Sample records for performance code celaeno

  1. The Pleiades Using Astronomical Spectroscopic Technique within the Range of H-{alpha} Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambri Zainuddin, Mohd; Muhyidin, Meer Ashwinkumar; Ahmad, Nazhatulshima

    2011-03-30

    The Pleiades is an open star cluster located in the constellation of Taurus, which mainly consists of hot and luminous B-type stars. Observations were conducted over five-day period in December 2009 at Langkawi National Observatory, Malaysia by using 20-inch telescope diameter of Ritchey-Chretien reflector telescope, together with SBIG Self Guided Spectrograph and SBIG ST-7 CCD camera. The spectra of seven main members of the cluster, namely Alcyone; Atlas; Celaeno; Electra; Maia; Merope and Taygeta; and of Alcyone B; a smaller component of Alcyone quadruple system, were obtained in the optical range of approximately 6300 A to 7100 A. This rangemore » was picked due to the vicinity of Balmer H-{alpha} spectral line at 6562.852 A. Alcyone, Electra and Merope were found to have H-{alpha} emissions possibly caused by the presence of equatorial circumstellar disks or envelopes made up of ejected matter. Electra and Merope in particular exhibited peculiar asymmetric double emission peaks, which could be evidence of one-armed density wave in each of their circumstellar disks. Atlas, Celaeno, Merope, Taygeta and Alcyone B showed strong H-{alpha} absorptions with broadening characteristic of high rotational velocities. As deduced from the spectra, the stars were found to have atmospheres with similar chemical content, with spectral lines characteristics of singly ionized silicon, singly ionized iron and singly ionized oxygen. The measured radial velocities of all eight stars also suggest that the cluster could someday disperse.« less

  2. DNA barcode and phylogeography of six new high altitude wingless Niphadomimus (Coleoptera: Curculionidae: Molytinae) from Southwest China.

    PubMed

    Grebennikov, Vasily V

    2014-07-17

    The genus Niphadomimus Zherikhin, 1987 is taxonomically revised herein. In addition to the two recorded Nepalese species, N. nigriventris Zherikhin and N. niger Zherikhin, known only from the holotypes, two additional specimens of N. nigriventris are reported and six new species from China represented by 96 specimens are described and illustrated. These are: N. alcyone sp. n. (Sichuan), N. celaeno sp. n. (Yunnan), N. electra sp. n. (Yunnan), N. maia sp. n. (Yunnan), N. merope sp. n. (Shaanxi) and N. sterope sp. n. (Sichuan). All known Niphadomimus species are apterous inhabitants of the leaf litter in the upper Rhododendron-dominated forest zone between 2000 and 4114 m. Phylogenetic analyses using DNA barcodes of six new species and representatives of 13 other Molytinae genera with available DNA data (A.) corroborates Niphadomimus monophyly; (B.) strongly argues for the sister-group relationship between N. merope sp. n. from the Qinling Mt. Range and the rest of the species distributed in the Hengduan mountains; (C.) in two among four analyses weakly relates the genus with the East Palaearctic Leiosoma. The tribe Typoderini could not be shown as monophyletic, which may be due to insufficient signal content of the cox1 marker at the tribal level. The detected phylogeographic pattern of Niphadomimus is compared with that of similarly distributed or closely related clades. Temporal DNA analysis estimates the N. merope sp. n. split at 6-11 MY, while the diversification of the Hengduan clade dates between 5.5 MY and 3.6 MY, i.e. well before the onset of the Quaternary climate fluctuations.

  3. Investigation of Near Shannon Limit Coding Schemes

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.; Kim, J.; Mo, Fan

    1999-01-01

    Turbo codes can deliver performance that is very close to the Shannon limit. This report investigates algorithms for convolutional turbo codes and block turbo codes. Both coding schemes can achieve performance near Shannon limit. The performance of the schemes is obtained using computer simulations. There are three sections in this report. First section is the introduction. The fundamental knowledge about coding, block coding and convolutional coding is discussed. In the second section, the basic concepts of convolutional turbo codes are introduced and the performance of turbo codes, especially high rate turbo codes, is provided from the simulation results. After introducing all the parameters that help turbo codes achieve such a good performance, it is concluded that output weight distribution should be the main consideration in designing turbo codes. Based on the output weight distribution, the performance bounds for turbo codes are given. Then, the relationships between the output weight distribution and the factors like generator polynomial, interleaver and puncturing pattern are examined. The criterion for the best selection of system components is provided. The puncturing pattern algorithm is discussed in detail. Different puncturing patterns are compared for each high rate. For most of the high rate codes, the puncturing pattern does not show any significant effect on the code performance if pseudo - random interleaver is used in the system. For some special rate codes with poor performance, an alternative puncturing algorithm is designed which restores their performance close to the Shannon limit. Finally, in section three, for iterative decoding of block codes, the method of building trellis for block codes, the structure of the iterative decoding system and the calculation of extrinsic values are discussed.

  4. Maximum likelihood decoding analysis of Accumulate-Repeat-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    Repeat-Accumulate (RA) codes are the simplest turbo-like codes that achieve good performance. However, they cannot compete with Turbo codes or low-density parity check codes (LDPC) as far as performance is concerned. The Accumulate Repeat Accumulate (ARA) codes, as a subclass of LDPC codes, are obtained by adding a pre-coder in front of RA codes with puncturing where an accumulator is chosen as a precoder. These codes not only are very simple, but also achieve excellent performance with iterative decoding. In this paper, the performance of these codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. The weight distribution of some simple ARA codes is obtained, and through existing tightest bounds we have shown the ML SNR threshold of ARA codes approaches very closely to the performance of random codes. We have shown that the use of precoder improves the SNR threshold but interleaving gain remains unchanged with respect to RA code with puncturing.

  5. Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications.

    PubMed

    Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B

    2016-08-08

    A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.

  6. Multidimensional Trellis Coded Phase Modulation Using a Multilevel Concatenation Approach. Part 2; Codes for AWGN and Fading Channels

    NASA Technical Reports Server (NTRS)

    Rajpal, Sandeep; Rhee, DoJun; Lin, Shu

    1997-01-01

    In this paper, we will use the construction technique proposed in to construct multidimensional trellis coded modulation (TCM) codes for both the additive white Gaussian noise (AWGN) and the fading channels. Analytical performance bounds and simulation results show that these codes perform very well and achieve significant coding gains over uncoded reference modulation systems. In addition, the proposed technique can be used to construct codes which have a performance/decoding complexity advantage over the codes listed in literature.

  7. The adaption and use of research codes for performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebetrau, A.M.

    1987-05-01

    Models of real-world phenomena are developed for many reasons. The models are usually, if not always, implemented in the form of a computer code. The characteristics of a code are determined largely by its intended use. Realizations or implementations of detailed mathematical models of complex physical and/or chemical processes are often referred to as research or scientific (RS) codes. Research codes typically require large amounts of computing time. One example of an RS code is a finite-element code for solving complex systems of differential equations that describe mass transfer through some geologic medium. Considerable computing time is required because computationsmore » are done at many points in time and/or space. Codes used to evaluate the overall performance of real-world physical systems are called performance assessment (PA) codes. Performance assessment codes are used to conduct simulated experiments involving systems that cannot be directly observed. Thus, PA codes usually involve repeated simulations of system performance in situations that preclude the use of conventional experimental and statistical methods. 3 figs.« less

  8. Error-correction coding

    NASA Technical Reports Server (NTRS)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  9. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1995-01-01

    This report focuses on the results obtained during the PI's recent sabbatical leave at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, from January 1, 1995 through June 30, 1995. Two projects investigated various properties of TURBO codes, a new form of concatenated coding that achieves near channel capacity performance at moderate bit error rates. The performance of TURBO codes is explained in terms of the code's distance spectrum. These results explain both the near capacity performance of the TURBO codes and the observed 'error floor' for moderate and high signal-to-noise ratios (SNR's). A semester project, entitled 'The Realization of the Turbo-Coding System,' involved a thorough simulation study of the performance of TURBO codes and verified the results claimed by previous authors. A copy of the final report for this project is included as Appendix A. A diploma project, entitled 'On the Free Distance of Turbo Codes and Related Product Codes,' includes an analysis of TURBO codes and an explanation for their remarkable performance. A copy of the final report for this project is included as Appendix B.

  10. Brief surgical procedure code lists for outcomes measurement and quality improvement in resource-limited settings.

    PubMed

    Liu, Charles; Kayima, Peter; Riesel, Johanna; Situma, Martin; Chang, David; Firth, Paul

    2017-11-01

    The lack of a classification system for surgical procedures in resource-limited settings hinders outcomes measurement and reporting. Existing procedure coding systems are prohibitively large and expensive to implement. We describe the creation and prospective validation of 3 brief procedure code lists applicable in low-resource settings, based on analysis of surgical procedures performed at Mbarara Regional Referral Hospital, Uganda's second largest public hospital. We reviewed operating room logbooks to identify all surgical operations performed at Mbarara Regional Referral Hospital during 2014. Based on the documented indication for surgery and procedure(s) performed, we assigned each operation up to 4 procedure codes from the International Classification of Diseases, 9th Revision, Clinical Modification. Coding of procedures was performed by 2 investigators, and a random 20% of procedures were coded by both investigators. These codes were aggregated to generate procedure code lists. During 2014, 6,464 surgical procedures were performed at Mbarara Regional Referral Hospital, to which we assigned 435 unique procedure codes. Substantial inter-rater reliability was achieved (κ = 0.7037). The 111 most common procedure codes accounted for 90% of all codes assigned, 180 accounted for 95%, and 278 accounted for 98%. We considered these sets of codes as 3 procedure code lists. In a prospective validation, we found that these lists described 83.2%, 89.2%, and 92.6% of surgical procedures performed at Mbarara Regional Referral Hospital during August to September of 2015, respectively. Empirically generated brief procedure code lists based on International Classification of Diseases, 9th Revision, Clinical Modification can be used to classify almost all surgical procedures performed at a Ugandan referral hospital. Such a standardized procedure coding system may enable better surgical data collection for administration, research, and quality improvement in resource-limited settings. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Performance Analysis of New Binary User Codes for DS-CDMA Communication

    NASA Astrophysics Data System (ADS)

    Usha, Kamle; Jaya Sankar, Kottareddygari

    2016-03-01

    This paper analyzes new binary spreading codes through correlation properties and also presents their performance over additive white Gaussian noise (AWGN) channel. The proposed codes are constructed using gray and inverse gray codes. In this paper, a n-bit gray code appended by its n-bit inverse gray code to construct the 2n-length binary user codes are discussed. Like Walsh codes, these binary user codes are available in sizes of power of two and additionally code sets of length 6 and their even multiples are also available. The simple construction technique and generation of code sets of different sizes are the salient features of the proposed codes. Walsh codes and gold codes are considered for comparison in this paper as these are popularly used for synchronous and asynchronous multi user communications respectively. In the current work the auto and cross correlation properties of the proposed codes are compared with those of Walsh codes and gold codes. Performance of the proposed binary user codes for both synchronous and asynchronous direct sequence CDMA communication over AWGN channel is also discussed in this paper. The proposed binary user codes are found to be suitable for both synchronous and asynchronous DS-CDMA communication.

  12. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    NASA Astrophysics Data System (ADS)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  13. Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system

    NASA Astrophysics Data System (ADS)

    Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria

    2017-07-01

    In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.

  14. Performance and structure of single-mode bosonic codes

    NASA Astrophysics Data System (ADS)

    Albert, Victor V.; Noh, Kyungjoo; Duivenvoorden, Kasper; Young, Dylan J.; Brierley, R. T.; Reinhold, Philip; Vuillot, Christophe; Li, Linshu; Shen, Chao; Girvin, S. M.; Terhal, Barbara M.; Jiang, Liang

    2018-03-01

    The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently been followed by cat- and binomial-code proposals. Numerically optimized codes have also been proposed, and we introduce codes of this type here. These codes have yet to be compared using the same error model; we provide such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication rates of the combined encoding-error-recovery channel by calculating the channel's hashing bound for each code. Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence of the cat-binomial-GKP order of performance occurring at small loss rates, we analytically evaluate the quantum error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and discrete-variable systems. First, we characterize one- and two-mode binomial as well as multiqubit permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of spin-coherent states, extending our characterization to qudit binomial codes and yielding a multiqudit code.

  15. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Takeshita, Oscar Y.; Cabral, Hermano A.

    1998-01-01

    It is well known that the BER performance of a parallel concatenated turbo-code improves roughly as 1/N, where N is the information block length. However, it has been observed by Benedetto and Montorsi that for most parallel concatenated turbo-codes, the FER performance does not improve monotonically with N. In this report, we study the FER of turbo-codes, and the effects of their concatenation with an outer code. Two methods of concatenation are investigated: across several frames and within each frame. Some asymmetric codes are shown to have excellent FER performance with an information block length of 16384. We also show that the proposed outer coding schemes can improve the BER performance as well by eliminating pathological frames generated by the iterative MAP decoding process.

  16. Los Alamos radiation transport code system on desktop computing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less

  17. Predicting the Performance of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1986-01-01

    Stage-stacking computer code (STGSTK) developed for predicting off-design performance of multi-stage axial-flow compressors. Code uses meanline stagestacking method. Stage and cumulative compressor performance calculated from representative meanline velocity diagrams located at rotor inlet and outlet meanline radii. Numerous options available within code. Code developed so user modify correlations to suit their needs.

  18. Numerical predictions of EML (electromagnetic launcher) system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnurr, N.M.; Kerrisk, J.F.; Davidson, R.F.

    1987-01-01

    The performance of an electromagnetic launcher (EML) depends on a large number of parameters, including the characteristics of the power supply, rail geometry, rail and insulator material properties, injection velocity, and projectile mass. EML system performance is frequently limited by structural or thermal effects in the launcher (railgun). A series of computer codes has been developed at the Los Alamos National Laboratory to predict EML system performance and to determine the structural and thermal constraints on barrel design. These codes include FLD, a two-dimensional electrostatic code used to calculate the high-frequency inductance gradient and surface current density distribution for themore » rails; TOPAZRG, a two-dimensional finite-element code that simultaneously analyzes thermal and electromagnetic diffusion in the rails; and LARGE, a code that predicts the performance of the entire EML system. Trhe NIKE2D code, developed at the Lawrence Livermore National Laboratory, is used to perform structural analyses of the rails. These codes have been instrumental in the design of the Lethality Test System (LTS) at Los Alamos, which has an ultimate goal of accelerating a 30-g projectile to a velocity of 15 km/s. The capabilities of the individual codes and the coupling of these codes to perform a comprehensive analysis is discussed in relation to the LTS design. Numerical predictions are compared with experimental data and presented for the LTS prototype tests.« less

  19. A low-complexity and high performance concatenated coding scheme for high-speed satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Rhee, Dojun; Rajpal, Sandeep

    1993-01-01

    This report presents a low-complexity and high performance concatenated coding scheme for high-speed satellite communications. In this proposed scheme, the NASA Standard Reed-Solomon (RS) code over GF(2(exp 8) is used as the outer code and the second-order Reed-Muller (RM) code of Hamming distance 8 is used as the inner code. The RM inner code has a very simple trellis structure and is decoded with the soft-decision Viterbi decoding algorithm. It is shown that the proposed concatenated coding scheme achieves an error performance which is comparable to that of the NASA TDRS concatenated coding scheme in which the NASA Standard rate-1/2 convolutional code of constraint length 7 and d sub free = 10 is used as the inner code. However, the proposed RM inner code has much smaller decoding complexity, less decoding delay, and much higher decoding speed. Consequently, the proposed concatenated coding scheme is suitable for reliable high-speed satellite communications, and it may be considered as an alternate coding scheme for the NASA TDRS system.

  20. Coding performance of the Probe-Orbiter-Earth communication link

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Dolinar, S.; Pollara, F.

    1993-01-01

    The coding performance of the Probe-Orbiter-Earth communication link is analyzed and compared for several cases. It is assumed that the coding system consists of a convolutional code at the Probe, a quantizer and another convolutional code at the Orbiter, and two cascaded Viterbi decoders or a combined decoder on the ground.

  1. ARA type protograph codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2008-01-01

    An apparatus and method for encoding low-density parity check codes. Together with a repeater, an interleaver and an accumulator, the apparatus comprises a precoder, thus forming accumulate-repeat-accumulate (ARA codes). Protographs representing various types of ARA codes, including AR3A, AR4A and ARJA codes, are described. High performance is obtained when compared to the performance of current repeat-accumulate (RA) or irregular-repeat-accumulate (IRA) codes.

  2. Low-density parity-check codes for volume holographic memory systems.

    PubMed

    Pishro-Nik, Hossein; Rahnavard, Nazanin; Ha, Jeongseok; Fekri, Faramarz; Adibi, Ali

    2003-02-10

    We investigate the application of low-density parity-check (LDPC) codes in volume holographic memory (VHM) systems. We show that a carefully designed irregular LDPC code has a very good performance in VHM systems. We optimize high-rate LDPC codes for the nonuniform error pattern in holographic memories to reduce the bit error rate extensively. The prior knowledge of noise distribution is used for designing as well as decoding the LDPC codes. We show that these codes have a superior performance to that of Reed-Solomon (RS) codes and regular LDPC counterparts. Our simulation shows that we can increase the maximum storage capacity of holographic memories by more than 50 percent if we use irregular LDPC codes with soft-decision decoding instead of conventionally employed RS codes with hard-decision decoding. The performance of these LDPC codes is close to the information theoretic capacity.

  3. Maximum likelihood decoding analysis of accumulate-repeat-accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, A.; Divsalar, D.; Yao, K.

    2004-01-01

    In this paper, the performance of the repeat-accumulate codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. Some simple codes are shown that perform very close to Shannon limit with maximum likelihood decoding.

  4. Iterative demodulation and decoding of coded non-square QAM

    NASA Technical Reports Server (NTRS)

    Li, L.; Divsalar, D.; Dolinar, S.

    2003-01-01

    Simulation results show that, with iterative demodulation and decoding, coded NS-8QAM performs 0.5 dB better than standard 8QAM and 0.7 dB better than 8PSK at BER= 10(sup -5), when the FEC code is the (15, 11) Hamming code concatenated with a rate-1 accumulator code, while coded NS-32QAM performs 0.25 dB better than standard 32QAM.

  5. Advanced coding and modulation schemes for TDRSS

    NASA Technical Reports Server (NTRS)

    Harrell, Linda; Kaplan, Ted; Berman, Ted; Chang, Susan

    1993-01-01

    This paper describes the performance of the Ungerboeck and pragmatic 8-Phase Shift Key (PSK) Trellis Code Modulation (TCM) coding techniques with and without a (255,223) Reed-Solomon outer code as they are used for Tracking Data and Relay Satellite System (TDRSS) S-Band and Ku-Band return services. The performance of these codes at high data rates is compared to uncoded Quadrature PSK (QPSK) and rate 1/2 convolutionally coded QPSK in the presence of Radio Frequency Interference (RFI), self-interference, and hardware distortions. This paper shows that the outer Reed-Solomon code is necessary to achieve a 10(exp -5) Bit Error Rate (BER) with an acceptable level of degradation in the presence of RFI. This paper also shows that the TCM codes with or without the Reed-Solomon outer code do not perform well in the presence of self-interference. In fact, the uncoded QPSK signal performs better than the TCM coded signal in the self-interference situation considered in this analysis. Finally, this paper shows that the E(sub b)/N(sub 0) degradation due to TDRSS hardware distortions is approximately 1.3 dB with a TCM coded signal or a rate 1/2 convolutionally coded QPSK signal and is 3.2 dB with an uncoded QPSK signal.

  6. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  7. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE PAGES

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.; ...

    2018-02-05

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  8. A Measurement and Simulation Based Methodology for Cache Performance Modeling and Tuning

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    We present a cache performance modeling methodology that facilitates the tuning of uniprocessor cache performance for applications executing on shared memory multiprocessors by accurately predicting the effects of source code level modifications. Measurements on a single processor are initially used for identifying parts of code where cache utilization improvements may significantly impact the overall performance. Cache simulation based on trace-driven techniques can be carried out without gathering detailed address traces. Minimal runtime information for modeling cache performance of a selected code block includes: base virtual addresses of arrays, virtual addresses of variables, and loop bounds for that code block. Rest of the information is obtained from the source code. We show that the cache performance predictions are as reliable as those obtained through trace-driven simulations. This technique is particularly helpful to the exploration of various "what-if' scenarios regarding the cache performance impact for alternative code structures. We explain and validate this methodology using a simple matrix-matrix multiplication program. We then apply this methodology to predict and tune the cache performance of two realistic scientific applications taken from the Computational Fluid Dynamics (CFD) domain.

  9. Some partial-unit-memory convolutional codes

    NASA Technical Reports Server (NTRS)

    Abdel-Ghaffar, K.; Mceliece, R. J.; Solomon, G.

    1991-01-01

    The results of a study on a class of error correcting codes called partial unit memory (PUM) codes are presented. This class of codes, though not entirely new, has until now remained relatively unexplored. The possibility of using the well developed theory of block codes to construct a large family of promising PUM codes is shown. The performance of several specific PUM codes are compared with that of the Voyager standard (2, 1, 6) convolutional code. It was found that these codes can outperform the Voyager code with little or no increase in decoder complexity. This suggests that there may very well be PUM codes that can be used for deep space telemetry that offer both increased performance and decreased implementational complexity over current coding systems.

  10. An accurate evaluation of the performance of asynchronous DS-CDMA systems with zero-correlation-zone coding in Rayleigh fading

    NASA Astrophysics Data System (ADS)

    Walker, Ernest; Chen, Xinjia; Cooper, Reginald L.

    2010-04-01

    An arbitrarily accurate approach is used to determine the bit-error rate (BER) performance for generalized asynchronous DS-CDMA systems, in Gaussian noise with Raleigh fading. In this paper, and the sequel, new theoretical work has been contributed which substantially enhances existing performance analysis formulations. Major contributions include: substantial computational complexity reduction, including a priori BER accuracy bounding; an analytical approach that facilitates performance evaluation for systems with arbitrary spectral spreading distributions, with non-uniform transmission delay distributions. Using prior results, augmented by these enhancements, a generalized DS-CDMA system model is constructed and used to evaluated the BER performance, in a variety of scenarios. In this paper, the generalized system modeling was used to evaluate the performance of both Walsh- Hadamard (WH) and Walsh-Hadamard-seeded zero-correlation-zone (WH-ZCZ) coding. The selection of these codes was informed by the observation that WH codes contain N spectral spreading values (0 to N - 1), one for each code sequence; while WH-ZCZ codes contain only two spectral spreading values (N/2 - 1,N/2); where N is the sequence length in chips. Since these codes span the spectral spreading range for DS-CDMA coding, by invoking an induction argument, the generalization of the system model is sufficiently supported. The results in this paper, and the sequel, support the claim that an arbitrary accurate performance analysis for DS-CDMA systems can be evaluated over the full range of binary coding, with minimal computational complexity.

  11. Performance tuning of N-body codes on modern microprocessors: I. Direct integration with a hermite scheme on x86_64 architecture

    NASA Astrophysics Data System (ADS)

    Nitadori, Keigo; Makino, Junichiro; Hut, Piet

    2006-12-01

    The main performance bottleneck of gravitational N-body codes is the force calculation between two particles. We have succeeded in speeding up this pair-wise force calculation by factors between 2 and 10, depending on the code and the processor on which the code is run. These speed-ups were obtained by writing highly fine-tuned code for x86_64 microprocessors. Any existing N-body code, running on these chips, can easily incorporate our assembly code programs. In the current paper, we present an outline of our overall approach, which we illustrate with one specific example: the use of a Hermite scheme for a direct N2 type integration on a single 2.0 GHz Athlon 64 processor, for which we obtain an effective performance of 4.05 Gflops, for double-precision accuracy. In subsequent papers, we will discuss other variations, including the combinations of N log N codes, single-precision implementations, and performance on other microprocessors.

  12. Insertion of operation-and-indicate instructions for optimized SIMD code

    DOEpatents

    Eichenberger, Alexander E; Gara, Alan; Gschwind, Michael K

    2013-06-04

    Mechanisms are provided for inserting indicated instructions for tracking and indicating exceptions in the execution of vectorized code. A portion of first code is received for compilation. The portion of first code is analyzed to identify non-speculative instructions performing designated non-speculative operations in the first code that are candidates for replacement by replacement operation-and-indicate instructions that perform the designated non-speculative operations and further perform an indication operation for indicating any exception conditions corresponding to special exception values present in vector register inputs to the replacement operation-and-indicate instructions. The replacement is performed and second code is generated based on the replacement of the at least one non-speculative instruction. The data processing system executing the compiled code is configured to store special exception values in vector output registers, in response to a speculative instruction generating an exception condition, without initiating exception handling.

  13. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  14. Error-Rate Bounds for Coded PPM on a Poisson Channel

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon

    2009-01-01

    Equations for computing tight bounds on error rates for coded pulse-position modulation (PPM) on a Poisson channel at high signal-to-noise ratio have been derived. These equations and elements of the underlying theory are expected to be especially useful in designing codes for PPM optical communication systems. The equations and the underlying theory apply, more specifically, to a case in which a) At the transmitter, a linear outer code is concatenated with an inner code that includes an accumulator and a bit-to-PPM-symbol mapping (see figure) [this concatenation is known in the art as "accumulate-PPM" (abbreviated "APPM")]; b) The transmitted signal propagates on a memoryless binary-input Poisson channel; and c) At the receiver, near-maximum-likelihood (ML) decoding is effected through an iterative process. Such a coding/modulation/decoding scheme is a variation on the concept of turbo codes, which have complex structures, such that an exact analytical expression for the performance of a particular code is intractable. However, techniques for accurately estimating the performances of turbo codes have been developed. The performance of a typical turbo code includes (1) a "waterfall" region consisting of a steep decrease of error rate with increasing signal-to-noise ratio (SNR) at low to moderate SNR, and (2) an "error floor" region with a less steep decrease of error rate with increasing SNR at moderate to high SNR. The techniques used heretofore for estimating performance in the waterfall region have differed from those used for estimating performance in the error-floor region. For coded PPM, prior to the present derivations, equations for accurate prediction of the performance of coded PPM at high SNR did not exist, so that it was necessary to resort to time-consuming simulations in order to make such predictions. The present derivation makes it unnecessary to perform such time-consuming simulations.

  15. Bounds on Block Error Probability for Multilevel Concatenated Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Moorthy, Hari T.; Stojanovic, Diana

    1996-01-01

    Maximum likelihood decoding of long block codes is not feasable due to large complexity. Some classes of codes are shown to be decomposable into multilevel concatenated codes (MLCC). For these codes, multistage decoding provides good trade-off between performance and complexity. In this paper, we derive an upper bound on the probability of block error for MLCC. We use this bound to evaluate difference in performance for different decompositions of some codes. Examples given show that a significant reduction in complexity can be achieved when increasing number of stages of decoding. Resulting performance degradation varies for different decompositions. A guideline is given for finding good m-level decompositions.

  16. Global Magnetohydrodynamic Simulation Using High Performance FORTRAN on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    High Performance Fortran (HPF) is one of modern and common techniques to achieve high performance parallel computation. We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5 VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  17. The WISGSK: A computer code for the prediction of a multistage axial compressor performance with water ingestion

    NASA Technical Reports Server (NTRS)

    Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    A computer code is presented for the prediction of off-design axial flow compressor performance with water ingestion. Four processes were considered to account for the aero-thermo-mechanical interactions during operation with air-water droplet mixture flow: (1) blade performance change, (2) centrifuging of water droplets, (3) heat and mass transfer process between the gaseous and the liquid phases and (4) droplet size redistribution due to break-up. Stage and compressor performance are obtained by a stage stacking procedure using representative veocity diagrams at a rotor inlet and outlet mean radii. The Code has options for performance estimation with (1) mixtures of gas and (2) gas-water droplet mixtures, and therefore can take into account the humidity present in ambient conditions. A test case illustrates the method of using the Code. The Code follows closely the methodology and architecture of the NASA-STGSTK Code for the estimation of axial-flow compressor performance with air flow.

  18. Binary weight distributions of some Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Pollara, F.; Arnold, S.

    1992-01-01

    The binary weight distributions of the (7,5) and (15,9) Reed-Solomon (RS) codes and their duals are computed using the MacWilliams identities. Several mappings of symbols to bits are considered and those offering the largest binary minimum distance are found. These results are then used to compute bounds on the soft-decoding performance of these codes in the presence of additive Gaussian noise. These bounds are useful for finding large binary block codes with good performance and for verifying the performance obtained by specific soft-coding algorithms presently under development.

  19. Long distance quantum communication with quantum Reed-Solomon codes

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang; Jianggroup Team

    We study the construction of quantum Reed Solomon codes from classical Reed Solomon codes and show that they achieve the capacity of quantum erasure channel for multi-level quantum systems. We extend the application of quantum Reed Solomon codes to long distance quantum communication, investigate the local resource overhead needed for the functioning of one-way quantum repeaters with these codes, and numerically identify the parameter regime where these codes perform better than the known quantum polynomial codes and quantum parity codes . Finally, we discuss the implementation of these codes into time-bin photonic states of qubits and qudits respectively, and optimize the performance for one-way quantum repeaters.

  20. One-way quantum repeaters with quantum Reed-Solomon codes

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang

    2018-05-01

    We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of d -level systems for large dimension d . We study the performance of one-way quantum repeaters with these codes and obtain a significant improvement in key generation rate compared to previously investigated encoding schemes with quantum parity codes and quantum polynomial codes. We also compare the three generations of quantum repeaters using quantum Reed-Solomon codes and identify parameter regimes where each generation performs the best.

  1. Optimized atom position and coefficient coding for matching pursuit-based image compression.

    PubMed

    Shoa, Alireza; Shirani, Shahram

    2009-12-01

    In this paper, we propose a new encoding algorithm for matching pursuit image coding. We show that coding performance is improved when correlations between atom positions and atom coefficients are both used in encoding. We find the optimum tradeoff between efficient atom position coding and efficient atom coefficient coding and optimize the encoder parameters. Our proposed algorithm outperforms the existing coding algorithms designed for matching pursuit image coding. Additionally, we show that our algorithm results in better rate distortion performance than JPEG 2000 at low bit rates.

  2. Unaligned instruction relocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.

    In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unalignedmore » ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.« less

  3. Unaligned instruction relocation

    DOEpatents

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.

    2018-01-23

    In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unaligned ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.

  4. Volume accumulator design analysis computer codes

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazaki, T. T.

    1973-01-01

    The computer codes, VANEP and VANES, were written and used to aid in the design and performance calculation of the volume accumulator units (VAU) for the 5-kwe reactor thermoelectric system. VANEP computes the VAU design which meets the primary coolant loop VAU volume and pressure performance requirements. VANES computes the performance of the VAU design, determined from the VANEP code, at the conditions of the secondary coolant loop. The codes can also compute the performance characteristics of the VAU's under conditions of possible modes of failure which still permit continued system operation.

  5. Performance analysis of parallel gravitational N-body codes on large GPU clusters

    NASA Astrophysics Data System (ADS)

    Huang, Si-Yi; Spurzem, Rainer; Berczik, Peter

    2016-01-01

    We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit (GPU) clusters, both of which are pioneers in their own fields as well as on certain mutual scales - NBODY6++ and Bonsai. We carry out benchmarks of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of 200 - 300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of the two codes, finding that in the same cases Bonsai adopts larger time steps as well as larger relative energy errors than NBODY6++, typically ranging from 10 - 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scales, thus allowing the user to choose either one by fine-tuning parameters accordingly.

  6. Performance evaluation of MPEG internet video coding

    NASA Astrophysics Data System (ADS)

    Luo, Jiajia; Wang, Ronggang; Fan, Kui; Wang, Zhenyu; Li, Ge; Wang, Wenmin

    2016-09-01

    Internet Video Coding (IVC) has been developed in MPEG by combining well-known existing technology elements and new coding tools with royalty-free declarations. In June 2015, IVC project was approved as ISO/IEC 14496-33 (MPEG- 4 Internet Video Coding). It is believed that this standard can be highly beneficial for video services in the Internet domain. This paper evaluates the objective and subjective performances of IVC by comparing it against Web Video Coding (WVC), Video Coding for Browsers (VCB) and AVC High Profile. Experimental results show that IVC's compression performance is approximately equal to that of the AVC High Profile for typical operational settings, both for streaming and low-delay applications, and is better than WVC and VCB.

  7. Throughput of Coded Optical CDMA Systems with AND Detectors

    NASA Astrophysics Data System (ADS)

    Memon, Kehkashan A.; Umrani, Fahim A.; Umrani, A. W.; Umrani, Naveed A.

    2012-09-01

    Conventional detection techniques used in optical code-division multiple access (OCDMA) systems are not optimal and result in poor bit error rate performance. This paper analyzes the coded performance of optical CDMA systems with AND detectors for enhanced throughput efficiencies and improved error rate performance. The results show that the use of AND detectors significantly improve the performance of an optical channel.

  8. CFD Code Development for Combustor Flows

    NASA Technical Reports Server (NTRS)

    Norris, Andrew

    2003-01-01

    During the lifetime of this grant, work has been performed in the areas of model development, code development, code validation and code application. For model development, this has included the PDF combustion module, chemical kinetics based on thermodynamics, neural network storage of chemical kinetics, ILDM chemical kinetics and assumed PDF work. Many of these models were then implemented in the code, and in addition many improvements were made to the code, including the addition of new chemistry integrators, property evaluation schemes, new chemistry models and turbulence-chemistry interaction methodology. Validation of all new models and code improvements were also performed, while application of the code to the ZCET program and also the NPSS GEW combustor program were also performed. Several important items remain under development, including the NOx post processing, assumed PDF model development and chemical kinetic development. It is expected that this work will continue under the new grant.

  9. Automated Concurrent Blackboard System Generation in C++

    NASA Technical Reports Server (NTRS)

    Kaplan, J. A.; McManus, J. W.; Bynum, W. L.

    1999-01-01

    In his 1992 Ph.D. thesis, "Design and Analysis Techniques for Concurrent Blackboard Systems", John McManus defined several performance metrics for concurrent blackboard systems and developed a suite of tools for creating and analyzing such systems. These tools allow a user to analyze a concurrent blackboard system design and predict the performance of the system before any code is written. The design can be modified until simulated performance is satisfactory. Then, the code generator can be invoked to generate automatically all of the code required for the concurrent blackboard system except for the code implementing the functionality of each knowledge source. We have completed the port of the source code generator and a simulator for a concurrent blackboard system. The source code generator generates the necessary C++ source code to implement the concurrent blackboard system using Parallel Virtual Machine (PVM) running on a heterogeneous network of UNIX(trademark) workstations. The concurrent blackboard simulator uses the blackboard specification file to predict the performance of the concurrent blackboard design. The only part of the source code for the concurrent blackboard system that the user must supply is the code implementing the functionality of the knowledge sources.

  10. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repositorymore » designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.« less

  11. Layered Wyner-Ziv video coding.

    PubMed

    Xu, Qian; Xiong, Zixiang

    2006-12-01

    Following recent theoretical works on successive Wyner-Ziv coding (WZC), we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantization, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered WZC for quality enhancement. Similar to FGS coding, there is no performance difference between layered and monolithic WZC when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that WZC gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks.

  12. Investigating the use of quick response codes in the gross anatomy laboratory.

    PubMed

    Traser, Courtney J; Hoffman, Leslie A; Seifert, Mark F; Wilson, Adam B

    2015-01-01

    The use of quick response (QR) codes within undergraduate university courses is on the rise, yet literature concerning their use in medical education is scant. This study examined student perceptions on the usefulness of QR codes as learning aids in a medical gross anatomy course, statistically analyzed whether this learning aid impacted student performance, and evaluated whether performance could be explained by the frequency of QR code usage. Question prompts and QR codes tagged on cadaveric specimens and models were available for four weeks as learning aids to medical (n = 155) and doctor of physical therapy (n = 39) students. Each QR code provided answers to posed questions in the form of embedded text or hyperlinked web pages. Students' perceptions were gathered using a formative questionnaire and practical examination scores were used to assess potential gains in student achievement. Overall, students responded positively to the use of QR codes in the gross anatomy laboratory as 89% (57/64) agreed the codes augmented their learning of anatomy. The users' most noticeable objection to using QR codes was the reluctance to bring their smartphones into the gross anatomy laboratory. A comparison between the performance of QR code users and non-users was found to be nonsignificant (P = 0.113), and no significant gains in performance (P = 0.302) were observed after the intervention. Learners welcomed the implementation of QR code technology in the gross anatomy laboratory, yet this intervention had no apparent effect on practical examination performance. © 2014 American Association of Anatomists.

  13. Posttest analysis of the FFTF inherent safety tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, A. Jr.; Claybrook, S.W.

    Inherent safety tests were performed during 1986 in the 400-MW (thermal) Fast Flux Test Facility (FFTF) reactor to demonstrate the effectiveness of an inherent shutdown device called the gas expansion module (GEM). The GEM device provided a strong negative reactivity feedback during loss-of-flow conditions by increasing the neutron leakage as a result of an expanding gas bubble. The best-estimate pretest calculations for these tests were performed using the IANUS plant analysis code (Westinghouse Electric Corporation proprietary code) and the MELT/SIEX3 core analysis code. These two codes were also used to perform the required operational safety analyses for the FFTF reactormore » and plant. Although it was intended to also use the SASSYS systems (core and plant) analysis code, the calibration of the SASSYS code for FFTF core and plant analysis was not completed in time to perform pretest analyses. The purpose of this paper is to present the results of the posttest analysis of the 1986 FFTF inherent safety tests using the SASSYS code.« less

  14. The 'Brick Wall' radio loss approximation and the performance of strong channel codes for deep space applications at high data rates

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin

    2001-01-01

    In order to evaluate performance of strong channel codes in presence of imperfect carrier phase tracking for residual carrier BPSK modulation in this paper an approximate 'brick wall' model is developed which is independent of the channel code type for high data rates. It is shown that this approximation is reasonably accurate (less than 0.7dB for low FERs for (1784,1/6) code and less than 0.35dB for low FERs for (5920,1/6) code). Based on the approximation's accuracy, it is concluded that the effects of imperfect carrier tracking are more or less independent of the channel code type for strong channel codes. Therefore, the advantage that one strong channel code has over another with perfect carrier tracking translates to nearly the same advantage under imperfect carrier tracking conditions. This will allow the link designers to incorporate projected channel code performance of strong channel codes into their design tables without worrying about their behavior in the face of imperfect carrier phase tracking.

  15. Optimizing fusion PIC code performance at scale on Cori Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, T. S.; Deslippe, J.

    In this paper we present the results of optimizing the performance of the gyrokinetic full-f fusion PIC code XGC1 on the Cori Phase Two Knights Landing system. The code has undergone substantial development to enable the use of vector instructions in its most expensive kernels within the NERSC Exascale Science Applications Program. We study the single-node performance of the code on an absolute scale using the roofline methodology to guide optimization efforts. We have obtained 2x speedups in single node performance due to enabling vectorization and performing memory layout optimizations. On multiple nodes, the code is shown to scale wellmore » up to 4000 nodes, near half the size of the machine. We discuss some communication bottlenecks that were identified and resolved during the work.« less

  16. Can a senior house officer's time be used more effectively?

    PubMed

    Mitchell, J; Hayhurst, C; Robinson, S M

    2004-09-01

    To determine the amount of time senior house officers (SHO) spent performing tasks that could be delegated to a technician or administrative assistant and therefore to quantify the expected benefit that could be obtained by employing such physicians' assistants (PA). SHOs working in the emergency department were observed for one week by pre-clinical students who had been trained to code and time each task performed by SHOs. Activity was grouped into four categories (clinical, technical, administrative, and other). Those activities in the technical and administrative categories were those we believed could be performed by a PA. The SHOs worked 430 hours in total, of which only 25 hours were not coded due to lack of an observer. Of the 405 hours observed 86.2% of time was accounted for by the various codes. The process of taking a history and examining patients accounted for an average of 22% of coded time. Writing the patient's notes accounted for an average of 20% of coded time. Discussion with relatives and patients accounted for 4.7% of coded time and performing procedures accounted for 5.2% of coded time. On average across all shifts, 15% of coded time was spent doing either technical or administrative tasks. In this department an average of 15% of coded SHOs working time was spent performing administrative and technical tasks, rising to 17% of coded time during a night shift. This is equivalent to an average time of 78 minutes per 10 hour shift/SHO. Most tasks included in these categories could be performed by PAs thus potentially decreasing patient waiting times, improving risk management, allowing doctors to spend more time with their patients, and possibly improving doctors' training.

  17. Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Calore, Enrico; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core Graphics Processor Units (GPUs), exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work, we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenAcc, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.

  18. Processor-in-memory-and-storage architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Erik

    A method and apparatus for performing reliable general-purpose computing. Each sub-core of a plurality of sub-cores of a processor core processes a same instruction at a same time. A code analyzer receives a plurality of residues that represents a code word corresponding to the same instruction and an indication of whether the code word is a memory address code or a data code from the plurality of sub-cores. The code analyzer determines whether the plurality of residues are consistent or inconsistent. The code analyzer and the plurality of sub-cores perform a set of operations based on whether the code wordmore » is a memory address code or a data code and a determination of whether the plurality of residues are consistent or inconsistent.« less

  19. National Combustion Code Parallel Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Quealy, Angela; Benyo, Theresa (Technical Monitor)

    2002-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. The unstructured grid, reacting flow code uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC code to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This report describes recent parallel processing modifications to NCC that have improved the parallel scalability of the code, enabling a two hour turnaround for a 1.3 million element fully reacting combustion simulation on an SGI Origin 2000.

  20. Performance of the OVERFLOW-MLP and LAURA-MLP CFD Codes on the NASA Ames 512 CPU Origin System

    NASA Technical Reports Server (NTRS)

    Taft, James R.

    2000-01-01

    The shared memory Multi-Level Parallelism (MLP) technique, developed last year at NASA Ames has been very successful in dramatically improving the performance of important NASA CFD codes. This new and very simple parallel programming technique was first inserted into the OVERFLOW production CFD code in FY 1998. The OVERFLOW-MLP code's parallel performance scaled linearly to 256 CPUs on the NASA Ames 256 CPU Origin 2000 system (steger). Overall performance exceeded 20.1 GFLOP/s, or about 4.5x the performance of a dedicated 16 CPU C90 system. All of this was achieved without any major modification to the original vector based code. The OVERFLOW-MLP code is now in production on the inhouse Origin systems as well as being used offsite at commercial aerospace companies. Partially as a result of this work, NASA Ames has purchased a new 512 CPU Origin 2000 system to further test the limits of parallel performance for NASA codes of interest. This paper presents the performance obtained from the latest optimization efforts on this machine for the LAURA-MLP and OVERFLOW-MLP codes. The Langley Aerothermodynamics Upwind Relaxation Algorithm (LAURA) code is a key simulation tool in the development of the next generation shuttle, interplanetary reentry vehicles, and nearly all "X" plane development. This code sustains about 4-5 GFLOP/s on a dedicated 16 CPU C90. At this rate, expected workloads would require over 100 C90 CPU years of computing over the next few calendar years. It is not feasible to expect that this would be affordable or available to the user community. Dramatic performance gains on cheaper systems are needed. This code is expected to be perhaps the largest consumer of NASA Ames compute cycles per run in the coming year.The OVERFLOW CFD code is extensively used in the government and commercial aerospace communities to evaluate new aircraft designs. It is one of the largest consumers of NASA supercomputing cycles and large simulations of highly resolved full aircraft are routinely undertaken. Typical large problems might require 100s of Cray C90 CPU hours to complete. The dramatic performance gains with the 256 CPU steger system are exciting. Obtaining results in hours instead of months is revolutionizing the way in which aircraft manufacturers are looking at future aircraft simulation work. Figure 2 below is a current state of the art plot of OVERFLOW-MLP performance on the 512 CPU Lomax system. As can be seen, the chart indicates that OVERFLOW-MLP continues to scale linearly with CPU count up to 512 CPUs on a large 35 million point full aircraft RANS simulation. At this point performance is such that a fully converged simulation of 2500 time steps is completed in less than 2 hours of elapsed time. Further work over the next few weeks will improve the performance of this code even further.The LAURA code has been converted to the MLP format as well. This code is currently being optimized for the 512 CPU system. Performance statistics indicate that the goal of 100 GFLOP/s will be achieved by year's end. This amounts to 20x the 16 CPU C90 result and strongly demonstrates the viability of the new parallel systems rapidly solving very large simulations in a production environment.

  1. Validation of the NCC Code for Staged Transverse Injection and Computations for a RBCC Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Liu, Nan-Suey

    2005-01-01

    The NCC code was validated for a case involving staged transverse injection into Mach 2 flow behind a rearward facing step. Comparisons with experimental data and with solutions from the FPVortex code was then used to perform computations to study fuel-air mixing for the combustor of a candidate rocket based combined cycle engine geometry. Comparisons with a one-dimensional analysis and a three-dimensional code (VULCAN) were performed to assess the qualitative and quantitative performance of the NCC solver.

  2. On the error statistics of Viterbi decoding and the performance of concatenated codes

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Deutsch, L. J.; Butman, S. A.

    1981-01-01

    Computer simulation results are presented on the performance of convolutional codes of constraint lengths 7 and 10 concatenated with the (255, 223) Reed-Solomon code (a proposed NASA standard). These results indicate that as much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a (10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by the DSN. A mathematical model of Viterbi decoder burst-error statistics is developed and is validated through additional computer simulations.

  3. Performance analysis of three dimensional integral equation computations on a massively parallel computer. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Logan, Terry G.

    1994-01-01

    The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.

  4. Performance of concatenated Reed-Solomon trellis-coded modulation over Rician fading channels

    NASA Technical Reports Server (NTRS)

    Moher, Michael L.; Lodge, John H.

    1990-01-01

    A concatenated coding scheme for providing very reliable data over mobile-satellite channels at power levels similar to those used for vocoded speech is described. The outer code is a shorter Reed-Solomon code which provides error detection as well as error correction capabilities. The inner code is a 1-D 8-state trellis code applied independently to both the inphase and quadrature channels. To achieve the full error correction potential of this inner code, the code symbols are multiplexed with a pilot sequence which is used to provide dynamic channel estimation and coherent detection. The implementation structure of this scheme is discussed and its performance is estimated.

  5. Statistical mechanics of broadcast channels using low-density parity-check codes.

    PubMed

    Nakamura, Kazutaka; Kabashima, Yoshiyuki; Morelos-Zaragoza, Robert; Saad, David

    2003-03-01

    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.

  6. Knowledge and Performance about Nursing Ethic Codes from Nurses' and Patients' Perspective in Tabriz Teaching Hospitals, Iran.

    PubMed

    Mohajjel-Aghdam, Alireza; Hassankhani, Hadi; Zamanzadeh, Vahid; Khameneh, Saied; Moghaddam, Sara

    2013-09-01

    Nursing profession requires knowledge of ethics to guide performance. The nature of this profession necessitates ethical care more than routine care. Today, worldwide definition of professional ethic code has been done based on human and ethical issues in the communication between nurse and patient. To improve all dimensions of nursing, we need to respect ethic codes. The aim of this study is to assess knowledge and performance about nursing ethic codes from nurses' and patients' perspective. A descriptive study Conducted upon 345 nurses and 500 inpatients in six teaching hospitals of Tabriz, 2012. To investigate nurses' knowledge and performance, data were collected by using structured questionnaires. Statistical analysis was done using descriptive and analytic statistics, independent t-test and ANOVA and Pearson correlation coefficient, in SPSS13. Most of the nurses were female, married, educated at BS degree and 86.4% of them were aware of Ethic codes also 91.9% of nurses and 41.8% of patients represented nurses respect ethic codes. Nurses' and patients' perspective about ethic codes differed significantly. Significant relationship was found between nurses' knowledge of ethic codes and job satisfaction and complaint of ethical performance. According to the results, consideration to teaching ethic codes in nursing curriculum for student and continuous education for staff is proposed, on the other hand recognizing failures of the health system, optimizing nursing care, attempt to inform patients about Nursing ethic codes, promote patient rights and achieve patient satisfaction can minimize the differences between the two perspectives.

  7. Knowledge and Performance about Nursing Ethic Codes from Nurses' and Patients' Perspective in Tabriz Teaching Hospitals, Iran

    PubMed Central

    Mohajjel-Aghdam, Alireza; Hassankhani, Hadi; Zamanzadeh, Vahid; Khameneh, Saied; Moghaddam, Sara

    2013-01-01

    Introduction: Nursing profession requires knowledge of ethics to guide performance. The nature of this profession necessitates ethical care more than routine care. Today, worldwide definition of professional ethic code has been done based on human and ethical issues in the communication between nurse and patient. To improve all dimensions of nursing, we need to respect ethic codes. The aim of this study is to assess knowledge and performance about nursing ethic codes from nurses' and patients' perspective. Methods: A descriptive study Conducted upon 345 nurses and 500 inpatients in six teaching hospitals of Tabriz, 2012. To investigate nurses' knowledge and performance, data were collected by using structured questionnaires. Statistical analysis was done using descriptive and analytic statistics, independent t-test and ANOVA and Pearson correlation coefficient, in SPSS13. Results: Most of the nurses were female, married, educated at BS degree and 86.4% of them were aware of Ethic codes also 91.9% of nurses and 41.8% of patients represented nurses respect ethic codes. Nurses' and patients' perspective about ethic codes differed significantly. Significant relationship was found between nurses' knowledge of ethic codes and job satisfaction and complaint of ethical performance. Conclusion: According to the results, consideration to teaching ethic codes in nursing curriculum for student and continuous education for staff is proposed, on the other hand recognizing failures of the health system, optimizing nursing care, attempt to inform patients about Nursing ethic codes, promote patient rights and achieve patient satisfaction can minimize the differences between the two perspectives. PMID:25276730

  8. Developing Performance Cost Index Targets for ASHRAE Standard 90.1 Appendix G – Performance Rating Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Michael I.; Hart, Philip R.

    2016-02-16

    Appendix G, the Performance Rating Method in ASHRAE Standard 90.1 has been updated to make two significant changes for the 2016 edition, to be published in October of 2016. First, it allows Appendix G to be used as a third path for compliance with the standard in addition to rating beyond code building performance. This prevents modelers from having to develop separate building models for code compliance and beyond code programs. Using this new version of Appendix G to show compliance with the 2016 edition of the standard, the proposed building design needs to have a performance cost index (PCI)more » less than targets shown in a new table based on building type and climate zone. The second change is that the baseline design is now fixed at a stable level of performance set approximately equal to the 2004 code. Rather than changing the stringency of the baseline with each subsequent edition of the standard, compliance with new editions will simply require a reduced PCI (a PCI of zero is a net-zero building). Using this approach, buildings of any era can be rated using the same method. The intent is that any building energy code or beyond code program can use this methodology and merely set the appropriate PCI target for their needs. This report discusses the process used to set performance criteria for compliance with ASHRAE Standard 90.1-2016 and suggests a method for demonstrating compliance with other codes and beyond code programs.« less

  9. Developing Performance Cost Index Targets for ASHRAE Standard 90.1 Appendix G – Performance Rating Method - Rev.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Michael I.; Hart, Philip R.

    2016-03-01

    Appendix G, the Performance Rating Method in ASHRAE Standard 90.1 has been updated to make two significant changes for the 2016 edition, to be published in October of 2016. First, it allows Appendix G to be used as a third path for compliance with the standard in addition to rating beyond code building performance. This prevents modelers from having to develop separate building models for code compliance and beyond code programs. Using this new version of Appendix G to show compliance with the 2016 edition of the standard, the proposed building design needs to have a performance cost index (PCI)more » less than targets shown in a new table based on building type and climate zone. The second change is that the baseline design is now fixed at a stable level of performance set approximately equal to the 2004 code. Rather than changing the stringency of the baseline with each subsequent edition of the standard, compliance with new editions will simply require a reduced PCI (a PCI of zero is a net-zero building). Using this approach, buildings of any era can be rated using the same method. The intent is that any building energy code or beyond code program can use this methodology and merely set the appropriate PCI target for their needs. This report discusses the process used to set performance criteria for compliance with ASHRAE Standard 90.1-2016 and suggests a method for demonstrating compliance with other codes and beyond code programs.« less

  10. Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.

    1983-10-01

    Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advisemore » SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables.« less

  11. Soft-decision decoding techniques for linear block codes and their error performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1996-01-01

    The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.

  12. Comparison of memory thresholds for planar qudit geometries

    NASA Astrophysics Data System (ADS)

    Marks, Jacob; Jochym-O'Connor, Tomas; Gheorghiu, Vlad

    2017-11-01

    We introduce and analyze a new type of decoding algorithm called general color clustering, based on renormalization group methods, to be used in qudit color codes. The performance of this decoder is analyzed under a generalized bit-flip error model, and is used to obtain the first memory threshold estimates for qudit 6-6-6 color codes. The proposed decoder is compared with similar decoding schemes for qudit surface codes as well as the current leading qubit decoders for both sets of codes. We find that, as with surface codes, clustering performs sub-optimally for qubit color codes, giving a threshold of 5.6 % compared to the 8.0 % obtained through surface projection decoding methods. However, the threshold rate increases by up to 112% for large qudit dimensions, plateauing around 11.9 % . All the analysis is performed using QTop, a new open-source software for simulating and visualizing topological quantum error correcting codes.

  13. Operational rate-distortion performance for joint source and channel coding of images.

    PubMed

    Ruf, M J; Modestino, J W

    1999-01-01

    This paper describes a methodology for evaluating the operational rate-distortion behavior of combined source and channel coding schemes with particular application to images. In particular, we demonstrate use of the operational rate-distortion function to obtain the optimum tradeoff between source coding accuracy and channel error protection under the constraint of a fixed transmission bandwidth for the investigated transmission schemes. Furthermore, we develop information-theoretic bounds on performance for specific source and channel coding systems and demonstrate that our combined source-channel coding methodology applied to different schemes results in operational rate-distortion performance which closely approach these theoretical limits. We concentrate specifically on a wavelet-based subband source coding scheme and the use of binary rate-compatible punctured convolutional (RCPC) codes for transmission over the additive white Gaussian noise (AWGN) channel. Explicit results for real-world images demonstrate the efficacy of this approach.

  14. Two dimension MDW OCDMA code cross-correlation for reduction of phase induced intensity noise

    NASA Astrophysics Data System (ADS)

    Ahmed, Israa Sh.; Aljunid, Syed A.; Nordin, Junita M.; Dulaimi, Layth A. Khalil Al; Matem, Rima

    2017-11-01

    In this paper, we first review 2-D MDW code cross correlation equations and table to be improved significantly by using code correlation properties. These codes can be used in the synchronous optical CDMA systems for multi access interference cancellation and maximum suppress the phase induced intensity noise. Low Psr is due to the reduction of interference noise that is induced by the 2-D MDW code PIIN suppression. High data rate causes increases in BER, requires high effective power and severely deteriorates the system performance. The 2-D W/T MDW code has an excellent system performance where the value of PIIN is suppressed as low as possible at the optimum Psr with high data bit rate. The 2-D MDW code shows better tolerance to PIIN in comparison to others with enhanced system performance. We prove by numerical analysis that the PIIN maximally suppressed by MDW code through the minimizing property of cross correlation in comparison to 2-D PDC and 2-D MQC OCDMA code.scheme systems.

  15. Is phonology bypassed in normal or dyslexic development?

    PubMed

    Pennington, B F; Lefly, D L; Van Orden, G C; Bookman, M O; Smith, S D

    1987-01-01

    A pervasive assumption in most accounts of normal reading and spelling development is that phonological coding is important early in development but is subsequently superseded by faster, orthographic coding which bypasses phonology. We call this assumption, which derives from dual process theory, the developmental bypass hypothesis. The present study tests four specific predictions of the developmental bypass hypothesis by comparing dyslexics and nondyslexics from the same families in a cross-sectional design. The four predictions are: 1) That phonological coding skill develops early in normal readers and soon reaches asymptote, whereas orthographic coding skill has a protracted course of development; 2) that the correlation of adult reading or spelling performance with phonological coding skill is considerably less than the correlation with orthographic coding skill; 3) that dyslexics who are mainly deficient in phonological coding skill should be able to bypass this deficit and eventually close the gap in reading and spelling performance; and 4) that the greatest differences between dyslexics and developmental controls on measures of phonological coding skill should be observed early rather than late in development.None of the four predictions of the developmental bypass hypothesis were upheld. Phonological coding skill continued to develop in nondyslexics until adulthood. It accounted for a substantial (32-53 percent) portion of the variance in reading and spelling performance in adult nondyslexics, whereas orthographic coding skill did not account for a statistically reliable portion of this variance. The dyslexics differed little across age in phonological coding skill, but made linear progress in orthographic coding skill, surpassing spelling-age (SA) controls by adulthood. Nonetheless, they didnot close the gap in reading and spelling performance. Finally, dyslexics were significantly worse than SA (and Reading Age [RA]) controls in phonological coding skill only in adulthood.

  16. Performance Analysis and Optimization on the UCLA Parallel Atmospheric General Circulation Model Code

    NASA Technical Reports Server (NTRS)

    Lou, John; Ferraro, Robert; Farrara, John; Mechoso, Carlos

    1996-01-01

    An analysis is presented of several factors influencing the performance of a parallel implementation of the UCLA atmospheric general circulation model (AGCM) on massively parallel computer systems. Several modificaitons to the original parallel AGCM code aimed at improving its numerical efficiency, interprocessor communication cost, load-balance and issues affecting single-node code performance are discussed.

  17. Performance measures for transform data coding.

    NASA Technical Reports Server (NTRS)

    Pearl, J.; Andrews, H. C.; Pratt, W. K.

    1972-01-01

    This paper develops performance criteria for evaluating transform data coding schemes under computational constraints. Computational constraints that conform with the proposed basis-restricted model give rise to suboptimal coding efficiency characterized by a rate-distortion relation R(D) similar in form to the theoretical rate-distortion function. Numerical examples of this performance measure are presented for Fourier, Walsh, Haar, and Karhunen-Loeve transforms.

  18. Users manual and modeling improvements for axial turbine design and performance computer code TD2-2

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.

  19. GROUND-WATER MODEL TESTING: SYSTEMATIC EVALUATION AND TESTING OF CODE FUNCTIONALITY AND PERFORMANCE

    EPA Science Inventory

    Effective use of ground-water simulation codes as management decision tools requires the establishment of their functionality, performance characteristics, and applicability to the problem at hand. This is accomplished through application of a systematic code-testing protocol and...

  20. Mean Line Pump Flow Model in Rocket Engine System Simulation

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Lavelle, Thomas M.

    2000-01-01

    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  1. Coordinated design of coding and modulation systems

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    Work on partial unit memory codes continued; it was shown that for a given virtual state complexity, the maximum free distance over the class of all convolutional codes is achieved within the class of unit memory codes. The effect of phase-lock loop (PLL) tracking error on coding system performance was studied by using the channel cut-off rate as the measure of quality of a modulation system. Optimum modulation signal sets for a non-white Gaussian channel considered an heuristic selection rule based on a water-filling argument. The use of error correcting codes to perform data compression by the technique of syndrome source coding was researched and a weight-and-error-locations scheme was developed that is closely related to LDSC coding.

  2. Low-Density Parity-Check (LDPC) Codes Constructed from Protographs

    NASA Astrophysics Data System (ADS)

    Thorpe, J.

    2003-08-01

    We introduce a new class of low-density parity-check (LDPC) codes constructed from a template called a protograph. The protograph serves as a blueprint for constructing LDPC codes of arbitrary size whose performance can be predicted by analyzing the protograph. We apply standard density evolution techniques to predict the performance of large protograph codes. Finally, we use a randomized search algorithm to find good protographs.

  3. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    NASA Astrophysics Data System (ADS)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O'Neill, B. J.; Nolting, C.; Edmon, P.; Donnert, J. M. F.; Jones, T. W.

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  4. Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More

    NASA Technical Reports Server (NTRS)

    Kou, Yu; Lin, Shu; Fossorier, Marc

    1999-01-01

    Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.

  5. HERCULES: A Pattern Driven Code Transformation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartsaklis, Christos; Hernandez, Oscar R; Hsu, Chung-Hsing

    2012-01-01

    New parallel computers are emerging, but developing efficient scientific code for them remains difficult. A scientist must manage not only the science-domain complexity but also the performance-optimization complexity. HERCULES is a code transformation system designed to help the scientist to separate the two concerns, which improves code maintenance, and facilitates performance optimization. The system combines three technologies, code patterns, transformation scripts and compiler plugins, to provide the scientist with an environment to quickly implement code transformations that suit his needs. Unlike existing code optimization tools, HERCULES is unique in its focus on user-level accessibility. In this paper we discuss themore » design, implementation and an initial evaluation of HERCULES.« less

  6. Performance analysis of optical wireless communication system based on two-fold turbo code

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Huang, Dexiu; Yuan, Xiuhua

    2005-11-01

    Optical wireless communication (OWC) is beginning to emerge in the telecommunications market as a strategy to meet last-mile demand owing to its unique combination of features. Turbo codes have an impressive near Shannon-limit error correcting performance. Twofold turbo codes have been recently introduced as the least complex member of the multifold turbo code family. In this paper, at first, we present the mathematical model of signal and optical wireless channel with fading and bit error rate model with scintillation, then we provide a new turbo code method to use in OWC system, we can obtain a better BER curse of OWC system with twofold turbo code than with common turbo code.

  7. Validating the performance of correlated fission multiplicity implementation in radiation transport codes with subcritical neutron multiplication benchmark experiments

    DOE PAGES

    Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson; ...

    2018-06-14

    Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less

  8. Validating the performance of correlated fission multiplicity implementation in radiation transport codes with subcritical neutron multiplication benchmark experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson

    Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less

  9. Contributions of Sensory Coding and Attentional Control to Individual Differences in Performance in Spatial Auditory Selective Attention Tasks.

    PubMed

    Dai, Lengshi; Shinn-Cunningham, Barbara G

    2016-01-01

    Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics and task demands.

  10. Increasing Flexibility in Energy Code Compliance: Performance Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Rosenberg, Michael I.

    Energy codes and standards have provided significant increases in building efficiency over the last 38 years, since the first national energy code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. As the code matures, the prescriptive path becomes more complicated, and also more restrictive. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. Performance code paths are increasing in popularity; however, there remains a significant designmore » team overhead in following the performance path, especially for smaller buildings. This paper focuses on development of one alternative format, prescriptive packages. A method to develop building-specific prescriptive packages is reviewed based on a multiple runs of prototypical building models that are used to develop parametric decision analysis to determines a set of packages with equivalent energy performance. The approach is designed to be cost-effective and flexible for the design team while achieving a desired level of energy efficiency performance. A demonstration of the approach based on mid-sized office buildings with two HVAC system types is shown along with a discussion of potential applicability in the energy code process.« less

  11. On the design of turbo codes

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1995-01-01

    In this article, we design new turbo codes that can achieve near-Shannon-limit performance. The design criterion for random interleavers is based on maximizing the effective free distance of the turbo code, i.e., the minimum output weight of codewords due to weight-2 input sequences. An upper bound on the effective free distance of a turbo code is derived. This upper bound can be achieved if the feedback connection of convolutional codes uses primitive polynomials. We review multiple turbo codes (parallel concatenation of q convolutional codes), which increase the so-called 'interleaving gain' as q and the interleaver size increase, and a suitable decoder structure derived from an approximation to the maximum a posteriori probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent codes to be used in the turbo encoder structure. These codes, for from 2 to 32 states, are designed by using primitive polynomials. The resulting turbo codes have rates b/n (b = 1, 2, 3, 4 and n = 2, 3, 4, 5, 6), and include random interleavers for better asymptotic performance. These codes are suitable for deep-space communications with low throughput and for near-Earth communications where high throughput is desirable. The performance of these codes is within 1 dB of the Shannon limit at a bit-error rate of 10(exp -6) for throughputs from 1/15 up to 4 bits/s/Hz.

  12. Concatenated Coding Using Trellis-Coded Modulation

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1997-01-01

    In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.

  13. Classification Techniques for Digital Map Compression

    DTIC Science & Technology

    1989-03-01

    classification improved the performance of the K-means classification algorithm resulting in a compression of 8.06:1 with Lempel - Ziv coding. Run-length coding... compression performance are run-length coding [2], [8] and Lempel - Ziv coding 110], [11]. These techniques are chosen because they are most efficient when...investigated. After the classification, some standard file compression methods, such as Lempel - Ziv and run-length encoding were applied to the

  14. Evaluation of the DRAGON code for VHTR design analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-12

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by themore » IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.« less

  15. Performance Bounds on Two Concatenated, Interleaved Codes

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Dolinar, Samuel

    2010-01-01

    A method has been developed of computing bounds on the performance of a code comprised of two linear binary codes generated by two encoders serially concatenated through an interleaver. Originally intended for use in evaluating the performances of some codes proposed for deep-space communication links, the method can also be used in evaluating the performances of short-block-length codes in other applications. The method applies, more specifically, to a communication system in which following processes take place: At the transmitter, the original binary information that one seeks to transmit is first processed by an encoder into an outer code (Co) characterized by, among other things, a pair of numbers (n,k), where n (n > k)is the total number of code bits associated with k information bits and n k bits are used for correcting or at least detecting errors. Next, the outer code is processed through either a block or a convolutional interleaver. In the block interleaver, the words of the outer code are processed in blocks of I words. In the convolutional interleaver, the interleaving operation is performed bit-wise in N rows with delays that are multiples of B bits. The output of the interleaver is processed through a second encoder to obtain an inner code (Ci) characterized by (ni,ki). The output of the inner code is transmitted over an additive-white-Gaussian- noise channel characterized by a symbol signal-to-noise ratio (SNR) Es/No and a bit SNR Eb/No. At the receiver, an inner decoder generates estimates of bits. Depending on whether a block or a convolutional interleaver is used at the transmitter, the sequence of estimated bits is processed through a block or a convolutional de-interleaver, respectively, to obtain estimates of code words. Then the estimates of the code words are processed through an outer decoder, which generates estimates of the original information along with flags indicating which estimates are presumed to be correct and which are found to be erroneous. From the perspective of the present method, the topic of major interest is the performance of the communication system as quantified in the word-error rate and the undetected-error rate as functions of the SNRs and the total latency of the interleaver and inner code. The method is embodied in equations that describe bounds on these functions. Throughout the derivation of the equations that embody the method, it is assumed that the decoder for the outer code corrects any error pattern of t or fewer errors, detects any error pattern of s or fewer errors, may detect some error patterns of more than s errors, and does not correct any patterns of more than t errors. Because a mathematically complete description of the equations that embody the method and of the derivation of the equations would greatly exceed the space available for this article, it must suffice to summarize by reporting that the derivation includes consideration of several complex issues, including relationships between latency and memory requirements for block and convolutional codes, burst error statistics, enumeration of error-event intersections, and effects of different interleaving depths. In a demonstration, the method was used to calculate bounds on the performances of several communication systems, each based on serial concatenation of a (63,56) expurgated Hamming code with a convolutional inner code through a convolutional interleaver. The bounds calculated by use of the method were compared with results of numerical simulations of performances of the systems to show the regions where the bounds are tight (see figure).

  16. Investigation of CSRZ code in FSO communication

    NASA Astrophysics Data System (ADS)

    Zhang, Zhike; Chang, Mingchao; Zhu, Ninghua; Liu, Yu

    2018-02-01

    A cost-effective carrier-suppressed return-to-zero (CSRZ) code generation scheme is proposed by employing a directly modulated laser (DML) module operated at 1.5 μm wavelength. Furthermore, the performance of CSRZ code signal in free-space optical (FSO) link transmission is studied by simulation. It is found from the results that the atmospheric turbulence can deteriorate the transmission performance. However, due to have lower average transmit power and higher spectrum efficient, CSRZ code signal can obtain better amplitude suppression ratio compared to the Non-return-to-zero (NRZ) code.

  17. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1988-01-01

    During the period December 1, 1987 through May 31, 1988, progress was made in the following areas: construction of Multi-Dimensional Bandwidth Efficient Trellis Codes with MPSK modulation; performance analysis of Bandwidth Efficient Trellis Coded Modulation schemes; and performance analysis of Bandwidth Efficient Trellis Codes on Fading Channels.

  18. The effect of total noise on two-dimension OCDMA codes

    NASA Astrophysics Data System (ADS)

    Dulaimi, Layth A. Khalil Al; Badlishah Ahmed, R.; Yaakob, Naimah; Aljunid, Syed A.; Matem, Rima

    2017-11-01

    In this research, we evaluate the performance of total noise effect on two dimension (2-D) optical code-division multiple access (OCDMA) performance systems using 2-D Modified Double Weight MDW under various link parameters. The impact of the multi-access interference (MAI) and other noise effect on the system performance. The 2-D MDW is compared mathematically with other codes which use similar techniques. We analyzed and optimized the data rate and effective receive power. The performance and optimization of MDW code in OCDMA system are reported, the bit error rate (BER) can be significantly improved when the 2-D MDW code desired parameters are selected especially the cross correlation properties. It reduces the MAI in the system compensate BER and phase-induced intensity noise (PIIN) in incoherent OCDMA The analysis permits a thorough understanding of PIIN, shot and thermal noises impact on 2-D MDW OCDMA system performance. PIIN is the main noise factor in the OCDMA network.

  19. Fast H.264/AVC FRExt intra coding using belief propagation.

    PubMed

    Milani, Simone

    2011-01-01

    In the H.264/AVC FRExt coder, the coding performance of Intra coding significantly overcomes the previous still image coding standards, like JPEG2000, thanks to a massive use of spatial prediction. Unfortunately, the adoption of an extensive set of predictors induces a significant increase of the computational complexity required by the rate-distortion optimization routine. The paper presents a complexity reduction strategy that aims at reducing the computational load of the Intra coding with a small loss in the compression performance. The proposed algorithm relies on selecting a reduced set of prediction modes according to their probabilities, which are estimated adopting a belief-propagation procedure. Experimental results show that the proposed method permits saving up to 60 % of the coding time required by an exhaustive rate-distortion optimization method with a negligible loss in performance. Moreover, it permits an accurate control of the computational complexity unlike other methods where the computational complexity depends upon the coded sequence.

  20. Computerized Dental Comparison: A Critical Review of Dental Coding and Ranking Algorithms Used in Victim Identification.

    PubMed

    Adams, Bradley J; Aschheim, Kenneth W

    2016-01-01

    Comparison of antemortem and postmortem dental records is a leading method of victim identification, especially for incidents involving a large number of decedents. This process may be expedited with computer software that provides a ranked list of best possible matches. This study provides a comparison of the most commonly used conventional coding and sorting algorithms used in the United States (WinID3) with a simplified coding format that utilizes an optimized sorting algorithm. The simplified system consists of seven basic codes and utilizes an optimized algorithm based largely on the percentage of matches. To perform this research, a large reference database of approximately 50,000 antemortem and postmortem records was created. For most disaster scenarios, the proposed simplified codes, paired with the optimized algorithm, performed better than WinID3 which uses more complex codes. The detailed coding system does show better performance with extremely large numbers of records and/or significant body fragmentation. © 2015 American Academy of Forensic Sciences.

  1. Performance of automated and manual coding systems for occupational data: a case study of historical records.

    PubMed

    Patel, Mehul D; Rose, Kathryn M; Owens, Cindy R; Bang, Heejung; Kaufman, Jay S

    2012-03-01

    Occupational data are a common source of workplace exposure and socioeconomic information in epidemiologic research. We compared the performance of two occupation coding methods, an automated software and a manual coder, using occupation and industry titles from U.S. historical records. We collected parental occupational data from 1920-40s birth certificates, Census records, and city directories on 3,135 deceased individuals in the Atherosclerosis Risk in Communities (ARIC) study. Unique occupation-industry narratives were assigned codes by a manual coder and the Standardized Occupation and Industry Coding software program. We calculated agreement between coding methods of classification into major Census occupational groups. Automated coding software assigned codes to 71% of occupations and 76% of industries. Of this subset coded by software, 73% of occupation codes and 69% of industry codes matched between automated and manual coding. For major occupational groups, agreement improved to 89% (kappa = 0.86). Automated occupational coding is a cost-efficient alternative to manual coding. However, some manual coding is required to code incomplete information. We found substantial variability between coders in the assignment of occupations although not as large for major groups.

  2. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it maymore » be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.« less

  3. Performance of MIMO-OFDM using convolution codes with QAM modulation

    NASA Astrophysics Data System (ADS)

    Astawa, I. Gede Puja; Moegiharto, Yoedy; Zainudin, Ahmad; Salim, Imam Dui Agus; Anggraeni, Nur Annisa

    2014-04-01

    Performance of Orthogonal Frequency Division Multiplexing (OFDM) system can be improved by adding channel coding (error correction code) to detect and correct errors that occur during data transmission. One can use the convolution code. This paper present performance of OFDM using Space Time Block Codes (STBC) diversity technique use QAM modulation with code rate ½. The evaluation is done by analyzing the value of Bit Error Rate (BER) vs Energy per Bit to Noise Power Spectral Density Ratio (Eb/No). This scheme is conducted 256 subcarrier which transmits Rayleigh multipath fading channel in OFDM system. To achieve a BER of 10-3 is required 10dB SNR in SISO-OFDM scheme. For 2×2 MIMO-OFDM scheme requires 10 dB to achieve a BER of 10-3. For 4×4 MIMO-OFDM scheme requires 5 dB while adding convolution in a 4x4 MIMO-OFDM can improve performance up to 0 dB to achieve the same BER. This proves the existence of saving power by 3 dB of 4×4 MIMO-OFDM system without coding, power saving 7 dB of 2×2 MIMO-OFDM and significant power savings from SISO-OFDM system.

  4. A practical approach to portability and performance problems on massively parallel supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beazley, D.M.; Lomdahl, P.S.

    1994-12-08

    We present an overview of the tactics we have used to achieve a high-level of performance while improving portability for a large-scale molecular dynamics code SPaSM. SPaSM was originally implemented in ANSI C with message passing for the Connection Machine 5 (CM-5). In 1993, SPaSM was selected as one of the winners in the IEEE Gordon Bell Prize competition for sustaining 50 Gflops on the 1024 node CM-5 at Los Alamos National Laboratory. Achieving this performance on the CM-5 required rewriting critical sections of code in CDPEAC assembler language. In addition, the code made extensive use of CM-5 parallel I/Omore » and the CMMD message passing library. Given this highly specialized implementation, we describe how we have ported the code to the Cray T3D and high performance workstations. In addition we will describe how it has been possible to do this using a single version of source code that runs on all three platforms without sacrificing any performance. Sound too good to be true? We hope to demonstrate that one can realize both code performance and portability without relying on the latest and greatest prepackaged tool or parallelizing compiler.« less

  5. Comparison Between Simulated and Experimentally Measured Performance of a Four Port Wave Rotor

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wilson, Jack; Welch, Gerard E.

    2007-01-01

    Performance and operability testing has been completed on a laboratory-scale, four-port wave rotor, of the type suitable for use as a topping cycle on a gas turbine engine. Many design aspects, and performance estimates for the wave rotor were determined using a time-accurate, one-dimensional, computational fluid dynamics-based simulation code developed specifically for wave rotors. The code follows a single rotor passage as it moves past the various ports, which in this reference frame become boundary conditions. This paper compares wave rotor performance predicted with the code to that measured during laboratory testing. Both on and off-design operating conditions were examined. Overall, the match between code and rig was found to be quite good. At operating points where there were disparities, the assumption of larger than expected internal leakage rates successfully realigned code predictions and laboratory measurements. Possible mechanisms for such leakage rates are discussed.

  6. Iterative Code-Aided ML Phase Estimation and Phase Ambiguity Resolution

    NASA Astrophysics Data System (ADS)

    Wymeersch, Henk; Moeneclaey, Marc

    2005-12-01

    As many coded systems operate at very low signal-to-noise ratios, synchronization becomes a very difficult task. In many cases, conventional algorithms will either require long training sequences or result in large BER degradations. By exploiting code properties, these problems can be avoided. In this contribution, we present several iterative maximum-likelihood (ML) algorithms for joint carrier phase estimation and ambiguity resolution. These algorithms operate on coded signals by accepting soft information from the MAP decoder. Issues of convergence and initialization are addressed in detail. Simulation results are presented for turbo codes, and are compared to performance results of conventional algorithms. Performance comparisons are carried out in terms of BER performance and mean square estimation error (MSEE). We show that the proposed algorithm reduces the MSEE and, more importantly, the BER degradation. Additionally, phase ambiguity resolution can be performed without resorting to a pilot sequence, thus improving the spectral efficiency.

  7. A MATLAB based 3D modeling and inversion code for MT data

    NASA Astrophysics Data System (ADS)

    Singh, Arun; Dehiya, Rahul; Gupta, Pravin K.; Israil, M.

    2017-07-01

    The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator code and modeling/inversion code. The grid generator code performs model discretization and acts as an interface by generating various I/O files. The inversion code performs core computations in modular form - forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the code provides a framework useful for implementation of new applications and inversion algorithms. The use of MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several published models. To demonstrate its versatility and capabilities the results of inversion for two complex models are presented.

  8. [Transposition errors during learning to reproduce a sequence by the right- and the left-hand movements: simulation of positional and movement coding].

    PubMed

    Liakhovetskiĭ, V A; Bobrova, E V; Skopin, G N

    2012-01-01

    Transposition errors during the reproduction of a hand movement sequence make it possible to receive important information on the internal representation of this sequence in the motor working memory. Analysis of such errors showed that learning to reproduce sequences of the left-hand movements improves the system of positional coding (coding ofpositions), while learning of the right-hand movements improves the system of vector coding (coding of movements). Learning of the right-hand movements after the left-hand performance involved the system of positional coding "imposed" by the left hand. Learning of the left-hand movements after the right-hand performance activated the system of vector coding. Transposition errors during learning to reproduce movement sequences can be explained by neural network using either vector coding or both vector and positional coding.

  9. Methodology for fast detection of false sharing in threaded scientific codes

    DOEpatents

    Chung, I-Hsin; Cong, Guojing; Murata, Hiroki; Negishi, Yasushi; Wen, Hui-Fang

    2014-11-25

    A profiling tool identifies a code region with a false sharing potential. A static analysis tool classifies variables and arrays in the identified code region. A mapping detection library correlates memory access instructions in the identified code region with variables and arrays in the identified code region while a processor is running the identified code region. The mapping detection library identifies one or more instructions at risk, in the identified code region, which are subject to an analysis by a false sharing detection library. A false sharing detection library performs a run-time analysis of the one or more instructions at risk while the processor is re-running the identified code region. The false sharing detection library determines, based on the performed run-time analysis, whether two different portions of the cache memory line are accessed by the generated binary code.

  10. Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.

    PubMed

    Majumder, Saikat; Verma, Shrish

    2015-01-01

    Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.

  11. Scalability study of parallel spatial direct numerical simulation code on IBM SP1 parallel supercomputer

    NASA Technical Reports Server (NTRS)

    Hanebutte, Ulf R.; Joslin, Ronald D.; Zubair, Mohammad

    1994-01-01

    The implementation and the performance of a parallel spatial direct numerical simulation (PSDNS) code are reported for the IBM SP1 supercomputer. The spatially evolving disturbances that are associated with laminar-to-turbulent in three-dimensional boundary-layer flows are computed with the PS-DNS code. By remapping the distributed data structure during the course of the calculation, optimized serial library routines can be utilized that substantially increase the computational performance. Although the remapping incurs a high communication penalty, the parallel efficiency of the code remains above 40% for all performed calculations. By using appropriate compile options and optimized library routines, the serial code achieves 52-56 Mflops on a single node of the SP1 (45% of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a 'real world' simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP for the same simulation. The scalability information provides estimated computational costs that match the actual costs relative to changes in the number of grid points.

  12. Subjective evaluation of next-generation video compression algorithms: a case study

    NASA Astrophysics Data System (ADS)

    De Simone, Francesca; Goldmann, Lutz; Lee, Jong-Seok; Ebrahimi, Touradj; Baroncini, Vittorio

    2010-08-01

    This paper describes the details and the results of the subjective quality evaluation performed at EPFL, as a contribution to the effort of the Joint Collaborative Team on Video Coding (JCT-VC) for the definition of the next-generation video coding standard. The performance of 27 coding technologies have been evaluated with respect to two H.264/MPEG-4 AVC anchors, considering high definition (HD) test material. The test campaign involved a total of 494 naive observers and took place over a period of four weeks. While similar tests have been conducted as part of the standardization process of previous video coding technologies, the test campaign described in this paper is by far the most extensive in the history of video coding standardization. The obtained subjective quality scores show high consistency and support an accurate comparison of the performance of the different coding solutions.

  13. Performance of Trellis Coded 256 QAM super-multicarrier modem VLSI's for SDH interface outage-free digital microwave radio

    NASA Astrophysics Data System (ADS)

    Aikawa, Satoru; Nakamura, Yasuhisa; Takanashi, Hitoshi

    1994-02-01

    This paper describes the performance of an outage free SXH (Synchronous Digital Hierarchy) interface 256 QAM modem. An outage free DMR (Digital Microwave Radio) is achieved by a high coding gain trellis coded SPORT QAM and Super Multicarrier modem. A new frame format and its associated circuits connect the outage free modem to the SDH interface. The newly designed VLSI's are key devices for developing the modem. As an overall modem performance, BER (bit error rate) characteristics and equipment signatures are presented. A coding gain of 4.7 dB (at a BER of 10(exp -4)) is obtained using SPORT 256 QAM and Viterbi decoding. This coding gain is realized by trellis coding as well as by increasing of transmission rate. Roll-off factor is decreased to maintain the same frequency occupation and modulation level as ordinary SDH 256 QAM modern.

  14. Global MHD simulation of magnetosphere using HPF

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5% using 56 PEs of Fujitsu VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  15. Semantic enrichment of medical forms - semi-automated coding of ODM-elements via web services.

    PubMed

    Breil, Bernhard; Watermann, Andreas; Haas, Peter; Dziuballe, Philipp; Dugas, Martin

    2012-01-01

    Semantic interoperability is an unsolved problem which occurs while working with medical forms from different information systems or institutions. Standards like ODM or CDA assure structural homogenization but in order to compare elements from different data models it is necessary to use semantic concepts and codes on an item level of those structures. We developed and implemented a web-based tool which enables a domain expert to perform semi-automated coding of ODM-files. For each item it is possible to inquire web services which result in unique concept codes without leaving the context of the document. Although it was not feasible to perform a totally automated coding we have implemented a dialog based method to perform an efficient coding of all data elements in the context of the whole document. The proportion of codable items was comparable to results from previous studies.

  16. Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.

    2002-01-01

    Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two-equation turbulence model, and two-phase flow. To overcome these limitations, the LTCP code is rewritten to include the multi-zone capability with domain decomposition that makes it suitable for parallel processing, i.e., enabling the code to run every zone or sub-domain on a separate processor. This can reduce the run time by a factor of 6 to 8, depending on the problem.

  17. A Comprehensive High Performance Predictive Tool for Fusion Liquid Metal Hydromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peter; Chhabra, Rupanshi; Munipalli, Ramakanth

    In Phase I SBIR project, HyPerComp and Texcel initiated the development of two induction-based MHD codes as a predictive tool for fusion hydro-magnetics. The newly-developed codes overcome the deficiency of other MHD codes based on the quasi static approximation by defining a more general mathematical model that utilizes the induced magnetic field rather than the electric potential as the main electromagnetic variable. The UCLA code is a finite-difference staggered-mesh code that serves as a supplementary tool to the massively-parallel finite-volume code developed by HyPerComp. As there is no suitable experimental data under blanket-relevant conditions for code validation, code-to-code comparisons andmore » comparisons against analytical solutions were successfully performed for three selected test cases: (1) lid-driven MHD flow, (2) flow in a rectangular duct in a transverse magnetic field, and (3) unsteady finite magnetic Reynolds number flow in a rectangular enclosure. The performed tests suggest that the developed codes are accurate and robust. Further work will focus on enhancing the code capabilities towards higher flow parameters and faster computations. At the conclusion of the current Phase-II Project we have completed the preliminary validation efforts in performing unsteady mixed-convection MHD flows (against limited data that is currently available in literature), and demonstrated flow behavior in large 3D channels including important geometrical features. Code enhancements such as periodic boundary conditions, unmatched mesh structures are also ready. As proposed, we have built upon these strengths and explored a much increased range of Grashof numbers and Hartmann numbers under various flow conditions, ranging from flows in a rectangular duct to prototypic blanket modules and liquid metal PFC. Parametric studies, numerical and physical model improvements to expand the scope of simulations, code demonstration, and continued validation activities have also been completed.« less

  18. Error suppression via complementary gauge choices in Reed-Muller codes

    NASA Astrophysics Data System (ADS)

    Chamberland, Christopher; Jochym-O'Connor, Tomas

    2017-09-01

    Concatenation of two quantum error-correcting codes with complementary sets of transversal gates can provide a means toward universal fault-tolerant quantum computation. We first show that it is generally preferable to choose the inner code with the higher pseudo-threshold to achieve lower logical failure rates. We then explore the threshold properties of a wide range of concatenation schemes. Notably, we demonstrate that the concatenation of complementary sets of Reed-Muller codes can increase the code capacity threshold under depolarizing noise when compared to extensions of previously proposed concatenation models. We also analyze the properties of logical errors under circuit-level noise, showing that smaller codes perform better for all sampled physical error rates. Our work provides new insights into the performance of universal concatenated quantum codes for both code capacity and circuit-level noise.

  19. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo

    1986-01-01

    A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  20. National Combustion Code: Parallel Implementation and Performance

    NASA Technical Reports Server (NTRS)

    Quealy, A.; Ryder, R.; Norris, A.; Liu, N.-S.

    2000-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. CORSAIR-CCD is the current baseline reacting flow solver for NCC. This is a parallel, unstructured grid code which uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC flow solver to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This paper describes the parallel implementation of the NCC flow solver and summarizes its current parallel performance on an SGI Origin 2000. Earlier parallel performance results on an IBM SP-2 are also included. The performance improvements which have enabled a turnaround of less than 15 hours for a 1.3 million element fully reacting combustion simulation are described.

  1. Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connaway, H. M.; Lee, C. H.

    The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy’s resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To supportmore » this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.« less

  2. Building codes : obstacle or opportunity?

    Treesearch

    Alberto Goetzl; David B. McKeever

    1999-01-01

    Building codes are critically important in the use of wood products for construction. The codes contain regulations that are prescriptive or performance related for various kinds of buildings and construction types. A prescriptive standard might dictate that a particular type of material be used in a given application. A performance standard requires that a particular...

  3. Transmutation Fuel Performance Code Thermal Model Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  4. Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Ma, Chunli

    2009-11-01

    In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.

  5. Convolutional code performance in planetary entry channels

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.

    1974-01-01

    The planetary entry channel is modeled for communication purposes representing turbulent atmospheric scattering effects. The performance of short and long constraint length convolutional codes is investigated in conjunction with coherent BPSK modulation and Viterbi maximum likelihood decoding. Algorithms for sequential decoding are studied in terms of computation and/or storage requirements as a function of the fading channel parameters. The performance of the coded coherent BPSK system is compared with the coded incoherent MFSK system. Results indicate that: some degree of interleaving is required to combat time correlated fading of channel; only modest amounts of interleaving are required to approach performance of memoryless channel; additional propagational results are required on the phase perturbation process; and the incoherent MFSK system is superior when phase tracking errors are considered.

  6. Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code

    NASA Astrophysics Data System (ADS)

    Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.

    2015-12-01

    WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).

  7. Error-correcting codes on scale-free networks

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hoon; Ko, Young-Jo

    2004-06-01

    We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.

  8. Investigating the structure preserving encryption of high efficiency video coding (HEVC)

    NASA Astrophysics Data System (ADS)

    Shahid, Zafar; Puech, William

    2013-02-01

    This paper presents a novel method for the real-time protection of new emerging High Efficiency Video Coding (HEVC) standard. Structure preserving selective encryption is being performed in CABAC entropy coding module of HEVC, which is significantly different from CABAC entropy coding of H.264/AVC. In CABAC of HEVC, exponential Golomb coding is replaced by truncated Rice (TR) up to a specific value for binarization of transform coefficients. Selective encryption is performed using AES cipher in cipher feedback mode on a plaintext of binstrings in a context aware manner. The encrypted bitstream has exactly the same bit-rate and is format complaint. Experimental evaluation and security analysis of the proposed algorithm is performed on several benchmark video sequences containing different combinations of motion, texture and objects.

  9. Free wake analysis of hover performance using a new influence coefficient method

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Ong, Ching Cho; Ching, Cho Ong

    1990-01-01

    A new approach to the prediction of helicopter rotor performance using a free wake analysis was developed. This new method uses a relaxation process that does not suffer from the convergence problems associated with previous time marching simulations. This wake relaxation procedure was coupled to a vortex-lattice, lifting surface loads analysis to produce a novel, self contained performance prediction code: EHPIC (Evaluation of Helicopter Performance using Influence Coefficients). The major technical features of the EHPIC code are described and a substantial amount of background information on the capabilities and proper operation of the code is supplied. Sample problems were undertaken to demonstrate the robustness and flexibility of the basic approach. Also, a performance correlation study was carried out to establish the breadth of applicability of the code, with very favorable results.

  10. Enhanced fault-tolerant quantum computing in d-level systems.

    PubMed

    Campbell, Earl T

    2014-12-05

    Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.

  11. Extension, validation and application of the NASCAP code

    NASA Technical Reports Server (NTRS)

    Katz, I.; Cassidy, J. J., III; Mandell, M. J.; Schnuelle, G. W.; Steen, P. G.; Parks, D. E.; Rotenberg, M.; Alexander, J. H.

    1979-01-01

    Numerous extensions were made in the NASCAP code. They fall into three categories: a greater range of definable objects, a more sophisticated computational model, and simplified code structure and usage. An important validation of NASCAP was performed using a new two dimensional computer code (TWOD). An interactive code (MATCHG) was written to compare material parameter inputs with charging results. The first major application of NASCAP was performed on the SCATHA satellite. Shadowing and charging calculation were completed. NASCAP was installed at the Air Force Geophysics Laboratory, where researchers plan to use it to interpret SCATHA data.

  12. A Review on Spectral Amplitude Coding Optical Code Division Multiple Access

    NASA Astrophysics Data System (ADS)

    Kaur, Navpreet; Goyal, Rakesh; Rani, Monika

    2017-06-01

    This manuscript deals with analysis of Spectral Amplitude Coding Optical Code Division Multiple Access (SACOCDMA) system. The major noise source in optical CDMA is co-channel interference from other users known as multiple access interference (MAI). The system performance in terms of bit error rate (BER) degrades as a result of increased MAI. It is perceived that number of users and type of codes used for optical system directly decide the performance of system. MAI can be restricted by efficient designing of optical codes and implementing them with unique architecture to accommodate more number of users. Hence, it is a necessity to design a technique like spectral direct detection (SDD) technique with modified double weight code, which can provide better cardinality and good correlation property.

  13. Cardinality enhancement utilizing Sequential Algorithm (SeQ) code in OCDMA system

    NASA Astrophysics Data System (ADS)

    Fazlina, C. A. S.; Rashidi, C. B. M.; Rahman, A. K.; Aljunid, S. A.

    2017-11-01

    Optical Code Division Multiple Access (OCDMA) has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ) code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI) and improve Bit Error Rate (BER), Phase Induced Intensity Noise (PIIN) and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  14. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao

    1991-01-01

    Various types of multistage decoding for multilevel block modulation codes, in which the decoding of a component code at each stage can be either soft decision or hard decision, maximum likelihood or bounded distance are discussed. Error performance for codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. It was found that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. It was found that the difference in performance between the suboptimum multi-stage soft decision maximum likelihood decoding of a modulation code and the single stage optimum decoding of the overall code is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  15. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A.

    1995-12-31

    In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEUmore » codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.« less

  16. An evaluation of TRAC-PF1/MOD1 computer code performance during posttest simulations of Semiscale MOD-2C feedwater line break transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, D.G.: Watkins, J.C.

    This report documents an evaluation of the TRAC-PF1/MOD1 reactor safety analysis computer code during computer simulations of feedwater line break transients. The experimental data base for the evaluation included the results of three bottom feedwater line break tests performed in the Semiscale Mod-2C test facility. The tests modeled 14.3% (S-FS-7), 50% (S-FS-11), and 100% (S-FS-6B) breaks. The test facility and the TRAC-PF1/MOD1 model used in the calculations are described. Evaluations of the accuracy of the calculations are presented in the form of comparisons of measured and calculated histories of selected parameters associated with the primary and secondary systems. In additionmore » to evaluating the accuracy of the code calculations, the computational performance of the code during the simulations was assessed. A conclusion was reached that the code is capable of making feedwater line break transient calculations efficiently, but there is room for significant improvements in the simulations that were performed. Recommendations are made for follow-on investigations to determine how to improve future feedwater line break calculations and for code improvements to make the code easier to use.« less

  17. Diffusive deposition of aerosols in Phebus containment during FPT-2 test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontautas, A.; Urbonavicius, E.

    2012-07-01

    At present the lumped-parameter codes is the main tool to investigate the complex response of the containment of Nuclear Power Plant in case of an accident. Continuous development and validation of the codes is required to perform realistic investigation of the processes that determine the possible source term of radioactive products to the environment. Validation of the codes is based on the comparison of the calculated results with the measurements performed in experimental facilities. The most extensive experimental program to investigate fission product release from the molten fuel, transport through the cooling circuit and deposition in the containment is performedmore » in PHEBUS test facility. Test FPT-2 performed in this facility is considered for analysis of processes taking place in containment. Earlier performed investigations using COCOSYS code showed that the code could be successfully used for analysis of thermal-hydraulic processes and deposition of aerosols, but there was also noticed that diffusive deposition on the vertical walls does not fit well with the measured results. In the CPA module of ASTEC code there is implemented different model for diffusive deposition, therefore the PHEBUS containment model was transferred from COCOSYS code to ASTEC-CPA to investigate the influence of the diffusive deposition modelling. Analysis was performed using PHEBUS containment model of 16 nodes. The calculated thermal-hydraulic parameters are in good agreement with measured results, which gives basis for realistic simulation of aerosol transport and deposition processes. Performed investigations showed that diffusive deposition model has influence on the aerosol deposition distribution on different surfaces in the test facility. (authors)« less

  18. Utilizing Spectrum Efficiently (USE)

    DTIC Science & Technology

    2011-02-28

    18 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and...numerical results. 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and Spectral Efficiency In [60] multiple...supported at a given signal-to-interference ratio in asynchronous direct-sequence code-division multiple-access ( DS - CDMA ) sys- tems was examined. It was

  19. Review and verification of CARE 3 mathematical model and code

    NASA Technical Reports Server (NTRS)

    Rose, D. M.; Altschul, R. E.; Manke, J. W.; Nelson, D. L.

    1983-01-01

    The CARE-III mathematical model and code verification performed by Boeing Computer Services were documented. The mathematical model was verified for permanent and intermittent faults. The transient fault model was not addressed. The code verification was performed on CARE-III, Version 3. A CARE III Version 4, which corrects deficiencies identified in Version 3, is being developed.

  20. Coded spread spectrum digital transmission system design study

    NASA Technical Reports Server (NTRS)

    Heller, J. A.; Odenwalder, J. P.; Viterbi, A. J.

    1974-01-01

    Results are presented of a comprehensive study of the performance of Viterbi-decoded convolutional codes in the presence of nonideal carrier tracking and bit synchronization. A constraint length 7, rate 1/3 convolutional code and parameters suitable for the space shuttle coded communications links are used. Mathematical models are developed and theoretical and simulation results are obtained to determine the tracking and acquisition performance of the system. Pseudorandom sequence spread spectrum techniques are also considered to minimize potential degradation caused by multipath.

  1. Development and application of structural dynamics analysis capabilities

    NASA Technical Reports Server (NTRS)

    Heinemann, Klaus W.; Hozaki, Shig

    1994-01-01

    Extensive research activities were performed in the area of multidisciplinary modeling and simulation of aerospace vehicles that are relevant to NASA Dryden Flight Research Facility. The efforts involved theoretical development, computer coding, and debugging of the STARS code. New solution procedures were developed in such areas as structures, CFD, and graphics, among others. Furthermore, systems-oriented codes were developed for rendering the code truly multidisciplinary and rather automated in nature. Also, work was performed in pre- and post-processing of engineering analysis data.

  2. New features and applications of PRESTO, a computer code for the performance of regenerative, superheated steam turbine cycles

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Staiger, P. J.

    1982-01-01

    The code was designed to analyze performance at valves-wide-open design flow. The code can model conventional steam cycles as well as cycles that include such special features as process steam extraction and induction and feedwater heating by external heat sources. Convenience features and extensions to the special features were incorporated into the PRESTO code. The features are described, and detailed examples illustrating the use of both the original and the special features are given.

  3. Performance Enhancement by Threshold Level Control of a Receiver in WDM-PON System with Manchester Coded Downstream and NRZ Upstream Re-Modulation

    NASA Astrophysics Data System (ADS)

    Kim, Bong Kyu; Chung, Hwan Seok; Chang, Sun Hyok; Park, Sangjo

    We propose and demonstrate a scheme enhancing the performance of optical access networks with Manchester coded downstream and re-modulated NRZ coded upstream. It is achieved by threshold level control of a limiting amplifier at a receiver, and the minimum sensitivity of upstream is significantly improved for the re-modulation scheme with 5Gb/s Manchester coded downstream and 2.488Gb/s NRZ upstream data rates.

  4. ATLAS offline software performance monitoring and optimization

    NASA Astrophysics Data System (ADS)

    Chauhan, N.; Kabra, G.; Kittelmann, T.; Langenberg, R.; Mandrysch, R.; Salzburger, A.; Seuster, R.; Ritsch, E.; Stewart, G.; van Eldik, N.; Vitillo, R.; Atlas Collaboration

    2014-06-01

    In a complex multi-developer, multi-package software environment, such as the ATLAS offline framework Athena, tracking the performance of the code can be a non-trivial task in itself. In this paper we describe improvements in the instrumentation of ATLAS offline software that have given considerable insight into the performance of the code and helped to guide the optimization work. The first tool we used to instrument the code is PAPI, which is a programing interface for accessing hardware performance counters. PAPI events can count floating point operations, cycles, instructions and cache accesses. Triggering PAPI to start/stop counting for each algorithm and processed event results in a good understanding of the algorithm level performance of ATLAS code. Further data can be obtained using Pin, a dynamic binary instrumentation tool. Pin tools can be used to obtain similar statistics as PAPI, but advantageously without requiring recompilation of the code. Fine grained routine and instruction level instrumentation is also possible. Pin tools can additionally interrogate the arguments to functions, like those in linear algebra libraries, so that a detailed usage profile can be obtained. These tools have characterized the extensive use of vector and matrix operations in ATLAS tracking. Currently, CLHEP is used here, which is not an optimal choice. To help evaluate replacement libraries a testbed has been setup allowing comparison of the performance of different linear algebra libraries (including CLHEP, Eigen and SMatrix/SVector). Results are then presented via the ATLAS Performance Management Board framework, which runs daily with the current development branch of the code and monitors reconstruction and Monte-Carlo jobs. This framework analyses the CPU and memory performance of algorithms and an overview of results are presented on a web page. These tools have provided the insight necessary to plan and implement performance enhancements in ATLAS code by identifying the most common operations, with the call parameters well understood, and allowing improvements to be quantified in detail.

  5. Overview of NASA Multi-dimensional Stirling Convertor Code Development and Validation Effort

    NASA Technical Reports Server (NTRS)

    Tew, Roy C.; Cairelli, James E.; Ibrahim, Mounir B.; Simon, Terrence W.; Gedeon, David

    2002-01-01

    A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and "two space" test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow fig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this

  6. Verification testing of the compression performance of the HEVC screen content coding extensions

    NASA Astrophysics Data System (ADS)

    Sullivan, Gary J.; Baroncini, Vittorio A.; Yu, Haoping; Joshi, Rajan L.; Liu, Shan; Xiu, Xiaoyu; Xu, Jizheng

    2017-09-01

    This paper reports on verification testing of the coding performance of the screen content coding (SCC) extensions of the High Efficiency Video Coding (HEVC) standard (Rec. ITU-T H.265 | ISO/IEC 23008-2 MPEG-H Part 2). The coding performance of HEVC screen content model (SCM) reference software is compared with that of the HEVC test model (HM) without the SCC extensions, as well as with the Advanced Video Coding (AVC) joint model (JM) reference software, for both lossy and mathematically lossless compression using All-Intra (AI), Random Access (RA), and Lowdelay B (LB) encoding structures and using similar encoding techniques. Video test sequences in 1920×1080 RGB 4:4:4, YCbCr 4:4:4, and YCbCr 4:2:0 colour sampling formats with 8 bits per sample are tested in two categories: "text and graphics with motion" (TGM) and "mixed" content. For lossless coding, the encodings are evaluated in terms of relative bit-rate savings. For lossy compression, subjective testing was conducted at 4 quality levels for each coding case, and the test results are presented through mean opinion score (MOS) curves. The relative coding performance is also evaluated in terms of Bjøntegaard-delta (BD) bit-rate savings for equal PSNR quality. The perceptual tests and objective metric measurements show a very substantial benefit in coding efficiency for the SCC extensions, and provided consistent results with a high degree of confidence. For TGM video, the estimated bit-rate savings ranged from 60-90% relative to the JM and 40-80% relative to the HM, depending on the AI/RA/LB configuration category and colour sampling format.

  7. Investigation of Different Constituent Encoders in a Turbo-code Scheme for Reduced Decoder Complexity

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.

    1998-01-01

    A large number of papers have been published attempting to give some analytical basis for the performance of Turbo-codes. It has been shown that performance improves with increased interleaver length. Also procedures have been given to pick the best constituent recursive systematic convolutional codes (RSCC's). However testing by computer simulation is still required to verify these results. This thesis begins by describing the encoding and decoding schemes used. Next simulation results on several memory 4 RSCC's are shown. It is found that the best BER performance at low E(sub b)/N(sub o) is not given by the RSCC's that were found using the analytic techniques given so far. Next the results are given from simulations using a smaller memory RSCC for one of the constituent encoders. Significant reduction in decoding complexity is obtained with minimal loss in performance. Simulation results are then given for a rate 1/3 Turbo-code with the result that this code performed as well as a rate 1/2 Turbo-code as measured by the distance from their respective Shannon limits. Finally the results of simulations where an inaccurate noise variance measurement was used are given. From this it was observed that Turbo-decoding is fairly stable with regard to noise variance measurement.

  8. MCNP and GADRAS Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klasky, Marc Louis; Myers, Steven Charles; James, Michael R.

    To facilitate the timely execution of System Threat Reviews (STRs) for DNDO, and also to develop a methodology for performing STRs, LANL performed comparisons of several radiation transport codes (MCNP, GADRAS, and Gamma-Designer) that have been previously utilized to compute radiation signatures. While each of these codes has strengths, it is of paramount interest to determine the limitations of each of the respective codes and also to identify the most time efficient means by which to produce computational results, given the large number of parametric cases that are anticipated in performing STR's. These comparisons serve to identify regions of applicabilitymore » for each code and provide estimates of uncertainty that may be anticipated. Furthermore, while performing these comparisons, examination of the sensitivity of the results to modeling assumptions was also examined. These investigations serve to enable the creation of the LANL methodology for performing STRs. Given the wide variety of radiation test sources, scenarios, and detectors, LANL calculated comparisons of the following parameters: decay data, multiplicity, device (n,γ) leakages, and radiation transport through representative scenes and shielding. This investigation was performed to understand potential limitations utilizing specific codes for different aspects of the STR challenges.« less

  9. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; An Iterative Decoding Algorithm for Linear Block Codes Based on a Low-Weight Trellis Search

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.

  10. Construction of Protograph LDPC Codes with Linear Minimum Distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Jones, Christopher

    2006-01-01

    A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  11. Pretest aerosol code comparisons for LWR aerosol containment tests LA1 and LA2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, A.L.; Wilson, J.H.; Arwood, P.C.

    The Light-Water-Reactor (LWR) Aerosol Containment Experiments (LACE) are being performed in Richland, Washington, at the Hanford Engineering Development Laboratory (HEDL) under the leadership of an international project board and the Electric Power Research Institute. These tests have two objectives: (1) to investigate, at large scale, the inherent aerosol retention behavior in LWR containments under simulated severe accident conditions, and (2) to provide an experimental data base for validating aerosol behavior and thermal-hydraulic computer codes. Aerosol computer-code comparison activities are being coordinated at the Oak Ridge National Laboratory. For each of the six LACE tests, ''pretest'' calculations (for code-to-code comparisons) andmore » ''posttest'' calculations (for code-to-test data comparisons) are being performed. The overall goals of the comparison effort are (1) to provide code users with experience in applying their codes to LWR accident-sequence conditions and (2) to evaluate and improve the code models.« less

  12. Performance of data-compression codes in channels with errors. Final report, October 1986-January 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-10-01

    Huffman codes, comma-free codes, and block codes with shift indicators are important candidate-message compression codes for improving the efficiency of communications systems. This study was undertaken to determine if these codes could be used to increase the thruput of the fixed very-low-frequency (FVLF) communication system. This applications involves the use of compression codes in a channel with errors.

  13. Some practical universal noiseless coding techniques, part 3, module PSl14,K+

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.

    1991-01-01

    The algorithmic definitions, performance characterizations, and application notes for a high-performance adaptive noiseless coding module are provided. Subsets of these algorithms are currently under development in custom very large scale integration (VLSI) at three NASA centers. The generality of coding algorithms recently reported is extended. The module incorporates a powerful adaptive noiseless coder for Standard Data Sources (i.e., sources whose symbols can be represented by uncorrelated non-negative integers, where smaller integers are more likely than the larger ones). Coders can be specified to provide performance close to the data entropy over any desired dynamic range (of entropy) above 0.75 bit/sample. This is accomplished by adaptively choosing the best of many efficient variable-length coding options to use on each short block of data (e.g., 16 samples) All code options used for entropies above 1.5 bits/sample are 'Huffman Equivalent', but they require no table lookups to implement. The coding can be performed directly on data that have been preprocessed to exhibit the characteristics of a standard source. Alternatively, a built-in predictive preprocessor can be used where applicable. This built-in preprocessor includes the familiar 1-D predictor followed by a function that maps the prediction error sequences into the desired standard form. Additionally, an external prediction can be substituted if desired. A broad range of issues dealing with the interface between the coding module and the data systems it might serve are further addressed. These issues include: multidimensional prediction, archival access, sensor noise, rate control, code rate improvements outside the module, and the optimality of certain internal code options.

  14. Iterative channel decoding of FEC-based multiple-description codes.

    PubMed

    Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B

    2012-03-01

    Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.

  15. MPAS-Ocean NESAP Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Mark Roger; Arndt, William; Keen, Noel

    NESAP performance improvements on MPAS-Ocean have resulted in a 5% to 7% speed-up on each of the examined systems including Cori-KNL, Cori-Haswell, and Edison. These tests were configured to emulate a production workload by using 128 nodes and a high-resolution ocean domain. Overall, the gap between standard and many-core architecture performance has been narrowed, but Cori-KNL remains considerably under-performing relative to Edison. NESAP code alterations affected 600 lines of code, and most of these improvements will benefit other MPAS codes (sea ice, land ice) that are also components within ACME. Modifications are fully tested within MPAS. Testing in ACME acrossmore » many platforms is underway, and must be completed before the code is merged. In addition, a ten-year production ACME global simulation was conducted on Cori-KNL in late 2016 with the pre-NESAP code in order to test readiness and configurations for scientific studies. Next steps include assessing performance across a range of nodes, threads per node, and ocean resolutions on Cori-KNL.« less

  16. Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams.

    PubMed

    Liu, Shuo; Cui, Tie Jun; Zhang, Lei; Xu, Quan; Wang, Qiu; Wan, Xiang; Gu, Jian Qiang; Tang, Wen Xuan; Qing Qi, Mei; Han, Jia Guang; Zhang, Wei Li; Zhou, Xiao Yang; Cheng, Qiang

    2016-10-01

    The concept of coding metasurface makes a link between physically metamaterial particles and digital codes, and hence it is possible to perform digital signal processing on the coding metasurface to realize unusual physical phenomena. Here, this study presents to perform Fourier operations on coding metasurfaces and proposes a principle called as scattering-pattern shift using the convolution theorem, which allows steering of the scattering pattern to an arbitrarily predesigned direction. Owing to the constant reflection amplitude of coding particles, the required coding pattern can be simply achieved by the modulus of two coding matrices. This study demonstrates that the scattering patterns that are directly calculated from the coding pattern using the Fourier transform have excellent agreements to the numerical simulations based on realistic coding structures, providing an efficient method in optimizing coding patterns to achieve predesigned scattering beams. The most important advantage of this approach over the previous schemes in producing anomalous single-beam scattering is its flexible and continuous controls to arbitrary directions. This work opens a new route to study metamaterial from a fully digital perspective, predicting the possibility of combining conventional theorems in digital signal processing with the coding metasurface to realize more powerful manipulations of electromagnetic waves.

  17. Shaping electromagnetic waves using software-automatically-designed metasurfaces.

    PubMed

    Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie

    2017-06-15

    We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.

  18. The UPSF code: a metaprogramming-based high-performance automatically parallelized plasma simulation framework

    NASA Astrophysics Data System (ADS)

    Gao, Xiatian; Wang, Xiaogang; Jiang, Binhao

    2017-10-01

    UPSF (Universal Plasma Simulation Framework) is a new plasma simulation code designed for maximum flexibility by using edge-cutting techniques supported by C++17 standard. Through use of metaprogramming technique, UPSF provides arbitrary dimensional data structures and methods to support various kinds of plasma simulation models, like, Vlasov, particle in cell (PIC), fluid, Fokker-Planck, and their variants and hybrid methods. Through C++ metaprogramming technique, a single code can be used to arbitrary dimensional systems with no loss of performance. UPSF can also automatically parallelize the distributed data structure and accelerate matrix and tensor operations by BLAS. A three-dimensional particle in cell code is developed based on UPSF. Two test cases, Landau damping and Weibel instability for electrostatic and electromagnetic situation respectively, are presented to show the validation and performance of the UPSF code.

  19. Adaptive image coding based on cubic-spline interpolation

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien

    2014-09-01

    It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.

  20. Performance of DBS-Radio using concatenated coding and equalization

    NASA Technical Reports Server (NTRS)

    Gevargiz, J.; Bell, D.; Truong, L.; Vaisnys, A.; Suwitra, K.; Henson, P.

    1995-01-01

    The Direct Broadcast Satellite-Radio (DBS-R) receiver is being developed for operation in a multipath Rayleigh channel. This receiver uses equalization and concatenated coding, in addition to open loop and closed loop architectures for carrier demodulation and symbol synchronization. Performance test results of this receiver are presented in both AWGN and multipath Rayleigh channels. Simulation results show that the performance of the receiver operating in a multipath Rayleigh channel is significantly improved by using equalization. These results show that fractional-symbol equalization offers a performance advantage over full symbol equalization. Also presented is the base-line performance of the DBS-R receiver using concatenated coding and interleaving.

  1. Performance analysis of the word synchronization properties of the outer code in a TDRSS decoder

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Lin, S.

    1984-01-01

    A self-synchronizing coding scheme for NASA's TDRSS satellite system is a concatenation of a (2,1,7) inner convolutional code with a (255,223) Reed-Solomon outer code. Both symbol and word synchronization are achieved without requiring that any additional symbols be transmitted. An important parameter which determines the performance of the word sync procedure is the ratio of the decoding failure probability to the undetected error probability. Ideally, the former should be as small as possible compared to the latter when the error correcting capability of the code is exceeded. A computer simulation of a (255,223) Reed-Solomon code as carried out. Results for decoding failure probability and for undetected error probability are tabulated and compared.

  2. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    NASA Astrophysics Data System (ADS)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  3. PSEUDO-CODEWORD LANDSCAPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHERTKOV, MICHAEL; STEPANOV, MIKHAIL

    2007-01-10

    The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes andmore » their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.« less

  4. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error correcting codes, called the inner and the outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon < 1/2. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging from high rates to very low rates and Reed-Solomon codes are considered, and their probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates, say 0.1 to 0.01. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  5. A good performance watermarking LDPC code used in high-speed optical fiber communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbo; Li, Chao; Zhang, Xiaoguang; Xi, Lixia; Tang, Xianfeng; He, Wenxue

    2015-07-01

    A watermarking LDPC code, which is a strategy designed to improve the performance of the traditional LDPC code, was introduced. By inserting some pre-defined watermarking bits into original LDPC code, we can obtain a more correct estimation about the noise level in the fiber channel. Then we use them to modify the probability distribution function (PDF) used in the initial process of belief propagation (BP) decoding algorithm. This algorithm was tested in a 128 Gb/s PDM-DQPSK optical communication system and results showed that the watermarking LDPC code had a better tolerances to polarization mode dispersion (PMD) and nonlinearity than that of traditional LDPC code. Also, by losing about 2.4% of redundancy for watermarking bits, the decoding efficiency of the watermarking LDPC code is about twice of the traditional one.

  6. Modeling Improvements and Users Manual for Axial-flow Turbine Off-design Computer Code AXOD

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1994-01-01

    An axial-flow turbine off-design performance computer code used for preliminary studies of gas turbine systems was modified and calibrated based on the experimental performance of large aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented in this report. Comparisons are made between computed performances and experimental data for seven turbines over wide ranges of speed and pressure ratio. This report also serves as the users manual for the revised code, which is named AXOD.

  7. Design geometry and design/off-design performance computer codes for compressors and turbines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1995-01-01

    This report summarizes some NASA Lewis (i.e., government owned) computer codes capable of being used for airbreathing propulsion system studies to determine the design geometry and to predict the design/off-design performance of compressors and turbines. These are not CFD codes; velocity-diagram energy and continuity computations are performed fore and aft of the blade rows using meanline, spanline, or streamline analyses. Losses are provided by empirical methods. Both axial-flow and radial-flow configurations are included.

  8. Encrypted holographic data storage based on orthogonal-phase-code multiplexing.

    PubMed

    Heanue, J F; Bashaw, M C; Hesselink, L

    1995-09-10

    We describe an encrypted holographic data-storage system that combines orthogonal-phase-code multiplexing with a random-phase key. The system offers the security advantages of random-phase coding but retains the low cross-talk performance and the minimum code storage requirements typical in an orthogonal-phase-code-multiplexing system.

  9. Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes

    NASA Astrophysics Data System (ADS)

    Farzan Sabahi, Mohammad; Dehghanfard, Ali

    2014-12-01

    The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.

  10. Combined trellis coding with asymmetric MPSK modulation: An MSAT-X report

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.

    1985-01-01

    Traditionally symmetric, multiple phase-shift-keyed (MPSK) signal constellations, i.e., those with uniformly spaced signal points around the circle, have been used for both uncoded and coded systems. Although symmetric MPSK signal constellations are optimum for systems with no coding, the same is not necessarily true for coded systems. This appears to show that by designing the signal constellations to be asymmetric, one can, in many instances, obtain a significant performance improvement over the traditional symmetric MPSK constellations combined with trellis coding. The joint design of n/(n + 1) trellis codes and asymmetric 2 sup n + 1 - point MPSK is considered, which has a unity bandwidth expansion relative to uncoded 2 sup n-point symmetric MPSK. The asymptotic performance gains due to coding and asymmetry are evaluated in terms of the minimum free Euclidean distance free of the trellis. A comparison of the maximum value of this performance measure with the minimum distance d sub min of the uncoded system is an indication of the maximum reduction in required E sub b/N sub O that can be achieved for arbitrarily small system bit-error rates. It is to be emphasized that the introduction of asymmetry into the signal set does not effect the bandwidth of power requirements of the system; hence, the above-mentioned improvements in performance come at little or no cost. MPSK signal sets in coded systems appear in the work of Divsalar.

  11. Benchmarking NNWSI flow and transport codes: COVE 1 results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, N.K.

    1985-06-01

    The code verification (COVE) activity of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project is the first step in certification of flow and transport codes used for NNWSI performance assessments of a geologic repository for disposing of high-level radioactive wastes. The goals of the COVE activity are (1) to demonstrate and compare the numerical accuracy and sensitivity of certain codes, (2) to identify and resolve problems in running typical NNWSI performance assessment calculations, and (3) to evaluate computer requirements for running the codes. This report describes the work done for COVE 1, the first step in benchmarking some of themore » codes. Isothermal calculations for the COVE 1 benchmarking have been completed using the hydrologic flow codes SAGUARO, TRUST, and GWVIP; the radionuclide transport codes FEMTRAN and TRUMP; and the coupled flow and transport code TRACR3D. This report presents the results of three cases of the benchmarking problem solved for COVE 1, a comparison of the results, questions raised regarding sensitivities to modeling techniques, and conclusions drawn regarding the status and numerical sensitivities of the codes. 30 refs.« less

  12. Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Burklund, Michael D.; Johnson, Wayne

    2003-01-01

    A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.

  13. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    NASA Astrophysics Data System (ADS)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  14. BOCA BASIC BUILDING CODE. 4TH ED., 1965 AND 1967. BOCA BASIC BUILDING CODE ACCUMULATIVE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Building Officials Conference of America, Inc., Chicago, IL.

    NATIONALLY RECOGNIZED STANDARDS FOR THE EVALUATION OF MINIMUM SAFE PRACTICE OR FOR DETERMINING THE PERFORMANCE OF MATERIALS OR SYSTEMS OF CONSTRUCTION HAVE BEEN COMPILED AS AN AID TO DESIGNERS AND LOCAL OFFICIALS. THE CODE PRESENTS REGULATIONS IN TERMS OF MEASURED PERFORMANCE RATHER THAN IN RIGID SPECIFICATION OF MATERIALS OR METHODS. THE AREAS…

  15. Dexter - A one-dimensional code for calculating thermionic performance of long converters.

    NASA Technical Reports Server (NTRS)

    Sawyer, C. D.

    1971-01-01

    This paper describes a versatile code for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are given.

  16. National Combustion Code: Parallel Performance

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2001-01-01

    This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.

  17. Performance of Low-Density Parity-Check Coded Modulation

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    2011-02-01

    This article presents the simulated performance of a family of nine AR4JA low-density parity-check (LDPC) codes when used with each of five modulations. In each case, the decoder inputs are codebit log-likelihood ratios computed from the received (noisy) modulation symbols using a general formula which applies to arbitrary modulations. Suboptimal soft-decision and hard-decision demodulators are also explored. Bit-interleaving and various mappings of bits to modulation symbols are considered. A number of subtle decoder algorithm details are shown to affect performance, especially in the error floor region. Among these are quantization dynamic range and step size, clipping degree-one variable nodes, "Jones clipping" of variable nodes, approximations of the min* function, and partial hard-limiting messages from check nodes. Using these decoder optimizations, all coded modulations simulated here are free of error floors down to codeword error rates below 10^{-6}. The purpose of generating this performance data is to aid system engineers in determining an appropriate code and modulation to use under specific power and bandwidth constraints, and to provide information needed to design a variable/adaptive coded modulation (VCM/ACM) system using the AR4JA codes. IPNPR Volume 42-185 Tagged File.txt

  18. Soft-Decision-Data Reshuffle to Mitigate Pulsed Radio Frequency Interference Impact on Low-Density-Parity-Check Code Performance

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David

    2011-01-01

    This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.

  19. Targeting multiple heterogeneous hardware platforms with OpenCL

    NASA Astrophysics Data System (ADS)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware-specific optimizations as necessary.

  20. Enhancing Application Performance Using Mini-Apps: Comparison of Hybrid Parallel Programming Paradigms

    NASA Technical Reports Server (NTRS)

    Lawson, Gary; Sosonkina, Masha; Baurle, Robert; Hammond, Dana

    2017-01-01

    In many fields, real-world applications for High Performance Computing have already been developed. For these applications to stay up-to-date, new parallel strategies must be explored to yield the best performance; however, restructuring or modifying a real-world application may be daunting depending on the size of the code. In this case, a mini-app may be employed to quickly explore such options without modifying the entire code. In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23 was measured for MPI+SMPI, but only 11 was measured for MPI+OpenMP.

  1. Performance Analysis of Hybrid ARQ Protocols in a Slotted Code Division Multiple-Access Network

    DTIC Science & Technology

    1989-08-01

    Convolutional Codes . in Proc Int. Conf. Commun., 21.4.1-21.4.5, 1987. [27] J. Hagenauer. Rate Compatible Punctured Convolutional Codes . in Proc Int. Conf...achieved by using a low rate (r = 0.5), high constraint length (e.g., 32) punctured convolutional code . Code puncturing provides for a variable rate code ...investigated the use of convolutional codes in Type II Hybrid ARQ protocols. The error

  2. CBP Toolbox Version 3.0 “Beta Testing” Performance Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, III, F. G.

    2016-07-29

    One function of the Cementitious Barriers Partnership (CBP) is to assess available models of cement degradation and to assemble suitable models into a “Toolbox” that would be made available to members of the partnership, as well as the DOE Complex. To this end, SRNL and Vanderbilt University collaborated to develop an interface using the GoldSim software to the STADIUM @ code developed by SIMCO Technologies, Inc. and LeachXS/ORCHESTRA developed by Energy research Centre of the Netherlands (ECN). Release of Version 3.0 of the CBP Toolbox is planned in the near future. As a part of this release, an increased levelmore » of quality assurance for the partner codes and the GoldSim interface has been developed. This report documents results from evaluation testing of the ability of CBP Toolbox 3.0 to perform simulations of concrete degradation applicable to performance assessment of waste disposal facilities. Simulations of the behavior of Savannah River Saltstone Vault 2 and Vault 1/4 concrete subject to sulfate attack and carbonation over a 500- to 1000-year time period were run using a new and upgraded version of the STADIUM @ code and the version of LeachXS/ORCHESTRA released in Version 2.0 of the CBP Toolbox. Running both codes allowed comparison of results from two models which take very different approaches to simulating cement degradation. In addition, simulations of chloride attack on the two concretes were made using the STADIUM @ code. The evaluation sought to demonstrate that: 1) the codes are capable of running extended realistic simulations in a reasonable amount of time; 2) the codes produce “reasonable” results; the code developers have provided validation test results as part of their code QA documentation; and 3) the two codes produce results that are consistent with one another. Results of the evaluation testing showed that the three criteria listed above were met by the CBP partner codes. Therefore, it is concluded that the codes can be used to support performance assessment. This conclusion takes into account the QA documentation produced for the partner codes and for the CBP Toolbox.« less

  3. Convolutional coding combined with continuous phase modulation

    NASA Technical Reports Server (NTRS)

    Pizzi, S. V.; Wilson, S. G.

    1985-01-01

    Background theory and specific coding designs for combined coding/modulation schemes utilizing convolutional codes and continuous-phase modulation (CPM) are presented. In this paper the case of r = 1/2 coding onto a 4-ary CPM is emphasized, with short-constraint length codes presented for continuous-phase FSK, double-raised-cosine, and triple-raised-cosine modulation. Coding buys several decibels of coding gain over the Gaussian channel, with an attendant increase of bandwidth. Performance comparisons in the power-bandwidth tradeoff with other approaches are made.

  4. Multi-level trellis coded modulation and multi-stage decoding

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Wu, Jiantian; Lin, Shu

    1990-01-01

    Several constructions for multi-level trellis codes are presented and many codes with better performance than previously known codes are found. These codes provide a flexible trade-off between coding gain, decoding complexity, and decoding delay. New multi-level trellis coded modulation schemes using generalized set partitioning methods are developed for Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) signal sets. New rotationally invariant multi-level trellis codes which can be combined with differential encoding to resolve phase ambiguity are presented.

  5. Fundamental differences between optimization code test problems in engineering applications

    NASA Technical Reports Server (NTRS)

    Eason, E. D.

    1984-01-01

    The purpose here is to suggest that there is at least one fundamental difference between the problems used for testing optimization codes and the problems that engineers often need to solve; in particular, the level of precision that can be practically achieved in the numerical evaluation of the objective function, derivatives, and constraints. This difference affects the performance of optimization codes, as illustrated by two examples. Two classes of optimization problem were defined. Class One functions and constraints can be evaluated to a high precision that depends primarily on the word length of the computer. Class Two functions and/or constraints can only be evaluated to a moderate or a low level of precision for economic or modeling reasons, regardless of the computer word length. Optimization codes have not been adequately tested on Class Two problems. There are very few Class Two test problems in the literature, while there are literally hundreds of Class One test problems. The relative performance of two codes may be markedly different for Class One and Class Two problems. Less sophisticated direct search type codes may be less likely to be confused or to waste many function evaluations on Class Two problems. The analysis accuracy and minimization performance are related in a complex way that probably varies from code to code. On a problem where the analysis precision was varied over a range, the simple Hooke and Jeeves code was more efficient at low precision while the Powell code was more efficient at high precision.

  6. Preserving Envelope Efficiency in Performance Based Code Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Brian A.; Sullivan, Greg P.; Rosenberg, Michael I.

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringentmore » than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.« less

  7. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  8. An approach for coupled-code multiphysics core simulations from a common input

    DOE PAGES

    Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; ...

    2014-12-10

    This study describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which ismore » built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak Ridge National Laboratory using 1156 cores, and a synopsis of the solution results and code performance is presented. Finally, ongoing development of this approach is also briefly described.« less

  9. Fast QC-LDPC code for free space optical communication

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhang, Qi; Udeh, Chinonso Paschal; Wu, Rangzhong

    2017-02-01

    Free Space Optical (FSO) Communication systems use the atmosphere as a propagation medium. Hence the atmospheric turbulence effects lead to multiplicative noise related with signal intensity. In order to suppress the signal fading induced by multiplicative noise, we propose a fast Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) code for FSO Communication systems. As a linear block code based on sparse matrix, the performances of QC-LDPC is extremely near to the Shannon limit. Currently, the studies on LDPC code in FSO Communications is mainly focused on Gauss-channel and Rayleigh-channel, respectively. In this study, the LDPC code design over atmospheric turbulence channel which is nether Gauss-channel nor Rayleigh-channel is closer to the practical situation. Based on the characteristics of atmospheric channel, which is modeled as logarithmic-normal distribution and K-distribution, we designed a special QC-LDPC code, and deduced the log-likelihood ratio (LLR). An irregular QC-LDPC code for fast coding, of which the rates are variable, is proposed in this paper. The proposed code achieves excellent performance of LDPC codes and can present the characteristics of high efficiency in low rate, stable in high rate and less number of iteration. The result of belief propagation (BP) decoding shows that the bit error rate (BER) obviously reduced as the Signal-to-Noise Ratio (SNR) increased. Therefore, the LDPC channel coding technology can effectively improve the performance of FSO. At the same time, the BER, after decoding reduces with the increase of SNR arbitrarily, and not having error limitation platform phenomenon with error rate slowing down.

  10. Protograph based LDPC codes with minimum distance linearly growing with block size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.

  11. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  12. Channel coding for underwater acoustic single-carrier CDMA communication system

    NASA Astrophysics Data System (ADS)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  13. RETRACTED — PMD mitigation through interleaving LDPC codes with polarization scramblers

    NASA Astrophysics Data System (ADS)

    Han, Dahai; Chen, Haoran; Xi, Lixia

    2012-11-01

    The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved as an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this paper as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10 MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes brings incremental performance of error correction, and the PMD tolerance is 10 ps at OSNR=11.4 dB. The results show that the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.

  14. PMD mitigation through interleaving LDPC codes with polarization scramblers

    NASA Astrophysics Data System (ADS)

    Han, Dahai; Chen, Haoran; Xi, Lixia

    2013-09-01

    The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this article as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes bring incremental performance of error correction, and the PMD tolerance is 10ps at OSNR=11.4dB. The results show the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.

  15. Users' Manual for Computer Code SPIRALI Incompressible, Turbulent Spiral Grooved Cylindrical and Face Seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.; Shapiro, Wilbur

    2005-01-01

    The SPIRALI code predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures. A derivation of the equations governing the performance of turbulent, incompressible, spiral groove cylindrical and face seals along with a description of their solution is given. The computer codes are described, including an input description, sample cases, and comparisons with results of other codes.

  16. Viterbi decoding for satellite and space communication.

    NASA Technical Reports Server (NTRS)

    Heller, J. A.; Jacobs, I. M.

    1971-01-01

    Convolutional coding and Viterbi decoding, along with binary phase-shift keyed modulation, is presented as an efficient system for reliable communication on power limited satellite and space channels. Performance results, obtained theoretically and through computer simulation, are given for optimum short constraint length codes for a range of code constraint lengths and code rates. System efficiency is compared for hard receiver quantization and 4 and 8 level soft quantization. The effects on performance of varying of certain parameters relevant to decoder complexity and cost are examined. Quantitative performance degradation due to imperfect carrier phase coherence is evaluated and compared to that of an uncoded system. As an example of decoder performance versus complexity, a recently implemented 2-Mbit/sec constraint length 7 Viterbi decoder is discussed. Finally a comparison is made between Viterbi and sequential decoding in terms of suitability to various system requirements.

  17. Objective speech quality assessment and the RPE-LTP coding algorithm in different noise and language conditions.

    PubMed

    Hansen, J H; Nandkumar, S

    1995-01-01

    The formulation of reliable signal processing algorithms for speech coding and synthesis require the selection of a prior criterion of performance. Though coding efficiency (bits/second) or computational requirements can be used, a final performance measure must always include speech quality. In this paper, three objective speech quality measures are considered with respect to quality assessment for American English, noisy American English, and noise-free versions of seven languages. The purpose is to determine whether objective quality measures can be used to quantify changes in quality for a given voice coding method, with a known subjective performance level, as background noise or language conditions are changed. The speech coding algorithm chosen is regular-pulse excitation with long-term prediction (RPE-LTP), which has been chosen as the standard voice compression algorithm for the European Digital Mobile Radio system. Three areas are considered for objective quality assessment which include: (i) vocoder performance for American English in a noise-free environment, (ii) speech quality variation for three additive background noise sources, and (iii) noise-free performance for seven languages which include English, Japanese, Finnish, German, Hindi, Spanish, and French. It is suggested that although existing objective quality measures will never replace subjective testing, they can be a useful means of assessing changes in performance, identifying areas for improvement in algorithm design, and augmenting subjective quality tests for voice coding/compression algorithms in noise-free, noisy, and/or non-English applications.

  18. Content Coding of Psychotherapy Transcripts Using Labeled Topic Models.

    PubMed

    Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic

    2017-03-01

    Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, nonstandardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the labeled latent Dirichlet allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of 0.79, and 0.70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scalable method for accurate automated coding of psychotherapy sessions that perform better than comparable discriminative methods at session-level coding and can also predict fine-grained codes.

  19. Content Coding of Psychotherapy Transcripts Using Labeled Topic Models

    PubMed Central

    Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic

    2016-01-01

    Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, non-standardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly-available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the Labeled Latent Dirichlet Allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic (ROC) curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of .79, and .70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scaleable method for accurate automated coding of psychotherapy sessions that performs better than comparable discriminative methods at session-level coding and can also predict fine-grained codes. PMID:26625437

  20. Performance and Architecture Lab Modeling Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-06-19

    Analytical application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult. Furthermore, models are frequently expressed in forms that are hard to distribute and validate. The Performance and Architecture Lab Modeling tool, or Palm, is a modeling tool designed to make application modeling easier. Palm provides a source code modeling annotation language. Not only does the modeling language divide the modeling task into sub problems, it formally links an application's source code with its model. This link is important because a model's purpose is to capture application behavior. Furthermore, this linkmore » makes it possible to define rules for generating models according to source code organization. Palm generates hierarchical models according to well-defined rules. Given an application, a set of annotations, and a representative execution environment, Palm will generate the same model. A generated model is a an executable program whose constituent parts directly correspond to the modeled application. Palm generates models by combining top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. A model's hierarchy is defined by static and dynamic source code structure. Because Palm coordinates models and source code, Palm's models are 'first-class' and reproducible. Palm automates common modeling tasks. For instance, Palm incorporates measurements to focus attention, represent constant behavior, and validate models. Palm's workflow is as follows. The workflow's input is source code annotated with Palm modeling annotations. The most important annotation models an instance of a block of code. Given annotated source code, the Palm Compiler produces executables and the Palm Monitor collects a representative performance profile. The Palm Generator synthesizes a model based on the static and dynamic mapping of annotations to program behavior. The model -- an executable program -- is a hierarchical composition of annotation functions, synthesized functions, statistics for runtime values, and performance measurements.« less

  1. Fast and Flexible Successive-Cancellation List Decoders for Polar Codes

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.

    2017-11-01

    Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.

  2. Coding for spread spectrum packet radios

    NASA Technical Reports Server (NTRS)

    Omura, J. K.

    1980-01-01

    Packet radios are often expected to operate in a radio communication network environment where there tends to be man made interference signals. To combat such interference, spread spectrum waveforms are being considered for some applications. The use of convolutional coding with Viterbi decoding to further improve the performance of spread spectrum packet radios is examined. At 0.00001 bit error rates, improvements in performance of 4 db to 5 db can easily be achieved with such coding without any change in data rate nor spread spectrum bandwidth. This coding gain is more dramatic in an interference environment.

  3. Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint.

    PubMed

    Gao, Zhi; Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Ramesh, Bharath; Zhai, Ruifang

    2018-05-06

    Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.

  4. Program optimizations: The interplay between power, performance, and energy

    DOE PAGES

    Leon, Edgar A.; Karlin, Ian; Grant, Ryan E.; ...

    2016-05-16

    Practical considerations for future supercomputer designs will impose limits on both instantaneous power consumption and total energy consumption. Working within these constraints while providing the maximum possible performance, application developers will need to optimize their code for speed alongside power and energy concerns. This paper analyzes the effectiveness of several code optimizations including loop fusion, data structure transformations, and global allocations. A per component measurement and analysis of different architectures is performed, enabling the examination of code optimizations on different compute subsystems. Using an explicit hydrodynamics proxy application from the U.S. Department of Energy, LULESH, we show how code optimizationsmore » impact different computational phases of the simulation. This provides insight for simulation developers into the best optimizations to use during particular simulation compute phases when optimizing code for future supercomputing platforms. Here, we examine and contrast both x86 and Blue Gene architectures with respect to these optimizations.« less

  5. Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.

    PubMed

    Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B

    2017-10-15

    We experimentally demonstrate self-adaptive coded 5×100  Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.

  6. A family of chaotic pure analog coding schemes based on baker's map function

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Jing; Lu, Xuanxuan; Yuen, Chau; Wu, Jun

    2015-12-01

    This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed by chaotic functions—baker's map function and its variants. Various decoding methods, including maximum likelihood (ML), minimum mean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been developed for these novel encoding schemes. The proposed mirrored baker's and single-input baker's analog codes perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the conventional digital communication system, where quantization and digital error correction codes are used, the proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms the digital ones over a wide signal-to-noise (SNR) range.

  7. Development and verification of NRC`s single-rod fuel performance codes FRAPCON-3 AND FRAPTRAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyer, C.E.; Cunningham, M.E.; Lanning, D.D.

    1998-03-01

    The FRAPCON and FRAP-T code series, developed in the 1970s and early 1980s, are used by the US Nuclear Regulatory Commission (NRC) to predict fuel performance during steady-state and transient power conditions, respectively. Both code series are now being updated by Pacific Northwest National Laboratory to improve their predictive capabilities at high burnup levels. The newest versions of the codes are called FRAPCON-3 and FRAPTRAN. The updates to fuel property and behavior models are focusing on providing best estimate predictions under steady-state and fast transient power conditions up to extended fuel burnups (> 55 GWd/MTU). Both codes will be assessedmore » against a data base independent of the data base used for code benchmarking and an estimate of code predictive uncertainties will be made based on comparisons to the benchmark and independent data bases.« less

  8. FPGA implementation of high-performance QC-LDPC decoder for optical communications

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2015-01-01

    Forward error correction is as one of the key technologies enabling the next-generation high-speed fiber optical communications. Quasi-cyclic (QC) low-density parity-check (LDPC) codes have been considered as one of the promising candidates due to their large coding gain performance and low implementation complexity. In this paper, we present our designed QC-LDPC code with girth 10 and 25% overhead based on pairwise balanced design. By FPGAbased emulation, we demonstrate that the 5-bit soft-decision LDPC decoder can achieve 11.8dB net coding gain with no error floor at BER of 10-15 avoiding using any outer code or post-processing method. We believe that the proposed single QC-LDPC code is a promising solution for 400Gb/s optical communication systems and beyond.

  9. The MCNP6 Analytic Criticality Benchmark Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    2016-06-16

    Analytical benchmarks provide an invaluable tool for verifying computer codes used to simulate neutron transport. Several collections of analytical benchmark problems [1-4] are used routinely in the verification of production Monte Carlo codes such as MCNP® [5,6]. Verification of a computer code is a necessary prerequisite to the more complex validation process. The verification process confirms that a code performs its intended functions correctly. The validation process involves determining the absolute accuracy of code results vs. nature. In typical validations, results are computed for a set of benchmark experiments using a particular methodology (code, cross-section data with uncertainties, and modeling)more » and compared to the measured results from the set of benchmark experiments. The validation process determines bias, bias uncertainty, and possibly additional margins. Verification is generally performed by the code developers, while validation is generally performed by code users for a particular application space. The VERIFICATION_KEFF suite of criticality problems [1,2] was originally a set of 75 criticality problems found in the literature for which exact analytical solutions are available. Even though the spatial and energy detail is necessarily limited in analytical benchmarks, typically to a few regions or energy groups, the exact solutions obtained can be used to verify that the basic algorithms, mathematics, and methods used in complex production codes perform correctly. The present work has focused on revisiting this benchmark suite. A thorough review of the problems resulted in discarding some of them as not suitable for MCNP benchmarking. For the remaining problems, many of them were reformulated to permit execution in either multigroup mode or in the normal continuous-energy mode for MCNP. Execution of the benchmarks in continuous-energy mode provides a significant advance to MCNP verification methods.« less

  10. DEXTER: A one-dimensional code for calculating thermionic performance of long converters

    NASA Technical Reports Server (NTRS)

    Sawyer, C. D.

    1971-01-01

    A versatile code is described for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are included along with a user's manual.

  11. Building a Better Campus: An Update on Building Codes.

    ERIC Educational Resources Information Center

    Madden, Michael J.

    2002-01-01

    Discusses the implications for higher education institutions in terms of facility planning, design, construction, and renovation of the move from regionally-developed model-building codes to two international sets of codes. Also addresses the new performance-based design option within the codes. (EV)

  12. Implementation of generalized quantum measurements: Superadditive quantum coding, accessible information extraction, and classical capacity limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, Masahiro; Fujiwara, Mikio; Mizuno, Jun

    2004-05-01

    Quantum-information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum-channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum-coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, an experimental demonstration was reported [M. Fujiwara et al., Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum-collective decodingmore » in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum-coding gain, even in a small code length, can boost the communication performance of conventional coding techniques.« less

  13. Exploiting the cannibalistic traits of Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Collins, O.

    1993-01-01

    In Reed-Solomon codes and all other maximum distance separable codes, there is an intrinsic relationship between the size of the symbols in a codeword and the length of the codeword. Increasing the number of symbols in a codeword to improve the efficiency of the coding system thus requires using a larger set of symbols. However, long Reed-Solomon codes are difficult to implement and many communications or storage systems cannot easily accommodate an increased symbol size, e.g., M-ary frequency shift keying (FSK) and photon-counting pulse-position modulation demand a fixed symbol size. A technique for sharing redundancy among many different Reed-Solomon codewords to achieve the efficiency attainable in long Reed-Solomon codes without increasing the symbol size is described. Techniques both for calculating the performance of these new codes and for determining their encoder and decoder complexities is presented. These complexities are usually found to be substantially lower than conventional Reed-Solomon codes of similar performance.

  14. Modeling and Analysis of Actinide Diffusion Behavior in Irradiated Metal Fuel

    NASA Astrophysics Data System (ADS)

    Edelmann, Paul G.

    There have been numerous attempts to model fast reactor fuel behavior in the last 40 years. The US currently does not have a fully reliable tool to simulate the behavior of metal fuels in fast reactors. The experimental database necessary to validate the codes is also very limited. The DOE-sponsored Advanced Fuels Campaign (AFC) has performed various experiments that are ready for analysis. Current metal fuel performance codes are either not available to the AFC or have limitations and deficiencies in predicting AFC fuel performance. A modified version of a new fuel performance code, FEAST-Metal , was employed in this investigation with useful results. This work explores the modeling and analysis of AFC metallic fuels using FEAST-Metal, particularly in the area of constituent actinide diffusion behavior. The FEAST-Metal code calculations for this work were conducted at Los Alamos National Laboratory (LANL) in support of on-going activities related to sensitivity analysis of fuel performance codes. A sensitivity analysis of FEAST-Metal was completed to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. A modification was made to the FEAST-Metal constituent redistribution model to enable accommodation of newer AFC metal fuel compositions with verified results. Applicability of this modified model for sodium fast reactor metal fuel design is demonstrated.

  15. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.

    1986-01-01

    High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.

  16. Improving the accuracy of operation coding in surgical discharge summaries

    PubMed Central

    Martinou, Eirini; Shouls, Genevieve; Betambeau, Nadine

    2014-01-01

    Procedural coding in surgical discharge summaries is extremely important; as well as communicating to healthcare staff which procedures have been performed, it also provides information that is used by the hospital's coding department. The OPCS code (Office of Population, Censuses and Surveys Classification of Surgical Operations and Procedures) is used to generate the tariff that allows the hospital to be reimbursed for the procedure. We felt that the OPCS coding on discharge summaries was often incorrect within our breast and endocrine surgery department. A baseline measurement over two months demonstrated that 32% of operations had been incorrectly coded, resulting in an incorrect tariff being applied and an estimated loss to the Trust of £17,000. We developed a simple but specific OPCS coding table in collaboration with the clinical coding team and breast surgeons that summarised all operations performed within our department. This table was disseminated across the team, specifically to the junior doctors who most frequently complete the discharge summaries. Re-audit showed 100% of operations were accurately coded, demonstrating the effectiveness of the coding table. We suggest that specifically designed coding tables be introduced across each surgical department to ensure accurate OPCS codes are used to produce better quality surgical discharge summaries and to ensure correct reimbursement to the Trust. PMID:26734286

  17. 14 CFR 234.10 - Voluntary disclosure of on-time performance codes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Voluntary disclosure of on-time performance codes. 234.10 Section 234.10 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS AIRLINE SERVICE QUALITY PERFORMANCE REPORTS § 234.10 Voluntary...

  18. 14 CFR 234.9 - Reporting of on-time performance codes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Reporting of on-time performance codes. 234.9 Section 234.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS AIRLINE SERVICE QUALITY PERFORMANCE REPORTS § 234.9 Reporting of...

  19. 14 CFR 234.8 - Calculation of on-time performance codes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Calculation of on-time performance codes. 234.8 Section 234.8 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS AIRLINE SERVICE QUALITY PERFORMANCE REPORTS § 234.8 Calculation...

  20. Calculation of spherical harmonics and Wigner d functions by FFT. Applications to fast rotational matching in molecular replacement and implementation into AMoRe.

    PubMed

    Trapani, Stefano; Navaza, Jorge

    2006-07-01

    The FFT calculation of spherical harmonics, Wigner D matrices and rotation function has been extended to all angular variables in the AMoRe molecular replacement software. The resulting code avoids singularity issues arising from recursive formulas, performs faster and produces results with at least the same accuracy as the original code. The new code aims at permitting accurate and more rapid computations at high angular resolution of the rotation function of large particles. Test calculations on the icosahedral IBDV VP2 subviral particle showed that the new code performs on the average 1.5 times faster than the original code.

  1. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Brun, Todd; Quantum Research Team

    Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.

  2. The effect of code expanding optimizations on instruction cache design

    NASA Technical Reports Server (NTRS)

    Chen, William Y.; Chang, Pohua P.; Conte, Thomas M.; Hwu, Wen-Mei W.

    1991-01-01

    It is shown that code expanding optimizations have strong and non-intuitive implications on instruction cache design. Three types of code expanding optimizations are studied: instruction placement, function inline expansion, and superscalar optimizations. Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion improves the performance for small cache sizes, but degrades the performance of medium caches. Superscalar optimizations increases the cache size required for a given miss ratio. On the other hand, they also increase the sequentiality of instruction access so that a simple load-forward scheme effectively cancels the negative effects. Overall, it is shown that with load forwarding, the three types of code expanding optimizations jointly improve the performance of small caches and have little effect on large caches.

  3. Enhancement of the Probabilistic CEramic Matrix Composite ANalyzer (PCEMCAN) Computer Code

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2000-01-01

    This report represents a final technical report for Order No. C-78019-J entitled "Enhancement of the Probabilistic Ceramic Matrix Composite Analyzer (PCEMCAN) Computer Code." The scope of the enhancement relates to including the probabilistic evaluation of the D-Matrix terms in MAT2 and MAT9 material properties card (available in CEMCAN code) for the MSC/NASTRAN. Technical activities performed during the time period of June 1, 1999 through September 3, 1999 have been summarized, and the final version of the enhanced PCEMCAN code and revisions to the User's Manual is delivered along with. Discussions related to the performed activities were made to the NASA Project Manager during the performance period. The enhanced capabilities have been demonstrated using sample problems.

  4. A multidisciplinary approach to vascular surgery procedure coding improves coding accuracy, work relative value unit assignment, and reimbursement.

    PubMed

    Aiello, Francesco A; Judelson, Dejah R; Messina, Louis M; Indes, Jeffrey; FitzGerald, Gordon; Doucet, Danielle R; Simons, Jessica P; Schanzer, Andres

    2016-08-01

    Vascular surgery procedural reimbursement depends on accurate procedural coding and documentation. Despite the critical importance of correct coding, there has been a paucity of research focused on the effect of direct physician involvement. We hypothesize that direct physician involvement in procedural coding will lead to improved coding accuracy, increased work relative value unit (wRVU) assignment, and increased physician reimbursement. This prospective observational cohort study evaluated procedural coding accuracy of fistulograms at an academic medical institution (January-June 2014). All fistulograms were coded by institutional coders (traditional coding) and by a single vascular surgeon whose codes were verified by two institution coders (multidisciplinary coding). The coding methods were compared, and differences were translated into revenue and wRVUs using the Medicare Physician Fee Schedule. Comparison between traditional and multidisciplinary coding was performed for three discrete study periods: baseline (period 1), after a coding education session for physicians and coders (period 2), and after a coding education session with implementation of an operative dictation template (period 3). The accuracy of surgeon operative dictations during each study period was also assessed. An external validation at a second academic institution was performed during period 1 to assess and compare coding accuracy. During period 1, traditional coding resulted in a 4.4% (P = .004) loss in reimbursement and a 5.4% (P = .01) loss in wRVUs compared with multidisciplinary coding. During period 2, no significant difference was found between traditional and multidisciplinary coding in reimbursement (1.3% loss; P = .24) or wRVUs (1.8% loss; P = .20). During period 3, traditional coding yielded a higher overall reimbursement (1.3% gain; P = .26) than multidisciplinary coding. This increase, however, was due to errors by institution coders, with six inappropriately used codes resulting in a higher overall reimbursement that was subsequently corrected. Assessment of physician documentation showed improvement, with decreased documentation errors at each period (11% vs 3.1% vs 0.6%; P = .02). Overall, between period 1 and period 3, multidisciplinary coding resulted in a significant increase in additional reimbursement ($17.63 per procedure; P = .004) and wRVUs (0.50 per procedure; P = .01). External validation at a second academic institution was performed to assess coding accuracy during period 1. Similar to institution 1, traditional coding revealed an 11% loss in reimbursement ($13,178 vs $14,630; P = .007) and a 12% loss in wRVU (293 vs 329; P = .01) compared with multidisciplinary coding. Physician involvement in the coding of endovascular procedures leads to improved procedural coding accuracy, increased wRVU assignments, and increased physician reimbursement. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  5. LDPC-based iterative joint source-channel decoding for JPEG2000.

    PubMed

    Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane

    2007-02-01

    A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.

  6. Parallelized direct execution simulation of message-passing parallel programs

    NASA Technical Reports Server (NTRS)

    Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.

    1994-01-01

    As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.

  7. Multiple-Symbol Noncoherent Decoding of Uncoded and Convolutionally Codes Continous Phase Modulation

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Raphaeli, D.

    2000-01-01

    Recently, a method for combined noncoherent detection and decoding of trellis-codes (noncoherent coded modulation) has been proposed, which can practically approach the performance of coherent detection.

  8. Performance of Serially Concatenated Convolutional Codes with Binary Modulation in AWGN and Noise Jamming over Rayleigh Fading Channels

    DTIC Science & Technology

    2001-09-01

    Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE...ABSTRACT In this dissertation, the bit error rates for serially concatenated convolutional codes (SCCC) for both BPSK and DPSK modulation with...INTENTIONALLY LEFT BLANK i EXECUTIVE SUMMARY In this dissertation, the bit error rates of serially concatenated convolutional codes

  9. Performance of convolutional codes on fading channels typical of planetary entry missions

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.; Mui, S. Y.; Reale, T. J.

    1974-01-01

    The performance of convolutional codes in fading channels typical of the planetary entry channel is examined in detail. The signal fading is due primarily to turbulent atmospheric scattering of the RF signal transmitted from an entry probe through a planetary atmosphere. Short constraint length convolutional codes are considered in conjunction with binary phase-shift keyed modulation and Viterbi maximum likelihood decoding, and for longer constraint length codes sequential decoding utilizing both the Fano and Zigangirov-Jelinek (ZJ) algorithms are considered. Careful consideration is given to the modeling of the channel in terms of a few meaningful parameters which can be correlated closely with theoretical propagation studies. For short constraint length codes the bit error probability performance was investigated as a function of E sub b/N sub o parameterized by the fading channel parameters. For longer constraint length codes the effect was examined of the fading channel parameters on the computational requirements of both the Fano and ZJ algorithms. The effects of simple block interleaving in combatting the memory of the channel is explored, using the analytic approach or digital computer simulation.

  10. Off-design computer code for calculating the aerodynamic performance of axial-flow fans and compressors

    NASA Technical Reports Server (NTRS)

    Schmidt, James F.

    1995-01-01

    An off-design axial-flow compressor code is presented and is available from COSMIC for predicting the aerodynamic performance maps of fans and compressors. Steady axisymmetric flow is assumed and the aerodynamic solution reduces to solving the two-dimensional flow field in the meridional plane. A streamline curvature method is used for calculating this flow-field outside the blade rows. This code allows for bleed flows and the first five stators can be reset for each rotational speed, capabilities which are necessary for large multistage compressors. The accuracy of the off-design performance predictions depend upon the validity of the flow loss and deviation correlation models. These empirical correlations for the flow loss and deviation are used to model the real flow effects and the off-design code will compute through small reverse flow regions. The input to this off-design code is fully described and a user's example case for a two-stage fan is included with complete input and output data sets. Also, a comparison of the off-design code predictions with experimental data is included which generally shows good agreement.

  11. Spare a Little Change? Towards a 5-Nines Internet in 250 Lines of Code

    DTIC Science & Technology

    2011-05-01

    NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnegie Mellon University,School of Computer Science,Pittsburgh,PA,15213 8. PERFORMING ...Std Z39-18 Keywords: Internet reliability, BGP performance , Quagga This document includes excerpts of the source code for the Linux operating system...Behavior and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . .  .. Other Related Work

  12. Parallelization of ARC3D with Computer-Aided Tools

    NASA Technical Reports Server (NTRS)

    Jin, Haoqiang; Hribar, Michelle; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    A series of efforts have been devoted to investigating methods of porting and parallelizing applications quickly and efficiently for new architectures, such as the SCSI Origin 2000 and Cray T3E. This report presents the parallelization of a CFD application, ARC3D, using the computer-aided tools, Cesspools. Steps of parallelizing this code and requirements of achieving better performance are discussed. The generated parallel version has achieved reasonably well performance, for example, having a speedup of 30 for 36 Cray T3E processors. However, this performance could not be obtained without modification of the original serial code. It is suggested that in many cases improving serial code and performing necessary code transformations are important parts for the automated parallelization process although user intervention in many of these parts are still necessary. Nevertheless, development and improvement of useful software tools, such as Cesspools, can help trim down many tedious parallelization details and improve the processing efficiency.

  13. High-Speed, Low-Cost Workstation for Computation-Intensive Statistics. Phase 1

    DTIC Science & Technology

    1990-06-20

    routine implementation and performance. 5 The two compiled versions given in the table were coded in an attempt to obtain an optimized compiled version...level statistics and linear algebra routines (BSAS and BLAS) that have been prototyped in this study. For each routine, both the C code ( Turbo C...OISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unlimited distribution 13. ABSTRACT (Maximum 200 words) High-performance and low-cost

  14. Performance Study of Monte Carlo Codes on Xeon Phi Coprocessors — Testing MCNP 6.1 and Profiling ARCHER Geometry Module on the FS7ONNi Problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Wolfe, Noah; Lin, Hui; Zieb, Kris; Ji, Wei; Caracappa, Peter; Carothers, Christopher; Xu, X. George

    2017-09-01

    This paper contains two parts revolving around Monte Carlo transport simulation on Intel Many Integrated Core coprocessors (MIC, also known as Xeon Phi). (1) MCNP 6.1 was recompiled into multithreading (OpenMP) and multiprocessing (MPI) forms respectively without modification to the source code. The new codes were tested on a 60-core 5110P MIC. The test case was FS7ONNi, a radiation shielding problem used in MCNP's verification and validation suite. It was observed that both codes became slower on the MIC than on a 6-core X5650 CPU, by a factor of 4 for the MPI code and, abnormally, 20 for the OpenMP code, and both exhibited limited capability of strong scaling. (2) We have recently added a Constructive Solid Geometry (CSG) module to our ARCHER code to provide better support for geometry modelling in radiation shielding simulation. The functions of this module are frequently called in the particle random walk process. To identify the performance bottleneck we developed a CSG proxy application and profiled the code using the geometry data from FS7ONNi. The profiling data showed that the code was primarily memory latency bound on the MIC. This study suggests that despite low initial porting e_ort, Monte Carlo codes do not naturally lend themselves to the MIC platform — just like to the GPUs, and that the memory latency problem needs to be addressed in order to achieve decent performance gain.

  15. The Marriage of Residential Energy Codes and Rating Systems: Conflict Resolution or Just Conflict?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Zachary T.; Mendon, Vrushali V.

    2014-08-21

    After three decades of coexistence at a distance, model residential energy codes and residential energy rating systems have come together in the 2015 International Energy Conservation Code. At the October, 2013, International Code Council’s Public Comment Hearing, a new compliance path based on an Energy Rating Index was added to the IECC. Although not specifically named in the code, RESNET’s HERS rating system is the likely candidate Index for most jurisdictions. While HERS has been a mainstay in various beyond-code programs for many years, its direct incorporation into the most popular model energy code raises questions about the equivalence ofmore » a HERS-based compliance path and the traditional IECC performance compliance path, especially because the two approaches use different efficiency metrics, are governed by different simulation rules, and have different scopes with regard to energy impacting house features. A detailed simulation analysis of more than 15,000 house configurations reveals a very large range of HERS Index values that achieve equivalence with the IECC’s performance path. This paper summarizes the results of that analysis and evaluates those results against the specific Energy Rating Index values required by the 2015 IECC. Based on the home characteristics most likely to result in disparities between HERS-based compliance and performance path compliance, potential impacts on the compliance process, state and local adoption of the new code, energy efficiency in the next generation of homes subject to this new code, and future evolution of model code formats are discussed.« less

  16. Validation of the WIMSD4M cross-section generation code with benchmark results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leal, L.C.; Deen, J.R.; Woodruff, W.L.

    1995-02-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generatemore » cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less

  17. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1989-01-01

    The performance of bandwidth efficient trellis codes on channels with phase jitter, or those disturbed by jamming and impulse noise is analyzed. An heuristic algorithm for construction of bandwidth efficient trellis codes with any constraint length up to about 30, any signal constellation, and any code rate was developed. Construction of good distance profile trellis codes for sequential decoding and comparison of random coding bounds of trellis coded modulation schemes are also discussed.

  18. Shared prefetching to reduce execution skew in multi-threaded systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E; Gunnels, John A

    Mechanisms are provided for optimizing code to perform prefetching of data into a shared memory of a computing device that is shared by a plurality of threads that execute on the computing device. A memory stream of a portion of code that is shared by the plurality of threads is identified. A set of prefetch instructions is distributed across the plurality of threads. Prefetch instructions are inserted into the instruction sequences of the plurality of threads such that each instruction sequence has a separate sub-portion of the set of prefetch instructions, thereby generating optimized code. Executable code is generated basedmore » on the optimized code and stored in a storage device. The executable code, when executed, performs the prefetches associated with the distributed set of prefetch instructions in a shared manner across the plurality of threads.« less

  19. On the optimality of code options for a universal noiseless coder

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Rice, Robert F.; Miller, Warner

    1991-01-01

    A universal noiseless coding structure was developed that provides efficient performance over an extremely broad range of source entropy. This is accomplished by adaptively selecting the best of several easily implemented variable length coding algorithms. Custom VLSI coder and decoder modules capable of processing over 20 million samples per second are currently under development. The first of the code options used in this module development is shown to be equivalent to a class of Huffman code under the Humblet condition, other options are shown to be equivalent to the Huffman codes of a modified Laplacian symbol set, at specified symbol entropy values. Simulation results are obtained on actual aerial imagery, and they confirm the optimality of the scheme. On sources having Gaussian or Poisson distributions, coder performance is also projected through analysis and simulation.

  20. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  1. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items tomore » be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.« less

  2. The Composite Analytic and Simulation Package or RFI (CASPR) on a coded channel

    NASA Technical Reports Server (NTRS)

    Freedman, Jeff; Berman, Ted

    1993-01-01

    CASPR is an analysis package which determines the performance of a coded signal in the presence of Radio Frequency Interference (RFI) and Additive White Gaussian Noise (AWGN). It can analyze a system with convolutional coding, Reed-Solomon (RS) coding, or a concatenation of the two. The signals can either be interleaved or non-interleaved. The model measures the system performance in terms of either the E(sub b)/N(sub 0) required to achieve a given Bit Error Rate (BER) or the BER needed for a constant E(sub b)/N(sub 0).

  3. 47 CFR 52.15 - Central office code administration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... functions. The NANPA shall perform its CO Code administration functions in accordance with the published... by telecommunications carriers to perform internal administrative or operational functions necessary... another telecommunications carrier or non-carrier entity for the purpose of providing telecommunications...

  4. An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic medical records

    PubMed Central

    Kavuluru, Ramakanth; Rios, Anthony; Lu, Yuan

    2015-01-01

    Background Diagnosis codes are assigned to medical records in healthcare facilities by trained coders by reviewing all physician authored documents associated with a patient's visit. This is a necessary and complex task involving coders adhering to coding guidelines and coding all assignable codes. With the popularity of electronic medical records (EMRs), computational approaches to code assignment have been proposed in the recent years. However, most efforts have focused on single and often short clinical narratives, while realistic scenarios warrant full EMR level analysis for code assignment. Objective We evaluate supervised learning approaches to automatically assign international classification of diseases (ninth revision) - clinical modification (ICD-9-CM) codes to EMRs by experimenting with a large realistic EMR dataset. The overall goal is to identify methods that offer superior performance in this task when considering such datasets. Methods We use a dataset of 71,463 EMRs corresponding to in-patient visits with discharge date falling in a two year period (2011–2012) from the University of Kentucky (UKY) Medical Center. We curate a smaller subset of this dataset and also use a third gold standard dataset of radiology reports. We conduct experiments using different problem transformation approaches with feature and data selection components and employing suitable label calibration and ranking methods with novel features involving code co-occurrence frequencies and latent code associations. Results Over all codes with at least 50 training examples we obtain a micro F-score of 0.48. On the set of codes that occur at least in 1% of the two year dataset, we achieve a micro F-score of 0.54. For the smaller radiology report dataset, the classifier chaining approach yields best results. For the smaller subset of the UKY dataset, feature selection, data selection, and label calibration offer best performance. Conclusions We show that datasets at different scale (size of the EMRs, number of distinct codes) and with different characteristics warrant different learning approaches. For shorter narratives pertaining to a particular medical subdomain (e.g., radiology, pathology), classifier chaining is ideal given the codes are highly related with each other. For realistic in-patient full EMRs, feature and data selection methods offer high performance for smaller datasets. However, for large EMR datasets, we observe that the binary relevance approach with learning-to-rank based code reranking offers the best performance. Regardless of the training dataset size, for general EMRs, label calibration to select the optimal number of labels is an indispensable final step. PMID:26054428

  5. An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic medical records.

    PubMed

    Kavuluru, Ramakanth; Rios, Anthony; Lu, Yuan

    2015-10-01

    Diagnosis codes are assigned to medical records in healthcare facilities by trained coders by reviewing all physician authored documents associated with a patient's visit. This is a necessary and complex task involving coders adhering to coding guidelines and coding all assignable codes. With the popularity of electronic medical records (EMRs), computational approaches to code assignment have been proposed in the recent years. However, most efforts have focused on single and often short clinical narratives, while realistic scenarios warrant full EMR level analysis for code assignment. We evaluate supervised learning approaches to automatically assign international classification of diseases (ninth revision) - clinical modification (ICD-9-CM) codes to EMRs by experimenting with a large realistic EMR dataset. The overall goal is to identify methods that offer superior performance in this task when considering such datasets. We use a dataset of 71,463 EMRs corresponding to in-patient visits with discharge date falling in a two year period (2011-2012) from the University of Kentucky (UKY) Medical Center. We curate a smaller subset of this dataset and also use a third gold standard dataset of radiology reports. We conduct experiments using different problem transformation approaches with feature and data selection components and employing suitable label calibration and ranking methods with novel features involving code co-occurrence frequencies and latent code associations. Over all codes with at least 50 training examples we obtain a micro F-score of 0.48. On the set of codes that occur at least in 1% of the two year dataset, we achieve a micro F-score of 0.54. For the smaller radiology report dataset, the classifier chaining approach yields best results. For the smaller subset of the UKY dataset, feature selection, data selection, and label calibration offer best performance. We show that datasets at different scale (size of the EMRs, number of distinct codes) and with different characteristics warrant different learning approaches. For shorter narratives pertaining to a particular medical subdomain (e.g., radiology, pathology), classifier chaining is ideal given the codes are highly related with each other. For realistic in-patient full EMRs, feature and data selection methods offer high performance for smaller datasets. However, for large EMR datasets, we observe that the binary relevance approach with learning-to-rank based code reranking offers the best performance. Regardless of the training dataset size, for general EMRs, label calibration to select the optimal number of labels is an indispensable final step. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Performance comparison of leading image codecs: H.264/AVC Intra, JPEG2000, and Microsoft HD Photo

    NASA Astrophysics Data System (ADS)

    Tran, Trac D.; Liu, Lijie; Topiwala, Pankaj

    2007-09-01

    This paper provides a detailed rate-distortion performance comparison between JPEG2000, Microsoft HD Photo, and H.264/AVC High Profile 4:4:4 I-frame coding for high-resolution still images and high-definition (HD) 1080p video sequences. This work is an extension to our previous comparative study published in previous SPIE conferences [1, 2]. Here we further optimize all three codecs for compression performance. Coding simulations are performed on a set of large-format color images captured from mainstream digital cameras and 1080p HD video sequences commonly used for H.264/AVC standardization work. Overall, our experimental results show that all three codecs offer very similar coding performances at the high-quality, high-resolution setting. Differences tend to be data-dependent: JPEG2000 with the wavelet technology tends to be the best performer with smooth spatial data; H.264/AVC High-Profile with advanced spatial prediction modes tends to cope best with more complex visual content; Microsoft HD Photo tends to be the most consistent across the board. For the still-image data sets, JPEG2000 offers the best R-D performance gains (around 0.2 to 1 dB in peak signal-to-noise ratio) over H.264/AVC High-Profile intra coding and Microsoft HD Photo. For the 1080p video data set, all three codecs offer very similar coding performance. As in [1, 2], neither do we consider scalability nor complexity in this study (JPEG2000 is operating in non-scalable, but optimal performance mode).

  7. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    NASA Technical Reports Server (NTRS)

    Lee, L.-N.

    1977-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  8. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    NASA Technical Reports Server (NTRS)

    Lee, L. N.

    1976-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively small coding complexity, it is proposed to concatenate a byte oriented unit memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real time minimal byte error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  9. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  10. Hybrid and concatenated coding applications.

    NASA Technical Reports Server (NTRS)

    Hofman, L. B.; Odenwalder, J. P.

    1972-01-01

    Results of a study to evaluate the performance and implementation complexity of a concatenated and a hybrid coding system for moderate-speed deep-space applications. It is shown that with a total complexity of less than three times that of the basic Viterbi decoder, concatenated coding improves a constraint length 8 rate 1/3 Viterbi decoding system by 1.1 and 2.6 dB at bit error probabilities of 0.0001 and one hundred millionth, respectively. With a somewhat greater total complexity, the hybrid coding system is shown to obtain a 0.9-dB computational performance improvement over the basic rate 1/3 sequential decoding system. Although substantial, these complexities are much less than those required to achieve the same performances with more complex Viterbi or sequential decoder systems.

  11. Lack of harmonization in sweat testing for cystic fibrosis - a national survey.

    PubMed

    Christiansen, Anne Lindegaard; Nybo, Mads

    2014-11-01

    Sweat testing is used in the diagnosis of cystic fibrosis. Interpretation of the sweat test depends, however, on the method performed since conductivity, osmolality and chloride concentration all can be measured as part of a sweat test. The aim of this study was to investigate how performance of the test is organized in Denmark. Departments conducting the sweat test were contacted and interviewed following a premade questionnaire. They were asked about methods performed, applied NPU (Nomenclature for Properties and Units) code, reference interval, recommended interpretation and referred literature. 14 departments performed the sweat test. One department measured chloride and sodium concentration, while 13 departments measured conductivity. One department used a non-existing NPU code, two departments applied NPU codes inconsistent with the method performed, four departments applied no NPU code and seven applied a correct NPU code. Ten of the departments measuring conductivity applied reference intervals. Nine departments measuring conductivity had recommendations of a normal area, a grey zone and a pathological value, while four departments only applied a normal and grey zone or a pathological value. Cut-off values for normal, grey and pathological areas were like the reference intervals inconsistent. There is inconsistent use of NPU codes, reference intervals and interpretation of sweat conductivity used in the process of diagnosing cystic fibrosis. Because diagnosing cystic fibrosis is a combined effort between local pediatric departments, biochemical and genetic departments and cystic fibrosis centers, a national harmonization is necessary to assure correct clinical use.

  12. Performance Analysis of a New Coded TH-CDMA Scheme in Dispersive Infrared Channel with Additive Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Hamdi, Mazda; Kenari, Masoumeh Nasiri

    2013-06-01

    We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.

  13. Wake coupling to full potential rotor analysis code

    NASA Technical Reports Server (NTRS)

    Torres, Francisco J.; Chang, I-Chung; Oh, Byung K.

    1990-01-01

    The wake information from a helicopter forward flight code is coupled with two transonic potential rotor codes. The induced velocities for the near-, mid-, and far-wake geometries are extracted from a nonlinear rigid wake of a standard performance and analysis code. These, together with the corresponding inflow angles, computation points, and azimuth angles, are then incorporated into the transonic potential codes. The coupled codes can then provide an improved prediction of rotor blade loading at transonic speeds.

  14. Distributed polar-coded OFDM based on Plotkin's construction for half duplex wireless communication

    NASA Astrophysics Data System (ADS)

    Umar, Rahim; Yang, Fengfan; Mughal, Shoaib; Xu, HongJun

    2018-07-01

    A Plotkin-based polar-coded orthogonal frequency division multiplexing (P-PC-OFDM) scheme is proposed and its bit error rate (BER) performance over additive white gaussian noise (AWGN), frequency selective Rayleigh, Rician and Nakagami-m fading channels has been evaluated. The considered Plotkin's construction possesses a parallel split in its structure, which motivated us to extend the proposed P-PC-OFDM scheme in a coded cooperative scenario. As the relay's effective collaboration has always been pivotal in the design of cooperative communication therefore, an efficient selection criterion for choosing the information bits has been inculcated at the relay node. To assess the BER performance of the proposed cooperative scheme, we have also upgraded conventional polar-coded cooperative scheme in the context of OFDM as an appropriate bench marker. The Monte Carlo simulated results revealed that the proposed Plotkin-based polar-coded cooperative OFDM scheme convincingly outperforms the conventional polar-coded cooperative OFDM scheme by 0.5 0.6 dBs over AWGN channel. This prominent gain in BER performance is made possible due to the bit-selection criteria and the joint successive cancellation decoding adopted at the relay and the destination nodes, respectively. Furthermore, the proposed coded cooperative schemes outperform their corresponding non-cooperative schemes by a gain of 1 dB under an identical condition.

  15. Porting plasma physics simulation codes to modern computing architectures using the libmrc framework

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Abbott, Stephen

    2015-11-01

    Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source libmrc framework that has been used to modularize and port three plasma physics codes: The extended MHD code MRCv3 with implicit time integration and curvilinear grids; the OpenGGCM global magnetosphere model; and the particle-in-cell code PSC. libmrc consolidates basic functionality needed for simulations based on structured grids (I/O, load balancing, time integrators), and also introduces a parallel object model that makes it possible to maintain multiple implementations of computational kernels, on e.g. conventional processors and GPUs. It handles data layout conversions and enables us to port performance-critical parts of a code to a new architecture step-by-step, while the rest of the code can remain unchanged. We will show examples of the performance gains and some physics applications.

  16. Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets

    NASA Astrophysics Data System (ADS)

    Li, Ling-xiang; Li, Hai-bing; Li, Ji-bi; Jiang, Hua

    2017-09-01

    In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permutation matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the error- correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excellent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phenomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decoding.

  17. A motion compensation technique using sliced blocks and its application to hybrid video coding

    NASA Astrophysics Data System (ADS)

    Kondo, Satoshi; Sasai, Hisao

    2005-07-01

    This paper proposes a new motion compensation method using "sliced blocks" in DCT-based hybrid video coding. In H.264 ? MPEG-4 Advance Video Coding, a brand-new international video coding standard, motion compensation can be performed by splitting macroblocks into multiple square or rectangular regions. In the proposed method, on the other hand, macroblocks or sub-macroblocks are divided into two regions (sliced blocks) by an arbitrary line segment. The result is that the shapes of the segmented regions are not limited to squares or rectangles, allowing the shapes of the segmented regions to better match the boundaries between moving objects. Thus, the proposed method can improve the performance of the motion compensation. In addition, adaptive prediction of the shape according to the region shape of the surrounding macroblocks can reduce overheads to describe shape information in the bitstream. The proposed method also has the advantage that conventional coding techniques such as mode decision using rate-distortion optimization can be utilized, since coding processes such as frequency transform and quantization are performed on a macroblock basis, similar to the conventional coding methods. The proposed method is implemented in an H.264-based P-picture codec and an improvement in bit rate of 5% is confirmed in comparison with H.264.

  18. Quantitative analysis of the anti-noise performance of an m-sequence in an electromagnetic method

    NASA Astrophysics Data System (ADS)

    Yuan, Zhe; Zhang, Yiming; Zheng, Qijia

    2018-02-01

    An electromagnetic method with a transmitted waveform coded by an m-sequence achieved better anti-noise performance compared to the conventional manner with a square-wave. The anti-noise performance of the m-sequence varied with multiple coding parameters; hence, a quantitative analysis of the anti-noise performance for m-sequences with different coding parameters was required to optimize them. This paper proposes the concept of an identification system, with the identified Earth impulse response obtained by measuring the system output with the input of the voltage response. A quantitative analysis of the anti-noise performance of the m-sequence was achieved by analyzing the amplitude-frequency response of the corresponding identification system. The effects of the coding parameters on the anti-noise performance are summarized by numerical simulation, and their optimization is further discussed in our conclusions; the validity of the conclusions is further verified by field experiment. The quantitative analysis method proposed in this paper provides a new insight into the anti-noise mechanism of the m-sequence, and could be used to evaluate the anti-noise performance of artificial sources in other time-domain exploration methods, such as the seismic method.

  19. Concatenated coding for low date rate space communications.

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1972-01-01

    In deep space communications with distant planets, the data rate as well as the operating SNR may be very low. To maintain the error rate also at a very low level, it is necessary to use a sophisticated coding system (longer code) without excessive decoding complexity. The concatenated coding has been shown to meet such requirements in that the error rate decreases exponentially with the overall length of the code while the decoder complexity increases only algebraically. Three methods of concatenating an inner code with an outer code are considered. Performance comparison of the three concatenated codes is made.

  20. The Continual Intercomparison of Radiation Codes: Results from Phase I

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Mlawer, Eli; Delamere, Jennifer; Shippert, Timothy; Cole, Jason; Iacono, Michael; Jin, Zhonghai; Li, Jiangnan; Manners, James; Raisanen, Petri; hide

    2011-01-01

    The computer codes that calculate the energy budget of solar and thermal radiation in Global Climate Models (GCMs), our most advanced tools for predicting climate change, have to be computationally efficient in order to not impose undue computational burden to climate simulations. By using approximations to gain execution speed, these codes sacrifice accuracy compared to more accurate, but also much slower, alternatives. International efforts to evaluate the approximate schemes have taken place in the past, but they have suffered from the drawback that the accurate standards were not validated themselves for performance. The manuscript summarizes the main results of the first phase of an effort called "Continual Intercomparison of Radiation Codes" (CIRC) where the cases chosen to evaluate the approximate models are based on observations and where we have ensured that the accurate models perform well when compared to solar and thermal radiation measurements. The effort is endorsed by international organizations such as the GEWEX Radiation Panel and the International Radiation Commission and has a dedicated website (i.e., http://circ.gsfc.nasa.gov) where interested scientists can freely download data and obtain more information about the effort's modus operandi and objectives. In a paper published in the March 2010 issue of the Bulletin of the American Meteorological Society only a brief overview of CIRC was provided with some sample results. In this paper the analysis of submissions of 11 solar and 13 thermal infrared codes relative to accurate reference calculations obtained by so-called "line-by-line" radiation codes is much more detailed. We demonstrate that, while performance of the approximate codes continues to improve, significant issues still remain to be addressed for satisfactory performance within GCMs. We hope that by identifying and quantifying shortcomings, the paper will help establish performance standards to objectively assess radiation code quality, and will guide the development of future phases of CIRC

  1. Scheduling Operations for Massive Heterogeneous Clusters

    NASA Technical Reports Server (NTRS)

    Humphrey, John; Spagnoli, Kyle

    2013-01-01

    High-performance computing (HPC) programming has become increasingly difficult with the advent of hybrid supercomputers consisting of multicore CPUs and accelerator boards such as the GPU. Manual tuning of software to achieve high performance on this type of machine has been performed by programmers. This is needlessly difficult and prone to being invalidated by new hardware, new software, or changes in the underlying code. A system was developed for task-based representation of programs, which when coupled with a scheduler and runtime system, allows for many benefits, including higher performance and utilization of computational resources, easier programming and porting, and adaptations of code during runtime. The system consists of a method of representing computer algorithms as a series of data-dependent tasks. The series forms a graph, which can be scheduled for execution on many nodes of a supercomputer efficiently by a computer algorithm. The schedule is executed by a dispatch component, which is tailored to understand all of the hardware types that may be available within the system. The scheduler is informed by a cluster mapping tool, which generates a topology of available resources and their strengths and communication costs. Software is decoupled from its hardware, which aids in porting to future architectures. A computer algorithm schedules all operations, which for systems of high complexity (i.e., most NASA codes), cannot be performed optimally by a human. The system aids in reducing repetitive code, such as communication code, and aids in the reduction of redundant code across projects. It adds new features to code automatically, such as recovering from a lost node or the ability to modify the code while running. In this project, the innovators at the time of this reporting intend to develop two distinct technologies that build upon each other and both of which serve as building blocks for more efficient HPC usage. First is the scheduling and dynamic execution framework, and the second is scalable linear algebra libraries that are built directly on the former.

  2. Determination of Problematic ICD-9-CM Subcategories for Further Study of Coding Performance: Delphi Method

    PubMed Central

    Zeng, Xiaoming; Bell, Paul D

    2011-01-01

    In this study, we report on a qualitative method known as the Delphi method, used in the first part of a research study for improving the accuracy and reliability of ICD-9-CM coding. A panel of independent coding experts interacted methodically to determine that the three criteria to identify a problematic ICD-9-CM subcategory for further study were cost, volume, and level of coding confusion caused. The Medicare Provider Analysis and Review (MEDPAR) 2007 fiscal year data set as well as suggestions from the experts were used to identify coding subcategories based on cost and volume data. Next, the panelists performed two rounds of independent ranking before identifying Excisional Debridement as the subcategory that causes the most confusion among coders. As a result, they recommended it for further study aimed at improving coding accuracy and variation. This framework can be adopted at different levels for similar studies in need of a schema for determining problematic subcategories of code sets. PMID:21796264

  3. Universal Noiseless Coding Subroutines

    NASA Technical Reports Server (NTRS)

    Schlutsmeyer, A. P.; Rice, R. F.

    1986-01-01

    Software package consists of FORTRAN subroutines that perform universal noiseless coding and decoding of integer and binary data strings. Purpose of this type of coding to achieve data compression in sense that coded data represents original data perfectly (noiselessly) while taking fewer bits to do so. Routines universal because they apply to virtually any "real-world" data source.

  4. Ultrasound strain imaging using Barker code

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Tie, Juhong; Guo, Dequan

    2017-01-01

    Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.

  5. Testing and Performance Analysis of the Multichannel Error Correction Code Decoder

    NASA Technical Reports Server (NTRS)

    Soni, Nitin J.

    1996-01-01

    This report provides the test results and performance analysis of the multichannel error correction code decoder (MED) system for a regenerative satellite with asynchronous, frequency-division multiple access (FDMA) uplink channels. It discusses the system performance relative to various critical parameters: the coding length, data pattern, unique word value, unique word threshold, and adjacent-channel interference. Testing was performed under laboratory conditions and used a computer control interface with specifically developed control software to vary these parameters. Needed technologies - the high-speed Bose Chaudhuri-Hocquenghem (BCH) codec from Harris Corporation and the TRW multichannel demultiplexer/demodulator (MCDD) - were fully integrated into the mesh very small aperture terminal (VSAT) onboard processing architecture and were demonstrated.

  6. Development of an LSI maximum-likelihood convolutional decoder for advanced forward error correction capability on the NASA 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    Clark, R. T.; Mccallister, R. D.

    1982-01-01

    The particular coding option identified as providing the best level of coding gain performance in an LSI-efficient implementation was the optimal constraint length five, rate one-half convolutional code. To determine the specific set of design parameters which optimally matches this decoder to the LSI constraints, a breadboard MCD (maximum-likelihood convolutional decoder) was fabricated and used to generate detailed performance trade-off data. The extensive performance testing data gathered during this design tradeoff study are summarized, and the functional and physical MCD chip characteristics are presented.

  7. Nuclide Depletion Capabilities in the Shift Monte Carlo Code

    DOE PAGES

    Davidson, Gregory G.; Pandya, Tara M.; Johnson, Seth R.; ...

    2017-12-21

    A new depletion capability has been developed in the Exnihilo radiation transport code suite. This capability enables massively parallel domain-decomposed coupling between the Shift continuous-energy Monte Carlo solver and the nuclide depletion solvers in ORIGEN to perform high-performance Monte Carlo depletion calculations. This paper describes this new depletion capability and discusses its various features, including a multi-level parallel decomposition, high-order transport-depletion coupling, and energy-integrated power renormalization. Several test problems are presented to validate the new capability against other Monte Carlo depletion codes, and the parallel performance of the new capability is analyzed.

  8. NSEG: A segmented mission analysis program for low and high speed aircraft. Volume 2: Program users manual

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Rozendaal, H. L.

    1977-01-01

    A rapid mission analysis code based on the use of approximate flight path equations of motion is described. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed vehicle characteristics are specified in tabular form. In addition to its mission performance calculation capabilities, the code also contains extensive flight envelop performance mapping capabilities. Approximate take off and landing analyses can be performed. At high speeds, centrifugal lift effects are taken into account. Extensive turbojet and ramjet engine scaling procedures are incorporated in the code.

  9. Airfoil Vibration Dampers program

    NASA Technical Reports Server (NTRS)

    Cook, Robert M.

    1991-01-01

    The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

  10. Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint

    PubMed Central

    Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Zhai, Ruifang

    2018-01-01

    Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency. PMID:29734793

  11. Performance of a parallel code for the Euler equations on hypercube computers

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.

    1990-01-01

    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.

  12. Flexible and polarization-controllable diffusion metasurface with optical transparency

    NASA Astrophysics Data System (ADS)

    Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Guo, Wenlong; Zhang, Qingfeng

    2017-11-01

    In this paper, a novel coding metasurface is proposed to realize polarization-controllable diffusion scattering. The anisotropic Jerusalem-cross unit cell is employed as the basic coding element due to its polarization-dependent phase response. The isotropic random coding sequence is firstly designed to obtain diffusion scattering, and the anisotropic random coding sequence is subsequently realized by adding different periodic coding sequences to the original isotropic one along different directions. For demonstration, we designed and fabricated a flexible polarization-controllable diffusion metasurface (PCDM) with both chessboard diffusion and hedge diffusion under different polarizations. The specular scattering reduction performance of the anisotropic metasurface is better than the isotropic one because the scattered energies are redirected away from the specular reflection direction. For potential applications, the flexible PCDM wrapped around a cylinder structure is investigated and tested for polarization-controllable diffusion scattering. The numerical and experimental results coincide well, indicating anisotropic low scatterings with comparable performances. This paper provides an alternative approach for designing high-performance, flexible, low-scattering platforms.

  13. Design of convolutional tornado code

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu

    2017-09-01

    As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.

  14. Error-correction coding for digital communications

    NASA Astrophysics Data System (ADS)

    Clark, G. C., Jr.; Cain, J. B.

    This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.

  15. Seismic Safety Of Simple Masonry Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guadagnuolo, Mariateresa; Faella, Giuseppe

    2008-07-08

    Several masonry buildings comply with the rules for simple buildings provided by seismic codes. For these buildings explicit safety verifications are not compulsory if specific code rules are fulfilled. In fact it is assumed that their fulfilment ensures a suitable seismic behaviour of buildings and thus adequate safety under earthquakes. Italian and European seismic codes differ in the requirements for simple masonry buildings, mostly concerning the building typology, the building geometry and the acceleration at site. Obviously, a wide percentage of buildings assumed simple by codes should satisfy the numerical safety verification, so that no confusion and uncertainty have tomore » be given rise to designers who must use the codes. This paper aims at evaluating the seismic response of some simple unreinforced masonry buildings that comply with the provisions of the new Italian seismic code. Two-story buildings, having different geometry, are analysed and results from nonlinear static analyses performed by varying the acceleration at site are presented and discussed. Indications on the congruence between code rules and results of numerical analyses performed according to the code itself are supplied and, in this context, the obtained result can provide a contribution for improving the seismic code requirements.« less

  16. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1994-01-01

    Brief summaries of research in the following areas are presented: (1) construction of optimum geometrically uniform trellis codes; (2) a statistical approach to constructing convolutional code generators; and (3) calculating the exact performance of a convolutional code.

  17. Adaptive distributed source coding.

    PubMed

    Varodayan, David; Lin, Yao-Chung; Girod, Bernd

    2012-05-01

    We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.

  18. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B.P.; Mahoney, L.A.

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected tomore » affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites.« less

  19. FY17 Status Report on NEAMS Neutronics Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. H.; Jung, Y. S.; Smith, M. A.

    2017-09-30

    Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less

  20. Biological significance of long non-coding RNA FTX expression in human colorectal cancer.

    PubMed

    Guo, Xiao-Bo; Hua, Zhu; Li, Chen; Peng, Li-Pan; Wang, Jing-Shen; Wang, Bo; Zhi, Qiao-Ming

    2015-01-01

    The purpose of this study was to determine the expression of long non-coding RNA (lncRNA) FTX and analyze its prognostic and biological significance in colorectal cancer (CRC). A quantitative reverse transcription PCR was performed to detect the expression of long non-coding RNA FTX in 35 pairs of colorectal cancer and corresponding noncancerous tissues. The expression of long non-coding RNA FTX was detected in 187 colorectal cancer tissues and its correlations with clinicopathological factors of patients were examined. Univariate and multivariate analyses were performed to analyze the prognostic significance of Long Non-coding RNA FTX expression. The effects of long non-coding RNA FTX expression on malignant phenotypes of colorectal cancer cells and its possible biological significances were further determined. Long non-coding RNA FTX was significantly upregulated in colorectal cancer tissues, and low long non-coding RNA FTX expression was significantly correlated with differentiation grade, lymph vascular invasion, and clinical stage. Patients with high long non-coding RNA FTX showed poorer overall survival than those with low long non-coding RNA FTX. Multivariate analyses indicated that status of long non-coding RNA FTX was an independent prognostic factor for patients. Functional analyses showed that upregulation of long non-coding RNA FTX significantly promoted growth, migration, invasion, and increased colony formation in colorectal cancer cells. Therefore, long non-coding RNA FTX may be a potential biomarker for predicting the survival of colorectal cancer patients and might be a molecular target for treatment of human colorectal cancer.

  1. Survey of existing performance requirements in codes and standards for light-frame construction

    Treesearch

    G. E. Sherwood

    1980-01-01

    Present building codes and standards are a combination of specifications and performance criteria. Where specifications prevail, the introduction f new materials or methods can be a long, cumbersome process. To facilitate the introduction of new technology, performance requirements are becoming more prevalent. In some areas, there is a lack of information on which to...

  2. DSN telemetry system performance with convolutionally code data

    NASA Technical Reports Server (NTRS)

    Mulhall, B. D. L.; Benjauthrit, B.; Greenhall, C. A.; Kuma, D. M.; Lam, J. K.; Wong, J. S.; Urech, J.; Vit, L. D.

    1975-01-01

    The results obtained to date and the plans for future experiments for the DSN telemetry system were presented. The performance of the DSN telemetry system in decoding convolutionally coded data by both sequential and maximum likelihood techniques is being determined by testing at various deep space stations. The evaluation of performance models is also an objective of this activity.

  3. CTF (Subchannel) Calculations and Validation L3:VVI.H2L.P15.01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Natalie

    The goal of the Verification and Validation Implementation (VVI) High to Low (Hi2Lo) process is utilizing a validated model in a high resolution code to generate synthetic data for improvement of the same model in a lower resolution code. This process is useful in circumstances where experimental data does not exist or it is not sufficient in quantity or resolution. Data from the high-fidelity code is treated as calibration data (with appropriate uncertainties and error bounds) which can be used to train parameters that affect solution accuracy in the lower-fidelity code model, thereby reducing uncertainty. This milestone presents a demonstrationmore » of the Hi2Lo process derived in the VVI focus area. The majority of the work performed herein describes the steps of the low-fidelity code used in the process with references to the work detailed in the companion high-fidelity code milestone (Reference 1). The CASL low-fidelity code used to perform this work was Cobra Thermal Fluid (CTF) and the high-fidelity code was STAR-CCM+ (STAR). The master branch version of CTF (pulled May 5, 2017 – Reference 2) was utilized for all CTF analyses performed as part of this milestone. The statistical and VVUQ components of the Hi2Lo framework were performed using Dakota version 6.6 (release date May 15, 2017 – Reference 3). Experimental data from Westinghouse Electric Company (WEC – Reference 4) was used throughout the demonstrated process to compare with the high-fidelity STAR results. A CTF parameter called Beta was chosen as the calibration parameter for this work. By default, Beta is defined as a constant mixing coefficient in CTF and is essentially a tuning parameter for mixing between subchannels. Since CTF does not have turbulence models like STAR, Beta is the parameter that performs the most similar function to the turbulence models in STAR. The purpose of the work performed in this milestone is to tune Beta to an optimal value that brings the CTF results closer to those measured in the WEC experiments.« less

  4. ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers

    NASA Astrophysics Data System (ADS)

    Torrent, Marc

    2014-03-01

    For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization algorithm, as well as the use of external optimized librairies. Part of this work has been supported by the european Prace project (PaRtnership for Advanced Computing in Europe) in the framework of its workpackage 8.

  5. Validation of the WIMSD4M cross-section generation code with benchmark results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deen, J.R.; Woodruff, W.L.; Leal, L.E.

    1995-01-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less

  6. Developments in REDES: The rocket engine design expert system

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  7. Developments in REDES: The Rocket Engine Design Expert System

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  8. Automated Diagnosis Coding with Combined Text Representations.

    PubMed

    Berndorfer, Stefan; Henriksson, Aron

    2017-01-01

    Automated diagnosis coding can be provided efficiently by learning predictive models from historical data; however, discriminating between thousands of codes while allowing a variable number of codes to be assigned is extremely difficult. Here, we explore various text representations and classification models for assigning ICD-9 codes to discharge summaries in MIMIC-III. It is shown that the relative effectiveness of the investigated representations depends on the frequency of the diagnosis code under consideration and that the best performance is obtained by combining models built using different representations.

  9. High-Power Ultrasound for Disinfection of Graywater and Ballast Water: A Beaker-Scale and Pilot-Scale Investigation

    DTIC Science & Technology

    2006-06-01

    The authors thank Denise Aylor (613) and Erick Satchell (613) for performing the cavitation erosion measurements and JoAnn Burkholder (North Carolina...20376 CODE 613 (AYLOR) 1 CODE 613 (SATCHELL) 1 COMMANDER CODE 617 (LEE, JOHN ) 1 NAVAL SURFACE WARFARE CENTER CODE 617 (BRIZZOLARA) 10 DAHLGREN...WUN-FOGLE) 10 CODE 702 (STRASBORG) 1 DEFENSE TECHNICAL INFORMATION CODE 3442 (TIC) 1 CENTER 8725 JOHN KINGMAN ROAD SUITE 0944 FORT BELVOIR VA 22060

  10. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camous, F.; Jacq, F.; Chatelard, P.

    1997-07-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.

  11. Coded excitation ultrasonic needle tracking: An in vivo study.

    PubMed

    Xia, Wenfeng; Ginsberg, Yuval; West, Simeon J; Nikitichev, Daniil I; Ourselin, Sebastien; David, Anna L; Desjardins, Adrien E

    2016-07-01

    Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded excitation, and they were visually absent with Golay coded excitation. The spatial tracking accuracy was unaffected by coded excitation. Coded excitation is a viable method for improving the SNR in ultrasonic tracking without compromising spatial accuracy. This method provided SNR increases that are consistent with theoretical expectations, even in the presence of physiological motion. With the ultrasonic tracking system in this study, the SNR increases will have direct clinical implications in a broad range of interventional procedures by improving visibility of medical devices at large depths.

  12. Development of high-fidelity multiphysics system for light water reactor analysis

    NASA Astrophysics Data System (ADS)

    Magedanz, Jeffrey W.

    There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining codes into a single executable, they are usually still developed and maintained separately. It should thus be a design objective to minimize the changes to those codes, and keep the changes to each code free of dependence on the details of the other codes. This will ease the incorporation of new versions of the code into the coupling, as well as re-use of parts of the coupling to couple with different codes. In order to fulfill this objective, an interface for each code was created in the form of an object-oriented abstract data type. Object-oriented programming is an effective method for enforcing a separation between different parts of a program, and clarifying the communication between them. The interfaces enable the main program to control the codes in terms of high-level functionality. This differs from the established practice of a master/slave relationship, in which the slave code is incorporated into the master code as a set of subroutines. While this PhD research continues previous work with a coupling between CTF and TORT-TD, it makes two major original contributions: (1) using a fuel-performance code, instead of a thermal-hydraulics code's simplified built-in models, to model the feedback from the fuel rods, and (2) the design of an object-oriented interface as an innovative method to interact with a coupled code in a high-level, easily-understandable manner. The resulting code system will serve as a tool to study the question of under what conditions, and to what extent, these higher-fidelity methods will provide benefits to reactor core analysis. (Abstract shortened by UMI.)

  13. Adaptive coded aperture imaging in the infrared: towards a practical implementation

    NASA Astrophysics Data System (ADS)

    Slinger, Chris W.; Gilholm, Kevin; Gordon, Neil; McNie, Mark; Payne, Doug; Ridley, Kevin; Strens, Malcolm; Todd, Mike; De Villiers, Geoff; Watson, Philip; Wilson, Rebecca; Dyer, Gavin; Eismann, Mike; Meola, Joe; Rogers, Stanley

    2008-08-01

    An earlier paper [1] discussed the merits of adaptive coded apertures for use as lensless imaging systems in the thermal infrared and visible. It was shown how diffractive (rather than the more conventional geometric) coding could be used, and that 2D intensity measurements from multiple mask patterns could be combined and decoded to yield enhanced imagery. Initial experimental results in the visible band were presented. Unfortunately, radiosity calculations, also presented in that paper, indicated that the signal to noise performance of systems using this approach was likely to be compromised, especially in the infrared. This paper will discuss how such limitations can be overcome, and some of the tradeoffs involved. Experimental results showing tracking and imaging performance of these modified, diffractive, adaptive coded aperture systems in the visible and infrared will be presented. The subpixel imaging and tracking performance is compared to that of conventional imaging systems and shown to be superior. System size, weight and cost calculations indicate that the coded aperture approach, employing novel photonic MOEMS micro-shutter architectures, has significant merits for a given level of performance in the MWIR when compared to more conventional imaging approaches.

  14. Trellis phase codes for power-bandwith efficient satellite communications

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Highfill, J. H.; Hsu, C. D.; Harkness, R.

    1981-01-01

    Support work on improved power and spectrum utilization on digital satellite channels was performed. Specific attention is given to the class of signalling schemes known as continuous phase modulation (CPM). The specific work described in this report addresses: analytical bounds on error probability for multi-h phase codes, power and bandwidth characterization of 4-ary multi-h codes, and initial results of channel simulation to assess the impact of band limiting filters and nonlinear amplifiers on CPM performance.

  15. SUPREM-DSMC: A New Scalable, Parallel, Reacting, Multidimensional Direct Simulation Monte Carlo Flow Code

    NASA Technical Reports Server (NTRS)

    Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas

    2000-01-01

    An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.

  16. Optimizing ATLAS code with different profilers

    NASA Astrophysics Data System (ADS)

    Kama, S.; Seuster, R.; Stewart, G. A.; Vitillo, R. A.

    2014-06-01

    After the current maintenance period, the LHC will provide higher energy collisions with increased luminosity. In order to keep up with these higher rates, ATLAS software needs to speed up substantially. However, ATLAS code is composed of approximately 6M lines, written by many different programmers with different backgrounds, which makes code optimisation a challenge. To help with this effort different profiling tools and techniques are being used. These include well known tools, such as the Valgrind suite and Intel Amplifier; less common tools like Pin, PAPI, and GOoDA; as well as techniques such as library interposing. In this paper we will mainly focus on Pin tools and GOoDA. Pin is a dynamic binary instrumentation tool which can obtain statistics such as call counts, instruction counts and interrogate functions' arguments. It has been used to obtain CLHEP Matrix profiles, operations and vector sizes for linear algebra calculations which has provided the insight necessary to achieve significant performance improvements. Complimenting this, GOoDA, an in-house performance tool built in collaboration with Google, which is based on hardware performance monitoring unit events, is used to identify hot-spots in the code for different types of hardware limitations, such as CPU resources, caches, or memory bandwidth. GOoDA has been used in improvement of the performance of new magnetic field code and identification of potential vectorization targets in several places, such as Runge-Kutta propagation code.

  17. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity.

    PubMed

    Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo

    2012-01-01

    In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.

  18. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts andmore » engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.« less

  19. Wavelet-based scalable L-infinity-oriented compression.

    PubMed

    Alecu, Alin; Munteanu, Adrian; Cornelis, Jan P H; Schelkens, Peter

    2006-09-01

    Among the different classes of coding techniques proposed in literature, predictive schemes have proven their outstanding performance in near-lossless compression. However, these schemes are incapable of providing embedded L(infinity)-oriented compression, or, at most, provide a very limited number of potential L(infinity) bit-stream truncation points. We propose a new multidimensional wavelet-based L(infinity)-constrained scalable coding framework that generates a fully embedded L(infinity)-oriented bit stream and that retains the coding performance and all the scalability options of state-of-the-art L2-oriented wavelet codecs. Moreover, our codec instantiation of the proposed framework clearly outperforms JPEG2000 in L(infinity) coding sense.

  20. Image coding of SAR imagery

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Kwok, R.; Curlander, J. C.

    1987-01-01

    Five coding techniques in the spatial and transform domains have been evaluated for SAR image compression: linear three-point predictor (LTPP), block truncation coding (BTC), microadaptive picture sequencing (MAPS), adaptive discrete cosine transform (ADCT), and adaptive Hadamard transform (AHT). These techniques have been tested with Seasat data. Both LTPP and BTC spatial domain coding techniques provide very good performance at rates of 1-2 bits/pixel. The two transform techniques, ADCT and AHT, demonstrate the capability to compress the SAR imagery to less than 0.5 bits/pixel without visible artifacts. Tradeoffs such as the rate distortion performance, the computational complexity, the algorithm flexibility, and the controllability of compression ratios are also discussed.

  1. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less

  2. Thermal-mechanical performance modeling of thorium-plutonium oxide fuel and comparison with on-line irradiation data

    NASA Astrophysics Data System (ADS)

    Insulander Björk, Klara; Kekkonen, Laura

    2015-12-01

    Thorium-plutonium Mixed OXide (Th-MOX) fuel is considered for use in light water reactors fuel due to some inherent benefits over conventional fuel types in terms of neutronic properties. The good material properties of ThO2 also suggest benefits in terms of thermal-mechanical fuel performance, but the use of Th-MOX fuel for commercial power production demands that its thermal-mechanical behavior can be accurately predicted using a well validated fuel performance code. Given the scant operational experience with Th-MOX fuel, no such code is available today. This article describes the first phase of the development of such a code, based on the well-established code FRAPCON 3.4, and in particular the correlations reviewed and chosen for the fuel material properties. The results of fuel temperature calculations with the code in its current state of development are shown and compared with data from a Th-MOX test irradiation campaign which is underway in the Halden research reactor. The results are good for fresh fuel, whereas experimental complications make it difficult to judge the adequacy of the code for simulations of irradiated fuel.

  3. Improved Helicopter Rotor Performance Prediction through Loose and Tight CFD/CSD Coupling

    NASA Astrophysics Data System (ADS)

    Ickes, Jacob C.

    Helicopters and other Vertical Take-Off or Landing (VTOL) vehicles exhibit an interesting combination of structural dynamic and aerodynamic phenomena which together drive the rotor performance. The combination of factors involved make simulating the rotor a challenging and multidisciplinary effort, and one which is still an active area of interest in the industry because of the money and time it could save during design. Modern tools allow the prediction of rotorcraft physics from first principles. Analysis of the rotor system with this level of accuracy provides the understanding necessary to improve its performance. There has historically been a divide between the comprehensive codes which perform aeroelastic rotor simulations using simplified aerodynamic models, and the very computationally intensive Navier-Stokes Computational Fluid Dynamics (CFD) solvers. As computer resources become more available, efforts have been made to replace the simplified aerodynamics of the comprehensive codes with the more accurate results from a CFD code. The objective of this work is to perform aeroelastic rotorcraft analysis using first-principles simulations for both fluids and structural predictions using tools available at the University of Toledo. Two separate codes are coupled together in both loose coupling (data exchange on a periodic interval) and tight coupling (data exchange each time step) schemes. To allow the coupling to be carried out in a reliable and efficient way, a Fluid-Structure Interaction code was developed which automatically performs primary functions of loose and tight coupling procedures. Flow phenomena such as transonics, dynamic stall, locally reversed flow on a blade, and Blade-Vortex Interaction (BVI) were simulated in this work. Results of the analysis show aerodynamic load improvement due to the inclusion of the CFD-based airloads in the structural dynamics analysis of the Computational Structural Dynamics (CSD) code. Improvements came in the form of improved peak/trough magnitude prediction, better phase prediction of these locations, and a predicted signal with a frequency content more like the flight test data than the CSD code acting alone. Additionally, a tight coupling analysis was performed as a demonstration of the capability and unique aspects of such an analysis. This work shows that away from the center of the flight envelope, the aerodynamic modeling of the CSD code can be replaced with a more accurate set of predictions from a CFD code with an improvement in the aerodynamic results. The better predictions come at substantially increased computational costs between 1,000 and 10,000 processor-hours.

  4. Preparation macroconstants to simulate the core of VVER-1000 reactor

    NASA Astrophysics Data System (ADS)

    Seleznev, V. Y.

    2017-01-01

    Dynamic model is used in simulators of VVER-1000 reactor for training of operating staff and students. As a code for the simulation of neutron-physical characteristics is used DYNCO code that allows you to perform calculations of stationary, transient and emergency processes in real time to a different geometry of the reactor lattices [1]. To perform calculations using this code, you need to prepare macroconstants for each FA. One way of getting macroconstants is to use the WIMS code, which is based on the use of its own 69-group macroconstants library. This paper presents the results of calculations of FA obtained by the WIMS code for VVER-1000 reactor with different parameters of fuel and coolant, as well as the method of selection of energy groups for further calculation macroconstants.

  5. A code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check codes

    NASA Astrophysics Data System (ADS)

    Bai, Cheng-lin; Cheng, Zhi-hui

    2016-09-01

    In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.

  6. Lattice surgery on the Raussendorf lattice

    NASA Astrophysics Data System (ADS)

    Herr, Daniel; Paler, Alexandru; Devitt, Simon J.; Nori, Franco

    2018-07-01

    Lattice surgery is a method to perform quantum computation fault-tolerantly by using operations on boundary qubits between different patches of the planar code. This technique allows for universal planar code computation without eliminating the intrinsic two-dimensional nearest-neighbor properties of the surface code that eases physical hardware implementations. Lattice surgery approaches to algorithmic compilation and optimization have been demonstrated to be more resource efficient for resource-intensive components of a fault-tolerant algorithm, and consequently may be preferable over braid-based logic. Lattice surgery can be extended to the Raussendorf lattice, providing a measurement-based approach to the surface code. In this paper we describe how lattice surgery can be performed on the Raussendorf lattice and therefore give a viable alternative to computation using braiding in measurement-based implementations of topological codes.

  7. Comparison of rate one-half, equivalent constraint length 24, binary convolutional codes for use with sequential decoding on the deep-space channel

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    Virtually all previously-suggested rate 1/2 binary convolutional codes with KE = 24 are compared. Their distance properties are given; and their performance, both in computation and in error probability, with sequential decoding on the deep-space channel is determined by simulation. Recommendations are made both for the choice of a specific KE = 24 code as well as for codes to be included in future coding standards for the deep-space channel. A new result given in this report is a method for determining the statistical significance of error probability data when the error probability is so small that it is not feasible to perform enough decoding simulations to obtain more than a very small number of decoding errors.

  8. Effect of Color-Coded Notation on Music Achievement of Elementary Instrumental Students.

    ERIC Educational Resources Information Center

    Rogers, George L.

    1991-01-01

    Presents results of a study of color-coded notation to teach music reading to instrumental students. Finds no clear evidence that color-coded notation enhances achievement on performing by memory, sight-reading, or note naming. Suggests that some students depended on the color-coding and were unable to read uncolored notation well. (DK)

  9. Benchmarking the Multidimensional Stellar Implicit Code MUSIC

    NASA Astrophysics Data System (ADS)

    Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.

    2017-04-01

    We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.

  10. Performance comparison of AV1, HEVC, and JVET video codecs on 360 (spherical) video

    NASA Astrophysics Data System (ADS)

    Topiwala, Pankaj; Dai, Wei; Krishnan, Madhu; Abbas, Adeel; Doshi, Sandeep; Newman, David

    2017-09-01

    This paper compares the coding efficiency performance on 360 videos, of three software codecs: (a) AV1 video codec from the Alliance for Open Media (AOM); (b) the HEVC Reference Software HM; and (c) the JVET JEM Reference SW. Note that 360 video is especially challenging content, in that one codes full res globally, but typically looks locally (in a viewport), which magnifies errors. These are tested in two different projection formats ERP and RSP, to check consistency. Performance is tabulated for 1-pass encoding on two fronts: (1) objective performance based on end-to-end (E2E) metrics such as SPSNR-NN, and WS-PSNR, currently developed in the JVET committee; and (2) informal subjective assessment of static viewports. Constant quality encoding is performed with all the three codecs for an unbiased comparison of the core coding tools. Our general conclusion is that under constant quality coding, AV1 underperforms HEVC, which underperforms JVET. We also test with rate control, where AV1 currently underperforms the open source X265 HEVC codec. Objective and visual evidence is provided.

  11. Spatial transform coding of color images.

    NASA Technical Reports Server (NTRS)

    Pratt, W. K.

    1971-01-01

    The application of the transform-coding concept to the coding of color images represented by three primary color planes of data is discussed. The principles of spatial transform coding are reviewed and the merits of various methods of color-image representation are examined. A performance analysis is presented for the color-image transform-coding system. Results of a computer simulation of the coding system are also given. It is shown that, by transform coding, the chrominance content of a color image can be coded with an average of 1.0 bits per element or less without serious degradation. If luminance coding is also employed, the average rate reduces to about 2.0 bits per element or less.

  12. A novel encoding scheme for effective biometric discretization: Linearly Separable Subcode.

    PubMed

    Lim, Meng-Hui; Teoh, Andrew Beng Jin

    2013-02-01

    Separability in a code is crucial in guaranteeing a decent Hamming-distance separation among the codewords. In multibit biometric discretization where a code is used for quantization-intervals labeling, separability is necessary for preserving distance dissimilarity when feature components are mapped from a discrete space to a Hamming space. In this paper, we examine separability of Binary Reflected Gray Code (BRGC) encoding and reveal its inadequacy in tackling interclass variation during the discrete-to-binary mapping, leading to a tradeoff between classification performance and entropy of binary output. To overcome this drawback, we put forward two encoding schemes exhibiting full-ideal and near-ideal separability capabilities, known as Linearly Separable Subcode (LSSC) and Partially Linearly Separable Subcode (PLSSC), respectively. These encoding schemes convert the conventional entropy-performance tradeoff into an entropy-redundancy tradeoff in the increase of code length. Extensive experimental results vindicate the superiority of our schemes over the existing encoding schemes in discretization performance. This opens up possibilities of achieving much greater classification performance with high output entropy.

  13. Error Reduction Program. [combustor performance evaluation codes

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; Chiappetta, L. M.; Gosman, A. D.

    1985-01-01

    The details of a study to select, incorporate and evaluate the best available finite difference scheme to reduce numerical error in combustor performance evaluation codes are described. The combustor performance computer programs chosen were the two dimensional and three dimensional versions of Pratt & Whitney's TEACH code. The criteria used to select schemes required that the difference equations mirror the properties of the governing differential equation, be more accurate than the current hybrid difference scheme, be stable and economical, be compatible with TEACH codes, use only modest amounts of additional storage, and be relatively simple. The methods of assessment used in the selection process consisted of examination of the difference equation, evaluation of the properties of the coefficient matrix, Taylor series analysis, and performance on model problems. Five schemes from the literature and three schemes developed during the course of the study were evaluated. This effort resulted in the incorporation of a scheme in 3D-TEACH which is usuallly more accurate than the hybrid differencing method and never less accurate.

  14. Visual pattern image sequence coding

    NASA Technical Reports Server (NTRS)

    Silsbee, Peter; Bovik, Alan C.; Chen, Dapang

    1990-01-01

    The visual pattern image coding (VPIC) configurable digital image-coding process is capable of coding with visual fidelity comparable to the best available techniques, at compressions which (at 30-40:1) exceed all other technologies. These capabilities are associated with unprecedented coding efficiencies; coding and decoding operations are entirely linear with respect to image size and entail a complexity that is 1-2 orders of magnitude faster than any previous high-compression technique. The visual pattern image sequence coding to which attention is presently given exploits all the advantages of the static VPIC in the reduction of information from an additional, temporal dimension, to achieve unprecedented image sequence coding performance.

  15. Syndrome-source-coding and its universal generalization. [error correcting codes for data compression

    NASA Technical Reports Server (NTRS)

    Ancheta, T. C., Jr.

    1976-01-01

    A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A 'universal' generalization of syndrome-source-coding is formulated which provides robustly effective distortionless coding of source ensembles. Two examples are given, comparing the performance of noiseless universal syndrome-source-coding to (1) run-length coding and (2) Lynch-Davisson-Schalkwijk-Cover universal coding for an ensemble of binary memoryless sources.

  16. Compression performance of HEVC and its format range and screen content coding extensions

    NASA Astrophysics Data System (ADS)

    Li, Bin; Xu, Jizheng; Sullivan, Gary J.

    2015-09-01

    This paper presents a comparison-based test of the objective compression performance of the High Efficiency Video Coding (HEVC) standard, its format range extensions (RExt), and its draft screen content coding extensions (SCC). The current dominant standard, H.264/MPEG-4 AVC, is used as an anchor reference in the comparison. The conditions used for the comparison tests were designed to reflect relevant application scenarios and to enable a fair comparison to the maximum extent feasible - i.e., using comparable quantization settings, reference frame buffering, intra refresh periods, rate-distortion optimization decision processing, etc. It is noted that such PSNR-based objective comparisons generally provide more conservative estimates of HEVC benefit than are found in subjective studies. The experimental results show that, when compared with H.264/MPEG-4 AVC, HEVC version 1 provides a bit rate savings for equal PSNR of about 23% for all-intra coding, 34% for random access coding, and 38% for low-delay coding. This is consistent with prior studies and the general characterization that HEVC can provide about a bit rate savings of about 50% for equal subjective quality for most applications. The HEVC format range extensions provide a similar bit rate savings of about 13-25% for all-intra coding, 28-33% for random access coding, and 32-38% for low-delay coding at different bit rate ranges. For lossy coding of screen content, the HEVC screen content coding extensions achieve a bit rate savings of about 66%, 63%, and 61% for all-intra coding, random access coding, and low-delay coding, respectively. For lossless coding, the corresponding bit rate savings are about 40%, 33%, and 32%, respectively.

  17. Validation of OpenFoam for heavy gas dispersion applications.

    PubMed

    Mack, A; Spruijt, M P N

    2013-11-15

    In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a wind tunnel test case, numerical data was validated with experiments. For a full scale numerical experiment, a code to code comparison was performed with numerical results obtained from Fluent. The validation was performed in a gravity driven environment (slope), where the heavy gas induced the turbulence. For the code to code comparison, a hypothetical heavy gas release into a strongly turbulent atmospheric boundary layer including terrain effects was selected. The investigations were performed for SF6 and CO2 as heavy gases applying the standard k-ɛ turbulence model. A strong interaction of the heavy gas with the turbulence is present which results in a strong damping of the turbulence and therefore reduced heavy gas mixing. Especially this interaction, based on the buoyancy effects, was studied in order to ensure that the turbulence-buoyancy coupling is the main driver for the reduced mixing and not the global behaviour of the turbulence modelling. For both test cases, comparisons were performed between OpenFoam and Fluent solutions which were mainly in good agreement with each other. Beside steady state solutions, the time accuracy was investigated. In the low turbulence environment (wind tunnel test) which for both codes (laminar solutions) was in good agreement, also with the experimental data. The turbulent solutions of OpenFoam were in much better agreement with the experimental results than the Fluent solutions. Within the strong turbulence environment, both codes showed an excellent comparability. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Trace-shortened Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Solomon, G.

    1994-01-01

    Reed-Solomon (RS) codes have been part of standard NASA telecommunications systems for many years. RS codes are character-oriented error-correcting codes, and their principal use in space applications has been as outer codes in concatenated coding systems. However, for a given character size, say m bits, RS codes are limited to a length of, at most, 2(exp m). It is known in theory that longer character-oriented codes would be superior to RS codes in concatenation applications, but until recently no practical class of 'long' character-oriented codes had been discovered. In 1992, however, Solomon discovered an extensive class of such codes, which are now called trace-shortened Reed-Solomon (TSRS) codes. In this article, we will continue the study of TSRS codes. Our main result is a formula for the dimension of any TSRS code, as a function of its error-correcting power. Using this formula, we will give several examples of TSRS codes, some of which look very promising as candidate outer codes in high-performance coded telecommunications systems.

  19. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    2000-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  20. An Interactive Concatenated Turbo Coding System

    NASA Technical Reports Server (NTRS)

    Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  1. Design of ACM system based on non-greedy punctured LDPC codes

    NASA Astrophysics Data System (ADS)

    Lu, Zijun; Jiang, Zihong; Zhou, Lin; He, Yucheng

    2017-08-01

    In this paper, an adaptive coded modulation (ACM) scheme based on rate-compatible LDPC (RC-LDPC) codes was designed. The RC-LDPC codes were constructed by a non-greedy puncturing method which showed good performance in high code rate region. Moreover, the incremental redundancy scheme of LDPC-based ACM system over AWGN channel was proposed. By this scheme, code rates vary from 2/3 to 5/6 and the complication of the ACM system is lowered. Simulations show that more and more obvious coding gain can be obtained by the proposed ACM system with higher throughput.

  2. NHRC (Naval Health Research Center) Report 1983.

    DTIC Science & Technology

    1983-01-01

    Department, Code 40 225-7395/6 ’f".." Bldg 315 Performance Enhancement Program of Code 60 225-6671 NTC Bldg 272, Physical Fitness Program of Code 60 (AV... SPORT m |RESEARCH&R DEVELOPMENT Post Office Box 05122 6 December 1983 I COMMAND SAN DIEGO, CAIFORNIA 921)5-9174 I COMhMANDING0FOP I %- I. Organizatiom...Research Center (NHRC) *as assigned by the Secretary of the navy, and the functions to be performed to accomplish the mission, as assigned by the

  3. Performance Analysis of IEEE 802.11g Waveform Transmitted Over a Fading Channel with Pulse-Noise Interference

    DTIC Science & Technology

    2006-06-01

    called packet binary convolutional code (PBCC), was included as an option for performance at rate of either 5.5 or 11 Mpbs. The second offshoot...and the code rate is r k n= . A general convolutional encoder can be implemented with k shift-registers and n modulo-2 adders. Higher rates can be...derived from lower rate codes by employing “ puncturing .” Puncturing is a procedure for omitting some of the encoded bits in the transmitter (thus

  4. High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers

    NASA Astrophysics Data System (ADS)

    Soto, M. A.; Sahu, P. K.; Faralli, S.; Sacchi, G.; Bolognini, G.; Di Pasquale, F.; Nebendahl, B.; Rueck, C.

    2007-07-01

    The performance of distributed temperature sensor systems based on spontaneous Raman scattering and coded OTDR are investigated. The evaluated DTS system, which is based on correlation coding, uses graded-index multimode fibers, operates over short-to-medium distances (up to 8 km) with high spatial and temperature resolutions (better than 1 m and 0.3 K at 4 km distance with 10 min measuring time) and high repeatability even throughout a wide temperature range.

  5. Cloud Computing for Complex Performance Codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin

    This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

  6. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  7. Proceedings of the U.S. Army Symposium on Gun Dynamics (5th) Held in Rensselaerville, New York on 23-25 September 1987

    DTIC Science & Technology

    1987-09-01

    have shown that gun barrel heating, and hence thermal expansion , is both axially and circumferentially asymmetric. Circumferential, or cross-barrel...element code, which ended in the selection of ABAQUS . The code will perform static, dynamic, and thermal anal- ysis on a broad range of structures...analysis may be performed by a user supplied FORTRAN subroutine which is automatically linked to the code and supplements the stand- ard ABAQUS

  8. Analysis and Simulation of Narrowband GPS Jamming Using Digital Excision Temporal Filtering.

    DTIC Science & Technology

    1994-12-01

    the sequence of stored values from the P- code sampled at a 20 MHz rate. When correlated with a reference vector of the same length to simulate a GPS ...rate required for the GPS signals, (20 MHz sampling rate for the P- code signal), the personal computer (PC) used run the simulation could not perform...This subroutine is used to perform a fast FFT based 168 biased cross correlation . Written by Capt Gerry Falen, USAF, 16 AUG 94 % start of code

  9. A TDM link with channel coding and digital voice.

    NASA Technical Reports Server (NTRS)

    Jones, M. W.; Tu, K.; Harton, P. L.

    1972-01-01

    The features of a TDM (time-division multiplexed) link model are described. A PCM telemetry sequence was coded for error correction and multiplexed with a digitized voice channel. An all-digital implementation of a variable-slope delta modulation algorithm was used to digitize the voice channel. The results of extensive testing are reported. The measured coding gain and the system performance over a Gaussian channel are compared with theoretical predictions and computer simulations. Word intelligibility scores are reported as a measure of voice channel performance.

  10. STGSTK: A computer code for predicting multistage axial flow compressor performance by a meanline stage stacking method

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1982-01-01

    A FORTRAN computer code is presented for off-design performance prediction of axial-flow compressors. Stage and compressor performance is obtained by a stage-stacking method that uses representative velocity diagrams at rotor inlet and outlet meanline radii. The code has options for: (1) direct user input or calculation of nondimensional stage characteristics; (2) adjustment of stage characteristics for off-design speed and blade setting angle; (3) adjustment of rotor deviation angle for off-design conditions; and (4) SI or U.S. customary units. Correlations from experimental data are used to model real flow conditions. Calculations are compared with experimental data.

  11. Biological significance of long non-coding RNA FTX expression in human colorectal cancer

    PubMed Central

    Guo, Xiao-Bo; Hua, Zhu; Li, Chen; Peng, Li-Pan; Wang, Jing-Shen; Wang, Bo; Zhi, Qiao-Ming

    2015-01-01

    The purpose of this study was to determine the expression of long non-coding RNA (lncRNA) FTX and analyze its prognostic and biological significance in colorectal cancer (CRC). A quantitative reverse transcription PCR was performed to detect the expression of long non-coding RNA FTX in 35 pairs of colorectal cancer and corresponding noncancerous tissues. The expression of long non-coding RNA FTX was detected in 187 colorectal cancer tissues and its correlations with clinicopathological factors of patients were examined. Univariate and multivariate analyses were performed to analyze the prognostic significance of Long Non-coding RNA FTX expression. The effects of long non-coding RNA FTX expression on malignant phenotypes of colorectal cancer cells and its possible biological significances were further determined. Long non-coding RNA FTX was significantly upregulated in colorectal cancer tissues, and low long non-coding RNA FTX expression was significantly correlated with differentiation grade, lymph vascular invasion, and clinical stage. Patients with high long non-coding RNA FTX showed poorer overall survival than those with low long non-coding RNA FTX. Multivariate analyses indicated that status of long non-coding RNA FTX was an independent prognostic factor for patients. Functional analyses showed that upregulation of long non-coding RNA FTX significantly promoted growth, migration, invasion, and increased colony formation in colorectal cancer cells. Therefore, long non-coding RNA FTX may be a potential biomarker for predicting the survival of colorectal cancer patients and might be a molecular target for treatment of human colorectal cancer. PMID:26629053

  12. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    PubMed

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  13. 12 CFR 573.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... access number or access code, does not include a number or code in an encrypted form, as long as you do... account number or similar form of access number or access code for a consumer's credit card account... or access code: (1) To your agent or service provider solely in order to perform marketing for your...

  14. 17 CFR 248.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... number or access code, does not include a number or code in an encrypted form, as long as you do not... agency, an account number or similar form of access number or access code for a consumer's credit card... number or access code: (1) To your agent or service provider solely in order to perform marketing for...

  15. 12 CFR 573.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... access number or access code, does not include a number or code in an encrypted form, as long as you do... reporting agency, an account number or similar form of access number or access code for a consumer's credit... number or access code: (1) To your agent or service provider solely in order to perform marketing for...

  16. 12 CFR 573.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... access number or access code, does not include a number or code in an encrypted form, as long as you do... reporting agency, an account number or similar form of access number or access code for a consumer's credit... number or access code: (1) To your agent or service provider solely in order to perform marketing for...

  17. 12 CFR 40.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... similar form of access number or access code, does not include a number or code in an encrypted form, as... reporting agency, an account number or similar form of access number or access code for a consumer's credit... number or access code: (1) To the bank's agent or service provider solely in order to perform marketing...

  18. 17 CFR 248.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... number or access code, does not include a number or code in an encrypted form, as long as you do not... agency, an account number or similar form of access number or access code for a consumer's credit card... number or access code: (1) To your agent or service provider solely in order to perform marketing for...

  19. 12 CFR 40.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... similar form of access number or access code, does not include a number or code in an encrypted form, as... reporting agency, an account number or similar form of access number or access code for a consumer's credit... number or access code: (1) To the bank's agent or service provider solely in order to perform marketing...

  20. 12 CFR 40.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... similar form of access number or access code, does not include a number or code in an encrypted form, as... reporting agency, an account number or similar form of access number or access code for a consumer's credit... number or access code: (1) To the bank's agent or service provider solely in order to perform marketing...

  1. 17 CFR 248.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... number or access code, does not include a number or code in an encrypted form, as long as you do not... agency, an account number or similar form of access number or access code for a consumer's credit card... number or access code: (1) To your agent or service provider solely in order to perform marketing for...

  2. 12 CFR 40.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... similar form of access number or access code, does not include a number or code in an encrypted form, as... reporting agency, an account number or similar form of access number or access code for a consumer's credit... number or access code: (1) To the bank's agent or service provider solely in order to perform marketing...

  3. 12 CFR 573.12 - Limits on sharing account number information for marketing purposes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... access number or access code, does not include a number or code in an encrypted form, as long as you do... account number or similar form of access number or access code for a consumer's credit card account... or access code: (1) To your agent or service provider solely in order to perform marketing for your...

  4. Convolutional coding results for the MVM '73 X-band telemetry experiment

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1978-01-01

    Results of simulation of several short-constraint-length convolutional codes using a noisy symbol stream obtained via the turnaround ranging channels of the MVM'73 spacecraft are presented. First operational use of this coding technique is on the Voyager mission. The relative performance of these codes in this environment is as previously predicted from computer-based simulations.

  5. Compression performance comparison in low delay real-time video for mobile applications

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2012-10-01

    This article compares the performance of several current video coding standards in the conditions of low-delay real-time in a resource constrained environment. The comparison is performed using the same content and the metrics and mix of objective and perceptual quality metrics. The metrics results in different coding schemes are analyzed from a point of view of user perception and quality of service. Multiple standards are compared MPEG-2, MPEG4 and MPEG-AVC and well and H.263. The metrics used in the comparison include SSIM, VQM and DVQ. Subjective evaluation and quality of service are discussed from a point of view of perceptual metrics and their incorporation in the coding scheme development process. The performance and the correlation of results are presented as a predictor of the performance of video compression schemes.

  6. Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage

    NASA Astrophysics Data System (ADS)

    Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo

    2005-01-01

    Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.

  7. Wavelet-based compression of M-FISH images.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Wu, Qiang; Castleman, Kenneth R

    2005-05-01

    Multiplex fluorescence in situ hybridization (M-FISH) is a recently developed technology that enables multi-color chromosome karyotyping for molecular cytogenetic analysis. Each M-FISH image set consists of a number of aligned images of the same chromosome specimen captured at different optical wavelength. This paper presents embedded M-FISH image coding (EMIC), where the foreground objects/chromosomes and the background objects/images are coded separately. We first apply critically sampled integer wavelet transforms to both the foreground and the background. We then use object-based bit-plane coding to compress each object and generate separate embedded bitstreams that allow continuous lossy-to-lossless compression of the foreground and the background. For efficient arithmetic coding of bit planes, we propose a method of designing an optimal context model that specifically exploits the statistical characteristics of M-FISH images in the wavelet domain. Our experiments show that EMIC achieves nearly twice as much compression as Lempel-Ziv-Welch coding. EMIC also performs much better than JPEG-LS and JPEG-2000 for lossless coding. The lossy performance of EMIC is significantly better than that of coding each M-FISH image with JPEG-2000.

  8. A Comprehensive Validation Approach Using The RAVEN Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J

    2015-06-01

    The RAVEN computer code , developed at the Idaho National Laboratory, is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is a multi-purpose probabilistic and uncertainty quantification platform, capable to communicate with any system code. A natural extension of the RAVEN capabilities is the imple- mentation of an integrated validation methodology, involving several different metrics, that represent an evolution of the methods currently used in the field. The state-of-art vali- dation approaches use neither exploration of the input space through sampling strategies, nor a comprehensive variety of metrics neededmore » to interpret the code responses, with respect experimental data. The RAVEN code allows to address both these lacks. In the following sections, the employed methodology, and its application to the newer developed thermal-hydraulic code RELAP-7, is reported.The validation approach has been applied on an integral effect experiment, representing natu- ral circulation, based on the activities performed by EG&G Idaho. Four different experiment configurations have been considered and nodalized.« less

  9. CBP TOOLBOX VERSION 2.0: CODE INTEGRATION ENHANCEMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.; Flach, G.; BROWN, K.

    2013-06-01

    This report describes enhancements made to code integration aspects of the Cementitious Barriers Project (CBP) Toolbox as a result of development work performed at the Savannah River National Laboratory (SRNL) in collaboration with Vanderbilt University (VU) in the first half of fiscal year 2013. Code integration refers to the interfacing to standalone CBP partner codes, used to analyze the performance of cementitious materials, with the CBP Software Toolbox. The most significant enhancements are: 1) Improved graphical display of model results. 2) Improved error analysis and reporting. 3) Increase in the default maximum model mesh size from 301 to 501 nodes.more » 4) The ability to set the LeachXS/Orchestra simulation times through the GoldSim interface. These code interface enhancements have been included in a new release (Version 2.0) of the CBP Toolbox.« less

  10. Empirical Analysis of Using Erasure Coding in Outsourcing Data Storage With Provable Security

    DTIC Science & Technology

    2016-06-01

    the fastest encoding performance among the four tested schemes. We expected to observe that Cauchy Reed-Solomonwould be faster than Reed- Solomon for all...providing recoverability for POR. We survey MDS codes and select Reed- Solomon and Cauchy Reed- Solomon MDS codes to be implemented into a prototype POR...tools providing recoverability for POR. We survey MDS codes and select Reed- Solomon and Cauchy Reed- Solomon MDS codes to be implemented into a

  11. Some Practical Universal Noiseless Coding Techniques

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.

    1994-01-01

    Report discusses noiseless data-compression-coding algorithms, performance characteristics and practical consideration in implementation of algorithms in coding modules composed of very-large-scale integrated circuits. Report also has value as tutorial document on data-compression-coding concepts. Coding techniques and concepts in question "universal" in sense that, in principle, applicable to streams of data from variety of sources. However, discussion oriented toward compression of high-rate data generated by spaceborne sensors for lower-rate transmission back to earth.

  12. Assessment of the prevailing physics codes: LEOPARD, LASER, and EPRI-CELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, J.S.

    1981-01-01

    In order to analyze core performance and fuel management, it is necessary to verify reactor physics codes in great detail. This kind of work not only serves the purpose of understanding and controlling the characteristics of each code, but also ensures the reliability as codes continually change due to constant modifications and machine transfers. This paper will present the results of a comprehensive verification of three code packages - LEOPARD, LASER, and EPRI-CELL.

  13. Results from the Veterans Health Administration ICD-10-CM/PCS Coding Pilot Study.

    PubMed

    Weems, Shelley; Heller, Pamela; Fenton, Susan H

    2015-01-01

    The Veterans Health Administration (VHA) of the US Department of Veterans Affairs has been preparing for the October 1, 2015, conversion to the International Classification of Diseases, Tenth Revision, Clinical Modification and Procedural Coding System (ICD-10-CM/PCS) for more than four years. The VHA's Office of Informatics and Analytics ICD-10 Program Management Office established an ICD-10 Learning Lab to explore expected operational challenges. This study was conducted to determine the effects of the classification system conversion on coding productivity. ICD codes are integral to VHA business processes and are used for purposes such as clinical studies, performance measurement, workload capture, cost determination, Veterans Equitable Resource Allocation (VERA) determination, morbidity and mortality classification, indexing of hospital records by disease and operations, data storage and retrieval, research purposes, and reimbursement. The data collection for this study occurred in multiple VHA sites across several months using standardized methods. It is commonly accepted that coding productivity will decrease with the implementation of ICD-10-CM/PCS. The findings of this study suggest that the decrease will be more significant for inpatient coding productivity (64.5 percent productivity decrease) than for ambulatory care coding productivity (6.7 percent productivity decrease). This study reveals the following important points regarding ICD-10-CM/PCS coding productivity: 1. Ambulatory care ICD-10-CM coding productivity is not expected to decrease as significantly as inpatient ICD-10-CM/PCS coding productivity. 2. Coder training and type of record (inpatient versus outpatient) affect coding productivity. 3. Inpatient coding productivity is decreased when a procedure requiring ICD-10-PCS coding is present. It is highly recommended that organizations perform their own analyses to determine the effects of ICD-10-CM/PCS implementation on coding productivity.

  14. Results from the Veterans Health Administration ICD-10-CM/PCS Coding Pilot Study

    PubMed Central

    Weems, Shelley; Heller, Pamela; Fenton, Susan H.

    2015-01-01

    The Veterans Health Administration (VHA) of the US Department of Veterans Affairs has been preparing for the October 1, 2015, conversion to the International Classification of Diseases, Tenth Revision, Clinical Modification and Procedural Coding System (ICD-10-CM/PCS) for more than four years. The VHA's Office of Informatics and Analytics ICD-10 Program Management Office established an ICD-10 Learning Lab to explore expected operational challenges. This study was conducted to determine the effects of the classification system conversion on coding productivity. ICD codes are integral to VHA business processes and are used for purposes such as clinical studies, performance measurement, workload capture, cost determination, Veterans Equitable Resource Allocation (VERA) determination, morbidity and mortality classification, indexing of hospital records by disease and operations, data storage and retrieval, research purposes, and reimbursement. The data collection for this study occurred in multiple VHA sites across several months using standardized methods. It is commonly accepted that coding productivity will decrease with the implementation of ICD-10-CM/PCS. The findings of this study suggest that the decrease will be more significant for inpatient coding productivity (64.5 percent productivity decrease) than for ambulatory care coding productivity (6.7 percent productivity decrease). This study reveals the following important points regarding ICD-10-CM/PCS coding productivity: Ambulatory care ICD-10-CM coding productivity is not expected to decrease as significantly as inpatient ICD-10-CM/PCS coding productivity.Coder training and type of record (inpatient versus outpatient) affect coding productivity.Inpatient coding productivity is decreased when a procedure requiring ICD-10-PCS coding is present. It is highly recommended that organizations perform their own analyses to determine the effects of ICD-10-CM/PCS implementation on coding productivity. PMID:26396553

  15. Performance of the dot product function in radiative transfer code SORD

    NASA Astrophysics Data System (ADS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-10-01

    The successive orders of scattering radiative transfer (RT) codes frequently call the scalar (dot) product function. In this paper, we study performance of some implementations of the dot product in the RT code SORD using 50 scenarios for light scattering in the atmosphere-surface system. In the dot product function, we use the unrolled loops technique with different unrolling factor. We also considered the intrinsic Fortran functions. We show results for two machines: ifort compiler under Windows, and pgf90 under Linux. Intrinsic DOT_PRODUCT function showed best performance for the ifort. For the pgf90, the dot product implemented with unrolling factor 4 was the fastest. The RT code SORD together with the interface that runs all the mentioned tests are publicly available from ftp://maiac.gsfc.nasa.gov/pub/skorkin/SORD_IP_16B (current release) or by email request from the corresponding (first) author.

  16. The simulations of indirect-drive targets for ignition on megajoule lasers.

    NASA Astrophysics Data System (ADS)

    Lykov, Vladimir; Andreev, Eugene; Ardasheva, Ludmila; Avramenko, Michael; Chernyakov, Valerian; Chizhkov, Maxim; Karlykhanov, Nikalai; Kozmanov, Michael; Lebedev, Serge; Rykovanov, George; Seleznev, Vladimir; Sokolov, Lev; Timakova, Margaret; Shestakov, Alexander; Shushlebin, Aleksander

    2013-10-01

    The calculations were performed with use of radiation hydrodynamic codes developed in RFNC-VNIITF. The analysis of published calculations of indirect-drive targets to obtain ignition on NIF and LMJ lasers has shown that these targets have very low margins for ignition: according to 1D-ERA code calculations it could not be ignited under decreasing of thermonuclear reaction rate less than in 2 times.The purpose of new calculations is search of indirect-drive targets with the raised margins for ignition. The calculations of compression and thermonuclear burning of targets are carried out for conditions of X-ray flux asymmetry obtained in simulations of Rugby hohlraum that were performed with 2D-SINARA code. The requirements to accuracy of manufacturing and irradiation symmetry of targets were studied with use of 2D-TIGR-OMEGA-3T code. The necessity of performed researches is caused by the construction of magajoule laser in Russia.

  17. Fusion PIC code performance analysis on the Cori KNL system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, Tuomas S.; Deslippe, Jack; Friesen, Brian

    We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization ismore » shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.« less

  18. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes

    NASA Astrophysics Data System (ADS)

    Marvian, Milad; Lidar, Daniel A.

    2017-01-01

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  19. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.

    PubMed

    Marvian, Milad; Lidar, Daniel A

    2017-01-20

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  20. Capacity Maximizing Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  1. Large Eddy Simulations and Turbulence Modeling for Film Cooling

    NASA Technical Reports Server (NTRS)

    Acharya, Sumanta

    1999-01-01

    The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes.

  2. The performance of trellis coded multilevel DPSK on a fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1987-01-01

    The performance of trellis coded multilevel differential phase-shift-keying (MDPSK) over Rician and Rayleigh fading channels is discussed. For operation at L-Band, this signalling technique leads to a more robust system than the coherent system with dual pilot tone calibration previously proposed for UHF. The results are obtained using a combination of analysis and simulation. The analysis shows that the design criterion for trellis codes to be operated on fading channels with interleaving/deinterleaving is no longer free Euclidean distance. The correct design criterion for optimizing bit error probability of trellis coded MDPSK over fading channels will be presented along with examples illustrating its application.

  3. Intercomparison of Monte Carlo radiation transport codes to model TEPC response in low-energy neutron and gamma-ray fields.

    PubMed

    Ali, F; Waker, A J; Waller, E J

    2014-10-01

    Tissue-equivalent proportional counters (TEPC) can potentially be used as a portable and personal dosemeter in mixed neutron and gamma-ray fields, but what hinders this use is their typically large physical size. To formulate compact TEPC designs, the use of a Monte Carlo transport code is necessary to predict the performance of compact designs in these fields. To perform this modelling, three candidate codes were assessed: MCNPX 2.7.E, FLUKA 2011.2 and PHITS 2.24. In each code, benchmark simulations were performed involving the irradiation of a 5-in. TEPC with monoenergetic neutron fields and a 4-in. wall-less TEPC with monoenergetic gamma-ray fields. The frequency and dose mean lineal energies and dose distributions calculated from each code were compared with experimentally determined data. For the neutron benchmark simulations, PHITS produces data closest to the experimental values and for the gamma-ray benchmark simulations, FLUKA yields data closest to the experimentally determined quantities. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2014-10-01

    The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.

  5. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  6. Optimal block cosine transform image coding for noisy channels

    NASA Technical Reports Server (NTRS)

    Vaishampayan, V.; Farvardin, N.

    1986-01-01

    The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.

  7. Magnetosphere simulations with a high-performance 3D AMR MHD Code

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Dezeeuw, Darren; Groth, Clinton; Powell, Kenneth; Song, Paul

    1998-11-01

    BATS-R-US is a high-performance 3D AMR MHD code for space physics applications running on massively parallel supercomputers. In BATS-R-US the electromagnetic and fluid equations are solved with a high-resolution upwind numerical scheme in a tightly coupled manner. The code is very robust and it is capable of spanning a wide range of plasma parameters (such as β, acoustic and Alfvénic Mach numbers). Our code is highly scalable: it achieved a sustained performance of 233 GFLOPS on a Cray T3E-1200 supercomputer with 1024 PEs. This talk reports results from the BATS-R-US code for the GGCM (Geospace General Circularculation Model) Phase 1 Standard Model Suite. This model suite contains 10 different steady-state configurations: 5 IMF clock angles (north, south, and three equally spaced angles in- between) with 2 IMF field strengths for each angle (5 nT and 10 nT). The other parameters are: solar wind speed =400 km/sec; solar wind number density = 5 protons/cc; Hall conductance = 0; Pedersen conductance = 5 S; parallel conductivity = ∞.

  8. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1992-01-01

    Worked performed during the reporting period is summarized. Construction of robustly good trellis codes for use with sequential decoding was developed. The robustly good trellis codes provide a much better trade off between free distance and distance profile. The unequal error protection capabilities of convolutional codes was studied. The problem of finding good large constraint length, low rate convolutional codes for deep space applications is investigated. A formula for computing the free distance of 1/n convolutional codes was discovered. Double memory (DM) codes, codes with two memory units per unit bit position, were studied; a search for optimal DM codes is being conducted. An algorithm for constructing convolutional codes from a given quasi-cyclic code was developed. Papers based on the above work are included in the appendix.

  9. Low Density Parity Check Codes: Bandwidth Efficient Channel Coding

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Lin, Shu; Maki, Gary; Yeh, Pen-Shu

    2003-01-01

    Low Density Parity Check (LDPC) Codes provide near-Shannon Capacity performance for NASA Missions. These codes have high coding rates R=0.82 and 0.875 with moderate code lengths, n=4096 and 8176. Their decoders have inherently parallel structures which allows for high-speed implementation. Two codes based on Euclidean Geometry (EG) were selected for flight ASIC implementation. These codes are cyclic and quasi-cyclic in nature and therefore have a simple encoder structure. This results in power and size benefits. These codes also have a large minimum distance as much as d,,, = 65 giving them powerful error correcting capabilities and error floors less than lo- BER. This paper will present development of the LDPC flight encoder and decoder, its applications and status.

  10. Protograph LDPC Codes with Node Degrees at Least 3

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher

    2006-01-01

    In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  11. Trellis coded modulation for 4800-9600 bps transmission over a fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.

    1986-01-01

    The combination of trellis coding and multiple phase-shift-keyed (MPSK) signalling with the addition of asymmetry to the signal set is discussed with regard to its suitability as a modulation/coding scheme for the fading mobile satellite channel. For MPSK, introducing nonuniformity (asymmetry) into the spacing between signal points in the constellation buys a further improvement in performance over that achievable with trellis coded symmetric MPSK, all this without increasing average or peak power, or changing the bandwidth constraints imposed on the system. Whereas previous contributions have considered the performance of trellis coded modulation transmitted over an additive white Gaussian noise (AWGN) channel, the emphasis in the paper is on the performance of trellis coded MPSK in the fading environment. The results will be obtained by using a combination of analysis and simulation. It will be assumed that the effect of the fading on the phase of the received signal is fully compensated for either by tracking it with some form of phase-locked loop or with pilot tone calibration techniques. Thus, results will reflect only the degradation due to the effect of the fading on the amplitude of the received signal. Also, we shall consider only the case where interleaving/deinterleaving is employed to further combat the fading. This allows for considerable simplification of the analysis and is of great practical interest. Finally, the impact of the availability of channel state information on average bit error probability performance is assessed.

  12. Integrated Performance of Next Generation High Data Rate Receiver and AR4JA LDPC Codec for Space Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Lyubarev, Mark; Nakashima, Michael A.; Andrews, Kenneth S.; Lee, Dennis

    2008-01-01

    Low-density parity-check (LDPC) codes are the state-of-the-art in forward error correction (FEC) technology that exhibits capacity approaching performance. The Jet Propulsion Laboratory (JPL) has designed a family of LDPC codes that are similar in structure and therefore, leads to a single decoder implementation. The Accumulate-Repeat-by-4-Jagged- Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5 and lengths 1024, 4096, 16384 information bits. Performance is less than one dB from capacity for all combinations.Integrating a stand-alone LDPC decoder with a commercial-off-the-shelf (COTS) receiver faces additional challenges than building a single receiver-decoder unit from scratch. In this work, we outline the issues and show that these additional challenges can be over-come by simple solutions. To demonstrate that an LDPC decoder can be made to work seamlessly with a COTS receiver, we interface an AR4JA LDPC decoder developed on a field-programmable gate array (FPGA) with a modern high data rate receiver and mea- sure the combined receiver-decoder performance. Through optimizations that include an improved frame synchronizer and different soft-symbol scaling algorithms, we show that a combined implementation loss of less than one dB is possible and therefore, most of the coding gain evidence in theory can also be obtained in practice. Our techniques can benefit any modem that utilizes an advanced FEC code.

  13. Advanced helium purge seals for Liquid Oxygen (LOX) turbopumps

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur; Lee, Chester C.

    1989-01-01

    Program objectives were to determine three advanced configurations of helium buffer seals capable of providing improved performance in a space shuttle main engine (SSME), high-pressure liquid oxygen (LOX) turbopump environment, and to provide NASA with the analytical tools to determine performance of a variety of seal configurations. The three seal designs included solid-ring fluid-film seals often referred to as floating ring seals, back-to-back fluid-film face seals, and a circumferential sectored seal that incorporated inherent clearance adjustment capabilities. Of the three seals designed, the sectored seal is favored because the self-adjusting clearance features accommodate the variations in clearance that will occur because of thermal and centrifugal distortions without compromising performance. Moreover, leakage can be contained well below the maximum target values; minimizing leakage is important on the SSME since helium is provided by an external tank. A reduction in tank size translates to an increase in payload that can be carried on board the shuttle. The computer codes supplied under this program included a code for analyzing a variety of gas-lubricated, floating ring, and sector seals; a code for analyzing gas-lubricated face seals; a code for optimizing and analyzing gas-lubricated spiral-groove face seals; and a code for determining fluid-film face seal response to runner excitations in as many as five degrees of freedom. These codes proved invaluable for optimizing designs and estimating final performance of the seals described.

  14. Multipath search coding of stationary signals with applications to speech

    NASA Astrophysics Data System (ADS)

    Fehn, H. G.; Noll, P.

    1982-04-01

    This paper deals with the application of multipath search coding (MSC) concepts to the coding of stationary memoryless and correlated sources, and of speech signals, at a rate of one bit per sample. Use is made of three MSC classes: (1) codebook coding, or vector quantization, (2) tree coding, and (3) trellis coding. This paper explains the performances of these coders and compares them both with those of conventional coders and with rate-distortion bounds. The potentials of MSC coding strategies are demonstrated by illustrations. The paper reports also on results of MSC coding of speech, where both the strategy of adaptive quantization and of adaptive prediction were included in coder design.

  15. Deployment of the OSIRIS EM-PIC code on the Intel Knights Landing architecture

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2017-10-01

    Electromagnetic particle-in-cell (EM-PIC) codes such as OSIRIS have found widespread use in modelling the highly nonlinear and kinetic processes that occur in several relevant plasma physics scenarios, ranging from astrophysical settings to high-intensity laser plasma interaction. Being computationally intensive, these codes require large scale HPC systems, and a continuous effort in adapting the algorithm to new hardware and computing paradigms. In this work, we report on our efforts on deploying the OSIRIS code on the new Intel Knights Landing (KNL) architecture. Unlike the previous generation (Knights Corner), these boards are standalone systems, and introduce several new features, include the new AVX-512 instructions and on-package MCDRAM. We will focus on the parallelization and vectorization strategies followed, as well as memory management, and present a detailed performance evaluation of code performance in comparison with the CPU code. This work was partially supported by Fundaçã para a Ciência e Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014.

  16. The Fortran-P Translator: Towards Automatic Translation of Fortran 77 Programs for Massively Parallel Processors

    DOE PAGES

    O'keefe, Matthew; Parr, Terence; Edgar, B. Kevin; ...

    1995-01-01

    Massively parallel processors (MPPs) hold the promise of extremely high performance that, if realized, could be used to study problems of unprecedented size and complexity. One of the primary stumbling blocks to this promise has been the lack of tools to translate application codes to MPP form. In this article we show how applications codes written in a subset of Fortran 77, called Fortran-P, can be translated to achieve good performance on several massively parallel machines. This subset can express codes that are self-similar, where the algorithm applied to the global data domain is also applied to each subdomain. Wemore » have found many codes that match the Fortran-P programming style and have converted them using our tools. We believe a self-similar coding style will accomplish what a vectorizable style has accomplished for vector machines by allowing the construction of robust, user-friendly, automatic translation systems that increase programmer productivity and generate fast, efficient code for MPPs.« less

  17. Mixture block coding with progressive transmission in packet video. Appendix 1: Item 2. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, Yun-Chung

    1989-01-01

    Video transmission will become an important part of future multimedia communication because of dramatically increasing user demand for video, and rapid evolution of coding algorithm and VLSI technology. Video transmission will be part of the broadband-integrated services digital network (B-ISDN). Asynchronous transfer mode (ATM) is a viable candidate for implementation of B-ISDN due to its inherent flexibility, service independency, and high performance. According to the characteristics of ATM, the information has to be coded into discrete cells which travel independently in the packet switching network. A practical realization of an ATM video codec called Mixture Block Coding with Progressive Transmission (MBCPT) is presented. This variable bit rate coding algorithm shows how a constant quality performance can be obtained according to user demand. Interactions between codec and network are emphasized including packetization, service synchronization, flow control, and error recovery. Finally, some simulation results based on MBCPT coding with error recovery are presented.

  18. GPU Optimizations for a Production Molecular Docking Code*

    PubMed Central

    Landaverde, Raphael; Herbordt, Martin C.

    2015-01-01

    Modeling molecular docking is critical to both understanding life processes and designing new drugs. In previous work we created the first published GPU-accelerated docking code (PIPER) which achieved a roughly 5× speed-up over a contemporaneous 4 core CPU. Advances in GPU architecture and in the CPU code, however, have since reduced this relalative performance by a factor of 10. In this paper we describe the upgrade of GPU PIPER. This required an entire rewrite, including algorithm changes and moving most remaining non-accelerated CPU code onto the GPU. The result is a 7× improvement in GPU performance and a 3.3× speedup over the CPU-only code. We find that this difference in time is almost entirely due to the difference in run times of the 3D FFT library functions on CPU (MKL) and GPU (cuFFT), respectively. The GPU code has been integrated into the ClusPro docking server which has over 4000 active users. PMID:26594667

  19. GPU Optimizations for a Production Molecular Docking Code.

    PubMed

    Landaverde, Raphael; Herbordt, Martin C

    2014-09-01

    Modeling molecular docking is critical to both understanding life processes and designing new drugs. In previous work we created the first published GPU-accelerated docking code (PIPER) which achieved a roughly 5× speed-up over a contemporaneous 4 core CPU. Advances in GPU architecture and in the CPU code, however, have since reduced this relalative performance by a factor of 10. In this paper we describe the upgrade of GPU PIPER. This required an entire rewrite, including algorithm changes and moving most remaining non-accelerated CPU code onto the GPU. The result is a 7× improvement in GPU performance and a 3.3× speedup over the CPU-only code. We find that this difference in time is almost entirely due to the difference in run times of the 3D FFT library functions on CPU (MKL) and GPU (cuFFT), respectively. The GPU code has been integrated into the ClusPro docking server which has over 4000 active users.

  20. Enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding for four-level holographic data storage systems

    NASA Astrophysics Data System (ADS)

    Kong, Gyuyeol; Choi, Sooyong

    2017-09-01

    An enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding is proposed for four-level holographic data storage systems. While the previous four-ary modulation codes focus on preventing maximum two-dimensional intersymbol interference patterns, the proposed four-ary modulation code aims at maximizing the coding gains for better bit error rate performances. For achieving significant coding gains from the four-ary modulation codes, we design a new 2/3 four-ary modulation code in order to enlarge the free distance on the trellis through extensive simulation. The free distance of the proposed four-ary modulation code is extended from 1.21 to 2.04 compared with that of the conventional four-ary modulation code. The simulation result shows that the proposed four-ary modulation code has more than 1 dB gains compared with the conventional four-ary modulation code.

  1. Efficient coding and detection of ultra-long IDs for visible light positioning systems.

    PubMed

    Zhang, Hualong; Yang, Chuanchuan

    2018-05-14

    Visible light positioning (VLP) is a promising technique to complement Global Navigation Satellite System (GNSS) such as Global positioning system (GPS) and BeiDou Navigation Satellite System (BDS) which features the advantage of low-cost and high accuracy. The situation becomes even more crucial for indoor environments, where satellite signals are weak or even unavailable. For large-scale application of VLP, there would be a considerable number of Light emitting diode (LED) IDs, which bring forward the demand of long LED ID detection. In particular, to provision indoor localization globally, a convenient way is to program a unique ID into each LED during manufacture. This poses a big challenge for image sensors, such as the CMOS camera in everybody's hands since the long ID covers the span of multiple frames. In this paper, we investigate the detection of ultra-long ID using rolling shutter cameras. By analyzing the pattern of data loss in each frame, we proposed a novel coding technique to improve the efficiency of LED ID detection. We studied the performance of Reed-Solomon (RS) code in this system and designed a new coding method which considered the trade-off between performance and decoding complexity. Coding technique decreases the number of frames needed in data processing, significantly reduces the detection time, and improves the accuracy of detection. Numerical and experimental results show that the detected LED ID can be much longer with the coding technique. Besides, our proposed coding method is proved to achieve a performance close to that of RS code while the decoding complexity is much lower.

  2. WINCLR: a Computer Code for Heat Transfer and Clearance Calculation in a Compressor

    NASA Technical Reports Server (NTRS)

    Bose, T. K.; Murthy, S. N. B.

    1994-01-01

    One of the concerns during inclement weather operation of aircraft in rain and hail storm conditions is the nature and extent of changes in compressor casing clearance. An increase in clearance affects efficiency while a decrease may cause blade rubbing with the casing. The change in clearance is the result of geometrical dimensional changes in the blades, the casing and the rotor due to heat transfer between those parts and the two-phase working fluid. The heat transfer interacts nonlinearly with the performance of the compressor, and, therefore, the determination of clearance changes necessitates a simultaneous determination of change in performance of the compressor. A computer code the WINCLR has been designed for the determination of casing clearance, that is operated interactively with the PURDU-WINCOF I code designed previously for determining the performance of a compressor. A detailed description of the WINCLR code is provided in a companion report. The current report provides details of the code with an illustrative example of application to the case of a multistage compressor. It is found in the example case that under given ingestion and operational conditions, it is possible for a compressor to undergo changes in performance in the front stages and rubbing in the back stages.

  3. OCTGRAV: Sparse Octree Gravitational N-body Code on Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Gaburov, Evghenii; Bédorf, Jeroen; Portegies Zwart, Simon

    2010-10-01

    Octgrav is a very fast tree-code which runs on massively parallel Graphical Processing Units (GPU) with NVIDIA CUDA architecture. The algorithms are based on parallel-scan and sort methods. The tree-construction and calculation of multipole moments is carried out on the host CPU, while the force calculation which consists of tree walks and evaluation of interaction list is carried out on the GPU. In this way, a sustained performance of about 100GFLOP/s and data transfer rates of about 50GB/s is achieved. It takes about a second to compute forces on a million particles with an opening angle of heta approx 0.5. To test the performance and feasibility, we implemented the algorithms in CUDA in the form of a gravitational tree-code which completely runs on the GPU. The tree construction and traverse algorithms are portable to many-core devices which have support for CUDA or OpenCL programming languages. The gravitational tree-code outperforms tuned CPU code during the tree-construction and shows a performance improvement of more than a factor 20 overall, resulting in a processing rate of more than 2.8 million particles per second. The code has a convenient user interface and is freely available for use.

  4. Performance Analysis of a De-correlated Modified Code Tracking Loop for Synchronous DS-CDMA System under Multiuser Environment

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Ting; Wong, Wai-Ki; Leung, Shu-Hung; Zhu, Yue-Sheng

    This paper presents the performance analysis of a De-correlated Modified Code Tracking Loop (D-MCTL) for synchronous direct-sequence code-division multiple-access (DS-CDMA) systems under multiuser environment. Previous studies have shown that the imbalance of multiple access interference (MAI) in the time lead and time lag portions of the signal causes tracking bias or instability problem in the traditional correlating tracking loop like delay lock loop (DLL) or modified code tracking loop (MCTL). In this paper, we exploit the de-correlating technique to combat the MAI at the on-time code position of the MCTL. Unlike applying the same technique to DLL which requires an extensive search algorithm to compensate the noise imbalance which may introduce small tracking bias under low signal-to-noise ratio (SNR), the proposed D-MCTL has much lower computational complexity and exhibits zero tracking bias for the whole range of SNR, regardless of the number of interfering users. Furthermore, performance analysis and simulations based on Gold codes show that the proposed scheme has better mean square tracking error, mean-time-to-lose-lock and near-far resistance than the other tracking schemes, including traditional DLL (T-DLL), traditional MCTL (T-MCTL) and modified de-correlated DLL (MD-DLL).

  5. Multiple Trellis Coded Modulation (MTCM): An MSAT-X report

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.

    1986-01-01

    Conventional trellis coding outputs one channel symbol per trellis branch. The notion of multiple trellis coding is introduced wherein more than one channel symbol per trellis branch is transmitted. It is shown that the combination of multiple trellis coding with M-ary modulation yields a performance gain with symmetric signal set comparable to that previously achieved only with signal constellation asymmetry. The advantage of multiple trellis coding over the conventional trellis coded asymmetric modulation technique is that the potential for code catastrophe associated with the latter has been eliminated with no additional cost in complexity (as measured by the number of states in the trellis diagram).

  6. Multi-stage decoding of multi-level modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  7. Modelling the performance of the monogroove with screen heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Austin Lewis

    1987-01-01

    A computer code to model the steady-state performance of a monogroove heat pipe for the NASA Space Station is presented, including the effects on heat pipe performance of a screen in the evaporator section which deals with transient surges in the heat input. Errors in a previous code have been corrected, and the new code adds additional loss terms in order to model several different working fluids. Good agreement with existing performance curves is obtained. From a preliminary evaluation of several of the radiator design parameters it is found that an optimum fin width could be achieved but that structural considerations limit the thickness of the fin to a value above optimum.

  8. One-Time Password Registration Key Code Request | High-Performance

    Science.gov Websites

    Computing | NREL One-Time Password Registration Key Code Request One-Time Password Registration Key Code Request Use this form to request a one-time password (OTP) registration key code for using . Alternate Email In case there is a second email where we might contact you Phone In case we need to contact

  9. Nuclear shell model code CRUNCHER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resler, D.A.; Grimes, S.M.

    1988-05-01

    A new nuclear shell model code CRUNCHER, patterned after the code VLADIMIR, has been developed. While CRUNCHER and VLADIMIR employ the techniques of an uncoupled basis and the Lanczos process, improvements in the new code allow it to handle much larger problems than the previous code and to perform them more efficiently. Tests involving a moderately sized calculation indicate that CRUNCHER running on a SUN 3/260 workstation requires approximately one-half the central processing unit (CPU) time required by VLADIMIR running on a CRAY-1 supercomputer.

  10. Fixed-point Design of the Lattice-reduction-aided Iterative Detection and Decoding Receiver for Coded MIMO Systems

    DTIC Science & Technology

    2011-01-01

    reliability, e.g., Turbo Codes [2] and Low Density Parity Check ( LDPC ) codes [3]. The challenge to apply both MIMO and ECC into wireless systems is on...REPORT Fixed-point Design of theLattice-reduction-aided Iterative Detection andDecoding Receiver for Coded MIMO Systems 14. ABSTRACT 16. SECURITY...illustrates the performance of coded LR aided detectors. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES The views, opinions

  11. Evaluation of three coding schemes designed for improved data communication

    NASA Technical Reports Server (NTRS)

    Snelsire, R. W.

    1974-01-01

    Three coding schemes designed for improved data communication are evaluated. Four block codes are evaluated relative to a quality function, which is a function of both the amount of data rejected and the error rate. The Viterbi maximum likelihood decoding algorithm as a decoding procedure is reviewed. This evaluation is obtained by simulating the system on a digital computer. Short constraint length rate 1/2 quick-look codes are studied, and their performance is compared to general nonsystematic codes.

  12. Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS

    NASA Astrophysics Data System (ADS)

    Barani, T.; Bruschi, E.; Pizzocri, D.; Pastore, G.; Van Uffelen, P.; Williamson, R. L.; Luzzi, L.

    2017-04-01

    The modelling of fission gas behaviour is a crucial aspect of nuclear fuel performance analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. In particular, experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of the burst release process in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which is applied as an extension of conventional diffusion-based models to introduce the burst release effect. The concept and governing equations of the model are presented, and the sensitivity of results to the newly introduced parameters is evaluated through an analytic sensitivity analysis. The model is assessed for application to integral fuel rod analysis by implementation in two structurally different fuel performance codes: BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D code). Model assessment is based on the analysis of 19 light water reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the quantitative predictions of integral fuel rod FGR and the qualitative representation of the FGR kinetics with the transient model relative to the canonical, purely diffusion-based models of the codes. The overall quantitative improvement of the integral FGR predictions in the two codes is comparable. Moreover, calculated radial profiles of xenon concentration after irradiation are investigated and compared to experimental data, illustrating the underlying representation of the physical mechanisms of burst release.

  13. Combinatorial neural codes from a mathematical coding theory perspective.

    PubMed

    Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L

    2013-07-01

    Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.

  14. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding

    NASA Astrophysics Data System (ADS)

    Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.

    2016-03-01

    In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.

  15. Topological quantum distillation.

    PubMed

    Bombin, H; Martin-Delgado, M A

    2006-11-03

    We construct a class of topological quantum codes to perform quantum entanglement distillation. These codes implement the whole Clifford group of unitary operations in a fully topological manner and without selective addressing of qubits. This allows us to extend their application also to quantum teleportation, dense coding, and computation with magic states.

  16. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  17. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  18. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  19. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar data produced for...

  20. A survey of compiler optimization techniques

    NASA Technical Reports Server (NTRS)

    Schneck, P. B.

    1972-01-01

    Major optimization techniques of compilers are described and grouped into three categories: machine dependent, architecture dependent, and architecture independent. Machine-dependent optimizations tend to be local and are performed upon short spans of generated code by using particular properties of an instruction set to reduce the time or space required by a program. Architecture-dependent optimizations are global and are performed while generating code. These optimizations consider the structure of a computer, but not its detailed instruction set. Architecture independent optimizations are also global but are based on analysis of the program flow graph and the dependencies among statements of source program. A conceptual review of a universal optimizer that performs architecture-independent optimizations at source-code level is also presented.

  1. Approximate maximum likelihood decoding of block codes

    NASA Technical Reports Server (NTRS)

    Greenberger, H. J.

    1979-01-01

    Approximate maximum likelihood decoding algorithms, based upon selecting a small set of candidate code words with the aid of the estimated probability of error of each received symbol, can give performance close to optimum with a reasonable amount of computation. By combining the best features of various algorithms and taking care to perform each step as efficiently as possible, a decoding scheme was developed which can decode codes which have better performance than those presently in use and yet not require an unreasonable amount of computation. The discussion of the details and tradeoffs of presently known efficient optimum and near optimum decoding algorithms leads, naturally, to the one which embodies the best features of all of them.

  2. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens.

    PubMed

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin

    2017-06-01

    We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Understanding the Cray X1 System

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    2004-01-01

    This paper helps the reader understand the characteristics of the Cray X1 vector supercomputer system, and provides hints and information to enable the reader to port codes to the system. It provides a comparison between the basic performance of the X1 platform and other platforms that are available at NASA Ames Research Center. A set of codes, solving the Laplacian equation with different parallel paradigms, is used to understand some features of the X1 compiler. An example code from the NAS Parallel Benchmarks is used to demonstrate performance optimization on the X1 platform.

  4. NSEG, a segmented mission analysis program for low and high speed aircraft. Volume 1: Theoretical development

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Rozendaal, H. L.

    1977-01-01

    A rapid mission analysis code based on the use of approximate flight path equations of motion is presented. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed characteristics were specified in tabular form. The code also contains extensive flight envelope performance mapping capabilities. Approximate take off and landing analyses were performed. At high speeds, centrifugal lift effects were accounted for. Extensive turbojet and ramjet engine scaling procedures were incorporated in the code.

  5. ETF system code: composition and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, R.L.; Wu, K.F.

    1980-01-01

    A computer code has been developed for application to ETF tokamak system and conceptual design studies. The code determines cost, performance, configuration, and technology requirements as a function of tokamak parameters. The ETF code is structured in a modular fashion in order to allow independent modeling of each major tokamak component. The primary benefit of modularization is that it allows updating of a component module, such as the TF coil module, without disturbing the remainder of the system code as long as the input/output to the modules remains unchanged. The modules may be run independently to perform specific design studies,more » such as determining the effect of allowable strain on TF coil structural requirements, or the modules may be executed together as a system to determine global effects, such as defining the impact of aspect ratio on the entire tokamak system.« less

  6. Analytical modeling of intumescent coating thermal protection system in a JP-5 fuel fire environment

    NASA Technical Reports Server (NTRS)

    Clark, K. J.; Shimizu, A. B.; Suchsland, K. E.; Moyer, C. B.

    1974-01-01

    The thermochemical response of Coating 313 when exposed to a fuel fire environment was studied to provide a tool for predicting the reaction time. The existing Aerotherm Charring Material Thermal Response and Ablation (CMA) computer program was modified to treat swelling materials. The modified code is now designated Aerotherm Transient Response of Intumescing Materials (TRIM) code. In addition, thermophysical property data for Coating 313 were analyzed and reduced for use in the TRIM code. An input data sensitivity study was performed, and performance tests of Coating 313/steel substrate models were carried out. The end product is a reliable computational model, the TRIM code, which was thoroughly validated for Coating 313. The tasks reported include: generation of input data, development of swell model and implementation in TRIM code, sensitivity study, acquisition of experimental data, comparisons of predictions with data, and predictions with intermediate insulation.

  7. Progress on China nuclear data processing code system

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu

    2017-09-01

    China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.

  8. Profugus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Thomas; Hamilton, Steven; Slattery, Stuart

    Profugus is an open-source mini-application (mini-app) for radiation transport and reactor applications. It contains the fundamental computational kernels used in the Exnihilo code suite from Oak Ridge National Laboratory. However, Exnihilo is production code with a substantial user base. Furthermore, Exnihilo is export controlled. This makes collaboration with computer scientists and computer engineers difficult. Profugus is designed to bridge that gap. By encapsulating the core numerical algorithms in an abbreviated code base that is open-source, computer scientists can analyze the algorithms and easily make code-architectural changes to test performance without compromising the production code values of Exnihilo. Profugus is notmore » meant to be production software with respect to problem analysis. The computational kernels in Profugus are designed to analyze performance, not correctness. Nonetheless, users of Profugus can setup and run problems with enough real-world features to be useful as proof-of-concept for actual production work.« less

  9. A systematic literature review of automated clinical coding and classification systems

    PubMed Central

    Williams, Margaret; Fenton, Susan H; Jenders, Robert A; Hersh, William R

    2010-01-01

    Clinical coding and classification processes transform natural language descriptions in clinical text into data that can subsequently be used for clinical care, research, and other purposes. This systematic literature review examined studies that evaluated all types of automated coding and classification systems to determine the performance of such systems. Studies indexed in Medline or other relevant databases prior to March 2009 were considered. The 113 studies included in this review show that automated tools exist for a variety of coding and classification purposes, focus on various healthcare specialties, and handle a wide variety of clinical document types. Automated coding and classification systems themselves are not generalizable, nor are the results of the studies evaluating them. Published research shows these systems hold promise, but these data must be considered in context, with performance relative to the complexity of the task and the desired outcome. PMID:20962126

  10. GPU-accelerated simulations of isolated black holes

    NASA Astrophysics Data System (ADS)

    Lewis, Adam G. M.; Pfeiffer, Harald P.

    2018-05-01

    We present a port of the numerical relativity code SpEC which is capable of running on NVIDIA GPUs. Since this code must be maintained in parallel with SpEC itself, a primary design consideration is to perform as few explicit code changes as possible. We therefore rely on a hierarchy of automated porting strategies. At the highest level we use TLoops, a C++ library of our design, to automatically emit CUDA code equivalent to tensorial expressions written into C++ source using a syntax similar to analytic calculation. Next, we trace out and cache explicit matrix representations of the numerous linear transformations in the SpEC code, which allows these to be performed on the GPU using pre-existing matrix-multiplication libraries. We port the few remaining important modules by hand. In this paper we detail the specifics of our port, and present benchmarks of it simulating isolated black hole spacetimes on several generations of NVIDIA GPU.

  11. Competitive region orientation code for palmprint verification and identification

    NASA Astrophysics Data System (ADS)

    Tang, Wenliang

    2015-11-01

    Orientation features of the palmprint have been widely investigated in coding-based palmprint-recognition methods. Conventional orientation-based coding methods usually used discrete filters to extract the orientation feature of palmprint. However, in real operations, the orientations of the filter usually are not consistent with the lines of the palmprint. We thus propose a competitive region orientation-based coding method. Furthermore, an effective weighted balance scheme is proposed to improve the accuracy of the extracted region orientation. Compared with conventional methods, the region orientation of the palmprint extracted using the proposed method can precisely and robustly describe the orientation feature of the palmprint. Extensive experiments on the baseline PolyU and multispectral palmprint databases are performed and the results show that the proposed method achieves a promising performance in comparison to conventional state-of-the-art orientation-based coding methods in both palmprint verification and identification.

  12. Computer code for analyzing the performance of aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Vail, L. W.; Kincaid, C. T.; Kannberg, L. D.

    1985-05-01

    A code called Aquifer Thermal Energy Storage System Simulator (ATESSS) has been developed to analyze the operational performance of ATES systems. The ATESSS code provides an ability to examine the interrelationships among design specifications, general operational strategies, and unpredictable variations in the demand for energy. The uses of the code can vary the well field layout, heat exchanger size, and pumping/injection schedule. Unpredictable aspects of supply and demand may also be examined through the use of a stochastic model of selected system parameters. While employing a relatively simple model of the aquifer, the ATESSS code plays an important role in the design and operation of ATES facilities by augmenting experience provided by the relatively few field experiments and demonstration projects. ATESSS has been used to characterize the effect of different pumping/injection schedules on a hypothetical ATES system and to estimate the recovery at the St. Paul, Minnesota, field experiment.

  13. A systematic literature review of automated clinical coding and classification systems.

    PubMed

    Stanfill, Mary H; Williams, Margaret; Fenton, Susan H; Jenders, Robert A; Hersh, William R

    2010-01-01

    Clinical coding and classification processes transform natural language descriptions in clinical text into data that can subsequently be used for clinical care, research, and other purposes. This systematic literature review examined studies that evaluated all types of automated coding and classification systems to determine the performance of such systems. Studies indexed in Medline or other relevant databases prior to March 2009 were considered. The 113 studies included in this review show that automated tools exist for a variety of coding and classification purposes, focus on various healthcare specialties, and handle a wide variety of clinical document types. Automated coding and classification systems themselves are not generalizable, nor are the results of the studies evaluating them. Published research shows these systems hold promise, but these data must be considered in context, with performance relative to the complexity of the task and the desired outcome.

  14. Overview of the NASA Glenn Flux Reconstruction Based High-Order Unstructured Grid Code

    NASA Technical Reports Server (NTRS)

    Spiegel, Seth C.; DeBonis, James R.; Huynh, H. T.

    2016-01-01

    A computational fluid dynamics code based on the flux reconstruction (FR) method is currently being developed at NASA Glenn Research Center to ultimately provide a large- eddy simulation capability that is both accurate and efficient for complex aeropropulsion flows. The FR approach offers a simple and efficient method that is easy to implement and accurate to an arbitrary order on common grid cell geometries. The governing compressible Navier-Stokes equations are discretized in time using various explicit Runge-Kutta schemes, with the default being the 3-stage/3rd-order strong stability preserving scheme. The code is written in modern Fortran (i.e., Fortran 2008) and parallelization is attained through MPI for execution on distributed-memory high-performance computing systems. An h- refinement study of the isentropic Euler vortex problem is able to empirically demonstrate the capability of the FR method to achieve super-accuracy for inviscid flows. Additionally, the code is applied to the Taylor-Green vortex problem, performing numerous implicit large-eddy simulations across a range of grid resolutions and solution orders. The solution found by a pseudo-spectral code is commonly used as a reference solution to this problem, and the FR code is able to reproduce this solution using approximately the same grid resolution. Finally, an examination of the code's performance demonstrates good parallel scaling, as well as an implementation of the FR method with a computational cost/degree- of-freedom/time-step that is essentially independent of the solution order of accuracy for structured geometries.

  15. Vector Adaptive/Predictive Encoding Of Speech

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey; Gersho, Allen

    1989-01-01

    Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.

  16. Antenna pattern study, task 2

    NASA Technical Reports Server (NTRS)

    Harper, Warren

    1989-01-01

    Two electromagnetic scattering codes, NEC-BSC and ESP3, were delivered and installed on a NASA VAX computer for use by Marshall Space Flight Center antenna design personnel. The existing codes and certain supplementary software were updated, the codes installed on a computer that will be delivered to the customer, to provide capability for graphic display of the data to be computed by the use of the codes and to assist the customer in the solution of specific problems that demonstrate the use of the codes. With the exception of one code revision, all of these tasks were performed.

  17. Cracking the Code: Synchronizing Policy and Practice for Performance-Based Learning

    ERIC Educational Resources Information Center

    Patrick, Susan; Sturgis, Chris

    2011-01-01

    Performance-based learning is one of the keys to cracking open the assumptions that undergird the current educational codes, structures, and practices. By finally moving beyond the traditions of a time-based system, greater customized educational services can flourish, preparing more and more students for college and careers. This proposed policy…

  18. Benchmarking Heavy Ion Transport Codes FLUKA, HETC-HEDS MARS15, MCNPX, and PHITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronningen, Reginald Martin; Remec, Igor; Heilbronn, Lawrence H.

    Powerful accelerators such as spallation neutron sources, muon-collider/neutrino facilities, and rare isotope beam facilities must be designed with the consideration that they handle the beam power reliably and safely, and they must be optimized to yield maximum performance relative to their design requirements. The simulation codes used for design purposes must produce reliable results. If not, component and facility designs can become costly, have limited lifetime and usefulness, and could even be unsafe. The objective of this proposal is to assess the performance of the currently available codes PHITS, FLUKA, MARS15, MCNPX, and HETC-HEDS that could be used for designmore » simulations involving heavy ion transport. We plan to access their performance by performing simulations and comparing results against experimental data of benchmark quality. Quantitative knowledge of the biases and the uncertainties of the simulations is essential as this potentially impacts the safe, reliable and cost effective design of any future radioactive ion beam facility. Further benchmarking of heavy-ion transport codes was one of the actions recommended in the Report of the 2003 RIA R&D Workshop".« less

  19. The COPERNIC3 project: how AREVA is successfully developing an advanced global fuel rod performance code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnier, Ch.; Mailhe, P.; Sontheimer, F.

    2007-07-01

    Fuel performance is a key factor for minimizing operating costs in nuclear plants. One of the important aspects of fuel performance is fuel rod design, based upon reliable tools able to verify the safety of current fuel solutions, prevent potential issues in new core managements and guide the invention of tomorrow's fuels. AREVA is developing its future global fuel rod code COPERNIC3, which is able to calculate the thermal-mechanical behavior of advanced fuel rods in nuclear plants. Some of the best practices to achieve this goal are described, by reviewing the three pillars of a fuel rod code: the database,more » the modelling and the computer and numerical aspects. At first, the COPERNIC3 database content is described, accompanied by the tools developed to effectively exploit the data. Then is given an overview of the main modelling aspects, by emphasizing the thermal, fission gas release and mechanical sub-models. In the last part, numerical solutions are detailed in order to increase the computational performance of the code, with a presentation of software configuration management solutions. (authors)« less

  20. Dust Dynamics in Protoplanetary Disks: Parallel Computing with PVM

    NASA Astrophysics Data System (ADS)

    de La Fuente Marcos, Carlos; Barge, Pierre; de La Fuente Marcos, Raúl

    2002-03-01

    We describe a parallel version of our high-order-accuracy particle-mesh code for the simulation of collisionless protoplanetary disks. We use this code to carry out a massively parallel, two-dimensional, time-dependent, numerical simulation, which includes dust particles, to study the potential role of large-scale, gaseous vortices in protoplanetary disks. This noncollisional problem is easy to parallelize on message-passing multicomputer architectures. We performed the simulations on a cache-coherent nonuniform memory access Origin 2000 machine, using both the parallel virtual machine (PVM) and message-passing interface (MPI) message-passing libraries. Our performance analysis suggests that, for our problem, PVM is about 25% faster than MPI. Using PVM and MPI made it possible to reduce CPU time and increase code performance. This allows for simulations with a large number of particles (N ~ 105-106) in reasonable CPU times. The performances of our implementation of the pa! rallel code on an Origin 2000 supercomputer are presented and discussed. They exhibit very good speedup behavior and low load unbalancing. Our results confirm that giant gaseous vortices can play a dominant role in giant planet formation.

  1. [Reflection around the code of ethics for nurses].

    PubMed

    Depoire, Nathalie

    2017-09-01

    The code of ethics for nurses highlights the values, principles and obligations which characterise our profession. It also emphasises the conditions required to enable nurses to perform their professional practice with the autonomy granted to them by the Public Health Code. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. 30 CFR 905.816 - Performance standards-Surface mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Quality Control Act, Cal. Pub. Res. Code section 13000 et seq.; the California Water Code section 1200 et seq.; the California Air Pollution Control Laws, Cal. Health & Safety Code section 39000 et seq.; the..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA...

  3. 30 CFR 905.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Quality Control Act, Cal. Pub. Res. Code section 13000 et seq.; the California Water Code section 1200 et seq.; the California Air Pollution Control Laws, Cal. Health & Safety Code section 39000 et seq.; the..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA...

  4. 30 CFR 905.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Quality Control Act, Cal. Pub. Res. Code section 13000 et seq.; the California Water Code section 1200 et seq.; the California Air Pollution Control Laws, Cal. Health & Safety Code section 39000 et seq.; the..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA...

  5. 30 CFR 905.816 - Performance standards-Surface mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Act, Cal. Pub. Res. Code section 13000 et seq.; the California Water Code section 1200 et seq.; the California Air Pollution Control Laws, Cal. Health & Safety Code section 39000 et seq.; the..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA...

  6. 30 CFR 905.816 - Performance standards-Surface mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Quality Control Act, Cal. Pub. Res. Code section 13000 et seq.; the California Water Code section 1200 et seq.; the California Air Pollution Control Laws, Cal. Health & Safety Code section 39000 et seq.; the..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA...

  7. 30 CFR 905.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Quality Control Act, Cal. Pub. Res. Code section 13000 et seq.; the California Water Code section 1200 et seq.; the California Air Pollution Control Laws, Cal. Health & Safety Code section 39000 et seq.; the..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA...

  8. 30 CFR 905.816 - Performance standards-Surface mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Quality Control Act, Cal. Pub. Res. Code section 13000 et seq.; the California Water Code section 1200 et seq.; the California Air Pollution Control Laws, Cal. Health & Safety Code section 39000 et seq.; the..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA...

  9. Processing of Visual--Action Codes by Deaf and Hearing Children: Coding Orientation or "M"-Capacity?

    ERIC Educational Resources Information Center

    Todman, John; Cowdy, Natascha

    1993-01-01

    Results from a study in which 25 deaf children and 25 hearing children completed a vocabulary test and a compound stimulus visual information task support the hypothesis that performance on cognitive tasks is dependent on compatibility of task demands with a coding orientation. (SLD)

  10. Short-Term Memory Coding in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Henry, Lucy

    2008-01-01

    To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and…

  11. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... funds; (ii) Studies, analyses, test data, or similar data produced for this contract, when the study...

  12. Computer algorithm for coding gain

    NASA Technical Reports Server (NTRS)

    Dodd, E. E.

    1974-01-01

    Development of a computer algorithm for coding gain for use in an automated communications link design system. Using an empirical formula which defines coding gain as used in space communications engineering, an algorithm is constructed on the basis of available performance data for nonsystematic convolutional encoding with soft-decision (eight-level) Viterbi decoding.

  13. Automotive Gas Turbine Power System-Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1997-01-01

    An open cycle gas turbine numerical modelling code suitable for thermodynamic performance analysis (i.e. thermal efficiency, specific fuel consumption, cycle state points, working fluid flowrates etc.) of automotive and aircraft powerplant applications has been generated at the NASA Lewis Research Center's Power Technology Division. The use this code can be made available to automotive gas turbine preliminary design efforts, either in its present version, or, assuming that resources can be obtained to incorporate empirical models for component weight and packaging volume, in later version that includes the weight-volume estimator feature. The paper contains a brief discussion of the capabilities of the presently operational version of the code, including a listing of input and output parameters and actual sample output listings.

  14. Village power options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilienthal, P.

    1997-12-01

    This paper describes three different computer codes which have been written to model village power applications. The reasons which have driven the development of these codes include: the existance of limited field data; diverse applications can be modeled; models allow cost and performance comparisons; simulations generate insights into cost structures. The models which are discussed are: Hybrid2, a public code which provides detailed engineering simulations to analyze the performance of a particular configuration; HOMER - the hybrid optimization model for electric renewables - which provides economic screening for sensitivity analyses; and VIPOR the village power model - which is amore » network optimization model for comparing mini-grids to individual systems. Examples of the output of these codes are presented for specific applications.« less

  15. Parallel Scaling Characteristics of Selected NERSC User ProjectCodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, David; Verdier, Francesca; Anand, Harsh

    This report documents parallel scaling characteristics of NERSC user project codes between Fiscal Year 2003 and the first half of Fiscal Year 2004 (Oct 2002-March 2004). The codes analyzed cover 60% of all the CPU hours delivered during that time frame on seaborg, a 6080 CPU IBM SP and the largest parallel computer at NERSC. The scale in terms of concurrency and problem size of the workload is analyzed. Drawing on batch queue logs, performance data and feedback from researchers we detail the motivations, benefits, and challenges of implementing highly parallel scientific codes on current NERSC High Performance Computing systems.more » An evaluation and outlook of the NERSC workload for Allocation Year 2005 is presented.« less

  16. The Particle Accelerator Simulation Code PyORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M

    2015-01-01

    The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less

  17. Energy efficient rateless codes for high speed data transfer over free space optical channels

    NASA Astrophysics Data System (ADS)

    Prakash, Geetha; Kulkarni, Muralidhar; Acharya, U. S.

    2015-03-01

    Terrestrial Free Space Optical (FSO) links transmit information by using the atmosphere (free space) as a medium. In this paper, we have investigated the use of Luby Transform (LT) codes as a means to mitigate the effects of data corruption induced by imperfect channel which usually takes the form of lost or corrupted packets. LT codes, which are a class of Fountain codes, can be used independent of the channel rate and as many code words as required can be generated to recover all the message bits irrespective of the channel performance. Achieving error free high data rates with limited energy resources is possible with FSO systems if error correction codes with minimal overheads on the power can be used. We also employ a combination of Binary Phase Shift Keying (BPSK) with provision for modification of threshold and optimized LT codes with belief propagation for decoding. These techniques provide additional protection even under strong turbulence regimes. Automatic Repeat Request (ARQ) is another method of improving link reliability. Performance of ARQ is limited by the number of retransmissions and the corresponding time delay. We prove through theoretical computations and simulations that LT codes consume less energy per bit. We validate the feasibility of using energy efficient LT codes over ARQ for FSO links to be used in optical wireless sensor networks within the eye safety limits.

  18. Context-aware and locality-constrained coding for image categorization.

    PubMed

    Xiao, Wenhua; Wang, Bin; Liu, Yu; Bao, Weidong; Zhang, Maojun

    2014-01-01

    Improving the coding strategy for BOF (Bag-of-Features) based feature design has drawn increasing attention in recent image categorization works. However, the ambiguity in coding procedure still impedes its further development. In this paper, we introduce a context-aware and locality-constrained Coding (CALC) approach with context information for describing objects in a discriminative way. It is generally achieved by learning a word-to-word cooccurrence prior to imposing context information over locality-constrained coding. Firstly, the local context of each category is evaluated by learning a word-to-word cooccurrence matrix representing the spatial distribution of local features in neighbor region. Then, the learned cooccurrence matrix is used for measuring the context distance between local features and code words. Finally, a coding strategy simultaneously considers locality in feature space and context space, while introducing the weight of feature is proposed. This novel coding strategy not only semantically preserves the information in coding, but also has the ability to alleviate the noise distortion of each class. Extensive experiments on several available datasets (Scene-15, Caltech101, and Caltech256) are conducted to validate the superiority of our algorithm by comparing it with baselines and recent published methods. Experimental results show that our method significantly improves the performance of baselines and achieves comparable and even better performance with the state of the arts.

  19. Least Reliable Bits Coding (LRBC) for high data rate satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Wagner, Paul; Budinger, James

    1992-01-01

    An analysis and discussion of a bandwidth efficient multi-level/multi-stage block coded modulation technique called Least Reliable Bits Coding (LRBC) is presented. LRBC uses simple multi-level component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Further, soft-decision multi-stage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Using analytical expressions and tight performance bounds it is shown that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of Binary Phase Shift Keying (BPSK). Bit error rates (BER) vs. channel bit energy with Additive White Gaussian Noise (AWGN) are given for a set of LRB Reed-Solomon (RS) encoded 8PSK modulation formats with an ensemble rate of 8/9. All formats exhibit a spectral efficiency of 2.67 = (log2(8))(8/9) information bps/Hz. Bit by bit coded and uncoded error probabilities with soft-decision information are determined. These are traded with with code rate to determine parameters that achieve good performance. The relative simplicity of Galois field algebra vs. the Viterbi algorithm and the availability of high speed commercial Very Large Scale Integration (VLSI) for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.

  20. Performance of the ICAO standard core service modulation and coding techniques

    NASA Technical Reports Server (NTRS)

    Lodge, John; Moher, Michael

    1988-01-01

    Aviation binary phase shift keying (A-BPSK) is described and simulated performance results are given that demonstrate robust performance in the presence of hardlimiting amplifiers. The performance of coherently-detected A-BPSK with rate 1/2 convolutional coding are given. The performance loss due to the Rician fading was shown to be less than 1 dB over the simulated range. A partially coherent detection scheme that does not require carrier phase recovery was described. This scheme exhibits similiar performance to coherent detection, at high bit error rates, while it is superior at lower bit error rates.

  1. Application discussion of source coding standard in voyage data recorder

    NASA Astrophysics Data System (ADS)

    Zong, Yonggang; Zhao, Xiandong

    2018-04-01

    This paper analyzes the disadvantages of the audio and video compression coding technology used by Voyage Data Recorder, and combines the improvement of performance of audio and video acquisition equipment. The thinking of improving the audio and video compression coding technology of the voyage data recorder is proposed, and the feasibility of adopting the new compression coding technology is analyzed from economy and technology two aspects.

  2. MIFT: GIFT Combinatorial Geometry Input to VCS Code

    DTIC Science & Technology

    1977-03-01

    r-w w-^ H ^ß0318is CQ BRL °RCUMr REPORT NO. 1967 —-S: ... MIFT: GIFT COMBINATORIAL GEOMETRY INPUT TO VCS CODE Albert E...TITLE (and Subtitle) MIFT: GIFT Combinatorial Geometry Input to VCS Code S. TYPE OF REPORT & PERIOD COVERED FINAL 6. PERFORMING ORG. REPORT NUMBER...Vehicle Code System (VCS) called MORSE was modified to accept the GIFT combinatorial geometry package. GIFT , as opposed to the geometry package

  3. Combustor Simulation

    NASA Technical Reports Server (NTRS)

    Norris, Andrew

    2003-01-01

    The goal was to perform 3D simulation of GE90 combustor, as part of full turbofan engine simulation. Requirements of high fidelity as well as fast turn-around time require massively parallel code. National Combustion Code (NCC) was chosen for this task as supports up to 999 processors and includes state-of-the-art combustion models. Also required is ability to take inlet conditions from compressor code and give exit conditions to turbine code.

  4. Depth assisted compression of full parallax light fields

    NASA Astrophysics Data System (ADS)

    Graziosi, Danillo B.; Alpaslan, Zahir Y.; El-Ghoroury, Hussein S.

    2015-03-01

    Full parallax light field displays require high pixel density and huge amounts of data. Compression is a necessary tool used by 3D display systems to cope with the high bandwidth requirements. One of the formats adopted by MPEG for 3D video coding standards is the use of multiple views with associated depth maps. Depth maps enable the coding of a reduced number of views, and are used by compression and synthesis software to reconstruct the light field. However, most of the developed coding and synthesis tools target linearly arranged cameras with small baselines. Here we propose to use the 3D video coding format for full parallax light field coding. We introduce a view selection method inspired by plenoptic sampling followed by transform-based view coding and view synthesis prediction to code residual views. We determine the minimal requirements for view sub-sampling and present the rate-distortion performance of our proposal. We also compare our method with established video compression techniques, such as H.264/AVC, H.264/MVC, and the new 3D video coding algorithm, 3DV-ATM. Our results show that our method not only has an improved rate-distortion performance, it also preserves the structure of the perceived light fields better.

  5. Finite-SNR analysis for partial relaying cooperation with channel coding and opportunistic relay selection

    NASA Astrophysics Data System (ADS)

    Vu, Thang X.; Duhamel, Pierre; Chatzinotas, Symeon; Ottersten, Bjorn

    2017-12-01

    This work studies the performance of a cooperative network which consists of two channel-coded sources, multiple relays, and one destination. To achieve high spectral efficiency, we assume that a single time slot is dedicated to relaying. Conventional network-coded-based cooperation (NCC) selects the best relay which uses network coding to serve the two sources simultaneously. The bit error rate (BER) performance of NCC with channel coding, however, is still unknown. In this paper, we firstly study the BER of NCC via a closed-form expression and analytically show that NCC only achieves diversity of order two regardless of the number of available relays and the channel code. Secondly, we propose a novel partial relaying-based cooperation (PARC) scheme to improve the system diversity in the finite signal-to-noise ratio (SNR) regime. In particular, closed-form expressions for the system BER and diversity order of PARC are derived as a function of the operating SNR value and the minimum distance of the channel code. We analytically show that the proposed PARC achieves full (instantaneous) diversity order in the finite SNR regime, given that an appropriate channel code is used. Finally, numerical results verify our analysis and demonstrate a large SNR gain of PARC over NCC in the SNR region of interest.

  6. REASSESSING MECHANISM AS A PREDICTOR OF PEDIATRIC INJURY MORTALITY

    PubMed Central

    Beck, Haley; Mittal, Sushil; Madigan, David; Burd, Randall S.

    2015-01-01

    Background The use of mechanism of injury as a predictor of injury outcome presents practical challenges because this variable may be missing or inaccurate in many databases. The purpose of this study was to determine the importance of mechanism of injury as a predictor of mortality among injured children. Methods The records of children (<15 years old) sustaining a blunt injury were obtained from the National Trauma Data Bank. Models predicting injury mortality were developed using mechanism of injury and injury coding using either Abbreviated Injury Scale post-dot values (low-dimensional injury coding) or injury ICD-9 codes and their two-way interactions (high-dimensional injury coding). Model performance with and without inclusion of mechanism of injury was compared for both coding schemes, and the relative importance of mechanism of injury as a variable in each model type was evaluated. Results Among 62,569 records, a mortality rate of 0.9% was observed. Inclusion of mechanism of injury improved model performance when using low-dimensional injury coding but was associated with no improvement when using high-dimensional injury coding. Mechanism of injury contributed to 28% of model variance when using low-dimensional injury coding and <1% when high-dimensional injury coding was used. Conclusions Although mechanism of injury may be an important predictor of injury mortality among children sustaining blunt trauma, its importance as a predictor of mortality depends on approach used for injury coding. Mechanism of injury is not an essential predictor of outcome after injury when coding schemes are used that better characterize injuries sustained after blunt pediatric trauma. PMID:26197948

  7. Computer code for the optimization of performance parameters of mixed explosive formulations.

    PubMed

    Muthurajan, H; Sivabalan, R; Talawar, M B; Venugopalan, S; Gandhe, B R

    2006-08-25

    LOTUSES is a novel computer code, which has been developed for the prediction of various thermodynamic properties such as heat of formation, heat of explosion, volume of explosion gaseous products and other related performance parameters. In this paper, we report LOTUSES (Version 1.4) code which has been utilized for the optimization of various high explosives in different combinations to obtain maximum possible velocity of detonation. LOTUSES (Version 1.4) code will vary the composition of mixed explosives automatically in the range of 1-100% and computes the oxygen balance as well as the velocity of detonation for various compositions in preset steps. Further, the code suggests the compositions for which least oxygen balance and the higher velocity of detonation could be achieved. Presently, the code can be applied for two component explosive compositions. The code has been validated with well-known explosives like, TNT, HNS, HNF, TATB, RDX, HMX, AN, DNA, CL-20 and TNAZ in different combinations. The new algorithm incorporated in LOTUSES (Version 1.4) enhances the efficiency and makes it a more powerful tool for the scientists/researches working in the field of high energy materials/hazardous materials.

  8. RD Optimized, Adaptive, Error-Resilient Transmission of MJPEG2000-Coded Video over Multiple Time-Varying Channels

    NASA Astrophysics Data System (ADS)

    Bezan, Scott; Shirani, Shahram

    2006-12-01

    To reliably transmit video over error-prone channels, the data should be both source and channel coded. When multiple channels are available for transmission, the problem extends to that of partitioning the data across these channels. The condition of transmission channels, however, varies with time. Therefore, the error protection added to the data at one instant of time may not be optimal at the next. In this paper, we propose a method for adaptively adding error correction code in a rate-distortion (RD) optimized manner using rate-compatible punctured convolutional codes to an MJPEG2000 constant rate-coded frame of video. We perform an analysis on the rate-distortion tradeoff of each of the coding units (tiles and packets) in each frame and adapt the error correction code assigned to the unit taking into account the bandwidth and error characteristics of the channels. This method is applied to both single and multiple time-varying channel environments. We compare our method with a basic protection method in which data is either not transmitted, transmitted with no protection, or transmitted with a fixed amount of protection. Simulation results show promising performance for our proposed method.

  9. Neighboring block based disparity vector derivation for multiview compatible 3D-AVC

    NASA Astrophysics Data System (ADS)

    Kang, Jewon; Chen, Ying; Zhang, Li; Zhao, Xin; Karczewicz, Marta

    2013-09-01

    3D-AVC being developed under Joint Collaborative Team on 3D Video Coding (JCT-3V) significantly outperforms the Multiview Video Coding plus Depth (MVC+D) which simultaneously encodes texture views and depth views with the multiview extension of H.264/AVC (MVC). However, when the 3D-AVC is configured to support multiview compatibility in which texture views are decoded without depth information, the coding performance becomes significantly degraded. The reason is that advanced coding tools incorporated into the 3D-AVC do not perform well due to the lack of a disparity vector converted from the depth information. In this paper, we propose a disparity vector derivation method utilizing only the information of texture views. Motion information of neighboring blocks is used to determine a disparity vector for a macroblock, so that the derived disparity vector is efficiently used for the coding tools in 3D-AVC. The proposed method significantly improves a coding gain of the 3D-AVC in the multiview compatible mode about 20% BD-rate saving in the coded views and 26% BD-rate saving in the synthesized views on average.

  10. Code Parallelization with CAPO: A User Manual

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Frumkin, Michael; Yan, Jerry; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A software tool has been developed to assist the parallelization of scientific codes. This tool, CAPO, extends an existing parallelization toolkit, CAPTools developed at the University of Greenwich, to generate OpenMP parallel codes for shared memory architectures. This is an interactive toolkit to transform a serial Fortran application code to an equivalent parallel version of the software - in a small fraction of the time normally required for a manual parallelization. We first discuss the way in which loop types are categorized and how efficient OpenMP directives can be defined and inserted into the existing code using the in-depth interprocedural analysis. The use of the toolkit on a number of application codes ranging from benchmark to real-world application codes is presented. This will demonstrate the great potential of using the toolkit to quickly parallelize serial programs as well as the good performance achievable on a large number of toolkit to quickly parallelize serial programs as well as the good performance achievable on a large number of processors. The second part of the document gives references to the parameters and the graphic user interface implemented in the toolkit. Finally a set of tutorials is included for hands-on experiences with this toolkit.

  11. Working research codes into fluid dynamics education: a science gateway approach

    NASA Astrophysics Data System (ADS)

    Mason, Lachlan; Hetherington, James; O'Reilly, Martin; Yong, May; Jersakova, Radka; Grieve, Stuart; Perez-Suarez, David; Klapaukh, Roman; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Research codes are effective for illustrating complex concepts in educational fluid dynamics courses, compared to textbook examples, an interactive three-dimensional visualisation can bring a problem to life! Various barriers, however, prevent the adoption of research codes in teaching: codes are typically created for highly-specific `once-off' calculations and, as such, have no user interface and a steep learning curve. Moreover, a code may require access to high-performance computing resources that are not readily available in the classroom. This project allows academics to rapidly work research codes into their teaching via a minimalist `science gateway' framework. The gateway is a simple, yet flexible, web interface allowing students to construct and run simulations, as well as view and share their output. Behind the scenes, the common operations of job configuration, submission, monitoring and post-processing are customisable at the level of shell scripting. In this talk, we demonstrate the creation of an example teaching gateway connected to the Code BLUE fluid dynamics software. Student simulations can be run via a third-party cloud computing provider or a local high-performance cluster. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  12. Industrial Code Development

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1991-01-01

    The industrial codes will consist of modules of 2-D and simplified 2-D or 1-D codes, intended for expeditious parametric studies, analysis, and design of a wide variety of seals. Integration into a unified system is accomplished by the industrial Knowledge Based System (KBS), which will also provide user friendly interaction, contact sensitive and hypertext help, design guidance, and an expandable database. The types of analysis to be included with the industrial codes are interfacial performance (leakage, load, stiffness, friction losses, etc.), thermoelastic distortions, and dynamic response to rotor excursions. The first three codes to be completed and which are presently being incorporated into the KBS are the incompressible cylindrical code, ICYL, and the compressible cylindrical code, GCYL.

  13. Protograph-Based Raptor-Like Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Chen, Tsung-Yi; Wang, Jiadong; Wesel, Richard D.

    2014-01-01

    Theoretical analysis has long indicated that feedback improves the error exponent but not the capacity of pointto- point memoryless channels. The analytic and empirical results indicate that at short blocklength regime, practical rate-compatible punctured convolutional (RCPC) codes achieve low latency with the use of noiseless feedback. In 3GPP, standard rate-compatible turbo codes (RCPT) did not outperform the convolutional codes in the short blocklength regime. The reason is the convolutional codes for low number of states can be decoded optimally using Viterbi decoder. Despite excellent performance of convolutional codes at very short blocklengths, the strength of convolutional codes does not scale with the blocklength for a fixed number of states in its trellis.

  14. Resistor-logic demultiplexers for nanoelectronics based on constant-weight codes.

    PubMed

    Kuekes, Philip J; Robinett, Warren; Roth, Ron M; Seroussi, Gadiel; Snider, Gregory S; Stanley Williams, R

    2006-02-28

    The voltage margin of a resistor-logic demultiplexer can be improved significantly by basing its connection pattern on a constant-weight code. Each distinct code determines a unique demultiplexer, and therefore a large family of circuits is defined. We consider using these demultiplexers for building nanoscale crossbar memories, and determine the voltage margin of the memory system based on a particular code. We determine a purely code-theoretic criterion for selecting codes that will yield memories with large voltage margins, which is to minimize the ratio of the maximum to the minimum Hamming distance between distinct codewords. For the specific example of a 64 × 64 crossbar, we discuss what codes provide optimal performance for a memory.

  15. The positive financial impact of using an Intensive Care Information System in a tertiary Intensive Care Unit.

    PubMed

    Levesque, Eric; Hoti, Emir; de La Serna, Sofia; Habouchi, Houssam; Ichai, Philippe; Saliba, Faouzi; Samuel, Didier; Azoulay, Daniel

    2013-03-01

    In the French healthcare system, the intensive care budget allocated is directly dependent on the activity level of the center. To evaluate this activity level, it is necessary to code the medical diagnoses and procedures performed on Intensive Care Unit (ICU) patients. The aim of this study was to evaluate the effects of using an Intensive Care Information System (ICIS) on the incidence of coding errors and its impact on the ICU budget allocated. Since 2005, the documentation on and monitoring of every patient admitted to our ICU has been carried out using an ICIS. However, the coding process was performed manually until 2008. This study focused on two periods: the period of manual coding (year 2007) and the period of computerized coding (year 2008) which covered a total of 1403 ICU patients. The time spent on the coding process, the rate of coding errors (defined as patients missed/not coded or wrongly identified as undergoing major procedure/s) and the financial impact were evaluated for these two periods. With computerized coding, the time per admission decreased significantly (from 6.8 ± 2.8 min in 2007 to 3.6 ± 1.9 min in 2008, p<0.001). Similarly, a reduction in coding errors was observed (7.9% vs. 2.2%, p<0.001). This decrease in coding errors resulted in a reduced difference between the potential and real ICU financial supplements obtained in the respective years (€194,139 loss in 2007 vs. a €1628 loss in 2008). Using specific computer programs improves the intensive process of manual coding by shortening the time required as well as reducing errors, which in turn positively impacts the ICU budget allocation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. The grout/glass performance assessment code system (GPACS) with verification and benchmarking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepho, M.G.; Sutherland, W.H.; Rittmann, P.D.

    1994-12-01

    GPACS is a computer code system for calculating water flow (unsaturated or saturated), solute transport, and human doses due to the slow release of contaminants from a waste form (in particular grout or glass) through an engineered system and through a vadose zone to an aquifer, well and river. This dual-purpose document is intended to serve as a user`s guide and verification/benchmark document for the Grout/Glass Performance Assessment Code system (GPACS). GPACS can be used for low-level-waste (LLW) Glass Performance Assessment and many other applications including other low-level-waste performance assessments and risk assessments. Based on all the cses presented, GPACSmore » is adequate (verified) for calculating water flow and contaminant transport in unsaturated-zone sediments and for calculating human doses via the groundwater pathway.« less

  17. Using a multifrontal sparse solver in a high performance, finite element code

    NASA Technical Reports Server (NTRS)

    King, Scott D.; Lucas, Robert; Raefsky, Arthur

    1990-01-01

    We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal solver uses the Multiple-Minimum Degree reordering heuristic to reduce the number of operations required to factor a sparse matrix and full matrix computational kernels (e.g., BLAS3) to enhance vector performance. The net result in an order-of-magnitude reduction in run time for a finite element application on one processor of a Cray X-MP.

  18. Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.

    2013-01-26

    This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goalmore » of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.« less

  19. Sports Stars: Analyzing the Performance of Astronomers at Visualization-based Discovery

    NASA Astrophysics Data System (ADS)

    Fluke, C. J.; Parrington, L.; Hegarty, S.; MacMahon, C.; Morgan, S.; Hassan, A. H.; Kilborn, V. A.

    2017-05-01

    In this data-rich era of astronomy, there is a growing reliance on automated techniques to discover new knowledge. The role of the astronomer may change from being a discoverer to being a confirmer. But what do astronomers actually look at when they distinguish between “sources” and “noise?” What are the differences between novice and expert astronomers when it comes to visual-based discovery? Can we identify elite talent or coach astronomers to maximize their potential for discovery? By looking to the field of sports performance analysis, we consider an established, domain-wide approach, where the expertise of the viewer (i.e., a member of the coaching team) plays a crucial role in identifying and determining the subtle features of gameplay that provide a winning advantage. As an initial case study, we investigate whether the SportsCode performance analysis software can be used to understand and document how an experienced Hi astronomer makes discoveries in spectral data cubes. We find that the process of timeline-based coding can be applied to spectral cube data by mapping spectral channels to frames within a movie. SportsCode provides a range of easy to use methods for annotation, including feature-based codes and labels, text annotations associated with codes, and image-based drawing. The outputs, including instance movies that are uniquely associated with coded events, provide the basis for a training program or team-based analysis that could be used in unison with discipline specific analysis software. In this coordinated approach to visualization and analysis, SportsCode can act as a visual notebook, recording the insight and decisions in partnership with established analysis methods. Alternatively, in situ annotation and coding of features would be a valuable addition to existing and future visualization and analysis packages.

  20. Bilayer Protograph Codes for Half-Duplex Relay Channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria

    2013-01-01

    Direct to Earth return links are limited by the size and power of lander devices. A standard alternative is provided by a two-hops return link: a proximity link (from lander to orbiter relay) and a deep-space link (from orbiter relay to Earth). Although direct to Earth return links are limited by the size and power of lander devices, using an additional link and a proposed coding for relay channels, one can obtain a more reliable signal. Although significant progress has been made in the relay coding problem, existing codes must be painstakingly optimized to match to a single set of channel conditions, many of them do not offer easy encoding, and most of them do not have structured design. A high-performing LDPC (low-density parity-check) code for the relay channel addresses simultaneously two important issues: a code structure that allows low encoding complexity, and a flexible rate-compatible code that allows matching to various channel conditions. Most of the previous high-performance LDPC codes for the relay channel are tightly optimized for a given channel quality, and are not easily adapted without extensive re-optimization for various channel conditions. This code for the relay channel combines structured design and easy encoding with rate compatibility to allow adaptation to the three links involved in the relay channel, and furthermore offers very good performance. The proposed code is constructed by synthesizing a bilayer structure with a pro to graph. In addition to the contribution to relay encoding, an improved family of protograph codes was produced for the point-to-point AWGN (additive white Gaussian noise) channel whose high-rate members enjoy thresholds that are within 0.07 dB of capacity. These LDPC relay codes address three important issues in an integrative manner: low encoding complexity, modular structure allowing for easy design, and rate compatibility so that the code can be easily matched to a variety of channel conditions without extensive re-optimization. The main problem of half-duplex relay coding can be reduced to the simultaneous design of two codes at two rates and two SNRs (signal-to-noise ratios), such that one is a subset of the other. This problem can be addressed by forceful optimization, but a clever method of addressing this problem is via the bilayer lengthened (BL) LDPC structure. This method uses a bilayer Tanner graph to make the two codes while using a concept of "parity forwarding" with subsequent successive decoding that removes the need to directly address the issue of uneven SNRs among the symbols of a given codeword. This method is attractive in that it addresses some of the main issues in the design of relay codes, but it does not by itself give rise to highly structured codes with simple encoding, nor does it give rate-compatible codes. The main contribution of this work is to construct a class of codes that simultaneously possess a bilayer parity- forwarding mechanism, while also benefiting from the properties of protograph codes having an easy encoding, a modular design, and being a rate-compatible code.

  1. Translating expert system rules into Ada code with validation and verification

    NASA Technical Reports Server (NTRS)

    Becker, Lee; Duckworth, R. James; Green, Peter; Michalson, Bill; Gosselin, Dave; Nainani, Krishan; Pease, Adam

    1991-01-01

    The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system.

  2. Progressive Dictionary Learning with Hierarchical Predictive Structure for Scalable Video Coding.

    PubMed

    Dai, Wenrui; Shen, Yangmei; Xiong, Hongkai; Jiang, Xiaoqian; Zou, Junni; Taubman, David

    2017-04-12

    Dictionary learning has emerged as a promising alternative to the conventional hybrid coding framework. However, the rigid structure of sequential training and prediction degrades its performance in scalable video coding. This paper proposes a progressive dictionary learning framework with hierarchical predictive structure for scalable video coding, especially in low bitrate region. For pyramidal layers, sparse representation based on spatio-temporal dictionary is adopted to improve the coding efficiency of enhancement layers (ELs) with a guarantee of reconstruction performance. The overcomplete dictionary is trained to adaptively capture local structures along motion trajectories as well as exploit the correlations between neighboring layers of resolutions. Furthermore, progressive dictionary learning is developed to enable the scalability in temporal domain and restrict the error propagation in a close-loop predictor. Under the hierarchical predictive structure, online learning is leveraged to guarantee the training and prediction performance with an improved convergence rate. To accommodate with the stateof- the-art scalable extension of H.264/AVC and latest HEVC, standardized codec cores are utilized to encode the base and enhancement layers. Experimental results show that the proposed method outperforms the latest SHVC and HEVC simulcast over extensive test sequences with various resolutions.

  3. The Navy/NASA Engine Program (NNEP89): A user's manual

    NASA Technical Reports Server (NTRS)

    Plencner, Robert M.; Snyder, Christopher A.

    1991-01-01

    An engine simulation computer code called NNEP89 was written to perform 1-D steady state thermodynamic analysis of turbine engine cycles. By using a very flexible method of input, a set of standard components are connected at execution time to simulate almost any turbine engine configuration that the user could imagine. The code was used to simulate a wide range of engine cycles from turboshafts and turboprops to air turborockets and supersonic cruise variable cycle engines. Off design performance is calculated through the use of component performance maps. A chemical equilibrium model is incorporated to adequately predict chemical dissociation as well as model virtually any fuel. NNEP89 is written in standard FORTRAN77 with clear structured programming and extensive internal documentation. The standard FORTRAN77 programming allows it to be installed onto most mainframe computers and workstations without modification. The NNEP89 code was derived from the Navy/NASA Engine program (NNEP). NNEP89 provides many improvements and enhancements to the original NNEP code and incorporates features which make it easier to use for the novice user. This is a comprehensive user's guide for the NNEP89 code.

  4. Algorithms for high-speed universal noiseless coding

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Yeh, Pen-Shu; Miller, Warner

    1993-01-01

    This paper provides the basic algorithmic definitions and performance characterizations for a high-performance adaptive noiseless (lossless) 'coding module' which is currently under separate developments as single-chip microelectronic circuits at two NASA centers. Laboratory tests of one of these implementations recently demonstrated coding rates of up to 900 Mbits/s. Operation of a companion 'decoding module' can operate at up to half the coder's rate. The functionality provided by these modules should be applicable to most of NASA's science data. The hardware modules incorporate a powerful adaptive noiseless coder for 'standard form' data sources (i.e., sources whose symbols can be represented by uncorrelated nonnegative integers where the smaller integers are more likely than the larger ones). Performance close to data entries can be expected over a 'dynamic range' of from 1.5 to 12-15 bits/sample (depending on the implementation). This is accomplished by adaptively choosing the best of many Huffman equivalent codes to use on each block of 1-16 samples. Because of the extreme simplicity of these codes no table lookups are actually required in an implementation, thus leading to the expected very high data rate capabilities already noted.

  5. Improvement of signal to noise ratio of time domain mutliplexing fiber Bragg grating sensor network with Golay complementary codes

    NASA Astrophysics Data System (ADS)

    Elgaud, M. M.; Zan, M. S. D.; Abushagur, A. G.; Bakar, A. Ashrif A.

    2017-07-01

    This paper reports the employment of autocorrelation properties of Golay complementary codes (GCC) to enhance the performance of the time domain multiplexing fiber Bragg grating (TDM-FBG) sensing network. By encoding the light from laser with a stream of non-return-to-zero (NRZ) form of GCC and launching it into the sensing area that consists of the FBG sensors, we have found that the FBG signals can be decoded correctly with the autocorrelation calculations, confirming the successful demonstration of coded TDM-FBG sensor network. OptiGrating and OptiSystem simulators were used to design customized FBG sensors and perform the coded TDM-FBG sensor simulations, respectively. Results have substantiated the theoretical dependence of SNR enhancement on the code length of GCC, where the maximum SNR improvement of about 9 dB is achievable with the use of 256 bits of GCC compared to that of 4 bits case. Furthermore, the GCC has also extended the strain exposure up to 30% higher compared to the maximum of the conventional single pulse case. The employment of GCC in the TDM-FBG sensor system provides overall performance enhancement over the conventional single pulse case, under the same conditions.

  6. Prediction of effects of wing contour modifications on low-speed maximum lift and transonic performance for the EA-6B aircraft

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Waggoner, E. G.

    1990-01-01

    Computational predictions of the effects of wing contour modifications on maximum lift and transonic performance were made and verified against low speed and transonic wind tunnel data. This effort was part of a program to improve the maneuvering capability of the EA-6B electronics countermeasures aircraft, which evolved from the A-6 attack aircraft. The predictions were based on results from three computer codes which all include viscous effects: MCARF, a 2-D subsonic panel code; TAWFIVE, a transonic full potential code; and WBPPW, a transonic small disturbance potential flow code. The modifications were previously designed with the aid of these and other codes. The wing modifications consists of contour changes to the leading edge slats and trailing edge flaps and were designed for increased maximum lift with minimum effect on transonic performance. The prediction of the effects of the modifications are presented, with emphasis on verification through comparisons with wind tunnel data from the National Transonic Facility. Attention is focused on increments in low speed maximum lift and increments in transonic lift, pitching moment, and drag resulting from the contour modifications.

  7. Coding conventions and principles for a National Land-Change Modeling Framework

    USGS Publications Warehouse

    Donato, David I.

    2017-07-14

    This report establishes specific rules for writing computer source code for use with the National Land-Change Modeling Framework (NLCMF). These specific rules consist of conventions and principles for writing code primarily in the C and C++ programming languages. Collectively, these coding conventions and coding principles create an NLCMF programming style. In addition to detailed naming conventions, this report provides general coding conventions and principles intended to facilitate the development of high-performance software implemented with code that is extensible, flexible, and interoperable. Conventions for developing modular code are explained in general terms and also enabled and demonstrated through the appended templates for C++ base source-code and header files. The NLCMF limited-extern approach to module structure, code inclusion, and cross-module access to data is both explained in the text and then illustrated through the module templates. Advice on the use of global variables is provided.

  8. ANN modeling of DNA sequences: new strategies using DNA shape code.

    PubMed

    Parbhane, R V; Tambe, S S; Kulkarni, B D

    2000-09-01

    Two new encoding strategies, namely, wedge and twist codes, which are based on the DNA helical parameters, are introduced to represent DNA sequences in artificial neural network (ANN)-based modeling of biological systems. The performance of the new coding strategies has been evaluated by conducting three case studies involving mapping (modeling) and classification applications of ANNs. The proposed coding schemes have been compared rigorously and shown to outperform the existing coding strategies especially in situations wherein limited data are available for building the ANN models.

  9. A Tutorial for Building CMMI Process Performance Models

    DTIC Science & Technology

    2010-04-26

    70 90 120 1 0~-----0~----~ 2 Arch itecture/ Design All New Code M ajor Reuse of Code 55 70 90 8 10 15 2 0~-----0~----~ 3 Code All New Code M ajor...Robert Stoddard and Dave Zubrow © 2010 Carnegie Mellon University t "’ ·=··=· "’ •• ,. ...... ,. .... ~ .00 1 Arch [’ <si!JI ~h~;,...o ’ .. CodeChoice...Carnegie Mellon University : • Fit Model It; b][g~ El Model Select Columns 41111Delivered0efect; 411111nspection0 efect ..ollllnspectionCover

  10. Variable Coded Modulation software simulation

    NASA Astrophysics Data System (ADS)

    Sielicki, Thomas A.; Hamkins, Jon; Thorsen, Denise

    This paper reports on the design and performance of a new Variable Coded Modulation (VCM) system. This VCM system comprises eight of NASA's recommended codes from the Consultative Committee for Space Data Systems (CCSDS) standards, including four turbo and four AR4JA/C2 low-density parity-check codes, together with six modulations types (BPSK, QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK). The signaling protocol for the transmission mode is based on a CCSDS recommendation. The coded modulation may be dynamically chosen, block to block, to optimize throughput.

  11. Extended Plate and Beam Wall System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunderson, Patti

    Home Innovation Research Labs studied the extended plate and beam wall (EP&B) system during a two-year period from mid-2015 to mid-2017 to determine the wall’s structural performance, moisture durability, constructability, and costeffectiveness for use as a high-R enclosure system for energy code minimum and above-code performance in climate zones 4–8.

  12. The Prediction of Performance in Navy Signalman Class "A" School. TAEG Report No. 90.

    ERIC Educational Resources Information Center

    Mew, Dorothy V.

    A study designed to develop a selection model for the prediction of Signalman performance in sending and receiving Morse code and to evaluate training strategies was conducted with 180 Navy and Coast Guard enlisted men. Trainees were taught to send Morse code using innovative training materials (mnemonics and guided practice). High and average…

  13. Scientific Programming Using Java: A Remote Sensing Example

    NASA Technical Reports Server (NTRS)

    Prados, Don; Mohamed, Mohamed A.; Johnson, Michael; Cao, Changyong; Gasser, Jerry

    1999-01-01

    This paper presents results of a project to port remote sensing code from the C programming language to Java. The advantages and disadvantages of using Java versus C as a scientific programming language in remote sensing applications are discussed. Remote sensing applications deal with voluminous data that require effective memory management, such as buffering operations, when processed. Some of these applications also implement complex computational algorithms, such as Fast Fourier Transformation analysis, that are very performance intensive. Factors considered include performance, precision, complexity, rapidity of development, ease of code reuse, ease of maintenance, memory management, and platform independence. Performance of radiometric calibration code written in Java for the graphical user interface and of using C for the domain model are also presented.

  14. NSEG: A segmented mission analysis program for low and high speed aircraft. Volume 3: Demonstration problems

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Rozendaal, H. L.

    1977-01-01

    Program NSEG is a rapid mission analysis code based on the use of approximate flight path equations of motion. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed vehicle characteristics are specified in tabular form. In addition to its mission performance calculation capabilities, the code also contains extensive flight envelope performance mapping capabilities. For example, rate-of-climb, turn rates, and energy maneuverability parameter values may be mapped in the Mach-altitude plane. Approximate take off and landing analyses are also performed. At high speeds, centrifugal lift effects are accounted for. Extensive turbojet and ramjet engine scaling procedures are incorporated in the code.

  15. A Qualitative Analysis of Narrative Preclerkship Assessment Data to Evaluate Teamwork Skills.

    PubMed

    Dolan, Brigid M; O'Brien, Celia Laird; Cameron, Kenzie A; Green, Marianne M

    2018-04-16

    Construct: Students entering the health professions require competency in teamwork. Although many teamwork curricula and assessments exist, studies have not demonstrated robust longitudinal assessment of preclerkship students' teamwork skills and attitudes. Assessment portfolios may serve to fill this gap, but it is unknown how narrative comments within portfolios describe student teamwork behaviors. We performed a qualitative analysis of narrative data in 15 assessment portfolios. Student portfolios were randomly selected from 3 groups stratified by quantitative ratings of teamwork performance gathered from small-group and clinical preceptor assessment forms. Narrative data included peer and faculty feedback from these same forms. Data were coded for teamwork-related behaviors using a constant comparative approach combined with an identification of the valence of the coded statements as either "positive observation" or "suggestion for improvement." Eight codes related to teamwork emerged: attitude and demeanor, information facilitation, leadership, preparation and dependability, professionalism, team orientation, values team member contributions, and nonspecific teamwork comments. The frequency of codes and valence varied across the 3 performance groups, with students in the low-performing group receiving more suggestions for improvement across all teamwork codes. Narrative data from assessment portfolios included specific descriptions of teamwork behavior, with important contributions provided by both faculty and peers. A variety of teamwork domains were represented. Such feedback as collected in an assessment portfolio can be used for longitudinal assessment of preclerkship student teamwork skills and attitudes.

  16. Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.

    2015-12-01

    We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.

  17. Initial Kernel Timing Using a Simple PIM Performance Model

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Block, Gary L.; Springer, Paul L.; Sterling, Thomas; Brockman, Jay B.; Callahan, David

    2005-01-01

    This presentation will describe some initial results of paper-and-pencil studies of 4 or 5 application kernels applied to a processor-in-memory (PIM) system roughly similar to the Cascade Lightweight Processor (LWP). The application kernels are: * Linked list traversal * Sun of leaf nodes on a tree * Bitonic sort * Vector sum * Gaussian elimination The intent of this work is to guide and validate work on the Cascade project in the areas of compilers, simulators, and languages. We will first discuss the generic PIM structure. Then, we will explain the concepts needed to program a parallel PIM system (locality, threads, parcels). Next, we will present a simple PIM performance model that will be used in the remainder of the presentation. For each kernel, we will then present a set of codes, including codes for a single PIM node, and codes for multiple PIM nodes that move data to threads and move threads to data. These codes are written at a fairly low level, between assembly and C, but much closer to C than to assembly. For each code, we will present some hand-drafted timing forecasts, based on the simple PIM performance model. Finally, we will conclude by discussing what we have learned from this work, including what programming styles seem to work best, from the point-of-view of both expressiveness and performance.

  18. Computer codes for thermal analysis of a solid rocket motor nozzle

    NASA Technical Reports Server (NTRS)

    Chauhan, Rajinder Singh

    1988-01-01

    A number of computer codes are available for performing thermal analysis of solid rocket motor nozzles. Aerotherm Chemical Equilibrium (ACE) computer program can be used to perform one-dimensional gas expansion to determine the state of the gas at each location of a nozzle. The ACE outputs can be used as input to a computer program called Momentum/Energy Integral Technique (MEIT) for predicting boundary layer development development, shear, and heating on the surface of the nozzle. The output from MEIT can be used as input to another computer program called Aerotherm Charring Material Thermal Response and Ablation Program (CMA). This program is used to calculate oblation or decomposition response of the nozzle material. A code called Failure Analysis Nonlinear Thermal and Structural Integrated Code (FANTASTIC) is also likely to be used for performing thermal analysis of solid rocket motor nozzles after the program is duly verified. A part of the verification work on FANTASTIC was done by using one and two dimension heat transfer examples with known answers. An attempt was made to prepare input for performing thermal analysis of the CCT nozzle using the FANTASTIC computer code. The CCT nozzle problem will first be solved by using ACE, MEIT, and CMA. The same problem will then be solved using FANTASTIC. These results will then be compared for verification of FANTASTIC.

  19. HEC Applications on Columbia Project

    NASA Technical Reports Server (NTRS)

    Taft, Jim

    2004-01-01

    NASA's Columbia system consists of a cluster of twenty 512 processor SGI Altix systems. Each of these systems is 3 TFLOP/s in peak performance - approximately the same as the entire compute capability at NAS just one year ago. Each 512p system is a single system image machine with one Linunx O5, one high performance file system, and one globally shared memory. The NAS Terascale Applications Group (TAG) is chartered to assist in scaling NASA's mission critical codes to at least 512p in order to significantly improve emergency response during flight operations, as well as provide significant improvements in the codes. and rate of scientific discovery across the scientifc disciplines within NASA's Missions. Recent accomplishments are 4x improvements to codes in the ocean modeling community, 10x performance improvements in a number of computational fluid dynamics codes used in aero-vehicle design, and 5x improvements in a number of space science codes dealing in extreme physics. The TAG group will continue its scaling work to 2048p and beyond (10240 cpus) as the Columbia system becomes fully operational and the upgrades to the SGI NUMAlink memory fabric are in place. The NUMlink uprades dramatically improve system scalability for a single application. These upgrades will allow a number of codes to execute faster at higher fidelity than ever before on any other system, thus increasing the rate of scientific discovery even further

  20. Combined electric and acoustic hearing performance with Zebra® speech processor: speech reception, place, and temporal coding evaluation.

    PubMed

    Vaerenberg, Bart; Péan, Vincent; Lesbros, Guillaume; De Ceulaer, Geert; Schauwers, Karen; Daemers, Kristin; Gnansia, Dan; Govaerts, Paul J

    2013-06-01

    To assess the auditory performance of Digisonic(®) cochlear implant users with electric stimulation (ES) and electro-acoustic stimulation (EAS) with special attention to the processing of low-frequency temporal fine structure. Six patients implanted with a Digisonic(®) SP implant and showing low-frequency residual hearing were fitted with the Zebra(®) speech processor providing both electric and acoustic stimulation. Assessment consisted of monosyllabic speech identification tests in quiet and in noise at different presentation levels, and a pitch discrimination task using harmonic and disharmonic intonating complex sounds ( Vaerenberg et al., 2011 ). These tests investigate place and time coding through pitch discrimination. All tasks were performed with ES only and with EAS. Speech results in noise showed significant improvement with EAS when compared to ES. Whereas EAS did not yield better results in the harmonic intonation test, the improvements in the disharmonic intonation test were remarkable, suggesting better coding of pitch cues requiring phase locking. These results suggest that patients with residual hearing in the low-frequency range still have good phase-locking capacities, allowing them to process fine temporal information. ES relies mainly on place coding but provides poor low-frequency temporal coding, whereas EAS also provides temporal coding in the low-frequency range. Patients with residual phase-locking capacities can make use of these cues.

  1. Ethical conduct for research : a code of scientific ethics

    Treesearch

    Marcia Patton-Mallory; Kathleen Franzreb; Charles Carll; Richard Cline

    2000-01-01

    The USDA Forest Service recently developed and adopted a code of ethical conduct for scientific research and development. The code addresses issues related to research misconduct, such as fabrication, falsification, or plagiarism in proposing, performing, or reviewing research or in reporting research results, as well as issues related to professional misconduct, such...

  2. The Gift Code User Manual. Volume I. Introduction and Input Requirements

    DTIC Science & Technology

    1975-07-01

    REPORT & PERIOD COVERED ‘TII~ GIFT CODE USER MANUAL; VOLUME 1. INTRODUCTION AND INPUT REQUIREMENTS FINAL 6. PERFORMING ORG. REPORT NUMBER ?. AuTHOR(#) 8...reverua side if neceaeary and identify by block number] (k St) The GIFT code is a FORTRANcomputerprogram. The basic input to the GIFT ode is data called

  3. Modified NASA-Lewis chemical equilibrium code for MHD applications

    NASA Technical Reports Server (NTRS)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  4. Self-Configuration and Localization in Ad Hoc Wireless Sensor Networks

    DTIC Science & Technology

    2010-08-31

    Goddard I. SUMMARY OF CONTRIBUTIONS We explored the error mechanisms of iterative decoding of low-density parity-check ( LDPC ) codes . This work has resulted...important problems in the area of channel coding , as their unpredictable behavior has impeded the deployment of LDPC codes in many real-world applications. We...tree-based decoders of LDPC codes , including the extrinsic tree decoder, and an investigation into their performance and bounding capabilities [5], [6

  5. Testing of Error-Correcting Sparse Permutation Channel Codes

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill, V.; Orlov, Sergei S.

    2008-01-01

    A computer program performs Monte Carlo direct numerical simulations for testing sparse permutation channel codes, which offer strong error-correction capabilities at high code rates and are considered especially suitable for storage of digital data in holographic and volume memories. A word in a code of this type is characterized by, among other things, a sparseness parameter (M) and a fixed number (K) of 1 or "on" bits in a channel block length of N.

  6. Use of FEC coding to improve statistical multiplexing performance for video transport over ATM networks

    NASA Astrophysics Data System (ADS)

    Kurceren, Ragip; Modestino, James W.

    1998-12-01

    The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretically achievable upper limits on the number of sources multiplexed. Performance of specific coding techniques using interlaced nonbinary Reed-Solomon (RS) codes and binary rate-compatible punctured convolutional (RCPC) codes is illustrated.

  7. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    NASA Astrophysics Data System (ADS)

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha; Kalinkin, Alexander A.

    2017-02-01

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, which is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,'bottom-up' and 'top-down', are illustrated. Preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.

  8. Main steam line break accident simulation of APR1400 using the model of ATLAS facility

    NASA Astrophysics Data System (ADS)

    Ekariansyah, A. S.; Deswandri; Sunaryo, Geni R.

    2018-02-01

    A main steam line break simulation for APR1400 as an advanced design of PWR has been performed using the RELAP5 code. The simulation was conducted in a model of thermal-hydraulic test facility called as ATLAS, which represents a scaled down facility of the APR1400 design. The main steam line break event is described in a open-access safety report document, in which initial conditions and assumptionsfor the analysis were utilized in performing the simulation and analysis of the selected parameter. The objective of this work was to conduct a benchmark activities by comparing the simulation results of the CESEC-III code as a conservative approach code with the results of RELAP5 as a best-estimate code. Based on the simulation results, a general similarity in the behavior of selected parameters was observed between the two codes. However the degree of accuracy still needs further research an analysis by comparing with the other best-estimate code. Uncertainties arising from the ATLAS model should be minimized by taking into account much more specific data in developing the APR1400 model.

  9. Tearing Mode Stability of Evolving Toroidal Equilibria

    NASA Astrophysics Data System (ADS)

    Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.

    2000-10-01

    There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.

  10. Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction

    PubMed Central

    Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin

    2016-01-01

    High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems. PMID:27814367

  11. Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction.

    PubMed

    Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin

    2016-01-01

    High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.

  12. Computational strategies for three-dimensional flow simulations on distributed computer systems. Ph.D. Thesis Semiannual Status Report, 15 Aug. 1993 - 15 Feb. 1994

    NASA Technical Reports Server (NTRS)

    Weed, Richard Allen; Sankar, L. N.

    1994-01-01

    An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.

  13. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  14. Pre-coding method and apparatus for multiple source or time-shifted single source data and corresponding inverse post-decoding method and apparatus

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu (Inventor)

    1997-01-01

    A pre-coding method and device for improving data compression performance by removing correlation between a first original data set and a second original data set, each having M members, respectively. The pre-coding method produces a compression-efficiency-enhancing double-difference data set. The method and device produce a double-difference data set, i.e., an adjacent-delta calculation performed on a cross-delta data set or a cross-delta calculation performed on two adjacent-delta data sets, from either one of (1) two adjacent spectral bands coming from two discrete sources, respectively, or (2) two time-shifted data sets coming from a single source. The resulting double-difference data set is then coded using either a distortionless data encoding scheme (entropy encoding) or a lossy data compression scheme. Also, a post-decoding method and device for recovering a second original data set having been represented by such a double-difference data set.

  15. Pre-coding method and apparatus for multiple source or time-shifted single source data and corresponding inverse post-decoding method and apparatus

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu (Inventor)

    1998-01-01

    A pre-coding method and device for improving data compression performance by removing correlation between a first original data set and a second original data set, each having M members, respectively. The pre-coding method produces a compression-efficiency-enhancing double-difference data set. The method and device produce a double-difference data set, i.e., an adjacent-delta calculation performed on a cross-delta data set or a cross-delta calculation performed on two adjacent-delta data sets, from either one of (1) two adjacent spectral bands coming from two discrete sources, respectively, or (2) two time-shifted data sets coming from a single source. The resulting double-difference data set is then coded using either a distortionless data encoding scheme (entropy encoding) or a lossy data compression scheme. Also, a post-decoding method and device for recovering a second original data set having been represented by such a double-difference data set.

  16. Potential loss of revenue due to errors in clinical coding during the implementation of the Malaysia diagnosis related group (MY-DRG®) Casemix system in a teaching hospital in Malaysia.

    PubMed

    Zafirah, S A; Nur, Amrizal Muhammad; Puteh, Sharifa Ezat Wan; Aljunid, Syed Mohamed

    2018-01-25

    The accuracy of clinical coding is crucial in the assignment of Diagnosis Related Groups (DRGs) codes, especially if the hospital is using Casemix System as a tool for resource allocations and efficiency monitoring. The aim of this study was to estimate the potential loss of income due to an error in clinical coding during the implementation of the Malaysia Diagnosis Related Group (MY-DRG ® ) Casemix System in a teaching hospital in Malaysia. Four hundred and sixty-four (464) coded medical records were selected, re-examined and re-coded by an independent senior coder (ISC). This ISC re-examined and re-coded the error code that was originally entered by the hospital coders. The pre- and post-coding results were compared, and if there was any disagreement, the codes by the ISC were considered the accurate codes. The cases were then re-grouped using a MY-DRG ® grouper to assess and compare the changes in the DRG assignment and the hospital tariff assignment. The outcomes were then verified by a casemix expert. Coding errors were found in 89.4% (415/424) of the selected patient medical records. Coding errors in secondary diagnoses were the highest, at 81.3% (377/464), followed by secondary procedures at 58.2% (270/464), principal procedures of 50.9% (236/464) and primary diagnoses at 49.8% (231/464), respectively. The coding errors resulted in the assignment of different MY-DRG ® codes in 74.0% (307/415) of the cases. From this result, 52.1% (160/307) of the cases had a lower assigned hospital tariff. In total, the potential loss of income due to changes in the assignment of the MY-DRG ® code was RM654,303.91. The quality of coding is a crucial aspect in implementing casemix systems. Intensive re-training and the close monitoring of coder performance in the hospital should be performed to prevent the potential loss of hospital income.

  17. Trellis coding techniques for mobile communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.; Jedrey, T.

    1988-01-01

    A criterion for designing optimum trellis codes to be used over fading channels is given. A technique is shown for reducing certain multiple trellis codes, optimally designed for the fading channel, to conventional (i.e., multiplicity one) trellis codes. The computational cutoff rate R0 is evaluated for MPSK transmitted over fading channels. Examples of trellis codes optimally designed for the Rayleigh fading channel are given and compared with respect to R0. Two types of modulation/demodulation techniques are considered, namely coherent (using pilot tone-aided carrier recovery) and differentially coherent with Doppler frequency correction. Simulation results are given for end-to-end performance of two trellis-coded systems.

  18. Architecture and implementation considerations of a high-speed Viterbi decoder for a Reed-Muller subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu (Principal Investigator); Uehara, Gregory T.; Nakamura, Eric; Chu, Cecilia W. P.

    1996-01-01

    The (64, 40, 8) subcode of the third-order Reed-Muller (RM) code for high-speed satellite communications is proposed. The RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. The progress made toward achieving the goal of implementing a decoder system based upon this code is summarized. The development of the integrated circuit prototype sub-trellis IC, particularly focusing on the design methodology, is addressed.

  19. Discussion on LDPC Codes and Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  20. Tailored Codes for Small Quantum Memories

    NASA Astrophysics Data System (ADS)

    Robertson, Alan; Granade, Christopher; Bartlett, Stephen D.; Flammia, Steven T.

    2017-12-01

    We demonstrate that small quantum memories, realized via quantum error correction in multiqubit devices, can benefit substantially by choosing a quantum code that is tailored to the relevant error model of the system. For a biased noise model, with independent bit and phase flips occurring at different rates, we show that a single code greatly outperforms the well-studied Steane code across the full range of parameters of the noise model, including for unbiased noise. In fact, this tailored code performs almost optimally when compared with 10 000 randomly selected stabilizer codes of comparable experimental complexity. Tailored codes can even outperform the Steane code with realistic experimental noise, and without any increase in the experimental complexity, as we demonstrate by comparison in the observed error model in a recent seven-qubit trapped ion experiment.

Top