemical biosensor. The electrodeposition of Cu2O at pH 12 acquired the preferably (111) lattice planes, resulting in the largest interfacial electric field between Cu2O and ZnO, which finally led to the highest separation efficiency of photogenerated charge carriers. High verticality ZnO nanorods by seed layer and thermal annealing assist the hydrothermal growth. The optimized Cu2O/ZnO NRs array p-n heterostructures exhibited enhanced PEC performance, such as elevated photocurrent and photoconversion efficiency, as well as excellent sensing performance for the sensitive detection of four strains of different races and different degree of cancer cell which made the device self-powered. We got spectral response characteristics and operating wavelength range of biosensor, and to verify the biological characteristics of cancer cells wafer react with different stages of cancer characterized by a cancer measured reaction experiment.
Validation of a Monte Carlo simulation of the Inveon PET scanner using GATE
NASA Astrophysics Data System (ADS)
Lu, Lijun; Zhang, Houjin; Bian, Zhaoying; Ma, Jianhua; Feng, Qiangjin; Chen, Wufan
2016-08-01
The purpose of this study is to validate the application of GATE (Geant4 Application for Tomographic Emission) Monte Carlo simulation toolkit in order to model the performance characteristics of Siemens Inveon small animal PET system. The simulation results were validated against experimental/published data in accordance with the NEMA NU-4 2008 protocol for standardized evaluation of spatial resolution, sensitivity, scatter fraction (SF) and noise equivalent counting rate (NECR) of a preclinical PET system. An agreement of less than 18% was obtained between the radial, tangential and axial spatial resolutions of the simulated and experimental results. The simulated peak NECR of mouse-size phantom agreed with the experimental result, while for the rat-size phantom simulated value was higher than experimental result. The simulated and experimental SFs of mouse- and rat- size phantom both reached an agreement of less than 2%. It has been shown the feasibility of our GATE model to accurately simulate, within certain limits, all major performance characteristics of Inveon PET system.
Zhang, Xiaoxing; Yu, Lei; Tie, Jing; Dong, Xingchen
2014-01-01
The analysis to SF6 decomposed component gases is an efficient diagnostic approach to detect the partial discharge in gas-insulated switchgear (GIS) for the purpose of accessing the operating state of power equipment. This paper applied the Au-doped TiO2 nanotube array sensor (Au-TiO2 NTAs) to detect SF6 decomposed components. The electrochemical constant potential method was adopted in the Au-TiO2 NTAs' fabrication, and a series of experiments were conducted to test the characteristic SF6 decomposed gases for a thorough investigation of sensing performances. The sensing characteristic curves of intrinsic and Au-doped TiO2 NTAs were compared to study the mechanism of the gas sensing response. The results indicated that the doped Au could change the TiO2 nanotube arrays' performances of gas sensing selectivity in SF6 decomposed components, as well as reducing the working temperature of TiO2 NTAs. PMID:25330053
A TRD for space borne apparatus
NASA Astrophysics Data System (ADS)
Ambriola, M.; Bellotti, R.; Barbarito, E.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Mongelli, M.; Romita, M.; Ruppi, M.; Spinelli, P.
2006-07-01
A Transition Radiation Detector (TRD), has been built to be used as charged particle identifier in satellite born apparatus. Originally conceived to be used in the PAMELA telescope, this TRD has been qualified for space as well. The compact design and the low power consumption make this detector suitable to be used in space researches in which identification is required for particle of relativistic energies (i.e. with Lorentz factor (γ)>1000. In this TRD, carbon fibers are used as radiator material, and 1024 straw tubes as sensitive detectors. All components are piled up in nine sensitive layers of radiators and straws working in proportional mode using a Xe CO2 gas mixture. The detector characteristics will be described along with its performances studied having exposed the detector to both cosmic rays and particle beams at CERN.
Neural-Net Based Optical NDE Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Weiland, Kenneth E.
2003-01-01
This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.
Kostić, Tanja; Sessitsch, Angela
2011-01-01
Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples. PMID:27605332
Stretchable Platinum Network-Based Transparent Electrodes for Highly Sensitive Wearable Electronics.
Wang, Yuting; Cheng, Jing; Xing, Yan; Shahid, Muhammad; Nishijima, Hiroki; Pan, Wei
2017-07-01
A platinum network-based transparent electrode has been fabricated by electrospinning. The unique nanobelt structured electrode demonstrates low sheet resistance (about 16 Ω sq -1 ) and high transparency of 80% and excellent flexibility. One of the most interesting demonstrations of this Pt nanobelt electrode is its excellent reversibly resilient characteristic. The electric conductivity of the flexible Pt electrode can recover to its initial value after 160% extending and this performance is repeatable and stable. The good linear relationship between the resistance and strain of the unique structured Pt electrode makes it possible to assemble a wearable high sensitive strain sensor. Present reported Pt nanobelt electrode also reveals potential applications in electrode for flexible fuel cells and highly transparent ultraviolet (UV) sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetics-based methods for detection of Salmonella spp. in foods.
Mozola, Mark A
2006-01-01
Genetic methods are now at the forefront of foodborne pathogen testing. The sensitivity, specificity, and inclusivity advantages offered by deoxyribonucleic acid (DNA) probe technology have driven an intense effort in methods development over the past 20 years. DNA probe-based methods for Salmonella spp. and other pathogens have progressed from time-consuming procedures involving the use of radioisotopes to simple, high throughput, automated assays. The analytical sensitivity of nucleic acid amplification technology has facilitated a reduction in analysis time by allowing enriched samples to be tested for previously undetectable quantities of analyte. This article will trace the evolution of the development of genetic methods for detection of Salmonella in foods, review the basic assay formats and their advantages and limitations, and discuss method performance characteristics and considerations for selection of methods.
Demonstration of an advanced fibre laser hydrophone array in Gulf St Vincent
NASA Astrophysics Data System (ADS)
Foster, Scott; Tikhomirov, Alexei; Harrison, Joanne; van Velzen, John
2015-09-01
We have developed an 8-element fibre laser seabed array demonstrating state-of-the art performance characteristics for a fibre laser sensing system. The system employs sea-state-zero sensitivity hydrophones with a flat acoustic response over a bandwidth exceeding 5kHz and very low inertial sensitivity. The system contains no outboard electronics and few metal components making it extremely light, compact, and low complexity. The array may be deployed up to 4 km from a land or sea based platform to a depth of up to 80m. Power delivery and telemetry for all 8 sensors is achieved via a single 2mm diameter optical fibre cable weighing less than 5kg per km. We report here results of the first field trials of this system.
Pi, Shan; Cao, Rong; Qiang, Jin Wei; Guo, Yan Hui
2018-01-01
Background Diffusion-weighted imaging (DWI) and quantitative apparent diffusion coefficient (ADC) values are widely used in the differential diagnosis of ovarian tumors. Purpose To assess the diagnostic performance of quantitative ADC values in ovarian tumors. Material and Methods PubMed, Embase, the Cochrane Library, and local databases were searched for studies assessing ovarian tumors using quantitative ADC values. We quantitatively analyzed the diagnostic performances for two clinical problems: benign vs. malignant tumors and borderline vs. malignant tumors. We evaluated diagnostic performances by the pooled sensitivity and specificity values and by summary receiver operating characteristic (SROC) curves. Subgroup analyses were used to analyze study heterogeneity. Results From the 742 studies identified in the search results, 16 studies met our inclusion criteria. A total of ten studies evaluated malignant vs. benign ovarian tumors and six studies assessed malignant vs. borderline ovarian tumors. Regarding the diagnostic accuracy of quantitative ADC values for distinguishing between malignant and benign ovarian tumors, the pooled sensitivity and specificity values were 0.91 and 0.91, respectively. The area under the SROC curve (AUC) was 0.96. For differentiating borderline from malignant tumors, the pooled sensitivity and specificity values were 0.89 and 0.79, and the AUC was 0.91. The methodological quality of the included studies was moderate. Conclusion Quantitative ADC values could serve as useful preoperative markers for predicting the nature of ovarian tumors. Nevertheless, prospective trials focused on standardized imaging parameters are needed to evaluate the clinical value of quantitative ADC values in ovarian tumors.
Bili, Eleni; Bili, Authors Eleni; Dampala, Kaliopi; Iakovou, Ioannis; Tsolakidis, Dimitrios; Giannakou, Anastasia; Tarlatzis, Basil C
2014-08-01
The aim of this study was to determine the performance of prostate specific antigen (PSA) and ultrasound parameters, such as ovarian volume and outline, in the diagnosis of polycystic ovary syndrome (PCOS). This prospective, observational, case-controlled study included 43 women with PCOS, and 40 controls. Between day 3 and 5 of the menstrual cycle, fasting serum samples were collected and transvaginal ultrasound was performed. The diagnostic performance of each parameter [total PSA (tPSA), total-to-free PSA ratio (tPSA:fPSA), ovarian volume, ovarian outline] was estimated by means of receiver operating characteristic (ROC) analysis, along with area under the curve (AUC), threshold, sensitivity, specificity as well as positive (+) and negative (-) likelihood ratios (LRs). Multivariate logistical regression models, using ovarian volume and ovarian outline, were constructed. The tPSA and tPSA:fPSA ratio resulted in AUC of 0.74 and 0.70, respectively, with moderate specificity/sensitivity and insufficient LR+/- values. In the multivariate logistic regression model, the combination of ovarian volume and outline had a sensitivity of 97.7% and a specificity of 97.5% in the diagnosis of PCOS, with +LR and -LR values of 39.1 and 0.02, respectively. In women with PCOS, tPSA and tPSA:fPSA ratio have similar diagnostic performance. The use of a multivariate logistic regression model, incorporating ovarian volume and outline, offers very good diagnostic accuracy in distinguishing women with PCOS patients from controls. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Craike, Melinda J; Livingston, Patricia M; Warne, Charles
2011-01-01
This study assessed the relative screening performance of the Distress Impact Thermometer (DIT) and cutoff levels with the established clinical case threshold of the Hospital Anxiety and Depression Scale (HADS) among a sample of colorectal cancer (CRC) survivors. Fifty-nine CRC survivors completed the DIT, HADS, and provided demographic information at baseline, and 45 of these patients completed the same measures at follow-up, giving a total of 104 participant data. Receiver operating characteristic (ROC) analysis was performed to determine the accuracy of the DIT compared to the HADS, with a cutoff score ≥8 on each HADS subscale (depression and anxiety) and ≥15 on the HADS total scale used to identify patients with psychological distress. The sample comprised slightly more males (63%) than females, with an average age of 59 years (SD = 9.53) and ranging from 33 to 77 years. The optimum DT cutoff score of ≥5 yielded a sensitivity of 60% and specificity of 86.1%; the area under the curve was 0.771 (95% confidence interval [CI] [0.646, 0.896]). For the depression subscale, the DT performed better on specificity than sensitivity, however the opposite was true for the anxiety subscale. The addition of an impact thermometer did not enhance screening performance. The results of this study provide support for a DT score of ≥5 for detecting psychological distress among CRC survivors and do not support the addition of an impact thermometer. The use of the DT might underestimate depression but overestimate anxiety.