Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 1
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
Electrical characterization and qualification tests were performed on the RCA MWS5001D, 1024 by 1-bit, CMOS, random access memory. Characterization tests were performed on five devices. The tests included functional tests, AC parametric worst case pattern selection test, determination of worst-case transition for setup and hold times and a series of schmoo plots. The qualification tests were performed on 32 devices and included a 2000 hour burn in with electrical tests performed at 0 hours and after 168, 1000, and 2000 hours of burn in. The tests performed included functional tests and AC and DC parametric tests. All of the tests in the characterization phase, with the exception of the worst-case transition test, were performed at ambient temperatures of 25, -55 and 125 C. The worst-case transition test was performed at 25 C. The preburn in electrical tests were performed at 25, -55, and 125 C. All burn in endpoint tests were performed at 25, -40, -55, 85, and 125 C.
Proposed acceptance, qualification, and characterization tests for thin-film PV modules
NASA Technical Reports Server (NTRS)
Waddington, D.; Mrig, L.; Deblasio, R.; Ross, R.
1988-01-01
Details of a proposed test program for PV thin-film modules which the Department of Energy has directed the Solar Energy Research Institute (SERI) to prepare are presented. Results of one of the characterization tests that SERI has performed are also presented. The objective is to establish a common approach to testing modules that will be acceptable to both users and manufacturers. The tests include acceptance, qualification, and characterization tests. Acceptance tests verify that randomly selected modules have similar characteristics. Qualification tests are based on accelerated test methods designed to simulate adverse conditions. Characterization tests provide data on performance in a predefined environment.
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Herman, Daniel Andrew; Soulas, George C.; Patterson, Michael J.
2014-01-01
This presentation describes results from the end-of-test performance characterization of NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test (LDT). Sub-component performance as well as overall thruster performance is presented and compared to results over the course of the test. Overall wear of critical thruster components is also described, and an update on the first failure mode of the thruster is provided.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2002-07-01
The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.
Asphalt mixture performance characterization using small-scale cylindrical specimens.
DOT National Transportation Integrated Search
2015-06-01
The results of dynamic modulus testing have become one of the primarily used performance criteria to evaluate the : laboratory properties of asphalt mixtures. This test is commonly conducted to characterize asphalt mixtures mechanistically : using an...
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2004-10-01
The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.
FINAL REPORT DM1200 TESTS WITH AZ 101 HLW SIMULANTS VSL-03R3800-4 REV 0 2/17/04
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRUGER AA; MATLACK KS; BARDAKCI T
2011-12-29
This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test successmore » criteria), along with how they were met, are outlined in a table.« less
NASA Astrophysics Data System (ADS)
Cady, E. C.
1997-01-01
The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First, an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined, a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions, based on the results of the engineering characterization tests, will be used to correlate the results of the 30 day mission simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRUGER AA; MATLACK KS; GONG W
2011-12-29
This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.
2014-01-01
The NASA's Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to quantify the thruster propellant throughput capability. Testing was recently completed in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse.As part of the test termination procedure, a comprehensive performance characterization was performed across the entire NEXT throttle table. This was performed prior to planned repairs of numerous diagnostics that had become inoperable over the course of the test. After completion of these diagnostic repairs in November 2013, a comprehensive end-of-test performance and wear characterization was performed on the test article prior to exposure to atmosphere. These data have confirmed steady thruster performance with minimal degradation as well as mitigation of numerous life limiting mechanisms encountered in the NSTAR design. Component erosion rates compare favorably to pretest predictions based on semi-empirical models used for the thruster service life assessment. Additional data relating to ion beam density profiles, facility backsputter rates, facility backpressure effects on thruster telemetry, and modulation of the neutralizer keeper current are presented as part of the end-of-test characterization. Presently the test article for the NEXT LDT has been exposed to atmosphere and placed within a clean room environment, with post-test disassembly and inspection underway.
NASA Technical Reports Server (NTRS)
Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.
2012-01-01
At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.
Vehicle test report: Jet Industries Electra Van 600
NASA Technical Reports Server (NTRS)
Price, T. W.; Wirth, V. A., Jr.
1982-01-01
The Electra Van 600, an electric vehicle, was tested. Tests were performed to characterize parameters of the Electra Van 600 and to provide baseline data to be used for comparison of improved batteries and to which will be incorporated into the vehicle. The vehicle tests concentrated on the electrical drive subsystem, the batteries, controller, and motor; coastdowns to characterize the road load and range evaluation for cyclic and constant speed conditions; and qualitative performance was evaluated. It is found that the Electra Van 600 range performance is approximately equal to the majority of the vehicles tested previously.
Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer
NASA Technical Reports Server (NTRS)
Price, T. W.; Wirth, V. A., Jr.; Pampa, M. F.
1981-01-01
The change of pace, an electric vehicle was tested. These tests were performed to characterize certain parameters of the electric vehicle pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem, the batteries, controller and motor. Coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions were performed. The vehicle's performance was evaluated by comparing its constant speed range performance with described vehicles. It is found that the pacer performance is approximately equal to the majority of the vehicles tested in the 1977 assessment.
Condensed tannins from acacia mangium bark: Characterization by spot tests and FTIR
NASA Astrophysics Data System (ADS)
Bharudin, Muhammad Azizi; Zakaria, Sarani; Chia, Chin Hua
2013-11-01
This paper describes the adaptation and evaluation of one chemical tests for tannins characterization in acacia mangium bark. Acid butanol test developed to identify respectively condensed tannins is described. The two traditional tests used for tannin characterization namely ferric test and vanillin test were also performed and their functional also discussed. Condensed tannins were extracted from acacia mangium bark using water medium in presence of three different concentration basic reagent of NaOH(5%,10% and 15%) and were characterized by FT-IR spectrometry.
AeroMACS system characterization and demonstrations
NASA Astrophysics Data System (ADS)
Kerczewski, R. J.; Apaza, R. D.; Dimond, R. P.
This The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past three years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.
AeroMACS System Characterization and Demonstrations
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Apaza, Rafael D.; Dimond, Robert P.
2013-01-01
This The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past 3 years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.
AeroMACS System Characterization and Demonstrations
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Apaza, Rafael D.; Dimond, Robert P.
2013-01-01
The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past three years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.
NASA Technical Reports Server (NTRS)
Stokes, R. L.
1979-01-01
Electrical characterization tests were performed on two different manufactured types of integrated circuits. The devices were subjected to functional and AC and DC parametric tests at ambient temperatures of -55 C, -20 C, 25 C, 85 C, and 125 C. The data were analyzed and tabulated to show the effect of operating conditions on performance and to indicate parameter deviations among devices in each group. Accuracy was given precedence over test time efficiency where practical, and tests were designed to measure worst case performance.
Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer
NASA Technical Reports Server (NTRS)
Price, T. W.; Wirth, V. A., Jr.; Pompa, M. F.
1981-01-01
Tests were performed to characterize certain parameters of the EVA Pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller and motor. The tests included coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other electric and hybrid vehicles. The Pacer performance was approximately equal to the majority of those vehicles assessed in 1977.
Urogynecologic Surgical Mesh Implants
... FDA collected samples during the inspections, and reviewed mechanical performance testing and sterility testing of the final ... characterization of the polypropylene resin, and biocompatibility and mechanical performance testing on the final product. The FDA ...
JAN transistor and diode characterization test program
NASA Technical Reports Server (NTRS)
Takeda, H.
1977-01-01
A statistical summary of electrical characterization was performed on JAN diodes and transistors. Parameters are presented with test conditions, mean, standard deviation, lowest reading, 10% point, 90% point and highest reading.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.
2014-01-01
The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.
NASA Technical Reports Server (NTRS)
Tornabene, Robert
2005-01-01
In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Tucker, D. S.; Patterson, W. J.; Franklin, S. W.; Gordon, G. H.; Hart, L.; Hodge, A. J.; Lance, D. G.; Russel, S. S.
1991-01-01
A test run was performed on IM6/3501-6 carbon-epoxy in which the material was processed, machined into specimens, and tested for damage tolerance capabilities. Nondestructive test data played a major role in this element of composite characterization. A time chart was produced showing the time the composite material spent within each Branch or Division in order to identify those areas which produce a long turnaround time. Instrumented drop weight testing was performed on the specimens with nondestructive evaluation being performed before and after the impacts. Destructive testing in the form of cross-sectional photomicrography and compression-after-impact testing were used. Results show that the processing and machining steps needed to be performed more rapidly if data on composite material is to be collected within a reasonable timeframe. The results of the damage tolerance testing showed that IM6/3501-6 is a brittle material that is very susceptible to impact damage.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Gilland, James H.; Haag, Thomas W.; Mackey, Jonathan; Yim, John; Pinero, Luis; Williams, George; Peterson, Peter; Herman, Daniel
2017-01-01
NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5kW Technology Demonstration Unit-3 (TDU-3) has been the subject of extensive technology maturation in preparation for flight system development. Detailed performance, stability, and plume characterization tests of the thruster were performed at NASA GRC's Vacuum Facility 5 (VF-5). The TDU-3 thruster implements a magnetic topology that is identical to TDU-1. The TDU-3 boron nitride silica composite discharge channel material is different than the TDU-1 heritage boron nitride discharge channel material. Performance and stability characterization of the TDU-3 thruster was performed at discharge voltages between 300V and 600V and at discharge currents between 5A and 21.8A. The thruster performance and stability were assessed for varying magnetic field strength, cathode flow fractions between 5% and 9%, varying harness inductance, and for reverse magnet polarity. Performance characterization test results indicate that the TDU-3 thruster performance is in family with the TDU-1 levels. TDU-3's thrust efficiency of 65% and specific impulse of 2,800sec at 600V and 12.5kW exceed performance levels of SOA Hall thrusters. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations (discharge current peak-to-peak and root mean square magnitudes), discharge current waveform power spectral density analysis, and maps of the current-voltage-magnetic field. Stability characterization test results indicate a stability profile similar to TDU-1. Finally, comparison of the TDU-1 and TDU-3 plume profiles found that there were negligible differences in the plasma plume characteristics between the TDU with heritage boron nitride versus the boron nitride silica composite discharge channel.
Characterization of Louisiana asphalt mixtures using simple performance tests and MEPDG.
DOT National Transportation Integrated Search
2014-04-01
The National Cooperative Highway Research Program (NCHRP) Project 9-19, Superpave Support and Performance : Models Management, recommended three Simple Performance Tests (SPTs) to complement the Superpave volumetric : mixture design method. These are...
Vehicle test report: Battronic pickup truck
NASA Technical Reports Server (NTRS)
Price, T. W.; Shain, T. W.; Freeman, R. J.; Pompa, M. F.
1982-01-01
An electric pickup truck was tested to characterize certain parameters and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other vehicles.
MEMS micromirror characterization in space environments.
Yoo, Byung-Wook; Park, Jae-Hyoung; Park, I H; Lee, Jik; Kim, Minsoo; Jin, Joo-Young; Jeon, Jin-A; Kim, Sug-Whan; Kim, Yong-Kweon
2009-03-02
This paper describes MEMS micromirror characterization in space environments associated with our space applications in earth observation from the International Space Station and earth's orbit satellite. The performance of the micromirror was tested for shock and vibration, stiction, outgassing from depressurization and heating, and electrostatic charging effects. We demonstrated that there is no degradation of the micromirror performance after the space environment tests. A test bed instrument equipped with the micromirrors was delivered and tested in the ISS. The results demonstrate that the proposed micromirrors are suitable for optical space systems.
Characterization testing of a 40 AHR bipolar nickel-hydrogen battery
NASA Astrophysics Data System (ADS)
Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.
1989-12-01
Extensive characterization testing has been done on a second 40 amp-hour (Ahr), 10-cell bipolar nickel-hydrogen (Ni-H2) battery to study the effects of such operating parameters as charge and discharge rates, temperature, and pressure, on capacity, Ahr and watt-hour (Whr) efficiencies, end-of-charge (EOC) and mid-point discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout all of the test matrix except during the high-rate (5C and 10C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 x 2 inch battery tests are to be used in studying this problem. Low earth orbit (LEO) cycle life testing at a 40 percent depth of discharge (DOD) and 10 C is scheduled to follow the characterization testing.
Characterization testing of a 40 AHR bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.
1989-01-01
Extensive characterization testing has been done on a second 40 amp-hour (Ahr), 10-cell bipolar nickel-hydrogen (Ni-H2) battery to study the effects of such operating parameters as charge and discharge rates, temperature, and pressure, on capacity, Ahr and watt-hour (Whr) efficiencies, end-of-charge (EOC) and mid-point discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout all of the test matrix except during the high-rate (5C and 10C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 x 2 inch battery tests are to be used in studying this problem. Low earth orbit (LEO) cycle life testing at a 40 percent depth of discharge (DOD) and 10 C is scheduled to follow the characterization testing.
Characterization testing of a 40 ampere hour bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.
1990-01-01
Extensive characterization testing has been done on a second 40-ampere hour (A h), 10-cell, bipolar nickel-hydrogen (Ni-H2) battery, to study the effects of operating parameters such as charge and discharge rates, temperature, and pressure on capacity, A h and watt hour (W h) efficiencies, and end-of-charge and midpoint discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout the test matrix except during the high-rate (5 C and 10 C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 in. x 2 in. battery tests are to be used in studying this problem. Low earth orbit cycle life testing at a 40-percent depth of discharge and 10 C is scheduled to follow the characterization testing.
Dynamic MTF, an innovative test bench for detector characterization
NASA Astrophysics Data System (ADS)
Emmanuel, Rossi; Raphaël, Lardière; Delmonte, Stephane
2017-11-01
PLEIADES HR are High Resolution satellites for Earth observation. Placed at 695km they reach a 0.7m spatial resolution. To allow such performances, the detectors are working in a TDI mode (Time and Delay Integration) which consists in a continuous charge transfer from one line to the consecutive one while the image is passing on the detector. The spatial resolution, one of the most important parameter to test, is characterized by the MTF (Modulation Transfer Function). Usually, detectors are tested in a staring mode. For a higher level of performances assessment, a dedicated bench has been set-up, allowing detectors' MTF characterization in the TDI mode. Accuracy and reproducibility are impressive, opening the door to new perspectives in term of HR imaging systems testing.
Performance Testing of a High Temperature Linear Alternator for Stirling Convertors
NASA Technical Reports Server (NTRS)
Metscher, Jonathan; Geng, Steven
2016-01-01
The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpowers Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 C. Increasing the temperature capability of the linear alternator could expand the mission space of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to uses. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 C is currently underway.
Performance Testing of a High Temperature Linear Alternator for Stirling Convertors
NASA Technical Reports Server (NTRS)
Metscher, Jonathan F.; Geng, Steven M.
2016-01-01
The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.
JAN transistor and diode characterization test program, JANTX diode 1N5619
NASA Technical Reports Server (NTRS)
Takeda, H.
1977-01-01
A statistical summary of electrical characterization was performed on JANTX 1N5619 silicon diodes. Parameters are presented with test conditions, mean, standard deviation, lowest reading, 10% point, 90% point, and highest reading.
Sengur-Tasdemir, Reyhan; Mokkapati, Venkata R S S; Koseoglu-Imer, Derya Y; Koyuncu, Ismail
2018-05-01
Multi-walled carbon nanotubes (MWCNTs) can be used for the fabrication of mixed matrix polymeric membranes that can enhance filtration perfomances of the membranes by modifying membrane surface properties. In this study, detailed characterization and filtration performances of MWCNTs functionalized with COOH group, blended into polymeric flat-sheet membranes were investigated using different polymer types. Morphological characterization was carried out using atomic force microscopy, scanning electron microscopy and contact angle measurements. For filtration performance tests, protein, dextran, E. coli suspension, Xanthan Gum and real activated sludge solutions were used. Experimental data and analyses revealed that Polyethersulfone (PES) + MWCNT-COOH mixed matrix membranes have superior performance abilities compared to other tested membranes.
Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit
NASA Technical Reports Server (NTRS)
Lewandowski, Edward; Schreiber, Jeffrey
2010-01-01
The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.
NASA Astrophysics Data System (ADS)
Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.
1996-05-01
The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.
Characterizing the GOES-R (GOES-16) Geostationary Lightning Mapper (GLM) On-Orbit Performance
NASA Technical Reports Server (NTRS)
Rudlosky, Scott D.; Goodman, Steven J.; Koshak, William J.; Blakeslee, Richard J.; Buechler, Dennis E.; Mach, Douglas M.; Bateman, Monte
2017-01-01
Two overlapping efforts help to characterize the GLM performance, the Post Launch Test (PLT) phase to validate the predicted pre-launch instrument performance and the Post Launch Product Test (PLPT) phase to validate the lightning detection product used in forecast and warning decision-making. This paper documents the calibration and validation plans and activities for the first 6 months of GLM on-orbit testing and validation commencing with first light on 4 January 2017. The PLT phase addresses image quality, on-orbit calibration, RTEP threshold tuning, image navigation, noise filtering, and solar intrusion assessment, resulting in a GLM calibration parameter file. The PLPT includes four main activities, the Reference Data Comparisons (RDC), Algorithm Testing (AT), Instrument Navigation and Registration Testing (INRT), and Long Term Baseline Testing (LTBT). Field campaigns are also designed to contribute valuable insights into the GLM performance capabilities. The PLPT tests each contribute to the beta, provisional, and fully validated GLM data.
Battery testing at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
1993-03-01
Argonne National Laboratory's Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies: Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid. These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.
The 2.3 kW Ion Thruster Wear Test
NASA Technical Reports Server (NTRS)
Parkes, James; Rawlin, Vincent K.; Sovey, James S.; Kussmaul, Michael J.; Patterson, Michael J.
1995-01-01
A 30-cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for auxiliary and primary propulsion on missions of national interest. Specific efforts include thruster design optimizations, component life testing and validation, and performance characterizations. Under this program, the ion thruster will be brought to engineering model development status. This paper describes the results of a 2.3-kW 2000-hour wear test performed to identify life limiting phenomena, measure the performance and characterize the operation of the thruster, and obtain wear, erosion, and surface contamination data. These data are being using as a data base for proceeding with additional life validation tests, and to provide input to flight thruster design requirements.
Evaluation of the JPL X-band 32 element active array. [for deep space communication
NASA Technical Reports Server (NTRS)
Boreham, J. F.; Postal, R. B.; Conroy, B. L.
1979-01-01
Tests performed on an X-band 32-element active array are described. Antenna pattern characteristics of the array were tested in its standard operating mode as well as several degraded performance modes, including failures of 1, 2, 3, 4, 8, 16, and 31 elements. Additionally, the array was characterized with the addition of a metallic shroud, and also characterized versus rf drive level and at a single off-axis electronic beamsteered position. Characterization was performed on several of the 3/4-watt, three-stage, X-band solid-state power amplifier modules. The characterization included swept amplitude response, amplitude and phase versus temperature from -20 to +60 C, and intermodulation distortion of selected modules. The array is described and conclusions and recommendations based upon the experience and results achieved are included.
DOT National Transportation Integrated Search
2015-12-01
Characterization test procedures have been developed to quantify the performance of intersection collision avoidance (ICA) systems based on vehicle-to-vehicle communications. These systems warn the driver of an imminent crossing-path collision at a r...
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex
2012-01-01
NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.
Evaluation and characterization of the methane-carbon dioxide decomposition reaction
NASA Technical Reports Server (NTRS)
Davenport, R. J.; Schubert, F. H.; Shumar, J. W.; Steenson, T. S.
1975-01-01
A program was conducted to evaluate and characterize the carbon dioxide-methane (CO2-CH4) decomposition reaction, i.e., CO2 + CH4 = 2C + 2H2O. The primary objective was to determine the feasibility of applying this reaction at low temperatures as a technique for recovering the oxygen (O2) remaining in the CO2 which exits mixed with CH4 from a Sabatier CO2 reduction subsystem (as part of an air revitalization system of a manned spacecraft). A test unit was designed, fabricated, and assembled for characterizing the performance of various catalysts for the reaction and ultraviolet activation of the CH4 and CO2. The reactor included in the test unit was designed to have sufficient capacity to evaluate catalyst charges of up to 76 g (0.17 lb). The test stand contained the necessary instrumentation and controls to obtain the data required to characterize the performance of the catalysts and sensitizers tested: flow control and measurement, temperature control and measurement, product and inlet gas analysis, and pressure measurement. A product assurance program was performed implementing the concepts of quality control and safety into the program effort.
Simulation, Design, and Test of Square, Apodized Photon Sieves for High Contrast, Exoplanet Imaging
reason, square apodized photon sieves were simulated, designed, and tested for high-contrast performance and use in an exoplanet imaging telescope...for apodizing sieves, measuring PSFs, and characterizing high-contrast performance. Tests indicated that square apodized sieves could detect
NASA Technical Reports Server (NTRS)
Stokes, R. L.
1979-01-01
Tests performed to determine accuracy and efficiency of bus separators used in microprocessors are presented. Functional, AC parametric, and DC parametric tests were performed in a Tektronix S-3260 automated test system. All the devices passed the functional tests and yielded nominal values in the parametric test.
Vehicle test report: South Coast technology electric conversion of a Volkswagen Rabbit
NASA Technical Reports Server (NTRS)
Price, T. W.; Shain, T. W.; Bryant, J. A.
1981-01-01
The South Coast Technology Volkswagen Rabbit, was tested at the Jet Propulsion Laboratory's (JPL) dynamometer facility and at JPL's Edwards Test Station (ETS). The tests were performed to characterize certain parameters of the South Coast Rabbit and to provide baseline data that will be used for the comparison of near term batteries that are to be incorporated into the vehicle. The vehicle tests were concentrated on the electrical drive system; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load, maximum effort acceleration, and range evaluation for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle was made by comparing its constant speed range performance with those vehicles described in the document 'state of the Art assessment of Electric and Hybrid Vehicles'. The Rabbit performance was near to the best of the 1977 vehicles.
Dynamic contrast enhanced CT in nodule characterization: How we review and report.
Qureshi, Nagmi R; Shah, Andrew; Eaton, Rosemary J; Miles, Ken; Gilbert, Fiona J
2016-07-18
Incidental indeterminate solitary pulmonary nodules (SPN) that measure less than 3 cm in size are an increasingly common finding on computed tomography (CT) worldwide. Once identified there are a number of imaging strategies that can be performed to help with nodule characterization. These include interval CT, dynamic contrast enhanced computed tomography (DCE-CT), (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET-CT). To date the most cost effective and efficient non-invasive test or combination of tests for optimal nodule characterization has yet to be determined.DCE-CT is a functional test that involves the acquisition of a dynamic series of images of a nodule before and following the administration of intravenous iodinated contrast medium. This article provides an overview of the current indications and limitations of DCE- CT in nodule characterization and a systematic approach to how to perform, analyse and interpret a DCE-CT scan.
Integrated Remote Sensing Modalities for Classification at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Lee, D. J.; Anderson, D.; Craven, J.
2016-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.
NASA Technical Reports Server (NTRS)
Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.
1992-01-01
A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.
NASA Technical Reports Server (NTRS)
Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David
2006-01-01
The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.
Multilayer Pressure Vessel Materials Testing and Analysis Phase 2
NASA Technical Reports Server (NTRS)
Popelar, Carl F.; Cardinal, Joseph W.
2014-01-01
To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report
Characterization of multiaxial warp knit composites
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.
1991-01-01
The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.
Silicon Carbide Diodes Performance Characterization and Comparison With Silicon Devices
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Trapp, Scott
2003-01-01
Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers were electrically tested and characterized at room temperature. Performed electrical tests include steady state forward and reverse I-V curves, as well as switching transient tests performed with the diodes operating in a hard switch dc-to-dc buck converter. The same tests were performed in current state of the art silicon (Si) and gallium arsenide (GaAs) Schottky and pn junction devices for evaluation and comparison purposes. The SiC devices tested have a voltage rating of 200, 300, and 600 V. The comparison parameters are forward voltage drop at rated current, reverse current at rated voltage and peak reverse recovery currents in the dc to dc converter. Test results show that steady state characteristics of the tested SiC devices are not superior to the best available Si Schottky and ultra fast pn junction devices. Transient tests reveal that the tested SiC Schottky devices exhibit superior transient behavior. This is more evident at the 300 and 600 V rating where SiC Schottky devices showed drastically lower reverse recovery currents than Si ultra fast pn diodes of similar rating.
NASA Technical Reports Server (NTRS)
Turner, J. E.
1993-01-01
An elastomeric O-ring material is used in the joints of the redesigned solid motors (RSRM's) of the National Space Transportation System (NSTS). The selection of the O-ring material used in the RSRM's was a very thorough process that included efforts by NASA's Marshall Space Flight Center and the Langley Research Center, and the Thiokol Corporation. One of the efforts performed at MSFC was an extensive in-house laboratory test regime to screen potential O-ring materials and ultimately to characterize the elastomeric material that was chosen to be used in the RSRM's. The laboratory tests performed at MSFC are summarized.
Parametric tests of a 40-Ah bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1986-01-01
A series of tests were performed to characterize battery performance relating to certain operating parameters which include charge current, discharge current, temperature, and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions.
PERFORMANCE VERIFICATION TEST FOR FIELD-PORTABLE MEASUREMENTS OF LEAD IN DUST
The US Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program (www.epa.jzov/etv) conducts performance verification tests of technologies used for the characterization and monitoring of contaminated media. The program exists to provide high-quali...
Small-Scale Hybrid Rocket Test Stand & Characterization of Swirl Injectors
NASA Astrophysics Data System (ADS)
Summers, Matt H.
Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.
High explosive corner turning performance and the LANL Mushroom test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, L.G.; Seitz, W.L.; Forest, C.A.
1997-09-01
The Mushroom test is designed to characterize the corner turning performance of a new generation of less insensitive booster explosives. The test is described in detail, and three corner turning figures-of-merit are examined using pure TATB (both Livermore`s Ultrafine and a Los Alamos research blend) and PBX9504 as examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; R. C. O'Brien; X. Zhang
2011-11-01
Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cellmore » and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.« less
Characterization of the ITER CS conductor and projection to the ITER CS performance
Martovetsky, N.; Isono, T.; Bessette, D.; ...
2017-06-20
The ITER Central Solenoid (CS) is one of the critical elements of the machine. The CS conductor went through an intense optimization and qualification program, which included characterization of the strands, a conductor straight short sample testing in the SULTAN facility at the Swiss Plasma Center (SPC), Villigen, Switzerland, and a single-layer CS Insert coil recently tested in the Central Solenoid Model Coil (CSMC) facility in QST-Naka, Japan. In this paper, we obtained valuable data in a wide range of the parameters (current, magnetic field, temperature, and strain), which allowed a credible characterization of the CS conductor in different conditions.more » Finally, using this characterization, we will make a projection to the performance of the CS in the ITER reference scenario.« less
Characterization of the ITER CS conductor and projection to the ITER CS performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martovetsky, N.; Isono, T.; Bessette, D.
The ITER Central Solenoid (CS) is one of the critical elements of the machine. The CS conductor went through an intense optimization and qualification program, which included characterization of the strands, a conductor straight short sample testing in the SULTAN facility at the Swiss Plasma Center (SPC), Villigen, Switzerland, and a single-layer CS Insert coil recently tested in the Central Solenoid Model Coil (CSMC) facility in QST-Naka, Japan. In this paper, we obtained valuable data in a wide range of the parameters (current, magnetic field, temperature, and strain), which allowed a credible characterization of the CS conductor in different conditions.more » Finally, using this characterization, we will make a projection to the performance of the CS in the ITER reference scenario.« less
Failure mechanism characterization of platinum alloy
NASA Technical Reports Server (NTRS)
Rosen, J. M.; Mcfarlen, W. T.
1986-01-01
This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.
Silicon Carbide Diodes Performance Characterization at High Temperatures
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry
2004-01-01
NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stetzenbach, K.; Farnham, I.
1996-06-01
Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability ofmore » these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.« less
Pretest characterization of WIPP experimental waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.; Davis, H.; Drez, P.E.
The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is an underground repository designed for the storage and disposal of transuranic (TRU) wastes from US Department of Energy (DOE) facilities across the country. The Performance Assessment (PA) studies for WIPP address compliance of the repository with applicable regulations, and include full-scale experiments to be performed at the WIPP site. These experiments are the bin-scale and alcove tests to be conducted by Sandia National Laboratories (SNL). Prior to conducting these experiments, the waste to be used in these tests needs to be characterized to provide data on the initial conditionsmore » for these experiments. This characterization is referred to as the Pretest Characterization of WIPP Experimental Waste, and is also expected to provide input to other programmatic efforts related to waste characterization. The purpose of this paper is to describe the pretest waste characterization activities currently in progress for the WIPP bin-scale waste, and to discuss the program plan and specific analytical protocols being developed for this characterization. The relationship between different programs and documents related to waste characterization efforts is also highlighted in this paper.« less
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Vatsky, A.; Antonelli, M. (Editor)
1983-01-01
Activities performed on Mod I engine testing and test results, testing of the Mod I engine in the United States, Mod I engine characterization and analyses, Mod I Transient Test Bed fuel economy, upgraded Mod I performance and testing, Stirling engine reference engine manufacturing and reduced size studied, components and subsystems, and the study and test of low cost casting alloys are summarized. The overall program philosophy is outlined, and data and results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groner, D.J.
This study investigated the fatigue behavior and associated damage mechanisms in notched and unnotched enhanced SiC/SiC ceramic matrix composite specimens at 1100 deg C. Stiffness degradation, strain variation, and hysteresis were evaluated to characterize material behavior. Microscopic examination was performed to characterize damage mechanisms. During high cycle/low stress fatigue tests, far less fiber/matrix interface debond was evident than in low cycle/high stress fatigue tests. Notched specimens exhibited minimal stress concentration during monotonic tensile testing and minimal notch sensitivity during fatigue testing. Damage mechanisms were also similar to unnotched.
DOT National Transportation Integrated Search
2005-09-01
This document describes a procedure for verifying a dynamic testing system (closed-loop servohydraulic). The procedure is divided into three general phases: (1) electronic system performance verification, (2) calibration check and overall system perf...
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard;
2015-01-01
NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.
Key results of battery performance and life tests at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
1991-12-01
Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.
Technology development for cryogenic deployable telescope structures and mechanisms
NASA Astrophysics Data System (ADS)
Atkinson, Charles B.; Gilman, Larry; Reynolds, Paul
2003-12-01
At 6-7 meters in diameter, the James Webb Space Telescope (JWST) will require structures that remain stable to levels that are on the order of 10 nanometers under dynamic and thermal loading while operating at cryogenic temperatures. Moreover, the JWST will be the first telescope in space that is deployed, resulting in an aperture that is not only segmented, but has hinge-lines and the associated joining systems or latches in it. In order to understand the behavior and reduce the risk associated with very large, deployed structures and the stability of the associated structure and latches, we developed and tested the largest cryogenic structure ever built and then characterized its stability. This paper presents a description of the design of the Development Optical Telescope Assembly (DOTA), the testing performed, and the results of the testing performed on it. We discuss the material selection and characterization processes, give a description of the test configurations, describe the metrology equipment and the validation process for it, provide the test results, and summarize the conclusions drawn from the results. The testing and associated results include characterization of the thermal stability of the large-scale structure, characterization of the micro-dynamic stability of the latching system, and measurements of the deployment capability of the mechanisms. We also describe how the DOTA design relates to the JWST design and how the test results relate to the JWST requirements.
Performance of the Lester battery charger in electric vehicles
NASA Technical Reports Server (NTRS)
Vivian, H. C.; Bryant, J. A.
1984-01-01
Tests are performed on an improved battery charger. The primary purpose of the testing is to develop test methodologies for battery charger evaluation. Tests are developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests show this charger to be a considerable improvement in the state of the art for electric vehicle chargers.
1982-05-01
MONITORING AND MANAGEMENT , 34 7.0 NONDESTRUCTIVE EVALUATION ( NDE ) 37 8. 0 SURFACE NDE 44 9.0 PERFORMANCE AND PROOF TESTING 46 10.0 SUMMARY AND...Chemical Quality Assurance Testing 2. Processability Testing 3. Cure Monitoring and Management 4. Nondestructive Evaluation ( NDE ) 5. Performance and...the management concept for implementing the specific tests. Chemical analysis, nondestructive evaluation ( NDE ) and environmental fatigue testing of
Electrical Characterization of Hughes HCMP 1852D and RCA CDP1852D 8-bit, CMOS, I/O Ports
NASA Technical Reports Server (NTRS)
Stokes, R. L.
1979-01-01
Twenty-five Hughes HCMP 1852D and 25 RCA CDP1852D 8-bit, CMOS, I/O port microcircuits underwent electrical characterization tests. All electrical measurements were performed on a Tektronix S-3260 Test System. Before electrical testing, the devices were subjected to a 168-hour burn-in at 125 C with the inputs biased at 10V. Four of the Hughes parts became inoperable during testing. They exhibited functional failures and out-of-range parametric measurements after a few runs of the test program.
Tank 12 data dump OME integrated thrust chamber test report, phase 1
NASA Technical Reports Server (NTRS)
Pauckert, R. P.; Tobin, R. D.
1974-01-01
The test program conducted to characterize the steady state stability, thermal, and performance characteristics of the integrated thrust chamber assembly, as well as limited tests to investigate transient characteristics are described.
Characterization testing of MEASAT GaAs/Ge solar cell assemblies
NASA Technical Reports Server (NTRS)
Brown, Mike R.; Garcia, Curtis A.; Goodelle, George S.; Powe, Joseph S.; Schwartz, Joel A.
1996-01-01
The first commercial communications satellite with gallium-arsenide on germanium (GaAs/Ge) solar arrays is scheduled for launch in December 1995. The spacecraft, named MEASAT, was built by Hughes Space and Communications Company. The solar cell assemblies consisted of large area GaAs/Ge cells supplied by Spectrolab Inc. with infrared reflecting (IRR) coverglass supplied by Pilkington Space Technology. A comprehensive characterization program was performed on the GaAs/Ge solar cell assemblies used on the MEASAT array. This program served two functions; first to establish the database needed to accurately predict on-orbit performance under a variety of conditions; and second, to demonstrate the ability of the solar cell assemblies to withstand all mission environments while still providing the required power at end-of-life. Characterization testing included measurement of electrical performance parameters as a function of radiation exposure, temperature, and angle of incident light; reverse bias stability; optical and thermal properties; mechanical strength tests, panel fabrication, humidity and thermal cycling environmental tests. The results provided a complete database enabling the design of the MEASAT solar array, and demonstrated that the GaAs/Ge cells meet the spacecraft requirements at end-of-life.
Characterization testing of MEASAT GaAs/Ge solar cell assemblies
NASA Technical Reports Server (NTRS)
Brown, Mike R.; Garcia, Curtis A.; Goodelle, George S.; Powe, Joseph S.; Schwartz, Joel A.
1995-01-01
The first commercial communications satellite with gallium-arsenide on germanium (GaAs/Ge) solar arrays is scheduled for launch in December 1995. The spacecraft, named MEASAT, was built by hughes Space and Telecommunications company for Binariang Satellite Systems of Malaysia. The solar cell assemblies consisted of large area GaAs/Ge cells supplied by Spectrolab Inc. with infrared reflecting (IRR) coverglass supplied by Pilkington Space Technology. A comprehensive characterization program was performed on the GaAs/Ge solar cell assemblies used on the MEASAT array. This program served two functions; first to establish the database needed to accurately predict on-orbit performance under a variety of conditions; and second, to demonstrate the ability of the solar cell assemblies to withstand all mission environments while still providing the required power at end-of-life. characterization testing included measurement of electrical performance parameters as a function of radiation exposure, temperature, and angle of incident light; reverse bias stability; optical and thermal properties; mechanical strength tests, panel fabrication, humidity and thermal cycling environmental tests. The results provided a complete database enabling the design of the MEASAT solar array, and demonstrated that the GaAs/Ge cells meet the spacecraft requirements at end-of-life.
EMC Test Report: StangSat - CubeSat Program
NASA Technical Reports Server (NTRS)
Carmody, Lynne M.; Aragona, Peter S.
2013-01-01
This report documents the Electromagnetic Interference E M I testing performed on the StangSat; the unit under test (UUT). Testing was per the requirements of MIL STD-461F. The UUT was characterized and passed the radiated emissions (RE102 limit for Spacecraft) testing.
NASA Technical Reports Server (NTRS)
Saulsberry, Regor; Keddy, Christopher P.; Julien, Howard L.
2003-01-01
The NASA White Sands Test Facility (WSTF) was requested to perform pyrovalve blowby tests in support of the Mars Observer Propulsion and Corrective Actions Test Program. Fifty-three tests were conducted in an attempt to characterize the blowby of commercial pyrovalves. Those pyrovalves used on NASA spacecraft are well represented, and the test data reported provide a basis for evaluating the performance of similar valves in other propulsion systems. The three test series conducted are subsequently described. All testing was done in the same test facility, with periodic changes that enhanced the test methodology.
The Ling 6(HL) test: typical pediatric performance data and clinical use evaluation.
Glista, Danielle; Scollie, Susan; Moodie, Sheila; Easwar, Vijayalakshmi
2014-01-01
The Ling 6(HL) test offers a calibrated version of naturally produced speech sounds in dB HL for evaluation of detection thresholds. Aided performance has been previously characterized in adults. The purpose of this work was to evaluate and refine the Ling 6(HL) test for use in pediatric hearing aid outcome measurement. This work is presented across two studies incorporating an integrated knowledge translation approach in the characterization of normative and typical performance, and in the evaluation of clinical feasibility, utility, acceptability, and implementation. A total of 57 children, 28 normally hearing and 29 with binaural sensorineural hearing loss, were included in Study 1. Children wore their own hearing aids fitted using Desired Sensation Level v5.0. Nine clinicians from The Network of Pediatric Audiologists participated in Study 2. A CD-based test format was used in the collection of unaided and aided detection thresholds in laboratory and clinical settings; thresholds were measured clinically as part of routine clinical care. Confidence intervals were derived to characterize normal performance and typical aided performance according to hearing loss severity. Unaided-aided performance was analyzed using a repeated-measures analysis of variance. The audiologists completed an online questionnaire evaluating the quality, feasibility/executability, utility/comparative value/relative advantage, acceptability/applicability, and interpretability, in addition to recommendation and general comments sections. Ling 6(HL) thresholds were reliably measured with children 3-18 yr old. Normative and typical performance ranges were translated into a scoring tool for use in pediatric outcome measurement. In general, questionnaire respondents generally agreed that the Ling 6(HL) test was a high-quality outcome evaluation tool that can be implemented successfully in clinical settings. By actively collaborating with pediatric audiologists and using an integrated knowledge translation framework, this work supported the creation of an evidence-based clinical tool that has the potential to be implemented in, and useful to, clinical practice. More research is needed to characterize performance in alternative listening conditions to facilitate use with infants, for example. Future efforts focused on monitoring the use of the Ling 6(HL) test in daily clinical practice may help describe whether clinical use has been maintained across time and if any additional adaptations are necessary to facilitate clinical uptake. American Academy of Audiology.
NASA Technical Reports Server (NTRS)
Perry, J. L.
1990-01-01
Space Station Freedom environmental control and life support system testing has been conducted at Marshall Space Flight Center since 1986. The phase 3 simplified integrated test (SIT) conducted from July 30, 1989, through August 11, 1989, tested an integrated air revitalization system. During this test, the trace contaminant control subsystem (TCCS) was directly integrated with the bleed stream from the carbon dioxide reduction subsystem. The TCCS performed as expected with minor anomalies. The test set the basis for further characterizing the TCCS performance as part of advance air revitalization system configurations.
NASA Astrophysics Data System (ADS)
Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal
2016-07-01
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).
NASA Technical Reports Server (NTRS)
Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal
2016-01-01
The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).
The DOE ETV-1 Electric Test Vehicle. Phase 3: Performance Testing and system evaluation
NASA Technical Reports Server (NTRS)
Kurtz, D.
1981-01-01
Engineering tests were conducted in order to characterize overall system performance and component efficiencies within the system environment. A dynamometer was used in order to minimize the ambient effects and large uncertainties present in track testing. Extensive test requirements were defined and procedures were carefully controlled in order to maintain a high degree of credibility. Limited track testing was performed in order to corroborate the dynamometer results. Test results include an energy flow analysis through the major subsystems and incorporate the aerodynamic and rolling losses under cyclic and various steady speed conditions. The major output from all relevant dynamometer and track tests is also included.
Block 4 solar cell module design and test specification for intermediate load center applications
NASA Technical Reports Server (NTRS)
1978-01-01
Requirements for performance of terrestrial solar cell modules intended for use in various test applications are established. During the 1979-80 time period, such applications are expected to be in the 20 to 500 kilowatt size range. A series of characterization and qualification tests necessary to certify the module design for production, and the necessary performance test for acceptance of modules are specified.
Vola, Ambra; Tamarozzi, Francesca; Noordin, Rahmah; Yunus, Muhammad Hafiznur; Khanbabaie, Sam; De Silvestri, Annalisa; Brunetti, Enrico; Mariconti, Mara
2018-04-14
Rapid diagnostic tests for cystic echinococcosis (CE) are convenient to support ultrasound diagnosis in uncertain cases, especially in resource-limited settings. We found comparable diagnostic performances of the experimental Hyd Rapid Test and the commercial VIRapid HYDATIDOSIS Test, used in our diagnostic laboratory, using samples from well-characterized hepatic CE cases. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA-DoD Lead-Free Electronics Project
NASA Technical Reports Server (NTRS)
Kessel, Kurt
2010-01-01
This slide presentation reviews the current state of the lead-free electronics project. It characterizes the test articles, which were built with lead-free solder and lead-free component finishes. The tests performed and reported on are: thermal cycling, combine environments testing, mechanical shock testing, vibration testing and drop testing.
Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.
2016-01-01
The performance and facility effect characterization tests of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had been completed. As a part of these tests, three plasma oscillation characterization studies were performed to help determine operation settings and quantify margins. The studies included the magnetic field strength variation study, background pressure effect study, and cathode flow fraction study. Separate high-speed videos of the thruster including the cathode and of only the cathode were recorded. Breathing mode at 10-15 kHz and cathode gradient-driven mode at 60-75 kHz were observed. An additional high frequency (40-70 kHz) global oscillation mode with sinusoidal probability distribution function was identified.
Characterizing Decision-Analysis Performances of Risk Prediction Models Using ADAPT Curves.
Lee, Wen-Chung; Wu, Yun-Chun
2016-01-01
The area under the receiver operating characteristic curve is a widely used index to characterize the performance of diagnostic tests and prediction models. However, the index does not explicitly acknowledge the utilities of risk predictions. Moreover, for most clinical settings, what counts is whether a prediction model can guide therapeutic decisions in a way that improves patient outcomes, rather than to simply update probabilities.Based on decision theory, the authors propose an alternative index, the "average deviation about the probability threshold" (ADAPT).An ADAPT curve (a plot of ADAPT value against the probability threshold) neatly characterizes the decision-analysis performances of a risk prediction model.Several prediction models can be compared for their ADAPT values at a chosen probability threshold, for a range of plausible threshold values, or for the whole ADAPT curves. This should greatly facilitate the selection of diagnostic tests and prediction models.
Characterization of the Hokuyo URG-04LX laser rangefinder for mobile robot obstacle negotiation
NASA Astrophysics Data System (ADS)
Okubo, Yoichi; Ye, Cang; Borenstein, Johann
2009-05-01
This paper presents a characterization study of the Hokuyo URG-04LX scanning laser rangefinder (LRF). The Hokuyo LRF is similar in function to the Sick LRF, which has been the de-facto standard range sensor for mobile robot obstacle avoidance and mapping applications for the last decade. Problems with the Sick LRF are its relatively large size, weight, and power consumption, allowing its use only on relatively large mobile robots. The Hokuyo LRF is substantially smaller, lighter, and consumes less power, and is therefore more suitable for small mobile robots. The question is whether it performs just as well as the Sick LRF in typical mobile robot applications. In 2002, two of the authors of the present paper published a characterization study of the Sick LRF. For the present paper we used the exact same test apparatus and test procedures as we did in the 2002 paper, but this time to characterize the Hokuyo LRF. As a result, we are in the unique position of being able to provide not only a detailed characterization study of the Hokuyo LRF, but also to compare the Hokuyo LRF with the Sick LRF under identical test conditions. Among the tested characteristics are sensitivity to a variety of target surface properties and incidence angles, which may potentially affect the sensing performance. We also discuss the performance of the Hokuyo LRF with regard to the mixed pixels problem associated with LRFs. Lastly, the present paper provides a calibration model for improving the accuracy of the Hokuyo LRF.
NASA Astrophysics Data System (ADS)
Ahmed, Shamim; Miorelli, Roberto; Calmon, Pierre; Anselmi, Nicola; Salucci, Marco
2018-04-01
This paper describes Learning-By-Examples (LBE) technique for performing quasi real time flaw localization and characterization within a conductive tube based on Eddy Current Testing (ECT) signals. Within the framework of LBE, the combination of full-factorial (i.e., GRID) sampling and Partial Least Squares (PLS) feature extraction (i.e., GRID-PLS) techniques are applied for generating a suitable training set in offine phase. Support Vector Regression (SVR) is utilized for model development and inversion during offine and online phases, respectively. The performance and robustness of the proposed GIRD-PLS/SVR strategy on noisy test set is evaluated and compared with standard GRID/SVR approach.
Characterization testing of a 40 Ahr bipolar nickel hydrogen battery
NASA Astrophysics Data System (ADS)
Brewer, Jeffrey C.; Manzo, Michelle A.; Gahn, Randall F.
1989-12-01
In a continuing effort to develop NiH2 bipolar technology to a point where it can be used efficiently in space flight, testing of a second 40 Ahr, 10-cell bipolar battery has begun. This battery has undergone extensive characterization testing to determine the effects of such operating parameters as charge and discharge rates, temperature, and pressure. The fundamental design of this actively cooled bipolar battery is the same as the first battery. Most of the individual components, however, are from different manufacturers. Different testing procedures as well as certain unique battery characteristics make it difficult to directly compare the two sets of results. In general, the performance of this battery throughout characterization produced expected results. The main differences seen between the first and second batteries occurred during the high-rate discharge portion of the test matrix. The first battery also had poor high-rate discharge results, although better than those of the second battery. Minor changes were made to the battery frame design used for the first battery in an attempt to allow better gas access to the reaction sites for the second build and hopefully improve performance. The changes, however, did not improve the performance of the second battery and could have possibly contributed to the poorer performance that was observed. There are other component differences that could have contributed to the poorer performance of the second battery. The H2 electrode in the second battery was constructed with a Goretex backing which could have limited the high-rate current flow. The gas screen in the second battery had a larger mesh which again could have limited the high-rate current flow. Small scale 2 x 2 batteries are being tested to evaluate the effects of the component variations.
Characterization testing of a 40 Ahr bipolar nickel hydrogen battery
NASA Technical Reports Server (NTRS)
Brewer, Jeffrey C.; Manzo, Michelle A.; Gahn, Randall F.
1989-01-01
In a continuing effort to develop NiH2 bipolar technology to a point where it can be used efficiently in space flight, testing of a second 40 Ahr, 10-cell bipolar battery has begun. This battery has undergone extensive characterization testing to determine the effects of such operating parameters as charge and discharge rates, temperature, and pressure. The fundamental design of this actively cooled bipolar battery is the same as the first battery. Most of the individual components, however, are from different manufacturers. Different testing procedures as well as certain unique battery characteristics make it difficult to directly compare the two sets of results. In general, the performance of this battery throughout characterization produced expected results. The main differences seen between the first and second batteries occurred during the high-rate discharge portion of the test matrix. The first battery also had poor high-rate discharge results, although better than those of the second battery. Minor changes were made to the battery frame design used for the first battery in an attempt to allow better gas access to the reaction sites for the second build and hopefully improve performance. The changes, however, did not improve the performance of the second battery and could have possibly contributed to the poorer performance that was observed. There are other component differences that could have contributed to the poorer performance of the second battery. The H2 electrode in the second battery was constructed with a Goretex backing which could have limited the high-rate current flow. The gas screen in the second battery had a larger mesh which again could have limited the high-rate current flow. Small scale 2 x 2 batteries are being tested to evaluate the effects of the component variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallen, Robert B; Lambert, Scott R; Gevorgian, Vahan
This report details the commissioning of the 5-megawatt dynamometer at the National Wind Technology Center at the National Renewable Energy Laboratory. The purpose of these characterization tests were to verify the dynamometer's performance over the widest possible range of operating conditions, gain insight into system-level behavior, and establish confidence in measurement data.
Structural and Acoustic Damping Characteristics of Polyimide Microspheres
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Park, Junhong
2005-01-01
A broad range of tests have been performed to evaluate the capability of tiny lightweight polyimide spheres to reduce sound and vibration. The types of testing includes impedance tube measurement of propagation constant, sound power insertion loss for single and double wall systems, particle frame wave characterization and beam vibration reduction. The tests were performed using spheres made of two types of polyimide and with varying diameter. Baseline results were established using common noise reduction treatment materials such as fiberglass and foam. The spheres were difficult to test due to their inherent mobility. Most tests required some adaptation to contain the spheres. One test returned obvious non-linear behavior, a result which has come to be expected for treatments of this type. The polyimide spheres are found to be a competent treatment for both sound and vibration energy with the reservation that more work needs to be done to better characterize the non-linear behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A.; Piepel, Gregory F.; Enderlin, Carl W.
Understanding how uncertainty manifests itself in complex experiments is important for developing the testing protocol and interpreting the experimental results. This paper describes experimental and measurement uncertainties, and how they can depend on the order of performing experimental tests. Experiments with pulse-jet mixers in tanks at three scales were conducted to characterize the performance of transient-developing periodic flows in Newtonian slurries. Other test parameters included the simulant, solids concentration, and nozzle exit velocity. Critical suspension velocity and cloud height were the metrics used to characterize Newtonian slurry flow associated with mobilization and mixing. During testing, near-replicate and near-repeat tests weremore » conducted. The experimental results were used to quantify the combined experimental and measurement uncertainties using standard deviations and percent relative standard deviations (%RSD) The uncertainties in critical suspension velocity and cloud height tend to increase with the values of these responses. Hence, the %RSD values are the more appropriate summary measure of near-replicate testing and measurement uncertainty.« less
Upgraded demonstration vehicle task report
NASA Technical Reports Server (NTRS)
Bryant, J.; Hardy, K.; Livingston, R.; Sandberg, J.
1981-01-01
Vehicle/battery performance capabilities and interface problems that occurred when upgraded developmental batteries were integrated with upgraded versions of comercially available electric vehicles were investigated. Developmental batteries used included nickel zinc batteries, a nickel iron battery, and an improved lead acid battery. Testing of the electric vehicles and upgraded batteries was performed in the complete vehicle system environment to characterize performance and identify problems unique to the vehicle/battery system. Constant speed tests and driving schedule range tests were performed on a chassis dynamometer. The results from these tests of the upgraded batteries and vehicles were compared to performance capabilities for the same vehicles equipped with standard batteries.
NASA Technical Reports Server (NTRS)
Pancoast, Justin; Garrett, William; Moe, Gulia
2015-01-01
A modified propellant-liner-insulation (PLI) bondline in the Space Launch System (SLS) solid rocket booster required characterization for flight certification. The chemical changes to the PLI bondline and the required additional processing have been correlated to mechanical responses of the materials across the bondline. Mechanical properties testing and analyses included fracture toughness, tensile, and shear tests. Chemical properties testing and analyses included Fourier transform infrared (FTIR) spectroscopy, cross-link density, high-performance liquid chromatography (HPLC), gas chromatography (GC), gel permeation chromatography (GPC), and wave dispersion X-ray fluorescence (WDXRF). The testing identified the presence of the expected new materials and found the functional bondline performance of the new PLI system was not significantly changed from the old system.
Caporali, Priscila Faissola; Caporali, Sueli Aparecida; Bucuvic, Érika Cristina; Vieira, Sheila de Souza; Santos, Zeila Maria; Chiari, Brasília Maria
2016-01-01
Translation and cross-cultural adaptation of the instrument Hearing Implant Sound Quality Index (HISQUI19), and characterization of the target population and auditory performance in Cochlear Implant (CI) users through the application of a synthesis version of this tool. Evaluations of conceptual, item, semantic and operational equivalences were performed. The synthesis version was applied as a pre-test to 33 individuals, whose final results characterized the final sample and performance of the questionnaire. The results were analyzed statistically. The final translation (FT) was back-translated and compared with the original version, revealing a minimum difference between items. The changes observed between the FT and the synthesis version were characterized by the application of simplified vocabulary used on a daily basis. For the pre-test, the average score of the interviewees was 90.2, and a high level of reliability was achieved (0.83). The translation and cross-cultural adaptation of the HISQUI19 questionnaire showed suitability for conceptual, item, semantic and operational equivalences. For the sample characterization, the sound quality was classified as good with better performance for the categories of location and distinction of sound/voices.
Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc
2017-01-01
The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.
Characterizing (rating) the performance of large photovoltaic arrays for all operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, D.L.; Eckert, P.E.
1996-06-01
A new method has been developed for characterizing the electrical performance of photovoltaic arrays. The method provides both a ``rating`` at standard reporting conditions and a rigorous yet straightforward model for predicting array performance at all operating conditions. For the first time, the performance model handles the influences of irradiance, module temperature, solar spectrum, solar angle-of-incidence, and temperature coefficients, in a practical way. Validity of the procedure was confirmed during field testing of a 25-kW array recently installed by Arizona Public Service Co. on Carol Spring Mountain (which powers microwave, ceullular phone, and TV communictions equipment). This paper describes themore » characterization procedure, measured array performance, and the predictive model.« less
Testing of focal plane arrays at the AEDC
NASA Astrophysics Data System (ADS)
Nicholson, Randy A.; Mead, Kimberly D.; Smith, Robert W.
1992-07-01
A facility was developed at the Arnold Engineering Development Center (AEDC) to provide complete radiometric characterization of focal plane arrays (FPAs). The highly versatile facility provides the capability to test single detectors, detector arrays, and hybrid FPAs. The primary component of the AEDC test facility is the Focal Plane Characterization Chamber (FPCC). The FPCC provides a cryogenic, low-background environment for the test focal plane. Focal plane testing in the FPCC includes flood source testing, during which the array is uniformly irradiated with IR radiation, and spot source testing, during which the target radiation is focused onto a single pixel or group of pixels. During flood source testing, performance parameters such as power consumption, responsivity, noise equivalent input, dynamic range, radiometric stability, recovery time, and array uniformity can be assessed. Crosstalk is evaluated during spot source testing. Spectral response testing is performed in a spectral response test station using a three-grating monochromator. Because the chamber can accommodate several types of testing in a single test installation, a high throughput rate and good economy of operation are possible.
Molins, Claudia R.; Sexton, Christopher; Young, John W.; Ashton, Laura V.; Pappert, Ryan; Beard, Charles B.
2014-01-01
Serological assays and a two-tiered test algorithm are recommended for laboratory confirmation of Lyme disease. In the United States, the sensitivity of two-tiered testing using commercially available serology-based assays is dependent on the stage of infection and ranges from 30% in the early localized disease stage to near 100% in late-stage disease. Other variables, including subjectivity in reading Western blots, compliance with two-tiered recommendations, use of different first- and second-tier test combinations, and use of different test samples, all contribute to variation in two-tiered test performance. The availability and use of sample sets from well-characterized Lyme disease patients and controls are needed to better assess the performance of existing tests and for development of improved assays. To address this need, the Centers for Disease Control and Prevention and the National Institutes of Health prospectively collected sera from patients at all stages of Lyme disease, as well as healthy donors and patients with look-alike diseases. Patients and healthy controls were recruited using strict inclusion and exclusion criteria. Samples from all included patients were retrospectively characterized by two-tiered testing. The results from two-tiered testing corroborated the need for novel and improved diagnostics, particularly for laboratory diagnosis of earlier stages of infection. Furthermore, the two-tiered results provide a baseline with samples from well-characterized patients that can be used in comparing the sensitivity and specificity of novel diagnostics. Panels of sera and accompanying clinical and laboratory testing results are now available to Lyme disease serological test users and researchers developing novel tests. PMID:25122862
40 CFR 98.124 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... efficiency test provided that the design, operation, or maintenance of the destruction device has not changed... the last emissions test), you must repeat the emission characterization. Perform the emission... process vent, previous test results, provided the tests are representative of current operating conditions...
40 CFR 98.124 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... efficiency test provided that the design, operation, or maintenance of the destruction device has not changed... the last emissions test), you must repeat the emission characterization. Perform the emission... process vent, previous test results, provided the tests are representative of current operating conditions...
High explosive corner turning performance and the LANL mushroom test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, L.G.; Seitz, W.L.; Forest, C.A.
1998-07-01
The Mushroom test is designed to characterize the corner turning performance of a new generation of less sensitive booster explosives. The test is described in detail, and three corner turning figures-of-merit are examined using pure TATB (both Livermore{close_quote}s Ultrafine and a Los Alamos research blend) and PBX9504 as examples. {copyright} {ital 1998 American Institute of Physics.}
COTS Ceramic Chip Capacitors: An Evaluation of the Parts and Assurance Methodologies
NASA Technical Reports Server (NTRS)
Brusse, Jay A.; Sampson, Michael J.
2004-01-01
Commercial-Off-The-Shelf (COTS) multilayer ceramic chip capacitors (MLCCs) are continually evolving to reduce physical size and increase volumetric efficiency. Designers of high reliability aerospace and military systems are attracted to these attributes of COTS MLCCs and would like to take advantage of them while maintaining the high standards for long-term reliable operation they are accustomed io when selecting military qualified established reliability (MIL-ER) MLCCs. However, MIL-ER MLCCs are not available in the full range of small chip sizes with high capacitance as found in today's COTS MLCCs. The objectives for this evaluation were to assess the long-term performance of small case size COTS MLCCs and to identify effective, lower-cost product assurance methodologies. Fifteen (15) lots of COTS X7R dielectric MLCCs from four (4) different manufacturers and two (2) MIL-ER BX dielectric MLCCs from two (2) of the same manufacturers were evaluated. Both 0805 and 0402 chip sizes were included. Several voltage ratings were tested ranging from a high of 50 volts to a low of 6.3 volts. The evaluation consisted of a comprehensive screening and qualification test program based upon MIL-PRF-55681 (i.e., voltage conditioning, thermal shock, moisture resistance, 2000-hour life test, etc.). In addition, several lot characterization tests were performed including Destructive Physical Analysis (DPA), Highly Accelerated Life Test (HALT) and Dielectric Voltage Breakdown Strength. The data analysis included a comparison of the 2000-hour life test results (used as a metric for long-term performance) relative to the screening and characterization test results. Results of this analysis indicate that the long-term life performance of COTS MLCCs is variable -- some lots perform well, some lots perform poorly. DPA and HALT were found to be promising lot characterization tests to identify substandard COTS MLCC lots prior to conducting more expensive screening and qualification tests. The results indicate that lot- specific screening and qualification are still recommended for high reliability applications. One significant and concerning observation is that MIL- type voltage conditioning (100 hours at twice rated voltage, 125 C) was not an effective screen in removing infant mortality parts for the particular lots of COTS MLCCs evaluated.
Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements
NASA Technical Reports Server (NTRS)
Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)
2003-01-01
Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.
Viscoplastic Characterization of Ti-6-4: Experiments
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Arnold, Steven M.
2016-01-01
As part of a continued effort to improve the understanding of material time-dependent response, a series of mechanical tests have been conducted on the titanium alloy, Ti-6Al-4V. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures and strain rates to engage various amounts of time-dependent behavior. Additional tests were conducted that involved loading steps, overloads, dwell periods, and block loading segments to characterize the interaction between plasticity and time-dependent behavior. These data will be used to characterize a recently developed, viscoelastoplastic constitutive model with a goal toward better estimates of aerospace component behavior, resulting in improved safety.
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Farrell, R.; Hindes, C.; Battista, R.; Connelly, M.; Cronin, M.; Howarth, R.; Donahue, A.; Slate, E.; Stotts, R.; Lacy, R.
1988-01-01
The study of high power kinematic Stirling engines for transportation use, testing of Mod I and Mod II Stirling engines, and component development activities are summarized. Mod II development testing was performed to complete the development of the basic engine and begin characterization of performance. Mod I engines were used for Mod II component development and to obtain independent party (U.S. Air Force) evaluation of Stirling engine vehicle performance.
Improving Planetary Rover Attitude Estimation via MEMS Sensor Characterization
Hidalgo, Javier; Poulakis, Pantelis; Köhler, Johan; Del-Cerro, Jaime; Barrientos, Antonio
2012-01-01
Micro Electro-Mechanical Systems (MEMS) are currently being considered in the space sector due to its suitable level of performance for spacecrafts in terms of mechanical robustness with low power consumption, small mass and size, and significant advantage in system design and accommodation. However, there is still a lack of understanding regarding the performance and testing of these new sensors, especially in planetary robotics. This paper presents what is missing in the field: a complete methodology regarding the characterization and modeling of MEMS sensors with direct application. A reproducible and complete approach including all the intermediate steps, tools and laboratory equipment is described. The process of sensor error characterization and modeling through to the final integration in the sensor fusion scheme is explained with detail. Although the concept of fusion is relatively easy to comprehend, carefully characterizing and filtering sensor information is not an easy task and is essential for good performance. The strength of the approach has been verified with representative tests of novel high-grade MEMS inertia sensors and exemplary planetary rover platforms with promising results. PMID:22438761
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRUGER AA; MATLACK KS; GONG W
2011-12-29
The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The datamore » provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of comparison, the tests reported here were performed with AZ-102 and C-106/AY-102 HLW simulants and glass compositions that are essentially the same as those used for recent DM1200 tests. One exception was the use of an alternate, higher-waste-loading C-106/AY-102 glass composition that was used in previous DM100 tests to further evaluate the performance of the optimized bubbler configuration.« less
Is Implicit Sequence Learning Impaired in Schizophrenia? A Meta-Analysis
ERIC Educational Resources Information Center
Siegert, Richard J.; Weatherall, Mark; Bell, Elliot M.
2008-01-01
Cognition in schizophrenia seems to be characterized by impaired performance on most tests of explicit or declarative learning contrasting with relatively intact performance on most tests of implicit or procedural learning. At the same time there have been conflicting results for studies that have used the Serial Reaction Time (SRT) task to…
2015-09-30
changes in near-shore water columns and support companion laser imaging system tests. The physical, biological and optical oceanographic data...developed under this project will be used as input to optical and environmental models to assess the performance characteristics of laser imaging systems...OBJECTIVES We proposed to characterize the physical, biological and optical fields present during deployments of the Streak Tube Imaging Lidar
Performance Evaluation and Durability Studies of Adhesive Bonds
NASA Astrophysics Data System (ADS)
Ranade, Shantanu Rajendra
In this thesis, four test approaches were developed to characterize the adhesion performance and durability of adhesive bonds for specific applications in areas spanning from structural adhesive joints to popular confectionaries such as chewing gum. In the first chapter, a double cantilever beam (DCB) specimen geometry is proposed for combinatorial fracture studies of structural adhesive bonds. This specimen geometry enabled the characterization of fracture energy vs. bondline thickness trends through fewer tests than those required during a conventional "one at a time" characterization approach, potentially offering a significant reduction in characterization times. The second chapter investigates the adhesive fracture resistance and crack path selection in adhesive joints containing patterns of discreet localized weak interfaces created using physical vapor deposition of copper. In a DCB specimen tested under mode-I conditions, fracture energy within the patterned regions scaled according to a simple rule of mixture, while reverse R-curve and R-curve type trends were observed in the regions surrounding weak interface patterns. Under mixed mode conditions such that bonding surface with patterns is subjected to axial tension, fracture energy did not show R-curve type trends while it was observed that a crack could be made to avoid exceptionally weak interfaces when loaded such that bonding surface with defects is subjected to axial compression. In the third chapter, an adaptation of the probe tack test is proposed to characterize the adhesion behavior of gum cuds. This test method allowed the introduction of substrates with well-defined surface energies and topologies to study their effects on gum cud adhesion. This approach and reported insights could potentially be useful in developing chewing gum formulations that facilitate easy removal of improperly discarded gum cuds from adhering surfaces. In the fourth chapter we highlight a procedure to obtain insights into the long-term performance of silicone sealants designed for load-bearing applications such as solar panel support sealants. Using small strain constitutive tests and time-temperature-superposition principle, thermal shift factors were obtained and successfully used to characterize the creep rupture master curves for specific joint configurations, leading to insights into delayed failures corresponding to three years through experiments carried out in one month.
EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION
The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...
Embedded Resistors and Capacitors in Organic and Inorganic Substrates
NASA Technical Reports Server (NTRS)
Gerke, Robert David; Ator, Danielle
2006-01-01
Embedded resistors and capacitors were purchased from two technology; organic PWB and inorganic low temperature co-fire ceramic (LTCC). Small groups of each substrate were exposed to four environmental tests and several characterization tests to evaluate their performance and reliability. Even though all passive components maintained electrical performance throughout environmental testing, differences between the two technologies were observed. Environmental testing was taken beyond manufacturers' reported testing, but general not taken to failure. When possible, data was quantitatively compared to manufacturer's data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Michelle M.V.; Last, George V.; Stephenson, John R.
2016-03-01
CH2M Hill Plateau Remediation Company (CHPRC) requested the services of the Pacific Northwest National Laboratory (PNNL) to perform contaminant leach testing on samples from two boreholes, C8796 and C8797, installed near the 105-KE reactor. These tests consisted of field texture column tests, <2 mm repacked column tests, batch desorption tests, and ion exchange experiments. In addition, hydraulic and physical property characterization was performed.
Systems Characterization of Combustor Instabilities With Controls Design Emphasis
NASA Technical Reports Server (NTRS)
Kopasakis, George
2004-01-01
This effort performed test data analysis in order to characterize the general behavior of combustor instabilities with emphasis on controls design. The analysis is performed on data obtained from two configurations of a laboratory combustor rig and from a developmental aero-engine combustor. The study has characterized several dynamic behaviors associated with combustor instabilities. These are: frequency and phase randomness, amplitude modulations, net random phase walks, random noise, exponential growth and intra-harmonic couplings. Finally, the very cause of combustor instabilities was explored and it could be attributed to a more general source-load type impedance interaction that includes the thermo-acoustic coupling. Performing these characterizations on different combustors allows for more accurate identification of the cause of these phenomena and their effect on instability.
Battery testing at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.
NASA Astrophysics Data System (ADS)
Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.
2016-12-01
Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.
Performance testing accountability measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.
The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay)more » measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneshige, Michael J.; Rabbi, Md Fazle; Kaneshige, Michael J.
2017-12-01
Simulant polymer bonded explosives are widely used to simulate the mechanical response of real energetic materials. In this paper, the fracture resistance of a simulant polymer bo nded explosive (PBX) is experimentally investigated. The simulant is composed of 80 wt.% soda lime glass beads (SLGB) and 20 wt.% high impact Polystyrene 825 (HIPS). Brazilian disk tests are performed to characterize the tensile and compressive properties. Fracture toughness and energy tests are performed in the semi - circular bending (SCB) configuration on 80, 81, 82, and 83 wt % SLGB compositions. Digital image correlation is performed to record the surface displacementsmore » and calculate surface strains during testing. The m icromechanical behavior of ductile and brittle fracture are evaluated using digital microscopy and scanning electron microscopy of the fracture surface. It is determined that (i) the manufacturing process produces a credible simulant of PBX properties, and (ii) the SCB test measures fracture resistance with a reasonable coefficient of variation.« less
Test target for characterizing 3D resolution of optical coherence tomography
NASA Astrophysics Data System (ADS)
Hu, Zhixiong; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Li, Jiao
2014-12-01
Optical coherence tomography (OCT) is a non-invasive 3D imaging technology which has been applied or investigated in many diagnostic fields including ophthalmology, dermatology, dentistry, cardiovasology, endoscopy, brain imaging and so on. Optical resolution is an important characteristic that can describe the quality and utility of an image acquiring system. We employ 3D printing technology to design and fabricate a test target for characterizing 3D resolution of optical coherence tomography. The test target which mimics USAF 1951 test chart was produced with photopolymer. By measuring the 3D test target, axial resolution as well as lateral resolution of a spectral domain OCT system was evaluated. For comparison, conventional microscope and surface profiler were employed to characterize the 3D test targets. The results demonstrate that the 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.
Characterization of the NEXT Hollow Cathode Inserts After Long-Duration Testing
NASA Technical Reports Server (NTRS)
Mackey, J.; Shastry, R.; Soulas, G.
2017-01-01
Hollow dispenser cathode inserts are a critical element of electric propulsion systems, and should therefore be well understood during long term operation to ensure reliable system performance. This work destructively investigated cathode inserts from the NEXT long-duration test which demonstrated 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The characterization methods used include scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Microscopy analysis has been performed on fractured surfaces, emission surfaces, and metallographically polished cross-sections of post-test inserts and unused inserts. Impregnate distribution, etch region thickness, impregnate chemical content, emission surface topography, and emission surface phase identification are the primary factors investigated.
Design and characterization of an irradiation facility with real-time monitoring
NASA Astrophysics Data System (ADS)
Braisted, Jonathan David
Radiation causes performance degradation in electronics by inducing atomic displacements and ionizations. While radiation hardened components are available, non-radiation hardened electronics can be preferable because they are generally more compact, require less power, and less expensive than radiation tolerant equivalents. It is therefore important to characterize the performance of electronics, both hardened and non-hardened, to prevent costly system or mission failures. Radiation effects tests for electronics generally involve a handful of step irradiations, leading to poorly-resolved data. Step irradiations also introduce uncertainties in electrical measurements due to temperature annealing effects. This effect may be intensified if the time between exposure and measurement is significant. Induced activity in test samples also complicates data collection of step irradiated test samples. The University of Texas at Austin operates a 1.1 MW Mark II TRIGA research reactor. An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the UT TRIGA reactor. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This dissertation describes the design and testing of the large in-core irradiation facility and the experimental campaign developed to test the real-time monitoring capability. This irradiation campaign was performed to test the real-time monitoring capability at various reactor power levels. The device chosen for characterization was the 4N25 general-purpose optocoupler. The current transfer ratio, which is an important electrical parameter for optocouplers, was calculated as a function of neutron fluence and gamma dose from the real-time voltage measurements. The resultant radiation effects data was seen to be repeatable and exceptionally finely-resolved. Therefore, the capability at UT TRIGA has been proven competitive with world-class effects characterization facilities.
Evaluation of suitable porosity for sintered porous {beta}-tricalcium phosphate as a bone substitute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin-Hong; Bae, Ji-Yong; Shim, Jaebum
2012-09-15
Structural and mechanical characterization is performed for sintered porous beta tricalcium phosphate ({beta}-TCP) to determine the appropriate porosity for use as a bone substitute. Four different types of porous {beta}-TCP specimen with different porosities are fabricated through a sintering process. For structural characterization, scanning electron microscopy and a Microfocus X-ray computed tomography system are used to investigate the pore openings on the specimen's surface, pore size, pore distribution, and pore interconnections. Compression tests of the specimens are performed, and mechanical properties such as the elastic modulus and compressive strength are obtained. Also, the geometric shape and volume of the {beta}-TCPmore » around the contact region of two pores, which need to be initially resolved after implantation in order to increase the size of the pore openings, are evaluated through simple calculations. The results show that porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute candidate in terms of sustaining external loads, and inducing and cultivating bone cells. - Highlights: Black-Right-Pointing-Pointer Structural and mechanical characterization was performed for sintered porous {beta}-TCP specimens. Black-Right-Pointing-Pointer For structural characterization, SEM and Microfocus X-ray CT system were used. Black-Right-Pointing-Pointer For mechanical characterization, compression tests were performed. Black-Right-Pointing-Pointer Porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute.« less
Suomi NPP VIIRS spectral characterization: understanding multiple RSR releases
NASA Astrophysics Data System (ADS)
Moeller, Chris; McIntire, Jeff; Schwarting, Tom; Moyer, Dave; Costa, Juliette
2012-09-01
The Suomi National Polar-orbiting Partnership (S-NPP) satellite was successfully launched on October 28, 2011, beginning the on-orbit era of the Visible Infrared Imager Radiometer Suite (VIIRS). In support of atlaunch readiness, VIIRS underwent a rigorous pre-launch test program to characterize its spatial, radiometric, and spectral performance. Spectral measurements, the subject of this paper, were collected during instrument level testing at Raytheon Corp. (summer 2009), and then again in a special spectral test for VisNIR bands during spacecraft level testing at Ball Aerospace and Technologies Corp. (spring 2010). These spectral performance measurements were analyzed by industry (Northrop Grumman, NG) and by the Relative Spectral Response (RSR) subgroup of the Government team, (NASA, Aerospace Corp., MIT/Lincoln Lab, Univ. Wisconsin) leading to releases of the S-NPP VIIRS RSR characterization by both NG and the Government team. The NG RSR analysis was planned to populate the Look-Up-Tables (LUTs) that support the various VIIRS operational products, while the Government team analysis was initially intended as a verification of the NG RSR product as well as an early release RSR characterization for the science community's pre-launch application. While the Government team deemed the NG December 2010 RSR release as acceptable for the "at-launch" RSR characterization during the pre-launch phase, the Government team has now (post-launch checkout phase) recommended for using the NG October 2011 RSR release as an update for the LUTs used in VIIRS SDR and EDR operational processing. Meanwhile the Government team RSR releases remain available to the community for their investigative interests, and may evolve if new understanding of VIIRS spectral performance is revealed in the S-NPP post-launch era.
Characterization of the performance of shoe insert materials.
Lewis, G; Tan, T; Shiue, Y S
1991-08-01
It has been widely reported that shoe inserts are an effective interventional modality either for the relief of discomfort to the feet associated with a variety of orthopedic disorders or conditions or simply for comfort. Results from many types of experimental tests have been used to obtain the shock absorption capacity of shoe insert materials. The authors contend in this study that, while shock absorption is a highly desirable property, it is by no means the only that should be used to characterize these materials. Thus, a new index of performance of these materials is proposed. This index is computed from data, obtained in a simple experimental test, on both the shock absorption and energy return performances of the insert material.
NASA Astrophysics Data System (ADS)
Su, Yun; Li, Jun
2016-12-01
Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn.
Hollow Cathode Assembly Development for the HERMeS Hall Thruster
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.
2016-01-01
To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.
Electrical Characterization of the RCA CDP1822SD Random Access Memory, Volume 1, Appendix a
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
Electrical characteristization tests were performed on 35 RCA CDP1822SD, 256-by-4-bit, CMOS, random access memories. The tests included three functional tests, AC and DC parametric tests, a series of schmoo plots, rise/fall time screening, and a data retention test. All tests were performed on an automated IC test system with temperatures controlled by a thermal airstream unit. All the functional tests, the data retention test, and the AC and DC parametric tests were performed at ambient temperatures of 25 C, -20 C, -55 C, 85 C, and 125 C. The schmoo plots were performed at ambient temperatures of 25 C, -55 C, and 125 C. The data retention test was performed at 25 C. Five devices failed one or more functional tests and four of these devices failed to meet the expected limits of a number of AC parametric tests. Some of the schmoo plots indicated a small degree of interaction between parameters.
Murdock, Kyle; Martin, Caitlin; Sun, Wei
2018-01-01
Flexure is an important mode of deformation for native and bioprosthetic heart valves. However, mechanical characterization of bioprosthetic leaflet materials has been done primarily through planar tensile testing. In this study, an integrated experimental and computational cantilever beam bending test was performed to characterize the flexural properties of glutaraldehyde-treated bovine and porcine pericardium of different thicknesses. A strain-invariant based structural constitutive model was used to model the pericardial mechanical behavior quantified through the bending tests of this study and the planar biaxial tests previously performed. The model parameters were optimized through an inverse finite element (FE) procedure in order to describe both sets of experimental data. The optimized material properties were implemented in FE simulations of transcatheter aortic valve (TAV) deformation. It was observed that porcine pericardium TAV leaflets experienced significantly more flexure than bovine when subjected to opening pressurization, and that the flexure may be overestimated using a constitutive model derived from purely planar tensile experimental data. Thus, modeling of a combination of flexural and biaxial tensile testing data may be necessary to more accurately describe the mechanical properties of pericardium, and to computationally investigate bioprosthetic leaflet function and design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, Jesse; Gutierrez, Marte; Matzar, Luis
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less
Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests
Hampton, Jesse; Gutierrez, Marte; Matzar, Luis; ...
2018-06-11
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less
Overview of a stirling engine test project
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1980-01-01
Tests were conducted on three Stirling engines ranging in size from 1.33 to 53 horsepower (1 to 40 kW). The tests were directed toward developing alternative, backup component concepts to improve engine efficiency and performance or to reduce costs. Some of the activities included investigating attractive concepts and materials for cooler-regenerator units, installing a jet impingement device on a Stirling engine to determine its potential for improved engine performance, and presenting performance maps for initial characterization of Stirling engines. The experiment results of the tests are presented along with predictions of results of future tests to be conducted on the Stirling engines.
Performance Characterization of High Energy Commercial Lithium-ion Cells
NASA Technical Reports Server (NTRS)
Schneidegger, Brianne T.
2010-01-01
The NASA Glenn Research Center Electrochemistry Branch performed characterization of commercial lithium-ion cells to determine the cells' performance against Exploration Technology Development Program (ETDP) Key Performance Parameters (KPP). The goals of the ETDP Energy Storage Project require significant improvements in the specific energy of lithium-ion technology over the state-of-the-art. This work supports the high energy cell development for the Constellation customer Lunar Surface Systems (LSS). In support of these goals, testing was initiated in September 2009 with high energy cylindrical cells obtained from Panasonic and E-One Moli. Both manufacturers indicated the capability of their cells to deliver specific energy of at least 180 Wh/kg or higher. Testing is being performed at the NASA Glenn Research Center to evaluate the performance of these cells under temperature, rate, and cycling conditions relevant to the ETDP goals for high energy cells. The cell-level specific energy goal for high energy technology is 180 Wh/kg at a C/10 rate and 0 C. The threshold value is 165 Wh/kg. The goal is to operate for at least 2000 cycles at 100 percent DOD with greater than 80 percent capacity retention. The Panasonic NCR18650 cells were able to deliver nearly 200 Wh/kg at the aforementioned conditions. The E-One Moli ICR18650J cells also met the specific energy goal by delivering 183 Wh/kg. Though both cells met the goal for specific energy, this testing was only one portion of the testing required to determine the suitability of commercial cells for the ETDP. The cells must also meet goals for cycle life and safety. The results of this characterization are summarized in this report.
Concentrated Solar Thermoelectric Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang; Ren, Zhifeng
2015-07-09
The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accuratemore » measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.« less
Fatigue life characterization of Superpave mixtures at the Virginia Smart Road.
DOT National Transportation Integrated Search
2005-01-01
Laboratory fatigue testing was performed on six Superpave HMA mixtures in use at the Virginia Smart Road. Evaluation of the applied strain and resulting fatigue life was performed to fit regressions to predict the fatigue performance of each mixture....
Characterization of elastic-plastic properties of AS4/APC-2 thermoplastic composite
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1988-01-01
Elastic and inelastic properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the failure strengths can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.
Solid State Characterizations of Long-Term Leached Cast Stone Monoliths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asmussen, Robert M.; Pearce, Carolyn I.; Parker, Kent E.
This report describes the results from the solid phase characterization of six Cast Stone monoliths from the extended leach tests recently reported on (Serne et al. 2016),that were selected for characterization using multiple state-of-the-art approaches. The Cast Stone samples investigated were leached for > 590 d in the EPA Method 1315 test then archived for > 390 d in their final leachate. After reporting the long term leach behavior of the monoliths (containing radioactive 99Tc and stable 127I spikes and for original Westsik et al. 2013 fabricated monoliths, 238U), it was suggested that physical changes to the waste forms andmore » a depleting inventory of contaminants of potential concern may mean that effective diffusivity calculations past 63 d should not be used to accurately represent long-term waste form behavior. These novel investigations, in both length of leaching time and application of solid state techniques, provide an initial arsenal of techniques which can be utilized to perform such Cast Stone solid phase characterization work, which in turn can support upcoming performance assessment maintenance. The work was performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to characterize several properties of the long- term leached Cast Stone monolith samples.« less
Adjustable Focus Optical Correction Lens (AFOCL)
NASA Technical Reports Server (NTRS)
Peters, Bruce R.
2001-01-01
This report describes the activities and accomplishments along with the status of the characterization of a PLZT-based Adjustable Focus Optical Correction Lens (AFOCL) test device. The activities described in this report were undertaken by members of the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) under NASA Contract NAS8-00188. The effort was led by Dr. Bruce Peters as the Principal Investigator and supported by Dr. Patrick Reardon, Ms. Deborah Bailey, and graduate student Mr. Jeremy Wong. The activities outlined for the first year of the contract were to identify vendors and procure a test device along with performing the initial optical characterization of the test device. This activity has been successfully executed and test results are available and preliminary information was published at the SPIE Photonics West Conference in San Jose, January 2001. The paper, "Preliminary investigation of an active PLZT lens," was well received and generated response with several questions from the audience. A PLZT test device has been commercially procured from an outside vendor: The University of California in San Diego (UCSD) in partnership with New Interconnect Packaging Technologies (NIPT) Inc. The device has been subjected to several tests to characterize the optical performance of the device at wavelengths of interest. The goal was to evaluate the AFOCL similar to a conventional lens and measure any optical aberrations present due to the PLZT material as a deviation in the size of the diffraction limited spot (blur), the presence of diffracted energy into higher orders surrounding the focused spot (a variation in Strehl), and/or a variation or spread in the location of the focused energy away from the optical axis (a bias towards optical wedge, spherical, comma, or other higher order aberrations). While data has been collected indicative of the imaging quality of the AFOCL test device, it was not possible to fully characterize the optical performance of the AFOCL alone because there were significant optical distortions due to fabrication related issues.
Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test
NASA Astrophysics Data System (ADS)
Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.
2015-06-01
Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.
Handbook of photothermal test data on encapsulant materials
NASA Astrophysics Data System (ADS)
Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.
1983-05-01
Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.
Handbook of photothermal test data on encapsulant materials
NASA Technical Reports Server (NTRS)
Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.
1983-01-01
Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.
Properties and shock response of PMMA
NASA Astrophysics Data System (ADS)
Jordan, Jennifer L.; Casem, Daniel; Moy, Paul; Walter, Timothy
2017-01-01
Polymethylmethacrylate (PMMA) is used widely in shock experiments as a window material and in explosive characterization tests, e.g. gap tests, as a shock mitigation material. In order to simulate the complex loading present in a gap test, the constitutive response of the PMMA must be well understood. However, it is not clear what characterization must be done when the PMMA material is changed, e.g. changing supplier, and the Rohm and Haas Type II UVA PMMA, which was used for many of the calibration experiments, is no longer available. In this paper, we will present characterization results on legacy Rohm and Haas Type II UVA in comparison with a new PMMA grade proposed for use in gap tests. Planar shock experiments are performed to determine the compression and release response.
Performance characteristics of LOX-H2, tangential-entry, swirl-coaxial, rocket injectors
NASA Technical Reports Server (NTRS)
Howell, Doug; Petersen, Eric; Clark, Jim
1993-01-01
Development of a high performing swirl-coaxial injector requires an understanding of fundamental performance characteristics. This paper addresses the findings of studies on cold flow atomic characterizations which provided information on the influence of fluid properties and element operating conditions on the produced droplet sprays. These findings are applied to actual rocket conditions. The performance characteristics of swirl-coaxial injection elements under multi-element hot-fire conditions were obtained by analysis of combustion performance data from three separate test series. The injection elements are described and test results are analyzed using multi-variable linear regression. A direct comparison of test results indicated that reduced fuel injection velocity improved injection element performance through improved propellant mixing.
Preliminary low temperature electron irradiation of triple junction solar cells
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.
2005-01-01
JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.
Steering Performance, Tactical Vehicles
2015-07-29
5 4.1 General Vehicle and Test Characterization ........................... 5 4.2 Weave Test...able to be driven in a straight line without steer input (i.e., “ hands free”). If the vehicle pulls in either direction, the alignment should be...Evaluation Center (AEC) prior to using military personnel as test participants. 4. TEST PROCEDURES. 4.1 General Vehicle and Test
Code of Federal Regulations, 2012 CFR
2012-01-01
... special characterization Test 92.00 94.00 96.00 98.00 101.00 DNA fingerprinting Test 59.00 61.00 62.00 63.00 64.00 DNA probe Test 83.00 85.00 86.00 88.00 89.00 Fluorescent antibody Test 19.00 19.00 20.00 20...
Code of Federal Regulations, 2013 CFR
2013-01-01
... special characterization Test 92.00 94.00 96.00 98.00 101.00 DNA fingerprinting Test 59.00 61.00 62.00 63.00 64.00 DNA probe Test 83.00 85.00 86.00 88.00 89.00 Fluorescent antibody Test 19.00 19.00 20.00 20...
Code of Federal Regulations, 2014 CFR
2014-01-01
... special characterization Test 92.00 94.00 96.00 98.00 101.00 DNA fingerprinting Test 59.00 61.00 62.00 63.00 64.00 DNA probe Test 83.00 85.00 86.00 88.00 89.00 Fluorescent antibody Test 19.00 19.00 20.00 20...
Energy efficient engine high-pressure turbine component rig performance test report
NASA Technical Reports Server (NTRS)
Leach, K. P.
1983-01-01
A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.
Hubble Space Telescope Battery Capacity Update
NASA Technical Reports Server (NTRS)
Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.
2007-01-01
Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.
Characterization of quantum well laser diodes for application within the AMRDEC HWIL facilities
NASA Astrophysics Data System (ADS)
Saylor, Daniel A.; Bender, Matt; Cantey, Thomas M.; Beasley, D. B.; Buford, Jim A.
2004-08-01
The U.S. Army's Research, Development, and Engineering Command's (RDECOM) Aviation and Missile Research, Development, and Engineering Center (AMRDEC) provides Hardware-in-the-Loop (HWIL) test support to numerous tactical and theatre missile programs. Critical to the successful execution of these tests is the state-of-the-art technologies employed in the visible and infrared scene projector systems. This paper describes the results of characterizations tests performed on new mid-wave infrared (MWIR) quantum well laser diodes recently provided to AMRDEC by the Naval Research Labs and Sarnoff Industries. These lasers provide a +10X imrovement in MWIR output over the previous technology of lead-salt laser diodes. Performance data on output power, linearity, and solid-angle coverage are presented. A discussion of the laser packages is also provided.
Characterization of equipment for shaping and imaging hadron minibeams
NASA Astrophysics Data System (ADS)
Pugatch, V.; Brons, S.; Campbell, M.; Kovalchuk, O.; Llopart, X.; Martínez-Rovira, I.; Momot, Ie.; Okhrimenko, O.; Prezado, Y.; Sorokin, Yu.
2017-11-01
For the feasibility studies of spatially fractionated hadron therapy prototypes of the equipment for hadron minibeams shaping and monitoring have been designed, built and tested. The collimators design was based on Monte Carlo simulations (Gate v.6.2). Slit and matrix collimators were used for minibeams shaping. Gafchromic films, micropixel detectors Timepix in a hybrid as well as metal mode were tested for measuring hadrons intensity distribution in minibeams. An overall beam profile was measured by the metal microstrip detector. The performance of a mini-beams shaping and monitoring equipment was characterized exploring low energy protons at the KINR Tandem generator as well as high energy carbon and oxygen ion beams at HIT (Heidelberg). The results demonstrate reliable performance of the tested equipment for shaping and imaging hadron mini-beam structures.
Laboratory Characterization of Solid Grade SW Brick
2007-08-01
Society for Testing and Materials (ASTM) D 2216 (ASTM 2002e). Based on the appropriate values of posttest water content, wet density, and an assumed...strain path (UX/SP) tests. In addition to the mechanical property tests, nondestructive pulse-velocity measurements were performed on each specimen...Figure 3. Spring-arm lateral deformeter mounted on test specimen
NASA Technical Reports Server (NTRS)
Bellomy-Ezell, Jenny; Farmer, Jeff; Breeding, Shawn; Spivey, Reggie
2001-01-01
A compliant, thermal interface material is tested to evaluate its thermal behavior at elevated temperatures, in vacuum conditions, and under varying levels of compression. Preliminary results indicate that the thermal performance of this polymer fiber-based, felt-like material is sufficient to meet thermal extraction requirements for the Quench Module Insert, a Bridgman furnace for microgravity material science investigation. This paper discusses testing and modeling approaches employed, gives of a status of characterization activities and provides preliminary test results.
Automated System Tests High-Power MOSFET's
NASA Technical Reports Server (NTRS)
Huston, Steven W.; Wendt, Isabel O.
1994-01-01
Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreier, J.; Huggenberger, M.; Aubert, C.
1996-08-01
The PANDA test facility at PSI in Switzerland is used to study the long-term Simplified Boiling Water Reactor (SBWR) Passive Containment Cooling System (PCCS) performance. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensables in the system. The PANDA facility has a 1:1 vertical scale, and 1:25 ``system`` scale (volume, power, etc.). Steady-state PCCS condenser performance tests and extensive facility characterization tests have been completed. Transient system behavior tests were conducted late in 1995; results from the first three transient tests (M3 series) aremore » reviewed. The first PANDA tests showed that the overall global behavior of the SBWR containment was globally repeatable and very favorable; the system exhibited great ``robustness.``« less
Lateral load performance of SIP walls with full bearing
Boren Yeh; Tom Skaggs; Xiping Wang; Tom Williamson
2018-01-01
The purpose of this study was to develop test data needed to characterize lateral load performance of structural insulated panel (SIP) walls with full bearing (restrained). The research program involved structural testing of 29 full-size SIP walls (8 ft tall by 8 ft long) of various configurations that bracket a range of SIP wall configurations commonly used in the...
Instrumentation for the Characterization of Inflatable Structures
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith
2012-01-01
Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.
Analysis of link performance for the FOENEX laser communications system
NASA Astrophysics Data System (ADS)
Juarez, Juan C.; Young, David W.; Venkat, Radha A.; Brown, David M.; Brown, Andrea M.; Oberc, Rachel L.; Sluz, Joseph E.; Pike, H. Alan; Stotts, Larry B.
2012-06-01
A series of experiments were conducted to validate the performance of the free-space optical communications (FSOC) subsystem under DARPA's FOENEX program. Over six days, bidirectional links at ranges of 10 and 17 km were characterized during different periods of the day to evaluate link performance. This paper will present the test configuration, evaluate performance of the FSOC subsystem against a variety of characterization approaches, and discuss the impact of the results, particularly with regards to the optical terminals. Finally, this paper will summarize the impact of turbulence conditions on the FSOC subsystem and present methods for estimating performance under different link distances and turbulence conditions.
Test set up description and performances for HAWAII-2RG detector characterization at ESTEC
NASA Astrophysics Data System (ADS)
Crouzet, P.-E.; ter Haar, J.; de Wit, F.; Beaufort, T.; Butler, B.; Smit, H.; van der Luijt, C.; Martin, D.
2012-07-01
In the frame work of the European Space Agency's Cosmic Vision program, the Euclid mission has the objective to map the geometry of the Dark Universe. Galaxies and clusters of galaxies will be observed in the visible and near-infrared wavelengths by an imaging and spectroscopic channel. For the Near Infrared Spectrometer instrument (NISP), the state-of-the-art HAWAII-2RG detectors will be used, associated with the SIDECAR ASIC readout electronic which will perform the image frame acquisitions. To characterize and validate the performance of these detectors, a test bench has been designed, tested and validated. This publication describes the pre-tests performed to build the set up dedicated to dark current measurements and tests requiring reasonably uniform light levels (such as for conversion gain measurements). Successful cryogenic and vacuum tests on commercial LEDs and photodiodes are shown. An optimized feed through in stainless steel with a V-groove to pot the flex cable connecting the SIDECAR ASIC to the room temperature board (JADE2) has been designed and tested. The test set up for quantum efficiency measurements consisting of a lamp, a monochromator, an integrating sphere and set of cold filters, and which is currently under construction will ensure a uniform illumination across the detector with variations lower than 2%. A dedicated spot projector for intra-pixel measurements has been designed and built to reach a spot diameter of 5 μm at 920nm with 2nm of bandwidth [1].
An Additive Manufacturing Test Artifact
Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan
2014-01-01
A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039
A wave model test bed study for wave energy resource characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping
This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at themore » test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.« less
A series of BCN nanosheets with enhanced photoelectrochemical performances
NASA Astrophysics Data System (ADS)
Li, Junqi; Lei, Nan; Hao, Hongjuan; Zhou, Jian
2017-03-01
A series of flake-like BCN compounds were produced by calcination at different reaction temperatures via thermal substitution of C atoms with B atoms of boric acid substructures in graphitic carbon nitrides (g-C3N4). The structural and optical properties of the samples were characterized by XRD, TEM, HRTEM, XPS and UV-vis absorption. The photoelectrochemical (PEC) performance of all samples were characterized through photocurrent and electrochemical impedance spectroscopy (EIS) measurement. The test results demonstrated that BCN nanosheets exhibited higher PEC performance with increasing substituted amount of boron.
Begnini, Fernanda R; Jardim, Isabel C S F
2013-07-05
A new reversed phase high-performance liquid chromatography (RP-HPLC) stationary phase was prepared and its chromatographic and physical-chemical properties were evaluated. The new stationary phase was prepared with a silica support and poly(2-phenylpropyl)methylsiloxane (PPPMS), a phenyl type polysiloxane copolymer. Since this is a new copolymer and there is little information in the literature, it was submitted to physical-chemical characterization by infrared spectroscopy and thermogravimetry. The chromatographic phase was prepared through sorption and microwave immobilization of the copolymer onto a silica support. The chromatographic performance was evaluated by employing test procedures suggested by Engelhardt and Jungheim, Tanaka and co-workers, Neue, and Szabó and Csató. These test mixtures provide information about the hydrophobic selectivity, silanophilic activity, ion-exchange capacity, shape selectivity and interaction with polar analytes of the new Si-PPPMS reversed phase. Stability tests were developed using accelerated aging tests under both basic and acidic conditions to provide information about the lifetime of the packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.
Kanold, Julia M; Guichard, Nathalie; Immel, Françoise; Plasseraud, Laurent; Corneillat, Marion; Alcaraz, Gérard; Brümmer, Franz; Marin, Frédéric
2015-05-01
Calcified structures of sea urchins are biocomposite materials that comprise a minor fraction of organic macromolecules, such as proteins, glycoproteins and polysaccharides. These macromolecules are thought to collectively regulate mineral deposition during the process of calcification. When occluded, they modify the properties of the mineral. In the present study, the organic matrices (both soluble and insoluble in acetic acid) of spines and tests from the Mediterranean black sea urchin Arbacia lixula were extracted and characterized, in order to determine whether they exhibit similar biochemical signatures. Bulk characterizations were performed by mono-dimensional SDS/PAGE, FT-IR spectroscopy, and an in vitro crystallization assay. We concentrated our efforts on characterization of the sugar moieties. To this end, we determined the monosaccharide content of the soluble and insoluble organic matrices of A. lixula spines and tests by HPAE-PAD, together with their respective lectin-binding profiles via enzyme-linked lectin assay. Finally, we performed in situ localization of N-acetyl glucosamine-containing saccharides on spines and tests using gold-conjugated wheatgerm agglutinin. Our data show that the test and spine matrices exhibit different biochemical signatures with regard to their saccharidic fraction, suggesting that future studies should analyse the regulation of mineral deposition by the matrix in these two mineralized structures in detail. This study re-emphasizes the importance of non-protein moieties, i.e. sugars, in calcium carbonate systems, and highlights the need to clearly identify their function in the biomineralization process. © 2015 FEBS.
Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles
NASA Technical Reports Server (NTRS)
Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett
2016-01-01
There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.
On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Alunni, Antonella I.
2012-01-01
This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tengfang
2006-10-20
Lawrence Berkeley National Laboratory (LBNL) is now finalizing the Phase 2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method developed at LBNL.[1][2][3] Fan-filter units deliver re-circulated air and provide particle filtration control for clean environments. Much of the energy in cleanrooms (and minienvironments) is consumed by 2-foot x 4-foot (61-cm x 122-cm) or 4-foot x 4-foot (122-cm x 122-cm) fan-filter units that are typically located in the ceiling (25-100% coverage) of cleanroom controlled environments. Thanks to funding support by the California Energy Commission's Industrialmore » Program of the Public Interest Energy Research (PIER) Program, and significant participation from manufacturers and users of fan-filter units from around the world, LBNL has developed and performed a series of standard laboratory tests and reporting on a variety of 2-foot x 4-foot (61-cm x 122-cm) fan-filter units (FFUs). Standard laboratory testing reports have been completed and reported back to anonymous individual participants in this project. To date, such reports on standard testing of FFU performance have provided rigorous and useful data for suppliers and end users to better understand, and more importantly, to quantitatively characterize performance of FFU products under a variety of operating conditions.[1] In the course of the project, the standard laboratory method previously developed at LBNL has been under continuous evaluation and update.[2][3] Based upon the updated standard, it becomes feasible for users and suppliers to characterize and evaluate energy performance of FFUs in a consistent way.« less
Research and Development of High-performance Explosives
Cornell, Rodger; Wrobel, Erik; Anderson, Paul E.
2016-01-01
Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969
Post-Flight Assessment of Avcoat Thermal Protection System for the Exploration Flight Test-1
NASA Technical Reports Server (NTRS)
Bose, Deepak; Santos, Jose; Rodriguez, Erika; Mahzari, Milad; Remark, Brian; Muppidi, Suman
2016-01-01
On December 5, 2014 NASA conducted the first flight test of its next generation human-class Orion spacecraft. The flight was called the Exploration Flight Test -1 (EFT-1) which lasted for 4 hours and culminated into a re-entry trajectory at 9 km/s. This flight test of the 5-meter Orion Crew Module demonstrated various sub-systems including the Avcoat ablative thermal protection system (TPS) on the heat shield. The Avcoat TPS had been developed from the Apollo-era recipe with a few key modifications. The engineering for thermal sizing was supported by modeling, analysis, and ground tests in arc jet facilities. This paper will describe a postlfight analysis plan and present results from post-recovery inspections, data analysis from embedded sensors, TPS sample extraction and characterization in the laboratory. After the recovery of the vehicle, a full photographic survey and surface scans of the TPS were performed. The recovered vehicle showed physical evidence of flow disturbances, varying degrees of surface roughness, and excessive recession downstream of compression pads. The TPS recession was measured at more than 200 locations of interest on the Avcoat surface. The heat shield was then processed for sample extraction prior to TPS removal using the 7-Axis Milling machine at Marshall Space Flight Center. Around 182 rectangular TPS samples were extracted for subsequent analysis and investigation. The final paper will also present results of sample analysis. The planned investigation includes sidewall imaging, followed by image analysis to characterize TPS response by quantifying different layers in the char and pyrolysis zones. A full postmortem of the instrumentation and sensor ports will also be performed to confirm no adverse effects due to the sensors themselves. A subset of the samples will undergo structural testing and perform detailed characterization of any cracks and integrity of gore seams. Finally, the material will be characterized with layer-by-layer density measurements and SEM investigations to evaluate material morphology at microstructural level including identification of elements and compounds.
Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test
NASA Astrophysics Data System (ADS)
Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark
2013-12-01
To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.
Evaluation of ceramics for stator application: Gas turbine engine report
NASA Technical Reports Server (NTRS)
Trela, W.; Havstad, P. H.
1978-01-01
Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.
DOT National Transportation Integrated Search
2010-01-01
This research evaluated the stiffness and permanent deformation properties of typical Wisconsin Department of : Transportation (WisDOT) asphalt mixtures using the Asphalt Mixture Performance Tester (AMPT) and associated test and : analysis procedures...
NASA Technical Reports Server (NTRS)
Meyer, Marit Elisabeth
2015-01-01
A thermal precipitator (TP) was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Modeling of the thermal precipitator throughout the design process was performed with the COMSOL Multiphysics finite element software package, including the Eulerian flow field and thermal gradients in the fluid. The COMSOL Particle Tracing Module was subsequently used to determine particle deposition. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. The thermal precipitator was built and testing verified the performance of the first iteration of the device. The thermal precipitator was successfully operated and provided quality particle samples for microscopic analysis, which furthered the body of knowledge on smoke particulates. This information is a key element of smoke characterization and will be useful for future spacecraft fire detection research.
Preliminary characterization of a water vaporizer for resistojet applications
NASA Technical Reports Server (NTRS)
Morren, W. Earl
1992-01-01
A series of tests was conducted to explore the characteristics of a water vaporizer intended for application to resistojet propulsion systems. The objectives of these tests were to (1) observe the effect of orientation with respect to gravity on vaporizer stability, (2) characterize vaporizer efficiency and outlet conditions over a range of flow rates, and (3) measure the thrust performance of a vaporizer/resistojet thruster assembly. A laboratory model of a forced-flow, once-through water vaporizer employing a porous heat exchange medium was built and characterized over a range of flow rates and power levels of interest for application to water resistojets. In a test during which the vaporizer was rotated about a horizontal axis normal to its own axis, the outlet temperature and mass flow rate through the vaporizer remained steady. Throttlability to 30 percent of the maximum flow rate tested was demonstrated. The measured thermal efficiency of the vaporizer was near 0.9 for all tests. The water vaporizer was integrated with an engineering model multipropellant resistojet. Performance of the vaporizer/thruster assembly was measured over a narrow range of operating conditions. The maximum specific impulse measured was 234 s at a mass flow rate and specific power level (vaporizer and thruster combined) of 154 x 10(exp-6)kg/s and 6.8 MJ/kg, respectively.
A statistical characterization of the finger tapping test: modeling, estimation, and applications.
Austin, Daniel; McNames, James; Klein, Krystal; Jimison, Holly; Pavel, Misha
2015-03-01
Sensory-motor performance is indicative of both cognitive and physical function. The Halstead-Reitan finger tapping test is a measure of sensory-motor speed commonly used to assess function as part of a neuropsychological evaluation. Despite the widespread use of this test, the underlying motor and cognitive processes driving tapping behavior during the test are not well characterized or understood. This lack of understanding may make clinical inferences from test results about health or disease state less accurate because important aspects of the task such as variability or fatigue are unmeasured. To overcome these limitations, we enhanced the tapper with a sensor that enables us to more fully characterize all the aspects of tapping. This modification enabled us to decompose the tapping performance into six component phases and represent each phase with a set of parameters having clear functional interpretation. This results in a set of 29 total parameters for each trial, including change in tapping over time, and trial-to-trial and tap-to-tap variability. These parameters can be used to more precisely link different aspects of cognition or motor function to tapping behavior. We demonstrate the benefits of this new instrument with a simple hypothesis-driven trial comparing single and dual-task tapping.
Performance Increase Verification for a Bipropellant Rocket Engine
NASA Technical Reports Server (NTRS)
Alexander, Leslie; Chapman, Jack; Wilson, Reed; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott; England, Chris
2008-01-01
Component performance assessment testing for a, pressure-fed earth storable bipropellant rocket engine was successfully completed at Aerojet's Redmond test facility. The primary goal of the this development project is to increase the specific impulse of an apogee class bi-propellant engine to greater than 330 seconds with nitrogen tetroxide and monomethylhydrazine propellants and greater than 335 seconds with nitrogen tetroxide and hydrazine. The secondary goal of the project is to take greater advantage of the high temperature capabilities of iridium/rhenium chambers. In order to achieve these goals, the propellant feed pressures were increased to 400 psia, nominal, which in turn increased the chamber pressure and temperature, allowing for higher c*. The tests article used a 24-on-24 unlike doublet injector design coupled with a copper heat sink chamber to simulate a flight configuration combustion chamber. The injector is designed to produce a nominal 200 lbf of thrust with a specific impulse of 335 seconds (using hydrazine fuel). Effect of Chamber length on engine C* performance was evaluated with the use of modular, bolt-together test hardware and removable chamber inserts. Multiple short duration firings were performed to characterize injector performance across a range of thrust levels, 180 to 220 lbf, and mixture ratios, from 1.1 to 1.3. During firing, ignition transient, chamber pressure, and various temperatures were measured in order to evaluate the performance of the engine and characterize the thermal conditions. The tests successfully demonstrated the stable operation and performance potential of a full scale engine with a measured c* of XXXX ft/sec (XXXX m/s) under nominal operational conditions.
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.
2014-12-01
This work describes a methodology used for large scale modeling of wave propagation fromunderground explosions conducted at the Nevada Test Site (NTS) in two different geological settings:fractured granitic rock mass and in alluvium deposition. We show that the discrete nature of rockmasses as well as the spatial variability of the fabric of alluvium is very important to understand groundmotions induced by underground explosions. In order to build a credible conceptual model of thesubsurface we integrated the geological, geomechanical and geophysical characterizations conductedduring recent test at the NTS as well as historical data from the characterization during the undergroundnuclear test conducted at the NTS. Because detailed site characterization is limited, expensive and, insome instances, impossible we have numerically investigated the effects of the characterization gaps onthe overall response of the system. We performed several computational studies to identify the keyimportant geologic features specific to fractured media mainly the joints; and those specific foralluvium porous media mainly the spatial variability of geological alluvium facies characterized bytheir variances and their integral scales. We have also explored common key features to both geologicalenvironments such as saturation and topography and assess which characteristics affect the most theground motion in the near-field and in the far-field. Stochastic representation of these features based onthe field characterizations have been implemented in Geodyn and GeodynL hydrocodes. Both codeswere used to guide site characterization efforts in order to provide the essential data to the modelingcommunity. We validate our computational results by comparing the measured and computed groundmotion at various ranges. This work performed under the auspices of the U.S. Department of Energy by Lawrence LivermoreNational Laboratory under Contract DE-AC52-07NA27344.
Space Storable Propellant Performance Gas/Liquid Like-Doublet Injector Characterization
NASA Technical Reports Server (NTRS)
Falk, A. Y.
1972-01-01
A 30-month applied research program was conducted, encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space-storable propellants. The gas/liquid propellant combination selected for study was FLOX (82.6% F2)/ambient temperature gaseous methane. The injector pattern characterized was the like-(self)-impinging doublet. Program effort was apportioned into four basic technical tasks: injector and thrust chamber design, injector and thrust chamber fabrication, performance evaluation testing, and data evaluation and reporting. Analytical parametric combustion analyses and cold flow distribution and atomization experiments were conducted with injector segment models to support design of injector/thrust chamber combinations for hot fire evaluation. Hot fire tests were conducted to: (1) optimize performance of the injector core elements, and (2) provide design criteria for the outer zone elements so that injector/thrust chamber compatibility could be achieved with only minimal performance losses.
Herbicide Orange Site Characterization Study Naval Construction Battalion Center
1987-01-01
U.S. Testing Laboratories for analysis. Over 200 additional analyses were performed for a variety of quality assurance criteria. The resultant data...TABLE 9. NCBC PERFORMANCE AUDIT SAMPLE ANALYSIS SUNMARYa (SERIES 1) TCDD Sppb ) Reported Detection Relative b Sample Number Concentration Limit...limit rather than estimating the variance of the results. The sample results were transformed using the natural logarithm. The Shapiro-Wilk W test
Full scale phosphoric acid fuel cell stack technology development
NASA Technical Reports Server (NTRS)
Christner, L.; Faroque, M.
1984-01-01
The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.
Ayres, N.; Holt, D. J.; Jones, C.F.; Corum, L. E.; Grainger, D. W.
2009-01-01
A new polymer brush chemistry containing sulfonated carbohydrate repeat units has been synthesized from silicon substrates using ATRP methods and characterized both in bulk and using surface analysis. The polymer brush was designed to act as a mimic for the naturally occurring sulfonated glycosaminoglycan, heparin, commonly used for modifying blood-contacting surfaces both in vitro and in vivo. Surface analysis showed conversion of brush saccharide precursor chemistry to the desired sulfonated polymer product. The sulfonated polymer brush surface was further analyzed using three conventional in vitro tests for blood compatibility -- plasma recalcification times, complement activation, and thrombin generation. The sulfonated polymer brush films on silicon oxide wafers exhibited better assay performance in these blood component assays than the unsulfonated sugar functionalized polymer brush in all tests performed. PMID:19859552
CONTROL OF PCDD/PCDF EMISSIONS FROM MUNICIPAL WASTE COMBUSTION SYSTEMS
The article gives results of tests on five modern municipal waste combustors (MWCs) to characterize or determine the performance of representative combustor types and associated air emission control systems in the regulatory development process. Test results for uncontrolled (com...
Z-1 Prototype Space Suit Testing Summary
NASA Technical Reports Server (NTRS)
Ross, Amy
2013-01-01
The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.
Z-1 Prototype Space Suit Testing Summary
NASA Technical Reports Server (NTRS)
Ross, Amy J.
2012-01-01
The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.
System For Characterizing Three-Phase Brushless dc Motors
NASA Technical Reports Server (NTRS)
Howard, David E.; Smith, Dennis A.
1996-01-01
System of electronic hardware and software developed to automate measurements and calculations needed to characterize electromechanical performances of three-phase brushless dc motors, associated shaft-angle sensors needed for commutation, and associated brushless tachometers. System quickly takes measurements on all three phases of motor, tachometer, and shaft-angle sensor simultaneously and processes measurements into performance data. Also useful in development and testing of motors with not only three phases but also two, four, or more phases.
Analysis of the Shuttle Orbiter reinforced carbon-carbon oxidation protection system
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, Donald M.; Chao, Dennis; Pham, Vuong T.
1994-01-01
Reusable, oxidation-protected reinforced carbon-carbon (RCC) has been successfully flown on all Shuttle Orbiter flights. Thermal testing of the silicon carbide-coated RCC to determine its oxidation characteristics has been performed in convective (plasma Arc-Jet) heating facilities. Surface sealant mass loss was characterized as a function of temperature and pressure. High-temperature testing was performed to develop coating recession correlations for predicting performance at the over-temperature flight conditions associated with abort trajectories. Methods for using these test data to establish multi-mission re-use (i.e., mission life) and single mission limits are presented.
Best practices in passive remote sensing VNIR hyperspectral system hardware calibrations
Jablonski, Joseph; Durell, Christopher; Slonecker, Terry; Wong, Kwok; Simon, Blair; Eichelberger, Andrew; Osterberg, Jacob
2016-01-01
Hyperspectral imaging (HSI) is an exciting and rapidly expanding area of instruments and technology in passive remote sensing. Due to quickly changing applications, the instruments are evolving to suit new uses and there is a need for consistent definition, testing, characterization and calibration. This paper seeks to outline a broad prescription and recommendations for basic specification, testing and characterization that must be done on Visible Near Infra-Red grating-based sensors in order to provide calibrated absolute output and performance or at least relative performance that will suit the user’s task. The primary goal of this paper is to provide awareness of the issues with performance of this technology and make recommendations towards standards and protocols that could be used for further efforts in emerging procedures for national laboratory and standards groups.
Characterization and Modeling of Asphalt Binder Fatigue
NASA Astrophysics Data System (ADS)
Safaei, Farinaz
Fatigue cracking is a primary distress in asphalt pavements caused by the accumulation of damage under repeated traffic loading. Many factors influence fatigue damage in pavements, including pavement structure, environmental conditions, and asphalt mixture volumetric properties. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design. A comprehensive understanding and prediction of asphalt binder fatigue performance require a suitable experiment coupled with a model to predict how the binder will perform under various traffic, temperature, and structural conditions encountered in the field. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. Although the literature shows promise for applying VECD modeling to asphalt binder fatigue, the past efforts have several shortcomings. It has been demonstrated that flow and adhesion loss can impede DSR fatigue test results. Thus, definition of test conditions (e.g., temperature) where cyclic DSR tests are appropriate for fatigue characterization of binders is necessary. In addition, the applicability of the model to predict fatigue performance under varying loading and thermal history has not been rigorously evaluated. Furthermore, the effects of material nonlinearity have been largely neglected in past modeling efforts for simplicity. In addition, past efforts have employed the parallel plate DSR geometry for the fatigue characterization of asphalt binders. In the parallel plate geometry, the strain depends on the radial distance from the specimen center. Therefore, the material will fail at different rates as a function of radial location. Past efforts have neglected the radial strain gradient, using the apparent shear stress at the sample edge to infer fatigue damage and derive S-VECD model parameters. Apparent edge stress is calculated using linear mapping to the total torque, which is erroneous in the presence of material or geometric nonlinearities (such as cracking). This study seeks to overcome the aforementioned shortcomings of past efforts to improve the ability to characterize and predict asphalt binder fatigue.
The deformable secondary mirror of VLT: final electro-mechanical and optical acceptance test results
NASA Astrophysics Data System (ADS)
Briguglio, Runa; Biasi, Roberto; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Angerer, Gerald; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves
2014-07-01
The Deformable Secondary Mirror (DSM) for the VLT ended the stand-alone electro-mechanical and optical acceptance process, entering the test phase as part of the Adaptive Optics Facility (AOF) at the ESO Headquarter (Garching). The VLT-DSM currently represents the most advanced already-built large-format deformable mirror with its 1170 voice-coil actuators and its internal metrology based on co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the final results of the electro-mechanical and optical characterization of the DSM executed in a collaborative effort by the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.), INAF-Osservatorio Astrofisico di Arcetri and ESO. The electro-mechanical acceptance tests have been performed in the company premises and their main purpose was the dynamical characterization of the internal control loop response and the calibration of the system data that are needed for its optimization. The optical acceptance tests have been performed at ESO (Garching) using the ASSIST optical test facility. The main purpose of the tests are the characterization of the optical shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions.
High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development
NASA Technical Reports Server (NTRS)
Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.
2012-01-01
Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.
Alkaline fuel cell performance investigation
NASA Technical Reports Server (NTRS)
Martin, R. E.; Manzo, M. A.
1988-01-01
An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.
Alkaline fuel cell performance investigation
NASA Technical Reports Server (NTRS)
Martin, R. E.; Manzo, M. A.
1988-01-01
An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.
Airborne Systems Technology Application to the Windshear Threat
NASA Technical Reports Server (NTRS)
Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.
1996-01-01
The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.
Rise time and response measurements on a LiSOCl2 cell
NASA Technical Reports Server (NTRS)
Bastien, Caroline; Lecomte, Eric J.
1992-01-01
Dynamic impedance tests were performed on a 180 Ah LiSOCl2 cell in the frame of a short term work contract awarded by Aerospatiale as part of the Hermes Space Plane development work. These tests consisted of rise time and response measurements. The rise time test was performed to show the ability to deliver 4 KW, in the nominal voltage range (75-115 V), within less than 100 microseconds, and after a period at rest of 13 days. The response measurements test consisted of step response and frequency response tests. The frequency response test was performed to characterize the response of the LiSOCl2 cell to a positive or negative load step of 10 A starting from various currents. The test was performed for various depths of discharge and various temperatures. The test results were used to build a mathematical, electrical model of the LiSOCl2 cell which are also presented. The test description, test results, electrical modelization description, and conclusions are presented.
Prototyping and Characterization of an Adjustable Skew Angle Single Gimbal Control Moment Gyroscope
2015-03-01
performance, and an analysis of the test results is provided. In addition to the standard battery of CMG performance tests that were planned, a...objectives for this new CMG is to provide comparable performance to the Andrews CMGs, the values in Table 1 will be used for output torque comparison...essentially fixed at 53.4°. This specific skew angle value is not the problem, as this is one commonly used CMG skew angle for satellite systems. The real
Reliability of an x-ray system for calibrating and testing personal radiation dosimeters
NASA Astrophysics Data System (ADS)
Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.
2018-03-01
Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.
Power source evaluation capabilities at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, D.H.; Butler, P.C.
1996-04-01
Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.
Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.
2003-01-01
This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuehne, David Patrick; Lattin, Rebecca Renee
The Rad-NESHAP program, part of the Air Quality Compliance team of LANL’s Compliance Programs group (EPC-CP), and the Radiation Instrumentation & Calibration team, part of the Radiation Protection Services group (RP-SVS), frequently partner on issues relating to characterizing air flow streams. This memo documents the most recent example of this partnership, involving performance testing of sulfur hexafluoride detectors for use in stack gas mixing tests. Additionally, members of the Rad-NESHAP program performed a functional trending test on a pair of optical particle counters, comparing results from a non-calibrated instrument to a calibrated instrument. Prior to commissioning a new stack samplingmore » system, the ANSI Standard for stack sampling requires that the stack sample location must meet several criteria, including uniformity of tracer gas and aerosol mixing in the air stream. For these mix tests, tracer media (sulfur hexafluoride gas or liquid oil aerosol particles) are injected into the stack air stream and the resulting air concentrations are measured across the plane of the stack at the proposed sampling location. The coefficient of variation of these media concentrations must be under 20% when evaluated over the central 2/3 area of the stack or duct. The instruments which measure these air concentrations must be tested prior to the stack tests in order to ensure their linear response to varying air concentrations of either tracer gas or tracer aerosol. The instruments used in tracer gas and aerosol mix testing cannot be calibrated by the LANL Standards and Calibration Laboratory, so they would normally be sent off-site for factory calibration by the vendor. Operational requirements can prevent formal factory calibration of some instruments after they have been used in hazardous settings, e.g., within a radiological facility with potential airborne contamination. The performance tests described in this document are intended to demonstrate the reliable performance of the test instruments for the specific tests used in stack flow characterization.« less
Single shaft automotive gas turbine engine characterization test
NASA Technical Reports Server (NTRS)
Johnson, R. A.
1979-01-01
An automotive gas turbine incorporating a single stage centrifugal compressor and a single stage radial inflow turbine is described. Among the engine's features is the use of wide range variable geometry at the inlet guide vanes, the compressor diffuser vanes, and the turbine inlet vanes to achieve improved part load fuel economy. The engine was tested to determine its performance in both the variable geometry and equivalent fixed geometry modes. Testing was conducted without the originally designed recuperator. Test results were compared with the predicted performance of the nonrecuperative engine based on existing component rig test maps. Agreement between test results and the computer model was achieved.
NASA Technical Reports Server (NTRS)
Sankar, S.; Livas, J.
2016-01-01
We describe our efforts to fabricate, test and characterize a prototype telescope for the eLISA mission. Much of our work has centered on the modeling and measurement of scattered light performance. This work also builds on a previous demonstration of a high dimensional stability metering structure using particular choices of materials and interfaces. We will discuss ongoing plans to merge these two separate demonstrations into a single telescope design demonstrating both stray light and dimensional stability requirements simultaneously.
Selective Neurocognitive Impairments in Adolescents with Major Depressive Disorder
ERIC Educational Resources Information Center
Han, Georges; Klimes-Dougan, Bonnie; Jepsen, Susie; Ballard, Kristin; Nelson, Megan; Houri, Alaa; Kumra, Sanjiv; Cullen, Kathryn
2012-01-01
This study investigated whether major depression in adolescence is characterized by neurocognitive deficits in attention, affective decision making, and cognitive control of emotion processing. Neuropsychological tests including the Wechsler Abbreviated Scale of Intelligence, the Continuous Performance Test-Identical Pairs, the Attention Network…
DOT National Transportation Integrated Search
2015-12-01
Granted that most distresses in asphalt (flexible) concrete (AC) pavements are directly related to fracture, it becomes clear : that identifying and characterizing fracture properties of AC mixtures is a critical step towards a better pavement design...
78 FR 35173 - Physical Medicine Devices; Reclassification of Stair-Climbing Wheelchairs
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
.... Electromagnetic interference: The device may interfere with the operation of other electrical devices or be... electromagnetic compatibility testing as well as characterization of speed/acceleration, battery longevity, and... electrical safety and electromagnetic compatibility of the device. Performance testing must demonstrate...
Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP
NASA Technical Reports Server (NTRS)
Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.
2017-01-01
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.
Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites
NASA Astrophysics Data System (ADS)
Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.
2015-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.
NASA Astrophysics Data System (ADS)
Nakamoto, Teagan; Parrack, Kristina; Smith, Dalton; Trujillo, Chris; Wilde, Zak; Gibson, John; Lodes, Rylie; Malcolm, Hayden
2017-06-01
Researchers experimented with a novel diagnostic to study the effects of porosity on detonator performance. The new diagnostic takes advantage of the detonation electric effect observed by Hayes (1966). Detonation-produced electrical charges induce a current in the detonator wire that may be detected by use of a Rogowski coil developed and tailored for the purpose. Data collected by the Rogowski coil were then used to characterize detonations. Researchers tested PETN charges of various porosity levels (as characterized by measured particle size and surface area) to study the effect of porosity on detonation characteristics. This novel method was compared with and verified by the well-established technique of using PVDF gauges for detonator response characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanninen, M.F.; O'Donoghue, P.E.; Popelar, C.F.
1993-02-01
The project was undertaken for the purposes of quantifying the Battelle slow crack growth (SCG) test for predicting long-term performance of polyethylene gas distribution pipes, and of demonstrating the applicability of the methodology for use by the gas industry for accelerated characterization testing, thereby bringing the SCG test development effort to a closure. The work has revealed that the Battelle SCG test, and the linear fracture mechanics interpretation that it currently utilizes, is valid for a class of PE materials. The long-term performance of these materials in various operating conditions can therefore be effectively predicted.
Fractured reservoir characterization through injection, falloff, and flowback tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, C.P.; Singh, P.K.; Halvorsen, H.
1992-09-01
This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.
Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.; Desai, Pooja; Werlink, Rudy
2017-01-01
A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion technology through numerous system-level and subsystem experiments.
NASA Technical Reports Server (NTRS)
Yorchak, J. P.; Hartley, C. S.; Hinman, E.
1985-01-01
The use of aptitude tests and questionnaries to evaluate an individuals aptitude for teleoperation is studied. The Raven Progressive Matrices Test and Differential Aptitude Tests, and a 16-item questionnaire for assessing the subject's interests, academic background, and previous experience are described. The Proto-Flight Manipulator Arm, cameras, console, hand controller, and task board utilized by the 17 engineers are examined. The correlation between aptitude scores and questionnaire responses, and operator performance is investigated. Multiple regression data reveal that the eight predictor variables are not individually significant for evaluating operator performance; however, the complete test battery is applicable for predicting 49 percent of subject variance on the criterion task.
On the characterization of the heterogeneous mechanical response of human brain tissue.
Forte, Antonio E; Gentleman, Stephen M; Dini, Daniele
2017-06-01
The mechanical characterization of brain tissue is a complex task that scientists have tried to accomplish for over 50 years. The results in the literature often differ by orders of magnitude because of the lack of a standard testing protocol. Different testing conditions (including humidity, temperature, strain rate), the methodology adopted, and the variety of the species analysed are all potential sources of discrepancies in the measurements. In this work, we present a rigorous experimental investigation on the mechanical properties of human brain, covering both grey and white matter. The influence of testing conditions is also shown and thoroughly discussed. The material characterization performed is finally adopted to provide inputs to a mathematical formulation suitable for numerical simulations of brain deformation during surgical procedures.
Panasonic Small Cell Testing for AHPS
NASA Technical Reports Server (NTRS)
Pearson, C.; Blackmore, P.; Lain, M.; Walpole, A.; Darcy, Eric
2006-01-01
AEA selection and successful Interim Design Review for AHPS proves maturity of small cell approach for very large batteries. Cells show excellent opportunity for battery mass reduction for AHPS and other low cycle applications. Lack of cycle and extended calendar life make EOL battery performance difficult (AHPS 8 year mission). Preliminary design, AEA retained SONY 18650HC cell as baseline: a) Well characterized performance; b) Wealth of safety test data.
Characterization of in-flight performance of ion propulsion systems
NASA Astrophysics Data System (ADS)
Sovey, James S.; Rawlin, Vincent K.
1993-06-01
In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.
Characterization of in-flight performance of ion propulsion systems
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.
1993-01-01
In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.
Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range
NASA Astrophysics Data System (ADS)
Koppenjan, S.,; Martinez, M.
The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE's Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a 'chirped' FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site.
Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koppenjan, S,; Martinez, M.
1994-06-01
The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteriamore » for the development of geophysical technologies and techniques. The US DOE`s Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ``chirped`` FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site.« less
NASA Technical Reports Server (NTRS)
Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-01-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront-error maps.
Characterization of 8-cm engineering model thruster
NASA Technical Reports Server (NTRS)
Williamson, W. S.
1984-01-01
Development of 8 cm ion thruster technology which was conducted in support of the Ion Auxiliary Propulsion System (IAPS) flight contract (Contract NAS3-21055) is discussed. The work included characterization of thruster performance, stability, and control; a study of the effects of cathode aging; environmental qualification testing; and cyclic lifetesting of especially critical thruster components.
Role of Microstructure on the Performance of UHTCs
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead
2010-01-01
We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.
Morandi, Paolo; Hak, Sanja; Magenes, Guido
2018-02-01
This article contains information related to a recent study "Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills" (Morandi et al., 2017 [1]). Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.
Photovoltaic Performance and Reliability Workshop summary
NASA Astrophysics Data System (ADS)
Kroposki, Benjamin
1997-02-01
The objective of the Photovoltaic Performance and Reliability Workshop was to provide a forum where the entire photovoltaic (PV) community (manufacturers, researchers, system designers, and customers) could get together and discuss technical issues relating to PV. The workshop included presentations from twenty-five speakers and had more than one hundred attendees. This workshop also included several open sessions in which the audience and speakers could discuss technical subjects in depth. Several major topics were discussed including: PV characterization and measurements, service lifetimes for PV devices, degradation and failure mechanisms for PV devices, standardization of testing procedures, AC module performance and reliability testing, inverter performance and reliability testing, standardization of utility interconnect requirements, experience from field deployed systems, and system certification.
Characterization and modeling of a highly-oriented thin film for composite forming
NASA Astrophysics Data System (ADS)
White, K. D.; Sherwood, J. A.
2018-05-01
Ultra High Molecular Weight Polyethylene (UHMWPE) materials exhibit high impact strength, excellent abrasion resistance and high chemical resistance, making them attractive for a number of impact applications for automotive, marine and medical industries. One format of this class of materials that is being considered for the thermoforming process is a highly-oriented extruded thin film. Parts are made using a two-step manufacturing process that involves first producing a set of preforms and then consolidating these preforms into a final shaped part. To assist in the design of the processing parameters, simulations of the preforming and compression molding steps can be completed using the finite element method. Such simulations require material input data as developed through a comprehensive characterization test program, e.g. shear, tensile and bending, over the range of potential processing temperatures. The current research investigates the challenges associated with the characterization of thin, highly-oriented UHMWPE films. Variations in grip type, sample size and testing rates are explored to achieve convergence of the characterization data. Material characterization results are then used in finite element simulations of the tension test to explore element formulations that work well with the mechanical behavior. Comparisons of the results from the material characterization tests to results of simulations of the same test are performed to validate the finite element method parameters and the credibility of the user-defined material model.
Thermal Vacuum Testing of Swift XRT Ethane Heat Pipes
NASA Technical Reports Server (NTRS)
Kobel, Mark; Ku, Jentung
2003-01-01
This paper presents the results obtained from a recent ethane heat pipe program. Three identical ethane heat pipes were tested individually, and then two selected heat pipes were tested collectively in their system configuration. Heat transport, thermal conductance, and non-condensable gas tests were performed on each heat pipe. To gain insight into the reflux operation as seen at spacecraft level ground testing, the test fixture was oriented in a vertical configuration. The system level test included a computer-controlled heater designed to emulate the heat load generated at the thermoelectric cooler interface. The system performance was successfully characterized for a wide range of environmental conditions while staying within the operating limits.
NASA Astrophysics Data System (ADS)
Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli
2017-10-01
A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.
NASA Technical Reports Server (NTRS)
Addington, L. A.; Ownby, P. D.; Yu, B. B.; Barsoum, M. W.; Romero, H. V.; Zealer, B. G.
1979-01-01
The development and evaluation of proprietary coatings of pure silicon carbide, silicon nitride, and aluminum nitride on less pure hot pressed substrates of the respective ceramic materials, is described. Silicon sessile drop experiments were performed on coated test specimens under controlled oxygen partial pressure. Prior to testing, X-ray diffraction and SEM characterization was performed. The reaction interfaces were characterized after testing with optical and scanning electron microscopy and Auger electron spectroscopy. Increasing the oxygen partial pressure was found to increase the molten silicon contact angle, apparently because adsorbed oxygen lowers the solid-vapor interfacial free energy. It was also found that adsorbed oxygen increased the degree of attack of molten silicon upon the chemical vapor deposited coatings. Cost projections show that reasonably priced, coated, molten silicon resistant refractory material shapes are obtainable.
NASA Astrophysics Data System (ADS)
Cytrynowicz, Debra G.
The research project itself was the initiation of the development of a planar miniature loop heat pipe based on a capillary wick structure made of coherent porous silicon. Work on this project fell into four main categories, which were component fabrication, test system construction, characterization testing and test data collection, performance analysis and thermal modeling. Component fabrication involved the production of various components for the evaporator. When applicable, these components were to be produced by microelectronic and MEMS or microelectromechanical fabrication techniques. Required work involved analyses and, where necessary, modifications to the wafer processing sequence, the photo-electrochemical etching process, system and controlling computer program to make it more reliable, flexible and efficient. The development of more than one wick production process was also extremely necessary in the event of equipment failure. Work on developing this alternative also involved investigations into various details of the photo-electrochemical etching process itself. Test system construction involved the actual assembly of open and closed loop test systems. Characterization involved developing and administering a series of tests to evaluate the performance of the wicks and test systems. Although there were some indications that the devices were operating according to loop heat pipe theory, they were transient and unstable. Performance analysis involved the construction of a transparent evaporator, which enabled the visual observation of the phenomena, which occurred in the evaporator during operation. It also involved investigating the effect of the quartz wool secondary wick on the operation of the device. Observations made during the visualization study indicated that the capillary and boiling limits were being reached at extremely low values of input power. The work was performed in a collaborative effort between the Biomedical Nanotechnology Research Laboratory at the University of Toledo, the Center for Microelectronics and Sensors and MEMS at the University of Cincinnati and the Thermo-Mechanical Systems Branch of the Power and On-Board Propulsion Division at the John H. Glenn Research Center of the National Aeronautics and Space Administration in Cleveland, Ohio. Work on the project produced six publications, which presented various details on component fabrication, tests system construction and characterization and thermal modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, Frank A.; Newcomer, Darrell R.
2010-06-15
This report presents test descriptions and analysis results for multiple, stress-level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) UP-1 wells: 299-W19-48 (C4300/Well K), 699-30-66 (C4298/Well R), and 699-36-70B (C4299/Well P). These wells are located within, adjacent to, and to the southeast of the Hanford Site 200-West Area. The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OUmore » UP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, Frank A.; Newcomer, Darrell R.
2010-06-21
The following report presents test descriptions and analysis results for multiple, stress level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) ZP-1 wells: 299-W11-43 (C4694/Well H), 299-W15-50 (C4302/Well E), and 299-W18-16 (C4303/Well D). These wells are located within south-central region of the Hanford Site 200-West Area (Figure 1.1). The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OUmore » ZP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.« less
LM193 Dual Differential Comparator Total Ionizing Dose Test Report
NASA Technical Reports Server (NTRS)
Topper, Alyson; Forney, James; Campola, Michael
2017-01-01
The purpose of this test was to characterize the flight lot of Texas Instruments' LM193 (flight part number is 5962-9452601Q2A) for total dose response. This test served as the radiation lot acceptance test (RLAT) for the lot date code (LDC) tested. Low dose rate (LDR) irradiations were performed in this test so that the device susceptibility to enhanced low dose rate sensitivity (ELDRS) was determined.
Calorimetric thermal-vacuum performance characterization of the BAe 80 K space cryocooler
NASA Technical Reports Server (NTRS)
Kotsubo, V. Y.; Johnson, D. L.; Ross, R. G., Jr.
1992-01-01
A comprehensive characterization program is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80 K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precise individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heatsink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stroke, drive frequency, and piston-displacer dc offset.
Turbine adapted maps for turbocharger engine matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tancrez, M.; Galindo, J.; Guardiola, C.
2011-01-15
This paper presents a new representation of the turbine performance maps oriented for turbocharger characterization. The aim of this plot is to provide a more compact and suited form to implement in engine simulation models and to interpolate data from turbocharger test bench. The new map is based on the use of conservative parameters as turbocharger power and turbine mass flow to describe the turbine performance in all VGT positions. The curves obtained are accurately fitted with quadratic polynomials and simple interpolation techniques give reliable results. Two turbochargers characterized in an steady flow rig were used for illustrating the representation.more » After being implemented in a turbocharger submodel, the results obtained with the model have been compared with success against turbine performance evaluated in engine tests cells. A practical application in turbocharger matching is also provided to show how this new map can be directly employed in engine design. (author)« less
CALiPER Report 23: Photometric Testing of White Tunable LED Luminaires
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-01-01
This report documents an initial investigation of photometric testing procedures for white-tunable LED luminaires and summarizes the key features of those products. Goals of the study include understanding the amount of testing required to characterize a white-tunable product, and documenting the performance of available color-tunable luminaires that are intended for architectural lighting.
The Effect of Instruction on the Acquisition of Conservation of Volume.
ERIC Educational Resources Information Center
Butts, David P.; Howe, Ann C.
Tested was the hypothesis that science instruction based on task analysis will lead to the acquisition of the ability to perform certain Piaget volume tasks which have been characterized as requiring formal operations for their solutions. A Test on Formal Operations and a Learning Hierarchies Test were given to fourth- and sixth-grade students in…
Projection technologies for imaging sensor calibration, characterization, and HWIL testing at AEDC
NASA Astrophysics Data System (ADS)
Lowry, H. S.; Breeden, M. F.; Crider, D. H.; Steely, S. L.; Nicholson, R. A.; Labello, J. M.
2010-04-01
The characterization, calibration, and mission simulation testing of imaging sensors require continual involvement in the development and evaluation of radiometric projection technologies. Arnold Engineering Development Center (AEDC) uses these technologies to perform hardware-in-the-loop (HWIL) testing with high-fidelity complex scene projection technologies that involve sophisticated radiometric source calibration systems to validate sensor mission performance. Testing with the National Institute of Standards and Technology (NIST) Ballistic Missile Defense Organization (BMDO) transfer radiometer (BXR) and Missile Defense Agency (MDA) transfer radiometer (MDXR) offers improved radiometric and temporal fidelity in this cold-background environment. The development of hardware and test methodologies to accommodate wide field of view (WFOV), polarimetric, and multi/hyperspectral imaging systems is being pursued to support a variety of program needs such as space situational awareness (SSA). Test techniques for the acquisition of data needed for scene generation models (solar/lunar exclusion, radiation effects, etc.) are also needed and are being sought. The extension of HWIL testing to the 7V Chamber requires the upgrade of the current satellite emulation scene generation system. This paper provides an overview of pertinent technologies being investigated and implemented at AEDC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report is the first in a series of studies on accelerated stress testing (AST) of drivers used for SSL luminaires, such as downlights, troffers, and streetlights. A representative group of two-stage commercial driver products was exposed to an AST environment consisting of 75°C and 75% relative humidity (7575). These drivers were a mix of single-channel drivers (i.e., a single output current for one LED primary) and multichannel drivers (i.e., separate output currents for multiple LED primaries). This AST environment was chosen because previous testing on downlights with integrated drivers demonstrated that 38% of the sample population failed in lessmore » than 2,500 hours of testing using this method. In addition to AST test results, the performance of an SSL downlight product incorporating an integrated, multichannel driver during extended room temperature operational life (RTOL) testing is also reported. A battery of measurements was used to evaluate these products during accelerated testing, including full electrical characterization (i.e., power consumption, PF, total harmonic distortion [THD], and inrush current) and photometric characterization of external LED loads attached to the drivers (i.e., flicker performance and lumen maintenance).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-03-01
This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.
Characterization Tests for Mineral Fillers Related to Performance of Asphalt Paving Mixtures
DOT National Transportation Integrated Search
1988-01-01
Various studies have shown that the properties of mineral filler, especially the material passing 0.075 mm (No. 200) sieve (generally called P200 material), have a significant effect on the performance of asphalt paving mixtures in terms of permanent...
Ángel, Romero-Martínez; Luis, Moya-Albiol
2015-12-15
Mothers of offspring with autism spectrum disorders (ASD) could present mild forms of their children's cognitive characteristics, resulting from prenatal brain exposure and sensitivity to testosterone (T). Indeed, their cognition is frequently characterized by hyper-systemizing, outperforming in tests that assess cognitive domains such as selective attention, and fine motor and visuospatial skills. In the general population, all these start to decline around the mid-forties. This study aimed to characterize whether middle-aged women who are biological mothers of individuals with ASD had better performance in the aforementioned cognitive skills than mothers of normative children (in both groups n = 22; mean age = 45), using the standardized Stroop and mirror-drawing tests. We also examined the role of T in their performance in the aforementioned tests. ASD mothers outperformed controls in both tests, giving more correct answers and making fewer mistakes. In addition, they presented higher T levels, which have been associated with better cognitive performance. Cognitive decline in specific skills with aging could be delayed in these middle-aged women, corresponding to a cognitive endophenotype, T playing an important role in this process.
Ángel, Romero-Martínez; Luis, Moya-Albiol
2015-01-01
Mothers of offspring with autism spectrum disorders (ASD) could present mild forms of their children’s cognitive characteristics, resulting from prenatal brain exposure and sensitivity to testosterone (T). Indeed, their cognition is frequently characterized by hyper-systemizing, outperforming in tests that assess cognitive domains such as selective attention, and fine motor and visuospatial skills. In the general population, all these start to decline around the mid-forties. This study aimed to characterize whether middle-aged women who are biological mothers of individuals with ASD had better performance in the aforementioned cognitive skills than mothers of normative children (in both groups n = 22; mean age = 45), using the standardized Stroop and mirror-drawing tests. We also examined the role of T in their performance in the aforementioned tests. ASD mothers outperformed controls in both tests, giving more correct answers and making fewer mistakes. In addition, they presented higher T levels, which have been associated with better cognitive performance. Cognitive decline in specific skills with aging could be delayed in these middle-aged women, corresponding to a cognitive endophenotype, T playing an important role in this process. PMID:26694433
Caffeine deprivation affects vigilance performance and mood.
Lane, J D; Phillips-Bute, B G
1998-08-01
The effects of brief caffeine deprivation on vigilance performance, mood, and symptoms of caffeine withdrawal were studied in habitual coffee drinkers. Thirty male and female coffee drinkers were tested twice at midday (1130 to 1330 hours) after mornings in which they either consumed caffeinated beverages ad lib or abstained. Vigilance performance was tested with a 30-min computerized visual monitoring task. Mood and withdrawal symptom reports were collected by questionnaires. Caffeine deprivation was associated with impaired vigilance performance characterized by a reduction in the percentage of targets detected and an increase in response time, and by subjective reports of decreased vigor and increased fatigue and symptoms characterized by sleepiness, headache, and reduced ability to work. Even short periods of caffeine deprivation, equivalent in length to skipping regular morning coffee, can produce deficits in sustained attention and noticeable unpleasant caffeine-withdrawal symptoms in habitual coffee drinkers. Such symptoms may be a common side-effect of habitual caffeine consumption that contributes to the maintenance of this behavior.
Characterization of a New Mach 9 Nozzle for the HEAT Hypersonic Wind Tunnel
NASA Astrophysics Data System (ADS)
Baccarella, D.; Passaro, A.; Caredda, P.; Cristofolini, A.; Neretti, G.; Granciu, V. M.; Schettino, A.; Battista, F.; D'Ambrosio, D.
2009-01-01
A new Mach 9 contoured nozzle to use with air was designed and realized at Alta SpA with the aim to produce a uniform core flow with a diameter of at least 80 mm. The design was iteratively carried out using engineering codes and CFD simulations by CIRA. The characterization activity was carried out mapping the complete test section in terms of pitot pressure and total enthalpy and measuring the pressure and heat flux distribution on the nozzle internal walls. The flow before the convergent was characterized by means of total pressure measurements and spectroscopy. A numerical rebuilding of the test was performed by CIRA and PoliTO and compared with experimental data. The paper will briefly describe the design phase and will present all the characterization results.
High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David
2007-01-01
Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.
NASA Astrophysics Data System (ADS)
Pramanik, Brahmananda
The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both strength and energy absorbing capacity of these candidate material systems are distinctively less under dynamic tension than under compressive loading. Nano-reinforcement appears to marginally improve these properties for pure vinyl ester under dynamic tension, although it is found to be detrimental under dynamic compression.
Dymova, Natalya; Hanumara, R. Choudary; Gagnon, Ronald N.
2009-01-01
Performance measurement is increasingly viewed as an essential component of environmental and public health protection programs. In characterizing program performance over time, investigators often observe multiple changes resulting from a single intervention across a range of categories. Although a variety of statistical tools allow evaluation of data one variable at a time, the global test statistic is uniquely suited for analyses of categories or groups of interrelated variables. Here we demonstrate how the global test statistic can be applied to environmental and occupational health data for the purpose of making overall statements on the success of targeted intervention strategies. PMID:19696393
Mission Options for an Electric Propulsion Demonstration Flight Test
NASA Technical Reports Server (NTRS)
Garner, Charles
1989-01-01
Several mission options are discussed for an electric propulsion space test which provides operational and performance data for ion and arcjet propulsion systems and testing of APSA arrays and a super power system. The results of these top-level studies are considered preliminary. Ion propulsion system design and architecture for the purposes of performing orbit raising missions for payloads in the range of 2400 to 2700 kg are described. Focus was placed on a design which can be characterized by simplicity, reliability, and performance. Systems of this design are suitable for an electric propulsion precursor flight which would provide proof of principle data necessary for more ambitious and complex missions.
Dymova, Natalya; Hanumara, R Choudary; Enander, Richard T; Gagnon, Ronald N
2009-10-01
Performance measurement is increasingly viewed as an essential component of environmental and public health protection programs. In characterizing program performance over time, investigators often observe multiple changes resulting from a single intervention across a range of categories. Although a variety of statistical tools allow evaluation of data one variable at a time, the global test statistic is uniquely suited for analyses of categories or groups of interrelated variables. Here we demonstrate how the global test statistic can be applied to environmental and occupational health data for the purpose of making overall statements on the success of targeted intervention strategies.
Characterization and antimicrobial performance of nano silver coatings on leather materials
Lkhagvajav, N.; Koizhaiganova, M.; Yasa, I.; Çelik, E.; Sari, Ö.
2015-01-01
In this study, the characterization and the antimicrobial properties of nano silver (nAg) coating on leather were investigated. For this purpose, turbidity, viscosity and pH of nAg solutions prepared by the sol-gel method were measured. The formation of films from these solutions was characterized according to temperature by Differential Thermal Analysis-Thermogravimetry (DTA-TG) equipment. The surface morphology of treated leathers was observed using Scanning Electron Microscopy (SEM). The antimicrobial performance of nAg coatings on leather materials to the test microorganisms as Escherichia coli , Staphylococcus aureus , Candida albicans and Aspergillius niger was evaluated by the application of qualitative (Agar overlay method) and quantitative (percentage of microbial reduction) tests. According to qualitative test results it was found that 20 μg/cm 2 and higher concentrations of nAg on the leather samples were effective against all microorganisms tested. Moreover, quantitative test results showed that leather samples treated with 20 μg/cm 2 of nAg demonstrated the highest antibacterial activity against E. coli with 99.25% bacterium removal, whereas a 10 μg/cm 2 concentration of nAg on leather was enough to exhibit the excellent percentage reduction against S. aureus of 99.91%. The results are promising for the use of colloidal nano silver solution on lining leather as antimicrobial coating. PMID:26221087
Characterization of the Advanced Stirling Radioisotope Generator EU2
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.
2015-01-01
Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.
NASA Technical Reports Server (NTRS)
Akle, W.
1983-01-01
This study report defines a set of tests and measurements required to characterize the performance of a Large Space System (LSS), and to scale this data to other LSS satellites. Requirements from the Mobile Communication Satellite (MSAT) configurations derived in the parent study were used. MSAT utilizes a large, mesh deployable antenna, and encompasses a significant range of LSS technology issues in the areas of structural/dynamics, control, and performance predictability. In this study, performance requirements were developed for the antenna. Special emphasis was placed on antenna surface accuracy, and pointing stability. Instrumentation and measurement systems, applicable to LSS, were selected from existing or on-going technology developments. Laser ranging and angulation systems, presently in breadboard status, form the backbone of the measurements. Following this, a set of ground, STS, and GEO-operational were investigated. A third scale (15 meter) antenna system as selected for ground characterization followed by STS flight technology development. This selection ensures analytical scaling from ground-to-orbit, and size scaling. Other benefits are cost and ability to perform reasonable ground tests. Detail costing of the various tests and measurement systems were derived and are included in the report.
Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination
NASA Astrophysics Data System (ADS)
El-Gendi, Ayman; Abdallah, Heba; Amin, Ashraf; Amin, Shereen Kamel
2017-10-01
The pollution of water resources, severe climate changes, rapid population growth, increasing agricultural demands, and rapid industrialization insist the development of innovative technologies for generating potable water. Polyvinylchloride/cellulose acetate (PVC/CA) membranes were prepared using phase inversion technique for seawater reverse osmosis (SWRO). The membrane performance was investigated using Red Sea water (El-Ein El-Sokhna-Egypt). The membrane performance indicated that the prepared membranes were endowed to work under high pressure; increasing in feeding operating pressure led to increase permeate flux and rejection. Increasing feed operating pressure from zero to 40 bar led to increase in the salt rejection percent. Salt rejection percent reached to 99.99% at low feed concentration 5120 ppm and 99.95% for Red Sea water (38,528 ppm). The prepared membranes were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, and mechanical properties. SEM, FTIR and mechanical results were used to distinguish the best membrane for desalination. According to characterization results, one prepared membrane was selected to run performance test in desalination testing unit. The membrane (M3) showed excellent performance and stability under different operating conditions and during the durability test for 36 days.
Design philosophy of the Jet Propulsion Laboratory infrared detector test facility
NASA Technical Reports Server (NTRS)
Burns, R.; Blessinger, M. A.
1983-01-01
To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.
Establish an Agent-Simulant Technology Relationship (ASTR)
2017-04-14
for quantitative measures that characterize simulant performance in testing , such as the ability to be removed from surfaces. Component-level ASTRs...Overall Test and Agent-Simulant Technology Relationship (ASTR) process. 1.2 Background. a. Historically, many tests did not develop quantitative ...methodology report14. Report provides a VX-TPP ASTR for post -decon contact hazard and off- gassing. In the Stryker production verification test (PVT
Laboratory Characterization of White Masonry Concrete
2006-09-01
procedures given in American Society for Testing and Materials (ASTM) D 2216 (ASTM 2002e). Based on the appropriate values of posttest water content...properties of the material. All of the mechanical property tests were conducted quasi -statically with axial strain rates on the order of 10-4 to 10...mechanical property tests, nondestructive pulse-velocity measurements were performed on each specimen. The TXC tests exhibited a continuous increase
A Novel Method for Characterizing Spacesuit Mobility Through Metabolic Cost
NASA Technical Reports Server (NTRS)
McFarland, Shane M.; Norcross, Jason R.
2014-01-01
Historically, spacesuit mobility has been characterized by directly measuring both range of motion and joint torque of individual anatomic joints. The work detailed herein aims to improve on this method, which is often prone to uncertainly, lack of repeatability, and a general lack of applicability to real-world functional tasks. Specifically, the goal of this work is to characterize suited mobility performance by directly measuring the metabolic performance of the occupant. Pilot testing was conducted in 2013, employing three subjects performing a range of functional tasks in two different suits prototypes, the Mark III and Z-1. Cursory analysis of the results shows the approach has merit, with consistent performance trends toward one suit over the other. Forward work includes the need to look at more subjects, a refined task set, and another suit in a different mass/mobility regime to validate the approach.
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
This document is the detailed test plan for the series of tests enumerated in the preceding section. The purpose of this plan is to present the test objectives, test parameters and procedures, expected performance and data analysis plans, criteria for success, test schedules, and related safety provisions and to describe the test articles, test instrumentation, and test facility requirements. Initial testing will be performed to screen four composite materials for suitability for SSTO LH2 tank loads and environmental conditions. The laminates for this testing will be fabricated by fiber placement, which is the manufacturing approach identified as baseline for the tank wall. Even though hand layup will be involved in fabricating many of the internal structural members of the tank, no hand-layup laminates will be evaluated in the screening or subsequent characterization testing. This decision is based on the understanding that mechanical properties measured for hand-layup material should be at least equivalent to properties measured for fiber-placed material, so that the latter should provide no less than a conservative approximation of the former. A single material will be downselected from these screening tests. This material will be subsequently characterized for impact-damage tolerance and durability under conditions of mechanical and thermal cycling, and to establish a preliminary design database to support ongoing analysis. Next, testing will be performed on critical structural elements fabricated from the selected material. Finally, the 8-foot diameter tank article, containing the critical structural features of the full-scale tank, will be fabricated by fiber placement and tested to verify its structural integrity and LH2 containment.
Mechanical Property Allowables Generated for the Solid Rocket Booster Composite Note Cap
NASA Technical Reports Server (NTRS)
Hodge, A. J.
2000-01-01
Mechanical property characterization was performed on AS4/3501-6 graphite/epoxy and SC350G syntactic foam for the SRB Composite Nose Cap Shuttle Upgrades Project. Lamina level properties for the graphite/epoxy were determined at room temperature, 240 F, 350 F, 480 F, 600 F, and 350 F after a cycle to 600 F. Graphite/epoxy samples were moisture conditioned prior to testing. The syntactic foam material was tested at room temperature, 350 F, and 480 F. A high-temperature test facility was developed at MSFC. Testing was performed with quartz lamp heaters and high resistance heater strips. The thermal history profile of the nose cap was simulated in order to test materials at various times during launch. A correlation study was performed with Southern Research Institute to confirm the test methodology and validity of test results. A-basis allowables were generated from the results of testing on three lots of material.
Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan
1995-01-01
Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.
A high temperature testing system for ceramic composites
NASA Technical Reports Server (NTRS)
Hemann, John
1994-01-01
Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.
NASA/GSFC Testing of Li-Ion Cells: Update
NASA Technical Reports Server (NTRS)
Vaidyanathan, Hari; Rao, Gopalakrishna M.
2001-01-01
This viewgraph paper presents a report on the ongoing testing of Lithium Ion (Li-Ion) cells. Characterizes cells according to capacity, self-discharge, and mid-discharge voltage. Determines the cycling performance of Li-Ion cells as batteries according to number of cycles, charge voltage, and temperature.
CHARACTERIZATION OF AEROSOLS FROM A WATER-BASED CLEANER APPLIED WITH A HAND-PUMP SPRAYER
The paper gives results of tests that were performed in a controlled-environment test room to measure particle concentrations and size distributions and concentrations of selected volatily organic compounds during, and following, application of water-based cleaners to realistic s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santi, C. de; Meneghini, M., E-mail: matteo.meneghini@dei.unipd.it; Meneghesso, G.
2014-08-18
With this paper we propose a test method for evaluating the dynamic performance of GaN-based transistors, namely, gate-frequency sweep measurements: the effectiveness of the method is verified by characterizing the dynamic performance of Gate Injection Transistors. We demonstrate that this method can provide an effective description of the impact of traps on the transient performance of Heterojunction Field Effect Transistors, and information on the properties (activation energy and cross section) of the related defects. Moreover, we discuss the relation between the results obtained by gate-frequency sweep measurements and those collected by conventional drain current transients and double pulse characterization.
NASA Technical Reports Server (NTRS)
Ahmad, Anees
1990-01-01
The development of in-house integrated optical performance modelling capability at MSFC is described. This performance model will take into account the effects of structural and thermal distortions, as well as metrology errors in optical surfaces to predict the performance of large an complex optical systems, such as Advanced X-Ray Astrophysics Facility. The necessary hardware and software were identified to implement an integrated optical performance model. A number of design, development, and testing tasks were supported to identify the debonded mirror pad, and rebuilding of the Technology Mirror Assembly. Over 300 samples of Zerodur were prepared in different sizes and shapes for acid etching, coating, and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations.
Results of advanced battery technology evaluations for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
1992-10-01
Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis and Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991-1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.
Helicopter Acoustic Flight Test with Altitude Variation and Maneuvers
NASA Technical Reports Server (NTRS)
Watts, Michael E.; Greenwood, Eric; Sim, Ben; Stephenson, James; Smith, Charles D.
2016-01-01
A cooperative flight test campaign between NASA and the U.S. Army was performed from September 2014 to February 2015. The purposes of the testing were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. This test was performed at three test sites (0, 4000, and 7000 feet above mean sea level) with two aircraft (AS350 SD1 and EH-60L) tested at each site. This report provides an overview of the test, documents the data acquired and describes the formats of the stored data.
Persistence characterization and data calibration scheme for the RSS-NIR H2RG detector on SALT
NASA Astrophysics Data System (ADS)
Mosby, Gregory; Eggen, Nathan; Wolf, Marsha; Jaehnig, Kurt; Kotulla, Ralf
2016-07-01
The University of Wisconsin Madison is building a NIR spectrograph (RSS-NIR) for the Southern African Large Telescope. The detector system uses a H2RG HdCdTe 1.7 μm cutoff array. We performed tests to measure and characterize the persistence of the detector to inform strategies to mitigate this effect. These tests use up-the- ramp group samples to get finer time resolution of the release of persistence. We share these test results. We also present preliminary results of the dependence of persistence on detector temperature. We conclude with an outline and assessment of a persistence calibration scheme.
Magnetic Measurements of the First Nb 3Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC
DiMarco, J.; Ambrosio, G.; Chlachidze, G.; ...
2016-12-12
The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb 3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.
Super NiCd Open-Circuit Storage and Low Earth Orbit (LEO) Life Test Evaluation
NASA Technical Reports Server (NTRS)
Baer, Jean Marie; Hwang, Warren C.; Ang, Valerie J.; Hayden, Jeff; Rao, Gopalakrishna; Day, John H. (Technical Monitor)
2002-01-01
This presentation discusses Air Force tests performed on super NiCd cells to measure their performance under conditions simulating Low Earth Orbit (LEO) conditions. Super NiCd cells offer potential advantages over existing NiCd cell designs including advanced cell design with improved separator material and electrode making processes, but handling and storage requires active charging. These tests conclude that the super NiCd cells support generic Air Force qualifications for conventional LEO missions (up to five years duration) and that handling and storage may not actually require active charging as previously assumed. Topics covered include: Test Plan, Initial Characterization Tests, Open-Circuit Storage Tests, and post storage capacities.
Measurements of the optical performance of bolometers for SPICA/SAFARI
NASA Astrophysics Data System (ADS)
Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Ridder, Marcel; Ferrari, Lorenza; Laauwen, Wouter M.; Ranjan, Manisha; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.
2012-09-01
We have measured the optical response of detectors designed for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. To take advantage of SPICA's cooled optics, SAFARI’s three bolometer arrays are populated with extremely sensitive (NEP~2×10-19 W/√Hz) transition edge sensors with a transition temperature close to 100 mK. The extreme sensitivity and low saturation power (~4 fW) of SAFARI’s detectors present challenges to characterizing them. We have therefore built up an ultra-low background test facility with a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion. Our use of a pulse-tube cooler to pre-cool the dilution refrigerator required that the SAFARI Detector System Test Facility provide a high degree electrical, magnetic, and mechanical isolation for the detectors. We have carefully characterized the performance of the test facility in terms of background power loading. The test facility has been designed to be flexible and easily reconfigurable with internal illuminators that allow us to characterize the optical response of the detectors. We describe the test facility and some of the steps we took to create an ultra-low background test environment. We have measured the optical response of two detectors designed for SAFARI’s short-wave wavelength band in combination with a spherical backshort and conical feedhorn. We find an overall optical efficiency of 40% for both, compared with an ideal-case predicted optical efficiency of 66%.
NASA Astrophysics Data System (ADS)
Fan, Yu-Jen; Maruyama, Ken; Ayothi, Ramakrishnan; Naruoka, Takehiko; Chakraborty, Tonmoy; Ashworth, Dominic; Chun, Jun Sung; Montgomery, Cecilia; Jen, Shih-Hui; Neisser, Mark; Cummings, Kevin
2015-03-01
In this paper, we present the first results of witness sample based outgas resist family test to improve the efficiency of outgas testing using EUV resists that have shown proven imaging performance. The concept of resist family testing is to characterize the boundary conditions of outgassing scale from three major components for each resist family. This achievement can significantly reduce the cost and improve the resist outgas learning cycle. We also report the imaging performance and outgas test results of state of the art resists and discuss the consequence of the resist development with recent change of resist outgassing specifications. Three chemically amplified resists selected from higher outgassing materials are investigated, but no significant improvement in resist performance is observed.
2016-03-01
performance in an enzyme-linked immunosorbent assay ( ELISA ), with little regard for quantification of the full spectrum of variables affecting antibody...Program (ATP) Quality MS2 coat protein (MS2CP) Enzyme-linked immunosorbent assay ( ELISA ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...5 2.7 ELISA ................................................................................................................5
Characterization of Technetium Speciation in Cast Stone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Jung, Hun Bok; Wang, Guohui
2013-11-11
This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability frommore » Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.« less
Fatigue life characterization for piezoelectric macrofiber composites
NASA Astrophysics Data System (ADS)
Henslee, Isaac A.; Miller, David A.; Tempero, Tyler
2012-10-01
In an effort to aid the investigation into lightweight and reliable materials for actuator design, a study was developed to characterize the temperature-dependent lifetime performance of a piezoelectric macrofiber composite (MFC). MFCs are thin rectangular patches of polyimide film, epoxy and a single layer of rectangular lead zirconium titanate (PZT) fibers. In this study, the useful life of the MFC is characterized to determine the effect of temperature on the performance of the composite as it is fatigued by cyclic piezoelectric excitation. The test specimen consists of the MFC laminated to a cantilevered stainless steel beam. Beam strain and tip displacement measurements are used as a basis for determining the performance of the MFC as it is cyclically actuated under various operating temperatures. The temperature of the beam laminate is held constant and then cycled to failure, or 250 million cycles, in order to determine the useful life of the MFC over a temperature range from - 15 to 145 °C. The results of the experiments show a strong temperature dependence of the operational life for the MFC. Damage inside the composite was identified through in situ visual inspection and during post-test microstructural observation; however, no degradation in operational performance was identified as it was cyclically actuated up to the point of failure, regardless of temperature or actuation cycle number.
NASA Glenn Research Center Support of the ASRG Project
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Wong, Wayne A.
2014-01-01
A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.
Optical communication for space missions
NASA Technical Reports Server (NTRS)
Firtmaurice, M.
1991-01-01
Activities performed at NASA/GSFC (Goddard Space Flight Center) related to direct detection optical communications for space applications are discussed. The following subject areas are covered: (1) requirements for optical communication systems (data rates and channel quality; spatial acquisition; fine tracking and pointing; and transmit point-ahead correction); (2) component testing and development (laser diodes performance characterization and life testing; and laser diode power combining); (3) system development and simulations (The GSFC pointing, acquisition and tracking system; hardware description; preliminary performance analysis; and high data rate transmitter/receiver systems); and (4) proposed flight demonstration of optical communications.
Preliminary Performance of Lithium-ion Cell Designs for Ares I Upper Stage Applications
NASA Technical Reports Server (NTRS)
Miller, Thomas B.; Reid, Concha M.; Kussmaul, Michael T.
2011-01-01
NASA's Ares I Crew Launch Vehicle (CLV) baselined lithium-ion technology for the Upper Stage (US). Under this effort, the NASA Glenn Research Center investigated three different aerospace lithium-ion cell suppliers to assess the performance of the various lithium-ion cell designs under acceptance and characterization testing. This paper describes the overall testing approaches associated with lithium-ion cells, their ampere-hour capacity as a function of temperature and discharge rates, as well as their performance limitations for use on the Ares I US vehicle.
NASA Technical Reports Server (NTRS)
Edeen, Marybeth; Henninger, Donald
1991-01-01
By growing higher plants for food, lunar and Martian manned habitats will not only reduce resupply requirements but obtain CO2 removal and both oxygen-production and water-reclamation requirements. Plants have been grown in the RLSS at NASA-Johnson in order to quantitatively evaluate plant CO2 accumulation, O2 generation, evapotranspiration, trace-contaminant generation, and biomass productivity. Attention is presently given to test conditions and anomalies in these RLSS trials; areas where performance must be improved have been identified.
Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem
NASA Technical Reports Server (NTRS)
Moore, D. M.
1984-01-01
The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.
Characterization and Evaluation of Incorporation the Casting Sand in Mortar
NASA Astrophysics Data System (ADS)
Zanelato, E. B.; Azevedo, A. R. G.; Alexandre, J.; Xavier, C. G.; Monteiro, S. N.; Mendonça, T. A. O.
The process of casting metals and alloys occurs through the fusion of this metal and its subsequent casting into a mold with the dimensions and geometry close to the final piece. Most foundries use sand casting molds for making you. This work aims to characterize and evaluate the foundry sand to allow its use in segments of Civil Engineering, creating a viable destination for a residue is that discarded. The following characterization tests were performer: particle size, chemical analysis, X-ray Diffraction and Density Real grain. For the execution of the test specimens was used to 1:3 cement and sand, and the incorporation of 10% and 20% of the total mass replacing the sand, and the trace reference. The results show that best results in compression and bending tests were obtained by replacing 10 % of common sand for sand casting.
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Stephan, Ryan A.; Hawkins-Reynolds Ebony
2011-01-01
Liquid/Liquid Heat Exchangers (L/L HX) are an integral portion of any spacecraft active thermal control system. For this study the X-38 L/L HX was used as a baseline. As detailed in a previous ICES manuscript, NASA paired with Pacific Northwest National Laboratory to develop a Microchannel L/L HX (MHX). This microchannel HX was designed to meet the same performance characteristics as the aforementioned X-38 HX. The as designed Microchannel HX has a 26% and 60% reduction in mass and volume, respectively. Due to the inherently smaller flow passages the design team was concerned about fouling affecting performance during extended missions. To address this concern, NASA has developed a test stand and is currently performing an 18 month life test on the MHX. This report will detail the up-to-date performance of the MHX during life testing.
ISDP salt batch #2 supernate qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.; Nash, C. A.; Fink, S. D.
2009-01-05
This report covers the laboratory testing and analyses of the second Integrated Salt Disposition Project (ISDP) salt supernate samples, performed in support of initial radioactive operations of Actinide Removal Process (ARP) and Modular Caustic-Side Solvent Extraction Unit (MCU). Major goals of this work include characterizing Tank 22H supernate, characterizing Tank 41H supernate, verifying actinide and strontium adsorption with a standard laboratory-scale test using monosodium titanate (MST) and filtration, and checking cesium mass transfer behavior for the MCU solvent performance when contacted with the liquid produced from MST contact. This study also includes characterization of a post-blend Tank 49H sample asmore » part of the Nuclear Criticality Safety Evaluation (NCSE). This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP). In addition, a sampling plan will be written to guide analytical future work. Safety and environmental aspects of the work were documented in a Hazard Assessment Package.« less
Database on Performance of Neutron Irradiated FeCrAl Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken
The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerancemore » of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.« less
Engineering evaluation of SSME dynamic data from engine tests and SSV flights
NASA Technical Reports Server (NTRS)
1986-01-01
An engineering evaluation of dynamic data from SSME hot firing tests and SSV flights is summarized. The basic objective of the study is to provide analyses of vibration, strain and dynamic pressure measurements in support of MSFC performance and reliability improvement programs. A brief description of the SSME test program is given and a typical test evaluation cycle reviewed. Data banks generated to characterize SSME component dynamic characteristics are described and statistical analyses performed on these data base measurements are discussed. Analytical models applied to define the dynamic behavior of SSME components (such as turbopump bearing elements and the flight accelerometer safety cut-off system) are also summarized. Appendices are included to illustrate some typical tasks performed under this study.
Detonation failure characterization of non-ideal explosives
NASA Astrophysics Data System (ADS)
Janesheski, Robert S.; Groven, Lori J.; Son, Steven
2012-03-01
Non-ideal explosives are currently poorly characterized, hence limiting the modeling of them. Current characterization requires large-scale testing to obtain steady detonation wave characterization for analysis due to the relatively thick reaction zones. Use of a microwave interferometer applied to small-scale confined transient experiments is being implemented to allow for time resolved characterization of a failing detonation. The microwave interferometer measures the position of a failing detonation wave in a tube that is initiated with a booster charge. Experiments have been performed with ammonium nitrate and various fuel compositions (diesel fuel and mineral oil). It was observed that the failure dynamics are influenced by factors such as chemical composition and confiner thickness. Future work is planned to calibrate models to these small-scale experiments and eventually validate the models with available large scale experiments. This experiment is shown to be repeatable, shows dependence on reactive properties, and can be performed with little required material.
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)
1983-01-01
Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.
Parabolic dish test site: History and operating experience
NASA Technical Reports Server (NTRS)
Selcuk, M. K. (Compiler)
1985-01-01
The parabolic dish test site (PDTS) was established for testing point-focusing solar concentrator systems operating at temperatures approaching 1650 C. Among tests run were evaluation and performance characterization of parabolic dish concentrators, receivers, power conversion units, and solar/fossil-fuel hybrid systems. The PDTS was fully operational until its closure in June, 1984. The evolution of the test program, a chronological listing of the experiments run, and data summaries for most of the tests conducted are presented.
Scale factor and noise performance tests of the Bendix Corporation Rate Gyro Assembly (RGA)
NASA Astrophysics Data System (ADS)
Kim, R.; Hoffman, J.
1980-08-01
Three Bendix Corporation gyroscopes in a Rate Gyro Assembly (RGA) were tested at the Central Inertial Guidance Test Facility (CIGTF), 6585th Test Group, Holloman Air Force Base, New Mexico, from 29 May through 19 June 1980, for the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), Huntsville, Alabama. The purpose of the tests was to characterize the noise performance of each gyro in the RGA in the frequency range of 0.01 hertz to 20 hertz. Gyro noise performance was then compared with seismic activity and previous results from Bendix Corporation testing. Eight-point tests were performed to obtain scale factors which were used to scale the Power Spectral Density (PSD) data. The PSD test series consisted of 1, 2.5, 5, 40 and 180 minute tests under various operating conditions (wheels on and off, low and high rate modes, and horizontal and vertical output axis orientations). The data are presented as PSD plots in the frequency domain. These results show a negligible seismic contribution and are comparable with data obtained at the Bendix test facility.
NASA Technical Reports Server (NTRS)
Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Mondy, Timothy K.;
2017-01-01
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
On the effect of emotional states on operator thinking. [psychological test for operator selection
NASA Technical Reports Server (NTRS)
Solodkova, A. V.
1975-01-01
A combination sonic and electrical skin stimuli stress test is reported that is suitable for the psychological selection of individuals to perform operator functions. The behavior of these people is characterized by a fighting spirit, increased work capacity, minimum expenditure of strength and insignificant fatigue.
DOT National Transportation Integrated Search
1998-05-01
The performance of flexible and rigid pavements depends not only on the effects of traffic but also on environmental effects. As part of the Federal Highway Administration's (FHWA) Strategic Highway Research Program (SHRP), a test road was recently c...
Take a Tour of Our Facility | Energy Systems Integration Facility | NREL
Take a Tour of Our Facility Take a Tour of Our Facility The Energy Systems Integration Facility Optical Characterization Laboratory System Performance Laboratory Power Systems Integration Laboratory Control Room Energy Storage Laboratory Outdoor Testing Areas Outdoor Testing Areas Energy Systems
Adjunct laboratory tests in support of US/German salt characterization program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchholz, Stuart A.
2014-07-01
In summary, the goal of this activity is to complete a subset of a test matrix on salt from the Waste Isolation Pilot Plant (WIPP) undertaken by German research groups. The work will be performed at RESPEC in Rapid City, South Dakota, and is divided into three tasks.
NASA Astrophysics Data System (ADS)
Hossen, Md Mosaddek; Artyushkova, Kateryna; Atanassov, Plamen; Serov, Alexey
2018-01-01
In this article, three different Fe-N-C oxygen reduction reaction (ORR) catalysts derived from different organic molecules i.e. Fe-NMG, Fe-NMP, Fe-MBZ have been synthesized, characterized by physical-chemical methods and studied in the reaction of oxygen reduction (ORR). It is found that Fe-NMG shows higher ORR performance than Fe-NMP and Fe-MBZ, by both rotating ring disk electrode (RRDE) and fuel cell tests. From characterization and surface analysis, it can be explained that the presence of higher amount of surface oxides and pyridinic nitrogen is the main reason for better performance towards ORR in alkaline media. To achieve the highest performance in alkaline exchange membrane fuel cell (AEMFC), the optimization of catalyst layer composition using various concentrations of ionomer (Tokuyama, AS4) was performed. At the optimum cathode layer configuration utilizing Fe-NMG produces the peak power density of 218 mWcm-2, which is one of the highest values presented in the open literature.
Centrifuge Modeling of the Thermo-Mechanical Response of Energy Foundations
NASA Astrophysics Data System (ADS)
Goode, Joseph Collin, III
This thesis presents the results from a series of centrifuge tests performed to understand the profiles of thermo-mechanical axial strain, axial displacement, and axial stress in semi-floating and end-bearing energy foundations installed in dry Nevada sand and Bonny silt layers during different combinations of mechanical loading and foundation heating. In addition to the construction details for the centrifuge scale-model reinforced concrete energy foundations, the results from 1 g thermo-mechanical characterization tests performed on the foundations to evaluate their mechanical and thermal material properties are presented in this thesis. In general, the centrifuge-scale tests involve application of an axial load to the head of the foundation followed by circulation of a heat exchange fluid through embedded tubing to bring the foundation to a constant temperature. After this point, mechanical loads were applied to the foundation to characterize their thermo-mechanical response. Specifically, loading tests to failure were performed on the semi-floating foundation installed in different soil layers to characterize the impact of temperature on the load-settlement curve, and elastic loading tests were performed on the end-bearing foundation to characterize the impact of temperature on the mobilized side shear distributions. During application of mechanical loads and changes in foundation temperature, the axial strains are measured using embedded strain gages. The soil and foundation temperatures, foundation head movement, and soil surface deformations are also monitored to characterize the thermo-mechanical response of the system. The tests performed in this study were used to investigate different phenomena relevant to the thermo-mechanical response of energy foundations. First, the role of end-restraint boundary conditions in both sand and silt were investigated by comparing the strain distributions for the end-bearing and semi-floating foundations in each soil type. The tests on sand and silt permit evaluation of the soil-structure interaction in dry and unsaturated soils with different mechanisms of side shear resistance (i.e., primarily frictional and primarily cohesive, respectively). End-bearing foundations were observed to have higher magnitudes of thermal axial stress than semi-floating foundations, with a more uniform distribution in thermal axial strain in the sand. A general conclusion from these tests is that the unsaturated silt led to a more pronounced soil structure interaction effect than the dry sand. For example, temperature did not affect the ultimate capacity of the semi-floating foundation in dry sand, while it had a pronounced effect in unsaturated silt. Two approaches for controlling the foundation head restraint boundary condition were investigated for the end-bearing foundation in sand: load control conditions (free expansion) as well as stiffness control conditions (restrained expansion). As expected, greater expansion was observed in the case of free expansion, and greater thermal axial stresses were observed in the case of restrained expansion. The effects of temperature cycles were also investigated for the semi-floating foundation in Bonny silt, and less upward movement was observed during each cycle of heating, with a slight softening in behavior on each cycle. Overall, the results provide a suite of information which is suitable to define soil-structure interaction parameters under realistic stress states for deep foundations.
Degradation Characterization of Thermal Interface Greases
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas J; Major, Joshua; Paret, Paul P
Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less
Degradation Characterization of Thermal Interface Greases: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas J; Major, Joshua; Paret, Paul P
Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less
Degradation Characterization of Thermal Interface Greases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Major, Joshua; Narumanchi, Sreekant V; Paret, Paul P
Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees C to 125 degrees C. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less
NASA Astrophysics Data System (ADS)
Joshi, Prathmesh
To enhance the surface properties of stainless steel, the substrate was coated with a 1μm thick coating of Ti-Nb-N by reactive DC magnetron sputtering at different N2 flow rates, substrate biasing and Nb-Ti ratio. The characterization of the coated samples was performed by the following techniques: hardness by Knoop micro-hardness tester, phase analysis by X-ray Diffraction (XRD), compositional analysis by Energy Dispersive X-ray Spectroscopy (EDS) and adhesion by scratch test. The tribology testing was performed on linearly reciprocating ball-on-plate wear testing machine and wear depth and wear volume were evaluated by white light interferometer. The micro-hardness test yielded appreciable enhancement in the surface hardness with the highest value being 1450 HK. Presence of three prominent phases namely NbN, Nb2N3 and TiN resulted from the XRD analysis. EDS analysis revealed the presence of Ti, Nb and Nitrogen. Adhesion was evaluated on the basis of critical loads for cohesive (Lc1) and adhesive (Lc2) failures with values varying between 7-12 N and 16-25 N respectively, during scratch test for coatings on SS substrates.
NASA Technical Reports Server (NTRS)
Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-01-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront error maps.
Gray QB-sing-faced version 2 (SF2) open environment test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plummer, J.; Immel, D.; Bobbitt, J.
This report details the design upgrades incorporated into the new version of the GrayQbTM SF2 device and the characterization testing of this upgraded device. Results from controlled characterization testing in the Savannah River National Laboratory (SRNL) R&D Engineering Imaging and Radiation Lab (IRL) and the Savannah River Site (SRS) Health Physics Instrument Calibration Laboratory (HPICL) is presented, as well as results from the open environment field testing performed in the E-Area Low Level Waste Storage Area. Resultant images presented in this report were generated using the SRNL developed Radiation Analyzer (RAzerTM) software program which overlays the radiation contour images ontomore » the visual image of the location being surveyed.« less
Comparing the performance plateau in adult cochlear implant patients using HINT and AzBio.
Massa, Sean T; Ruckenstein, Michael J
2014-04-01
This study aims to characterize the performance plateau in adult cochlear implant recipients after the initial postimplantation increase by using word recognition testing and an explicit definition of performance plateau. Retrospective review. Urban, tertiary referral center. One hundred twenty-five patients with 138 devices tested with AzBio were matched to 130 patients with 138 devices tested with HINT based on performed on CNC monosyllable tests. Patient's performance was measured overtime using AzBio and HINT tests to determine when and at what score their performance reached a plateau. Time from implantation to reach a performance plateau and plateau score with each test. Thirty-four devices reached a HINT plateau and 30 devices reached an AzBio plateau. Patients reached plateaus at similar times postoperatively using HINT and AzBio, 18.8 and 16.5 weeks, respectively (p = 0.476). Five patients tested with HINT plateaued at scores of 99% to 100%, whereas no patients plateaued above 92% with AzBio. Patients reached a plateau in performance at similar median times using AzBio and HINT, despite the ceiling effect of HINT in some patients. Most patients who reach a plateau did so within 4 months, but exactly when and if a patient's performance plateaus varies significantly among individuals. Further study is required to determine which test best reflects when a patient reaches his or her maximal performance in natural listening conditions.
Durability testing of the AJ10-221 490 N high performance (321 sec Isp) engine
NASA Technical Reports Server (NTRS)
Jassowski, D. M.; Rosenberg, S. D.; Schoenman, L.
1993-01-01
The durability of the 490 N AJ10-221 engine is characterized on the basis of data from 93 tests and a total firing life of 6.3 hr. For the three Ir/Re chambers tested, no limiting conditions were encountered in the 43,379 sec and 229 test thermal cycles. A wide range of off nominal operating conditions was successfully demonstrated.
Investigation of Basic Mechanisms of Radiation Effects in Carbon-Based Electronic Materials
2017-06-01
materials characterization, and carbon nanotube diodes, FET, and PZT-memory test device structures for electrical measurements. Pre - and post -irradiation...definition (Radiation exposure) Task 2) The grantee shall perform testing to include: - Radiation testing . May be multiple types. - Pre and post -rad...technologies for electronic devices. Experiential radiation testing has included exposure to 10 keV X-rays, 4 MeV protons, heavy ions, and Ultra
Performance characterization of a solenoid-type gas valve for the H- magnetron source at FNAL
NASA Astrophysics Data System (ADS)
Sosa, A.; Bollinger, D. S.; Karns, P. R.
2017-08-01
The magnetron-style H- ion sources currently in operation at Fermilab use piezoelectric gas valves to function. This kind of gas valve is sensitive to small changes in ambient temperature, which affect the stability and performance of the ion source. This motivates the need to find an alternative way of feeding H2 gas into the source. A solenoid-type gas valve has been characterized in a dedicated off-line test stand to assess the feasibility of its use in the operational ion sources. H- ion beams have been extracted at 35 keV using this valve. In this study, the performance of the solenoid gas valve has been characterized measuring the beam current output of the magnetron source with respect to the voltage and pulse width of the signal applied to the gas valve.
Porosity estimation of aged mortar using a micromechanical model.
Hernández, M G; Anaya, J J; Sanchez, T; Segura, I
2006-12-22
Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.
NASA Astrophysics Data System (ADS)
Nahlawi, Layan; Goncalves, Caroline; Imani, Farhad; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; Gibson, Eli; Fenster, Aaron; Ward, Aaron D.; Abolmaesumi, Purang; Mousavi, Parvin; Shatkay, Hagit
2017-03-01
Recent studies have shown the value of Temporal Enhanced Ultrasound (TeUS) imaging for tissue characterization in transrectal ultrasound-guided prostate biopsies. Here, we present results of experiments designed to study the impact of temporal order of the data in TeUS signals. We assess the impact of variations in temporal order on the ability to automatically distinguish benign prostate-tissue from malignant tissue. We have previously used Hidden Markov Models (HMMs) to model TeUS data, as HMMs capture temporal order in time series. In the work presented here, we use HMMs to model malignant and benign tissues; the models are trained and tested on TeUS signals while introducing variation to their temporal order. We first model the signals in their original temporal order, followed by modeling the same signals under various time rearrangements. We compare the performance of these models for tissue characterization. Our results show that models trained over the original order-preserving signals perform statistically significantly better for distinguishing between malignant and benign tissues, than those trained on rearranged signals. The performance degrades as the amount of temporal-variation increases. Specifically, accuracy of tissue characterization decreases from 85% using models trained on original signals to 62% using models trained and tested on signals that are completely temporally-rearranged. These results indicate the importance of order in characterization of tissue malignancy from TeUS data.
Application of Ruze Equation for Inflatable Aperture Antennas
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2008-01-01
Inflatable aperture reflector antennas are an emerging technology that NASA is investigating for potential uses in science and exploration missions. As inflatable aperture antennas have not been proven fully qualified for space missions, they must be characterized properly so that the behavior of the antennas can be known in advance. To properly characterize the inflatable aperture antenna, testing must be performed in a relevant environment, such as a vacuum chamber. Since the capability of having a radiofrequency (RF) test facility inside a vacuum chamber did not exist at NASA Glenn Research Center, a different methodology had to be utilized. The proposal to test an inflatable aperture antenna in a vacuum chamber entailed performing a photogrammetry study of the antenna surface by using laser ranging measurements. A root-mean-square (rms) error term was derived from the photogrammetry study to calculate the antenna surface loss as described by the Ruze equation. However, initial testing showed that problems existed in using the Ruze equation to calculate the loss due to errors on the antenna surface. This study utilized RF measurements obtained in a near-field antenna range and photogrammetry data taken from a laser range scanner to compare the expected performance of the test antenna (via the Ruze equation) with the actual RF patterns and directivity measurements. Results showed that the Ruze equation overstated the degradation in the directivity calculation. Therefore, when the photogrammetry study is performed on the test antennas in the vacuum chamber, a more complex equation must be used in light of the fact that the Ruze theory overstates the loss in directivity for inflatable aperture reflector antennas.
Processing and characterization of unidirectional thermoplastic nanocomposites
NASA Astrophysics Data System (ADS)
Narasimhan, Kameshwaran
The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.
Reed, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E
2017-04-01
Working memory (WM) supports a broad range of intelligent cognition and has been the subject of rich cognitive and neural characterization. However, the highest ranges of WM have not been fully characterized, especially for verbal information. Tasks developed to test multiple levels of WM demand (load) currently predominate brain-based WM research. These tasks are typically used at loads that allow most healthy participants to perform well, which facilitates neuroimaging data collection. Critically, however, high performance at lower loads may obscure differences that emerge at higher loads. A key question not yet addressed at high loads concerns the effect of sex. Thoroughgoing investigation of high-load verbal WM is thus timely to test for potential hidden effects, and to provide behavioral context for effects of sex observed in WM-related brain structure and function. We tested 111 young adults, matched on genotype for the WM-associated COMT-Val 108/158 Met polymorphism, on three classic WM tasks using verbal information. Each task was tested at four WM loads, including higher loads than those used in previous studies of sex differences. All tasks loaded on a single factor, enabling comparison of verbal WM ability at a construct level. Results indicated sex effects at high loads across tasks and within each task, such that males had higher accuracy, even among groups that were matched for performance at lower loads. Published by Elsevier Inc.
Application of the UTCHEM simulator to DNAPL site characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, G.W.
1995-12-31
Numerical simulation using the University of Texas Chemical Flood Simulator (UTCHEM) was used to evaluate two dense, nonaqueous phase liquid (DNAPL) characterization methods. The methods involved the use of surfactants and partitioning tracers to characterize a suspected trichloroethene (TCE) DNAPL zone beneath a US Air Force Plant in Texas. The simulations were performed using a cross-sectional model of the alluvial aquifer in an area that is believed to contain residual TCE at the base of the aquifer. Characterization simulations compared standard groundwater sampling, an interwell NAPL Solubilization Test, and an interwell NAPL Partitioning Tracer Test. The UTCHEM simulations illustrated howmore » surfactants and partitioning tracers can be used to give definite evidence of the presence and volume of DNAPL in a situation where conventional groundwater sampling can only indicate the existence of the dissolved contaminant plume.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2001-08-08
The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.« less
RAP workshop : Buda-TxAPA, Texas, August 27, 2009.
DOT National Transportation Integrated Search
2009-08-27
Presentation Outline : RAP overview : RAP stockpile survey: state of practice : RAP processing and RAP variability : RAP characterization : RAP mix design : Field performance of Texas high RAP test sections
DebriSat Fragment Characterization System and Processing Status
NASA Technical Reports Server (NTRS)
Rivero, M.; Shiotani, B.; M. Carrasquilla; Fitz-Coy, N.; Liou, J. C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.
2016-01-01
The DebriSat project is a continuing effort sponsored by NASA and DoD to update existing break-up models using data obtained from hypervelocity impact tests performed to simulate on-orbit collisions. After the impact tests, a team at the University of Florida has been working to characterize the fragments in terms of their mass, size, shape, color and material content. The focus of the post-impact effort has been the collection of 2 mm and larger fragments resulting from the hypervelocity impact test. To date, in excess of 125K fragments have been recovered which is approximately 40K more than the 85K fragments predicted by the existing models. While the fragment collection activities continue, there has been a transition to the characterization of the recovered fragments. Since the start of the characterization effort, the focus has been on the use of automation to (i) expedite the fragment characterization process and (ii) minimize the effects of human subjectivity on the results; e.g., automated data entry processes were developed and implemented to minimize errors during transcription of the measurement data. At all steps of the process, however, there is human oversight to ensure the integrity of the data. Additionally, repeatability and reproducibility tests have been developed and implemented to ensure that the instrumentations used in the characterization process are accurate and properly calibrated.
NASA Technical Reports Server (NTRS)
Knox, R. J.
1978-01-01
Embryonic kidney cells were studied as a follow-up to the MA-011 Electrophoresis Technology Experiment which was conducted during the Apollo Soyuz Test Project (ASTP). The postflight analysis of the performance of the ASTP zone electrophoresis experiment involving embryonic kidney cells is reported. The feasibility of producing standard particles for electrophoresis was also studied. This work was undertaken in response to a need for standardization of methods for producing, calibrating, and storing electrophoretic particle standards which could be employed in performance tests of various types of electrophoresis equipment. Promising procedures were tested for their suitability in the production of standard test particles from red blood cells.
EVA Health and Human Performance Benchmarking Study
NASA Technical Reports Server (NTRS)
Abercromby, A. F.; Norcross, J.; Jarvis, S. L.
2016-01-01
Multiple HRP Risks and Gaps require detailed characterization of human health and performance during exploration extravehicular activity (EVA) tasks; however, a rigorous and comprehensive methodology for characterizing and comparing the health and human performance implications of current and future EVA spacesuit designs does not exist. This study will identify and implement functional tasks and metrics, both objective and subjective, that are relevant to health and human performance, such as metabolic expenditure, suit fit, discomfort, suited postural stability, cognitive performance, and potentially biochemical responses for humans working inside different EVA suits doing functional tasks under the appropriate simulated reduced gravity environments. This study will provide health and human performance benchmark data for humans working in current EVA suits (EMU, Mark III, and Z2) as well as shirtsleeves using a standard set of tasks and metrics with quantified reliability. Results and methodologies developed during this test will provide benchmark data against which future EVA suits, and different suit configurations (eg, varied pressure, mass, CG) may be reliably compared in subsequent tests. Results will also inform fitness for duty standards as well as design requirements and operations concepts for future EVA suits and other exploration systems.
Thermal and other tests of photovoltaic modules performed in natural sunlight
NASA Technical Reports Server (NTRS)
Stultz, J. W.
1978-01-01
The bulk of the testing was the characterization of twenty-nine modules according to their nominal operating cell temperature (NOCT) and the effect on NOCT of changes in module design, various residential roof mounting configurations, and dirt accumulation. Other tests, often performed parallel with the NOCT measurements, evaluated the improvement in electrical performance by cooling the modules with water and by channeling the waste heat into a phase change material (wax). Electrical degradation resulting from the natural marriage of photovoltaic and solar water heating modules was also demonstrated. Cost effectiveness of each of these techniques are evaluated in light of the LSA cost goal of $0.50 per watt.
Telerobotic system performance measurement - Motivation and methods
NASA Technical Reports Server (NTRS)
Kondraske, George V.; Khoury, George J.
1992-01-01
A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard
2007-01-01
Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed: this is followed by engineering design, fabrication, and testing to validate the overall design process. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.
NASA Astrophysics Data System (ADS)
Ali, Mohammad
This study involved investigating the feasibility of using Electrochemical Impedance Spectroscopy to assess the performance of coatings used to protect aluminum in beverage containers, and developing an accelerated testing procedure. In the preliminary investigation, tests were performed to ensure that the EIS systems at hand are capable, functional and consistent. This was followed by EIS testing of kitchen-aluminum foil and high-impedance epoxy polymer as a baseline for chemically-active and chemically-inert systems. The ability of EIS to differentiate between intact and flawed coatings was tested by investigating deliberately damaged coatings. The effects of varying the pH and oxygen content on the performance of the coated aluminum samples were also tested. From this investigation, it has been concluded that EIS can be used to differentiate between intact and flawed coatings and detect corrosion before it is visually observable. Signatures of corrosion have been recorded and a preliminary testing procedure has been drawn.
Understanding of the Dynamics of the Stirling Convertor Advanced by Structural Testing
NASA Technical Reports Server (NTRS)
Hughes, William O.
2003-01-01
The NASA Glenn Research Center, the U.S. Department of Energy, and the Stirling Technology Company (STC) are developing a highly efficient, long-life, free-piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions, including deep-space and Mars surface applications. As part of this development, four structural dynamic test programs were recently performed on Stirling Technology Demonstration Convertors (TDC's) that were designed and built by STC under contract to the Department of Energy. This testing was performed in Glenn's Structural Dynamics Laboratory and Microgravity Emissions Laboratory. The first test program, in November and December 1999, demonstrated that the Stirling TDC could withstand the harsh random vibration experienced during a typical spacecraft launch and survive with no structural damage or functional power performance degradation. This was a critical step in enabling the use of Stirling convertors for future spacecraft power systems. The most severe test was a 12.3grms random vibration test, with test durations of 3 min per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. The Microgravity Emissions Laboratory is typically used to measure the dynamics produced by operating space experiments and the resulting impact to the International Space Station's microgravity environment. For the second Stirling dynamic test program, performed in January 2001, the Microgravity Emissions Laboratory was used to characterize the structure-borne disturbances produced by the normal operation of a pair of Stirling convertors. The forces and moments produced by the normal operation of a Stirling system must be recognized and controlled, if necessary, so that other nearby spacecraft components, such as cameras, are not adversely affected. The Stirling convertor pair emitted relatively benign tonal forces at its operational frequency and associated harmonics. Therefore, Stirling power systems will not disturb spacecraft science experiments if minimal appropriate mounting efforts are made. The third test program, performed in February and May 2001, resulted in a modal characterization of a Stirling convertor. Since the deflection of the TDC piston rod, under vibration excitation, was of particular interest, the outer pressure shell was removed to allow access to the rod. Through this testing, the Stirling TDC's natural frequencies and modes were identified. This knowledge advanced our understanding of the successful 1999 vibration test and may be utilized to optimize the output power of future Stirling designs. The fourth test program, in April 2001, was conducted to characterize the structural response of a pair of Stirling convertors, as a function of their mounting interface stiffness. The test results provide guidance for the Stirling power package interface design. Properly designed, the interface may lead to increased structural capability and power performance beyond what was demonstrated in the successful 1999 vibration test. Dynamic testing performed to date at Glenn has shown that the Stirling convertors can withstand liftoff random vibration environments and meet "good neighbor" vibratory emission requirements. Furthermore, the future utilization of the information obtained during the tests will allow the corporation selected to be the Stirling system integrator to optimize their convertor and system interfaces designs. Glenn's Thermo-Mechanical Systems Branch provides Stirling technology expertise under a Space Act Agreement with the Department of Energy. Additional vibration testing by Glenn's Structural Systems Dynamics Branch is planned to continue to demonstrate the Stirling power system's vibration capability as its technology and flight system designs progress.
Evaluation of a new photomask CD metrology tool
NASA Astrophysics Data System (ADS)
Dubuque, Leonard F.; Doe, Nicholas G.; St. Cin, Patrick
1996-12-01
In the integrated circuit (IC) photomask industry today, dense IC patterns, sub-micron critical dimensions (CD), and narrow tolerances for 64 M technologies and beyond are driving increased demands to minimize and characterize all components of photomask CD variation. This places strict requirements on photomask CD metrology in order to accurately characterize the mask CD error distribution. According to the gauge-maker's rule, measurement error must not exceed 30% of the tolerance on the product dimension measured or the gauge is not considered capable. The traditional single point repeatability tests are a poor measure of overall measurement system error in a dynamic, leading-edge technology environment. In such an environment, measurements may be taken at different points in the field- of-view due to stage in-accuracy, pattern recognition requirements, and throughput considerations. With this in mind, a set of experiments were designed to characterize thoroughly the metrology tool's repeatability and systematic error. Original experiments provided inconclusive results and had to be extended to obtain a full characterization of the system. Tests demonstrated a performance of better than 15 nm total CD error. Using this test as a tool for further development, the authors were able to determine the effects of various system components and measure the improvement with changes in optics, electronics, and software. Optimization of the optical path, electronics, and system software has yielded a new instrument with a total system error of better than 8 nm. Good collaboration between the photomask manufacturer and the equipment supplier has led to a realistic test of system performance and an improved CD measurement instrument.
RESOLVE (Regolith & Environmental Science Oxygen & Lunar Volatile Extraction) Project
NASA Technical Reports Server (NTRS)
Parker, Ray; Coan, Mary; Captain, Janine; Cryderman, Kate; Quinn, Jacqueline
2015-01-01
The RESOLVE Project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer for the Surge Tank (NIRST), WDD, Sample Delivery System, and GC-MS in the vacuum chamber. Since LAVA is a scientific subsystem, the near infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.
NASA Astrophysics Data System (ADS)
Stagner, Jacqueline Ann
This work focuses on the production and characterization of blends of maleated thermoplastic starch (MTPS) and poly(butylenes adipate-co-terephthalate) and their application for use as thermoformed objects, films, and foams. First, by the production and characterization of maleated thermoplastic starch (MTPS) synthesized by reactive extrusion in a twin-screw extruder, a better understanding of MTPS was gained. This reactive thermoplastic starch was prepared with glycerol as the plasticizer, maleic anhydride (MA), and free-radical initiator, 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox 101). Dynamic light scattering (DLS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), soxhlet extraction in acetone, and environmental scanning electron microscopy (ESEM) were performed to determine the effect of maleation, extrusion temperature, initiator concentration, and maleic anhydride concentration on the resulting MTPS. Next, maleated thermoplastic starch (MTPS) and thermoplastic starch (TPS) were reactively blended in a twin-screw extruder with a biodegradable polyester, poly(butylene adipate-co-terephthalate) (PBAT). The blends were extruded to produce thermoformable sheets. The mechanical properties of the sheets were characterized by tensile and puncture tests. Proof of grafting was determined by soxhlet extraction in dichloromethane and FTIR analysis. Observations of the thermal properties were made using DSC, while the surface of the sheets was imaged using ESEM. Blends of MTPS and PBAT were also extruded to produce films. Mechanical testing (tensile and puncture tests) and barrier performance testing (carbon dioxide, oxygen, and water vapor permeability) were performed on the films. Transmission electron microscopy (TEM) was used to image the blends and to view the dispersion of the various phases. Finally, blends of MTPS and PBAT were extruded with an endothermic chemical blowing agent to produce foams. The foams were characterized by measuring density, expansion ratio, specific length, compressive strength, resiliency, and moisture sorption. Also, digital light microscopy was used to image the cell structure of the foams. This work demonstrates that blends of starch and PBAT can be produced and formed into thermoformed objects, films, and foams. These objects can replace current objects made from non-biodegradable, petroleum-based plastics. By blending the starch and PBAT together, one receives advantages over using either component separately.
NASA Technical Reports Server (NTRS)
Benner, D. Chris
1998-01-01
This cooperative agreement has investigated a number of spectroscopic problems of interest to the Halogen Occultation Experiment (HALOE). The types of studies performed are in two parts, namely, those that involve the testing and characterization of correlation spectrometers and those that provide basic molecular spectroscopic information. In addition, some solar studies were performed with the calibration data returned by HALOE from orbit. In order to accomplish this a software package was written as part of this cooperative agreement. The HALOE spectroscopic instrument package was used in various tests of the HALOE flight instrument. These included the spectral response test, the early stages of the gas response test and various spectral response tests of the detectors and optical elements of the instruments. Considerable effort was also expended upon the proper laboratory setup for many of the prelaunch tests of the HALOE flight instrument, including the spectral response test and the gas response test. These tests provided the calibration and the assurance that the calibration was performed correctly.
Orthotropic elastic-plastic behavior of AS4/APC-2 thermoplastic composite at elevated temperatures
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1989-01-01
Inelastic and strength properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the strength can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.
Tippett, William J; Lee, Jang-Han; Mraz, Richard; Zakzanis, Konstantine K; Snyder, Peter J; Black, Sandra E; Graham, Simon J
2009-04-01
This study assessed the convergent validity of a virtual environment (VE) navigation learning task, the Groton Maze Learning Test (GMLT), and selected traditional neuropsychological tests performed in a group of healthy elderly adults (n = 24). The cohort was divided equally between males and females to explore performance variability due to sex differences, which were subsequently characterized and reported as part of the analysis. To facilitate performance comparisons, specific "efficiency" scores were created for both the VE navigation task and the GMLT. Men reached peak performance more rapidly than women during VE navigation and on the GMLT and significantly outperformed women on the first learning trial in the VE. Results suggest reasonable convergent validity across the VE task, GMLT, and selected neuropsychological tests for assessment of spatial memory.
ERIC Educational Resources Information Center
Gorzycki, Meg; Howard, Pamela; Allen, Diane; Desa, Geoffrey; Rosegard, Erik
2016-01-01
Academic reading proficiently is characterized by the ability to perform cognitive tasks associated with interpreting text. Researchers developed an externally validated Informal Academic Reading Proficiency Test to gauge undergraduates' academic reading proficiency. A cross-sectional study of 23 classes completed the reading test in 2014. This…
Laboratory Characterization of Gray Masonry Concrete
2007-08-01
Based on the appropriate values of posttest water content, wet density, and an assumed grain density of 2.61 Mg/m3, values of dry density, porosity...velocity measurements were performed on each specimen. The TXC tests exhibited a continuous increase in maximum principal stress difference with...14 Figure 3. Spring-arm lateral deformeter mounted on test
NASA Astrophysics Data System (ADS)
Bieniek, T.; Janczyk, G.; Dobrowolski, R.; Wojciechowska, K.; Malinowska, A.; Panas, A.; Nieprzecki, M.; Kłos, H.
2016-11-01
This paper covers research results on development of the cantilevers beams test structures for interconnects reliability and robustness investigation. Presented results include design, modelling, simulation, optimization and finally fabrication stage performed on 4 inch Si wafers using the ITE microfabrication facility. This paper also covers experimental results from the test structures characterization.
ERIC Educational Resources Information Center
McFarland, Dennis J.
2014-01-01
Purpose: Factor analysis is a useful technique to aid in organizing multivariate data characterizing speech, language, and auditory abilities. However, knowledge of the limitations of factor analysis is essential for proper interpretation of results. The present study used simulated test scores to illustrate some characteristics of factor…
2016-04-30
support contractor , Infoscitex, conducted a series of tests to identify the performance capabilities of the Vertical Impact Device (VID). The VID is a...C. Table 3. AFD Evaluation with Red IMPAC Programmer: Data Summary Showing Means and Standard Deviations Test Cell Drop Ht . (in) Mean Peak
Ji, Shiqi; Zheng, Sheng; Wang, Fei; ...
2017-07-06
The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Shiqi; Zheng, Sheng; Wang, Fei
The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata; Rao, Nageswara S; Wu, Qishi
There have been increasingly large deployments of radiation detection networks that require computationally fast algorithms to produce prompt results over ad-hoc sub-networks of mobile devices, such as smart-phones. These algorithms are in sharp contrast to complex network algorithms that necessitate all measurements to be sent to powerful central servers. In this work, at individual sensors, we employ Wald-statistic based detection algorithms which are computationally very fast, and are implemented as one of three Z-tests and four chi-square tests. At fusion center, we apply the K-out-of-N fusion to combine the sensors hard decisions. We characterize the performance of detection methods bymore » deriving analytical expressions for the distributions of underlying test statistics, and by analyzing the fusion performances in terms of K, N, and the false-alarm rates of individual detectors. We experimentally validate our methods using measurements from indoor and outdoor characterization tests of the Intelligence Radiation Sensors Systems (IRSS) program. In particular, utilizing the outdoor measurements, we construct two important real-life scenarios, boundary surveillance and portal monitoring, and present the results of our algorithms.« less
Baseline tests of the AM General DJ-5E electruck electric delivery van
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Tryon, H. B.; Sargent, N. B.
1977-01-01
An electric quarter ton truck designed for use as a postal delivery vehicle was tested to characterize the state of the art of electric vehicles. Vehicle performance test results are presented. It is powered by a single-module, 54 volt industrial battery through a silicon controlled rectifier continuously adjustable controller with regenerative braking applied to a direct current compound wound motor.
ERIC Educational Resources Information Center
Pae, Hye K.; Greenberg, Daphne
2014-01-01
The purpose of this study was to examine the relationship between receptive and expressive language skills characterized by the performance of nonnative speakers (NNSs) of English in the academic context. Test scores of 585 adult NNSs were selected from Form 2 of the Pearson Test of English Academic's field-test database. A correlated…
Laboratory Characterization of SAM-35 Concrete
2006-09-01
procedures given in American Society for Testing and Materials (ASTM) D 2216 (ASTM 2002e). Based on the appropriate values of posttest water content, wet...composition properties of the material. All of the mechanical property tests were conducted quasi -statically with axial strain rates on the order...nondestructive pulse-velocity measurements were performed on each specimen. The TXC tests exhibited a continuous increase in principal stress
Large Engine Technology Program. Task 22: Variable Geometry Concepts for Rich-Quench-Lean Combustors
NASA Technical Reports Server (NTRS)
Tacina, Robert R. (Technical Monitor); Cohen, J. M.; Padget, F. C.; Kwoka, D.; Wang, Q.; Lohmann, R. P.
2005-01-01
The objective of the task reported herein was to define, evaluate, and optimize variable geometry concepts suitable for use with a Rich-Quench-Lean (RQL) combustor. The specific intent was to identify approaches that would satisfy High Speed Civil Transport (HSCT) cycle operational requirements with regard to fuel-air ratio turndown capability, ignition, and stability margin without compromising the stringent emissions, performance, and reliability goals that this combustor would have to achieve. Four potential configurations were identified and three of these were refined and tested in a high-pressure modular RQL combustor rig. The tools used in the evolution of these concepts included models built with rapid fabrication techniques that were tested for airflow characteristics to confirm sizing and airflow management capability, spray patternation, and atomization characterization tests of these models and studies that were supported by Computational Fluid Dynamics analyses. Combustion tests were performed with each of the concepts at supersonic cruise conditions and at other critical conditions in the flight envelope, including the transition points of the variable geometry system, to identify performance, emissions, and operability impacts. Based upon the cold flow characterization, emissions results, acoustic behavior observed during the tests and consideration of mechanical, reliability, and implementation issues, the tri-swirler configuration was selected as the best variable geometry concept for incorporation in the RQL combustor evolution efforts for the HSCT.
Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.
2016-01-01
Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.
Space Shuttle reaction control system thruster metal nitrate removal and characterization
NASA Technical Reports Server (NTRS)
Saulsberry, R. L.; Mccartney, P. A.
1993-01-01
The Space Shuttle hypergolic primary reaction control system (PRCS) thrusters continue to fail-leak or fail-off at a rate of approximately 1.5 per flight, attributed primarily to metal nitrate formation in the nitrogen tetroxide (N2O4) pilot operated valves (POV's). The failures have continued despite ground support equipment (GSE) and subsystem operational improvements. As a result, the Johnson Space Center (JSC) White Sands Test Facility (WSTF) performed a study to characterize the contamination in the N204 valves. This study prompted the development and implementation of a highly successful flushing technique using deionized (DI) water and gaseous nitrogen (GN2) to remove the contamination while minimizing Teflon seat damage. Following flushing a comprehensive acceptance test is performed before the thruster is deemed recovered. Between the time WSTF was certified to process flight thrusters (March 1992) and September 1993, a 68 percent thruster recovery rate was achieved. The contamination flushed from these thrusters was analyzed and has provided insight into the corrosion process, which is reported in this publication. Additionally, the long-term performance of 24 flushed thrusters installed in the WSTF Fleet Leader Shuttle reaction control subsystem (RCS) test articles is being assessed. WSTF continues to flush flight and test article thrusters and compile data to investigate metal nitrate formation characteristics in leaking and nonleaking valves.
Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel
NASA Astrophysics Data System (ADS)
Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.
2011-12-01
The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 μm) in the fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.
Trait impulsivity predicts D-KEFS tower test performance in university students.
Lyvers, Michael; Basch, Vanessa; Duff, Helen; Edwards, Mark S
2015-01-01
The present study examined a widely used self-report index of trait impulsiveness in relation to performance on a well-known neuropsychological executive function test in 70 university undergraduate students (50 women, 20 men) aged 18 to 24 years old. Participants completed the Barratt Impulsiveness Scale (BIS-11) and the Frontal Systems Behavior Scale (FrSBe), after which they performed the Tower Test of the Delis-Kaplan Executive Function System. Hierarchical linear regression showed that after controlling for gender, current alcohol consumption, age at onset of weekly alcohol use, and FrSBe scores, BIS-11 significantly predicted Tower Test Achievement scores, β = -.44, p < .01. The results indicate that self-reported impulsiveness is associated with poorer executive cognitive performance even in a sample likely to be characterized by relatively high general cognitive functioning (i.e., university students). The results also support the role of inhibition as a key aspect of executive task performance. Elevated scores on the BIS-11 and FrSBe are known to be linked to risky drinking in young adults as confirmed in this sample; however, only BIS-11 predicted Tower Test performance.
Total Ionizing Dose Test Report BFR92A NPN 5 GHz Wide Band Transistor from NXP
NASA Technical Reports Server (NTRS)
Phan, Anthony M.; Oldham, Timothy R.
2011-01-01
The purpose of this test was to characterize the Philips/NXP BFR92A NPN 5 gigahertz wide band silicon transistor for total dose response. This test shall serves as the radiation lot acceptance test (RLAT) for the lot date code (LDC) 1027. The BFR92A is packaged in a 3-pin plastic SOT23 package. Low dose rate (LDR/ELDRS) irradiations was performed.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.
2017-01-01
This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.
Evaluation of metallized paint coatings for composite spacecraft structures
NASA Technical Reports Server (NTRS)
Brzuskiewicz, John E.
1990-01-01
The extreme temperature excursions of composite spacecraft structures in LEO must be minimized through the use of thermal-control coatings. Attention is presently given to tests of silicone resin coatings which were pigmented with either leafing aluminum or combinations of leafing aluminum with silicate-treated zinc oxide pigment. Atomic oxygen, UV/vacuum, and outgassing screening tests were conducted on several such coating formulations in order to characterize the performance characteristics of this coating concept. Performance was found to depend on pigment volume concentration.
Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing
NASA Astrophysics Data System (ADS)
Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter
2015-12-01
Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.
Anomalous TWTA output power spikes and their effect on a digital satellite communications system
NASA Technical Reports Server (NTRS)
May, Brian D.; Kerczewski, Robert J.; Svoboda, James S.
1992-01-01
Several 30 GHz, 60 W traveling wave tube amplifiers (TWTA) were manufactured for the NASA Lewis Research Center's High Burst Rate Link Evaluation Terminal Project. An unusual operating problem characterized by anomalous nonperiodic output power spikes, common to all of the TWTAs proved during testing to significantly affect the performance of a digitally-modulated data transmission test system. Modifications made to the TWTAs significantly curtailed the problem and allowed acceptable system performance to be obtained. This paper presents a discussion of the TWTA output power spike problem, possible causes of the problem, and the solutions implemented by the manufacturer which improved the TWTA performance to an acceptable level. The results of the testing done at NASA Lewis on the TWTAs both before and after the improvement made by Hughes are presented, and the effects of the output power spikes on the performance of the test system are discussed.
Performance, emissions, and physical characteristics of a rotating combustion aircraft engine
NASA Technical Reports Server (NTRS)
Berkowitz, M.; Hermes, W. L.; Mount, R. E.; Myers, D.
1976-01-01
The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested.
Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.
Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan
2013-12-01
This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests.
Klapötke, Thomas M; Stierstorfer, Jörg
2008-08-07
The highly energetic compound 1,3,5-triaminoguanidinium dinitramide (1) was prepared in high yield (82%) according to a new synthesis by the reaction of potassium dinitramide and triaminoguanidinium perchlorate. The heat of formation was calculated in an extensive computational study (CBS-4M). With this the detonation parameters of compound were computed using the EXPLO5 software: D = 8796 m s(-1), p = 299 kbar. In addition, a full characterization of the chemical properties (single X-ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, mass spectrometry and elemental analysis) as well as of the energetic characteristics (differential scanning calorimetry, thermal safety calorimetry, impact, friction and electrostatic tests) is given in this work. Due to the high impact (2 J) and friction sensitivity (24 N) several attempts to reduce these sensitivities were performed by the addition of wax. The performance of was tested applying a "Koenen" steel sleeve test resulting in a critical diameter of > or =10 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCright, R D
1998-06-30
This Engineered Materials Characterization Report (EMCR), Volume 3, discusses in considerable detail the work of the past 18 months on testing the candidate materials proposed for the waste-package (WP) container and on modeling the performance of those materials in the Yucca Mountain (YM) repository setting This report was prepared as an update of information and serves as one of the supporting documents to the Viability Assessment (VA) of the Yucca Mountain Project. Previous versions of the EMCR have provided a history and background of container-materials selection and evaluation (Volume I), a compilation of physical and mechanical properties for the WPmore » design effort (Volume 2), and corrosion-test data and performance-modeling activities (Volume 3). Because the information in Volumes 1 and 2 is still largely current, those volumes are not being revised. As new information becomes available in the testing and modeling efforts, Volume 3 is periodically updated to include that information.« less
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1979-01-01
A trowellable closeout/repair material designated as MTA-2 was developed and evaluated for use on the Solid Rocket Booster. This material is composed of an epoxy-polysulfide binder and is highly filled with phenolic microballoons for density control and ablative performance. Mechanical property testing and thermal testing were performed in a wind tunnel to simulate the combined Solid Rocket Booster trajectory aeroshear and heating environments. The material is characterized by excellent thermal performance and was used extensively on the Space Shuttle STS-1 and STS-2 flight hardware.
Thermal and other tests of photovoltaic modules performed in natural sunlight
NASA Technical Reports Server (NTRS)
Stultz, J. W.
1979-01-01
The nominal operating cell temperature (NOCT), an effective way to characterize the thermal performance of a photovoltaic module in natural sunlight, is developed. NOCT measurements for more than twenty different modules are presented. Changes in NOCT reflect changes in module design, residential roof mounting, and dirt accumulation. Other test results show that electrical performance is improved by cooling modules with water and by use of a phase change wax. Electrical degradation resulting from the marriage of photovoltaic and solar water heating modules is demonstrated. Cost-effectiveness of each of these techniques is evaluated.
NASA Technical Reports Server (NTRS)
Kubat, Gregory
2016-01-01
This report provides a description and performance characterization of the large-scale, Relay architecture, UAS communications simulation capability developed for the NASA GRC, UAS in the NAS Project. The system uses a validated model of the GRC Gen5 CNPC, Flight-Test Radio model. Contained in the report is a description of the simulation system and its model components, recent changes made to the system to improve performance, descriptions and objectives of sample simulations used for test and verification, and a sampling and observations of results and performance data.
Assessment of rechargeable batteries for high power applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delnick, Frank M.; Ripple, Robert Eugene; Butler, Paul Charles
2004-05-01
This paper describes an assessment of a variety of battery technologies for high pulse power applications. Sandia National Laboratories (SNL) is performing the assessment activities in collaboration with NSWC-Dahlgren. After an initial study of specifications and manufacturers' data, the assessment team identified the following electrochemistries as promising for detailed evaluation: lead-acid (Pb-acid), nickel/metal hydride (Ni/MH), nickel/cadmium (Ni/Cd), and a recently released high power lithium-ion (Li-ion) technology. In the first three technology cases, test cells were obtained from at least two and in some instances several companies that specialize in the respective electrochemistry. In the case of the Li-ion technology, cellsmore » from a single company and are being tested. All cells were characterized in Sandia's battery test labs. After several characterization tests, the Pb-acid technology was identified as a backup technology for the demanding power levels of these tests. The other technologies showed varying degrees of promise. Following additional cell testing, the assessment team determined that the Ni/MH technology was suitable for scale-up and acquired 50-V Ni/MH modules from two suppliers for testing. Additional tests are underway to better characterize the Ni/Cd and the Li-ion technologies as well. This paper will present the testing methodology and results from these assessment activities.« less
Characterization and Design of Spiral Frequency Steerable Acoustic Transducers
NASA Astrophysics Data System (ADS)
Repale, Rohan
Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.
NASA Technical Reports Server (NTRS)
Li, Jian; OBrien, T. Kevin; Lee, Shaw Ming
1997-01-01
Monotonic and fatigue tests were performed to compare the Mode II and III interlaminar fracture toughness and fatigue delamination onset for Tenax-HTA/R6376 carbon/toughened epoxy composites. The Mode II interlaminar fracture toughness and fatigue delamination onset were characterized using the end-notched flexure (ENF) test while the Mode III interlaminar fracture toughness and fatigue delamination onset were characterized by using the edge crack torsion (ECT) test. Monotonic tests show that the Mode III fracture toughness is higher than the Mode II fracture toughness. Both Mode II and III cyclic loading greatly increases the tendency for a delamination to grow relative to a single monotonically increasing load. Under fatigue loading, the Mode III specimen also has a longer life than the Mode II specimen.
Evaluation of 2.1μm DFB lasers for space applications
NASA Astrophysics Data System (ADS)
Barbero, J.; López, D.; Esquivias, I.; Tijero, J. M. G.; Fischer, M.; Roessner, K.; Koeth, J.; Zahir, M.
2017-11-01
This paper presents the results obtained in the frame of an ESA-funded project called "Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application" with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1μm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current.
Progress In Developing Laser Based Post Irradiation Examination Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James A.; Scott, Clark L.; Benefiel, Brad C.
To be able to understand the performance of reactor fuels and materials, irradiated materials must be characterized effectively and efficiently in a high rad environment. The characterization work must be performed remotely and in an environment hostile to instrumentation. Laser based characterization techniques provide the ability to be remote and robust in a hot-cell environment. Laser based instrumentation also can provide high spatial resolution suitable for scanning and imaging large areas. The INL is currently developing three laser based Post Irradiation Examination (PIE) stations for the Hot Fuel Examination Facility at the INL. These laser based systems will characterize irradiatedmore » materials and fuels. The characterization systems are the following: Laser Shock Laser based ultrasonic C-scan system Gas Assay, Sample, and Recharge system (GASR, up-grade to an existing system). The laser shock technique will characterize material properties and failure loads/mechanisms in various materials such as LWR fuel, plate fuel, and next generation fuel forms, for PIE in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel-clad bond. The shock wave travels as a compression wave through the material to the free (unconfined) back surface and reflects back through the material under test as a rarefaction (tensile) wave. This rarefaction wave is the physical mechanism that produces internal de-lamination failure. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the laser shock technique. The laser ultrasonic system will be fully capable of performing classical non-destructive evaluation testing and imaging functions such as microstructure characterization, flaw detection and dimensional metrology in complex components. The purpose of the GASR is to measure the pressure/volume of the plenum of an irradiated fuel element and obtain fission gas samples for analysis. The study of pressure and volume in the plenum of an irradiated fuel element and the analysis of fission gases released from the fuel is important to understanding the performance of reactor fuels and materials. This system may also be used to measure the pressure/volume of other components (such as control blades) and obtain gas samples from these components for analysis. The main function of the laser in this application is to puncture the fuel element to allow the fission gas to escape and if necessary to weld the spot close. The GASR station will have the inherent capability to perform cutting welding and joining functions within a hot-cell.« less
Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System
NASA Technical Reports Server (NTRS)
Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.
2011-01-01
Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.
Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix
NASA Astrophysics Data System (ADS)
Zheng, Zhanlong; Zhu, Jiayi; Luo, Xuan; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Bi, Yutie; Zhang, Lin
2017-04-01
A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV-Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.
Wideband Single Crystal Transducer for Bone Characterization
NASA Technical Reports Server (NTRS)
Sahul, Raffi
2015-01-01
Phase II objectives: Optimize the Phase I transducer for sensitivity; Test different transmit signals for optimum performance; Demonstrate compatibility with electronics; Confirm additional transducer capabilities over conventional systems by calibrating with other methods.
OSIRIS-REx Visible And Infrared Spectrometer - OVIRS
NASA Technical Reports Server (NTRS)
Hair, Jason
2016-01-01
Goddard Space Flight Center: Overall Instrument Responsibility; Instrument Scientist and Deputy Instrument Scientist; Management Systems Engineering; Mechanical Hardware; Harness Assemblies; SIDECAR Assembly Code; OVIRS Integration and Environmental Qualification; OVIRS Performance Testing, Calibration and Characterization.
Characterization of PLA parts made with AM process
NASA Astrophysics Data System (ADS)
Spina, Roberto; Cavalcante, Bruno; Lavecchia, Fulvio
2018-05-01
The main objective of the presented work is to evaluate the thermal behavior of Poly-lactic acid (PLA) parts made with a Fused Deposition Modelling (FDM) process. By using a robust framework for the testing sequence of PLA parts, with the aim of establishing a standard testing cycle for the optimization of the part performance and quality. The research involves study the materials before and after 3D printing. Two biodegradable PLA polymers are investigated, characterized by different colors (one black and the other transparent). The study starts with the examination of each polymeric material and measurements of its main thermal properties.
High-Temperature Strain Sensing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.
2008-01-01
Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.
An acoustic emission and acousto-ultrasonic analysis of impact damaged composite pressure vessels
NASA Technical Reports Server (NTRS)
Workman, Gary L. (Principal Investigator); Walker, James L.
1996-01-01
The use of acoustic emission to characterize impact damage in composite structures is being performed on composite bottles wrapped with graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology will include neural net analysis and/or other multivariate techniques to enhance the capability of the technique to identify dominant failure mechanisms during fracture. The acousto-ultrasonics technique will also continue to be investigated to determine its ability to predict regions prone to failure prior to the burst tests. Characterization of the stress wave factor before, and after impact damage will be useful for inspection purposes in manufacturing processes. The combination of the two methods will also allow for simple nondestructive tests capable of predicting the performance of a composite structure prior to its being placed in service and during service.
Annual Report, Fall 2016: Identifying Cost Effective Tank Waste Characterization Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboul, S. H.; DiPrete, D. P.
2016-12-12
This report documents the activities that were performed during the second year of a project undertaken to improve the cost effectiveness and timeliness of SRNL’s tank closure characterization practices. The activities performed during the first year of the project were previously reported in SRNL-STI-2015-00144. The scope of the second year activities was divided into the following three primary tasks: 1) develop a technical basis and strategy for improving the cost effectiveness and schedule of SRNL’s tank closure characterization program; 2) initiate the design and assembly of a new waste removal system for improving the throughput and reducing the personnel dosemore » associated with extraction chromatography radiochemical separations; and 3) develop and perform feasibility testing of three alternative radiochemical separation protocols holding promise for improving high resource demand/time consuming tank closure sample analysis methods.« less
Performance Characterization of a Solenoid-type Gas Valve for the H- Magnetron Source at FNAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa, A.; Bollinger, D. S.; Karns, P. R.
2016-09-06
The magnetron-style H- ion sources currently in operation at Fermilab use piezoelectric gas valves to function. This kind of gas valve is sensitive to small changes in ambient temperature, which affect the stability and performance of the ion source. This motivates the need to find an alternative way of feeding H2 gas into the source. A solenoid-type gas valve has been characterized in a dedicated off-line test stand to assess the feasibility of its use in the operational ion sources. H- ion beams have been extracted at 35 keV using this valve. In this study, the performance of the solenoidmore » gas valve has been characterized measuring the beam current output of the magnetron source with respect to the voltage and pulse width of the signal applied to the gas valve.« less
Fracture characterization in a deep geothermal reservoir
NASA Astrophysics Data System (ADS)
Rühaak, Wolfram; Hehn, Vera; Hassanzadegan, Alireza; Tischner, Torsten
2017-04-01
At the geothermal research drilling Horstberg in North West Germany studies for the characterization of a vertical fracture are performed. The fracture was created by a massive hydraulic stimulation in 2003 in approx. 3700 m depth within rocks of the middle Buntsandstein. The fracture surface is in the order of 100,000 m2, depending on the flow rate at which water is injected. Besides hydraulic characterization, multiple tracer tests are planned. At the depth of interest the reservoir temperature is around 150 °C, pressure is around 600 bar (60 MPa) and due to salinity the water density is around 1200 kg/m3. Knowledge of tracer stability and behavior at these reservoir conditions is limited. Additionally, the planned tracer tests will be performed within one single borehole. In a closed cycle water is injected into the inner pipe of the well (tubing), which is separated by a permanent packer from the outer pipe (annulus). The water is produced back from the annulus approximately 150 m above the injection point. Thus, the circulation of thermal water between two sandstone layers via an artificial fracture can be achieved. Tests will be carried out with different flow rates and accordingly with different pressures, resulting in different fracture areas. Due to this test setup tracer signals will be stacked and will remain for a longer time in the fracture - which is the reason why different tracers are required. For an optimal characterization both conservative and reactive tracers will be used and different injection methods (continuous, instantaneous and pulsed) will be applied. For a proper setup of the tracer test numerical modelling studies are performed in advance. The relevant thermal, hydraulic and chemical processes (mainly adsorption and degredation) are coupled, resulting in a THC model; additionally the dependence of fracture aperture and area on fluid pressure has to be considered. Instead of applying a mechanically coupled model (THMC) a simplified approach is applied which takes the pressure dependence of the fracture permeability into account by using constitutive relations. Results of this modeling study will be presented together with details of the planned field study.
On the identifiability of the Hill-1948 model with one uniaxial tensile test
NASA Astrophysics Data System (ADS)
Bertin, Morgan; Hild, François; Roux, Stéphane
2017-06-01
A uniaxial experiment is performed on an ultra-thin specimen made of 17-7 precipitation hardened stainless steel. An anti-wrinkling setup allows for the characterization of the mechanical behavior with Integrated Digital Image Correlation (IDIC). The result shows that a single uniaxial experiment investigated via IDIC possesses enough data (and even more) to characterize a complete anisotropic elastoplastic model.
Why Non-contact Tonometry Tests Cannot Evaluate the Effects of Corneal Collagen Cross-linking.
Ortillés, Ángel; Rodríguez-Matas, José F; Ariza-Gracia, Miguel Á; Pascual, Gemma; Calvo, Begoña
2017-03-01
To assess the feasibility of characterizing and following up the mechanical behavior of the corneal tissue after corneal cross-linking (CXL) by using a combined mechanical (in vivo indentation and in vitro uniaxial tensile tests) and morphological (immunohisto-chemistry) experimental protocol. CXL (3 mW/cm 2 ; 370 nm) for 20 minutes (total dose 3.6 J/cm 2 ) was performed on 12 New Zealand rabbits. The mechanical behavior of the cornea was characterized in small and large strain regimens using an in vivo indentation test with a laboratory device and an in vitro uniaxial tensile test, respectively. These tests and corneal immunohistochemistry were performed before (PreCXL) and on the 7th (PostCXL-7d) and 56th days (PostCXL-56d) after CXL. The intraocular pressure and corneal thickness were measured before each test. For the indentation tests, significant differences were found between PreCXL and PostCXL-7d and between PostCXL-7d and PostCXL-56d, but not between PreCXL and PostCXL-56d. On average, for the small strain regimen, PostCXL-7d corneas showed the most compliant behavior, with progressive recovery of the corneal stiffness over time. For the large strain regimen, significant differences in the maximum tangent modulus between PreCXL and PostCXL-7d and between PreCXL and PostCXL-56d were observed for the uniaxial tensile tests, with no significant differences between PostCXL-7d and PostCXL-56d. Immunohistochemistry showed a lack of cells in the anterior stroma at PostCXL-7d, but at PostCXL-56d the cell density and morphology were comparable to PreCXL. Indentation tests cannot characterize the changes in the corneal collagen scaffold caused by the CXL, but the uniaxial test can. However, indentation tests can assess the recovery of keratocyte density after CXL. [J Refract Surg. 2017;33(3):184-192.]. Copyright 2017, SLACK Incorporated.
Non-contact method for characterization of small size thermoelectric modules.
Manno, Michael; Yang, Bao; Bar-Cohen, Avram
2015-08-01
Conventional techniques for characterization of thermoelectric performance require bringing measurement equipment into direct contact with the thermoelectric device, which is increasingly error prone as device size decreases. Therefore, the novel work presented here describes a non-contact technique, capable of accurately measuring the maximum ΔT and maximum heat pumping of mini to micro sized thin film thermoelectric coolers. The non-contact characterization method eliminates the measurement errors associated with using thermocouples and traditional heat flux sensors to test small samples and large heat fluxes. Using the non-contact approach, an infrared camera, rather than thermocouples, measures the temperature of the hot and cold sides of the device to determine the device ΔT and a laser is used to heat to the cold side of the thermoelectric module to characterize its heat pumping capacity. As a demonstration of the general applicability of the non-contact characterization technique, testing of a thin film thermoelectric module is presented and the results agree well with those published in the literature.
Method calibration of the model 13145 infrared target projectors
NASA Astrophysics Data System (ADS)
Huang, Jianxia; Gao, Yuan; Han, Ying
2014-11-01
The SBIR Model 13145 Infrared Target Projectors ( The following abbreviation Evaluation Unit ) used for characterizing the performances of infrared imaging system. Test items: SiTF, MTF, NETD, MRTD, MDTD, NPS. Infrared target projectors includes two area blackbodies, a 12 position target wheel, all reflective collimator. It provide high spatial frequency differential targets, Precision differential targets imaged by infrared imaging system. And by photoelectricity convert on simulate signal or digital signal. Applications software (IR Windows TM 2001) evaluate characterizing the performances of infrared imaging system. With regards to as a whole calibration, first differently calibration for distributed component , According to calibration specification for area blackbody to calibration area blackbody, by means of to amend error factor to calibration of all reflective collimator, radiance calibration of an infrared target projectors using the SR5000 spectral radiometer, and to analyze systematic error. With regards to as parameter of infrared imaging system, need to integrate evaluation method. According to regulation with -GJB2340-1995 General specification for military thermal imaging sets -testing parameters of infrared imaging system, the results compare with results from Optical Calibration Testing Laboratory . As a goal to real calibration performances of the Evaluation Unit.
Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation
NASA Technical Reports Server (NTRS)
Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John
2016-01-01
Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.
Characterization and performance of PAUCam filters
NASA Astrophysics Data System (ADS)
Casas, R.; Cardiel-Sas, L.; Castander, F. J.; Díaz, C.; Gaweda, J.; Jiménez Rojas, J.; Jiménez, S.; Lamensans, M.; Padilla, C.; Rodriguez, F. J.; Sanchez, E.; Sevilla Noarbe, I.
2016-08-01
PAUCam is a large field of view camera designed to exploit the field delivered by the prime focus corrector of the William Herschel Telescope, at the Observatorio del Roque de los Muchachos. One of the new features of this camera is its filter system, placed within a few millimeters of the focal plane using eleven trays containing 40 narrow band and 6 broad band filters, working in vacuum at an operational temperature of 250K and in a focalized beam. In this contribution, we describe the performance of these filters both in the characterization tests at the laboratory.
Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane
NASA Technical Reports Server (NTRS)
Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.
2002-01-01
The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.
Testing Orions Fairing Separation System
NASA Technical Reports Server (NTRS)
Martinez, Henry; Cloutier, Chris; Lemmon, Heber; Rakes, Daniel; Oldham, Joe; Schlagel, Keith
2014-01-01
Traditional fairing systems are designed to fully encapsulate and protect their payload from the harsh ascent environment including acoustic vibrations, aerodynamic forces and heating. The Orion fairing separation system performs this function and more by also sharing approximately half of the vehicle structural load during ascent. This load-share condition through launch and during jettison allows for a substantial increase in mass to orbit. A series of component-level development tests were completed to evaluate and characterize each component within Orion's unique fairing separation system. Two full-scale separation tests were performed to verify system-level functionality and provide verification data. This paper summarizes the fairing spring, Pyramidal Separation Mechanism and forward seal system component-level development tests, system-level separation tests, and lessons learned.
Lightning Pin Injection Test: MOSFETS in "ON" State
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Saha, Sankalita; Wysocki, Philip F.; Celaya, Jose R.
2011-01-01
The test objective was to evaluate MOSFETs for induced fault modes caused by pin-injecting a standard lightning waveform into them while operating. Lightning Pin-Injection testing was performed at NASA LaRC. Subsequent fault-mode and aging studies were performed by NASA ARC researchers using the Aging and Characterization Platform for semiconductor components. This report documents the test process and results, to provide a basis for subsequent lightning tests. The ultimate IVHM goal is to apply prognostic and health management algorithms using the features extracted during aging to allow calculation of expected remaining useful life. A survey of damage assessment techniques based upon inspection is provided, and includes data for optical microscope and X-ray inspection. Preliminary damage assessments based upon electrical parameters are also provided.
Laboratory and field testing of commercial rotational seismometers
Nigbor, R.L.; Evans, J.R.; Hutt, C.R.
2009-01-01
There are a small number of commercially available sensors to measure rotational motion in the frequency and amplitude ranges appropriate for earthquake motions on the ground and in structures. However, the performance of these rotational seismometers has not been rigorously and independently tested and characterized for earthquake monitoring purposes as is done for translational strong- and weak-motion seismometers. Quantities such as sensitivity, frequency response, resolution, and linearity are needed for the understanding of recorded rotational data. To address this need, we, with assistance from colleagues in the United States and Taiwan, have been developing performance test methodologies and equipment for rotational seismometers. In this article the performance testing methodologies are applied to samples of a commonly used commercial rotational seismometer, the eentec model R-1. Several examples were obtained for various test sequences in 2006, 2007, and 2008. Performance testing of these sensors consisted of measuring: (1) sensitivity and frequency response; (2) clip level; (3) self noise and resolution; and (4) cross-axis sensitivity, both rotational and translational. These sensor-specific results will assist in understanding the performance envelope of the R-1 rotational seismometer, and the test methodologies can be applied to other rotational seismometers.
Overview of ion source characterization diagnostics in INTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass; Bhuyan, M.
2016-02-15
INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction regionmore » will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.« less
Overview of ion source characterization diagnostics in INTF
NASA Astrophysics Data System (ADS)
Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.
2016-02-01
INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.
Development of the performance confirmation program at YUCCA mountain, nevada
LeCain, G.D.; Barr, D.; Weaver, D.; Snell, R.; Goodin, S.W.; Hansen, F.D.
2006-01-01
The Yucca Mountain Performance Confirmation program consists of tests, monitoring activities, experiments, and analyses to evaluate the adequacy of assumptions, data, and analyses that form the basis of the conceptual and numerical models of flow and transport associated with a proposed radioactive waste repository at Yucca Mountain, Nevada. The Performance Confirmation program uses an eight-stage risk-informed, performance-based approach. Selection of the Performance Confirmation activities for inclusion in the Performance Confirmation program was done using a risk-informed performance-based decision analysis. The result of this analysis was a Performance Confirmation base portfolio that consists of 20 activities. The 20 Performance Confirmation activities include geologic, hydrologie, and construction/engineering testing. Some of the activities began during site characterization, and others will begin during construction, or post emplacement, and continue until repository closure.
NASA Technical Reports Server (NTRS)
Ewashinka, J. G.; Bozek, J. M.
1981-01-01
A state-of-the-art 6-V battery module in current use by the electric vehicle industry was tested at the NASA Lewis Research Center to determine its performance characteristics under the SAE J227a driving schedules B, C, and D. The primary objective of the tests was to determine the effects of periods of recuperation and long and short periods of electrical regeneration in improving the performance of the battery module and hence extendng the vehicle range. A secondary objective was to formulate a computer program that would predict the performance of this battery module for the above driving schedules. The results show excellent correlation between the laboratory tests and predicted results. The predicted performance compared with laboratory tests was within +2.4 to -3.7 percent for the D schedule, +0.5 to -7.1 percent for the C schedule, and better than -11.4 percent for the B schedule.
NASA Astrophysics Data System (ADS)
Ewashinka, J. G.; Bozek, J. M.
1981-05-01
A state-of-the-art 6-V battery module in current use by the electric vehicle industry was tested at the NASA Lewis Research Center to determine its performance characteristics under the SAE J227a driving schedules B, C, and D. The primary objective of the tests was to determine the effects of periods of recuperation and long and short periods of electrical regeneration in improving the performance of the battery module and hence extendng the vehicle range. A secondary objective was to formulate a computer program that would predict the performance of this battery module for the above driving schedules. The results show excellent correlation between the laboratory tests and predicted results. The predicted performance compared with laboratory tests was within +2.4 to -3.7 percent for the D schedule, +0.5 to -7.1 percent for the C schedule, and better than -11.4 percent for the B schedule.
Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roadman, Jason; Huskey, Arlinda
2015-07-01
A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented inmore » this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.« less
Study of skin model and geometry effects on thermal performance of thermal protective fabrics
NASA Astrophysics Data System (ADS)
Zhu, Fanglong; Ma, Suqin; Zhang, Weiyuan
2008-05-01
Thermal protective clothing has steadily improved over the years as new materials and improved designs have reached the market. A significant method that has brought these improvements to the fire service is the NFPA 1971 standard on structural fire fighters’ protective clothing. However, this testing often neglects the effects of cylindrical geometry on heat transmission in flame resistant fabrics. This paper deals with methods to develop cylindrical geometry testing apparatus incorporating novel skin bioheat transfer model to test flame resistant fabrics used in firefighting. Results show that fabrics which shrink during the test can have reduced thermal protective performance compared with the qualities measured with a planar geometry tester. Results of temperature differences between skin simulant sensors of planar and cylindrical tester are also compared. This test method provides a new technique to accurately and precisely characterize the thermal performance of thermal protective fabrics.
Thermal Performance Testing of Cryogenic Insulation Systems
NASA Technical Reports Server (NTRS)
Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.
2007-01-01
Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.
Hyperspectral Shack–Hartmann test
Birch, Gabriel C.; Descour, Michael R.; Tkaczyk, Tomasz S.
2011-01-01
A hyperspectral Shack–Hartmann test bed has been developed to characterize the performance of miniature optics across a wide spectral range, a necessary first step in developing broadband achromatized all-polymer endomicroscopes. The Shack–Hartmann test bed was used to measure the chromatic focal shift (CFS) of a glass singlet lens and a glass achromatic lens, i.e., lenses representing the extrema of CFS magnitude in polymer elements to be found in endomicroscope systems. The lenses were tested from 500 to 700 nm in 5 and 10 nm steps, respectively. In both cases, we found close agreement between test results obtained from a ZEMAX model of the test bed and test lens and those obtained by experiment (maximum error of 12 μm for the singlet lens and 5 μm for the achromatic triplet lens). Future applications of the hyperspectral Shack–Hartmann test include measurements of aberrations as a function of wavelength, characterization of manufactured plastic endomicroscope elements and systems, and reverse optimization. PMID:20885478
Phase VI Glove Durability Testing
NASA Technical Reports Server (NTRS)
Mitchell, Kathryn
2011-01-01
The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 -- 8 hour Extravehicular Activities (EVAs) in a dust free, manufactured microgravity EVA environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 -- 8 hour traditional EVAs or 576 -- 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of International Space Station (ISS)-based EVA tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected periodically throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the development of improved cycle model tables. This paper provides a detailed description of the test hardware and methodology, shares the results of the testing, and provides recommendations for future work.
Performance and life evaluation of advanced battery technologies for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis and Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies: (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R and D.
Dynamic Testing of a Subscale Sunshield for the Next Generation Space Telescope (NGST)
NASA Technical Reports Server (NTRS)
Lienard, Sebastien; Johnston, John D.; Ross, Brian; Smith, James; Brodeur, Steve (Technical Monitor)
2001-01-01
The NGST sunshield is a lightweight, flexible structure consisting of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The structural dynamic behavior of the sunshield must be well understood in order to predict its influence on observatory performance. Ground tests were carried out in a vacuum environment to characterize the structural dynamic behavior of a one-tenth scale model of the sunshield. Results from the tests will be used to validate analytical modeling techniques that can be used in conjunction with scaling laws to predict the performance of the full-sized structure. This paper summarizes the ground tests and presents representative results for the dynamic behavior of the sunshield.
Flowmeter evaluation for on-orbit operations
NASA Technical Reports Server (NTRS)
Baird, R. S.
1988-01-01
Various flowmetering concepts were flow tested to characterize the relative capabilities and limitations for on-orbit fluid-transfer operations. Performance results and basic operating principles of each flowmetering concept tested are summarized, and basic considerations required to select the best flowmeter(s) for fluid system application are discussed. Concepts tested were clamp-on ultrasonic, area averaging ultrasonic, offset ultrasonic, coriolis mass, vortex shedding, universal venturi tube, turbine, bearingless turbine, turbine/turbine differential-pressure hybrid, dragbody, and dragbody/turbine hybrid flowmeters. Fluid system flowmeter selection considerations discussed are flowmeter performance, fluid operating conditions, systems operating environments, flowmeter packaging, flowmeter maintenance, and flowmeter technology. No one flowmetering concept tested was shown to be best for all on-orbit fluid systems.
Benchmarking and performance analysis of the CM-2. [SIMD computer
NASA Technical Reports Server (NTRS)
Myers, David W.; Adams, George B., II
1988-01-01
A suite of benchmarking routines testing communication, basic arithmetic operations, and selected kernel algorithms written in LISP and PARIS was developed for the CM-2. Experiment runs are automated via a software framework that sequences individual tests, allowing for unattended overnight operation. Multiple measurements are made and treated statistically to generate well-characterized results from the noisy values given by cm:time. The results obtained provide a comparison with similar, but less extensive, testing done on a CM-1. Tests were chosen to aid the algorithmist in constructing fast, efficient, and correct code on the CM-2, as well as gain insight into what performance criteria are needed when evaluating parallel processing machines.
Stargel, D; Thompson, F S; Phillips, S E; Lombard, G L; Dowell, V R
1976-01-01
The Minitek Miniaturized System (BBL) was modified for characterization of anaerobic bacteria. The modified system and the conventional Center for Disease Control method were used to test a variety of anaerobic bacteria, and results were compared. Tests performed by both techniques were indole and H2S production, esculin hydrolysis, nitrate reduction, and fermentation of glucose, mannitol, lactose, sucrose, maltose, salicin, glycerol, xylose, arabinose, mannose, rhamnose, and trehalose. The manufacturer's recommended procedure for the Minitek system was modified by using a new suspension medium (Lombard-Dowell broth) and an inoculum equivalent to the density of a McFarland no. 5 nephelometer standard. The Minitek results, recorded after 48 h, agreed satisfactorily with the conventional test results, usually recorded after 5 to 7 days of incubation. In the examination of 80 strains representing 22 different species or subspecies of anaerobic bacteria, with 16 biochemical tests performed in triplicate, 93.8% of the Minitek test results agreed with those of the corresponding conventional tests. Only tests for indole, H2S, and nitrate reduction gave less than 90% agreement. It was concluded that the modified Minitek system is a suitable substitute for the more expensive and time-consuming conventional procedure for determining carbohydrate fermentation and esculin hydrolysis by anaerobes. This system, when used in conjunction with other tests, can effectively aid in the definitive identification of commonly isolated anaerobes. Images PMID:773959
Characterization of holding brake friction pad surface after pin-on-plate wear test
NASA Astrophysics Data System (ADS)
Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.
2018-03-01
This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands. The identification method is based on determining and imposing ISO 27158-2 lower plateau limit (LPL) in material probability curves; and on applying a combined criterion of height segmentation threshold and equivalent diameter threshold. The method determines the criterion thresholds for each material since LPL appears typical by material. The proposed method has allowed quantifying the surface topography at two different levels of wear. An expanded measurement uncertainty of 3.5 µm for plateau dimensions in the range 50–2000 µm and one of 0.15 µm for plateau heights up to 10 µm have been documented.
ER-2 High Altitude Solar Cell Calibration Flights
NASA Technical Reports Server (NTRS)
Myers, Matthew; Wolford, David; Snyder, David; Piszczor, Michael
2015-01-01
Evaluation of space photovoltaics using ground-based simulators requires primary standard cells which have been characterized in a space or near-space environment. Due to the high cost inherent in testing cells in space, most primary standards are tested on high altitude fixed wing aircraft or balloons. The ER-2 test platform is the latest system developed by the Glenn Research Center (GRC) for near-space photovoltaic characterization. This system offers several improvements over GRC's current Learjet platform including higher altitude, larger testing area, onboard spectrometers, and longer flight season. The ER-2 system was developed by GRC in cooperation with NASA's Armstrong Flight Research Center (AFRC) as well as partners at the Naval Research Laboratory and Air Force Research Laboratory. The system was designed and built between June and September of 2014, with the integration and first flights taking place at AFRC's Palmdale facility in October of 2014. Three flights were made testing cells from GRC as well as commercial industry partners. Cell performance data was successfully collected on all three flights as well as solar spectra. The data was processed using a Langley extrapolation method, and performance results showed a less than half a percent variation between flights, and less than a percent variation from GRC's current Learjet test platform.
Altomare, Christopher; Kinzler, Eric R; Buchhalter, August R; Cone, Edward J; Costantino, Anthony
The US Food and Drug Administration (FDA) considers the development of abuse-deterrent formulations of solid oral dosage forms a public health priority and has outlined a series of premarket studies that should be performed prior to submitting an application to the Agency. Category 1 studies are performed to characterize whether the abuse-deterrent properties of a new formulation can be easily defeated. Study protocols are designed to evaluate common abuse patterns of prescription medications as well as more advanced methods that have been reported on drug abuse websites and forums. Because FDA believes Category 1 testing should fully characterize the abuse-deterrent characteristics of an investigational formulation, Category 1 testing is time consuming and requires specialized laboratory resources as well as advanced knowledge of prescription medication abuse. Recent Advisory Committee meetings at FDA have shown that Category 1 tests play a critical role in FDA's evaluation of an investigational formulation. In this article, we will provide a general overview of the methods of manipulation and routes of administration commonly utilized by prescription drug abusers, how those methods and routes are evaluated in a laboratory setting, and discuss data intake, analysis, and reporting to satisfy FDA's Category 1 testing requirements.
Optical Testing Using Portable Laser Coordinate Measuring Instruments
NASA Technical Reports Server (NTRS)
Khreishi, Manal; Ohl, Raymond G.; Mclean, Kyle F.; Hadjimichael, Theodore J.; Hayden, Joseph E.
2017-01-01
High precision, portable coordinate measuring instruments (CMI) such as laser radars (LR) and laser trackers (LT) have been used for optical system alignment and integration. The LR's ability to perform a non-contact scan of surfaces was previously utilized to characterize large spherical and aspheric mirrors. In this paper, we explore the use of a CMI as an accurate, fast, robust, and non-contact tool for prescription characterization of powered optical surfaces. Using Nikon's MV-224/350 LR and Leica's Absolute Tracker AT401/402 instruments, proof of concept measurements were performed to characterize a variety of optical components by measuring the actual and apparent, or equivalently the "direct and through" (D&T), coordinates of calibrated metrology targets. Custom macros in metrology software and other data reduction code were developed to compute surface-ray intercepts and surface slopes from the D&T shots. The calculated data is fit to an aspheric surface formula to obtain the optimum prescription. The results were compared to the nominal parameters and were crosschecked using LR scans or other approaches. We discuss potential applications across the fields of optical component fabrication and system alignment and testing.
Optical Testing Using Portable Laser Coordinate Measuring Instruments
NASA Technical Reports Server (NTRS)
Khreishi, M.; Ohl, R.; Mclean, K.; Hadjimichael, T.; Hayden, J.
2017-01-01
High precision, portable coordinate measuring instruments (CMI) such as laser radars (LR) and laser trackers (LT) have been used for optical system alignment and integration. The LRs ability to perform a non-contact scan of surfaces was previously utilized to characterize large spherical and aspheric mirrors. In this paper, we explore the use of a CMI as an accurate, fast, robust, and non-contact tool for prescription characterization of powered optical surfaces. Using Nikons MV-224350 LR and Leicas Absolute Tracker AT401402 instruments, proof of concept measurements were performed to characterize a variety of optical components by measuring the actual and apparent, or equivalently the direct and through (DT), coordinates of calibrated metrology targets. Custom macros in metrology software and other data reduction code were developed to compute surface-ray intercepts and surface slopes from the DT shots. The calculated data is fit to an aspheric surface formula to obtain the optimum prescription. The results were compared to the nominal parameters and were crosschecked using LR scans or other approaches. We discuss potential applications across the fields of optical component fabrication and system alignment and testing.
NASA Astrophysics Data System (ADS)
Ribera, Javier; Tahboub, Khalid; Delp, Edward J.
2015-03-01
Video surveillance systems are widely deployed for public safety. Real-time monitoring and alerting are some of the key requirements for building an intelligent video surveillance system. Real-life settings introduce many challenges that can impact the performance of real-time video analytics. Video analytics are desired to be resilient to adverse and changing scenarios. In this paper we present various approaches to characterize the uncertainty of a classifier and incorporate crowdsourcing at the times when the method is uncertain about making a particular decision. Incorporating crowdsourcing when a real-time video analytic method is uncertain about making a particular decision is known as online active learning from crowds. We evaluate our proposed approach by testing a method we developed previously for crowd flow estimation. We present three different approaches to characterize the uncertainty of the classifier in the automatic crowd flow estimation method and test them by introducing video quality degradations. Criteria to aggregate crowdsourcing results are also proposed and evaluated. An experimental evaluation is conducted using a publicly available dataset.
Picosecond Pulsed Laser Ablation for the Surface Preparation of Epoxy Composites
NASA Technical Reports Server (NTRS)
Palmieri, Frank; Ledesma, Rodolfo; Fulton, Tayler; Arthur, Alexandria; Eldridge, Keishara; Thibeault, Sheila; Lin, Yi; Wohl, Chris; Connell, John
2017-01-01
As part of a technical challenge under the Advanced Composites Program, methods for improving pre-bond process control for aerospace composite surface treatments and inspections, in conjunction with Federal Aviation Administration guidelines, are under investigation. The overall goal is to demonstrate high fidelity, rapid and reproducible surface treatment and surface characterization methods to reduce uncertainty associated with the bonding process. The desired outcomes are reliable bonded airframe structure, and reduced timeline to certification. In this work, laser ablation was conducted using a q-switched Nd:YVO4 laser capable of nominal pulse durations of 8 picoseconds (ps). Aerospace structural carbon fiber reinforced composites with an epoxy resin matrix were laser treated, characterized, processed into bonded assemblies and mechanically tested. The characterization of ablated surfaces were conducted using scanning electron microscopy (SEM), water contact angle (WCA) goniometry, micro laser induced breakdown spectroscopy (uLIBS), and electron spin resonance (ESR). The bond performance was assessed using a double cantilever beam (DCB) test with an epoxy adhesive. The surface characteristics and bond performance obtained from picosecond ablated carbon fiber reinforced plastics (CFRPs) are presented herein.
SP-100 lithium thaw design, analysis, and testing
NASA Astrophysics Data System (ADS)
Choe, Hwang; Schrag, Michael R.; Koonce, David R.; Gamble, Robert E.; Halfen, Frank J.; Kirpich, Aaron S.
1993-01-01
The thaw design has been established for the 100 kWe SP-100 Space Reactor Power System. System thaw/startup analysis has confirmed that all system thaw requirements are met, and that rethaw and restart can be easily accomplished with this design. In addition, a series of lithium thaw characterization tests has been performed, confirming key design assumptions.
1992-03-15
Pipes, Computer Modelling, Nondestructive Testing. Tomography , Planar Converter, Cesium Reservoir 19. ABSTRACT (Continue on reverse if necessary and...Investigation ........................ 32 4.3 Computed Tomography ................................ 33 4.4 X-Ray Radiography...25 3.4 LEOS generated output data for Mo-Re converter ................ 26 4.1 Distance along converter imaged by the computed tomography
Antimisting kerosene JT3 engine fuel system integration study
NASA Technical Reports Server (NTRS)
Fiorentino, A.
1987-01-01
An analytical study and laboratory tests were conducted to assist NASA in determining the safety and mission suitability of the modified fuel system and flight tests for the Full-Scale Transport Controlled Impact Demonstration (CID) program. This twelve-month study reviewed and analyzed both the use of antimisting kerosene (AMK) fuel and the incorporation of a fuel degrader on the operational and performance characteristics of the engines tested. Potential deficiencies and/or failures were identified and approaches to accommodate these deficiencies were recommended to NASA Ames -Dryden Flight Research Facility. The result of flow characterization tests on degraded AMK fuel samples indicated levels of degradation satisfactory for the planned missions of the B-720 aircraft. The operability and performance with the AMK in a ground test engine and in the aircraft engines during the test flights were comparable to those with unmodified Jet A. For the final CID test, the JT-3C-7 engines performed satisfactorily while operating on AMK right up to impact.
Ferraro, M; Foster, D H
1991-01-01
Under certain experimental conditions, visual discrimination performance in multielement images is closely related to visual identification performance: elements of the image are distinguished only insofar as they appear to have distinct, discrete, internal characterizations. This report is concerned with the detailed relationship between such internal characterizations and observable discrimination performance. Two types of general processes that might underline discrimination are considered. The first is based on computing all possible internal image characterizations that could allow a correct decision, each characterization weighted by the probability of its occurrence and of a correct decision being made. The second process is based on computing the difference between the probabilities associated with the internal characterizations of the individual image elements, the difference quantified naturally with an l(p) norm. The relationship between the two processes was investigated analytically and by Monte Carlo simulations over a plausible range of numbers n of the internal characterizations of each of the m elements in the image. The predictions of the two processes were found to be closely similar. The relationship was precisely one-to-one, however, only for n = 2, m = 3, 4, 6, and for n greater than 2, m = 3, 4, p = 2. For all other cases tested, a one-to-one relationship was shown to be impossible.
Performance of Low Temperature Electrolytes in Experimental and Prototype Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.
2007-01-01
Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with ethylene carbonate-based electrolytes optimized for low temperature in experimental MCMB-LiNixCo1_x0 2 cells. In addition to obtaining discharge and charge rate performance data at various temperatures, electrochemical measurements were performed on individual electrodes (made possible by the incorporation of Li reference electrodes), including EIS, linear polarization and Tafel polarization measurements. The combination of techniques enables the elucidation of various trends associated with electrolyte composition. In addition to investigating the behavior in experimental cells, the performance of many promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.
Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2003-01-01
The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in identifying design solutions and validating thermal performance models under a very aggressive development schedule. The test data have assisted Johns Hopkins engineers in selecting a flight solar array vendor and a thermal shield design. MESSENGER is one in a series of missions in NASA's Discovery Program. Infrared thermography provides data on the thermal gradients in the MESSENGER components during high solar insolation vacuum testing.
FY12 End of Year Report for NEPP DDR2 Reliability
NASA Technical Reports Server (NTRS)
Guertin, Steven M.
2013-01-01
This document reports the status of the NASA Electronic Parts and Packaging (NEPP) Double Data Rate 2 (DDR2) Reliability effort for FY2012. The task expanded the focus of evaluating reliability effects targeted for device examination. FY11 work highlighted the need to test many more parts and to examine more operating conditions, in order to provide useful recommendations for NASA users of these devices. This year's efforts focused on development of test capabilities, particularly focusing on those that can be used to determine overall lot quality and identify outlier devices, and test methods that can be employed on components for flight use. Flight acceptance of components potentially includes considerable time for up-screening (though this time may not currently be used for much reliability testing). Manufacturers are much more knowledgeable about the relevant reliability mechanisms for each of their devices. We are not in a position to know what the appropriate reliability tests are for any given device, so although reliability testing could be focused for a given device, we are forced to perform a large campaign of reliability tests to identify devices with degraded reliability. With the available up-screening time for NASA parts, it is possible to run many device performance studies. This includes verification of basic datasheet characteristics. Furthermore, it is possible to perform significant pattern sensitivity studies. By doing these studies we can establish higher reliability of flight components. In order to develop these approaches, it is necessary to develop test capability that can identify reliability outliers. To do this we must test many devices to ensure outliers are in the sample, and we must develop characterization capability to measure many different parameters. For FY12 we increased capability for reliability characterization and sample size. We increased sample size this year by moving from loose devices to dual inline memory modules (DIMMs) with an approximate reduction of 20 to 50 times in terms of per device under test (DUT) cost. By increasing sample size we have improved our ability to characterize devices that may be considered reliability outliers. This report provides an update on the effort to improve DDR2 testing capability. Although focused on DDR2, the methods being used can be extended to DDR and DDR3 with relative ease.
Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok
2013-05-01
The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.
RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Zhang; J. E. O'Brien; R. C. O'Brien
2012-07-01
An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cellmore » and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.« less
A Cryogenic Waveguide Mount for Microstrip Circuit and Material Characterization
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Brown, Ari D.; Moseley, Samuel H.; Noroozian, Omid; Wollack, Edward J.
2016-01-01
A waveguide split-block fixture used in the characterization of thin-film superconducting planar circuitry at millimeter wavelengths is described in detail. The test fixture is realized from a pair of mode converters, which transition from rectangular-waveguide to on-chip microstrip-line signal propagation via a stepped ridge-guide impedance transformer. The observed performance of the W-band package at 4.2K has a maximum in-band transmission ripple of 2dB between 1.53 and 1.89 times the waveguide cutoff frequency. This metrology approach enables the characterization of superconducting microstrip test structures as a function temperature and frequency. The limitations of the method are discussed and representative data for superconducting Nb and NbTiN thin film microstrip resonators on single-crystal Si dielectric substrates are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.; McClung, R.W.; Janney, M.A.
1987-08-01
A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less
HuMOVE: a low-invasive wearable monitoring platform in sexual medicine.
Ciuti, Gastone; Nardi, Matteo; Valdastri, Pietro; Menciassi, Arianna; Basile Fasolo, Ciro; Dario, Paolo
2014-10-01
To investigate an accelerometer-based wearable system, named Human Movement (HuMOVE) platform, designed to enable quantitative and continuous measurement of sexual performance with minimal invasiveness and inconvenience for users. Design, implementation, and development of HuMOVE, a wearable platform equipped with an accelerometer sensor for monitoring inertial parameters for sexual performance assessment and diagnosis, were performed. The system enables quantitative measurement of movement parameters during sexual intercourse, meeting the requirements of wearability, data storage, sampling rate, and interfacing methods, which are fundamental for human sexual intercourse performance analysis. HuMOVE was validated through characterization using a controlled experimental test bench and evaluated in a human model during simulated sexual intercourse conditions. HuMOVE demonstrated to be a robust and quantitative monitoring platform and a reliable candidate for sexual performance evaluation and diagnosis. Characterization analysis on the controlled experimental test bench demonstrated an accurate correlation between the HuMOVE system and data from a reference displacement sensor. Experimental tests in the human model during simulated intercourse conditions confirmed the accuracy of the sexual performance evaluation platform and the effectiveness of the selected and derived parameters. The obtained outcomes also established the project expectations in terms of usability and comfort, evidenced by the questionnaires that highlighted the low invasiveness and acceptance of the device. To the best of our knowledge, HuMOVE platform is the first device for human sexual performance analysis compatible with sexual intercourse; the system has the potential to be a helpful tool for physicians to accurately classify sexual disorders, such as premature or delayed ejaculation. Copyright © 2014 Elsevier Inc. All rights reserved.
SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
IJ van Rooyen; WR Lloyd; TL Trowbridge
2013-09-01
The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designsmore » being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.« less
Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab
NASA Technical Reports Server (NTRS)
Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.
2008-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL) using the FRL's 6-DOF gantry system, called the Dynamic Overhead Target System (DOTS). The target vehicle for "docking" in the laboratory was a mockup that was representative of the proposed CEV docking system, with added retroreflectors for the AVGS.' The multi-sensor test configuration used 35 open-loop test trajectories covering three major objectives: (l) sensor characterization trajectories designed to test a wide range of performance parameters; (2) CEV-specific trajectories designed to test performance during CEV-like approach and departure profiles; and (3) sensor characterization tests designed for evaluating sensor performance under more extreme conditions as might be induced during a spacecraft failure or during contingency situations. This paper describes the test development, test facility, test preparations, test execution, and test results of the multisensor series oftrajectories
Characterization of Volatiles Loss from Soil Samples at Lunar Environments
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Smith, Jim; Roush, Ted; Colaprete, Anthony; Zacny, Kris; Paulsen, Gale; Wang, Alex; Paz, Aaron
2017-01-01
Resource Prospector Integrated Thermal Vacuum Test Program A series of ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations for RP Volatiles loss during sampling operations Hardware performance Sample removal and transfer Concept of operationsInstrumentation5 test campaigns over 5 years have been conducted with RP hardware with advancing hardware designs and additional RP subsystems Volatiles sampling 4 years Using flight-forward regolith sampling hardware, empirically determine volatile retention at lunar-relevant conditions Use data to improve theoretical predictions Determine driving variables for retention Bound water loss potential to define measurement uncertainties. The main goal of this talk is to introduce you to our approach to characterizing volatiles loss for RP. Introduce the facility and its capabilities Overview of the RP hardware used in integrated testing (most recent iteration) Summarize the test variables used thus farReview a sample of the results.
Thermal interface material characterization for cryogenic electronic packaging solutions
NASA Astrophysics Data System (ADS)
Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.
2017-12-01
As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.
Ground Testing of a 10 K Sorption Cryocooler Flight Experiment (BETSCE)
NASA Technical Reports Server (NTRS)
Bard, S.; Wu, J.; Karlmann, P.; Cowgill, P.; Mirate, C.; Rodriguez, J.
1994-01-01
The Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE) is a Space Shuttle side-wall-mounted flight experiment designed to demonstrate 10 K sorption cryocooler technology in a space environment. The BETSCE objectives are to: (1) provide a thorough end-to-end characterization and space performance validation of a complete, multistage, automated, closed-cycle hydride sorption cryocooler in the 10 to 30 K temperature range, (2) acquire the quantitative microgravity database required to provide confident engineering design, scaling, and optimization, (3) advance the enabling technologies and resolve integration issues, and (4) provide hardware qualification and safety verification heritage. BETSCE ground tests were the first-ever demonstration of a complete closed-cycle 10 K sorption cryocooler. Test results exceeded functional requirements. This paper summarizes functional and environmental ground test results, planned characterization tests, important development challenges that were overcome, and valuable lessons-learned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Dean
2013-11-01
Sandia National Laboratories has created a test protocol for IEC TR 61850-90-7 advanced distributed energy resource (DER) functions, titled "Test Protocols for Advanced Inverter Interoperability Functions," often referred to as the Sandia Test Protocols. This document is currently in draft form, but has been shared with stakeholders around the world with the ultimate goal of collaborating to create a consensus set of test protocols which can be then incorporated into an International Electrotechnical Commission (IEC) and/or Underwriters Laboratories (UL) certification standard. The protocols are designed to ensure functional interoperability of DER (primarily photovoltaic (PV) inverters and energy storage systems) asmore » specified by the IEC technical report through communication and electrical tests. In this report, Sandia exercises the electrical characterization portion of the test protocols for four functions: constant power factor (INV3), volt-var (VV11), frequency-watt (FW21), and Low and High Voltage Ride Through (L/HVRT). The goal of the tests reported here was not to characterize the performance of the equipment under test (EUT), but rather to (a) exercise the draft Sandia Test Protocols in order to identify any revisions needed in test procedures, conditions, or equipment and (b) gain experience with state-of-the-art DER equipment to determine if the tests put unrealistic or overly aggressive requirements on EUT operation. In performing the work according to the current versions of the protocols, Sandia was able to identify weaknesses in the current versions and suggest improvements to the test protocols.« less
ERIC Educational Resources Information Center
Alain, Claude; Campeanu, Sandra; Tremblay, Kelly
2010-01-01
Perceptual learning is sometimes characterized by rapid improvements in performance within the first hour of training (fast perceptual learning), which may be accompanied by changes in sensory and/or response pathways. Here, we report rapid physiological changes in the human auditory system that coincide with learning during a 1-hour test session…
NASA Technical Reports Server (NTRS)
1979-01-01
Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.
Geotechnical characterization of a Municipal Solid Waste Incineration Ash from a Michigan monofill.
Zekkos, Dimitrios; Kabalan, Mohammad; Syal, Sita Marie; Hambright, Matt; Sahadewa, Andhika
2013-06-01
A field and laboratory geotechnical characterization study of a Municipal Solid Waste Incineration Ash disposed of at the Carleton Farms monofill in Michigan was performed. Field characterization consisted of field observations, collection of four bulk samples and performance of shear wave velocity measurements at two locations. Laboratory characterization consisted of basic geotechnical characterization, i.e., grain size distribution, Atterberg limits, specific gravity tests, compaction tests as well as moisture and organic content assessment followed by direct shear and triaxial shear testing. The test results of this investigation are compared to results in the literature. The grain size distribution of the samples was found to be very similar and consistent with the grain size distribution data available in the literature, but the compaction characteristics were found to vary significantly. Specific gravities were also lower than specific gravities of silicic soils. Shear strengths were higher than typically reported for sandy soils, even for MSWI ash specimens at a loose state. Strain rate was not found to impact the shear resistance. Significant differences in triaxial shear were observed between a dry and a saturated specimen not only in terms of peak shear resistance, but also in terms of stress-strain response. In situ shear wave velocities ranged from 500 to 800 m/s at a depth of about 8m, to 1100-1200 m/s at a depth of 50 m. These high shear wave velocities are consistent with field observations indicating the formation of cemented blocks of ash with time, but this "ageing" process in MSWI ash is still not well understood and additional research is needed. An improved understanding of the long-term behavior of MSWI ash, including the effects of moisture and ash chemical composition on the ageing process, as well as the leaching characteristics of the material, may promote unbound utilization of the ash in civil infrastructure. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Yanle, E-mail: Hu.Yanle@mayo.edu; Rankine, Leith; Green, Olga L.
Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm{sup 3} spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identifiedmore » around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19.11, and 22.22 ppm, respectively, using the field camera method over the 45 cm DSV. Conclusions: The onboard imaging unit of the first commercial MR-IGRT system meets ACR, NEMA, and vendor specifications.« less
Hu, Yanle; Rankine, Leith; Green, Olga L; Kashani, Rojano; Li, H Harold; Li, Hua; Nana, Roger; Rodriguez, Vivian; Santanam, Lakshmi; Shvartsman, Shmaryu; Victoria, James; Wooten, H Omar; Dempsey, James F; Mutic, Sasa
2015-10-01
To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm(3) spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19.11, and 22.22 ppm, respectively, using the field camera method over the 45 cm DSV. The onboard imaging unit of the first commercial MR-IGRT system meets ACR, NEMA, and vendor specifications.
Characterization of cell cultures in contact with different orthopedic implants biomaterials
NASA Astrophysics Data System (ADS)
Ouenzerfi, G.; Hannoun, A.; Hassler, M.; Brizuela, L.; Youjil, S.; Bougault, C.; Trunfio-Sfarghiu, A.-M.
2016-08-01
The aim of this study is to identify the role of biological and mechanical constraints (at the cellular level) surrounding living tissues (cartilage and bone) in the presence of different joint implant biomaterials. In this fact, cells cultures in the presence of different types of biomaterials (pyrolytic carbon, cobalt-Chromium, titanium) has been performed. These cell cultures were subjected to biological characterization tests and mechanical characterization. The obtained results correlate with the in vivo observations (a promotion of the creation of a neocartilagical tissue in contact with the Pyrolytic Carbon implants).
Matrix Characterization and Development for the Vacuum Assisted Resin Transfer Molding Process
NASA Technical Reports Server (NTRS)
Grimsley, B. W.; Hubert, P.; Hou, T. H.; Cano, R. J.; Loos, A. C.; Pipes, R. B.
2001-01-01
The curing kinetics and viscosity of an epoxy resin system, SI-ZG-5A, have been characterized for application in the vacuum assisted resin transfer molding (VARTM) process. Impregnation of a typical carbon fiber perform provided the test bed for the characterization. Process simulations were carried out using the process model, COMPRO, to examine heat transfer and curing kinetics for a fully impregnated panel, neglecting resin flow. The predicted viscosity profile and final degree of cure were found to be in good agreement with experimental observations.
Mate and Dart: An Instrument Package for Characterizing Solar Energy and Atmospheric Dust on Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Baraona, Cosmo
2000-01-01
The MATE (Mars Array Technology Experiment) and DART (Dust Accumulation and Removal Test) instruments were developed to fly as part of the Mars ISPP Precursor (MIP) experiment on the (now postponed) Mars-2001 Surveyor Lander. MATE characterizes the solar energy reaching the surface of Mars, and measures the performance and degradation of solar cells under Martian conditions. DART characterizes the dust environment of Mars, measures the effect of settled dust on solar arrays, and investigates methods to mitigate power loss due to dust accumulation.
Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite
NASA Technical Reports Server (NTRS)
Yoon, K. J.; Sun, C. T.
1991-01-01
The elastic-viscoplastic properties of an AS4/PEEK (APC-2) thermoplastic composite were characterized at 24 C (75 F) and 121 C (250 F) by using a one-parameter viscoplasticity model. To determine the strain-rate effects, uniaxial tension tests were performed on unidirectional off-axis coupon specimens with different monotonic strain rates. A modified Bodner and Partom's model was also used to describe the viscoplasticity of the thermoplastic composite. The experimental results showed that viscoplastic behavior can be characterized quite well using the one-parameter overstress viscoplasticity model.
WRAP-RIB antenna technology development
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Garcia, N. F.; Iwamoto, H.
1985-01-01
The wrap-rib deployable antenna concept development is based on a combination of hardware development and testing along with extensive supporting analysis. The proof-of-concept hardware models are large in size so they will address the same basic problems associated with the design fabrication, assembly and test as the full-scale systems which were selected to be 100 meters at the beginning of the program. The hardware evaluation program consists of functional performance tests, design verification tests and analytical model verification tests. Functional testing consists of kinematic deployment, mesh management and verification of mechanical packaging efficiencies. Design verification consists of rib contour precision measurement, rib cross-section variation evaluation, rib materials characterizations and manufacturing imperfections assessment. Analytical model verification and refinement include mesh stiffness measurement, rib static and dynamic testing, mass measurement, and rib cross-section characterization. This concept was considered for a number of potential applications that include mobile communications, VLBI, and aircraft surveillance. In fact, baseline system configurations were developed by JPL, using the appropriate wrap-rib antenna, for all three classes of applications.
Dyck, Peter J; Kincaid, John C; Dyck, P James B; Chaudhry, Vinay; Goyal, Namita A; Alves, Christina; Salhi, Hayet; Wiesman, Janice F; Labeyrie, Celine; Robinson-Papp, Jessica; Cardoso, Márcio; Laura, Matilde; Ruzhansky, Katherine; Cortese, Andrea; Brannagan, Thomas H; Khoury, Julie; Khella, Sami; Waddington-Cruz, Márcia; Ferreira, João; Wang, Annabel K; Pinto, Marcus V; Ayache, Samar S; Benson, Merrill D; Berk, John L; Coelho, Teresa; Polydefkis, Michael; Gorevic, Peter; Adams, David H; Plante-Bordeneuve, Violaine; Whelan, Carol; Merlini, Giampaolo; Heitner, Stephen; Drachman, Brian M; Conceição, Isabel; Klein, Christopher J; Gertz, Morie A; Ackermann, Elizabeth J; Hughes, Steven G; Mauermann, Michelle L; Bergemann, Rito; Lodermeier, Karen A; Davies, Jenny L; Carter, Rickey E; Litchy, William J
2017-11-01
Polyneuropathy signs (Neuropathy Impairment Score, NIS), neurophysiologic tests (m+7 Ionis ), disability, and health scores were assessed in baseline evaluations of 100 patients entered into an oligonucleotide familial amyloidotic polyneuropathy (FAP) trial. We assessed: (1) Proficiency of grading neurologic signs and correlation with neurophysiologic tests, and (2) clinometric performance of modified NIS+7 neurophysiologic tests (mNIS+7 Ionis ) and its subscores and correlation with disability and health scores. The mNIS+7 Ionis sensitively detected, characterized, and broadly scaled diverse polyneuropathy impairments. Polyneuropathy signs (NIS and subscores) correlated with neurophysiology tests, disability, and health scores. Smart Somatotopic Quantitative Sensation Testing of heat as pain 5 provided a needed measure of small fiber involvement not adequately assessed by other tests. Specially trained neurologists accurately assessed neuropathy signs as compared to referenced neurophysiologic tests. The score, mNIS+7 Ionis , broadly detected, characterized, and scaled polyneuropathy abnormality in FAP, which correlated with disability and health scores. Muscle Nerve 56: 901-911, 2017. © 2017 Wiley Periodicals, Inc.
Rajagopal, Rajinikanth; Béline, Fabrice
2011-05-01
This study aimed to develop a biochemical-test mainly to evaluate the hydrolytic-potential of different substrates and to apply this test to characterize various organic substrates. Outcome of this study can be used for optimization of the WWTPs through enhancement of N/P removal or anaerobic digestion. Out of four series of batch experiments, the first two tests were conducted to determine the optimal operating conditions (test duration, inoculum-ratio etc.) for the hydrolytic-potential test using secondary and synthetically-prepared sludges. Based on the results (generation of CODs, pH and VFA), test duration was fixed between 6 and 7d allowing to attain maximum hydrolysis and to avoid methanogenesis. Effect of inoculum-ratios on acid fermentation of sludge was not significantly noticed. Using this methodology, third and fourth tests were performed to characterize various organic substrates namely secondary, pre-treated sludge, pig and two different cattle slurries. VFA production was shown to be substantially dependent on substrates types. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of advanced fuel cell system, phase 2
NASA Technical Reports Server (NTRS)
Handley, L. M.; Meyer, A. P.; Bell, W. F.
1973-01-01
A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milewski, John O; Bernal, John E
2009-01-01
Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts inmore » testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.« less
Development of a Fluid Structures Interaction Test Technique for Fabrics
NASA Technical Reports Server (NTRS)
Zilliac, Gregory G.; Heineck, James T.; Schairer, Edward T.; Mosher, Robert N.; Garbeff, Theodore Joseph
2012-01-01
Application of fluid structures interaction (FSI) computational techniques to configurations of interest to the entry, descent and landing (EDL) community is limited by two factors - limited characterization of the material properties for fabrics of interest and insufficient experimental data to validate the FSI codes. Recently ILC Dover Inc. performed standard tests to characterize the static stress-strain response of four candidate fabrics for use in EDL applications. The objective of the tests described here is to address the need for a FSI dataset for CFD validation purposes. To reach this objective, the structural response of fabrics was measured in a very simple aerodynamic environment with well controlled boundary conditions. Two test series were undertaken. The first series covered a range of tunnel conditions and the second focused on conditions that resulted in fabric panel buckling.
Pilot, a balloon borne experiment underground tests
NASA Astrophysics Data System (ADS)
Engel, C.; Marty, C.; Mot, B.; Bernard, J.-Ph.; Ristorcelli, I.; Otrio, G.; Leriche, B.; Longval, Y.; Pajot, F.; Roudil, G.; Caillat, A.; Dubois, J. P.; Bouzit, M.; Buttice, V.; Camus, T.
2017-11-01
PILOT is a balloon borne experiment, which will measure the polarized emission of dust grains, in the interstellar medium, in the sub millimeter range (with two photometric channels centered at 240 and 550 μm). The primary and secondary mirror must be positioned with accuracies better than 0.6 mm and 0.06°. These tolerances include environmental conditions (mainly gravity and thermo-elastic effects), uncertainties on alignments, and uncertainties on the dilatation coefficient. In order to respect these tolerances, we need precise characterization of each optical component. The characterization of the primary mirror and the integrated instrument is performed using a dedicated submillimeter test bench. A brief description of the scientific objectives and instrumental concept is given in the first part. We present, in the second and in the third part, the status of these ground tests, first results and planned tests.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... Discharge Elimination System (NPDES) program, issue permits with conditions designed to ensure compliance... completion of a full inter-laboratory validation study designed to fully characterize the performance of...
VHF Data Link Communication Characteristics
DOT National Transportation Integrated Search
1977-11-01
This report describes the results of a series of laboratory, field, and flight test experiments designed to characterize the performance of current VHF communication equipment and the VHF channel relative to the communication of digital data in the A...
Characterization of the IXV Thermal Protection System in High Enthalphy Plasma Flow
NASA Astrophysics Data System (ADS)
Panerai, F.; Helber, B.; Sakraker, I.; Chazot, O.; Pichon, T.; Barreteau, R.; Tribot, J. P.; Vallee, J. J.; Mareschi, V.; Ferrarella, D.; Rufolo, G.; Mancuso, S.
2011-05-01
An experimental campaign dedicated to the characterization of Intermediate eXperimental Vehicle thermal protection system is performed in the Plasmatron wind tunnel at the von Karman Institute for Fluid Dynamics. Emissivity and catalycity properties for representative ceramic specimens are determined under a wide set of operating conditions in order to reproduce the reentry flight trajectory. Intrusive measurements for flow characterization are used together with optical infrared techniques that provide diagnostic of the test articles surface. Experimental data are postprocessed by means of numerical simulations that allow flow enthalpy rebuilding and characterization of the chemical environment for the different conditions investigated.
Characterizing performance of ultra-sensitive accelerometers
NASA Technical Reports Server (NTRS)
Sebesta, Henry
1990-01-01
An overview is given of methodology and test results pertaining to the characterization of ultra sensitive accelerometers. Two issues are of primary concern. The terminology ultra sensitive accelerometer is used to imply instruments whose noise floors and resolution are at the state of the art. Hence, the typical approach of verifying an instrument's performance by measuring it with a yet higher quality instrument (or standard) is not practical. Secondly, it is difficult to find or create an environment with sufficiently low background acceleration. The typical laboratory acceleration levels will be at several orders of magnitude above the noise floor of the most sensitive accelerometers. Furthermore, this background must be treated as unknown since the best instrument available is the one to be tested. A test methodology was developed in which two or more like instruments are subjected to the same but unknown background acceleration. Appropriately selected spectral analysis techniques were used to separate the sensors' output spectra into coherent components and incoherent components. The coherent part corresponds to the background acceleration being measured by the sensors being tested. The incoherent part is attributed to sensor noise and data acquisition and processing noise. The method works well for estimating noise floors that are 40 to 50 dB below the motion applied to the test accelerometers. The accelerometers being tested are intended for use as feedback sensors in a system to actively stabilize an inertial guidance component test platform.
Development and experimental characterization of a new non contact sensor for blade tip timing
NASA Astrophysics Data System (ADS)
Brouckaert, Jean-Francois; Marsili, Roberto; Rossi, Gianluca; Tomassini, Roberto
2012-06-01
Performances of blade tip timing measurement systems (BTT), recently used for non contact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics. The sensors used for BTT generate pulses, to be used also for precise measurements of turbine blades time of arrival. All the literature on this measurement techniques do not address this problem in a clear way, defining the relevant dynamic and static sensor characteristics, fundamental for this application. Till now proximity sensors used are based on optical, capacitive, eddy current and microwave measuring principle. Also pressure sensors has been used. In this paper a new sensing principle is proposed. A proximity sensor based on magnetoresistive sensing element has been assembled end tested. A simple and portable test bench with variable speed, blade tip width, variable clearance was built and used in order to characterize the main sensor performances.
NASA Astrophysics Data System (ADS)
Bandi, T.; Shea, H.; Neels, A.
2014-06-01
The performance and aging of MEMS often rely on the stability of the mechanical properties over time and under harsh conditions. An overview is given on methods to investigate small variations of the mechanical properties of structural MEMS materials by functional characterization, high-resolution x-ray diffraction methods (HR-XRD) and environmental testing. The measurement of the dynamical properties of micro-resonators is a powerful method for the investigation of elasticity variations in structures relevant to microtechnology. X-ray diffraction techniques are used to analyze residual strains and deformations with high accuracy and in a non-destructive manner at surfaces and in buried micro-structures. The influence of elevated temperatures and radiation damage on the performance of resonant microstructures with a focus on quartz and single crystal silicon is discussed and illustrated with examples including work done in our laboratories at CSEM and EPFL.
Characterization of Settled Atmospheric Dust by the DART Experiment
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Jenkins, Phillip P.; Baraona, Cosmo
1999-01-01
The DART ("Dust Accumulation and Removal Test") package is an experiment which will fly as part of the MIP experiment on the Mars-2001 Surveyor Lander. Dust deposition could be a significant problem for photovoltaic array operation for long duration emissions on the surface of Mars. Measurements made by Pathfinder showed 0.3% loss of solar array performance per day due to dust obscuration. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on the array performance, and test several methods of mitigating the effect of settled dust on a solar array. Although the purpose of DART (along with its sister experiment, MATE) is to gather information critical to the design of future power systems on the surface of Mars, the dust characterization instrumentation on DART will also provide significant scientific data on the properties of settled atmospheric dust.
6DOF Testing of the SLS Inertial Navigation Unit
NASA Technical Reports Server (NTRS)
Geohagan, Kevin W.; Bernard, William P.; Oliver, T. Emerson; Strickland, Dennis J.; Leggett, Jared O.
2018-01-01
The Navigation System on the NASA Space Launch System (SLS) Block 1 vehicle performs initial alignment of the Inertial Navigation System (INS) navigation frame through gyrocompass alignment (GCA). In lieu of direct testing of GCA accuracy in support of requirement verification, the SLS Navigation Team proposed and conducted an engineering test to, among other things, validate the GCA performance and overall behavior of the SLS INS model through comparison with test data. This paper will detail dynamic hardware testing of the SLS INS, conducted by the SLS Navigation Team at Marshall Space Flight Center's 6DOF Table Facility, in support of GCA performance characterization and INS model validation. A 6-DOF motion platform was used to produce 6DOF pad twist and sway dynamics while a simulated SLS flight computer communicated with the INS. Tests conducted include an evaluation of GCA algorithm robustness to increasingly dynamic pad environments, an examination of GCA algorithm stability and accuracy over long durations, and a long-duration static test to gather enough data for Allan Variance analysis. Test setup, execution, and data analysis will be discussed, including analysis performed in support of SLS INS model validation.
JWST center of curvature test method and results
NASA Astrophysics Data System (ADS)
Saif, Babak; Chaney, David; Greenfield, Perry; Van Gorkom, Kyle; Brooks, Keira; Hack, Warren; Bluth, Marcel; Bluth, Josh; Sanders, James; Smith, Koby; Carey, Larkin; Chaung, Sze; Keski-Kuha, Ritva; Feinberg, Lee; Tournois, Severine; Smith, W. Scott; Kradinov, Vladimir
2017-09-01
The James Webb Space Telescope (JWST) recently saw the completion of the assembly process for the Optical Telescope Element and Integrated Science Instrument Module (OTIS). This integration effort was performed at Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. In conjunction with this assembly process a series of vibration and acoustic tests were performed. To help assure the telescope's primary mirror was not adversely impacted by this environmental testing an optical center of curvature (CoC) test was performed to measure changes in the mirror's optical performance. The primary is a 6.5 meter diameter mirror consisting of 18 individual hexagonal segments. Each segment is an off-axis asphere. There are a total of three prescriptions repeated six times each. As part of the CoC test each segment was individually measured using a high-speed interferometer (HSI) designed and built specifically for this test. This interferometer is capable of characterizing both static and dynamic characteristics of the mirrors. The latter capability was used, with the aid of a vibration stinger applying a low-level input force, to measure the dynamic characteristic changes of the PM backplane structure. This paper describes the CoC test setup, an innovative alignment method, and both static and dynamic test results.
Characterization of the Vectron PX-570 Crystal Oscillator for Use in Harsh Environments
NASA Technical Reports Server (NTRS)
Li, Jacob; Patterson, Richard L.; Hammoud, Ahmad
2012-01-01
Computing hardware, data-acquisition systems, communications systems, and many electronic control systems require well-controlled timing signals for proper and accurate operation. These signals are, in most cases, provided by circuits that employ crystal oscillators due to availability, cost, ease of operation, and accuracy. In some cases, the electronic systems are expected to survive and operate under harsh conditions that include exposure to extreme temperatures. These applications exist in terrestrial systems as well as in aerospace products. Well-logging, geothermal systems, and industrial process control are examples of ground-based applications, while distributed jet engine control in aircraft, space-based observatories (such as the James Webb Space Telescope), satellites, and lunar and planetary landers are typical environments where electronics are exposed to harsh operating conditions. To ensure these devices produce reliable results, the digital heartbeat from the oscillator must deliver a stable signal that is not affected by external temperature or other conditions. One such solution is a recently introduced commercial-off-the-shelf (COTS) oscillator, the PX-570 series from Vectron International. The oscillator was designed for high-temperature applications and as proof, the crystal oscillator was subjected to a wide suite of tests to determine its ruggedness for operation in harsh environments. The tests performed by Vectron included electrical characterization under wide range of temperature, accelerated life test/aging, shock and vibration, internal moisture analysis, ESD threshold, and latch-up testing. The parametric evaluation was performed on the oscillator's frequency, output signal rise and fall times, duty cycle, and supply current over the temperature range of -125 C to +230 C. The evaluations also determined the effects of thermal cycling and the oscillator's re-start capability at extreme hot and cold temperatures. These thermal cycling and restart tests were performed at the NASA Glenn Research Center. Overall, the crystal oscillator performed well and demonstrated very good frequency stability. This paper will discuss the test procedures and present details of the performance results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Andreas, A.; Ottoson, L.
2014-11-01
Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements ofmore » the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.« less
Characterization of flexible ECoG electrode arrays for chronic recording in awake rats
Yeager, John D.; Phillips, Derrick J.; Rector, David M.; Bahr, David F.
2008-01-01
We developed a 64 channel flexible polyimide ECoG electrode array and characterized its performance for long term implantation, chronic cortical recording and high resolution mapping of surface evoked potentials in awake rats. To achieve the longest possible recording periods, the flexibility of the electrode array, adhesion between the metals and carrier substrate, and biocompatibility was critical for maintaining the signal integrity. Experimental testing of thin film adhesion was applied to a gold – polyimide system in order to characterize relative interfacial fracture energies for several different adhesion layers, yielding an increase in overall device reliability. We tested several different adhesion techniques including: gold alone without an adhesion layer, titanium-tungsten, tantalum and chromium. We found the titanium-tungsten to be a suitable adhesion layer considering the biocompatibility requirements as well as stability and delamination resistance. While chromium and tantalum produced stronger gold adhesion, concerns over biocompatibility of these materials require further testing. We implanted the polyimide ECoG electrode arrays through a slit made in the skull of rats and recorded cortical surface evoked responses. The arrays performed reliably over a period of at least 100 days and signals compared well with traditional screw electrodes, with better high frequency response characteristics. Since the ultimate goal of chronically implanted electrode arrays is for neural prosthetic devices that need to last many decades, other adhesion layers that would prove safe for implantation may be tested in the same way in order to improve the device reliability. PMID:18640155
High Temperature Gas-Cooled Test Reactor Point Design: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville
2016-01-01
A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.
High Temperature Gas-Cooled Test Reactor Point Design: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville
2016-03-01
A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.
A DirtI Application for LBT Commissioning Campaigns
NASA Astrophysics Data System (ADS)
Borelli, J. L.
2009-09-01
In order to characterize the Gregorian focal stations and test the performance achieved by the Large Binocular Telescope (LBT) adaptive optics system, two infrared test cameras were constructed within a joint project between INAF (Observatorio Astronomico di Bologna, Italy) and the Max Planck Institute for Astronomy (Germany). Is intended here to describe the functionality and successful results obtained with the Daemon for the Infrared Test Camera Interface (DirtI) during commissioning campaigns.
Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts.
Tomlins, Peter H; Smith, Graham N; Woolliams, Peter D; Rasakanthan, Janarthanan; Sugden, Kate
2011-04-25
Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.
NASA Astrophysics Data System (ADS)
Paschero, Anna; McLoughlin, Eve; Moore, Eric
2011-06-01
This article examines some preliminary tests which were performed in order to evaluate the best electrode configuration (width and spacing) for cell culture analyses. Biochips packaged with indium tin oxide (ITO) interdigitated electrodes (IDEs) were used to perform impedance measurements on A549 cells cultured on the surface of the biochip. Several tests were carried out using a 10 mM solution of Sodium Chloride (NaCl), cell medium and the cell culture itself to characterize some of the configurations already fabricated in the facilities at Tyndall National Institute.
Wideband 1.064 micrometer detector evaluation. [for application to space laser communication systems
NASA Technical Reports Server (NTRS)
Green, S. I.
1977-01-01
Several types of communications detectors for use in a 400 Mbps 1.064 micrometer laser communication system were evaluated and characterized. The communication system Bit Error Rate (BER) performance was measured, and test results for the best detector of each type are summarized. The complete BER curves are presented. The 400 Mbps 1.064 micrometer communication system receiver test bed is described. The best performance levels which can be achieved by focusing the signal to diffraction limited spots on the photosensitive area are cited.
Nagaraja, Srinidhi; Di Prima, Matthew; Saylor, David; Takai, Erica
2017-08-01
In an effort to better understand current test practices and improve nonclinical testing of cardiovascular metallic implants, the Food and Drug Administration (FDA) held a public workshop on Cardiovascular Metallic Implants: corrosion, surface characterization, and nickel leaching. The following topics were discussed: (1) methods used for corrosion assessments, surface characterization techniques, and nickel leach testing of metallic cardiovascular implant devices, (2) the limitations of each of these in vitro tests in predicting in vivo performance, (3) the need, utility, and circumstances when each test should be considered, and (4) the potential testing paradigms, including acceptance criteria for each test. In addition to the above topics, best practices for these various tests were discussed, and knowledge gaps were identified. Prior to the workshop, discussants had the option to provide feedback and information on issues relating to each of the topics via a voluntary preworkshop assignment. During the workshop, the pooled responses were presented and a panel of experts discussed the results. This article summarizes the proceedings of this workshop and background information provided by workshop participants. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. J Biomed Mater Res Part B: Appl Biomater, 105B: 1330-1341, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.
2014-01-01
The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.
Rouger, Amélie; Remenant, Benoit; Prévost, Hervé; Zagorec, Monique
2017-04-17
Influenced by production and storage processes and by seasonal changes the diversity of meat products microbiota can be very variable. Because microbiotas influence meat quality and safety, characterizing and understanding their dynamics during processing and storage is important for proposing innovative and efficient storage conditions. Challenge tests are usually performed using meat from the same batch, inoculated at high levels with one or few strains. Such experiments do not reflect the true microbial situation, and the global ecosystem is not taken into account. Our purpose was to constitute live stocks of chicken meat microbiotas to create standard and reproducible ecosystems. We searched for the best method to collect contaminating bacterial communities from chicken cuts to store as frozen aliquots. We tested several methods to extract DNA of these stored communities for subsequent PCR amplification. We determined the best moment to collect bacteria in sufficient amounts during the product shelf life. Results showed that the rinsing method associated to the use of Mobio DNA extraction kit was the most reliable method to collect bacteria and obtain DNA for subsequent PCR amplification. Then, 23 different chicken meat microbiotas were collected using this procedure. Microbiota aliquots were stored at -80°C without important loss of viability. Their characterization by cultural methods confirmed the large variability (richness and abundance) of bacterial communities present on chicken cuts. Four of these bacterial communities were used to estimate their ability to regrow on meat matrices. Challenge tests performed on sterile matrices showed that these microbiotas were successfully inoculated and could overgrow the natural microbiota of chicken meat. They can therefore be used for performing reproducible challenge tests mimicking a true meat ecosystem and enabling the possibility to test the influence of various processing or storage conditions on complex meat matrices. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Birmele, Michele
2012-01-01
The International Space Station (ISS) is a closed environment wih rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to perform sample-to-answer testing with cell sample concentrations between SO to 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness, sample concentration needs were reviewed, and a competitive procurement of commercially available platforms was initiated.
Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics
NASA Technical Reports Server (NTRS)
Steven Snyder, John; Brophy, John R.
2004-01-01
Carbon-based ion optics have the potential to significantly increase the operable life and power ranges of ion thrusters because of reduced erosion rates compared to molybdenum optics. The development of 15-cm and larger diameter grids has encountered many problems, however, not the least of which is the ability to pass vibration testing. JPL has recently developed a new generation of 30-cm carbon-carbon ion optics in order to address these problems and demonstrate the viability of the technology. Perveance, electron backstreaming, and screen grid transparency data are presented for two sets of optics. Vibration testing was successfully performed on two different sets of ion optics with no damage and the results of those tests are compared to models of grid vibrational behavior. It will be shown that the vibration model is a conservative predictor of grid response and can accurately describe test results. There was no change in grid alignment as a result of vibration testing and a slight improvement, if any change at all, in optics performance.
McLaughlin, R. J.; Wilson, C. L.; Chalutz, E.; Kurtzman, C. P.; Fett, W. F.; Osman, S. F.
1990-01-01
In previous studies workers have shown that three yeast strains (strains US-7, 82, and 101) have biological control activity against various postharvest fungal pathogens of fruits and vegetables, including Penicillium rots of apples and citrus and Botrytis rot of apples. In these reports the researchers have described these strains as Debaryomyces hansenii (anamorph, Candida famata) or Candida sp. strains. In this study we performed additional physiological, DNA reassociation, and mannan characterization tests that clearly established a new taxonomic classification for these strains, Candida guilliermondii. We also propose amendment of the physiological test profile in the taxonomic description of C. guilliermondii. PMID:16348361
Modal survey of the space shuttle solid rocket motor using multiple input methods
NASA Technical Reports Server (NTRS)
Brillhart, Ralph; Hunt, David L.; Jensen, Brent M.; Mason, Donald R.
1987-01-01
The ability to accurately characterize propellant in a finite element model is a concern of engineers tasked with studying the dynamic response of the Space Shuttle Solid Rocket Motor (SRM). THe uncertainties arising from propellant characterization through specimem testing led to the decision to perform a model survey and model correlation of a single segment of the Shuttle SRM. Multiple input methods were used to excite and define case/propellant modes of both an inert segment and, later, a live propellant segment. These tests were successful at defining highly damped, flexible modes, several pairs of which occured with frequency spacing of less than two percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunshah, R.F.; Shabaik, A.H.
The process of Activated Reactive Evaporation is used to synthesize superhard materials like carbides, oxides, nitrides, ultrafine grain cermets. The deposits are characterized by hardness, microstructure and lattice parameter measurements. The synthesis and characterization of TiC-Ni cermets, Al/sub 2/O/sub 3/ and VC-TiC alloy carbides is given. Tools of different coating characteristics are tested for machining performance at different speeds and feeds. The machining evaluation and the selection of coatings is based on the rate of deterioration of the costing, tool temperature, and cutting forces. Tool life tests show coated high speed steel tools show a 300% improvement in tool life.more » (Author) (GRA)« less
Cadena, Natalia L; Cue-Sampedro, Rodrigo; Siller, Héctor R; Arizmendi-Morquecho, Ana M; Rivera-Solorio, Carlos I; Di-Nardo, Santiago
2013-05-24
The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum-chromium-nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.
Cadena, Natalia L.; Cue-Sampedro, Rodrigo; Siller, Héctor R.; Arizmendi-Morquecho, Ana M.; Rivera-Solorio, Carlos I.; Di-Nardo, Santiago
2013-01-01
The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum–chromium–nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating. PMID:28809266
NASA Technical Reports Server (NTRS)
Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; Label, Kenneth A.; Ladbury, Raymond L.; Mondy, Timothy K.; O'Bryan, Martha V.;
2017-01-01
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose.
[The development of an oral biomechanical testing instrument].
Zhang, X H; Sun, X D; Lin, Z
2000-03-01
An oral biomechanical testing instrument, which is portable, powered with batteries and controlled by single chip microcomputer, was described. The instrument was characterized by its multichannel, high accuracy, low power dissipation, wide rage of force measurement and stable performance. It can be used for acquisiting, displaying and storing data. And it may be expected to be an ideal instrument for oral biomechanical measurements.
Characterization Tests of WFC3 Filters
NASA Technical Reports Server (NTRS)
Baggett, S.; Boucarut, R.; Telfer, R.; Quijano, J. Kim; Quijada, M.; Arsenovic, P.; Brown, T.; Dailey, M.; Figer, D.; Hilbert, B.
2006-01-01
The WFC3 instrument to be installed on HST during the next servicing mission consists of a UVIS and an IR channel. Each channel is allocated its own complement of filters: 48 elements for the UVIS (42 filters, 5 quads, and 1 UV grism) and 17 slots for the IR (15 filters and 2 grisms). While a majority of the UVIS filters exhibit excellent performance consistent with or exceeding expectations, a subset show significant filter ghosts. Procurement of improved replacement filters is in progress and a summary of the characterization tests being performed on the new filters is presented. In the IR channel, while no filter ghosting was detected in any of the filters during thermal vacuum testing, the grisms were found to be installed incorrectly; they have been removed and will be reinstalled. In addition, due to the significantly improved response blueward of 800nm expected in the new substrate-removed IR detector (see Invited talk by R.A.Kimble, this volume), two IR filters originally constructed on a fused silica substrate are being remade using an IR transmitting color glass to block any visible light transmission. Tests of the new IR filters and preparations for the grism reinstallation are summarized
NASA GRC Technology Development Project for a Stirling Radioisotope Power System
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2000-01-01
NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.
Korać, R; Krajišnik, D; Milić, J
2016-06-01
The aim of this study was to perform short-term sensory testing and instrumental (conductivity and rheological) characterization of a fast inverted oil-in-water (o/w) emulsion base, also known as a SWOP (Switch-Oil-Phase) emulsion, and reference o/w and water-in-oil (w/o) emulsion bases under various testing conditions: in the presence of ions and at different temperatures. SWOP emulsions are known as metastable o/w emulsions, which invert into w/o emulsions on application of mechanical energy, while rubbing it onto the skin and due to their properties SWOP emulsion are especially suitable as a cosmetic vehicle in, for example, sun-protection products. Sensory testing, which included the evaluation of twenty attributes of the investigated emulsion bases, was performed by a panel of 20 healthy assessors experienced in the evaluation of cosmetic products. Rheological characterization of the investigated emulsion bases included continuous flow testing and oscillatory measurements under various testing conditions. Additionally, conductivity measurements were combined with rheological characterization to monitor stability changes of investigated emulsions. The instrumental and sensory results were analysed statistically and compared. The obtained results indicated that the investigated emulsions behaved differently in the presence of ions (originating from artificial sweat solution) and at different temperatures (under storage and application conditions). Namely, the SWOP emulsion showed similar behaviour to the reference o/w emulsion under storage conditions, but in the presence of ions and at skin temperature, the SWOP emulsion was followed by re-establishment of a stable w/o system, whereas reference o/w emulsion was irreversibly destroyed. The statistical analysis of chosen sensorial attributes indicated that the reference w/o emulsion was significantly different in comparison with the reference o/w and SWOP emulsions, mainly, standing in good agreement with the results of rheological characterization. The study showed that rheological measurements potentially could be related to certain sensory attributes and used for faster development of SWOP emulsions in the future. Finally, SWOP emulsions should be considered for further investigation as suitable vehicles in cosmetic products due to their favourable physicochemical and sensory characteristics which could be partially predicted with instrumental characterization. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Technical Reports Server (NTRS)
Kast, Timothy P.; Nacheff-Benedict, Maurena S.; Chang, Craig H.; Cusick, Robert J.
1990-01-01
Characterization of the performance of a silver-oxide-based absorbent in terms of its ability to remove both gaseous CO2 and water vapor in an astronaut portable life support systems (PLSS) is discussed. Attention is focused on regeneration of the absorbent from the carbonite state of the oxide state, preconditioning of the absorbent using a humidified gas stream, and absorption breakthrough testing. Based on the results of bench-scale experiments, a test plan is carried out to further characterize the silver-oxide-based absorbent on a larger scale; it calls for examination of the absorbent in both an adiabatic packed bed and a near-isothermal cooled bed configuration. It is demonstrated that the tested absorbent can be utilized in a way that removes substantial amounts of CO2 and water vapor during an 8-hour extravehicular activity mission, and that applying the absorbent to PLSS applications can simplify the ventilation loop.
NASA Astrophysics Data System (ADS)
Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.
2018-02-01
A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.
2008-01-01
Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.
Dynamic Simulation of VEGA SRM Bench Firing By Using Propellant Complex Characterization
NASA Astrophysics Data System (ADS)
Di Trapani, C. D.; Mastrella, E.; Bartoccini, D.; Squeo, E. A.; Mastroddi, F.; Coppotelli, G.; Linari, M.
2012-07-01
During the VEGA launcher development, from the 2004 up to now, 8 firing tests have been performed at Salto di Quirra (Sardinia, Italy) and Kourou (Guyana, Fr) with the objective to characterize and qualify of the Zefiros and P80 Solid Rocket Motors (SRM). In fact the VEGA launcher configuration foreseen 3 solid stages based on P80, Z23 and Z9 Solid Rocket Motors respectively. One of the primary objectives of the firing test is to correctly characterize the dynamic response of the SRM in order to apply such a characterization to the predictions and simulations of the VEGA launch dynamic environment. Considering that the solid propellant is around 90% of the SRM mass, it is very important to dynamically characterize it, and to increase the confidence in the simulation of the dynamic levels transmitted to the LV upper part from the SRMs. The activity is articulated in three parts: • consolidation of an experimental method for the dynamic characterization of the complex dynamic elasticity modulus of elasticity of visco-elastic materials applicable to the SRM propellant operative conditions • introduction of the complex dynamic elasticity modulus in a numerical FEM benchmark based on MSC NASTRAN solver • analysis of the effect of the introduction of the complex dynamic elasticity modulus in the Zefiros FEM focusing on experimental firing test data reproduction with numerical approach.
Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Shirk; Jeffrey Wishart
2015-04-01
As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, andmore » at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.« less
Thermal Protection Materials and Systems: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2013-01-01
Thermal protection materials and systems (TPS) protect vehicles from the heat generated when entering a planetary atmosphere. NASA has developed many TPS systems over the years for vehicle ranging from planetary probes to crewed vehicles. The goal for all TPS is efficient and reliable performance. Efficient means using the right material for the environment and minimizing the mass of the heat shield without compromising safety. Efficiency is critical if the payload such as science experiments is to be maximized on a particular vehicle. Reliable means that we understand and can predict performance of the material. Although much characterization and testing of materials is performed to qualify and certify them for flight, it is not possible to completely recreate the reentry conditions in test facilities, and flight-testing
Development and Evaluation of TiAl Sheet Structures for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Draper, S. L.; Krause, D.; Lerch, B.; Locci, I. E.; Doehnert, B.; Nigam, R.; Das, G.; Sickles, P.; Tabernig, B.; Reger, N.;
2007-01-01
A cooperative program between the National Aeronautics and Space Administration (NASA), the Austrian Space Agency (ASA), Pratt & Whitney, Engineering Evaluation and Design, and Plansee AG was undertaken to determine the feasibility of achieving significant weight reduction of hypersonic propulsion system structures through the utilization of TiAl. A trade study defined the weight reduction potential of TiAl technologies as 25 to 35 percent compared to the baseline Ni-base superalloy for a stiffener structure in an inlet, combustor, and nozzle section of a hypersonic scramjet engine (ref. 1). A scramjet engine inlet cowl flap was designed, along with a representative subelement, using design practices unique to TiAl. A sub-element was fabricated and tested to assess fabricability and structural performance and validate the design system. The TiAl alloy selected was Plansee's third generation alloy Gamma Met PX (Plansee AG ), a high temperature, high strength gamma-TiAl alloy with high Nb content (refs. 2 and 3). Characterization of Gamma Met PX sheet, including tensile, creep, and fatigue testing was performed. Additionally, design-specific coupons were fabricated and tested in order to improve subelement test predictions. Based on the sheet characterization and results of the coupon tests, the subelement failure location and failure load were accurately predicted.
NASA Technical Reports Server (NTRS)
Saunders, J. D.; Stueber, T. J.; Thomas, S. R.; Suder, K. L.; Weir, L. J.; Sanders, B. W.
2012-01-01
Status on an effort to develop Turbine Based Combined Cycle (TBCC) propulsion is described. This propulsion technology can enable reliable and reusable space launch systems. TBCC propulsion offers improved performance and safety over rocket propulsion. The potential to realize aircraft-like operations and reduced maintenance are additional benefits. Among most the critical TBCC enabling technologies are: 1) mode transition from turbine to scramjet propulsion, 2) high Mach turbine engines and 3) TBCC integration. To address these TBCC challenges, the effort is centered on a propulsion mode transition experiment and includes analytical research. The test program, the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE LIMX), was conceived to integrate TBCC propulsion with proposed hypersonic vehicles. The goals address: (1) dual inlet operability and performance, (2) mode-transition sequences enabling a switch between turbine and scramjet flow paths, and (3) turbine engine transients during transition. Four test phases are planned from which a database can be used to both validate design and analysis codes and characterize operability and integration issues for TBCC propulsion. In this paper we discuss the research objectives, features of the CCE hardware and test plans, and status of the parametric inlet characterization testing which began in 2011. This effort is sponsored by the NASA Fundamental Aeronautics Hypersonics project
NASA Astrophysics Data System (ADS)
Nascimento, Luis Alberto Herrmann do
This dissertation presents the implementation and validation of the viscoelastic continuum damage (VECD) model for asphalt mixture and pavement analysis in Brazil. It proposes a simulated damage-to-fatigue cracked area transfer function for the layered viscoelastic continuum damage (LVECD) program framework and defines the model framework's fatigue cracking prediction error for asphalt pavement reliability-based design solutions in Brazil. The research is divided into three main steps: (i) implementation of the simplified viscoelastic continuum damage (S-VECD) model in Brazil (Petrobras) for asphalt mixture characterization, (ii) validation of the LVECD model approach for pavement analysis based on field performance observations, and defining a local simulated damage-to-cracked area transfer function for the Fundao Project's pavement test sections in Rio de Janeiro, RJ, and (iii) validation of the Fundao project local transfer function to be used throughout Brazil for asphalt pavement fatigue cracking predictions, based on field performance observations of the National MEPDG Project's pavement test sections, thereby validating the proposed framework's prediction capability. For the first step, the S-VECD test protocol, which uses controlled-on-specimen strain mode-of-loading, was successfully implemented at the Petrobras and used to characterize Brazilian asphalt mixtures that are composed of a wide range of asphalt binders. This research verified that the S-VECD model coupled with the GR failure criterion is accurate for fatigue life predictions of Brazilian asphalt mixtures, even when very different asphalt binders are used. Also, the applicability of the load amplitude sweep (LAS) test for the fatigue characterization of the asphalt binders was checked, and the effects of different asphalt binders on the fatigue damage properties of the asphalt mixtures was investigated. The LAS test results, modeled according to VECD theory, presented a strong correlation with the asphalt mixtures' fatigue performance. In the second step, the S-VECD test protocol was used to characterize the asphalt mixtures used in the 27 selected Fundao project test sections and subjected to real traffic loading. Thus, the asphalt mixture properties, pavement structure data, traffic loading, and climate were input into the LVECD program for pavement fatigue cracking performance simulations. The simulation results showed good agreement with the field-observed distresses. Then, a damage shift approach, based on the initial simulated damage growth rate, was introduced in order to obtain a unique relationship between the LVECD-simulated shifted damage and the pavement-observed fatigue cracked areas. This correlation was fitted to a power form function and defined as the averaged reduced damage-to-cracked area transfer function. The last step consisted of using the averaged reduced damage-to-cracked area transfer function that was developed in the Fundao project to predict pavement fatigue cracking in 17 National MEPDG project test sections. The procedures for the material characterization and pavement data gathering adopted in this step are similar to those used for the Fundao project simulations. This research verified that the transfer function defined for the Fundao project sections can be used for the fatigue performance predictions of a wide range of pavements all over Brazil, as the predicted and observed cracked areas for the National MEPDG pavements presented good agreement, following the same trends found for the Fundao project pavement sites. Based on the prediction errors determined for all 44 pavement test sections (Fundao and National MEPDG test sections), the proposed framework's prediction capability was determined so that reliability-based solutions can be applied for flexible pavement design. It was concluded that the proposed LVECD program framework has very good fatigue cracking prediction capability.
Progress of Ongoing NASA Lithium-Ion Cell Verification Testing for Aerospace Applications
NASA Technical Reports Server (NTRS)
McKissock, Barbara I.; Manzo, Michelle A.; Miller, Thomas B.; Reid, Concha M.; Bennett, William R.; Gemeiner, Russel
2008-01-01
A Lithium-ion Verification and Validation Program with the purpose to assess the capabilities of current aerospace lithium-ion (Li-ion) battery cells to perform in a low-earth-orbit (LEO) regime was initiated in 2002. This program involves extensive characterization and LEO life testing at ten different combinations of depth-of-discharge, temperature, and end-of-charge voltage. The test conditions selected for the life tests are defined as part of a statistically designed test matrix developed to determine the effects of operating conditions on performance and life of Li-ion cells. Results will be used to model and predict cell performance and degradation as a function of test operating conditions. Testing is being performed at the Naval Surface Warfare Center/Crane Division in Crane, Indiana. Testing was initiated in September 2004 with 40 Ah cells from Saft and 30 Ah cells from Lithion. The test program has been expanded with the addition of modules composed of 18650 cells from ABSL Power Solutions in April 2006 and the addition of 50 Ah cells from Mine Safety Appliances Co. (MSA) in June 2006. Preliminary results showing the average voltage and average available discharge capacity for the Saft and Lithion packs at the test conditions versus cycles are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiaro, PJ
The Environmental Effects Laboratory of the Engineering Science and Technology Division of Oak Ridge National Laboratory performed a series of tests to further evaluate and characterize the radiological response of a ''Cricket'' radiation detection system. The Cricket, manufactured by Rad/Comm Systems Corporation of Ontario, Canada, is designed to detect radioactive material that may be contained in scrap metal. The Cricket's detection unit is designed to be mounted to the base of a grappler, allowing it to monitor material while the material is being held by the grappler tines. The Cricket was tested for background stability, energy response, spherical response, surfacemore » uniformity, angular dependence, and alarm actuation. Some of these tests were repeated from a prior test of a Cricket at the Environmental Effects Laboratory as reported in ORNL/TM-2002/94. Routine environmental tests--normal temperature and relatively humidity--were also performed as part of this testing process. Overall, the Cricket performed well during the testing process. The design of the instrument and the inherent photon energy of the radionuclides had some affect on portions of the tests but do not detract from the value-added benefits of the Cricket's detection capabilities.« less
Focal plane alignment and detector characterization for the Subaru prime focus spectrograph
NASA Astrophysics Data System (ADS)
Hart, Murdock; Barkhouser, Robert H.; Carr, Michael; Golebiowski, Mirek; Gunn, James E.; Hope, Stephen C.; Smee, Stephen A.
2014-07-01
We describe the infrastructure being developed to align and characterize the detectors for the Subaru Measure- ment of Images and Redshifts (SuMIRe) Prime Focus Spectrograph (PFS). PFS will employ four three-channel spectrographs with an operating wavelength range of 3800 °A to 12600 °A. Each spectrograph will be comprised of two visible channels and one near infrared (NIR) channel, where each channel will use a separate Schmidt camera to image the captured spectra onto their respective detectors. In the visible channels, Hamamatsu 2k × 4k CCDs will be mounted in pairs to create a single 4k × 4k detector, while the NIR channel will use a single Teledyne 4k × 4k H4RG HgCdTe device. The fast f/1.1 optics of the Schmidt cameras will give a shallow depth of focus necessitating an optimization of the focal plane array flatness. The minimum departure from flatness of the focal plane array for the visible channels is set the by the CCD flatness, typically 10 μm peak-to-valley. We will adjust the coplanarity for a pair of CCDs such that the flatness of the array is consistent with the flatness of the detectors themselves. To achieve this we will use an optical non-contact measurement system to measure surface flatness and coplanarity at both ambient and operating temperatures, and use shims to adjust the coplanarity of the CCDs. We will characterize the performance of the detectors for PFS consistent with the scientific goals for the project. To this end we will measure the gain, linearity, full well, quantum efficiency (QE), charge diffusion, charge transfer inefficiency (CTI), and noise properties of these devices. We also desire to better understand the non-linearity of the photon transfer curve for the CCDs, and the charge persistence/reciprocity problems of the HgCdTe devices. To enable the metrology and characterization of these detectors we are building two test cryostats nearly identical in design. The first test cryostat will primarily be used for the coplanarity measurements and sub- pixel illumination testing, and the second will be dedicated to performance characterization requiring at field illumination. In this paper we will describe the design of the test cryostats. We will also describe the system we have built for measuring focal plane array flatness, and examine the precision and error with which it operates. Finally we will detail the methods by which we plan to characterize the performance of the detectors for PFS, and provide preliminary results.
Uncertainties in Estimates of Fleet Average Fuel Economy : A Statistical Evaluation
DOT National Transportation Integrated Search
1977-01-01
Research was performed to assess the current Federal procedure for estimating the average fuel economy of each automobile manufacturer's new car fleet. Test vehicle selection and fuel economy estimation methods were characterized statistically and so...
WAVELENGTH AND ALIGNMENT TESTS FOR CONFOCAL SPECTRAL IMAGING SYSTEMS
Confocal spectral imaging (CSI) microscope systems now on the market delineate multiple fluorescent proteins, labels, or dyes within biological specimens by performing spectral characterizations. However, we find that some CSI present inconsistent spectral profiles of reference s...
An Overview of NPP VIIRS Pre-Launch and On-Orbit Calibration and Characterization
NASA Technical Reports Server (NTRS)
Butler, Jim; Gleason, Jim; Xiong, Jack; Chang, Vincent; Lee, Shih Yan
2011-01-01
NPP Visible Infrared Imaging Radiometer Suite (VIIRS) test program at the instrument and observatory level is complete and has provided an extensive amount of high quality data to enable the assessment of sensor performance.
Characterization of low-mass deformable mirrors and ASIC drivers for high-contrast imaging
NASA Astrophysics Data System (ADS)
Mejia Prada, Camilo; Yao, Li; Wu, Yuqian; Roberts, Lewis C.; Shelton, Chris; Wu, Xingtao
2017-09-01
The development of compact, high performance Deformable Mirrors (DMs) is one of the most important technological challenges for high-contrast imaging on space missions. Microscale Inc. has fabricated and characterized piezoelectric stack actuator deformable mirrors (PZT-DMs) and Application-Specific Integrated Circuit (ASIC) drivers for direct integration. The DM-ASIC system is designed to eliminate almost all cables, enabling a very compact optical system with low mass and low power consumption. We report on the optical tests used to evaluate the performance of the DM and ASIC units. We also compare the results to the requirements for space-based high-contrast imaging of exoplanets.
NASA Astrophysics Data System (ADS)
Giusi, Giovanni; Liu, Scige J.; Galli, Emanuele; Di Giorgio, Anna M.; Farina, Maria; Vertolli, Nello; Di Lellis, Andrea M.
2016-07-01
In this paper we present the results of a series of performance tests carried out on a prototype board mounting the Cobham Gaisler GR712RC Dual Core LEON3FT processor. The aim was the characterization of the performances of the dual core processor when used for executing a highly demanding lossless compression task, acting on data segments continuously copied from the static memory to the processor RAM. The selection of the compression activity to evaluate the performances was driven by the possibility of a comparison with previously executed tests on the Cobham/Aeroflex Gaisler UT699 LEON3FT SPARC™ V8. The results of the test activity have shown a factor 1.6 of improvement with respect to the previous tests, which can easily be improved by adopting a faster onboard board clock, and provided indications on the best size of the data chunks to be used in the compression activity.
The Statistical Loop Analyzer (SLA)
NASA Technical Reports Server (NTRS)
Lindsey, W. C.
1985-01-01
The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.
NASA Technical Reports Server (NTRS)
Tucker, T. K.
1989-01-01
Presented here are the results obtained from performance evaluation of a pair of Sigma Tau Standards Corporation Model VLBA-112 active hydrogen maser frequency standards. These masers were manufactured for the National Radio Astronomy Observatory (NRAO) for use on the Very Long Baseline Array (VLBA) project and were furnished to the Jet Propulsion Laboratory (JPL) for the purpose of these tests. Tests on the two masers were performed in the JPL Frequency Standards Laboratory (FSL) and included the characterization of output frequency stability versus environmental factors such as temperature, humidity, magnetic field, and barometric pressure. The performance tests also included the determination of phase noise and Allan variance using both FSL and Sigma Tau masers as references. All tests were conducted under controlled laboratory conditions, with only the desired environmental and operational parameters varied to determine sensitivity to external environment.
Comparison of Refractory Performance in Black Liquor Gasifiers and a Smelt Test System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peascoe, RA
2001-09-25
Prior laboratory corrosion studies along with experience at the black liquor gasifier in New Bern, North Carolina, clearly demonstrate that serious material problems exist with the gasifier's refractory lining. Mullite-based and alumina-based refractories used at the New Bern facility suffered significant degradation even though they reportedly performed adequately in smaller scale systems. Oak Ridge National Laboratory's involvement in the failure analysis, and the initial exploration of suitable replacement materials, led to the realization that a simple and reliable, complementary method for refractory screening was needed. The development of a laboratory test system and its suitability for simulating the environment ofmore » black liquor gasifiers was undertaken. Identification and characterization of corrosion products were used to evaluate the test system as a rapid screening tool for refractory performance and as a predictor of refractory lifetime. Results from the test systems and pl ants were qualitatively similar.« less
NASA TEERM Hexavalent Chrome Alternatives Projects
NASA Technical Reports Server (NTRS)
Kessel, Kurt; Rothgeb, Matt
2011-01-01
This slide presentation reviews the NASA project to select an alternative to hexavalent chrome in the aerospace industry. Included is a recent historic testing and research that the Agency has performed on (1) the external tank, (2) the shuttle orbiter, (3) the Shuttle Rocket Booster, and (4) the Space Shuttle Main Engine. Other related Technology Evaluation for Environmental Risk Mitigation (TEERM) projects are reviewed. The Phase I process of the project performed testing of alternatives the results are shown in a chart for different coating systems. International collaboration was also reviewed. Phase II involves further testing of pretreatment and primers for 6 and 12 months of exposure to conditions at Launch Pad and the beach. Further test were performed to characterize the life cycle corrosion of the space vehicles. A new task is described as a joint project with the Department of Defense to identify a Hex Chrome Free Coatings for Electronics.
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1988-01-01
The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions.
Comparing the field and laboratory emission cell (FLEC) with traditional emissions testing chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roache, N.F.; Guo, Z.; Fortmann, R.
1996-12-31
A series of tests was designed to evaluate the performance of the field and laboratory emission cell (FLEC) as applied to the testing of emissions from two indoor coating materials, floor wax and latex paint. These tests included validation of the repeatability of the test method, evaluation of the effect of different air velocities on source emissions, and a comparison of FLEC versus small chamber characterization of emissions. The FLEC exhibited good repeatability in characterization of emissions when applied to both sources under identical conditions. Tests with different air velocities showed significant effects on the emissions from latex paint, yetmore » little effect on emissions from the floor wax. Comparisons of data from the FLEC and small chamber show good correlation for measurements involving floor wax, but less favorable results for emissions from latex paint. The procedures and findings are discussed; conclusions are limited and include emphasis on the need for additional study and development of a standard method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michiels, Steven, E-mail: michiels.steven@kuleuven
Purpose: 3D printing technology is investigated for the purpose of patient immobilization during proton therapy. It potentially enables a merge of patient immobilization, bolus range shifting, and other functions into one single patient-specific structure. In this first step, a set of 3D printed materials is characterized in detail, in terms of structural and radiological properties, elemental composition, directional dependence, and structural changes induced by radiation damage. These data will serve as inputs for the design of 3D printed immobilization structure prototypes. Methods: Using four different 3D printing techniques, in total eight materials were subjected to testing. Samples with a nominalmore » dimension of 20 × 20 × 80 mm{sup 3} were 3D printed. The geometrical printing accuracy of each test sample was measured with a dial gage. To assess the mechanical response of the samples, standardized compression tests were performed to determine the Young’s modulus. To investigate the effect of radiation on the mechanical response, the mechanical tests were performed both prior and after the administration of clinically relevant dose levels (70 Gy), multiplied with a safety factor of 1.4. Dual energy computed tomography (DECT) methods were used to calculate the relative electron density to water ρ{sub e}, the effective atomic number Z{sub eff}, and the proton stopping power ratio (SPR) to water SPR. In order to validate the DECT based calculation of radiological properties, beam measurements were performed on the 3D printed samples as well. Photon irradiations were performed to measure the photon linear attenuation coefficients, while proton irradiations were performed to measure the proton range shift of the samples. The directional dependence of these properties was investigated by performing the irradiations for different orientations of the samples. Results: The printed test objects showed reduced geometric printing accuracy for 2 materials (deviation > 0.25 mm). Compression tests yielded Young’s moduli ranging from 0.6 to 2940 MPa. No deterioration in the mechanical response was observed after exposure of the samples to 100 Gy in a therapeutic MV photon beam. The DECT-based characterization yielded Z{sub eff} ranging from 5.91 to 10.43. The SPR and ρ{sub e} both ranged from 0.6 to 1.22. The measured photon attenuation coefficients at clinical energies scaled linearly with ρ{sub e}. Good agreement was seen between the DECT estimated SPR and the measured range shift, except for the higher Z{sub eff}. As opposed to the photon attenuation, the proton range shifting appeared to be printing orientation dependent for certain materials. Conclusions: In this study, the first step toward 3D printed, multifunctional immobilization was performed, by going through a candidate clinical workflow for the first time: from the material printing to DECT characterization with a verification through beam measurements. Besides a proof of concept for beam modification, the mechanical response of printed materials was also investigated to assess their capabilities for positioning functionality. For the studied set of printing techniques and materials, a wide variety of mechanical and radiological properties can be selected from for the intended purpose. Moreover the elaborated hybrid DECT methods aid in performing in-house quality assurance of 3D printed components, as these methods enable the estimation of the radiological properties relevant for use in radiation therapy.« less
Characterization of microporous separators for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Venugopal, Ganesh; Moore, John; Howard, Jason; Pendalwar, Shekhar
Several properties including porosity, pore-size distribution, thickness value, electrochemical stability and mechanical properties have to be optimized before a membrane can qualify as a separator for a lithium-ion battery. In this paper we present results of characterization studies carried out on some commercially available lithium-ion battery separators. The relevance of these results to battery performance and safety are also discussed. Porosity values were measured using a simple liquid absorption test and gas permeabilities were measured using a novel pressure drop technique that is similar in principle to the Gurley test. For separators from one particular manufacturer, the trend observed in the pressure drop times was found to be in agreement with the Gurley numbers reported by the separator manufacturer. Shutdown characteristics of the separators were studied by measuring the impedance of batteries containing the separators as a function of temperature. Overcharge tests were also performed to confirm that separator shutdown is indeed a useful mechanism for preventing thermal runaway situations. Polyethylene containing separators, in particular trilayer laminates of polypropylene, polyethylene and polypropylene, appear to have the most attractive properties for preventing thermal runaway in lithium ion cells.