Enhancing performing characteristics of organic semiconducting films by improved solution processing
Bazan, Guillermo C; Moses, Daniel; Peet, Jeffrey; Heeger, Alan J
2014-05-13
Improved processing methods for enhanced properties of conjugated polymer films are disclosed, as well as the enhanced conjugated polymer films produced thereby. Addition of low molecular weight alkyl-containing molecules to solutions used to form conjugated polymer films leads to improved photoconductivity and improvements in other electronic properties. The enhanced conjugated polymer films can be used in a variety of electronic devices, such as solar cells and photodiodes.
Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.
Rhyee, Jong-Soo; Kim, Jin Hee
2015-03-20
Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.
Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition
Li Tong, Wei; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K.; Mun Hung, Yew
2015-01-01
The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications. PMID:26100977
Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides
Rhyee, Jong-Soo; Kim, Jin Hee
2015-01-01
Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential. PMID:28788002
Investigation of mechanical properties of cryogenically treated music wire
NASA Astrophysics Data System (ADS)
Heptonstall, A.; Waller, M.; Robertson, N. A.
2015-08-01
It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance of mirror suspensions within the detector. An increase in strength could allow thinner wire to be safely used, which would enhance the dilution factor of the suspension, again leading to lower suspension thermal noise. In this article, we describe the results of an investigation into some of the mechanical properties of music wire, comparing untreated wire with the same wire which has been cryogenically treated. For the samples we studied, we conclude that there is no significant difference in the properties of interest for application in gravitational wave detectors.
Enhanced thermoelectric performance of graphene nanoribbon-based devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Md Sharafat, E-mail: hossain@student.unimelb.edu.au; Huynh, Duc Hau; Nguyen, Phuong Duc
There have been numerous theoretical studies on exciting thermoelectric properties of graphene nano-ribbons (GNRs); however, most of these studies are mainly based on simulations. In this work, we measure and characterize the thermoelectric properties of GNRs and compare the results with theoretical predictions. Our experimental results verify that nano-structuring and patterning graphene into nano-ribbons significantly enhance its thermoelectric power, confirming previous predictions. Although patterning results in lower conductance (G), the overall power factor (S{sup 2}G) increases for nanoribbons. We demonstrate that edge roughness plays an important role in achieving such an enhanced performance and support it through first principles simulations.more » We show that uncontrolled edge roughness, which is considered detrimental in GNR-based electronic devices, leads to enhanced thermoelectric performance of GNR-based thermoelectric devices. The result validates previously reported theoretical studies of GNRs and demonstrates the potential of GNRs for the realization of highly efficient thermoelectric devices.« less
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.
2013-01-01
As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address and enhance future mission needs and technical requirements. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics have been under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to inhibit the occurrence of an internal short circuit but preserves an ionic current. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material were evaluated with respect to dynamic mechanical properties and safety-related performance attributes, and the results of these evaluations were previously reported in "Part 1: Mechanical Properties" of this publication. This current paper presents safety-related performance results for these novel materials obtained by employing a complementary experimental methodology, which involved the analysis of separator impedance characteristics as a function of temperature. The experimental results from this study are discussed with respect to potential cell safety enhancement for future aerospace as well as for terrestrial energy storage needs, and they are compared with pertinent mechanical properties of these materials, as well as with current state-of-the practice separator materials.
Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties
NASA Astrophysics Data System (ADS)
Song, Meng; Xu, Peng; Song, Yenan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wu, Huizhen; Zhao, Pei; Wang, Miao
2015-09-01
Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ˜1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.
Pournaghshband Isfahani, Ali; Sadeghi, Morteza; Wakimoto, Kazuki; Shrestha, Binod Babu; Bagheri, Rouhollah; Sivaniah, Easan; Ghalei, Behnam
2018-05-23
The development of thin film composite (TFC) membranes offers an opportunity to achieve the permeability/selectivity requirements for optimum CO 2 separation performance. However, the durability and performance of thin film gas separation membranes are mostly challenged by weak mechanical properties and high CO 2 plasticization. Here, we designed new polyurethane (PU) structures with bulky aromatic chain extenders that afford preferred mechanical properties for ultra-thin-film formation. An improvement of about 1500% in Young's modulus and 600% in hardness was observed for pentiptycene-based PUs compared to the typical PU membranes. Single (CO 2 , H 2 , CH 4 , and N 2 ) and mixed (CO 2 /N 2 and CO 2 /CH 4 ) gas permeability tests were performed on the PU membranes. The resulting TFC membranes showed a high CO 2 permeance up to 1400 GPU (10 -6 cm 3 (STP) cm -2 s -1 cmHg -1 ) and the CO 2 /N 2 and CO 2 /H 2 selectivities of about 22 and 2.1, respectively. The enhanced mechanical properties of pentiptycene-based PUs result in high-performance thin membranes with the similar selectivity of the bulk polymer. The thin film membranes prepared from pentiptycene-based PUs also showed a twofold enhanced plasticization resistance compared to non-pentiptycene-containing PU membranes.
USDA-ARS?s Scientific Manuscript database
Silver/biopolymer nanoparticles were prepared by adding 100 mg silver nitrate to 2% polyvinyl alcohol solution and reduced the silver nitrate into silver ion using 2 % trisodium citrate for high performance Surface Enhanced Raman Scattering (SERS) substrates. Optical properties of nanoparticle were ...
Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS2.
Zhang, Kehao; Borys, Nicholas J; Bersch, Brian M; Bhimanapati, Ganesh R; Xu, Ke; Wang, Baoming; Wang, Ke; Labella, Michael; Williams, Teague A; Haque, Md Amanul; Barnard, Edward S; Fullerton-Shirey, Susan; Schuck, P James; Robinson, Joshua A
2017-12-05
Evaluating and tuning the properties of two-dimensional (2D) materials is a major focus of advancing 2D science and technology. While many claim that the photonic properties of a 2D layer provide evidence that the material is "high quality", this may not be true for electronic performance. In this work, we deconvolute the photonic and electronic response of synthetic monolayer molybdenum disulfide. We demonstrate that enhanced photoluminescence can be robustly engineered via the proper choice of substrate, where growth of MoS 2 on r-plane sapphire can yield >100x enhancement in PL and carrier lifetime due to increased molybdenum-oxygen bonding compared to that of traditionally grown MoS 2 on c-plane sapphire. These dramatic enhancements in optical properties are similar to those of super-acid treated MoS 2 , and suggest that the electronic properties of the MoS 2 are also superior. However, a direct comparison of the charge transport properties indicates that the enhanced PL due to increased Mo-O bonding leads to p-type compensation doping, and is accompanied by a 2x degradation in transport properties compared to MoS 2 grown on c-plane sapphire. This work provides a foundation for understanding the link between photonic and electronic performance of 2D semiconducting layers, and demonstrates that they are not always correlated.
Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kehao; Borys, Nicholas J.; Bersch, Brian M.
Evaluating and tuning the properties of two-dimensional (2D) materials is a major focus of advancing 2D science and technology. While many claim that the photonic properties of a 2D layer provide evidence that the material is "high quality", this may not be true for electronic performance. In this work, we deconvolute the photonic and electronic response of synthetic monolayer molybdenum disulfide. We demonstrate that enhanced photoluminescence can be robustly engineered via the proper choice of substrate, where growth of MoS 2 on r-plane sapphire can yield > 100x enhancement in PL and carrier lifetime due to increased molybdenum-oxygen bonding comparedmore » to that of traditionally grown MoS 2 on c-plane sapphire. These dramatic enhancements in optical properties are similar to those of super-acid treated MoS 2 , and suggest that the electronic properties of the MoS 2 are also superior. However, a direct comparison of the charge transport properties indicates that the enhanced PL due to increased Mo-O bonding leads to p-type compensation doping, and is accompanied by a 2x degradation in transport properties compared to MoS 2 grown on c-plane sapphire. This work provides a foundation for understanding the link between photonic and electronic performance of 2D semiconducting layers, and demonstrates that they are not always correlated.« less
Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS 2
Zhang, Kehao; Borys, Nicholas J.; Bersch, Brian M.; ...
2017-12-05
Evaluating and tuning the properties of two-dimensional (2D) materials is a major focus of advancing 2D science and technology. While many claim that the photonic properties of a 2D layer provide evidence that the material is "high quality", this may not be true for electronic performance. In this work, we deconvolute the photonic and electronic response of synthetic monolayer molybdenum disulfide. We demonstrate that enhanced photoluminescence can be robustly engineered via the proper choice of substrate, where growth of MoS 2 on r-plane sapphire can yield > 100x enhancement in PL and carrier lifetime due to increased molybdenum-oxygen bonding comparedmore » to that of traditionally grown MoS 2 on c-plane sapphire. These dramatic enhancements in optical properties are similar to those of super-acid treated MoS 2 , and suggest that the electronic properties of the MoS 2 are also superior. However, a direct comparison of the charge transport properties indicates that the enhanced PL due to increased Mo-O bonding leads to p-type compensation doping, and is accompanied by a 2x degradation in transport properties compared to MoS 2 grown on c-plane sapphire. This work provides a foundation for understanding the link between photonic and electronic performance of 2D semiconducting layers, and demonstrates that they are not always correlated.« less
Vardaki, Martha Z.; Matousek, Pavel; Stone, Nicholas
2016-01-01
We characterise the performance of a beam enhancing element (‘photon diode’) for use in deep Raman spectroscopy (DRS) of biological tissues. The optical component enhances the number of laser photons coupled into a tissue sample by returning escaping photons back into it at the illumination zone. The method is compatible with transmission Raman spectroscopy, a deep Raman spectroscopy concept, and its implementation leads to considerable enhancement of detected Raman photon rates. In the past, the enhancement concept was demonstrated with a variety of samples (pharmaceutical tablets, tissue, etc) but it was not systematically characterized with biological tissues. In this study, we investigate the enhancing properties of the photon diode in the transmission Raman geometry as a function of: a) the depth and b) the optical properties of tissue samples. Liquid tissue phantoms were employed to facilitate systematic variation of optical properties. These were chosen to mimic optical properties of human tissues, including breast and prostate. The obtained results evidence that a photon diode can enhance Raman signals of tissues by a maximum of × 2.4, although it can also decrease the signals created towards the back of samples that exhibit high scattering or absorption properties. PMID:27375932
NASA Astrophysics Data System (ADS)
Murthy, Veeresh; Rajaprakash, B. M.
2018-04-01
Friction Stir Processing (FSP) is generally used as a novel method for surface properties enhancement. The surface developed through FSP alters the tribological and mechanical properties of the material in a single step. This commendable enhancement in the properties by recrystallized equiaxed microstructure attained by dynamic recrystallization can be achieved in just one step there by increasing the performance. In this study, the effect of the FSP passes on the tribological & mechanical properties such as hardness, wear resistance and tensile strength for commercially available AA7075-T651 of 6mm thick sheet was studied. Properties in terms of hardness, wear rate and tensile strength were compared with the base alloy and Friction Stir Processed (FSPed) alloy. It was observed that the hardness, wear rate of the FSPed FSP3 was enhanced by 44% and 60% as compared to that of the unprocessed sample.
NASA Technical Reports Server (NTRS)
Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.
1993-01-01
To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.
Enhanced fault-tolerant quantum computing in d-level systems.
Campbell, Earl T
2014-12-05
Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.
Li, Wanwan; Lu, Han; Zhang, Ning; Ma, Mingming
2017-06-14
We report that a postsynthesis physical process (freeze-thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline-poly(vinyl alcohol) hydrogel after five freeze-thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g -1 ). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm -2 and 210 F·g -1 ) and high energy density (18.7 W·h·kg -1 ), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge-discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze-thaw cycles for enhancing the performance of functional hydrogels.
Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Bo, Zheng; Li, Changwen; Yang, Huachao; Ostrikov, Kostya; Yan, Jianhua; Cen, Kefa
2018-06-01
Electric double-layer capacitors (EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode-electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics (MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography, can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway. Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties (e.g., the affinity between the electrode and the ions) can affect the ion-packing phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Kannan, Palanisamy; Dolinska, Joanna; Maiyalagan, Thandavarayan; Opallo, Marcin
2014-09-01
Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively.Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02896a
2014 Enhanced LAW Glass Property-Composition Models, Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Isabelle; Pegg, Ian L.; Joseph, Innocent
2015-10-28
This report describes the results of testing specified by the Enhanced LAW Glass Property-Composition Models, VSL-13T3050-1, Rev. 0 Test Plan. The work was performed in compliance with the quality assurance requirements specified in the Test Plan. Results required by the Test Plan are reported. The te4st results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.
The Morphologies of the Semiconductor Oxides and Their Gas-Sensing Properties
Lv, Xin; Li, Shuang; Wang, Qingji
2017-01-01
Semiconductor oxide chemoresistive gas sensors are widely used for detecting deleterious gases due to low cost, simple preparation, rapid response and high sensitivity. The performance of gas sensor is greatly affected by the morphology of the semiconductor oxide. There are many semiconductor oxide morphologies, including zero-dimensional, one-dimensional, two-dimensional and three-dimensional ones. The semiconductor oxides with different morphologies significantly enhance the gas-sensing performance. Among the various morphologies, hollow nanostructures and core-shell nanostructures are always the focus of research in the field of gas sensors due to their distinctive structural characteristics and superior performance. Herein the morphologies of semiconductor oxides and their gas-sensing properties are reviewed. This review also proposes a potential strategy for the enhancement of gas-sensing performance in the future. PMID:29189714
Application of ultra-high performance concrete to bridge girders.
DOT National Transportation Integrated Search
2009-02-01
"Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...
Radiation protection using Martian surface materials in human exploration of Mars
NASA Technical Reports Server (NTRS)
Kim, M. H.; Thibeault, S. A.; Wilson, J. W.; Heilbronn, L.; Kiefer, R. L.; Weakley, J. A.; Dueber, J. L.; Fogarty, T.; Wilkins, R.
2001-01-01
To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.
Enhancement of the Probabilistic CEramic Matrix Composite ANalyzer (PCEMCAN) Computer Code
NASA Technical Reports Server (NTRS)
Shah, Ashwin
2000-01-01
This report represents a final technical report for Order No. C-78019-J entitled "Enhancement of the Probabilistic Ceramic Matrix Composite Analyzer (PCEMCAN) Computer Code." The scope of the enhancement relates to including the probabilistic evaluation of the D-Matrix terms in MAT2 and MAT9 material properties card (available in CEMCAN code) for the MSC/NASTRAN. Technical activities performed during the time period of June 1, 1999 through September 3, 1999 have been summarized, and the final version of the enhanced PCEMCAN code and revisions to the User's Manual is delivered along with. Discussions related to the performed activities were made to the NASA Project Manager during the performance period. The enhanced capabilities have been demonstrated using sample problems.
Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance
NASA Astrophysics Data System (ADS)
Liu, Qisheng; Wei, Yunwei; Shahid, Malik Zeeshan; Yao, Mingming; Xu, Bo; Liu, Guangning; Jiang, Kejian; Li, Cuncheng
2018-03-01
Spectrum-enhanced Au@ZnO plasmonic nanoparticles (NPs) are developed for fabrication of the dye-sensitized solar cells (DSSCs), and their remarkable enhanced performances are achieved due to Surface Plasmon Resonance (SPR) effects. When being doped different blended amounts of the Au@ZnO NPs within the photoanode layers, various enhanced effects in the SPR-based DSSCs are exhibited. Compared with the power conversion efficiency (PCE, 7.50%) achieved for bare DSSC, device with doped Au@ZnO NPs of 1.93% delivers the top PCE of 8.91%, exhibiting about 20% enhancement. To elaborate the charge transfer process in the Au@ZnO NPs blended DSSCs, the photoluminescence (PL), electrochemical impedance spectra (EIS), etc are performed. We find that both the enhanced SPR absorption properties and the suppressed recombination process of charges contribute much to the improved performance of Au@ZnO-incorporated DSSCs.
Superparamagnetic enhancement of thermoelectric performance.
Zhao, Wenyu; Liu, Zhiyuan; Sun, Zhigang; Zhang, Qingjie; Wei, Ping; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; He, Danqi; Ji, Pengxia; Zhu, Wanting; Nie, Xiaolei; Su, Xianli; Tang, Xinfeng; Shen, Baogen; Dong, Xiaoli; Yang, Jihui; Liu, Yong; Shi, Jing
2017-09-13
The ability to control chemical and physical structuring at the nanometre scale is important for developing high-performance thermoelectric materials. Progress in this area has been achieved mainly by enhancing phonon scattering and consequently decreasing the thermal conductivity of the lattice through the design of either interface structures at nanometre or mesoscopic length scales or multiscale hierarchical architectures. A nanostructuring approach that enables electron transport as well as phonon transport to be manipulated could potentially lead to further enhancements in thermoelectric performance. Here we show that by embedding nanoparticles of a soft magnetic material in a thermoelectric matrix we achieve dual control of phonon- and electron-transport properties. The properties of the nanoparticles-in particular, their superparamagnetic behaviour (in which the nanoparticles can be magnetized similarly to a paramagnet under an external magnetic field)-lead to three kinds of thermoelectromagnetic effect: charge transfer from the magnetic inclusions to the matrix; multiple scattering of electrons by superparamagnetic fluctuations; and enhanced phonon scattering as a result of both the magnetic fluctuations and the nanostructures themselves. We show that together these effects can effectively manipulate electron and phonon transport at nanometre and mesoscopic length scales and thereby improve the thermoelectric performance of the resulting nanocomposites.
Sharafat Hossain, Md; Al-Dirini, Feras; Hossain, Faruque M.; Skafidas, Efstratios
2015-01-01
Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator. PMID:26083450
Hossain, Md Sharafat; Al-Dirini, Feras; Hossain, Faruque M; Skafidas, Efstratios
2015-06-17
Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator.
The Enhanced Musical Rhythmic Perception in Second Language Learners
Roncaglia-Denissen, M. Paula; Roor, Drikus A.; Chen, Ao; Sadakata, Makiko
2016-01-01
Previous research suggests that mastering languages with distinct rather than similar rhythmic properties enhances musical rhythmic perception. This study investigates whether learning a second language (L2) contributes to enhanced musical rhythmic perception in general, regardless of first and second languages rhythmic properties. Additionally, we investigated whether this perceptual enhancement could be alternatively explained by exposure to musical rhythmic complexity, such as the use of compound meter in Turkish music. Finally, it investigates if an enhancement of musical rhythmic perception could be observed among L2 learners whose first language relies heavily on pitch information, as is the case with tonal languages. Therefore, we tested Turkish, Dutch and Mandarin L2 learners of English and Turkish monolinguals on their musical rhythmic perception. Participants’ phonological and working memory capacities, melodic aptitude, years of formal musical training and daily exposure to music were assessed to account for cultural and individual differences which could impact their rhythmic ability. Our results suggest that mastering a L2 rather than exposure to musical rhythmic complexity could explain individuals’ enhanced musical rhythmic perception. An even stronger enhancement of musical rhythmic perception was observed for L2 learners whose first and second languages differ regarding their rhythmic properties, as enhanced performance of Turkish in comparison with Dutch L2 learners of English seem to suggest. Such a stronger enhancement of rhythmic perception seems to be found even among L2 learners whose first language relies heavily on pitch information, as the performance of Mandarin L2 learners of English indicates. Our findings provide further support for a cognitive transfer between the language and music domain. PMID:27375469
Chochos, Christos L; Singh, Ranbir; Gregoriou, Vasilis G; Kim, Min; Katsouras, Athanasios; Serpetzoglou, Efthymis; Konidakis, Ioannis; Stratakis, Emmanuel; Cho, Kilwon; Avgeropoulos, Apostolos
2018-03-28
We report on the photovoltaic parameters, photophysical properties, optoelectronic properties, self-assembly, and morphology variations in a series of high-performance donor-acceptor (D-A) π-conjugated polymers based on indacenodithiophene and quinoxaline moieties as a function of the number-average molecular weight ([Formula: see text]), the nature of aryl substituents, and the enlargement of the polymer backbone. One of the most important outcome is that from the three optimization approaches followed to tune the chemical structure toward enhanced photovoltaic performance in bulk heterojunction solar cell devices with the fullerene derivative [6,6]-phenyl-C 71 -butyric acid methyl ester as the electron acceptor, the choice of the aryl substituent is the most efficient rational design strategy. Incorporation of thienyl rings as substituents versus phenyl rings accelerates the electron-hole extraction process to the respective electrode, despite the slightly lower recombination lifetime and, thus, improves the electrical performance of the device. Single-junction solar cells based on ThIDT-TQxT feature a maximum power-conversion efficiency of 7.26%. This study provides significant insights toward understanding of the structure-properties-performance relationship for D-A π-conjugated polymers in solid state, which provide helpful inputs for the design of next-generation polymeric semiconductors for organic solar cells with enhanced performance.
Mu, Keguang; Zhang, Dalun; Shao, Ziqiang; Qin, Dujian; Wang, Yalong; Wang, Shuo
2017-10-15
l-Dopa functionalized halloysite nanotubes (HNTs) were prepared by the self-polymerization of l-dopa in the weak alkaline condition. Then different contents of l-dopa coated HNTs (LPDHNTs) were blended into cellulose acetate to prepare enhanced performance ultrafiltration membranes via the phase inversion method. The HNTs and LPDHNTs were characterized by FTIR, XPS, and TEM anysis. And the membranes morphologies, separation performance, antifouling performance, mechanical properties and hydrophilicity were also investigated. It was found that the composite membranes exhibited excellent antifouling performance. The pure water flux of 3.0wt% LPDHNTs/CA membrane increased from 11.4Lm -2 h -1 to 92.9Lm -2 h -1 , while the EA rejection ratio of the membrane was about 91.2%. In addition, the mechanical properties of the resultant membranes were strengthened compared with the CA ultrafiltration membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.
Tian, Mingwei; Qu, Lijun; Zhang, Xiansheng; Zhang, Kun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Tang, Xiaoning; Sun, Yaning
2014-10-13
In this study, a wet spinning method was applied to fabricate regenerated cellulose fibers filled with low graphene loading which was systematically characterized by SEM, TEM, FTIR and XRD techniques. Subsequently, the mechanical and thermal properties of the resulting fibers were investigated. With only 0.2 wt% loading of graphene, a ∼ 50% improvement of tensile strength and 25% enhancement of Young's modulus were obtained and the modified Halpin-Tsai model was built to predict the mechanical properties of composite fibers. Thermal analysis of the composite fibers showed remarkably enhanced thermal stability and dynamic heat transfer performance of graphene-filled cellulose composite fiber, also, the presence of graphene oxide can significantly enhance the thermal conductivity of the composite fiber. This work provided a facile way to improve mechanical and thermal properties of regenerated cellulose fibers. The resultant composite fibers have potential application in thermal insulation and reinforced fibrous materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Image enhancement for on-site X-ray nondestructive inspection of reinforced concrete structures.
Pei, Cuixiang; Wu, Wenjing; Ueaska, Mitsuru
2016-11-22
The use of portable and high-energy X-ray system can provide a very promising approach for on-site nondestructive inspection of inner steel reinforcement of concrete structures. However, the noise properties and contrast of the radiographic images for thick concrete structures do often not meet the demands. To enhance the images, we present a simple and effective method for noise reduction based on a combined curvelet-wavelet transform and local contrast enhancement based on neighborhood operation. To investigate the performance of this method for our X-ray system, we have performed several experiments with using simulated and experimental data. With comparing to other traditional methods, it shows that the proposed image enhancement method has a better performance and can significantly improve the inspection performance for reinforced concrete structures.
Remarkable enhancement in thermoelectric performance of BiCuSeO through biaxial strain modulation
NASA Astrophysics Data System (ADS)
Li, Chunhong; Guo, Donglin; Li, Kejian; Shao, Bin; Chen, Dengming; Ma, Yilong; Sun, Jianchun
2018-03-01
We propose to further enhance the thermoelectric performance of BiCuSeO using the biaxial strain. The effect of biaxial strain on the thermoelectric property of BiCuSeO is investigated by using the first-principles calculations combined with the Semiclaasical Boltzmann theory. When the biaxial strain is applied, the Seebeck coefficient is largely enhanced by tensile strain, while the electrical conductivity can be greatly enhanced by compressive strain. The largest zT value of 1.7 at 900 K is then conservatively estimated by using the experimental thermal conductivity, which is 4 times larger than that without biaxial strain. Our results indicate that the biaxial strain could be an effect method to enhance the thermoelectric performance of BiCuSeO.
Stainless steel valves with enhanced performance through microstructure optimization
NASA Astrophysics Data System (ADS)
Barani, A. A.; Boukhattam, M.; Haggeney, M.; Güler, S.
2017-08-01
Compressor valves are made of hardened and tempered martensitic steels. The main design criterion for the material selection is the fatigue performance of the material under bending loads. In some cases impact loads and corrosive atmospheres additionally act on the part. For the first time, the microstructure of the most commonly used stainless steel and its influence on the properties relevant for flapper valves is presented and described in this paper. It is demonstrated how the tensile properties of a martensitic stainless steel can be enhanced by tailoring the microstructure. Electron back scatter diffraction method is carried out to explain the changes in monotonic mechanical properties. Through a modified heat treatment the martensite microstructure is refined resulting in an increase of yield and ultimate tensile strength and at the same time a significant increase of elongation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, P.C.; DePoorter, G.L.; Munoz, D.R.
1991-02-01
We have initiated a three phase investigation of the development of high performance refractory fibers with enhanced insulating properties and longer usable lifetimes. This report presents the results of the first phase of the study, performed from Aug. 1989 through Feb. 1991, which shows that significant energy saving are possible through the use of high temperature insulating fibers that better retain their efficient insulating properties during the service lifetime of the fibers. The remaining phases of this program include the pilot scale development and then full scale production feasibility development and evaluation of enhanced high temperature refractory insulting fibers. Thismore » first proof of principle phase of the program presents a summary of the current use patterns of refractory fibers, a laboratory evaluation of the high temperature performance characteristics of selected typical refractory fibers and an analysis of the potential energy savings through the use of enhanced refractory fibers. The current use patterns of refractory fibers span a wide range of industries and high temperature furnaces within those industries. The majority of high temperature fiber applications are in furnaces operating between 2000 and 26000{degrees}F. The fibers used in furnaces operating within this range provide attractive thermal resistance and low thermal storage at reasonable cost. A series of heat treatment studies performed for this phase of the program has shown that the refractory fibers, as initially manufactured, have attractive thermal conductivities for high temperature applications but the fibers go through rapid devitrification and subsequent crystal growth upon high temperature exposure. Development of improved fibers, maintaining the favorable characteristics of the existing as-manufactured fibers, could save between 1 and 4% of the energy consumed in high temperature furnaces using refractory fibers.« less
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Guzik, Monica; Skierski, Michael
2011-01-01
As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address future mission needs and technical requirements and to provide new mission-enabling technologies. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics are actively under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to prevent the occurrence of an internal short-circuit while enabling ionic transport. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material have been evaluated with respect to dynamic mechanical properties and safety-related performance attributes. This paper presents the results of these evaluations in comparison to a current state-ofthe-practice separator material. The results are discussed with respect to potential opportunities to enhance the inherent safety characteristics and reliability of future, advanced lithium-ion cell chemistries.
2016-11-17
out dynamics of a designer fluid were investigated experimentally in a flat grooved heat pipe. Generated coatings were observed during heat pipe... experimental temperature distributions matched well. Uncertainties in the closure properties were the major source of error. 15. SUBJECT TERMS...72 Results and Discussion ( Experimental Results for IAS 2 in Grooved Wick #1
Bond Behavior of Reinforcing Steel in Ultra-High Performance Concrete
DOT National Transportation Integrated Search
2014-11-01
Ultra-high performance concrete (UHPC) has garnered interest from the highway infrastructure community for its greatly enhanced mechanical and durability properties. The objective of this research is to extensively evaluate the factors that affect bo...
Enhancement of the inverted polymer solar cells via ZnO doped with CTAB
NASA Astrophysics Data System (ADS)
Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin
2018-02-01
A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.
A NEW APPROACH AND METHODOLOGIES FOR CHARACTERIZING THE HYDROGEOLOGIC PROPERTIES OF AQUIFERS
In the authors' opinion, the ability of hydrologists to perform field measurements of aquifer hydraulic properties must be enhanced if we are to improve significantly our capacity to solve ground water contamination problems at Superfund and other sites. Therefore, the primar...
NEW APPROACH AND METHODOLOGIES FOR CHARACTERIZING THE HYDROGEOLOGIC PROPERTIES OF AQUIFERS
In the authors' opinion, the ability of hydrologists to perform field measurements of aquifer hydraulic properties must be enhanced if we are to improve significantly our capacity to solve ground water contamination problems at Superfund and other sites. herefore, the primary pur...
Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying; Yu, Dezhong
2016-10-15
The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yin, Zhouping; Wang, Xiaomei; Sun, Fazhe; Tong, Xiaohu; Zhu, Chen; Lv, Qiying; Ye, Dong; Wang, Shuai; Luo, Wei; Huang, YongAn
2017-09-22
Gas sensing performance can be improved significantly by the increase in both the effective gas exposure area and the surface reactivitiy of ZnO nanorods. Here, we propose aligned hierarchical Ag/ZnO nano-heterostructure arrays (h-Ag/ZnO-NAs) via electrohydrodynamic nanowire template, together with a subsequent hydrothermal synthesis and photoreduction reaction. The h-Ag/ZnO-NAs scatter at top for higher specific surface areas with the air, simultaneously contact at root for the electrical conduction. Besides, the ZnO nanorods are uniformly coated with dispersed Ag nanoparticles, resulting in a tremendous enhancement of the surface reactivity. Compared with pure ZnO, such h-Ag/ZnO-NAs exhibit lower electrical resistance and faster responses. Moreover, they demonstrate enhanced NO 2 gas sensing properties. Self-assembly via electrohydrodynamic nanowire template paves a new way for the preparation of high performance gas sensors.
Development of Non-Proprietary Ultra-High Performance Concrete : Project Summary Report
DOT National Transportation Integrated Search
2017-12-01
Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Thus, elements made with UHPC can be thinner/lighter than elements made with conventional concrete. The enhanced durabilit...
A NEW APPROACH AND METHODOLOGIES FOR CHARACTERIZING THE HYDROGEOLOGIC PROPERTIES OF AQUIFERS
In the authors' opinion, the ability of hydrologists to perform field measurements of aquifer hydraulic properties must be enhanced if we are to improve significantly our capacity to solve ground water contamination problems at Superfund and other sites. Therefore, the primary pu...
Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes
NASA Astrophysics Data System (ADS)
Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen
2016-12-01
Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.
Pressure-induced dramatic changes in organic–inorganic halide perovskites
Yang, Wenge
2017-01-01
Organic–inorganic halide perovskites have emerged as a promising family of functional materials for advanced photovoltaic and optoelectronic applications with high performances and low costs. Various chemical methods and processing approaches have been employed to modify the compositions, structures, morphologies, and electronic properties of hybrid perovskites. However, challenges still remain in terms of their stability, the use of environmentally unfriendly chemicals, and the lack of an insightful understanding into structure–property relationships. Alternatively, pressure, a fundamental thermodynamic parameter that can significantly alter the atomic and electronic structures of functional materials, has been widely utilized to further our understanding of structure–property relationships, and also to enable emergent or enhanced properties of given materials. In this perspective, we describe the recent progress of high-pressure research on hybrid perovskites, particularly regarding pressure-induced novel phenomena and pressure-enhanced properties. We discuss the effect of pressure on structures and properties, their relationships and the underlying mechanisms. Finally, we give an outlook on future research avenues in which high pressure and related alternative methods such as chemical tailoring and interfacial engineering may lead to novel hybrid perovskites uniquely suited for high-performance energy applications. PMID:29147500
Thermal transport and thermoelectric properties of beta-graphyne nanostructures.
Ouyang, Tao; Hu, Ming
2014-06-20
Graphyne, an allotrope of graphene, is currently a hot topic in the carbon-based nanomaterials research community. Taking beta-graphyne as an example, we performed a comprehensive study of thermal transport and related thermoelectric properties by means of nonequilibrium Green's function (NEGF). Our simulation demonstrated that thermal conductance of beta-graphyne is only approximately 26% of that of the graphene counterpart and also shows evident anisotropy. Meanwhile, thermal conductance of armchair beta-graphyne nanoribbons (A-BGYNRs) presents abnormal stepwise width dependence. As for the thermoelectric property, we found that zigzag beta-graphyne nanoribbons (Z-BGYNRs) possess superior thermoelectric performance with figure of merit value achieving 0.5 at room temperature, as compared with graphene nanoribbons (~0.05). Aiming at obtaining a better thermoelectric coefficient, we also investigated Z-BGYNRs with geometric modulations. The results show that the thermoelectric performance can be enhanced dramatically (figure of merit exceeding 1.5 at room temperature), and such enhancement strongly depends on the width of the nanoribbons and location and quantity of geometric modulation. Our findings shed light on transport properties of beta-graphyne as high efficiency thermoelectrics. We anticipate that our simulation results could offer useful guidance for the design and fabrication of future thermoelectric devices.
Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo
2016-05-23
We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.
A review of nanoclay applications in the pervious concrete pavement
NASA Astrophysics Data System (ADS)
Shakrani, Shahrul Azwan; Ayob, Afizah; Rahim, Mohd Asri Ab
2017-09-01
In recent years, the use of nanoclay has received various interests in order to enhance the properties of construction materials which can also be eligible for pavement technology and engineering application. This review paper summarizes the effect of nanoclay as cement replacement and additive to the performance of pervious concrete pavement. The addition of nanoclay to pervious concrete has demonstrated improvements in strength properties such as compressive and flexural strength, durability such as freeze-thaw and chloride penetration resistance, shrinkage, and denser microstructure but at the same time reduced the porosity, permeability and water absorption properties. This enhancement is due to the roles of nanoclay as nanoreinforcements, nanofillers, nucleation site, and reactive pozzolans in order to promote hydration and improve material properties.
EKF-Based Enhanced Performance Controller Design for Nonlinear Stochastic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyang; Zhang, Qichun; Wang, Hong
In this paper, a novel control algorithm is presented to enhance the performance of tracking property for a class of non-linear dynamic stochastic systems with unmeasurable variables. To minimize the entropy of tracking errors without changing the existing closed loop with PI controller, the enhanced performance loop is constructed based on the state estimation by extended Kalman Filter and the new controller is designed by full state feedback following this presented control algorithm. Besides, the conditions are obtained for the stability analysis in the mean square sense. In the end, the comparative simulation results are given to illustrate the effectivenessmore » of proposed control algorithm.« less
Soboleva, Tatyana; Malek, Kourosh; Xie, Zhong; Navessin, Titichai; Holdcroft, Steven
2011-06-01
The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance. © 2011 American Chemical Society
Hsu, Ben B Y; Seifter, Jason; Takacs, Christopher J; Zhong, Chengmei; Tseng, Hsin-Rong; Samuel, Ifor D W; Namdas, Ebinazar B; Bazan, Guillermo C; Huang, Fei; Cao, Yong; Heeger, Alan J
2013-03-26
Polymer light emitting field effect transistors are a class of light emitting devices that reveal interesting device physics. Device performance can be directly correlated to the most fundamental polymer science. Control over surface properties of the transistor dielectric can dramatically change the polymer morphology, introducing ordered phase. Electronic properties such as carrier mobility and injection efficiency on the interface can be promoted by ordered nanofibers in the polymer. Moreover, by controlling space charge in the polymer interface, the recombination zone can be spatially extended and thereby enhance the optical output.
Enhanced musical rhythmic perception in Turkish early and late learners of German
Roncaglia-Denissen, M. Paula; Schmidt-Kassow, Maren; Heine, Angela; Vuust, Peter; Kotz, Sonja A.
2013-01-01
As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position) may enhance musical rhythm perception. We investigated whether competence in a second language (L2) with different rhythmic properties than a L1 affects musical rhythm aptitude. Turkish early (TELG) and late learners (TLLG) of German were compared to German late L2 learners of English (GLE) regarding their musical rhythmic aptitude. While Turkish and German present distinct linguistic rhythm and metric properties, German and English are rather similar in this regard. To account for inter-individual differences, we measured participants' short-term and working memory (WM) capacity, melodic aptitude, and time they spent listening to music. Both groups of Turkish L2 learners of German perceived rhythmic variations significantly better than German L2 learners of English. No differences were found between early and late learners' performance. Our findings suggest that mastering two languages with different rhythmic properties enhances musical rhythm perception, providing further evidence of shared cognitive resources between language and music. PMID:24065946
2014-08-26
Indium, Rhodium, Ruthenium, Tungsten, Titanium, Chromium, Palladium, Copper, Platinum and Magnesium . These have been chosen because all of them...performance. vii. Considering that the observed behaviors occur precisely where UV surface-enhanced Raman spectra indicated strong local field...research objective was centered on the UV plasmonic properties of Rh NPs by means of surface-enhanced Raman spectroscopy, surface-enhanced
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon M.
Amidoxime-functionalized polydimethylsiloxane (AO-PDMSPNB) membranes with various amidoxime compositions were synthesized via ring-opening metathesis polymerization followed by post-polymerization modification. Compared to other previously reported PDMS-based membranes, the amidoxime-functionalized membranes show enhanced CO 2 permeability and CO 2/N 2 selectivity. The overall gas separation performance (CO 2 permeability 6800 Barrer; CO 2/N 2 selectivity 19) of the highest performing membrane exceeds the Robeson upper bound line, and the excellent permeability of the copolymer itself provides great potential for real world applications where huge volumes of gases are separated. This study details how tuning the CO 2-philicity within rubbery polymer matrices influences gasmore » transport properties. Key parameters for tuning gas transport properties are discussed, and the experimental results show good consistency with theoretical calculations. Finally, this study provides a roadmap to enhancing gas separation performance in rubbery polymers by tuning gas solubility selectivity.« less
Xu, Zhanwen; Lin, Jiaping; Zhang, Liangshun; Wang, Liquan; Wang, Gengchao; Tian, Xiaohui; Jiang, Tao
2018-06-14
We applied a multi-scale approach coupling dissipative particle dynamics method with a drift-diffusion model to elucidate the photovoltaic properties of multiblock copolymers consisting of alternating electron donor and acceptor blocks. A series of hierarchical lamellae-in-lamellar structures were obtained from the self-assembly of the multiblock copolymers. A distinct improvement in photovoltaic performance upon the morphology transformation from lamella to lamellae-in-lamella was observed. The hierarchical lamellae-in-lamellar structures significantly enhanced exciton dissociation and charge carrier transport, which consequently contributed to the improved photovoltaic performance. Based on our theoretical calculations, the hierarchical nanostructures can achieve a much enhanced energy conversion efficiency, improved by around 25% compared with that of general ones, through structure modulation on number and size of the small-length-scale domains. Our findings are supported by recent experimental evidence and yield guidelines for designing hierarchical materials with improved photovoltaic properties.
Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo
2016-01-01
We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance. PMID:27210793
NASA Technical Reports Server (NTRS)
Meador, Michael A.
2005-01-01
Single-wall carbon nanotubes have been shown to possess a combination of outstanding mechanical, electrical, and thermal properties. The use of carbon nanotubes as an additive to improve the mechanical properties of polymers and/or enhance their thermal and electrical conductivity has been a topic of intense interest. Nanotube-modified polymeric materials could find a variety of applications in NASA missions including large-area antennas, solar arrays, and solar sails; radiation shielding materials for vehicles, habitats, and extravehicular activity suits; and multifunctional materials for vehicle structures and habitats. Use of these revolutionary materials could reduce vehicle weight significantly and improve vehicle performance and capabilities.
He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan
2017-12-27
Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.
Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization
Dedecker, Peter
2017-01-01
Reversibly switchable fluorescent proteins (RSFPs) enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties. PMID:28930199
Fundamental and progress of Bi2Te3-based thermoelectric materials
NASA Astrophysics Data System (ADS)
Hong, Min; Chen, Zhi-Gang; Zou, Jin
2018-04-01
Thermoelectric materials, enabling the directing conversion between heat and electricity, are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels. Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature. Due to the intensive theoretical investigations and experimental demonstrations, significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials. In this review, we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties. On this basis, we studied the effect of material parameters on thermoelectric properties. Then, we analyzed the features of Bi2Te3-based thermoelectric materials, including the lattice defects, anisotropic behavior and the strong bipolar conduction at relatively high temperature. Then we accordingly summarized the strategies for enhancing the thermoelectric performance, including point defect engineering, texture alignment, and band gap enlargement. Moreover, we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method, ball milling, and melt spinning. Lastly, we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3, which will enlighten the enhancement of thermoelectric performance in broader materials.
USDA-ARS?s Scientific Manuscript database
Combining milk proteins and polysaccharides may result in new food ingredients with enhanced properties, compared to the single protein or polysaccharide, that are especially useful for improving the nutritional value, textural properties and stability of foods. However, formulations of these ingre...
Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping
2018-07-06
The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS 2 film was deposited on TiO 2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO 2 nanorod arrays were treated with hydrogen plasma(H:TiO 2 ) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.
Internal Plasma Properties and Enhanced Performance of an 8 cm Ion Thruster Discharge
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.
1999-01-01
There is a need for a lightweight, low power ion thruster for space science missions. Such an ion thruster is under development at NASA Glenn Research Center. In an effort to better understand the discharge performance of this thruster. a version of this thruster with an anode containing electrically isolated electrodes at the cusps was fabricated and tested. Discharge characteristics of this ring cusp ion thruster were measured without ion beam extraction. Discharge current was measured at collection electrodes located at the cusps and at the anode body itself. Discharge performance and plasma properties were measured as a function of discharge power, which was varied between 20 and 50 W. It was found that ion production costs decreased by as much as 20 percent when the two most downstream cusp electrodes were allowed to float. Floating the electrodes did not give rise to a significant increase in discharge power even though the plasma density increased markedly. The improved performance is attributed to enhanced electron containment.
NASA Astrophysics Data System (ADS)
Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping
2018-07-01
The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS2 film was deposited on TiO2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO2 nanorod arrays were treated with hydrogen plasma(H:TiO2) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.
NASA Astrophysics Data System (ADS)
Lv, Chen; Zhang, Junzhi; Li, Yutong
2014-11-01
Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, J.E.; Boving, T.B.; Brusseau, M.L.
2000-12-31
Reagents that enhance the aqueous solubility of nonaqueous phase organic liquid (NAPL) contaminants are under investigation for use in enhanced subsurface remediation technologies. Cyclodextrin, a glucose-based molecule, is such a reagent. In this paper, laboratory experiments and numerical model simulations are used to evaluate and understand the potential remediation performance of cyclodextrin. Physical properties of cyclodextrin solutions such as density, viscosity, and NAPL-aqueous interfacial tension are measured. Their analysis indicates that no serious obstacles exist related to fluid properties that would prevent the use of cyclodextrin solutions for subsurface NAPL remediation. Cyclodextrin-enhanced solubilization for a large suite of typical groundmore » water contaminants is measured in the laboratory, and the results are related to the physiochemical properties of the organic compounds. The most-hydrophobic contaminants experience a larger relative solubility enhancement than the less-hydrophobic contaminants but have lower aqueous-phase apparent solubilities. Numerical model simulations of enhanced-solubilization flushing of NAPL-contaminated soil demonstrate that the more-hydrophilic compounds exhibit the greatest mass-removal relates due to their greater apparent solubilities, and thus are initially more effectively removed from soil by enhanced-solubilization-flushing reagents. However, the relatively more hydrophobic contaminants exhibit a greater improvement in contaminant mass-removal (compared with water flushing) than that exhibited for the relatively hydrophilic contaminants.« less
NASA Astrophysics Data System (ADS)
Peng, Gangrou; Ge, Yu; Ding, Jie; Wang, Caiyun; Wallace, Gordon G.; Li, Weihua
2018-03-01
Ionogels are a new class of hybrid materials where ionic liquids are immobilized by macromolecular support. The excessive amount of crosslinking polymer enhances the mechanical strength but compromises the conductivity. Here, we report an elastomeric magnetorheological (MR) ionogel with an enhanced conductivity and mechanical strength as well. Following the application of magnetic nanoparticles into an ionic liquid containing minimum cross-linking agent, the formation, thus physical properties, of MR ionogels are co-controlled by simultaneously applied UV light and external magnetic field. The application of MR ionogels as solid electrolytes in supercapacitors is also demonstrated to study electrochemical performance. This work opens a new avenue to synthesize robust ionogels with the desired conductivity and controllable mechanical properties for soft flexible electronic devices. Besides, as a new class of conductive MR elastomers, the proposed MR ionogel also possesses the potential for engineering applications, such as sensors and actuators.
Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors
Zheng, Yangong; Li, Xiaogan; Dutta, Prabir K.
2012-01-01
The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors. PMID:22666081
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyang; Zhang, Qichun; Wang, Hong
To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, wheremore » encouraging results have been obtained.« less
WSe2 nanoribbons: new high-performance thermoelectric materials.
Chen, Kai-Xuan; Luo, Zhi-Yong; Mo, Dong-Chuan; Lyu, Shu-Shen
2016-06-28
In this work, for the first time, we systematically investigate the ballistic transport properties of WSe2 nanoribbons using first-principles methods. Armchair nanoribbons with narrow ribbon width are mostly semiconductive but the zigzag nanoribbons are metallic. Surprisingly, an enhancement in thermoelectric performance is discovered moving from monolayers to nanoribbons, especially armchair ones. The maximum room-temperature thermoelectric figure of merit of 2.2 for an armchair nanoribbon is discovered. This may be contributed to by the effects of the disordered edges, owing to the existence of dangling bonds at the ribbon edge. H-passivation has turned out to be an effective way to stabilize the edge atoms, which enhances the thermodynamic stability of the nanoribbons. In addition, after H-passivation, all of the armchair nanoribbons exhibit semiconductive properties with similar band gaps (∼1.3 eV). Our work provides instructional theoretical evidence for the application of armchair WSe2 nanoribbons as promising thermoelectric materials. The enhancement mechanism of the disordered edge effect can also encourage further exploration to achieve outstanding thermoelectric materials.
MURI Center for Multidimensional Surface-Enhanced Sensing and Spectroscopy
2007-06-30
and detection using SERS; new understanding of the electromagnetic enhancement properties of nanohole arrays; new first principles theoretical Page 2...support for the experimental program: 1. Studies of the electrodynamics of molecules adsorbed on anisotropic nanoparticles and nanoholes to determine...nanoparticles. George C. Schatz Electrodynamics of metal nanoparticles, small clusters of nanoparticles and nanoholes . We have performed extensive
ERIC Educational Resources Information Center
Keeley, Robin J.; Wartman, Brianne C.; Hausler, Alexander N.; Holahan, Matthew R.
2010-01-01
Research has demonstrated that Long-Evans rats (LER) display superior mnemonic function over Wistar rats (WR). These differences are correlated with endogenous and input-dependent properties of the hippocampus. The present work sought to determine if juvenile pretraining might enhance hippocampal structural markers and if this would be associated…
NASA Astrophysics Data System (ADS)
Zhou, J.-S.; Marshall, L. G.; Goodenough, J. B.
2014-06-01
Measurements of physical properties, including transport and magnetic properties, specific heat, and thermal conductivity, have been performed on high-quality samples of LaNiO3 and LaCuO3 synthesized under high pressure. Some measurements, such as thermoelectric power and magnetic susceptibility, have been made under high pressure. The availability of a complete set of data enables a side-by-side comparison between these two narrowband systems. We have demonstrated unambiguously the mass enhancement due to electron-electron correlations in both systems relative to the recent density functional theory results. Correlations in these narrowband systems also enhance the magnetic susceptibility. Ferromagnetic spin fluctuations give rise to a strong Stoner enhancement in the magnetic susceptibility in the quarter-filled LaNiO3. Although we are able to tune the bandwidth by either chemical substitutions or by applying hydrostatic pressure on LaNiO3, the Stoner enhancement does not lead to the Stoner instability.
TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties
Galstyan, Vardan; Comini, Elisabetta; Faglia, Guido; Sberveglieri, Giorgio
2013-01-01
Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes. PMID:24184919
Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?
Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun
2015-02-21
Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.
NASA Astrophysics Data System (ADS)
Li, Meixia; Zhu, Jun E.; Zhang, Lili; Chen, Xu; Zhang, Huimin; Zhang, Fazhi; Xu, Sailong; Evans, David G.
2011-10-01
Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clays, have been investigated widely as promising electrochemical active materials. Due to the inherently weak conductivity, the electrochemical properties of LDHs were improved typically by utilization of either functional molecules intercalated between LDH interlayer galleries, or proteins confined between exfoliated LDH nanosheets. Here, we report a facile protocol to prepare NiAl-LDH/graphene (NiAl-LDH/G) nanocomposites using a conventional coprecipitation process under low-temperature conditions and subsequent reduction of the supporting graphene oxide. Electrochemical tests showed that the NiAl-LDH/G modified electrode exhibited highly enhanced electrochemical performance of dopamine electrooxidation in comparison with the pristine NiAl-LDH modified electrode. Results of high-resolution transmission electron microscopy and Raman spectra provide convincing information on the nanostructure and composition underlying the enhancement. Our results of the NiAl-LDH/G modified electrodes with the enhanced electrochemical performance may allow designing a variety of promising hybrid sensors via a simple and feasible approach.Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clays, have been investigated widely as promising electrochemical active materials. Due to the inherently weak conductivity, the electrochemical properties of LDHs were improved typically by utilization of either functional molecules intercalated between LDH interlayer galleries, or proteins confined between exfoliated LDH nanosheets. Here, we report a facile protocol to prepare NiAl-LDH/graphene (NiAl-LDH/G) nanocomposites using a conventional coprecipitation process under low-temperature conditions and subsequent reduction of the supporting graphene oxide. Electrochemical tests showed that the NiAl-LDH/G modified electrode exhibited highly enhanced electrochemical performance of dopamine electrooxidation in comparison with the pristine NiAl-LDH modified electrode. Results of high-resolution transmission electron microscopy and Raman spectra provide convincing information on the nanostructure and composition underlying the enhancement. Our results of the NiAl-LDH/G modified electrodes with the enhanced electrochemical performance may allow designing a variety of promising hybrid sensors via a simple and feasible approach. Electronic supplementary information (ESI) available: Fig. S1 showing 2D fast Fourier transform (FFT) image of NiAl-LDH phase in NiAl-LDH/G composites, and Fig. S2 showing CV curve of the pristine G modified electrode. See DOI: 10.1039/c1nr10592b.
Yu, Feilong; Deng, Hua; Bai, Hongwei; Zhang, Qin; Wang, Ke; Chen, Feng; Fu, Qiang
2015-05-20
Various methods have been devoted to trigger the formation of multilayered structure for wide range of applications. These methods are often complicated with low production efficiency or require complex equipment. Herein, we demonstrate a simple and efficient method for the fabrication of polymeric sheets containing multilayered structure with enhanced barrier property through high speed thin-wall injection molding (HSIM). To achieve this, montmorillonite (MMT) is added into PE first, then blended with PP to fabricate PE-MMT/PP ternary composites. It is demonstrated that alternating multilayer structure could be obtained in the ternary composites because of low interfacial tension and good viscosity match between different polymer components. MMT is selectively dispersed in PE phase with partial exfoliated/partial intercalated microstructure. 2D-WAXD analysis indicates that the clay tactoids in PE-MMT/PP exhibits an uniplanar-axial orientation with their surface parallel to the molded part surface, while the tactoids in binary PE-MMT composites with the same overall MMT contents illustrate less orientation. The enhanced orientation of nanoclay in PE-MMT/PP could be attributed to the confinement of alternating multilayer structure, which prohibits the tumbling and rotation of nanoplatelets. Therefore, the oxygen barrier property of PE-MMT/PP is superior to that of PE-MMT because of increased gas permeation pathway. Comparing with the results obtained for PE based composites in literature, outstanding barrier property performance (45.7% and 58.2% improvement with 1.5 and 2.5 wt % MMT content, respectively) is achieved in current study. Two issues are considered responsible for such improvement: enhanced MMT orientation caused by the confinement in layered structure, and higher local density of MMT in layered structure induced denser assembly. Finally, enhancement in barrier property by confining impermeable filler into alternating multilayer structure through such simple and efficient method could provide a novel route toward high-performance packaging materials and other functional materials require layered structure.
Carbon-based sputtered coatings for enhanced chitosan-based films properties
NASA Astrophysics Data System (ADS)
Fernandes, C.; Calderon V., S.; Ballesteros, Lina F.; Cerqueira, Miguel A.; Pastrana, L. M.; Teixeira, José A.; Ferreira, P. J.; Carvalho, S.
2018-03-01
In order to make bio-based packaging materials competitive in comparison to petroleum-based one, some of their properties need to be improved, among which gas permeability is of crucial importance. Thus, in this work, carbon-based coatings were applied on chitosan-based films by radiofrequency reactive magnetron sputtering aiming to improve their barrier properties. Chemical and morphological properties were evaluated in order to determine the effect of the coatings on the chemical structure, surface hydrophobicity and barrier properties of the system. Chemical analysis, performed by electron energy loss spectroscopy and Fourier transform infrared spectroscopy, suggests similar chemical characteristics among all coatings although higher incorporation of hydrogen as the acetylene flux increases was observed. On the other hand, scanning transmission electron microscopy revealed that the porosity of the carbon layer can be tailored by the acetylene flux. More importantly, the chitosan oxygen permeability showed a monotonic reduction as a function of the acetylene flux. This study opens up new opportunities to apply nanostructured coatings on bio-based polymer for enhanced oxygen barrier properties.
Mechanism of the dielectric enhancement in polymer-alumina nano-particle composites
NASA Astrophysics Data System (ADS)
Jacob, Rebecca; Jacob, Anne Pavitra; Mainwaring, David E.
2009-09-01
Polymer-alumina nano-composites with enhanced dielectric properties as a possibility to enable the miniaturization of devices have been reported. The enhancement of dielectric properties was found to be unique to the polymer. In the present work, the mechanism of the dielectric enhancement is established by performing ab initio molecular orbital calculations in order to study the molecular interactions in the interfacial region between the alumina-nano-particle surface and the polymer medium. The calculations predict the existence of strong electrostatic attraction between the positive charge on the aluminium of the alumina clusters and the negative charge of the oxygens of the polymer at the polymer-nano-particle interface resulting in an increase in the dipole moment and the polarization of the system leading to enhanced dielectric properties. The oxygen thus plays a dual role by involving in covalent bonding with the polymer chain and electrostatic bonding interactions with the alumina nano-particles. The unique structure of the polymer provides the highly electronegative oxygens, as carbonyl groups or ether linkages in conjugation with aromatic rings in an extended polymer chain system, facilitating this type of bonding at the interface.
Hierarchical and Well-Ordered Porous Copper for Liquid Transport Properties Control.
Pham, Quang N; Shao, Bowen; Kim, Yongsung; Won, Yoonjin
2018-05-09
Liquid delivery through interconnected pore network is essential for various interfacial transport applications ranging from energy storage to evaporative cooling. The liquid transport performance in porous media can be significantly improved through the use of hierarchical morphology that leverages transport phenomena at different length scales. Traditional surface engineering techniques using chemical or thermal reactions often show nonuniform surface nanostructuring within three-dimensional pore network due to uncontrollable diffusion and reactivity in geometrically complex porous structures. Here, we demonstrate hierarchical architectures on the basis of crystalline copper inverse opals using an electrochemistry approach, which offers volumetric controllability of structural and surface properties within the complex porous metal. The electrochemical process sequentially combines subtractive and additive steps-electrochemical polishing and electrochemical oxidation-to improve surface wetting properties without sacrificing structural permeability. We report the transport performance of the hierarchical inverse opals by measuring the capillary-driven liquid rise. The capillary performance parameter of hierarchically engineered inverse opal ( K/ R eff = ∼5 × 10 -3 μm) is shown to be higher than that of a typical crystalline inverse opal ( K/ R eff = ∼1 × 10 -3 μm) owing to the enhancement in fluid permeable and hydrophilic pathways. The new surface engineering method presented in this work provides a rational approach in designing hierarchical porous copper for transport performance enhancements.
Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes.
Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Hahm, Donghyo; Chang, Jun Hyuk; Lee, Taesoo; Char, Kookheon; Lee, Doh C; Lim, Jaehoon; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki
2018-06-19
We present ligand-asymmetric Janus quantum dots (QDs) to improve the device performance of quantum dot light-emitting diodes (QLEDs). Specifically, we devise blue QLEDs incorporating blue QDs with asymmetrically modified ligands, in which the bottom ligand of QDs in contact with ZnO electron-transport layer serves as a robust adhesive layer and an effective electron-blocking layer and the top ligand ensures uniform deposition of organic hole transport layers with enhanced hole injection properties. Suppressed electron overflow by the bottom ligand and stimulated hole injection enabled by the top ligand contribute synergistically to boost the balance of charge injection in blue QDs and therefore the device performance of blue QLEDs. As an ultimate achievement, the blue QLED adopting ligand-asymmetric QDs displays 2-fold enhancement in peak external quantum efficiency (EQE = 3.23%) compared to the case of QDs with native ligands (oleic acid) (peak EQE = 1.49%). The present study demonstrates an integrated strategy to control over the charge injection properties into QDs via ligand engineering that enables enhancement of the device performance of blue QLEDs and thus promises successful realization of white light-emitting devices using QDs.
Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian
2017-05-24
The enhancement of thermoelectric figure of merit ZT requires to either increase the power factor or reduce the phonon conductance, or even both. In graphene, the high phonon thermal conductivity is the main factor limiting the thermoelectric conversion. The common strategy to enhance ZT is therefore to introduce phonon scatterers to suppress the phonon conductance while retaining high electrical conductance and Seebeck coefficient. Although thermoelectric performance is eventually enhanced, all studies based on this strategy show a significant reduction of the electrical conductance. In this study we demonstrate that appropriate sources of disorder, including isotopes and vacancies at lowest electron density positions, can be used as phonon scatterers to reduce the phonon conductance in graphene ribbons without degrading the electrical conductance, particularly in the low-energy region which is the most important range for device operation. By means of atomistic calculations we show that the natural electronic properties of graphene ribbons can be fully preserved while their thermoelectric efficiency is strongly enhanced. For ribbons of width M = 5 dimer lines, room-temperature ZT is enhanced from less than 0.26 to more than 2.5. This study is likely to set the milestones of a new generation of nano-devices with dual electronic/thermoelectric functionalities.
Qin, Hui; Zhao, Yaochao; An, Zhiquan; Cheng, Mengqi; Wang, Qi; Cheng, Tao; Wang, Qiaojie; Wang, Jiaxing; Jiang, Yao; Zhang, Xianlong; Yuan, Guangyin
2015-06-01
Magnesium (Mg), a potential biodegradable material, has recently received increasing attention due to its unique antibacterial property. However, rapid corrosion in the physiological environment and potential toxicity limit clinical applications. In order to improve the corrosion resistance meanwhile not compromise the antibacterial activity, a novel Mg alloy, Mg-Nd-Zn-Zr (Hereafter, denoted as JDBM), is fabricated by alloying with neodymium (Nd), zinc (Zn), zirconium (Zr). pH value, Mg ion concentration, corrosion rate and electrochemical test show that the corrosion resistance of JDBM is enhanced. A systematic investigation of the in vitro and in vivo antibacterial capability of JDBM is performed. The results of microbiological counting, CLSM, SEM in vitro, and microbiological cultures, histopathology in vivo consistently show JDBM enhanced the antibacterial activity. In addition, the significantly improved cytocompatibility is observed from JDBM. The results suggest that JDBM effectively enhances the corrosion resistance, biocompatibility and antimicrobial properties of Mg by alloying with the proper amount of Zn, Zr and Nd. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shimizu, Yasunobu; Matsumoto, Yuji; Aoki, Kosuke; Kimura, Noriaki; Aoki, Haruyoshi
2012-04-01
We have performed an extensive study on the electronic transport properties of CexLa1-xRu2Si2. At zero field or under the fields parallel to the hard axis of magnetization, the residual resistivity, magnetoresistivity and Hall resistivity are found to be most enhanced around x = 0.85 in the antiferromagnetic state. On the other hand, the high magnetic field along the easy axis is effective to suppress the enhancement. The coherence temperature derived from the temperature variation of Hall coefficient becomes equal to the antiferromagnetic transition temperature at x = 0.85, indicating that the competition between the coherence of the Kondo singlet and the long range magnetic order is responsible for the enhancement. The competition is likely to affect also the magnetic properties in the antiferromagnetic state. The comparison with the de Haas--van Alphen effect measurements suggests that the enhancement is likely to be due to the increase in scattering. The present results are compared with the theory by Hattori and Miyake.
Xie, Jiazhuo; Wang, Haijun; Wang, Zhou; Zhao, Qinghua; Yang, Yuechao; Waterhouse, Geoffrey I N; Hao, Lei; Xiao, Zihao; Xu, Jing
2018-01-08
Herein, we reported the successful development of novel nanocomposite films based on linear low density polyethylene (LLDPE) with enhanced anti-drop, optical, mechanical, thermal and water vapor barrier properties by introducing organophilic layered double hydroxides (OLDHs) nanosheets. OLDHs loadings were varied from 0-6 wt.%. Structural analyses using the Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) indicated that the OLDHs nanosheets were homogeneously dispersed with an ordered alignment in the LLDPE matrix. The LLDPE film containing 2 wt.% OLDHs (denoted as OLDHs-2) showed the optimal mechanical, thermal and water vapor barrier properties, whilst the anti-drop and optical performance of the films improved with increasing OLDHs content. The enhanced antidrop properties of the composite films relative to pristine LLDPE can be expected to effectively reduce agricultural losses to disease when the films are applied as agricultural films, whilst the superior light transmittance and water-retaining properties of the composite films will boost agricultural production. Results presented suggest that multifunctional LLDPE/OLDHs nanocomposites show great promise as low cost agricultural plastic films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua
Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in themore » temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm{sup −1}) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.« less
Shen, Deli; Pang, Aiying; Li, Yafeng; Dou, Jie; Wei, Mingdeng
2018-01-31
In this study, metal-organic frameworks, as an interfacial layer, were introduced into perovskite solar cells (PSCs) for the first time. An interface modified with the metal-organic framework ZIF-8 efficiently enhanced perovskite crystallinity and grain sizes, and the photovoltaic performance of the PSCs was significantly improved, resulting in a maximum PCE of 16.99%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al tahtamouni, T. M., E-mail: talal@yu.edu.jo; Lin, J. Y.; Jiang, H. X.
2014-04-15
Mg-doped AlN/AlGaN superlattice (Mg-SL) and Mg-doped AlGaN epilayers have been investigated in the 284 nm deep ultraviolet (DUV) light emitting diodes (LEDs) as electron blocking layers. It was found that the use of Mg-SL improved the material quality of the p-GaN contact layer, as evidenced in the decreased density of surface pits and improved surface morphology and crystalline quality. The performance of the DUV LEDs fabricated using Mg-SL was significantly improved, as manifested by enhanced light intensity and output power, and reduced turn-on voltage. The improved performance is attributed to the enhanced blocking of electron overflow, and enhanced hole injection.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan
2015-07-01
Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c
NASA Astrophysics Data System (ADS)
Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.
2017-11-01
Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.
Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf
2008-01-01
Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988
Liang, Xu; Nie, Kaiwen; Ding, Xian; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Jiang, Ruibin; He, Xuexia; Liu, Zonghuai; Lei, Zhibin
2018-03-28
The development of compressible supercapacitor highly relies on the innovative design of electrode materials with both superior compression property and high capacitive performance. This work reports a highly compressible supercapacitor electrode which is prepared by growing electroactive NiCo 2 S 4 (NCS) nanosheets on the compressible carbon sponge (CS). The strong adhesion of the metallic conductive NCS nanosheets to the highly porous carbon scaffolds enable the CS-NCS composite electrode to exhibit an enhanced conductivity and ideal structural integrity during repeated compression-release cycles. Accordingly, the CS-NCS composite electrode delivers a specific capacitance of 1093 F g -1 at 0.5 A g -1 and remarkable rate performance with 91% capacitance retention in the range of 0.5-20 A g -1 . Capacitance performance under the strain of 60% shows that the incorporation of NCS nanosheets in CS scaffolds leads to over five times enhancement in gravimetric capacitance and 17 times enhancement in volumetric capacitance. These performances enable the CS-NCS composite to be one of the promising candidates for potential applications in compressible electrochemical energy storage devices.
Ding, Yuxiao; Klyushin, Alexander; Huang, Xing; Jones, Travis; Teschner, Detre; Girgsdies, Frank; Rodenas, Tania; Schlögl, Robert; Heumann, Saskia
2018-03-19
By taking inspiration from the catalytic properties of single-site catalysts and the enhancement of performance through ionic liquids on metal catalysts, we exploited a scalable way to place single cobalt ions on a carbon-nanotube surface bridged by polymerized ionic liquid. Single dispersed cobalt ions coordinated by ionic liquid are used as heterogeneous catalysts for the oxygen evolution reaction (OER). Performance data reveals high activity and stable operation without chemical instability. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Refuse derived soluble bio-organics enhancing tomato plant growth and productivity.
Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe
2012-10-01
Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
High performance of poly(dopamine)-functionalized graphene oxide/poly(vinyl alcohol) nanocomposites
NASA Astrophysics Data System (ADS)
Ma, Jiaojiao; Pan, Jingkai; Yue, Jia; Xu, Yu; Bao, Jianjun
2018-01-01
In this paper, poly(vinyl alcohol) (PVA)/poly(dopamine)-functionalized graphene oxide (PGO) nanocomposites with high performance were prepared by an environment-friendly and facile strategy. GO was firstly functionalized and simultaneously reduced by poly(dopamine) to yield PGO. Then it was mixed with PVA in aqueous solution to make PVA/PGO nanocomposites. Transmission electron microscopy revealed that the PGO nanosheets are well dispersed and randomly oriented throughout the PVA matrix. At the same time, the thermal properties and water barrier properties of the PVA/PGO nanocomposites have been strikingly enhanced by the incorporation of PGO. The degradation temperature of the nanocomposites is more than 30 °C higher than that of pure PVA by the addition of 0.7 wt% PGO, which shows good thermal stability. The water vapor permeability of the nanocomposites also decreases to 0.71 × 10-12 g cm/(cm2 s Pa), corresponding to 80% reduction than that of pure PVA. Moreover, the PVA/PGO nanocomposites also present enhanced conductive properties. The PVA/PGO nanocomposites with such outstanding properties show great promising applications in the fields of packaging, electronics, fuel cell industry, fiber, and so on.
Kim, Songkil; Russell, Michael; Kulkarni, Dhaval D; Henry, Mathias; Kim, Steve; Naik, Rajesh R; Voevodin, Andrey A; Jang, Seung Soon; Tsukruk, Vladimir V; Fedorov, Andrei G
2016-01-26
Interfacial contact of two-dimensional graphene with three-dimensional metal electrodes is crucial to engineering high-performance graphene-based nanodevices with superior performance. Here, we report on the development of a rapid "nanowelding" method for enhancing properties of interface to graphene buried under metal electrodes using a focused electron beam induced deposition (FEBID). High energy electron irradiation activates two-dimensional graphene structure by generation of structural defects at the interface to metal contacts with subsequent strong bonding via FEBID of an atomically thin graphitic interlayer formed by low energy secondary electron-assisted dissociation of entrapped hydrocarbon contaminants. Comprehensive investigation is conducted to demonstrate formation of the FEBID graphitic interlayer and its impact on contact properties of graphene devices achieved via strong electromechanical coupling at graphene-metal interfaces. Reduction of the device electrical resistance by ∼50% at a Dirac point and by ∼30% at the gate voltage far from the Dirac point is obtained with concurrent improvement in thermomechanical reliability of the contact interface. Importantly, the process is rapid and has an excellent insertion potential into a conventional fabrication workflow of graphene-based nanodevices through single-step postprocessing modification of interfacial properties at the buried heterogeneous contact.
Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon M.; ...
2017-02-22
Amidoxime-functionalized polydimethylsiloxane (AO-PDMSPNB) membranes with various amidoxime compositions were synthesized via ring-opening metathesis polymerization followed by post-polymerization modification. Compared to other previously reported PDMS-based membranes, the amidoxime-functionalized membranes show enhanced CO 2 permeability and CO 2/N 2 selectivity. The overall gas separation performance (CO 2 permeability 6800 Barrer; CO 2/N 2 selectivity 19) of the highest performing membrane exceeds the Robeson upper bound line, and the excellent permeability of the copolymer itself provides great potential for real world applications where huge volumes of gases are separated. This study details how tuning the CO 2-philicity within rubbery polymer matrices influences gasmore » transport properties. Key parameters for tuning gas transport properties are discussed, and the experimental results show good consistency with theoretical calculations. Finally, this study provides a roadmap to enhancing gas separation performance in rubbery polymers by tuning gas solubility selectivity.« less
Trottier-Lapointe, W; Zabeida, O; Schmitt, T; Martinu, L
2016-11-01
Ultralow refractive index materials (n less than 1.38 at 550 nm) are of particular interest in the context of antireflective coatings, allowing one to enhance their overall optical performance. However, application of such materials is typically limited by their mechanical properties. In this study, we explore the characteristics of a new category of hybrid (organic/inorganic) SiOCH thin films prepared by glancing angle deposition (GLAD) using electron beam evaporation of SiO2 in the presence of an organosilicon precursor. The resulting layers exhibited n as low as 1.2, showed high elastic rebound, and generally better mechanical properties than their inorganic counterparts. In addition, hybrid GLAD films were found to be highly hydrophobic. The performance of the films is discussed in terms of their hybridicity (organic/inorganic) ratio determined by infrared spectroscopic ellipsometry as well as the presence of anisotropy assessed by the nanostructure-based spectroscopic ellipsometry model. Finally, we demonstrate successful implementation of the ultralow-index material in a complete antireflective stack.
Sheng, Yinying; Hua, Youlu; Zhao, Xueyang; Chen, Lianxi; Zhou, Hanyu; Wang, James; Berndt, Christopher C.; Li, Wei
2018-01-01
The technology of high-density electropulsing has been applied to increase the performance of metallic materials since the 1990s and has shown significant advantages over traditional heat treatment in many aspects. However, the microstructure changes in electropulsing treatment (EPT) metals and alloys have not been fully explored, and the effects vary significantly on different material. When high-density electrical pulses are applied to metals and alloys, the input of electric energy and thermal energy generally leads to structural rearrangements, such as dynamic recrystallization, dislocation movements and grain refinement. The enhanced mechanical properties of the metals and alloys after high-density electropulsing treatment are reflected by the significant improvement of elongation. As a result, this technology holds great promise in improving the deformation limit and repairing cracks and defects in the plastic processing of metals. This review summarizes the effect of high-density electropulsing treatment on microstructural properties and, thus, the enhancement in mechanical strength, hardness and corrosion performance of metallic materials. It is noteworthy that the change of some properties can be related to the structure state before EPT (quenched, annealed, deformed or others). The mechanisms for the microstructural evolution, grain refinement and formation of oriented microstructures of different metals and alloys are presented. Future research trends of high-density electrical pulse technology for specific metals and alloys are highlighted. PMID:29364844
NASA Astrophysics Data System (ADS)
Hamzah, Mohamad Hazmi; Deraman, Rafikullah; Saman, Nor Sarwani Mat
2017-12-01
In Malaysia, 45% of the average household electricity was consumed by air conditioners to create an acceptable indoor environment. This high energy consumption was mostly related to poor thermal performance of the building envelope. Therefore, selecting a low thermal conductivity of brick wall was of considerable importance in creating energy efficient buildings. Previously, numerous researchers reported the potential used of agricultural waste as an additive in building materials to enhance their thermal properties. The aim of this study is to examine how agricultural wastes from empty fruit bunch (EFB), coconut fibre (CF) and sugarcane bagasse (SB) can act as additive agents in a fired clay brick manufacturing process to produce a low thermal conductivity clay brick. In this study, these agricultural wastes were individually mixed with clay soil in different proportions ranging from 0%, 2.5%, 5%, 7.5% and 10% by weight. Physical and mechanical properties including soil physical properties, as well as thermal conductivity were performed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985 and ASTM C518. The results reveal that incorporating 5% of EFB as an additive component into the brick making process significantly enhances the production of a low thermal conductivity clay brick as compared to other waste alternatives tested. This finding suggests that EFB waste was a potential additive material to be used for the thermal property enhancement of the building envelope.
NASA Astrophysics Data System (ADS)
AL-Zoubi, Omar H.
Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we found that the optical properties of SiNW arrays are strongly affected by the radial diversity, the arrangement of SiNW in a lattice, and the configuration of such lattice. The proper selection of these parameters leads to broaden and enhance the light absorption of the SiNW arrays. Inspired by natural configurations, fractal geometry and diamond lattice structures, we introduced two lattice configurations: fractal-like array (FLA) that is inspired by fractal geometry, and diamond-like array (DLA) that is inspired by diamond crystal lattice structure. Optimization, using parametric analysis, of the introduced arrays parameters for the light absorption level and the amount of used material has been performed. Both of the introduced SiNW arrays show broadband, strong light absorption coupled with reduction of the amount of the used material. DLA in specific showed significantly enhanced absorption covering the entire solar spectrum of interest, where near-unity absorption spectrum could be achieved. We studied the optical properties of complete PVSC devices that are based on SiNW array. Moreover, the performance of PVSC device that is based on SiNW has been investigated by using numerical modeling. SILVACO software package is used for performing the numerical simulation of the PVSC device performance, which can simultaneously handle the different coupled physical mechanisms contributing to the photovoltaic effect. The effect of the geometry of PVSC device that is based on SiNW is investigated, which shows that the geometry of such PVSC has a role in enhancing its electrical properties. The outcome of this study introduces new SiNW array configurations that have enhanced optical properties using a low amount of material that can be utilized for producing higher efficiency thin film PVCS. The overall conclusion of this work is that a weak absorption indirect band gap material, silicon, in the form of properly designed SiNW and SiNC arrays has the potentials to achieve near-unity ideal absorption spectrum using reduced amount of material, which can lead to produce new generation of lower cost and enhanced efficiency thin film PVSC.
EMI shielding performance of lead hexaferrite/polyaniline composite in 8-18 GHz frequency range
NASA Astrophysics Data System (ADS)
Choudhary, Harish Kumar; Pawar, Shital Patangrao; Bose, Suryasarathi; Sahoo, Balaram
2018-05-01
EMI shielding properties of nanocomposite containing lead hexaferrite (PFO) and polyaniline (PANI), a conducting polymer, was studied in X and Ku band frequencies. The nanocomposite shows enhanced EMI shielding properties than that of the pure PANI. Incorporation of PFO particles in the PANI enhances the total shielding effectiveness (SET) up to -24 dB at 18 GHz. This means that these nanocomposites can shield ˜99 % of the incoming EM radiation. The PFO/PANI shows much higher attenuation constant values over the measured frequency range. By adding the PFO in the PANI we have created more interfaces between Wax-PFO, Wax-PANI, PANI-PFO and PFO-PANI. These enhanced interfaces lead to Maxwell-Wagner polarization which results in a higher dielectric loss than only PANI.
NASA Astrophysics Data System (ADS)
Zanini, Stefano; Citterio, Attilio; Leonardi, Gabriella; Riccardi, Claudia
2018-01-01
We performed atmospheric pressure plasma treatments of wool/cashmere (15/85%) textiles with a dielectric barrier discharge (DBD) in nitrogen. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy, X-ray photoelectron microscopy (XPS), and fatty acid gas chromatographic analysis. Changes in mechanical properties and tactile performance of textiles after the plasma treatment were determined using the KES-F system. The analyses reveal significant surface modification of the treated fabrics, which enhances their surface wettability.
Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone).
Ortega-Toro, Rodrigo; Santagata, Gabriella; Gomez d'Ayala, Giovanna; Cerruti, Pierfrancesco; Talens Oliag, Pau; Chiralt Boix, M Amparo; Malinconico, Mario
2016-08-20
The use of a modified poly(ε-caprolactone) (gPCL) to enhance polymer miscibility in films based on thermoplastic starch (S) and poly(ε-caprolactone) is reported. PCL was functionalized by grafting with maleic anyhdride (MA) and/or glycidyl methacrylate (GMA) by reactive blending in a batch mixer. gPCL based materials were analysed in terms of their grafting degree, structural and thermal properties. Blends based on starch and PCL (wt. ratio 80:20) with including gPCL (0, 2.5 and 5wt.%), as a compatibilizer, were obtained by extrusion and compression moulding, and their structural, thermal, mechanical and barrier properties were investigated. Blends containing gPCL evidenced better interfacial adhesion between starch and PCL domains, as deduced from both structural (XRD, FTIR, SEM) and bulk properties (DSC, TGA). Moreover, grafted PCL-based compatibilizers greatly improved functional properties of S-PCL blend films, as pointed out from mechanical performance and higher barrier properties, valuable to meet the food packaging requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.
Digitally Enhanced Heterodyne Interferometry
NASA Technical Reports Server (NTRS)
Shaddock, Daniel; Ware, Brent; Lay, Oliver; Dubovitsky, Serge
2010-01-01
Spurious interference limits the performance of many interferometric measurements. Digitally enhanced interferometry (DEI) improves measurement sensitivity by augmenting conventional heterodyne interferometry with pseudo-random noise (PRN) code phase modulation. DEI effectively changes the measurement problem from one of hardware (optics, electronics), which may deteriorate over time, to one of software (modulation, digital signal processing), which does not. DEI isolates interferometric signals based on their delay. Interferometric signals are effectively time-tagged by phase-modulating the laser source with a PRN code. DEI improves measurement sensitivity by exploiting the autocorrelation properties of the PRN to isolate only the signal of interest and reject spurious interference. The properties of the PRN code determine the degree of isolation.
Tough and Reinforced Polypropylene/Kaolin Composites using Modified Kaolin
NASA Astrophysics Data System (ADS)
Yao, J. L.; Zhu, H. X.; Qi, Y. B.; Guo, M. J.; Hu, Q.; Gao, L.
2018-05-01
Polypropylene (PP)/kaolin composites have been prepared by filling modified kaolin with diethylenetriaminepentaacetic acid (DTPA) into the PP matrix. The surface modification of kaolin particles effectively improves the compatibility between kaolin and PP matrix. It is conducive for uniform dispersion of inorganic particles in the matrix, and enhances the mechanical performance of the composites. Compared with plain kaolin, the mechanical properties of the modified composites exhibit higher tensile strength, bending strength, impact strength and melt index simultaneously. The DTPA modification of kaolin overall enhances the mechanical properties of PP composites. It meets the requirements in various applications, and makes the modified experiment interesting in modern teaching.
Calcium phosphate cements for bone engineering and their biological properties
Xu, Hockin HK; Wang, Ping; Wang, Lin; Bao, Chongyun; Chen, Qianming; Weir, Michael D; Chow, Laurence C; Zhao, Liang; Zhou, Xuedong; Reynolds, Mark A
2017-01-01
Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis. PMID:29354304
The nootropic properties of ginseng saponin Rb1 are linked to effects on anxiety.
Churchill, James D; Gerson, Jennifer L; Hinton, Kendra A; Mifek, Jennifer L; Walter, Michael J; Winslow, Cynthia L; Deyo, Richard A
2002-01-01
Previous studies have shown that crude ginseng extracts enhance performance on shock-motivated tasks. Whether such performance enhancements are due to memory-enhancing (nootropic) properties of ginseng, or to other non-specific effects such as an influence on anxiety has not been determined. In the present study, we evaluated both the nootropic and anxiolytic effects of the ginseng saponin Rb1. In the first experiment, 80 five-day-old male chicks received intraperitoneal injections of 0, 0.25, 2.5 or 5.0 mg/kg Rb1. Performance on a visual discrimination task was evaluated 15 minutes, 24 and 72 hours later. Acquisition of a visual discrimination task was unaffected by drug treatment, but the number of errors was significantly reduced in the 0.25 mg/kg group during retention trials completed 24 and 72 hours after injection. Animals receiving higher dosages showed trends towards enhancement initially, but demonstrated impaired performance when tested 72 hours later. Rb1 had no effect on response rates or body weight. In the second experiment, 64 five-day-old male chicks received similar injections of Rb1 (0, 0.25, 2.5 or 5.0 mg/kg) and separation distress was evaluated 15 minutes, 24 and 72 hours later. Rb1 produced a change in separation distress that depended on the dose and environmental condition under which distress was recorded. These data suggest that Rb1 can improve memory for a visual discrimination task and that the nootropic effect may be related to changes in anxiety.
Park, Hyun-Woo; Song, Aeran; Choi, Dukhyun; Kim, Hyung-Jun; Kwon, Jang-Yeon; Chung, Kwun-Bum
2017-09-14
Tungsten-indium-zinc-oxide thin-film transistors (WIZO-TFTs) were fabricated using a radio frequency (RF) co-sputtering system with two types of source/drain (S/D)-electrode material of conducting WIZO (homojunction structure) and the indium-tin oxide (ITO) (heterojunction structure) on the same WIZO active-channel layer. The electrical properties of the WIZO layers used in the S/D electrode and the active-channel layer were adjusted through oxygen partial pressure during the deposition process. To explain enhancements of the device performance and stability of the homojunction-structured WIZO-TFT, a systematic investigation of correlation between device performance and physical properties at the interface between the active layer and the S/D electrodes such as the contact resistance, surface/interfacial roughness, interfacial-trap density, and interfacial energy-level alignments was conducted. The homojunction-structured WIZO-TFT exhibited a lower contact resistance, smaller interfacial-trap density, and flatter interfacial roughness than the WIZO-TFT with the heterojunction structure. The 0.09 eV electron barrier of the homojunction-structured WIZO-TFT is lower than the 0.21 eV value that was obtained for the heterojunction-structured WIZO-TFT. This reduced electron barrier may be attributed to enhancements of device performance and stability, that are related to the carrier transport.
Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations
NASA Astrophysics Data System (ADS)
Liu, Gongping; Chernikova, Valeriya; Liu, Yang; Zhang, Kuang; Belmabkhout, Youssef; Shekhah, Osama; Zhang, Chen; Yi, Shouliang; Eddaoudi, Mohamed; Koros, William J.
2018-03-01
Membrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal-organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes. We demonstrate, simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the fcu-MOF pore. This rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized pore-apertures.
The Effects of Cryogenic Treatment on Cutting Tools
NASA Astrophysics Data System (ADS)
Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.
2017-08-01
Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.
Enhancing the engineering properties of expansive soil using bagasse ash
NASA Astrophysics Data System (ADS)
Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah
2017-11-01
This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.
Qin, Guangzhao; Yan, Qing-Bo; Qin, Zhenzhen; Yue, Sheng-Ying; Cui, Hui-Juan; Zheng, Qing-Rong; Su, Gang
2014-01-01
We systematically investigated the geometric, electronic and thermoelectric (TE) properties of bulk black phosphorus (BP) under strain. The hinge-like structure of BP brings unusual mechanical responses such as anisotropic Young's modulus and negative Poisson's ratio. A sensitive electronic structure of BP makes it transform among metal, direct and indirect semiconductors under strain. The maximal figure of merit ZT of BP is found to be 0.72 at 800 K that could be enhanced to 0.87 by exerting an appropriate strain, revealing BP could be a potential medium-high temperature TE material. Such strain-induced enhancements of TE performance are often observed to occur at the boundary of the direct-indirect band gap transition, which can be attributed to the increase of degeneracy of energy valleys at the transition point. By comparing the structure of BP with SnSe, a family of potential TE materials with hinge-like structure are suggested. This study not only exposes various novel properties of BP under strain, but also proposes effective strategies to seek for better TE materials. PMID:25374306
Integrated Computational Materials Engineering Development of Alternative Cu-Be Alloys
2012-08-01
Be alloy replacement in highly loaded wear applications . ● Development bushing designs for the enhancement of dynamic wear performance...Material Properties and Tribological Characterization Cu-Based and Co- Based Alloy Concept Selection Requirements Definition Bushing Design and...properties and cost for highly loaded bushing applications ● QuesTek’s NAVAIR-funded SBIR Phase II program demonstrated the feasibility of designing Be-free
NASA Astrophysics Data System (ADS)
Li, Qi; Qin, Shengxue; Tian, Xiujuan; Chen, Xueyang; Chen, Yunlei; Niu, Yanhua; Zhao, Lifen
2018-03-01
Enhancement of the interfacial structure has great significances in achieving polymer blends with high mechanical performance. To improve the mechanical properties of poly(L-lactide) (PLLA)/poly(propylidene carbonate) (PPC) blends, the covalent functionalized graphene oxide by PLLA chains (PLLA-g-GO) was synthesized by a two-step strategy. It could migrate from the thermally preferred PPC phase to the interfaces of PLLA and PPC and promote the formation of a network-like structure. As a consequence, the tensile strength and elongation at break were both improved. Furthermore, the PLLA-g-GO located at the interface could induce the crystallization at the boundary, which brought the significant improvement of the tensile strength and elongation at break. This result may be beneficial for designing high-performance PLLA materials.
Enhanced microwave absorption properties of Fe3O4-modified flaky FeSiAl
NASA Astrophysics Data System (ADS)
He, Jun; Deng, Lianwen; Liu, Sheng; Yan, Shuoqing; Luo, Heng; Li, Yuhan; He, Longhui; Huang, Shengxiang
2017-12-01
The magnetic insulator Fe3O4-modified flaky Fe85Si9.5Al5.5 (FeSiAl) powders with significantly enhanced electromagnetic wave absorption properties in the frequency range of 2-8 GHz were prepared by chemical co-precipitation. X-ray diffraction (XRD) and scanning electron microscopy (SEM) have confirmed the formation of nanoparticles Fe3O4 precipitated on the flake-shaped FeSiAl. The electromagnetic measurements of the modified flakes presents a nearly invariable complex permeability and decreased complex permittivity in the 2-8 GHz, as well as improved impedance matching performance. More importantly, an excellent microwave absorbing performance with the bandwidth (RL <-10 dB) of 5.36 GHz is achieved in modified sample with the thickness of 1.5 mm, which is a promising microwave absorbing material in 2-8 GHz.
NASA Astrophysics Data System (ADS)
Yasir, Muhammad; Amir, Norlaili Binti; Ahmad, Faiz; Syahirah Rodzhan, N.
2017-08-01
This research is carried out in order to study the synergistic effect of aluminium trihydrate and basalt fibres on the properties of fire resistant intumescent coatings. Intumescent fire retardant coatings were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder along with curing agent. Furthermore, individual and combinations of aluminium trihydrate and basalt fibres was incorporated in the formulations to analyse mechanical and chemical properties of the coatings. Char expansion was observed using furnace test, thermogravimetric analysis was used to determine residual weight, X-Ray Diffraction was performed to investigate compounds present in the char, shear test was conducted to determine char strength and scanning electron microscopy analysis was performed to observe morphology of the burnt char. From the microscopic investigation it was concluded that the dense structure of the char increased the char integrity by adding basalt and aluminium trihydrate as fillers. X-Ray Diffraction results shows the presence boron phosphate, and boric acid which enhanced the thermal performance of the coating up to 800°C. From the Thermogravimetric analysis it was concluded that the residual weight of the char was increased up to 34.9 % for IC-B2A4 which enhanced thermal performance of intumescent coating.
Kim, Jeong-Hwan; Benelmekki, Maria
2016-12-07
We report a novel method for generating magneto-plasmonic carbon nanofilms and nanoscrolls using a combination of two gas-phase synthetic techniques. Ternary Fe@Ag@Si "onion-like" nanoparticles (NPs) are produced by a magnetron sputtering inert gas condensation source and are in situ landed onto the surface of carbon nanofilms, which were previously deposited by a DC arc discharge technique. Subsequently, a polyethylenimine-mediated chemical exfoliation process is performed to obtain carbon nanoscrolls (CNS) with embedded NPs (CNS-NPs). Of note, the carbon nanofilms undergo an interfacial transition upon addition of NPs and become rich in the sp 2 phase. This transformation endows and enhances multiple functions, such as thermal conductivity and the plasmonic properties of the nanocomposites. The obtained two-dimentional (2D) nanocomposites not only exhibit a highly efficient surface-enhanced Raman scattering property, allowing sensitive detection of malachite green isothiocyanate (MGIT) and adenosine-triphosphate (ATP) molecules at concentrations as low as 1 × 10 -10 M, but also show enhanced near-infrared-responsive photothermal activity when forming stable colloidal 1D CNS-NPs. In addition, the CNS-NPs present an enhanced single- and two-photon fluorescence in comparison with pristine CNS and NPs. These results make them suitable for the rational fabrication of "all-in-one" multifunctional nanocomposites with tubular structures toward a wide range of biomedical solutions.
1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization
Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin
2018-01-01
Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced. PMID:29570639
Enhancing Electrochemical Performance of Graphene Fiber-Based Supercapacitors by Plasma Treatment.
Meng, Jie; Nie, Wenqi; Zhang, Kun; Xu, Fujun; Ding, Xin; Wang, Shiren; Qiu, Yiping
2018-04-25
Graphene fiber-based supercapacitors (GFSCs) hold high power density, fast charge-discharge rate, ultralong cycling life, exceptional mechanical/electrical properties, and safe operation conditions, making them very promising to power small wearable electronics. However, the electrochemical performance is still limited by the severe stacking of graphene sheets, hydrophobicity of graphene fibers, and complex preparation process. In this work, we develop a facile but robust strategy to easily enhance electrochemical properties of all-solid-state GFSCs by simple plasma treatment. We find that 1 min plasma treatment under an ambient condition results in 33.1% enhancement of areal specific capacitance (36.25 mF/cm 2 ) in comparison to the as-prepared GFSC. The energy density reaches 0.80 μW h/cm 2 in polyvinyl alcohol/H 2 SO 4 gel electrolyte and 18.12 μW h/cm 2 in poly(vinylidene difluoride)/ethyl-3-methylimidazolium tetrafluoroborate electrolyte, which are 22 times of that of as-prepared ones. The plasma-treated GFSCs also exhibit ultrahigh rate capability (69.13% for 40 s plasma-treated ones) and superior cycle stability (96.14% capacitance retention after 20 000 cycles for 1 min plasma-treated ones). This plasma strategy can be extended to mass-manufacture high-performance carbonaceous fiber-based supercapacitors, such as graphene and carbon nanotube-based ones.
Design, characterization and modeling of biobased acoustic foams
NASA Astrophysics Data System (ADS)
Ghaffari Mosanenzadeh, Shahrzad
Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube measurements using an inverse technique. As the next step towards in depth understanding of the relation between cell morphology and sound absorption of open cell foams, a semi-analytical model was developed to account for the effect of micro cellular properties such as cell wall thickness and reticulation rate on overall macroscopic and structural properties. Developed model provides the tools to optimize the porous structure and enhance sound absorption capability.
Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes
2011-01-01
Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance. PMID:21711901
John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie
Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since themore » initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.« less
Scholey, Andrew B; Tildesley, Nicola T J; Ballard, Clive G; Wesnes, Keith A; Tasker, Andrea; Perry, Elaine K; Kennedy, David O
2008-05-01
Species of Salvia (sage) have a long-standing reputation in European medical herbalism, including for memory enhancement. In recent controlled trials, administration of sage extracts with established cholinergic properties improved cognitive function in young adults. This randomised, placebo-controlled, double-blind, balanced, five-period crossover study investigated the acute effects on cognitive performance of a standardised extract of Salvia officinalis in older adults. Twenty volunteers (>65 years of age, mean = 72.95) received four active doses of extract (167, 333, 666 and 1332 mg) and a placebo with a 7-day wash-out period between visits. Assessment involved completion of the Cognitive Drug Research computerised assessment battery. On study days, treatments were administered immediately following a baseline assessment with further assessment at 1, 2.5, 4 and 6 h post treatment. Compared with the placebo condition (which exhibited the characteristic performance decline over the day), the 333-mg dose was associated with significant enhancement of secondary memory performance at all testing times. The same measure benefited to a lesser extent from other doses. There also were significant improvements to accuracy of attention following the 333-mg dose. In vitro analysis confirmed cholinesterase inhibiting properties for the extract. The overall pattern of results is consistent with a dose-related benefit to processes involved in efficient stimulus processing and/or memory consolidation rather than retrieval or working memory efficiency. These findings extend those of the memory-enhancing effects of Salvia extracts in younger populations and warrant further investigation in larger series, in other populations and with different dosing regimes.
Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay.
Hebbar, Raghavendra S; Isloor, Arun M; Prabhu, Balakrishna; Inamuddin; Asiri, Abdullah M; Ismail, A F
2018-03-16
Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.
Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong
2010-10-01
Uniform and single-crystalline Mn(3)O(4) nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ∼160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a "dissolution-recrystallization" which is followed by an "Ostwald ripening" mechanism. The Mn(3)O(4) nano-octahedrons exhibited an enhanced specific capacitance of 322 F g(-1) compared with the truncated octahedrons with specific capacitances of 244 F g(-1), making them a promising electrode material for supercapacitors.
Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung
2017-09-28
Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.
Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications.
Li, Xuanhua; Zhu, Jinmeng; Wei, Bingqing
2016-06-07
Hybrid nanostructures composed of graphene or other two-dimensional (2D) nanomaterials and plasmonic metal components have been extensively studied. The unusual properties of 2D materials are associated with their atomically thin thickness and 2D morphology, and many impressive structures enable the metal nanomaterials to establish various interesting hybrid nanostructures with outstanding plasmonic properties. In addition, the hybrid nanostructures display unique optical characteristics that are derived from the close conjunction of plasmonic optical effects and the unique physicochemical properties of 2D materials. More importantly, the hybrid nanostructures show several plasmonic electrical effects including an improved photogeneration rate, efficient carrier transfer, and a plasmon-induced "hot carrier", playing a significant role in enhancing device performance. They have been widely studied for plasmon-enhanced optical signals, photocatalysis, photodetectors (PDs), and solar cells. In this review, the developments in the field of metal/2D hybrid nanostructures are comprehensively described. Preparation of hybrid nanostructures is first presented according to the 2D material type, as well as the metal nanomaterial morphology. The plasmonic properties and the enabled applications of the hybrid nanostructures are then described. Lastly, possible future research in this promising field is discussed.
The effects of ginseng, ephedrine, and caffeine on cognitive performance, mood and energy.
Lieberman, H R
2001-04-01
A variety of claims regarding the purported energy-enhancing properties of nutritional supplements and food constituents have recently been made. It appears that the supplements most frequently associated with such assertions are ginseng, ephedrine, and caffeine. Claims of increased energy are difficult to evaluate objectively because their meaning is not usually defined or specified. Often it is not clear whether the claims refer to physical or mental energy or both. Furthermore, an agreed upon scientific definition of either physical or mental energy enhancement does not exist. In spite of obvious differences in what the term physical energy, as opposed to mental energy implies, there is no clear scientific consensus on whether there is a difference between the two types of energy. Because the substances in question have been anecdotally associated with improvements in both physical and mental performance, their effects on both functions will be discussed, but with an emphasis placed on cognitive function and mood. Of the three substances discussed, caffeine's effects on cognitive and physical function, mood, and energy are best understood. It is clear that this food/drug enhances these functions when administered in moderate doses. Ephedrine may also enhance certain physical and mental functions related to "energy," but the evidence that ginseng has such properties is exceedingly weak.
NASA Astrophysics Data System (ADS)
Li, Zhen; Huang, Fei; Feng, Xin; Yan, Aihua; Dong, Haiming; Hu, Miao; Li, Qi
2018-06-01
A two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods. Here we demonstrate a phase-transition route to acquire two-phase-coexistence niobium oxyfluoride (Nb3O7F) nanocrystals for the first time. Based on key distinguishing features of the experimental results and theoretical analysis, the phase transition of Nb3O7F involves an organic/inorganic hybrid, heat treating, Al-doping, lattice deformation and structural rearrangement. The band gap can be effectively tuned from 3.03 eV to 2.84 eV, and the VBM can be tuned from 1.49 eV to 1.69 eV according to the phase proportion. Benefiting from uniform nanocrystal size, tunable band alignment and an optimized interfacial structure, the two-phase coexistence markedly enhances visible-light harvesting and the photocatalytic performance of Nb3O7F nanocrystals. The results not only demonstrate an opportunity to explore two-phase coexistence of novel nanocrystals, but also illustrate the role of two-phase coexistence in achieving enhanced photoelectronic properties.
Li, Zhen; Huang, Fei; Feng, Xin; Yan, Aihua; Dong, Haiming; Hu, Miao; Li, Qi
2018-06-01
A two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods. Here we demonstrate a phase-transition route to acquire two-phase-coexistence niobium oxyfluoride (Nb 3 O 7 F) nanocrystals for the first time. Based on key distinguishing features of the experimental results and theoretical analysis, the phase transition of Nb 3 O 7 F involves an organic/inorganic hybrid, heat treating, Al-doping, lattice deformation and structural rearrangement. The band gap can be effectively tuned from 3.03 eV to 2.84 eV, and the VBM can be tuned from 1.49 eV to 1.69 eV according to the phase proportion. Benefiting from uniform nanocrystal size, tunable band alignment and an optimized interfacial structure, the two-phase coexistence markedly enhances visible-light harvesting and the photocatalytic performance of Nb 3 O 7 F nanocrystals. The results not only demonstrate an opportunity to explore two-phase coexistence of novel nanocrystals, but also illustrate the role of two-phase coexistence in achieving enhanced photoelectronic properties.
Modifying surface properties of KIT-6 zeolite with Ni and V for enhancing catalytic CO methanation
NASA Astrophysics Data System (ADS)
Cao, Hong-Xia; Zhang, Jun; Guo, Cheng-Long; Chen, Jingguang G.; Ren, Xiang-Kun
2017-12-01
The surface of the KIT-6 zeolite was modified with different amounts of Ni and V to promote the catalytic properties for CO methanation. A series of xNi-yV/KIT-6 with various Ni and V contents were prepared by the incipient-wetness impregnation method. The modified surfaces were characterized using N2 adsorption-desorption, Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), Fourier transformed infrared spectroscopy (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDX), respectively. The characterization results illustrated that the modification of V species was able to significantly promote low-temperature catalytic performance below 350 °C compared to that of unmodified Ni/KIT-6, which was likely due to an increase in the H2 uptake accompanied by enhanced CO dissociation derived from stronger electron transfer from V species to Ni0. Correspondingly, the xNi-yV/KIT-6 catalysts exhibited a distinct enhancement in CO conversion, CH4 selectivity and CH4 yield over unmodified Ni/KIT-6. Among all catalysts, 20Ni-2V/KIT-6 showed the best catalytic performance, corresponding to nearly 100% CO conversion and 85% CH4 yield at a low temperature of 300 °C. Furthermore, 20Ni-2V/KIT-6 presented enhanced coking-resistant and anti-sintering properties during a 60h-lifetime test at 500 °C and 1 atm with a high weight hourly space velocity (WHSV) of 60000 ml/g/h.
Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application
NASA Astrophysics Data System (ADS)
Abd-Ellah, Marwa; Moghimi, Nafiseh; Zhang, Lei; Thomas, Joseph. P.; McGillivray, Donald; Srivastava, Saurabh; Leung, Kam Tong
2016-01-01
Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement for DSSC application.Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement for DSSC application. Electronic supplementary information (ESI) available: UV/Vis absorption spectra of GNP/ZnO-NT photoanodes with GNPs obtained with deposition for 30, 60, 300, and 600 s, showing the similar absorbance in the visible region for deposition time above 300 s (Fig. S1); current density vs. voltage profile of GNP/ZnO-NT based DSSC with agglomerated GNPs obtained by using a 10 mM AuCl3 electrolyte. (Fig. S2); and UV/Vis absorption spectra of pristine ZnO-NT and GNP/ZnO-NT samples (Fig. S3). See DOI: 10.1039/c5nr08029k
Zinc alloy enhances strength and creep resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machler, M.
1996-10-01
A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.
Magnuson, Matthew L; Speth, Thomas F
2005-10-01
Granular activated carbon is a frequently explored technology for removing synthetic organic contaminants from drinking water sources. The success of this technology relies on a number of factors based not only on the adsorptive properties of the contaminant but also on properties of the water itself, notably the presence of substances in the water which compete for adsorption sites. Because it is impractical to perform field-scale evaluations for all possible contaminants, the pore surface diffusion model (PSDM) has been developed and used to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into this model to account for kinetics of adsorption and competition for adsorption sites. This work further evaluates and expands this model, through the use of quantitative structure-property relationships (QSPRs) to predict the effect of natural organic matter fouling on activated carbon adsorption of specific contaminants. The QSPRs developed are based on a combination of calculated topographical indices and quantum chemical parameters. The QSPRs were evaluated in terms of their statistical predictive ability,the physical significance of the descriptors, and by comparison with field data. The QSPR-enhanced PSDM was judged to give results better than what could previously be obtained.
How Molecular Structure Affects Mechanical Properties of an Advanced Polymer
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.
2000-01-01
density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.
Prieske, Olaf; Maffiuletti, Nicola A; Granacher, Urs
2018-01-01
High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players ( N = 12) aged 14-15 years conducted three experimental conditions in randomized order: S included 3 sets of 8-10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties ( p < 0.05, d = 1.1) and jump performance outputs ( p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend ( p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development ( p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height ( p < 0.01, d = 1.9, 3%) and DJ contact time were found ( p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties.
Prieske, Olaf; Maffiuletti, Nicola A.; Granacher, Urs
2018-01-01
High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players (N = 12) aged 14–15 years conducted three experimental conditions in randomized order: S included 3 sets of 8–10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties (p < 0.05, d = 1.1) and jump performance outputs (p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend (p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development (p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height (p < 0.01, d = 1.9, 3%) and DJ contact time were found (p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties. PMID:29628898
NASA Astrophysics Data System (ADS)
Wang, Wenxing; Yan, Yucong; Zhou, Ning; Zhang, Hui; Li, Dongsheng; Yang, Deren
2016-02-01
Nanorings made of noble metals such as Au and Ag have attracted particular interest in plasmonic properties since they allow remarkable tunability of plasmon resonance wavelengths associated with their unique structural features. Unfortunately, most of the syntheses for Au nanorings involve complex procedures and/or require highly specialized and expensive facilities. Here, we report a seed-mediated approach for selective deposition of Au nanorings on the periphery of Pd seeds with the structure of an ultrathin nanosheet through the island growth mode. In combination with selective etching of Pd nanosheets, Au nanorings are eventually produced. We can control the outer diameter and wall thickness of the nanorings by simply varying the size of the Pd nanosheets and reaction time. By taking the advantage of this size controllability, the nanorings show tunable surface plasmonic properties in the near infrared (NIR) region arising from both the in-plane dipole and face resonance modes. Owing to their good surface plasmonic properties, the nanorings show substantially enhanced surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G, and are therefore confirmed as good SERS substrates to detect trace amounts of molecules.Nanorings made of noble metals such as Au and Ag have attracted particular interest in plasmonic properties since they allow remarkable tunability of plasmon resonance wavelengths associated with their unique structural features. Unfortunately, most of the syntheses for Au nanorings involve complex procedures and/or require highly specialized and expensive facilities. Here, we report a seed-mediated approach for selective deposition of Au nanorings on the periphery of Pd seeds with the structure of an ultrathin nanosheet through the island growth mode. In combination with selective etching of Pd nanosheets, Au nanorings are eventually produced. We can control the outer diameter and wall thickness of the nanorings by simply varying the size of the Pd nanosheets and reaction time. By taking the advantage of this size controllability, the nanorings show tunable surface plasmonic properties in the near infrared (NIR) region arising from both the in-plane dipole and face resonance modes. Owing to their good surface plasmonic properties, the nanorings show substantially enhanced surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G, and are therefore confirmed as good SERS substrates to detect trace amounts of molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08613b
Investigation on thermal properties of heat storage composites containing carbon fibers
NASA Astrophysics Data System (ADS)
Wang, Jifen; Xie, Huaqing; Xin, Zhong; Li, Yang; Yin, Chou
2011-11-01
We prepared a series of thermal performance-enhanced heat storage composite phase change materials containing carbon fibers. It revealed that the composites have reduced both melting point and latent heat capacity with an increase in the mass fraction of the carbon fibers (CF) or mechano-chemical treated CF (M-CF). Composites have enhanced thermal conductivities compared to palmitic acid (PA), with the enhancement ratios increasing with the mass fraction of additives. M-CF/PA enhances more thermal conductivity than CF/PA does when they contain the same additives and are at the same temperature. Thermal conductivity enhancement of 0.5 wt. % M-CF/PA is 239.2% in liquid state, compared with PA.
NASA Astrophysics Data System (ADS)
Gwamuri, Jephias; Venkatesan, Ragavendran; Sadatgol, Mehdi; Mayandi, Jeyanthinath; Guney, Durdu O.; Pearce, Joshua M.
2017-07-01
The agglomeration/dewetting process of thin silver films provides a scalable method of obtaining self-assembled nanoparticles (SANPs) for plasmonics-based thin-film solar photovoltaic (PV) devices. We show the effect of annealing ambiance on silver SANP average size, particle/cluster finite shape, substrate area coverage/particle distribution, and how these physical parameters influence optical properties and surface-enhanced Raman scattering (SERS) responses of SANPs. Statistical analysis performed indicates that generally Ag SANPs processed in the presence of a gas (argon and nitrogen) ambiance tend to have smaller average size particles compared to those processed under vacuum. Optical properties are observed to be highly dependent on particle size, separation distance, and finite shape. The greatest SERS enhancement was observed for the argon-processed samples. There is a correlation between simulation and experimental data that indicate argon-processed AgNPs have a great potential to enhance light coupling when integrated to thin-film PV.
Rodrigues, Daniel C; de Souza, Michele L; Souza, Klester S; dos Santos, Diego P; Andrade, Gustavo F S; Temperini, Marcia L A
2015-09-07
The SERS enhancement factor (SERS-EF) is one of the most important parameters that characterizes the ability of a given substrate to enhance the Raman signal for SERS applications. The comparison of SERS intensities and SERS-EF values across different substrates is a common practice to unravel the performance of a given substrate. In this study, it is shown that such a comparison may lack significance if we compare substrates of very distinct nature and optical properties. It is specifically shown that the SERS-EF values for static substrates (e.g. immobilized metallic nanostructures) cannot be compared to those of dynamic ones (e.g. colloidal metal nanoparticle solutions), and that the optical properties for the latter show strong dependence on the metal-molecule interaction dynamics. The most representative experimental results concerning the dynamic substrates have been supported by generalized Mie theory simulations, which are tools used to describe the substrate complexity and the microscopic information not usually taken into account.
Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors.
Jenie, S N Aisyiyah; Plush, Sally E; Voelcker, Nicolas H
2016-10-01
Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.
Zhou, Weiming; Li, Xiangyang; Lu, Jie; Huang, Ningdong; Chen, Liang; Qi, Zeming; Li, Liangbin; Liang, Haiyi
2014-01-01
As an indispensible material for modern society, natural rubber possesses peerless mechanical properties such as strength and toughness over its artificial analogues, which remains a mystery. Intensive experimental and theoretical investigations have revealed the self-enhancement of natural rubber due to strain-induced crystallization. However a rigorous model on the self-enhancement, elucidating natural rubber's extraordinary mechanical properties, is obscured by deficient understanding of the local hierarchical structure under strain. With spatially resolved synchrotron radiation micro-beam scanning X-ray diffraction we discover weak oscillation in distributions of strain-induced crystallinity around crack tip for stretched natural rubber film, demonstrating a soft-hard double network structure. The fracture energy enhancement factor obtained by utilizing the double network model indicates an enhancement of toughness by 3 orders. It's proposed that upon stretching spontaneously developed double network structures integrating hierarchy at multi length-scale in natural rubber play an essential role in its remarkable mechanical performance. PMID:25511479
Fung, E-Dean; Adak, Olgun; Lovat, Giacomo; Scarabelli, Diego; Venkataraman, Latha
2017-02-08
We investigate light-induced conductance enhancement in single-molecule junctions via photon-assisted transport and hot-electron transport. Using 4,4'-bipyridine bound to Au electrodes as a prototypical single-molecule junction, we report a 20-40% enhancement in conductance under illumination with 980 nm wavelength radiation. We probe the effects of subtle changes in the transmission function on light-enhanced current and show that discrete variations in the binding geometry result in a 10% change in enhancement. Importantly, we prove theoretically that the steady-state behavior of photon-assisted transport and hot-electron transport is identical but that hot-electron transport is the dominant mechanism for optically induced conductance enhancement in single-molecule junctions when the wavelength used is absorbed by the electrodes and the hot-electron relaxation time is long. We confirm this experimentally by performing polarization-dependent conductance measurements of illuminated 4,4'-bipyridine junctions. Finally, we perform lock-in type measurements of optical current and conclude that currents due to laser-induced thermal expansion mask optical currents. This work provides a robust experimental framework for studying mechanisms of light-enhanced transport in single-molecule junctions and offers tools for tuning the performance of organic optoelectronic devices by analyzing detailed transport properties of the molecules involved.
NASA Astrophysics Data System (ADS)
Guo, Li; Shi, Rui; Zhang, Chao; Zhu, Dan; Ding, Zhihua; Li, Peng
2016-08-01
Tissue optical clearing (TOC) is helpful for reducing scattering and enhancing the penetration depth of light, and shows promising potential in optimizing optical imaging performances. A mixture of fructose with PEG-400 and thiazone (FPT) is used as an optical clearing agent in mouse dorsal skin and evaluated with OCT angiography (Angio-OCT) by quantifying optical properties and blood flow imaging simultaneously. It is observed that FPT leads to an improved imaging performance for the deeper tissues. The imaging performance improvement is most likely caused by the FPT-induced dehydration of skin, and the reduction of scattering coefficient (more than ˜40.5%) and refractive-index mismatching (more than ˜25.3%) in the superficial (epidermal, dermal, and hypodermal) layers. A high correlation (up to ˜90%) between the relative changes in refractive-index mismatching and Angio-OCT signal strength is measured. The optical clearing rate is ˜5.83×10-5 cm/s. In addition, Angio-OCT demonstrates enhanced performance in imaging cutaneous hemodynamics with satisfactory spatiotemporal resolution and contrast when combined with TOC, which exhibits a powerful practical application in studying microcirculation.
Holder, Shima L; Lee, Ching-Hwa; Popuri, Srinivasa R; Zhuang, Meng-Xin
2016-09-20
The effects of plasticization and cross-linking on the performance of chitosan as promising proton exchange membranes (PEMs) for bioelectricity generation in microbial fuel cells (MFCs) were investigated. The physico-chemical properties of chitosan (CS), sorbitol-chitosan (S-CS), phosphorylated-chitosan (CS-P) and phosphorylated-sorbitol-chitosan (S-CS-P) membranes were investigated by FESEM-EDS, FTIR-ATR, XRD, TGA, tensile strength and sorption studies. The performance of the fabricated PEMs was assessed by power density and cation exchange capacity (CEC). Maximum power densities achieved were 130.03, 20.76, 94.59 and 7.42mW/m(2) for CS-P, S-CS-P, S-CS and CS membranes respectively. Phosphorylation of the CS membranes increased CEC and tensile strength, attributed to an increase in bonded amide and phosphate ionic surface groups. Further, 49.07% COD removal from municipal wastewater was achieved with CS-P membranes. Thus, through chemical modifications, the physico-chemical and mechanical properties of natural abundant biopolymer chitosan can be enhanced for its use as an environmentally sustainable PEM in MFC technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.; Muller, I.; Gilbo, K.
2013-11-13
The objectives of this work are aimed at the development of enhanced LAW propertycomposition models that expand the composition region covered by the models. The models of interest include PCT, VHT, viscosity and electrical conductivity. This is planned as a multi-year effort that will be performed in phases with the objectives listed below for the current phase. Incorporate property- composition data from the new glasses into the database. Assess the database and identify composition spaces in the database that need augmentation. Develop statistically-designed composition matrices to cover the composition regions identified in the above analysis. Preparemore » crucible melts of glass compositions from the statistically-designed composition matrix and measure the properties of interest. Incorporate the above property-composition data into the database. Assess existing models against the complete dataset and, as necessary, start development of new models.« less
Quasicrystal-reinforced Mg alloys.
Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do
2014-04-01
The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α -Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg-Zn-Y alloys, the co-presence of I and Ca 2 Mg 6 Zn 3 phases by addition of Ca can significantly enhance formability, while in Mg-Zn-Al alloys, the co-presence of the I-phase and Mg 2 Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg-Zn-Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg-Zn-Al-Sn alloys is attributed to the presence of finely distributed Mg 2 Sn and I-phase particles embedded in the α -Mg matrix.
Quasicrystal-reinforced Mg alloys
Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do
2014-01-01
The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg–Zn–Y and Mg–Zn–Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg–Zn–Y alloys, the co-presence of I and Ca2Mg6Zn3 phases by addition of Ca can significantly enhance formability, while in Mg–Zn–Al alloys, the co-presence of the I-phase and Mg2Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg–Zn–Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg–Zn–Al–Sn alloys is attributed to the presence of finely distributed Mg2Sn and I-phase particles embedded in the α-Mg matrix. PMID:27877660
NASA Astrophysics Data System (ADS)
Zeng, Jie; Liu, Yuhang; Han, Di; Yu, Bowen; Deng, Sha; Chen, Feng; Fu, Qiang
2018-04-01
Improving the interaction of individual reduced graphene oxide sheet is an effective way to enhance the mechanical property of reduced graphene oxide fiber. In this study, to enhance the interaction forces of graphene sheets, large-sized graphene oxide sheets were used to assemble graphene fiber, and dopamine was mixed with the graphene oxide spinning drop. During the wet-spinning procedure, polydopamine was formed by polymerizing. It is found that such obtained composite fiber shows enhanced tensile strength (increased from 314 MPa to 527 MPa) and increased toughness (increased from 3.5 MJ m‑3 to 12.9 MJ m‑3) compared with pure reduced graphene oxide fiber. Fourier-transform infrared spectra, Raman spectra and x-ray photoelectron spectroscopy were performed to characterize the interaction between reduced graphene oxide sheets and polydopamine, and a possible enhancement mechanism of C-N bonds formation was proposed. It is suggested that this newly formed C‑N bonds can not only enhance the tensile strength, but also increase the elongation simultaneously. Additionally, the graphene fiber remains great electrical conductivity (33 100 s m‑1) since the conductive network can be maintained.
Microstructure and properties of Cu-Sn-Zn-TiO 2 nano-composite coatings on mild steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Weidong; Cao, Di; Jin, Yunxue
Cu-Sn-Zn coatings have been widely used in industry for their unique properties, such as good conductivity, high corrosion resistance and excellent solderability. To further improve the mechanical performance of Cu-Sn-Zn coatings, powder-enhanced method was applied and Cu-Sn-Zn-TiO 2 nano-composite coatings with different TiO 2 concentration were fabricated. The microstructure of Cu-Sn-Zn-TiO 2 nano-composite coatings were investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The mechanical properties of coatings including microhardness and wear resistance were studied. The results indicate that the incorporation of TiO 2 nanoparticle can significantly influence the properties of Cu-Sn-Zn coatings. The microhardness of Cu-Sn-Zn coatingmore » was increased to 383 HV from 330 HV with 1 g/L TiO 2 addition. Also, the corrosion resistance of coating was enhanced. The effects of TiO 2 nanoparticle concentration on the microstructure, mechanical properties and corrosion resistance of Cu-Sn-Zn-TiO 2 nano-composite coatings were discussed.« less
Enhanced thermoelectric properties of graphene oxide patterned by nanoroads.
Zhou, Si; Guo, Yu; Zhao, Jijun
2016-04-21
The thermoelectric properties of two-dimensional (2D) materials are of great interest for both fundamental science and device applications. Graphene oxide (GO), whose physical properties are highly tailorable by chemical and structural modifications, is a potential 2D thermoelectric material. In this report, we pattern nanoroads on GO sheets with epoxide functionalization, and investigate their ballistic thermoelectric transport properties based on density functional theory and the nonequilibrium Green's function method. These graphene oxide nanoroads (GONRDs) are all semiconductors with their band gaps tunable by the road width, edge orientation, and the structure of the GO matrix. These nanostructures show appreciable electrical conductance at certain doping levels and enhanced thermopower of 127-287 μV K(-1), yielding a power factor 4-22 times of the graphene value; meanwhile, the lattice thermal conductance is remarkably reduced to 15-22% of the graphene value; consequently, attaining the figure of merit of 0.05-0.75. Our theoretical results are not only helpful for understanding the thermoelectric properties of graphene and its derivatives, but also would guide the theoretical design and experimental fabrication of graphene-based thermoelectric devices of high performance.
Microstructure and properties of Cu-Sn-Zn-TiO 2 nano-composite coatings on mild steel
Gao, Weidong; Cao, Di; Jin, Yunxue; ...
2018-04-18
Cu-Sn-Zn coatings have been widely used in industry for their unique properties, such as good conductivity, high corrosion resistance and excellent solderability. To further improve the mechanical performance of Cu-Sn-Zn coatings, powder-enhanced method was applied and Cu-Sn-Zn-TiO 2 nano-composite coatings with different TiO 2 concentration were fabricated. The microstructure of Cu-Sn-Zn-TiO 2 nano-composite coatings were investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The mechanical properties of coatings including microhardness and wear resistance were studied. The results indicate that the incorporation of TiO 2 nanoparticle can significantly influence the properties of Cu-Sn-Zn coatings. The microhardness of Cu-Sn-Zn coatingmore » was increased to 383 HV from 330 HV with 1 g/L TiO 2 addition. Also, the corrosion resistance of coating was enhanced. The effects of TiO 2 nanoparticle concentration on the microstructure, mechanical properties and corrosion resistance of Cu-Sn-Zn-TiO 2 nano-composite coatings were discussed.« less
NASA Astrophysics Data System (ADS)
Khorasanizadeh, H.; Fakhari, M. M.; Ghaffari, S. P.
2015-05-01
Heat transfer enhancement or deterioration of variable properties Al2O3-EG-water nanofluid natural convection in a differentially heated rectangular cavity has been investigated numerically. A finite volume approach has been utilized to solve the governing equations for a Newtonian fluid. The influences of the pertinent parameters such as Rayleigh number, Ra, in the range of 103-107 and nanoparticles volume fraction from 0 to 0.04 have been studied. The results verified by making overall comparison with some existing experimental results have shown that for Ra = 103, for which conduction heat transfer is dominant, the average Nusselt number increases as nanoparticles volume fraction increases, but contradictory with the constant properties cases it decreases for higher Ra values. This reduction, which is associated with the increased viscosity, is more severe at Ra = 104 and the least deterioration in heat transfer occurs for Ra = 107. This is due to the fact that the Brownian motion enhances as Ra increases; thus at Ra = 107 the improved conductivity becomes more important than viscosity enhancement. To clarify the contradictory reports existing in the literature on the natural convection heat transfer enhancement or deterioration of nanofluids, a scale analysis performed showed that unlike methods of evaluating the base fluid Ra have led to such differences.
NASA Technical Reports Server (NTRS)
Peterson, G.P. (Bud) (Inventor); Hong, Haiping (Inventor); Salem, David R. (Inventor)
2016-01-01
Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.
Effects of (Oxy-)Fluorination on Various High-Performance Yarns.
Kruppke, Iris; Bartusch, Matthias; Hickmann, Rico; Hund, Rolf-Dieter; Cherif, Chokri
2016-08-26
In this work, typical high-performance yarns are oxy-fluorinated, such as carbon fibers, ultra-high-molecular-weight polyethylene, poly(p-phenylene sulfide) and poly(p-phenylene terephthalamide). The focus is on the property changes of the fiber surface, especially the wetting behavior, structure and chemical composition. Therefore, contact angle, XPS and tensile strength measurements are performed on treated and untreated fibers, while SEM is utilized to evaluate the surface structure. Different results for the fiber materials are observed. While polyethylene exhibits a relevant impact on both surface and bulk properties, polyphenylene terephthalamide and polyphenylene sulfide are only affected slightly by (oxy-)fluorination. The wetting of carbon fiber needs higher treatment intensities, but in contrast to the organic fibers, even its textile-physical properties are enhanced by the treatment. Based on these findings, the capability of (oxy-)fluorination to improve the adhesion of textiles in fiber-reinforced composite materials can be derived.
Performance of Conformable Ablators in Aerothermal Environments
NASA Technical Reports Server (NTRS)
Thornton, J.; Fan, W.; Skokova, K.; Stackpoole, M.; Beck, R.; Chavez-Garcia, J.
2012-01-01
Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICAs performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.
Graphene as a local probe to investigate near-field properties of plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Wasserroth, Sören; Bisswanger, Timo; Mueller, Niclas S.; Kusch, Patryk; Heeg, Sebastian; Clark, Nick; Schedin, Fredrik; Gorbachev, Roman; Reich, Stephanie
2018-04-01
Light interacting with metallic nanoparticles creates a strongly localized near-field around the particle that enhances inelastic light scattering by several orders of magnitude. Surface-enhanced Raman scattering describes the enhancement of the Raman intensity by plasmonic nanoparticles. We present an extensive Raman characterization of a plasmonic gold nanodimer covered with graphene. Its two-dimensional nature and energy-independent optical properties make graphene an excellent material for investigating local electromagnetic near-fields. We show the localization of the near-field of the plasmonic dimer by spatial Raman measurements. Energy- and polarization-dependent measurements reveal the local near-field resonance of the plasmonic system. To investigate the far-field resonance we perform dark-field spectroscopy and find that near-field and far-field resonance energies differ by 170 meV, much more than expected from the model of a damped oscillator (40 meV).
The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement
2012-01-01
This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909
Effect of microstructure on the thermoelectric performance of La{sub 1−x}Sr{sub x}CoO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viskadourakis, Z.; Department of Mechanical and Manufacturing Engineering, University of Cypruss, 75 Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia; Athanasopoulos, G.I.
We present a case where the microstructure has a profound effect on the thermoelectric properties of oxide compounds. Specifically, we have investigated the effect of different sintering treatments on La{sub 1−x}Sr{sub x}CoO{sub 3} samples synthesized using the Pechini method. We found that the samples, which are dense and consist of inhomogeneously-mixed grains of different size, exhibit both higher Seebeck coefficient and thermoelectric figure of merit than the samples, which are porous and consist of grains with almost identical size. The enhancement of Seebeck coefficient in the dense samples is attributed to the so-called “energy-filtering” mechanism that is related to themore » energy barrier of the grain boundary. On the other hand, the thermal conductivity for the porous compounds is significantly reduced in comparison to the dense compounds. It is suggested that a fine-manipulation of grain size ratio combined with a fine-tuning of porosity could considerably enhance the thermoelectric performance of oxides. - Graphical abstract: The enhancement of the dimensionless thermoelectric figure ZT of merit is presented for two equally Sr-doped LaCoO3 compounds, possessing different microstructure, indicating the effect of the latter to the thermoelectric performance of the La{sub 1−x}Sr{sub x}CoO{sub 3} solid solution. - Highlights: • Electrical and thermal transport properties are affected by the microstructure in La{sub 1−x}Sr{sub x}CoO{sub 3} polycrystalline materials. • Coarse/fine grain size distribution enhances the Seebeck coefficient. • Porosity reduces the thermal conductivity in La{sub 1−x}Sr{sub x}CoO{sub 3} polycrystalline samples. • The combination of large/small grain ratio distribution with the high porosity may result to the enhancement of the thermoelectric performance of the material.« less
NASA Astrophysics Data System (ADS)
Zuo, Shiyu; Xu, Haiming; Liao, Wei; Sun, Lei; Li, Qiang; Zan, Jie; Zhang, Binyang; Li, Dongya; Xia, Dongsheng
2018-05-01
In this study, g-C3N4sbnd Cu2O was successfully synthesized in the presence of PEG-400 surfactant via an acid treatment hydrothermal method and a high-temperature calcination method. The structures and properties of as-synthesized samples were characterized using a range of techniques, such as XPS, TEM, PL and BET. The g-C3N4sbnd Cu2O heterojunction exhibits the enhanced photocatalytic performance and high stability. It is revealed that the addition of PEG can promote the heterojunction effect of g-C3N4sbnd Cu2O, effectively improving the crystallinity and specific surface area of the photocatalyst, separation efficiency of photocarriers, and light absorption, thus enhancing the photocatalytic performance.
Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification
Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.
2016-01-01
Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670
Gong, Feng; Ding, Zhiwei; Fang, Yin; Tong, Chuan-Jia; Xia, Dawei; Lv, Yingying; Wang, Bin; Papavassiliou, Dimitrios V; Liao, Jiaxuan; Wu, Mengqiang
2018-05-02
Graphene has been combined with molybdenum disulfide (MoS 2 ) to ameliorate the poor cycling stability and rate performance of MoS 2 in lithium ion batteries, yet the underlying mechanisms remain less explored. Here, we develop multiscale modeling to investigate the enhanced electrochemical and thermal transport properties of graphene/MoS 2 heterostructures (GM-Hs) with a complex morphology. The calculated electronic structures demonstrate the greatly improved electrical conductivity of GM-Hs compared to MoS 2 . Increasing the graphene layers in GM-Hs not only improves the electrical conductivity but also stabilizes the intercalated Li atoms in GM-Hs. It is also found that GM-Hs with three graphene layers could achieve and maintain a high thermal conductivity of 85.5 W/(m·K) at a large temperature range (100-500 K), nearly 6 times that of pure MoS 2 [∼15 W/(m·K)], which may accelerate the heat conduction from electrodes to the ambient. Our quantitative findings may shed light on the enhanced battery performances of various graphene/transition-metal chalcogenide composites in energy storage devices.
MEASUREMENT OF HYDRAULIC CONDUCTIVITY DISTRIBUTIONS: A MANUAL OF PRACTICE
The ability of hydrologists to perform field measurements of aquifer hydraulic properties must be enhanced in order to significantly improve the capacity to solve groundwater contamination problems at Superfund and other sites. The primary purpose of this manual is to provide ne...
MEASUREMENT OF HYDRAULIC CONDUCTIVITY DISTRIBUTIONS: A MANUAL OF PRACTICE
The ability of hydrologists to perform field measurements of aquifer hydraulic properties must be enhanced in order to significantly improve the capacity to solve groundwater contamination problems at Superfund and other sites. he primary purpose of this manual is to provide new ...
Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.
Collins, Gillian; Holmes, Justin D
2016-07-01
Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chou, Chih-Wei; Hsieh, Hui-Hsuan; Hseu, You-Cheng; Chen, Ko-Shao; Wang, Gou-Jen; Chang, Hsien-Chang; Pan, Yong-Li; Wei, Yi-Syuan; Chang, Ko Hsin; Harn, Yeu-Wei
2013-07-21
This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.
Zhou, D; Xu, T; Lambert, Y; Cristini-Robbe; Stiévenard, D
2015-12-01
The light absorption of polysilicon planar junctions can be improved using nanostructured top surfaces due to their enhanced light harvesting properties. Nevertheless, associated with the higher surface, the roughness caused by plasma etching and defects located at the grain boundary in polysilicon, the concentration of the recombination centers increases, leading to electrical performance deterioration. In this work, we demonstrate that wet oxidation combined with hydrogen passivation using SiN(x):H are the key technological processes to significantly decrease the surface recombination and improve the electrical properties of nanostructured n(+)-i-p junctions. Nanostructured surface is fabricated by nanosphere lithography in a low-cost and controllable approach. Furthermore, it has been demonstrated that the successive annealing of silicon nitride films has significant effect on the passivation quality, resulting in some improvements on the efficiency of the Si nanostructure-based solar cell device.
NASA Astrophysics Data System (ADS)
Ouyang, S.; Song, L. J.; Liu, Y. H.; Huo, J. T.; Wang, J. Q.; Xu, W.; Li, J. L.; Wang, C. T.; Wang, X. M.; Li, R. W.
2018-06-01
The soft magnetic properties of Fe-based metallic glasses are reduced significantly by external and residual stresses, e.g., the susceptibility decreases and coercivity increases, which limits their application severely. Unraveling the micromechanism of how the stress influences the soft magnetic properties is of great help for enhancing the performance of Fe-based metallic glasses. In this work, we investigate the effect of viscoelastic heterogeneity on the motion of magnetic domain wall surrounding nanoindentations. Compared to the matrix, dissipation of the viscoelastic heterogeneity increases toward the nanoindentation. Meanwhile, the motion of domain wall under external magnetic field becomes more difficult toward the nanoindentations. A correlation between the viscoelastic dissipation and the moving ability of magnetic domain walls is observed, which can be well fitted using magnetoelastic coupling theory. This suggests that manipulating the microscale viscoelastic heterogeneity is probably a helpful strategy for enhancing the soft magnetic properties of metallic glasses.
Considerations Concerning the Development and Testing of In-situ Materials for Martian Exploration
NASA Technical Reports Server (NTRS)
Kim, M.-H. Y.; Heilbronn, L.; Thibeault, S. A.; Simonsen, L. C.; Wilson, J. W.; Chang, K.; Kiefer, R. L.; Maahs, H. G.
2000-01-01
Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley s HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To make structural shielding composite materials from constituents of the Mars atmosphere and from Martian regolith for Martian surface habitats, schemes for synthesizing polyimide from the Mars atmosphere and for processing Martian regolith/polyimide composites are proposed. Theoretical predictions of the shielding properties of these composites are computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties enhances the shielding properties of these composites because of the added hydrogenous constituents. Laboratory testing of regolith simulant/polyimide composites is planned to validate this prediction.
Nanoindentation and thermal characterization of poly (vinylidenefluoride)/MWCNT nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggedi, Obulapathi; Valiyaneerilakkal, Uvais; Varghese, Soney, E-mail: soneyva@nitc.ac.in
2014-04-15
We report the preparation, thermal and micro/nanomechanical behavior of poly (vinylidine diflouride) (PVDF)/multiwalled carbon nanotube (MWCNT) nanocomposites. It has been found that the addition of MWCNT considerably enhances the β-phase formation, thermal and mechanical properties of PVDF. Atomic force microscope (AFM) studies have been performed on the composites under stress conditions to measure the mechanical properties. The nanoscale mechanical properties of the composites like Young's modulus and hardness of the nanocomposites were investigated by nanoindentation technique. Morphological studies of the nanocomposites were also studied, observations show a uniform distribution of MWCNT in the matrix and interfacial adhesion between PVDF andmore » MWCNT was achieved, which was responsible for enhancement in the hardness and Young's modulus. Differential scanning calorimetry (DSC) studies indicate that the melting temperature of the composites have been slightly increased while the heat of fusion markedly decreased with increasing MWCNT content.« less
Understanding gas adsorption in MOF-5/graphene oxide composite materials.
Lin, Li-Chiang; Paik, Dooam; Kim, Jihan
2017-05-10
Metal-organic framework (MOF) and graphene oxide (GO) composite materials (MOF/GO) have been regarded as promising for separation applications due to their synergistically enhanced adsorption properties. Molecular-level understandings of these materials, however, remain unknown to date. In this study, molecular simulations were used, for the first time, to model these composite materials. Specifically, the composite MOF-5/GO material was modeled as stacks of sandwich-like layers on top of one another, consistent with experimental observations inferred from XRD and the SEM images. Simulations indicate that CO 2 and CH 4 bind strongly in the MOF/GO interface region, resulting in synergistically enhanced adsorption properties. To exploit the interface region, we found that in simulating linear alkanes, larger guest molecules show substantially improved adsorption properties in composites compared to the parent MOF-5 structure, illustrating that the performance of adsorption in these molecules will benefit the most from the MOF/GO composites.
Dong, Qi; Nasir, Muhammad Zafir Mohamad; Pumera, Martin
2017-10-18
As-synthetized single walled carbon nanotubes (SWCNTs) contain both metallic and semiconducting nanotubes. For the electronics, it is desirable to separate semiconducting SWCNTs (s-SWCNTs) from the metallic ones as s-SWCNTs provide desirable electronic properties. Here we test whether ultrapure semi-conducting single-walled carbon nanotubes (s-SWCNTs) provide advantageous electrochemical properties over the as prepared SWCNTs which contain a mixture of semiconducting and metallic CNTs. We test them as a transducer platform which enhanced the detection of target analytes (ascorbic acid, dopamine, uric acid) when compared to a bare glassy carbon (GC) electrode. Despite that, the two materials exhibit significantly different electrochemical properties and performances. A mixture of m-SWCNTs and s-SWCNTs demonstrated superior performance over ultrapure s-SWCNTs with greater peak currents and pronounced shift in peak potentials to lower values in cyclic and differential pulse voltammetry for the detection of target analytes. The mixture of m- and s-SWCNTs displayed about a 4 times improved heterogeneous electron transfer rate as compared to bare GC and a 2 times greater heterogeneous electron transfer rate than s-SWCNTs, demonstrating that ultrapure SWCNTs do not provide any major enhancement over the as prepared SWCNTs.
High performance p-type thermoelectric materials and methods of preparation
NASA Technical Reports Server (NTRS)
Caillat, Thierry (Inventor); Borshchevsky, Alexander (Inventor); Fleurial, Jean-Pierre (Inventor)
2005-01-01
The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn4-xAxSb3-yBy wherein 0?x?4, A is a transition metal, B is a pnicogen, and 0?y?3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn4Sb3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.
Zhou, Xia; Qiu, Shuilai; Xing, Weiyi; Gangireddy, Chandra Sekhar Reddy; Gui, Zhou; Hu, Yuan
2017-08-30
A novel polyphosphazene (PZS) microsphere@molybdenum disulfide nanoflower (MoS 2 ) hierarchical hybrid architecture was first synthesized and applied for enhancing the mechanical performance and flame retardancy of epoxy (EP) resin via a cooperative effect. Herein, using PZS microsphere as the template, a layer of MoS 2 nanoflowers were anchored to PZS spheres via a hydrothermal strategy. The well-designed PZS@MoS 2 exhibits excellent fire retardancy and a reinforcing effect. The obtained PZS@MoS 2 significantly enhanced the flame-retardant performance of EP composites, which can be proved by thermogravimetric and cone calorimeter results. For instance, the incorporation of 3 wt % PZS@MoS 2 brought about a 41.3% maximum reduction in the peak heat-release rate and decreased by 30.3% maximum in the total heat release, accompanying the higher graphitized char layer. With regard to mechanical property, the storage modulus of EP/PZS@MoS 2 3.0 in the glassy state was dramatically increased to 22.4 GPa in comparison with that of pure EP (11.15 GPa). It is sensible to know that the improved flame-retardant performance for EP composites is primarily assigned to a physical barrier effect of the MoS 2 nanoflowers and the polyphosphazene structure has an positive impact on promoting char formation in the condensed phase.
Roles of Cu in the Enhanced Thermoelectric Properties in Bi0.5Sb1.5Te₃.
Hao, Feng; Qiu, Pengfei; Song, Qingfeng; Chen, Hongyi; Lu, Ping; Ren, Dudi; Shi, Xun; Chen, Lidong
2017-03-01
Recently, Cu-containing p-type Bi 0.5 Sb 1.5 Te₃ materials have shown high thermoelectric performances and promising prospects for practical application in low-grade waste heat recovery. However, the position of Cu in Bi 0.5 Sb 1.5 Te₃ is controversial, and the roles of Cu in the enhancement of thermoelectric performance are still not clear. In this study, via defects analysis and stability test, the possibility of Cu intercalation in p-type Bi 0.5 Sb 1.5 Te₃ materials has been excluded, and the position of Cu is identified as doping at the Sb sites. Additionally, the effects of Cu dopants on the electrical and thermal transport properties have been systematically investigated. Besides introducing additional holes, Cu dopants can also significantly enhance the carrier mobility by decreasing the Debye screen length and weakening the interaction between carriers and phonons. Meanwhile, the Cu dopants interrupt the periodicity of lattice vibration and bring stronger anharmonicity, leading to extremely low lattice thermal conductivity. Combining the suppression on the intrinsic excitation, a high thermoelectric performance-with a maximum thermoelectric figure of merit of around 1.4 at 430 K-has been achieved in Cu 0.005 Bi 0.5 Sb 1.495 Te₃, which is 70% higher than the Bi 0.5 Sb 1.5 Te₃ matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez-Vargas, E.
2000-10-01
Morphological and mechanical properties of polypropylene [PP]/poly(ethylene vinyl acetate) [EVA] blends have been studied. Infrared results using thin films first indicated a transition toward compatibility between both components at concentrations above 40% EVA. The transition was verified with different experimental techniques and it was associated to morphological changes and mechanical properties. The PP/EVA blends were mechanically evaluated in terms of impact and tensile strength to determine the influence of blending on the performance properties of these materials. Agreement was found between the transition and the enhancement of both elongation at break and impact strength.
Zhong, Haizheng; Bai, Zelong; Zou, Bingsuo
2012-11-01
In the past 5 years, colloidal I-III-VI nanocrystals such as CuInS2, CuInSe2, and AgInS2 have been intensively investigated for the potential to replace commonly available colloidal nanocrystals containing toxic elements in light-emitting and solar-harvesting applications. Many researchers from different disciplines are working on developing new synthetic protocols, performing spectroscopic studies to understand the luminescence mechanisms, and exploring various applications. To achieve enhanced performance, it is very desirable to obtain high-quality materials with tunable luminescence properties. In this Perspective, we highlight the current progress on tuning the luminescence properties of I-III-VI nanocrystals, especially focusing on the advances in the synthesis, spectroscopic properties, as well as the primary applications in light-emitting devices and bioimaging techniques. Finally, we outline the challenges concerning luminescent I-III-VI NCs and list a few important research tasks in this field.
Low-Temperature Thermoelectric Properties of Fe2VAl with Partial Cobalt Doping
NASA Astrophysics Data System (ADS)
Liu, Chang; Morelli, Donald T.
2012-06-01
Ternary metallic alloy Fe2VAl with a pseudogap in its energy band structure has received intensive scrutiny for potential thermoelectric applications. Due to the sharp change in the density of states profile near the Fermi level, interesting transport properties can be triggered to render possible enhancement in the overall thermoelectric performance. Previously, this full-Heusler-type alloy was partially doped with cobalt at the iron sites to produce a series of compounds with n-type conductivity. Their thermoelectric properties in the temperature range of 300 K to 850 K were reported. In this research, efforts were made to extend the investigation on (Fe1- x Co x )2VAl to the low-temperature range. Alloy samples were prepared by arc-melting and annealing. Seebeck coefficient, electrical resistivity, and thermal conductivity measurements were performed from 80 K to room temperature. The effects of cobalt doping on the material's electronic and thermal properties are discussed.
CEMCAN Software Enhanced for Predicting the Properties of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.
2000-01-01
Major advancements are needed in current high-temperature materials to meet the requirements of future space and aeropropulsion structural components. Ceramic matrix composites (CMC's) are one class of materials that are being evaluated as candidate materials for many high-temperature applications. Past efforts to improve the performance of CMC's focused primarily on improving the properties of the fiber, interfacial coatings, and matrix constituents as individual phases. Design and analysis tools must take into consideration the complex geometries, microstructures, and fabrication processes involved in these composites and must allow the composite properties to be tailored for optimum performance. Major accomplishments during the past year include the development and inclusion of woven CMC micromechanics methodology into the CEMCAN (Ceramic Matrix Composites Analyzer) computer code. The code enables one to calibrate a consistent set of constituent properties as a function of temperature with the aid of experimentally measured data.
Fang, Teng; Zhao, Xinbing; Zhu, Tiejun
2018-05-19
Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained popularity as promising high-temperature thermoelectric (TE) materials due to their excellent electrical properties, robust mechanical capabilities, and good high-temperature thermal stability. With the help of first-principles calculations, great progress has been made in half-Heusler thermoelectric materials. In this review, we summarize some representative theoretical work on band structures and transport properties of HH compounds. We introduce how basic band-structure calculations are used to investigate the atomic disorder in n-type M NiSb ( M = Ti, Zr, Hf) compounds and guide the band engineering to enhance TE performance in p-type Fe R Sb ( R = V, Nb) based systems. The calculations on electrical transport properties, especially the scattering time, and lattice thermal conductivities are also demonstrated. The outlook for future research directions of first-principles calculations on HH TE materials is also discussed.
Antifouling enhancement of polyimide membrane by grafting DEDA-PS zwitterions.
Zhang, Dong Yan; Xiong, Shu; Shi, Yu Sheng; Zhu, Jun; Hu, Qiao Li; Liu, Jie; Wang, Yan
2018-05-01
In order to improve the water flux and antifouling property of polyimide (PI) membrane, zwitterions are grafted on PI membrane surface via a two-step modification route by reactions with N,N-diethylethylenediamine (DEDA) and 1,3-propane sultone (PS) sequentially. The reaction mechanism and physicochemical properties of membranes are confirmed via various characterization techniques. The anti-biofouling performance of the zwitterion-grafted PI membranes is evaluated by bacterial suspension immersion tests in Escherichia coli (E. coli) and staphylococcus aureus (S. aureus) solutions. The antifouling property is assessed via the filtration test using the bovine serum albumin (BSA) and dodecyl trimethyl ammonium bromide (DTAB) aqueous feed solutions. The effect of the reaction time with DEDA in the zwitterion-grafted process on the antifouling property is further investigated systematically. The results show that both the anti-biofouling and antifouling performances of zwitterion-grafted PI membranes are significantly improved. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei
2016-08-03
Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.
Fang, Teng; Zhao, Xinbing
2018-01-01
Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained popularity as promising high-temperature thermoelectric (TE) materials due to their excellent electrical properties, robust mechanical capabilities, and good high-temperature thermal stability. With the help of first-principles calculations, great progress has been made in half-Heusler thermoelectric materials. In this review, we summarize some representative theoretical work on band structures and transport properties of HH compounds. We introduce how basic band-structure calculations are used to investigate the atomic disorder in n-type MNiSb (M = Ti, Zr, Hf) compounds and guide the band engineering to enhance TE performance in p-type FeRSb (R = V, Nb) based systems. The calculations on electrical transport properties, especially the scattering time, and lattice thermal conductivities are also demonstrated. The outlook for future research directions of first-principles calculations on HH TE materials is also discussed. PMID:29783759
Zhang, Kaihuan; Fan, Guokang; Hu, Ruifen; Li, Guang
2015-01-01
Noble metals addition on nanostructured metal oxides is an attractive way to enhance gas sensing properties. Herein, hierarchical zinc oxide (ZnO) porous microspheres decorated with cubic gold particles (Au particles) were synthesized using a facile hydrothermal method. The as-prepared Au-decorated ZnO was then utilized as the sensing film of a gas sensor based on a quartz crystal microbalance (QCM). This fabricated sensor was applied to detect dibutyl phthalate (DBP), which is a widely used plasticizer, and its coating load was optimized. When tested at room temperature, the sensor exhibited a high sensitivity of 38.10 Hz/ppb to DBP in a low concentration range from 2 ppb to 30 ppb and the calculated theoretical detection limit is below 1 ppb. It maintains good repeatability as well as long-term stability. Compared with the undecorated ZnO based QCM, the Au-decorated one achieved a 1.62-time enhancement in sensitivity to DBP, and the selectivity was also improved. According to the experimental results, Au-functionalized ZnO porous microspheres displayed superior sensing performance towards DBP, indicating its potential use in monitoring plasticizers in the gaseous state. Moreover, Au decoration of porous metal oxide nanostructures is proved to be an effective approach for enhancing the gas sensing properties and the corresponding mechanism was investigated. PMID:26343661
25 CFR 211.7 - Environmental studies.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... (b) The Secretary shall ensure that all necessary surveys are performed and clearances obtained in... Enhancement of the Cultural Environment (3 CFR, 1971 through 1975 Comp., p. 559). If these surveys indicate... other related research is conducted and ensure that complete data describing the historic property is...
25 CFR 211.7 - Environmental studies.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (b) The Secretary shall ensure that all necessary surveys are performed and clearances obtained in... Enhancement of the Cultural Environment (3 CFR, 1971 through 1975 Comp., p. 559). If these surveys indicate... other related research is conducted and ensure that complete data describing the historic property is...
25 CFR 211.7 - Environmental studies.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (b) The Secretary shall ensure that all necessary surveys are performed and clearances obtained in... Enhancement of the Cultural Environment (3 CFR, 1971 through 1975 Comp., p. 559). If these surveys indicate... other related research is conducted and ensure that complete data describing the historic property is...
25 CFR 211.7 - Environmental studies.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (b) The Secretary shall ensure that all necessary surveys are performed and clearances obtained in... Enhancement of the Cultural Environment (3 CFR, 1971 through 1975 Comp., p. 559). If these surveys indicate... other related research is conducted and ensure that complete data describing the historic property is...
25 CFR 211.7 - Environmental studies.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (b) The Secretary shall ensure that all necessary surveys are performed and clearances obtained in... Enhancement of the Cultural Environment (3 CFR, 1971 through 1975 Comp., p. 559). If these surveys indicate... other related research is conducted and ensure that complete data describing the historic property is...
NASA Astrophysics Data System (ADS)
Ajay Vardhaman, B. S.; Amarnath, M.; Ramkumar, J.; Rai, Prabhat K.
2018-04-01
In various mechanical systems, lubricants are generally used to reduce friction and wear; thus, the total energy loss in the mechanical systems can be minimized by the proper enhancement of lubrication properties. In general, friction modifiers and antiwear additives are used to improve the tribological properties of the lubricant. However, the use of these additives has to be phased out due to their fast chemical degradation in their applications and other environmental issues. In recent years, the use of nanoparticles as a potential lubricant additive has received considerable attention because of its excellent mechanical and tribological characteristics. The present work describes the tribological behavior of nano-boric acid, multiwalled carbon nanotubes (MWCNTs), and functionalized multiwalled carbon nanotubes (FMWCNTs) modified with carboxylic acid. These nanoparticles were used to enhance the tribological properties of engine oil (SAE20W40) used to lubricate bronze alloy samples. The performance of these nano-coolants was assessed on a linear reciprocating ball-on-flat tribometer. Results highlight the friction and wear behavior of the nano-boric acid, MWCNTs, and FMWCNTs under three varying parameters such as the effect of nanoparticles concentration, load-carrying capacity, and sliding speed. The addition of nano-boric acid, MWCNTs, and FMWCNTs has significantly improved the tribological properties of the base lubricant. The addition of 0.5 wt.% of nano-boric acid, MWCNTs, and FMWCNTs to the base lubricant has decreased the coefficient of friction by 19.76, 30.55, and 35.65%, respectively, and a significant reduction in wear volume by 55.17, 71.42, and 88.97% was obtained in comparison with base lubricant.
NASA Astrophysics Data System (ADS)
Stoddart, P. R.; Cadusch, P. J.; Boyce, T. M.; Erasmus, R. M.; Comins, J. D.
2006-02-01
The transparent wings of some cicada species present ordered arrays of papillary structures with a spacing of approximately 200 nm. These structures serve an antireflection function, with optical transmission peaking at a value of approximately 98% and rising above 90% over a broad band from 450 to 2500 nm. The dimensions of the papillae are comparable to the roughness scale of surface-enhanced Raman scattering (SERS) substrates. SERS measurements performed on silver- and gold-coated wings display enhancement factors of approximately 106 with no apparent background contribution from the wing.
NASA Astrophysics Data System (ADS)
Ahmad, Faiz; Ullah, Sami; Aziz, Hammad; Omar, Nor Sharifah
2015-07-01
The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.
Development of Perovskite-Type Materials for Thermoelectric Application.
Wu, Tingjun; Gao, Peng
2018-06-12
Oxide perovskite materials have a long history of being investigated for thermoelectric applications. Compared to the state-of-the-art tin and lead chalcogenides, these perovskite compounds have advantages of low toxicity, eco-friendliness, and high elemental abundance. However, because of low electrical conductivity and high thermal conductivity, the total thermoelectric performance of oxide perovskites is relatively poor. Variety of methods were used to enhance the TE properties of oxide perovskite materials, such as doping, inducing oxygen vacancy, embedding crystal imperfection, and so on. Recently, hybrid perovskite materials started to draw attention for thermoelectric application. Due to the low thermal conductivity and high Seebeck coefficient feature of hybrid perovskites materials, they can be promising thermoelectric materials and hold the potential for the application of wearable energy generators and cooling devices. This mini-review will build a bridge between oxide perovskites and burgeoning hybrid halide perovskites in the research of thermoelectric properties with an aim to further enhance the relevant performance of perovskite-type materials.
Noise properties and task-based evaluation of diffraction-enhanced imaging
Brankov, Jovan G.; Saiz-Herranz, Alejandro; Wernick, Miles N.
2014-01-01
Abstract. Diffraction-enhanced imaging (DEI) is an emerging x-ray imaging method that simultaneously yields x-ray attenuation and refraction images and holds great promise for soft-tissue imaging. The DEI has been mainly studied using synchrotron sources, but efforts have been made to transition the technology to more practical implementations using conventional x-ray sources. The main technical challenge of this transition lies in the relatively lower x-ray flux obtained from conventional sources, leading to photon-limited data contaminated by Poisson noise. Several issues that must be understood in order to design and optimize DEI imaging systems with respect to noise performance are addressed. Specifically, we: (a) develop equations describing the noise properties of DEI images, (b) derive the conditions under which the DEI algorithm is statistically optimal, (c) characterize the imaging performance that can be obtained as measured by task-based metrics, and (d) consider image-processing steps that may be employed to mitigate noise effects. PMID:26158056
MoS 2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chi; Xie, Xiuqiang; Anasori, Babak
Two-dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition-metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS 2-on-MXene heterostructures through in situ sulfidation of Mo 2TiC 2Tx MXene. The computational results show that MoS 2-on-MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render themore » as-prepared MoS 2-on-MXene heterostructures stable Li-ion storage performance. In conclusion, this work paves the way to use MXene to construct 2D heterostructures for energy storage applications.« less
Controlling surface property of K2SiF6:Mn4+ for improvement of lighting-emitting diode reliability
NASA Astrophysics Data System (ADS)
Kim, Juseong; Jang, Inseok; Song, Gwang Yeom; Kim, Wan-Ho; Jeon, Sie-Wook; Kim, Jae-Pil
2018-05-01
The surface property of moisture-sensitive K2SiF6:Mn4+ (KSF) as a red-emitting phosphor was controlled through dry-type surface modification in order to improve the photo-performance and reliability of lighting-emitting diode (LED). The phosphor surface was modified with silane coupling agents having different carbon chain length by plasma-assisted method. Comparing between as-prepared and modified KSF, water-resistance and photo-emission efficiency were enhanced due to the formation of hydrophobic shell and the elimination of surface quenching sites. Moreover, the dispersibility of phosphor was increased as increasing the carbon chain length of silane because the interfacial affinity between phosphor and encapsulant was improved. After fabricating LED device, the enhancement of photo-performance and long-term reliability could be successfully achieved in LED device with modified phosphor. It is attributed to that the degradation of phosphor efficiency by moisture was suppressed and heat dissipation in LED PKG was improved through the surface modification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, Diane M; Antony, Lucas; de Pablo, Juan
High thermal stability and anisotropic molecular orientation enhance the performance of vapor-deposited organic semiconductors, but controlling these properties is a challenge in amorphous materials. To understand the influence of molecular shape on these properties, vapor-deposited glasses of three disk-shaped molecules were prepared. For all three systems, enhanced thermal stability is observed for glasses prepared over a wide range of substrate temperatures and anisotropic molecular orientation is observed at lower substrate temperatures. For two of the disk-shaped molecules, atomistic simulations of thin films were also performed and anisotropic molecular orientation was observed at the equilibrium liquid surface. We find that themore » structure and thermal stability of these vapor-deposited glasses results from high surface mobility and partial equilibration toward the structure of the equilibrium liquid surface during the deposition process. For the three molecules studied, molecular shape is a dominant factor in determining the anisotropy of vapor-deposited glasses.« less
MoS 2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries
Chen, Chi; Xie, Xiuqiang; Anasori, Babak; ...
2018-01-02
Two-dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition-metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS 2-on-MXene heterostructures through in situ sulfidation of Mo 2TiC 2Tx MXene. The computational results show that MoS 2-on-MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render themore » as-prepared MoS 2-on-MXene heterostructures stable Li-ion storage performance. In conclusion, this work paves the way to use MXene to construct 2D heterostructures for energy storage applications.« less
NASA Astrophysics Data System (ADS)
Liu, Qing; Wen, Dafen; Yang, Yanran; Fei, Zhaoyang; Zhang, Zhuxiu; Chen, Xian; Tang, Jihai; Cui, Mifen; Qiao, Xu
2018-03-01
Hierarchical porous ZSM-5 (HP-ZSM-5) zeolites were synthesized by hydrothermal crystallization method adding triethoxyvinylsilane as the growth-inhibitor at different hydrothermal crystallized temperatures. The properties of the obtained samples were characterized by XRD, SEM, N2-sorption, uptake of ethylene, 27Al MAS NMR, NH3-TPD, and Py-IR. It was found that the mesopore was introduced and the acidity was adjusted over HP-ZSM-5 samples successfully. The hydrothermal crystallized temperature had an important influence on the porous structure and surface properties. The catalytic performance for chloromethane to light-olefins (CMTO) were also investigated. Compared with ZSM-5 samples, HP-ZSM-5 samples exhibited enhanced stability and increased selectivity of light-olefins for CMTO reaction because of the introduction of the abundant mesopore and appropriate acidity. The lifetime (the duration of chloromethane conversion >98%) and selectivity of light-olefins reached 115 h and 69.3%, respectively.
Wang, Min; Ma, Pengsha; Yin, Min; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun; Li, Dongdong
2017-09-01
Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.
NASA Astrophysics Data System (ADS)
Liang, Tian; Yan, Chunjie; Zhou, Sen; Zhang, Yonghan; Yang, Bipeng
2017-10-01
Carbon black (CB) is an excellent filler to reinforce polymers because of its unique thermal and mechanical properties. Thus, a type of modified carbon black (MCB) was developed, which led to reduced filler aggregation in methyl methacrylate (MMA) monomers and resulted in homogeneous dispersion in the polymethyl methacrylate (PMMA) substrate. The PMMA-MCB composite particles that were prepared in this work possessed remarkable and stable properties. Therefore, they can be used as an ultra-lightweight proppant (ULWP). Fourier transform infrared spectroscopy showed that CB was successfully modified and the MCB was well dispersed in the PMMA matrix. Results of crushing rate and differential scanning calorimetry demonstrated that MCB could significantly enhance the thermal and mechanical performance of the ULWP. Heat treatment of the ULWP under a nitrogen atmosphere could also clearly enhance its performance in various aspects. The process of modifying CB, the approach of synthesizing PMMA-MCB composite particles, and their mechanism were systematically investigated in this work.
Wang, Min; Ma, Pengsha; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun
2017-01-01
Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll‐to‐roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si‐based triple‐junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance. PMID:28932667
Tai, Huiling; Li, Xian; Jiang, Yadong; Xie, Guangzhong; Du, Xiaosong
2015-01-01
A thin-film transistor (TFT) having an organic–inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles' hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO) gas sensor. The effects of ZnO nanoparticles on morphological and compositional features, electronic and HCHO-sensing properties of P3HT-ZnO thin film were systematically investigated. The results showed that P3HT-ZnO hybrid thin film sensor exhibited considerable improvement of sensing response (more than two times) and reversibility compared to the pristine P3HT film sensor. An accumulation p-n heterojunction mechanism model was developed to understand the mechanism of enhanced sensing properties by incorporation of ZnO nanoparticles. X-ray photoelectron spectroscope (XPS) and atomic force microscopy (AFM) characterizations were used to investigate the stability of the sensor in-depth, which reveals the performance deterioration was due to the changes of element composition and the chemical state of hybrid thin film surface induced by light and oxygen. Our study demonstrated that P3HT-ZnO hybrid thin film TFT sensor is beneficial in the advancement of novel room temperature HCHO sensing technology. PMID:25608214
Tai, Huiling; Li, Xian; Jiang, Yadong; Xie, Guangzhong; Du, Xiaosong
2015-01-19
A thin-film transistor (TFT) having an organic-inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles' hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO) gas sensor. The effects of ZnO nanoparticles on morphological and compositional features, electronic and HCHO-sensing properties of P3HT-ZnO thin film were systematically investigated. The results showed that P3HT-ZnO hybrid thin film sensor exhibited considerable improvement of sensing response (more than two times) and reversibility compared to the pristine P3HT film sensor. An accumulation p-n heterojunction mechanism model was developed to understand the mechanism of enhanced sensing properties by incorporation of ZnO nanoparticles. X-ray photoelectron spectroscope (XPS) and atomic force microscopy (AFM) characterizations were used to investigate the stability of the sensor in-depth, which reveals the performance deterioration was due to the changes of element composition and the chemical state of hybrid thin film surface induced by light and oxygen. Our study demonstrated that P3HT-ZnO hybrid thin film TFT sensor is beneficial in the advancement of novel room temperature HCHO sensing technology.
Chung, Pil Seung; Jhon, Myung S; Choi, Hyoung Jin
2016-03-21
Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported.
NASA Astrophysics Data System (ADS)
Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun
2016-01-01
In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably.
Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles
Xie, Zheng; Liu, Xiangxuan; Wang, Weipeng; Liu, Can; Li, Zhengcao; Zhang, Zhengjun
2014-01-01
TiO2 nanorod arrays (TiO2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation. PMID:27877718
Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun
2016-01-01
In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably. PMID:26790759
Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Liao, Xinqin; Li, Yong; Zheng, Xin; Lin, Pei; Meng, Jingjing; Zhang, Yue
2017-03-01
The low-cost inorganic-organic lead halide perovskite materials become particularly promising for solar cells with high photovoltaic conversion efficiency. The uniform and pinhole-free perovskite films play an important role for high-performance solar cells. We demonstrate an antisolvent treatment by controlling the PbI 2 morphology to enhance the perovskite conversion and photophysical properties, including high absorption, crystallinity, and rapid carrier transfer. The fabricated perovskite solar cells show tremendous PCE improvement to about 16.1% from 12% with less hysteresis, and retain over 90% initial PCE after 30 days in ambient and dark atmosphere. In prospect, this antisolvent treatment will be a feasible route to prepare high-quality perovskite films including favorite photophysical properties.
Plachy, T; Mrlik, M; Kozakova, Z; Suly, P; Sedlacik, M; Pavlinek, V; Kuritka, I
2015-02-18
This paper concerns the preparation of novel electrorheological (ER) materials using microwave-assisted synthesis as well as utilizing a suitable shell-providing system with enhanced ER performance. Lithium titanate nanoparticles were successfully synthesized, and their composition was confirmed via X-ray diffraction. Rheological properties were investigated in the absence as well as in the presence of an external electric field. Dielectric properties clarified the response of the particles to the application of an electric field. The urea-coated lithium titanate nanoparticle-based suspension exhibits higher ER performance in comparison to suspensions based on bare particles.
Enhanced wear performance of ultra high molecular weight polyethylene crosslinked by organosilane.
Tang, C Y; Xie, X L; Wu, X C; Li, R K Y; Mai, Y W
2002-11-01
Ultra high molecular weight polyethylene (UHMWPE) crosslinked by organosilane was thermal compression molded. The organosilane used was the tri-ethyloxyl vinyl silane. Its gelation, melting behavior, crystallinity, mechanical and wear-resisting properties were systematically investigated. The results showed that the gel ratio of UHMWPE increases with the incorporation of organosilane. At a low content of organosilane, the melting point and crystallinity of the crosslinked UHMWPE increase, and hence the mechanical and wear-resisting properties are improved. However, at a high content of organosilane, these performances of the crosslinked UHMWPE become worse. At 0.4 phr silane, the wear resistance of crosslinked UHMWPE reaches its optimum value.
Bahrke, Michael S; Morgan, William P; Stegner, Aaron
2009-06-01
Ginseng is one of the most popular herbal supplements in the world. Although it is used for the treatment and prevention of many ailments, it is also used to increase work efficiency and is purported to increase energy and physical stamina. Athletes use ginseng for its alleged performance-enhancing attributes. However, many studies examining the pharmacological effects of ginseng on physical performance have not employed sound scientific design and methodology. The purpose of this review is to provide an update on published empirical research focusing primarily on the efficacy of ginseng with respect to physical and athletic performance. Despite attempts in recent investigations to improve on the scientific rigor used in examining the ergogenic properties of ginseng, the authors conclude that many of the same methodological shortcomings observed in earlier studies persist. Enhanced physical performance after ginseng administration in well-designed investigations remains to be demonstrated.
Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications
NASA Astrophysics Data System (ADS)
Haywood, Talisha M.
Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.
Woo, Yun Chul; Kim, Youngjin; Yao, Minwei; Tijing, Leonard D; Choi, June-Seok; Lee, Sangho; Kim, Seung-Hyun; Shon, Ho Kyong
2018-02-20
In this study, composite membranes were fabricated via layer-by-layer (LBL) assembly of negatively charged silica aerogel (SiA) and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FTCS) on a polyvinylidene fluoride phase inversion membrane and interconnecting them with positively charged poly(diallyldimethylammonium chloride) (PDDA) via electrostatic interaction. The results showed that the PDDA-SiA-FTCS coated membrane had significantly enhanced the membrane structure and properties. New trifluoromethyl and tetrafluoroethylene bonds appeared at the surface of the coated membrane, which led to lower surface free energy of the composite membrane. Additionally, the LBL membrane showed increased surface roughness. The improved structure and property gave the LBL membrane an omniphobic property, as indicated by its good wetting resistance. The membrane performed a stable air gap membrane distillation (AGMD) flux of 11.22 L/m 2 h with very high salt rejection using reverse osmosis brine from coal seam gas produced water as feed with the addition of up to 0.5 mM SDS solution. This performance was much better compared to those of the neat membrane. The present study suggests that the enhanced membrane properties with good omniphobicity via LBL assembly make the porous membranes suitable for long-term AGMD operation with stable permeation flux when treating challenging saline wastewater containing low surface tension organic contaminants.
Improving Mechanical Properties of Hot Mix Asphalt Using Fibres and Polymers in Developing Countries
NASA Astrophysics Data System (ADS)
Preciado, Jaime; Martínez Arguelles, Gilberto; Dugarte, Margareth; Bonicelli, Alessandra; Cantero, Julio; Vega, Daniela; Barros, Yennis
2017-10-01
The enhancement of mechanical properties and long term performance of hot mix asphalt (HMA) should be considered as a goal in order to achieve a transport infrastructure really sustainable. However, this issue becomes a difficult task, if conventional HMA are used. In fact, performance of conventional HMA, usually presents poor long term performance and functional distresses related to high and low temperatures, which in turn implies higher maintenance costs and superior carbon footprints. To overcome this weaken, bitumen industry has been developing new polymer modifiers, additives to improve HMA behaviour. One of the techniques most used in developed countries to enhance HMA behaviour is the use of modified bitumen. Modifying the bitumen, and then producing modified HMA requires specific equipment and facilities that may be time-consuming, expensive and hard to manage. For instance, to warranty a successful modifying process, storage and handling of the modified bitumen are issues very complex to handle. On the other hand, producing a polymer modified HMA by adding polymers and additives directly during the bitumen/aggregate mixing process may offer very interesting advantages since the economical, production and sustainability standpoint. This paper aimed to determine the feasibility of the incorporation of fibres and plastomeric polymers into different types of HMA by means of the “dry process” (to add polymers during the mixing of aggregate and bitumen in the HMA plant) to produce polymer modified mixes. Thus, laboratory tests including Marshall Stability, Indirect Tensile Stiffness Modulus, repeated load test and Indirect Tensile Strength test were performed to assess the effect of the inclusion of fibres and plastomeric polymers on mechanical and volumetric properties of selected mixes. Results showed that the modification of bituminous mixtures following the “dry process” could be used to improve the performance and long term properties of HMA.
Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui
2017-09-20
Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.
Effect of kenaf fiber age on PLLA composite properties
USDA-ARS?s Scientific Manuscript database
The age of the kenaf (Hibiscus cannabinus L.) fiber dictates its pore architecture. The impact of increasing age of plant fiber on the corresponding composite can impact material selection for enhanced composite performance. Bast fibers stems of kenaf, a warm season tropical herbaceous annual plant ...
Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances
NASA Astrophysics Data System (ADS)
Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong
2010-10-01
Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors.Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors. Electronic supplementary information (ESI) available: TEM images; EDTA-2Na reaction details. See DOI: 10.1039/c0nr00257g
Metallurgy and properties of plasma spray formed materials
NASA Technical Reports Server (NTRS)
Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.
1992-01-01
Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.
Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Hornacek, Jennifer
2002-01-01
A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.
Refuse derived soluble bio-organics enhancing tomato plant growth and productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo, E-mail: enzo.montoneri@unito.it
2012-10-15
Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers tomore » soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.« less
Sifain, Andrew E.; Tadesse, Loza F.; Bjorgaard, Josiah August; ...
2017-03-21
Conjugated energetic molecules (CEMs) are a class of explosives with high nitrogen content that posses both enhanced safety and energetic performance properties and are ideal for direct optical initiation. As isolated molecules, they absorb within the range of conventional lasers. Crystalline CEMs are used in practice, however, and their properties can differ due to intermolecular interaction. Herein, time-dependent density functional theory was used to investigate one-photon absorption (OPA) and two-photon absorption (TPA) of monomers and dimers obtained from experimentally determined crystal structures of CEMs. OPA scales linearly with the number of chromophore units, while TPA scales nonlinearly, where a moremore » than 3-fold enhancement in peak intensity, per chromophore unit, is calculated. Cooperative enhancement depends on electronic delocalization spanning both chromophore units. An increase in sensitivity to nonlinear laser initiation makes these materials suitable for practical use. This is the first study predicting a cooperative enhancement of the nonlinear optical response in energetic materials composed of relatively small molecules. Finally, the proposed model quantum chemistry is validated by comparison to crystal structure geometries and the optical absorption of these materials dissolved in solution.« less
Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding
2018-07-01
Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve surprisingly with "low-grade" matrix materials, and discontinuities (often regarded as "defects") may play an important role in energy dissipation. Counter-intuitive as it may seem, our work helps understanding the secrets of the outstanding dynamic properties of some biological materials, and inspire novel ideas for man-made composites. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
On the vibration properties of composite materials and structures
NASA Astrophysics Data System (ADS)
Lu, Y. P.; Neilson, H. C.; Roscoe, A. J.
1993-01-01
In recent years, there has been a widespread assumption that composite materials and structures offer enhanced vibration and acoustic properties. This assumption has to be evaluated or validated. The objective of this article is to address the subject of vibration characteristics and the related force transmissibility properties of composite structures. For a given composite beam made of Hercules AS4/3501-6 graphite/epoxy with a layered structure sequence of (0,0,30,-30)(sub 6S), resonance frequencies, structural damping, responses, impedances, and force transmissibility properties are determined, discussed, and compared with those of a steel beam. This article proposes a procedure to evaluate the vibration properties of individual composites. The criterion defined for performance comparison between composite materials and conventional materials is also discussed.
NASA Astrophysics Data System (ADS)
Salas, R.; Guchhait, S.; Sifferman, S. D.; McNicholas, K. M.; Dasika, V. D.; Jung, D.; Krivoy, E. M.; Lee, M. L.; Bank, S. R.
2017-09-01
We report the effects of the growth rate on the properties of iii-v nanocomposites containing rare-earth-monopnictide nanoparticles. In particular, the beneficial effects of surfactant-assisted growth of LuAs:In0.53Ga0.47As nanocomposites were found to be most profound at reduced LuAs growth rates. Substantial enhancement in the electrical and optical properties that are beneficial for ultrafast photoconductors was observed and is attributed to the higher structural quality of the InGaAs matrix in this new growth regime. The combined enhancements enabled a >50% increase in the amount of LuAs that could be grown without degrading the quality of the InGaAs overgrowth. Dark resistivity increased by ˜25× while maintaining carrier mobilities over 3000 cm2/V s; carrier lifetimes were reduced by >2×, even at high depositions of LuAs. The combined growth rate and surfactant enhancements offer a previously unexplored regime to enable high-performance fast photoconductors that may be integrated with telecom components for compact, broadly tunable, heterodyne THz source and detectors.
Zhang, Ding; Wang, Huai-Ji; Cui, Xiu-Ming; Wang, Cheng-Xiao
2017-06-01
In this work, imidazolium ionic liquids (imidazolium ILs) were employed as the novel chemical permeation enhancers (CPEs) and their performances and mechanisms of action were deeply investigated. Testosterone was used as a model drug to investigate the transdermal delivery enhancement of twenty imdidazolium ILs. The results suggested that the promotion activity connected to the structure and composition of the ILs. The quantitative structure-activity relationship (QSAR) model revealed a good linearity between the electronic properties of ILs and their enhancements. Furthermore, the transepidermal water loss (TEWL) and scanning laser confocal microscope (CLSM) examinations showed the strong improvement of ILs on skin barrier permeability, which were well correlated with the drug penetration profiles. The total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscope (AFM) evaluations of skins indicated that the ILs can disrupt the regular and compact arrangements of the corneocytes, change the surface properties of stratum corneum, and make the skin structure more permeable. Our work demonstrated the significant skin permeation promotion profiles of the imidazolium ILs, which are of great potential in transdermal drug delivery systems.
NASA Astrophysics Data System (ADS)
Sarswat, Prashant K.; Deka, Nipon; Jagan Mohan Rao, S.; Free, Michael L.; Kumar, Gagan
2017-08-01
The objective of this work is to understand and improve the photocatalytic activity of Cu2ZnSnS4 (CZTS) through postgrowth modification techniques to create surface textures. This objective can be achieved using a combination of solvents, etching agents, and anodization techniques. One of the most effective surface treatments for enhancing the surface properties of photovoltaic materials is formation of nanoscale flakes, although other surface modifications were also evaluated. The superior performance of textured films can be attributed to enhanced surface area of absorber material exposed to electrolyte, ZnS deficiency, and high catalytic activity due to reduced charge-transfer resistance. Fine-tuning of ion flux and electrolyte stoichiometry can be used to create a controlled growth algorithm for CZTS thin films. The resulting information can be utilized to optimize film properties. The utility of nanostructured or engineered surfaces was evaluated using photoelectrochemical measurements. Finite-difference time-domain (FDTD)-assisted simulations were conducted for selected texturing, revealing enhanced surface area of absorbing medium that ultimately resulted in greater power loss of light in the medium.
Ma, Fang; Bai, Dongsheng; Xu, Hongliang
2014-12-01
We present a theoretical investigation of the electric properties of two kinds of one-dimensional lithium bonded chains: (NC-Li)n and (NC-CC-Li)n (n = 1-8). The resulting (NC-Li)n and (NC-CC-Li)n were found to exhibit enhanced first hyperpolarizabilities (β 0) with increasing n, and a slight change in the absorption maximum wavelength λmax at the crucial transition. Comparing with (NC-Li)n, (NC-CC-Li)n exhibited particularly drastically enhanced β 0 values due to clearly enhanced coupled oscillators and double-degenerated charge transitions. β 0 is known to be the microscopic origin of the second-order non-linear optical (NLO) property, and λmax is an approximate measure of the transparency achievable, thus both are important indices of high-performance NLO molecules. Therefore, our investigations into one-dimensional lithium bond chains will be beneficial to understanding the relationship between β 0 and λmax, thus aiding the design of one-dimensional NLO materials with excellent transparence-efficiency.
Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C
2018-03-19
To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.
Zecevic, Damir E; Wagner, Karl G
2013-07-01
Effective and predictive small-scale selection tools are inevitable during the development of a solubility enhanced drug product. For hot-melt extrusion, this selection process can start with a microscale performance evaluation on a hot-stage microscope (HSM). A batch size of 400 mg can provide sufficient materials to assess the drug product attributes such as solid-state properties, solubility enhancement, and physical stability as well as process related attributes such as processing temperature in a twin-screw extruder (TSE). Prototype formulations will then be fed into a 5 mm TSE (~1-2 g) to confirm performance from the HSM under additional shear stress. Small stress stability testing might be performed with these samples or a larger batch (20-40 g) made by 9 or 12 mm TSE. Simultaneously, numeric process simulations are performed using process data as well as rheological and thermal properties of the formulations. Further scale up work to 16 and 18 mm TSE confirmed and refined the simulation model. Thus, at the end of the laboratory-scale development, not only the clinical trial supply could be manufactured, but also one can form a sound risk assessment to support further scale up even without decades of process experience. Copyright © 2013 Wiley Periodicals, Inc.
Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.; ...
2018-03-19
To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less
Comprehensive design of omnidirectional high-performance perovskite solar cells
Zhang, Yutao; Xuan, Yimin
2016-01-01
The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419
Comprehensive design of omnidirectional high-performance perovskite solar cells.
Zhang, Yutao; Xuan, Yimin
2016-07-13
The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.
To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less
Silver nanoparticle assisted urine sugar determination using thermal lens spectroscopy
NASA Astrophysics Data System (ADS)
Thomas, Lincy; John, Jisha; George, Nibu A.; Kurian, Achamma
2014-11-01
Nanotechnology plays a vital role in the development of biosensors by enhancing their sensitivity and performance. In this paper, we report a novel urine sugar sensing method that makes use of the unique properties of silver-nanofluids in combination with the laser induced photothermal lens technique. The thermal lens signal decreases with increase in sugar levels in urine samples, which may be attributed to the enhanced interaction of glucose and conduction electrons of silver-nanoparticles, thereby changing the surface plasmon energy.
Development of dielectric elastomer nanocomposites as stretchable actuating materials
NASA Astrophysics Data System (ADS)
Wang, Yu; Sun, L. Z.
2017-10-01
Dielectric elastomer nanocomposites (DENCs) filled with multi-walled carbon nanotubes are developed. The electromechanical responses of DENCs to applied electric fields are investigated through laser Doppler vibrometry. It is found that a small amount of carbon nanotube fillers can effectively enhance the electromechanical performance of DENCs. The enhanced electromechanical properties have shown not only that the desired thickness strain can be achieved with reduced required electric fields but also that significantly large thickness strain can be obtained with any electric fields compared to pristine dielectric elastomers.
Santagata, Gabriella; Mallardo, Salvatore; Fasulo, Gabriella; Lavermicocca, Paola; Valerio, Francesca; Di Biase, Mariaelena; Di Stasio, Michele; Malinconico, Mario; Volpe, Maria Grazia
2018-08-30
In this paper, a novel and sustainable process for the fruit dehydration was described. Specifically, edible coatings based on pectin and honey were prepared and used as dehydrating and antimicrobial agents of cut fruit samples, in this way promoting the fruit preservation from irreversible deteriorative processes. Pectin-honey coating was tested on apple, cantaloupe melon, mango and pineapple. The analysis were performed also on uncoated dehydrated fruits (control). The coated fruit evidenced enhanced dehydration percentage, enriched polyphenol and vitamin C contents, improved antioxidant activity and volatile molecules profile. Moreover, the antimicrobial activity against Pseudomonas and Escherichia coli was assessed. Finally, morphological analysis performed on fruit fractured surface, highlighted the formation of a non-sticky and homogeneous thin layer. These outcomes suggested that the novel fruit dehydration process, performed by using pectin-honey coating, was able to both preserve the safety and quality of dehydrated fruits, and enhance their authenticity and naturalness. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2
NASA Astrophysics Data System (ADS)
Wang, Zengze; Fang, Jin; Mi, Yang; Zhu, Xiaoyang; Ren, He; Liu, Xinfeng; Yan, Yong
2018-04-01
The performance of a semiconductor electronic or photonic device depends greatly on the properties of the interface. In a typical perovskite solar cell (PSC), the interface between electron transport layer (ETL) and perovskites is found to significantly influence the power conversion efficiency (PCE). Herein, Ultraviolet-ozone (UVO) treatment, a technique commonly used to clean a device substrate, is applied on ETL, specially, mesoporous/compact TiO2 layer. This treatment increases the conductivity of ETL and removes the residual organics at the surface. Consequently, an improved interface between mesoporous TiO2 and perovskite is achieved to enhance the performance of PSC. For example, the fill factor (FF) increases by ∼13%, the short-circuit current density (Jsc) and open-circuit voltage (Voc) increase by ∼2%, and the PCE finally enhances by ∼20% with 15 min of UVO treatment. With this method, the PCE of the best cell reaches to 20.43% under the illumination of AM 1.5 (100 mW cm-2) simulated sunlight.
Enhancement of tribofilm formation from water lubricated PEEK composites by copper nanowires
NASA Astrophysics Data System (ADS)
Gao, Chuanping; Fan, Shuguang; Zhang, Shengmao; Zhang, Pingyu; Wang, Qihua
2018-06-01
A high-performance tribofilm is crucial to enhance the tribological performance of tribomaterials. In order to promote tribofilm formation under water lubrication conditions, copper nanowires as a functional nanomaterial were filled into neat polyetheretherketone (PEEK) and PEEK10SCF8Gr (i.e., PEEK filled with 10 vol.% short carbon fibers and 8 vol.% graphite flakes). The results show that the addition of copper nanowires and a greater applied load can enhance materials transfer and tribofilm formation during sliding process. Moreover, copper nanowires can share a part of applied load, and retard the fatigue effect to some extent. In addition, copper nanowires, carbon fibers and graphite can synergistically improve the tribological performance and the tribofilm formation under water lubrication and severe working conditions. In particular, only 0.5 vol.% copper nanowires can form a high-performance tribofilm, which endows superior lubricating property and wear resistance capacity of the PEEK10SCF8Gr. Furthermore, the surface analysis indicates that the tribofilm contains some transferred materials and the products from tribochemical reactions as well.
Passot, Jean-Baptiste; Luque, Niceto R.; Arleo, Angelo
2013-01-01
The cerebellum is thought to mediate sensorimotor adaptation through the acquisition of internal models of the body-environment interaction. These representations can be of two types, identified as forward and inverse models. The first predicts the sensory consequences of actions, while the second provides the correct commands to achieve desired state transitions. In this paper, we propose a composite architecture consisting of multiple cerebellar internal models to account for the adaptation performance of humans during sensorimotor learning. The proposed model takes inspiration from the cerebellar microcomplex circuit, and employs spiking neurons to process information. We investigate the intrinsic properties of the cerebellar circuitry subserving efficient adaptation properties, and we assess the complementary contributions of internal representations by simulating our model in a procedural adaptation task. Our simulation results suggest that the coupling of internal models enhances learning performance significantly (compared with independent forward and inverse models), and it allows for the reproduction of human adaptation capabilities. Furthermore, we provide a computational explanation for the performance improvement observed after one night of sleep in a wide range of sensorimotor tasks. We predict that internal model coupling is a necessary condition for the offline consolidation of procedural memories. PMID:23874289
Enhancing tribological performance of Ti-6Al-4V using pin on disc setup
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Lijesh, K. P.; Deepak, K. B.; Kumar, Satish
2018-05-01
Titanium (Ti) alloy Ti-6Al-4V (Ti64), possesses a inimitable combination of mechanical, physical and corrosion properties, which makes them desirable for applications like aerospace, automobile, chemical and energy industries devices etc. However this alloy of Ti exhibits poor tribological (friction and wear) properties, which limits their full fledged implementation. However, the tribological behavior of T164 can be enhanced by providing a coating or a protective layer on it, which posses superior tribological properties. It is hypothesized that by a layer of alumina on the can be deposited on the surface of Ti64, by sliding them in dry-ambient condition using Pin On Disk (POD) machine. To validate the hypothesis, experiments were performed for different normal loading conditions of 13.7N, 68.7N and 109.9N at sliding speed of 0.01m/s and for a sliding distance of 1000m. The tribological performance of the experiments, were evaluated by measuring Coefficient of Friction (COF) and weight loss values. To understand the tribological mechanism and behaviour, In-situ analysis was performed on the pin using (i) Scanning Electron Microscopy (SEM) to understand the wear morphology, and (ii) Energy Dispersive Analysis of X Ray (EDAX) to estimate the deposition of alumina on surface of the pins. Based on the obtained results, the most favorable experimenting condition required for deposition of alumina over Ti64 will be identified. Finally, experiment on POD will be repeated for the selected experimenting condition and will be continued for the worst tribological condition. The obtained COF and wear values after performing the experiment will be presented.
NASA Astrophysics Data System (ADS)
Budzyński, P.; Kamiński, M.; Pyszniak, K.
2016-09-01
The implantation of nitrogen, carbon, and oxygen can be used for enhancing the tribological properties of critical components for internal combustion engines. Hardox and Raex steels have very similar strength parameters as for steel used for piston rings in internal combustion engines. An essential criterion when selecting material for the production of piston rings is a low friction factor and a low wear index. The aim of this study was to determine the extent to which these parameters can be enhanced by nitrogen ion implantation. Samples were implanted with nitrogen ions with 65 keV energy and the fluence of implanted ions set to 1.1017 N + /cm2. Friction and wear measurements were performed on a pin-on disc stand. The results demonstrate that implantation with nitrogen ions significantly reduces the friction factor and wear of Hardox 450 and Raex 400 steels. Implantation can and should be used for enhancing the tribological properties of steel used for friction elements in internal combustion engines, particularly when heat treatment is excluded. Final elements can be subjected to implantation, as the process does not change their dimensions.
NASA Astrophysics Data System (ADS)
Feng, Xiaodong; Wang, Minqiang; Li, Le; Yang, Zhi; Cao, Minghui; Cheng, Z.-Y.
Pyroelectric composites of triglycine sulfate (TGS)-polyvinylidene difluoride (PVDF) doped with graphene are studied. It is found that the graphene can effectively improve the polling efficiency and thermal property of the composites so that the infrared detective performance can be significantly improved. For example, by adding about 0.83 wt.% of graphene, the infrared detective property can be improved by more than 30%. It is also found that the size of the graphene plays a critical role on the property improvement. For example, the small-sized graphene prepared by ultrasonic exfoliation (UE) method is more effective than the big-sized graphene prepared by electrochemical exfoliation (EE) method.
High performance P-type thermoelectric materials and methods of preparation
NASA Technical Reports Server (NTRS)
Caillat, Thierry (Inventor); Borshchevsky, Alexander (Inventor); Fleurial, Jean-Pierre (Inventor)
2002-01-01
The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn.sub.4-x A.sub.x Sb.sub.3-y B.sub.y wherein 0.ltoreq.x.ltoreq.4, A is a transition metal, B is a pnicogen, and 0.ltoreq.y.ltoreq.3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn.sub.4 Sb.sub.3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.
Zhao, Jingxin; Yang, Qiucheng; Wang, Tao; Wang, Lian; You, Jichun; Li, Yongjin
2017-12-20
An effective strategy to tailor the microporous structures has been developed based on the shape memory effect in porous poly(l-lactic acid) membranes in which tiny crystals and amorphous matrix play the roles of shape-fixed phase and reversible-phase, respectively. Our results indicate that not only PLLA membranes but micropores exhibit shape memory properties. The proportional deformations on two scales have been achieved by uniaxial or biaxial tension, providing a facile way to manipulate continuously the size and the orientation degree of pores on microscale. The enhanced separation performance has been validated by taking polystyrene colloids with varying diameters as an example.
Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.
Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari
2015-09-14
Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.
Enhanced fatigue performance of porous coated Ti6Al4V biomedical alloy
NASA Astrophysics Data System (ADS)
Apachitei, I.; Leoni, A.; Riemslag, A. C.; Fratila-Apachitei, L. E.; Duszczyk, J.
2011-05-01
Biofunctional coatings are necessary to improve integration of titanium implants in the host tissue but they may be detrimental for the implant fatigue properties. This study presents an attempt towards enhancement of the in vitro fatigue strength of plasma electrolytic oxidation coated Ti6Al4V alloy by applying shot peening process prior to coating. The electrolytic oxidation was performed in calcium acetate and calcium glycerophosphate electrolytes that allowed formation of porous oxide coatings with high surface free energy and apatite like ability. A deformed surface layer coupled with induced residual compressive stresses seem to affect oxide growth rate and fatigue behavior of the titanium alloy.
Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix
Qining Sun; Anurag Mandalika; Thomas Elder; Sandeep S. Nair; Xianzhi Meng; Fang Huang; Art J. Ragauskas
2014-01-01
Novel bionanocomposite films have been prepared by depositing xylan onto cellulose nanowhiskers through a pH adjustment. Analysis of strength properties, water vapour transmission, transparency, surface morphology and thermal decomposition showed the enhancement of film performance. This provides a new green route to the utilization of biomass for sustainable...
Ionic liquid and nanoparticle hybrid systems: Emerging applications.
He, Zhiqi; Alexandridis, Paschalis
2017-06-01
Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.
Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A
2013-06-25
Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.
NASA Astrophysics Data System (ADS)
Yang, Cheng
2007-12-01
This thesis presents the research achievements on the design, preparation, characterization, and analysis of a series of composite materials. By studying the interface interaction of the composite materials using nanotechnology, we developed composite materials that achieve satisfactory mechanical properties in two classes of materials. Durable press (DP) natural textiles are important consumer products usually achieved by erosslinking the molecules in the textiles to achieve long-term wrinkle resistance, which, however, also leads to the simultaneous significant drop of mechanical properties. Herein, a series of polymeric nanoparticl es were investigated, the application of as little as ˜0.14 wt% addition of the nanoparticles improved the mechanical property of the DP cotton fabric by 56% in tearing resistance and 100% in abrasion resistance; the loss in recovery angle is negligible. The author also studied the enzyme-triggered DP treatments of silk fabrics, as a green process method. After the treatment of enzymes, excellent DP property was achieved with improved strain property. Injectable calcium phosphate powder containing acrylic bone cements are widely used in orthopedic surgery to fix artificial prostheses. However, the bending strength is still unsatisfactory. The author modified the surface of the strontium (Sr) containing hydroxyapatite (HA) filler powders with acrylolpamidronate in order to improve the overall mechanical performance of the bone cement composites. By adding 0.25 wt% of acrylolpamidronate to the Sr-HA nanopowders, more than 19% of the bending strength and more than 23% compression strength of the Sr-HA bone cement were improved. Biological evaluations revealed that these bone cement composites were biocompatible and bioactive in cell culture. The results obtained in this thesis work show an effective method to significantly enhance the mechanical properties of composite materials. Different from other available methods, by developing a new series of chemical compounds and nanoparticles, we successfully bound them to the surface or to the constitutional components of the materials through covalent bond. The treatment can enhance and modulate the interface-bonding of the filler materials and enhances the mechanical property of the surface through grafting a thin nano-layer. Since only surface reaction is involved, very small amount of the new material is needed, and the treatment can be readily integrated to the existing processes. The work is instructive in modifying available composite materials to acquire ultra-high mechanical performance.
Plasmofluidics: Merging Light and Fluids at the Micro-/Nano-Scale
Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph
2016-01-01
Plasmofluidics is the synergistic integration of plasmonics and micro/nano fluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids, and precise manipulation via micro/nano fluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, we examine and categorize the most recent advances in plasmofluidics into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro-/nano-scale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. We conclude with our perspectives on the upcoming challenges, opportunities, and the possible future directions of the emerging field of plasmofluidics. PMID:26140612
MoS2 /Carbon Nanotube Core-Shell Nanocomposites for Enhanced Nonlinear Optical Performance.
Zhang, Xiaoyan; Selkirk, Andrew; Zhang, Saifeng; Huang, Jiawei; Li, Yuanxin; Xie, Yafeng; Dong, Ningning; Cui, Yun; Zhang, Long; Blau, Werner J; Wang, Jun
2017-03-08
Nanocomposites of layered MoS 2 and multi-walled carbon nanotubes (CNTs) with core-shell structure were prepared by a simple solvothermal method. The formation of MoS 2 nanosheets on the surface of coaxial CNTs has been confirmed by scanning electron microscopy, transmission electron microscopy, absorption spectrum, Raman spectroscopy, and X-ray photoelectron spectroscopy. Enhanced third-order nonlinear optical performances were observed for both femtosecond and nanosecond laser pulses over a broad wavelength range from the visible to the near infrared, compared to those of MoS 2 and CNTs alone. The enhancement can be ascribed to the strong coupling effect and the photoinduced charge transfer between MoS 2 and CNTs. This work affords an efficient way to fabricate novel CNTs based nanocomposites for enhanced nonlinear light-matter interaction. The versatile nonlinear properties imply a huge potential of the nanocomposites in the development of nanophotonic devices, such as mode-lockers, optical limiters, or optical switches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale.
Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph; Liu, Yan Jun; Huang, Tony Jun; Zheng, Yuebing
2015-09-16
Plasmofluidics is the synergistic integration of plasmonics and micro/nanofluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids and precise manipulation via micro/nanofluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofluidics are examined and categorized into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging field of plasmofluidics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhancement of Gas Barrier Properties of CFRP Laminates Fabricated Using Thin-Ply Prepregs
NASA Astrophysics Data System (ADS)
横関, 智弘; 高木, 智宏; 吉村, 彰記; Ogasawara, Toshio; 荻原, 慎二
Composite laminates manufactured using thin-ply prepregs are expected to have superior resistance properties against microcracking compared to those using standard prepregs. In this study, comparative investigations are presented on the microcrack accumulation and gas leakage characteristics of CFRP laminates fabricated using standard and thin-ply prepregs, consisting of high-performance carbon fiber and toughened epoxy, as a fundamental research on the cryogenic composite tanks for future space vehicles. It was shown that laminates using thin-ply prepregs exhibited much higher strain at microcrack initiation compared to those using standard prepregs at room and cryogenic temperatures. In addition, helium gas leak tests using CFRP laminated tubular specimens subjected to quasi-static tension loadings were performed. It was demonstrated that CFRP laminates using thin-ply prepregs have higher gas barrier properties than those using standard prepregs.
Lee, Gyuhyon; Savage, Nicholas; Wagner, Brent; Zhang, Yuelan; Jacobs, Benjamin; Menkara, Hisham; Summers, Christopher; Kang, Zhitao
2014-03-01
Transparent glass-ceramic containing rare-earth doped halide nanocrystals exhibits enhanced luminescence performance. In this study, a glass-ceramic with Tb doped gadolinium fluoride nanocrystals embedded in an aluminosilicate glass matrix is investigated for X-ray imaging applications. The nanocrystalline glass-ceramic scintillator was prepared by a melt-quench method followed by an anneal. The GdF 3 :Tb nanocrystals precipitated within the oxide glass matrix during the processing and their luminescence and scintillation properties were investigated. In this nanocomposite scintillator system, the incorporation of high atomic number Gd compound into the glass matrix increases the X-ray stopping power of the glass scintillator, and effective energy transfer between Gd 3+ and Tb 3+ ions in the nanocrystals enhances the scintillation efficiency.
de Almeida, Tânia Santos; Júlio, Ana; Mota, Joana Portugal; Rijo, Patrícia; Reis, Catarina Pinto
2017-06-01
There is a growing need to develop drug-delivery systems that overcome drawbacks such as poor drug solubility/loading/release, systemic side effects and limited stability. Ionic liquids (ILs) offer many advantages and their tailoring represents a valuable tuning tool. Nano-based systems are also prized materials that prevent drug degradation, enhance their transport/distribution and extend their release. Consequently, structures containing ILs and nanoparticles (NPs) have been developed to attain synergistic effects. This overview on the properties of ILs, NPs and of their combined structures, reveals the recent advances in these areas through a review of pertinent literature. The IL-NP structures present enhanced properties and the subsequent performance upgrade proves to be useful in drug delivery, although much is yet to be done.
NASA Astrophysics Data System (ADS)
Lu, Canhui; Zhang, Xinxing; Zhang, Wei
2015-05-01
The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.
Lee, Gyuhyon; Savage, Nicholas; Wagner, Brent; Zhang, Yuelan; Jacobs, Benjamin; Menkara, Hisham; Summers, Christopher; Kang, Zhitao
2014-01-01
Transparent glass-ceramic containing rare-earth doped halide nanocrystals exhibits enhanced luminescence performance. In this study, a glass-ceramic with Tb doped gadolinium fluoride nanocrystals embedded in an aluminosilicate glass matrix is investigated for X-ray imaging applications. The nanocrystalline glass-ceramic scintillator was prepared by a melt-quench method followed by an anneal. The GdF3:Tb nanocrystals precipitated within the oxide glass matrix during the processing and their luminescence and scintillation properties were investigated. In this nanocomposite scintillator system, the incorporation of high atomic number Gd compound into the glass matrix increases the X-ray stopping power of the glass scintillator, and effective energy transfer between Gd3+ and Tb3+ ions in the nanocrystals enhances the scintillation efficiency. PMID:24610960
NASA Astrophysics Data System (ADS)
Świder, Joanna; Molenda, Marcin; Kulka, Andrzej; Molenda, Janina
2016-07-01
The results of simple and environmental-friendly method of the carbon nanocoatings on low-conductive cathode material have been shown in this work. The carbon nanocoatings were prepared during wet impregnation process of precursor derived from hydrophilic polymer based on poly(N-vinylformamide) modified by pyromellitic acid. The crystal structures and morphology of all composites were characterized by X-ray powder diffraction (XRD), low temperature nitrogen adsorption/desorption measurements (N2-BET) and transmission electronic microscopy (TEM). The electrical properties of the obtained composites were examined by EC studies. The electrochemical performance was carried out in galvanostatic mode with stable charge-discharge current and performed in Li/Li+/(CCL/LiFePO4) type cells. The process of formation CCL/LiFePO4 nanocomposite significantly enhances the electrical conductivity of the material and improves its capacity retention and electrochemical performance.
Matharu, Zimple; Daggumati, Pallavi; Wang, Ling; Dorofeeva, Tatiana S; Li, Zidong; Seker, Erkin
2017-04-19
Nanoporous gold (np-Au) electrode coatings significantly enhance the performance of electrochemical nucleic acid biosensors because of their three-dimensional nanoscale network, high electrical conductivity, facile surface functionalization, and biocompatibility. Contrary to planar electrodes, the np-Au electrodes also exhibit sensitive detection in the presence of common biofouling media due to their porous structure. However, the pore size of the nanomatrix plays a critical role in dictating the extent of biomolecular capture and transport. Small pores perform better in the case of target detection in complex samples by filtering out the large nonspecific proteins. On the other hand, larger pores increase the accessibility of target nucleic acids in the nanoporous structure, enhancing the detection limits of the sensor at the expense of more interference from biofouling molecules. Here, we report a microfabricated np-Au multiple electrode array that displays a range of electrode morphologies on the same chip for identifying feature sizes that reduce the nonspecific adsorption of proteins but facilitate the permeation of target DNA molecules into the pores. We demonstrate the utility of the electrode morphology library in studying DNA functionalization and target detection in complex biological media with a special emphasis on revealing ranges of electrode morphologies that mutually enhance the limit of detection and biofouling resilience. We expect this technique to assist in the development of high-performance biosensors for point-of-care diagnostics and facilitate studies on the electrode structure-property relationships in potential applications ranging from neural electrodes to catalysts.
Dong, Conglin; Yuan, Chengqing; Wang, Lei; Liu, Wei; Bai, Xiuqin; Yan, Xinping
2016-01-01
Frictional vibration and noise caused by water-lubricated rubber stern tube bearings, which are generated under extreme conditions, severely threaten underwater vehicles’ survivability and concealment performance. This study investigates the effect of flaky and spherical MoS2 nanoparticles on tribological properties and damping capacity of water-lubricated rubber materials, with the aim of decreasing frictional noise. A CBZ-1 tribo-tester was used to conduct the sliding tests between rubber ring-discs and ZCuSn10Zn2 ring-discs with water lubrication. These materials’ typical mechanical properties were analysed and compared. Coefficients of friction (COFs), wear rates, and surface morphologies were evaluated. Frictional noise and critical velocities of generating friction vibration were examined to corroborate above analysis. Results showed that spherical MoS2 nanoparticles enhanced rubber material’s mechanical and tribological properties and, in turn, reduced the friction noise and critical velocity. Flaky MoS2 nanoparticles reduced COF but did not enhance their mechanical properties, i.e., the damping capacity, wear resistance property; thus, these nanoparticles did not reduce the critical velocity obviously, even though increased the frictional noise at high load. The knowledge gained in the present work will be useful for optimizing friction pairs under extreme conditions to decrease frictional noise of water-lubricated rubber stern tube bearings. PMID:27713573
Nanoporous Monolithic Microsphere Arrays Have Anti-Adhesive Properties Independent of Humidity
Eichler-Volf, Anna; Xue, Longjian; Kovalev, Alexander; Gorb, Elena V.; Gorb, Stanislav N.; Steinhart, Martin
2016-01-01
Bioinspired artificial surfaces with tailored adhesive properties have attracted significant interest. While fibrillar adhesive pads mimicking gecko feet are optimized for strong reversible adhesion, monolithic microsphere arrays mimicking the slippery zone of the pitchers of carnivorous plants of the genus Nepenthes show anti-adhesive properties even against tacky counterpart surfaces. In contrast to the influence of topography, the influence of relative humidity (RH) on adhesion has been widely neglected. Some previous works deal with the influence of RH on the adhesive performance of fibrillar adhesive pads. Commonly, humidity-induced softening of the fibrils enhances adhesion. However, little is known on the influence of RH on solid anti-adhesive surfaces. We prepared polymeric nanoporous monolithic microsphere arrays (NMMAs) with microsphere diameters of a few 10 µm to test their anti-adhesive properties at RHs of 2% and 90%. Despite the presence of continuous nanopore systems through which the inner nanopore walls were accessible to humid air, the topography-induced anti-adhesive properties of NMMAs on tacky counterpart surfaces were retained even at RH = 90%. This RH-independent robustness of the anti-adhesive properties of NMMAs significantly contrasts the adhesion enhancement by humidity-induced softening on nanoporous fibrillar adhesive pads made of the same material. PMID:28773497
Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers
NASA Astrophysics Data System (ADS)
Aziz, Siti Aishah Abdul; Amri Mazlan, Saiful; Intan Nik Ismail, Nik; Ubaidillah, U.; Choi, Seung-Bok; Khairi, Muntaz Hana Ahmad; Azhani Yunus, Nurul
2016-07-01
The effect of different types of multiwall carbon nanotubes (MWCNTs) on the morphological, magnetic and viscoelastic properties of magnetorheological elastomers (MREs) are studied in this work. A series of natural rubber MRE are prepared by adding MWCNTs as a new additive in MRE. Effects of functionalized MWCNT namely carboxylated MWCNT (COOH-MWCNT) and hydroxylated MWCNT (OH-MWCNT) on the rheological properties of MREs are investigated and the pristine MWCNTs is referred as a control. Epoxidised palm oil (EPO) is used as a medium to disperse carbonyl iron particle (CIP) and sonicate the MWCNTs. Morphological and magnetic properties of MREs are characterized by field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM), respectively. Rheological properties under different magnetic field are evaluated by using parallel plate rheometer. From the results obtained, FESEM images indicate that COOH-MWCNT and CIP have better compatibility which leads to the formation of interconnected network in the matrix. In addition, by adding functionalized COOH-MWCNT, it is shown that the saturation magnetization is 5% higher than the pristine MWCNTs. It is also found that with the addition of COOH-MWCNT, the magnetic properties are improved parallel with enhancement of MR effect particularly at low strain amplitude. It is finally shown that the use of EPO also can contribute to the enhancement of MR performance.
Li, Jiao Jiao; Roohani-Esfahani, Seyed-Iman; Kim, Kyungsook; Kaplan, David L; Zreiqat, Hala
2017-06-01
Bioactive ceramic scaffolds represent competitive choices for clinical bone reconstruction, but their widespread use is restricted by inherent brittleness and weak mechanical performance under load. This study reports the development of strong and tough bioactive scaffolds suitable for use in load-bearing bone reconstruction. A strong and bioactive ceramic scaffold (strontium-hardystonite-gahnite) is combined with single and multiple coating layers of silk fibroin to enhance its toughness, producing composite scaffolds which match the mechanical properties of cancellous bone and show enhanced capacity to promote in vitro osteogenesis. Also reported for the first time is a comparison of the coating effects obtained when a polymeric material is coated on ceramic scaffolds with differing microstructures, namely the strontium-hardystonite-gahnite scaffold with high-density struts as opposed to a conventional ceramic scaffold, such as biphasic calcium phosphate, with low-density struts. The results show that silk coating on a unique ceramic scaffold can lead to simple and effective enhancement of its mechanical and biological properties to suit a wider range of applications in clinical bone reconstruction, and also establish the influence of ceramic microstructure on the effectiveness of silk coating as a method of reinforcement when applied to different types of ceramic bone graft substitutes. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Reinforcement of SBR/waste rubber powder vulcanizate with in situ generated zinc dimethacrylate
NASA Astrophysics Data System (ADS)
Wang, X. P.; Cheng, B. K.; Zhang, X.; Jia, D. M.
2016-07-01
Methyl acrylic acid/zinc oxide (MAA/ZnO) was introduced to modify styrene- butadiene rubber/waste rubber powder (SBR/WRP) composites by blending. The enhanced mechanical properties and processing ability were presumably originated from improved compatibility and interfacial interaction between WRP and the SBR matrix by the in situ polymerization of zinc dimethacrylate (ZDMA). A refined interface of the modified SBR/WRP composite was observed by scanning electron microscopy. The formation of ZDMA significantly increased the ionic bond content in the vulcanizate, resulting in exceptional mechanical performance. The comprehensive mechanical properties including tensile strength, tear strength and dynamic heat-building performance reached optimum values with 16 phr MAA.
Engineering electrical properties of graphene: chemical approaches
NASA Astrophysics Data System (ADS)
Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee
2015-12-01
To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.
Effect of C and N Addition on Thermoelectric Properties of TiNiSn Half-Heusler Compounds.
Dow, Hwan Soo; Kim, Woo Sik; Shin, Weon Ho
2018-02-08
We investigated the thermoelectric properties of the ternary half-Heusler compound, TiNiSn, when introducing C and N. The addition of C or N to TiNiSn leads to an enhanced power factor and a decreasing lattice thermal conductivity by point defect phonon scattering. The thermoelectric performances of TiNiSn alloys are significantly improved by adding 1 at. % TiN, TiC, and figure of merit ( ZT ) values of 0.43 and 0.34, respectively, can be obtained at 723 K. This increase in thermoelectric performance is very helpful in the commercialization of thermoelectric power generation in the mid-temperature range.
Influence of architecture and material properties on vanadium redox flow battery performance
NASA Astrophysics Data System (ADS)
Houser, Jacob; Clement, Jason; Pezeshki, Alan; Mench, Matthew M.
2016-01-01
This publication reports a design optimization study of all-vanadium redox flow batteries (VRBs), including performance testing, distributed current measurements, and flow visualization. Additionally, a computational flow simulation is used to support the conclusions made from the experimental results. This study demonstrates that optimal flow field design is not simply related to the best architecture, but is instead a more complex interplay between architecture, electrode properties, electrolyte properties, and operating conditions which combine to affect electrode convective transport. For example, an interdigitated design outperforms a serpentine design at low flow rates and with a thin electrode, accessing up to an additional 30% of discharge capacity; but a serpentine design can match the available discharge capacity of the interdigitated design by increasing the flow rate or the electrode thickness due to differing responses between the two flow fields. The results of this study should be useful to design engineers seeking to optimize VRB systems through enhanced performance and reduced pressure drop.
Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments
NASA Technical Reports Server (NTRS)
Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose
2012-01-01
Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.
Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Dane
2015-09-30
This work explored the use of oxide heterostructures for enhancing the catalytic and degradation properties of solid oxide fuel cell (SOFC) cathode electrodes. We focused on heterostructures of Ruddlesden-Popper and perovskite phases. Building on previous work showing enhancement of the Ruddlesden-Popper (La,Sr) 2CoO 4 / perovskite (La,Sr)CoO 3 heterostructure compared to pure (La,Sr)CoO 3 we explored the application of related heterostructures of Ruddlesden-Popper phases on perovskite (La,Sr)(Co,Fe)O 3. Our approaches included thin-film electrodes, physical and electrochemical characterization, elementary reaction kinetics modeling, and ab initio simulations. We demonstrated that Sr segregation to surfaces is likely playing a critical role in themore » performance of (La,Sr)CoO 3 and (La,Sr)(Co,Fe)O 3 and that modification of this Sr segregation may be the mechanism by which Ruddlesden-Popper coatings enhance performances. We determined that (La,Sr)(Co,Fe)O 3 could be enhanced in thin films by about 10× by forming a heterostructure simultaneously with (La,Sr) 2CoO 4 and (La,Sr)CoO 3. We hope that future work will develop this heterostructure for use as a bulk porous electrode.« less
Jin, Zhao; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang
2016-03-02
The catalytic electro-oxidation of ethanol is the essential technique for direct alcohol fuel cells (DAFCs) in the area of alternative energy for the ability of converting the chemical energy of alcohol into the electric energy directly. Developing highly efficient and stable electrode materials with antipoisoning ability for ethanol electro-oxidation remains a challenge. A highly ordered periodic Au-nanoparticle (NP)-decorated bilayer TiO2 nanotube (BTNT) heteronanostructure was fabricated by a two-step anodic oxidation of Ti foil and the subsequent photoreduction of HAuCl4. The plasmon-induced charge separation on the heterointerface of Au/TiO2 electrode enhances the electrocatalytic activity and stability for the ethanol oxidation under visible light irradiation. The highly ordered periodic heterostructure on the electrode surface enhanced the light harvesting and led to the greater performance of ethanol electro-oxidation under irradiation compared with the ordinary Au NPs-decorated monolayer TiO2 nanotube (MTNT). This novel Au/TiO2 electrode also performed a self-cleaning property under visible light attributed to the enhanced electro-oxidation of the adsorbed intermediates. This light-driven enhancement of the electrochemical performances provides a development strategy for the design and construction of DAFCs.
Pressure-induced enhancement in the thermoelectric properties of monolayer and bilayer SnSe2
NASA Astrophysics Data System (ADS)
Zou, Daifeng; Yu, Chuanbin; Li, Yuhao; Ou, Yun; Gao, Yongyi
2018-03-01
The electronic structures of monolayer and bilayer SnSe2 under pressure were investigated by using first-principles calculations including van der Waals interactions. For monolayer SnSe2, the variation of electronic structure under pressure is controlled by pressure-dependent lattice parameters. For bilayer SnSe2, the changes in electronic structure under pressure are dominated by intralayer and interlayer atomic interactions. The n-type thermoelectric properties of monolayer and bilayer SnSe2 under pressure were calculated on the basis of the semi-classical Boltzmann transport theory. It was found that the electrical conductivity of monolayer and bilayer SnSe2 can be enhanced under pressure, and such dependence can be attributed to the pressure-induced changes of the Se-Sn antibonding states in conduction band. Finally, the doping dependence of power factors of n-type monolayer and bilayer SnSe2 at three different pressures were estimated, and the results unveiled that thermoelectric performance of n-type monolayer and bilayer SnSe2 can be improved by applying external pressure. This study benefits to understand the nature of the transport properties for monolayer and bilayer SnSe2 under pressure, and it offers valuable insight for designing high-performance thermoelectric few-layered SnSe2 through strain engineering induced by external pressure.
NASA Astrophysics Data System (ADS)
Sipio, Eloisa Di; Bertermann, David
2018-04-01
In engineering, agricultural and meteorological project design, sediment thermal properties are highly important parameters, and thermal conductivity plays a fundamental role when dimensioning ground heat exchangers, especially in very shallow geothermal systems. Herein, the first 2 m of depth from surface is of critical importance. However, the heat transfer determination in unconsolidated material is difficult to estimate, as it depends on several factors, including particle size, bulk density, water content, mineralogy composition and ground temperature. The performance of a very shallow geothermal system, as a horizontal collector or heat basket, is strongly correlated to the type of sediment at disposal and rapidly decreases in the case of dry-unsaturated conditions. The available experimental data are often scattered, incomplete and do not fully support thermo-active ground structure modeling. The ITER project, funded by the European Union, contributes to a better knowledge of the relationship between thermal conductivity and water content, required for understanding the very shallow geothermal systems behaviour in saturated and unsaturated conditions. So as to enhance the performance of horizontal geothermal heat exchangers, thermally enhanced backfilling material were tested in the laboratory, and an overview of physical-thermal properties variations under several moisture and load conditions for different mixtures of natural material was here presented.
Pressure-induced enhancement in the thermoelectric properties of monolayer and bilayer SnSe2.
Zou, Daifeng; Yu, Chuanbin; Li, Yuhao; Ou, Yun; Gao, Yongyi
2018-03-01
The electronic structures of monolayer and bilayer SnSe 2 under pressure were investigated by using first-principles calculations including van der Waals interactions. For monolayer SnSe 2 , the variation of electronic structure under pressure is controlled by pressure-dependent lattice parameters. For bilayer SnSe 2 , the changes in electronic structure under pressure are dominated by intralayer and interlayer atomic interactions. The n -type thermoelectric properties of monolayer and bilayer SnSe 2 under pressure were calculated on the basis of the semi-classical Boltzmann transport theory. It was found that the electrical conductivity of monolayer and bilayer SnSe 2 can be enhanced under pressure, and such dependence can be attributed to the pressure-induced changes of the Se-Sn antibonding states in conduction band. Finally, the doping dependence of power factors of n -type monolayer and bilayer SnSe 2 at three different pressures were estimated, and the results unveiled that thermoelectric performance of n -type monolayer and bilayer SnSe 2 can be improved by applying external pressure. This study benefits to understand the nature of the transport properties for monolayer and bilayer SnSe 2 under pressure, and it offers valuable insight for designing high-performance thermoelectric few-layered SnSe 2 through strain engineering induced by external pressure.
Pore channel surface modification for enhancing anti-fouling membrane distillation
NASA Astrophysics Data System (ADS)
Qiu, Haoran; Peng, Yuelian; Ge, Lei; Villacorta Hernandez, Byron; Zhu, Zhonghua
2018-06-01
Membrane surface modification by forming a functional layer is an effective way to improve the anti-fouling properties of membranes; however, the additional layer and the potential blockage of bulk pores may increase the mass transfer resistance and reduce the permeability. In this study, we applied a novel method of preparing anti-fouling membranes for membrane distillation by dispersing graphene oxide (GO) on the channel surface of polyvinylidene fluoride membranes. The surface morphology and properties were characterized by scanning electron microscopy, atomic force microscope, and Fourier transform infrared spectrometry. Compared to the membrane surface modification by nanoparticles (e.g. SiO2), GO was mainly located on the pore surface of the membrane bulk, rather than being formed as an individual layer onto the membrane surface. The performance was evaluated via a direct-contact membrane distillation process with anionic and cationic surfactants as the foulants, separately. Compared to the pristine PVDF membrane, the anti-fouling behavior and distillate flux of the GO-modified membranes were improved, especially when using the anionic surfactant as the foulant. The enhanced anti-fouling performance can be attributed to the oxygen containing functional groups in GO and the healing of the membrane pore defects. This method may provide an effective route to manipulate membrane pore surface properties for anti-fouling separation without increasing mass transfer resistance.
Intra- and interbrain synchronization and network properties when playing guitar in duets
Sänger, Johanna; Müller, Viktor; Lindenberger, Ulman
2012-01-01
To further test and explore the hypothesis that synchronous oscillatory brain activity supports interpersonally coordinated behavior during dyadic music performance, we simultaneously recorded the electroencephalogram (EEG) from the brains of each of 12 guitar duets repeatedly playing a modified Rondo in two voices by C.G. Scheidler. Indicators of phase locking and of within-brain and between-brain phase coherence were obtained from complex time-frequency signals based on the Gabor transform. Analyses were restricted to the delta (1–4 Hz) and theta (4–8 Hz) frequency bands. We found that phase locking as well as within-brain and between-brain phase-coherence connection strengths were enhanced at frontal and central electrodes during periods that put particularly high demands on musical coordination. Phase locking was modulated in relation to the experimentally assigned musical roles of leader and follower, corroborating the functional significance of synchronous oscillations in dyadic music performance. Graph theory analyses revealed within-brain and hyperbrain networks with small-worldness properties that were enhanced during musical coordination periods, and community structures encompassing electrodes from both brains (hyperbrain modules). We conclude that brain mechanisms indexed by phase locking, phase coherence, and structural properties of within-brain and hyperbrain networks support interpersonal action coordination (IAC). PMID:23226120
Zhao, Yong Mei; Golden, Aaron; Mar, Jessica C.; Einstein, Francine H.; Greally, John M.
2014-01-01
The mechanism and significance of epigenetic variability in the same cell type between healthy individuals are not clear. Here, we purify human CD34+ hematopoietic stem and progenitor cells (HSPCs) from different individuals and find that there is increased variability of DNA methylation at loci with properties of promoters and enhancers. The variability is especially enriched at candidate enhancers near genes transitioning between silent and expressed states, and encoding proteins with leukocyte differentiation properties. Our findings of increased variability at loci with intermediate DNA methylation values, at candidate “poised” enhancers, and at genes involved in HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is a major mechanism for the variability observed. Epigenomic studies performed on cell populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our findings show that meta-epigenomic approaches to data analysis can provide insights into cell subpopulation structure. PMID:25327398
Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi
2017-07-06
We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.
NASA Astrophysics Data System (ADS)
Ganeshraja, Ayyakannu Sundaram; Zhu, Kaixin; Nomura, Kiyoshi; Wang, Junhu
2018-05-01
The hierarchical silver chloride loaded tin-doped titania (AgCl@Sn-TiO2) microspheres were first time prepared by a hydrothermal method and annealing at different temperatures. The catalyst showed the enhanced visible light photocatalytic activity as compared to the plasmonic photocatalysts of AgCl and Ag/AgCl, and commercial Degussa P25 (TiO2). The improved efficiency is considered to local surface plasmonic resonance (AgCl could reduce to Ag0 during photocatalytic reaction) in enhanced broad band visible light absorption in addition to the characteristics of heterojunction between Sn-TiO2 and AgCl NPs. Moreover, the surface and bulk properties of as-synthesized samples were analyzed by 119Sn Mössbauer spectroscopy. The magnetic property of the bulk was studied as a function of magnetic field with different temperatures. These results signify the clear details of the magnetic and visible light photocatalytic activities of hierarchical AgCl@Sn-TiO2 microspheres.
Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect
NASA Astrophysics Data System (ADS)
Yao, Xiaojiang; Kong, Tingting; Chen, Li; Ding, Shimin; Yang, Fumo; Dong, Lin
2017-10-01
A series of MnOx/CeO2 catalysts were prepared by modulating the solvents (deionized water (DW), anhydrous ethanol (AE), acetic acid (AA), and oxalic acid (OA) solution) with the purpose of improving the low-temperature NH3-SCR performance, broadening the operating temperature window, and enhancing the H2O + SO2 resistance. The synthesized catalysts were characterized by means of N2-physisorption, XRD, EDS mapping, Raman, XPS, H2-TPR, NH3-TPD, and in situ DRIFTS technologies. Furthermore, the catalytic performance and H2O + SO2 resistance were evaluated by NH3-SCR model reaction. The obtained results indicate that MnOx/CeO2 catalyst prepared with oxalic acid solution as a solvent exhibits the best catalytic performance among these catalysts, which shows above 80% NO conversion during a wide operating temperature range of 100-250 °C and good H2O + SO2 resistance for low-temperature NH3-SCR reaction. This is related to that oxalic acid solution can promote the dispersion of MnOx and enhance the electron interaction between MnOx and CeO2, which are beneficial to improving the physicochemical property of MnOx/CeO2 catalyst, and further lead to the enhancement of catalytic performance and good H2O + SO2 resistance.
Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Williamson; D. A. Knoll
2009-09-01
A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importancemore » of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Peng, Kang; Dou, Yewei; Chen, Jiasheng; Zhang, Yue; An, Gai
2018-01-01
Wormhole-like mesoporous tin oxide was synthesized via a facile evaporation-induced self-assembly (EISA) method, and the gas-sensing properties were evaluated for different target gases. The effect of calcination temperature on gas-sensing properties of mesoporous tin oxide was investigated. The results demonstrate that the mesoporous tin oxide sensor calcined at 400 °C exhibits remarkable selectivity to ethanol vapors comparison with other target gases and has a good performance in the operating temperature and response/recovery time. This might be attributed to their high specific surface area and porous structure, which can provide more active sites and generate more chemisorbed oxygen spices to promote the diffusion and adsorption of gas molecules on the surface of the gas-sensing material. A possible formation mechanism of the mesoporous tin oxide and the enhanced gas-sensing mechanism are proposed. The mesoporous tin oxide shows prospective detecting application in the gas sensor fields.
NASA Astrophysics Data System (ADS)
Kim, Sang-Kyun; Paik, Ungyu; Oh, Seong-Geun; Park, Yong-Kook; Katoh, Takeo; Park, Jea-Gun
2003-03-01
Ceria powders were synthesized by two different methods, solid-state displacement reaction and wet chemical precipitation, and the influence of the physical characteristics of cerium oxide on the removal rate of plasma-enhanced tetraethylorthosilicate (PETEOS) and chemical vapor deposition (CVD) nitride films in chemical mechanical planarization (CMP) was investigated. The fundamental physicochemical property and electrokinetic behavior of ceria particles in aqueous suspending media were investigated to identify the correlation between the colloidal property of ceria and the CMP performance. The surface potentials of two different ceria particles are found to have different isoelectric point (pHiep) values and differences in physical properties of ceria particles such as porosity and density were found to be the key parameters in CMP of PETEOS films. Ceria powders synthesized by the solid-state displacement reaction method yielded a higher removal rate of PETEOS and higher selectivity than powders synthesized by the wet chemical precipitation method.
Synthesis and gas sensing properties of α-Fe(2)O(3)@ZnO core-shell nanospindles.
Zhang, Jun; Liu, Xianghong; Wang, Liwei; Yang, Taili; Guo, Xianzhi; Wu, Shihua; Wang, Shurong; Zhang, Shoumin
2011-05-06
α-Fe(2)O(3)@ZnO core-shell nanospindles were synthesized via a two-step hydrothermal approach, and characterized by means of SEM/TEM/XRD/XPS. The ZnO shell coated on the nanospindles has a thickness of 10-15 nm. Considering that both α-Fe(2)O(3) and ZnO are good sensing materials, we have investigated the gas sensing performances of the core-shell nanocomposite using ethanol as the main probe gas. It is interesting to find that the gas sensor properties of the core-shell nanospindles are significantly enhanced compared with pristine α-Fe(2)O(3). The enhanced sensor properties are attributed to the unique core-shell nanostructure. The detailed sensing mechanism is discussed with respect to the energy band structure and the electron depletion theory. The core-shell nanostructure reported in this work provides a new path to fabricate highly sensitive materials for gas sensing applications.
Influence of Bi addition on the property of Ag-Bi nano-composite coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei
Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less
Influence of Bi addition on the property of Ag-Bi nano-composite coatings
Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei; ...
2018-03-26
Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less
Bugnicourt, Elodie; Kehoe, Timothy; Latorre, Marcos; Serrano, Cristina; Philippe, Séverine; Schmid, Markus
2016-08-19
Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating's thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use.
Recent Prospects in the Inline Monitoring of Nanocomposites and Nanocoatings by Optical Technologies
Bugnicourt, Elodie; Kehoe, Timothy; Latorre, Marcos; Serrano, Cristina; Philippe, Séverine; Schmid, Markus
2016-01-01
Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites’ potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating’s thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use. PMID:28335278
Polyethersulfone - barium chloride blend ultrafiltration membranes for dye removal studies
NASA Astrophysics Data System (ADS)
Rambabu, K.; Srivatsan, N.; Gurumoorthy, Anand V. P.
2017-11-01
A series of Polyethersulfone (PES) - barium chloride (BaCl2) blend ultra filtration membrane was developed by varying the BaCl2 concentration in the dope solution. Prepared membranes were subjected to membrane characterization and their performance was studied through dye rejection tests. Morphological studies through SEM and AFM showed that the composite membranes exhibited differences in morphologies, porosities and properties due to the BaCl2 addition as compared with pristine PES membrane. Addition of the inorganic modifier enhanced the hydrophilicity and water permeability of the blend membrane system. Polymer enhanced ultrafiltration of dye solutions showed that the proposed blend system had better performance in terms of flux and rejection efficiency than the pure polymer membrane. The performance of the 2 wt% BaCl2 blend membrane was more promising for application to real time dye wastewater studies.
Paluska, Scott A
2003-08-01
Caffeine is the most commonly consumed drug in the world, and athletes frequently use it as an ergogenic aid. It improves performance and endurance during prolonged, exhaustive exercise. To a lesser degree it also enhances short-term, high-intensity athletic performance. Caffeine improves concentration, reduces fatigue, and enhances alertness. Habitual intake does not diminish caffeine's ergogenic properties. Several mechanisms have been proposed to explain the physiologic effects of caffeine, but adenosine receptor antagonism most likely accounts for the primary mode of action. It is relatively safe and has no known negative performance effects, nor does it cause significant dehydration or electrolyte imbalance during exercise. Routine caffeine consumption may cause tolerance or dependence, and abrupt discontinuation produces irritability, mood shifts, headache, drowsiness, or fatigue. Major sport governing bodies ban excessive use of caffeine, but current monitoring techniques are inadequate, and ethical dilemmas persist regarding caffeine intake by athletes.
Strain Modulation of Electronic and Heat Transport Properties of Bilayer Boronitrene
NASA Astrophysics Data System (ADS)
Yang, Ming; Sun, Fang-Yuan; Wang, Rui-Ning; Zhang, Hang; Tang, Da-Wei
2017-10-01
Strain engineering has been proven as an effective approach to modify electronic and thermal properties of materials. Recently, strain effects on two-dimensional materials have become important relevant topics in this field. We performed density functional theory studies on the electronic and heat transport properties of bilayer boronitrene samples under an isotropic strain. We demonstrate that the strain will reduce the band gap width but keep the band gap type robust and direct. The strain will enhance the thermal conductivity of the system because of the increase in specific heat. The thermal conductivity was studied as a function of the phonon mean-free path.
Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source
NASA Astrophysics Data System (ADS)
Christy, Larry
Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.
ERIC Educational Resources Information Center
Johnson, Tristan E.; Clayson, Carol Anne
As technology developments seek to improve learning, researchers, developers, and educators seek to understand how technological properties impact performance. This paper delineates how a traditional science course is enhanced through the use of simulation projects directed by the students themselves as a means to increase their level of knowledge…
Evaluation of the morphology of metal particles in intrinsic conductive polymer dispersions
NASA Astrophysics Data System (ADS)
Lempa, E.; Graßmann, C.; Rabe, M.; Schwarz-Pfeiffer, A.; van Langenhove, L.
2017-10-01
For the production of smart textiles the resistivity of prints and coatings with intrinsic conductive polymers is often too high and the performance properties not sufficient. The addition of metal components enhances many characteristics, however the choice of type of metal, morphology and application method influence results to great extend.
A number of mathematical models have been developed to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into these models to account for kinetics of adsorption and competition for adsorption sites. This work...
Strategies for the Synthesis of Higher Acenes
Dorel, Ruth
2016-01-01
The outstanding performance of pentacene‐based molecules in molecular electronics, as well as the predicted enhanced semiconducting properties of extended acenes, have stimulated the development of new synthetic methods and functionalization strategies for the preparation of stable and soluble acenes larger than tetracene with the aim of obtaining improved functional materials. PMID:28747846
Nonlinear optics in hollow-core photonic bandgap fibers.
Bhagwat, Amar R; Gaeta, Alexander L
2008-03-31
Hollow-core photonic-bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. In this review we summarize the nonlinear optics experiments that have been performed using these hollow-core fibers.
Rutting resistance of asphalt mixture with cup lumps modified binder
NASA Astrophysics Data System (ADS)
Shaffie, E.; Hanif, W. M. M. Wan; Arshad, A. K.; Hashim, W.
2017-11-01
Rutting is the most common pavement distress in pavement structures which occurs mainly due to several factors such as increasing of traffic volume, climatic conditions and also due to construction design errors. This failure reduced the service life of the pavement, reduced driver safety and increase cost of maintenance. Polymer Modified Binder has been observed for a long time in improving asphalt pavement performance. Research shows that the use of polymer in bituminous mix not only improve the resistance to rutting but also increase the life span of the pavement. This research evaluates the physical properties and rutting performance of dense graded Superpave-designed HMA mix. Two different types of dense graded Superpave HMA mix were developed consists of unmodified binder mix (UMB) and cup lumps rubber (liquid form) modified binder mix (CLMB). Natural rubber polymer modified binder was prepared from addition of 8 percent of cup lumps into binder. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicate that these mixtures were good with respect to durability and flexibility. Furthermore, rutting results from APA rutting test was determined to evaluate the performance of these mixtures. The rutting result of CLMB demonstrates better resistance to rutting than those prepared using UMB mix. Addition of cup lumps rubber in asphalt mixture was found to be significant, where the cup lumps rubber has certainly improves the binder properties and enhanced its rutting resistance due to greater elasticity offered by the cup lumps rubber particles. It shows that the use of cup lumps rubber can significantly reduce the rut depth of asphalt mixture by 41% compared to the minimum rut depth obtained for the UMB mix. Therefore, it can be concluded that the cup lumps rubber is suitable to be used as a modifier to modified binder in order to enhance the properties of the binder and thus improves the performance of asphalt mixes.
Martins, Jéssica G; de Oliveira, Ariel C; Garcia, Patrícia S; Kipper, Matt J; Martins, Alessandro F
2018-05-15
Processing water-soluble polysaccharides, like pectin (PT), into materials with desirable stability and mechanical properties has been challenging. Here we report a new method to create water stable and mechanical resistant polyelectrolyte complex (PEC) membranes from PT and chitosan (CS) assemblies, without covalent crosslinking. This new method overcomes challenges of obtaining stable and durable complexes, by performing the complexation at low pH, enabling complex formation even when using an excess of PT, and when using PT with high degree of O-methoxylation. By performing the complexation at low pH, the complexes form with a high degree of intermolecular association, instead of forming by electrostatic complexation. This method avoids precipitation, and overcomes the aqueous instability typical of PT/CS complexes. After neutralization, the PEC membranes display features characteristic of a high degree of intermolecular association because of the self-assembling of polymer chains. The PT/CS ratio can be tuned to enhance the mechanical strength (σ = 39 MPa) of the membranes. These polysaccharide-based materials can demonstrate advantages over synthetic materials for technological applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han; Duan, Qiming; Sabeh, Mohamad; Prosdocimo, Domenick A; Lemieux, Madeleine E; Nordsborg, Nikolai; Russell, Aaron P; MacRae, Calum A; Gerber, Anthony N; Jain, Mukesh K; Haldar, Saptarsi M
2015-12-08
Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.
NASA Astrophysics Data System (ADS)
Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing
2017-04-01
Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.
NASA Astrophysics Data System (ADS)
Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf
2016-11-01
This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.
Hu, Yang; Dan, Weihua; Xiong, Shanbai; Kang, Yang; Dhinakar, Arvind; Wu, Jun; Gu, Zhipeng
2017-01-01
To improve the mechanical properties and biocompatibility of collagen I matrix, a novel and facile strategy was developed to modify porcine acellular dermal matrix (PADM) via dopamine self-polymerization followed by collagen immobilization to enhance the biological, mechanical and physicochemical properties of PADM. Mechanism study indicated that the polymerization of dopamine onto PADM surface could be regulated by controlling the amount of hydrogen bonds forming between phenol hydroxyl (COH) and nitrogen atom (NCO) within collagen fibers of PADM. The investigations of surface interactions between PDA and PADM illustrated that PDA-PADM system yielded better mechanical properties, thermal stability, surface hydrophilicity and the structural integrity of PADM was maintained after dopamine coating. Furthermore, collagen (COL) was immobilized onto the fresh PDA-PADM to fabricate the collagen-PDA-PADM (COL-PDA-PADM) complexed scaffold. The MTT assay and CLSM observation showed that COL-PDA-PADM had better biocompatibility and higher cellular attachment than pure PADM and COL-PADM without dopamine coating, thus demonstrating the efficacy of PDA as the intermediate layer. Meanwhile, the expression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) of COL-PDA-PADM were investigated by an in vivo study. The results revealed that COL-PDA-PADM could effectively promote bFGF and VEGF expression, possibly leading to enhancing the dura repairing process. Overall, this work contributed a new insight into the development of a semi-natural tissue engineering scaffold with high biocompatibility and good mechanical properties. Obtaining scaffolds with high biocompatibility and good mechanical properties is still one of the most challenging issues in tissue engineering. To have excellent in vitro and in vivo performance, scaffolds are desired to have similar mechanical and biological properties as the natural extracellular matrix, such as collagen based matrix. Utilizing the surface self-crosslinking and coating strategy, we successfully obtained a novel semi-natural platform with excellent biological and mechanical properties from porcine acellular dermal matrix (PADM), polydopamine and collagen. The results confirmed that this scaffold platform has very excellent cellular performance and very little toxicity/side effects in vivo. Therefore, this semi-natural scaffold may be an appropriate platform for tissue engineering and this strategy would further help to develop more robust scaffolds. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Gering
An important feature of the DUALFOIL model for simulation of lithium-ion cells [1,2] is rigorous accounting for non-ideal electrolyte properties. Unfortunately, data are available on only a few electrolytes [3,4]. However, K. Gering has developed a model for estimation of electrolyte properties [5] and recently generated complete property sets (density, conductivity, activity coefficient, diffusivity, transport number) as a function of temperature and salt concentration. Here we use these properties in an enhanced version of the DUALFOIL model called DISTNP, available in Battery Design Studio [6], to examine the effect of different electrolytes on cell performance. Specifically, the behavior of amore » high energy LiCoO2/graphite 18650-size cell is simulated. The ability of Battery Design Studio to si« less
Membranes with Surface-Enhanced Antifouling Properties for Water Purification
Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing
2017-01-01
Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869
Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chao; Bobela, David C.; Yang, Ye
Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less
Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics
Chen, Chao; Bobela, David C.; Yang, Ye; ...
2017-03-17
Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less
Membranes with Surface-Enhanced Antifouling Properties for Water Purification.
Shahkaramipour, Nima; Tran, Thien N; Ramanan, Sankara; Lin, Haiqing
2017-03-05
Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted.
Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbaro, G., E-mail: giovannibarbaro@email.it; Galdi, M. R., E-mail: mrgaldi@unisa.it; Di Maio, L., E-mail: ldimaio@unisa.it
2015-12-17
The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier andmore » mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%{sub wt/wt}) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.« less
Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties
NASA Astrophysics Data System (ADS)
Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.
2015-12-01
The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%wt/wt) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.
Manganese oxides-based composite electrodes for supercapacitors
NASA Astrophysics Data System (ADS)
Su, Dongyun; Ma, Jun; Huang, Mingyu; Liu, Feng; Chen, Taizhou; Liu, Chao; Ni, Hongjun
2017-06-01
In recent, nanostructured transition metal oxides as a new class of energy storage materials have widely attracted attention due to its excellent electrochemical performance for supercapacitors. The MnO2 based transition metal oxides and their composite electrode materials were focused in the review for supercapacitor applications. The researches on different nanostructures of manganese oxides such as Nano rods, Nano sheets, nanowires, nanotubes and so on have been discovered in recent years, together with brief explanations of their properties. Research on enhancing materials’ properties by designing combination of different materials on the micron or Nano scale is too limited, and therefore we discuss the effects of different components’ sizes and their synergy on the performance. Moreover, the low-cost and large-scale fabrication of flexible supercapacitors with high performance (high energy density and cycle stability) have been pointed out and studied.
A series of BCN nanosheets with enhanced photoelectrochemical performances
NASA Astrophysics Data System (ADS)
Li, Junqi; Lei, Nan; Hao, Hongjuan; Zhou, Jian
2017-03-01
A series of flake-like BCN compounds were produced by calcination at different reaction temperatures via thermal substitution of C atoms with B atoms of boric acid substructures in graphitic carbon nitrides (g-C3N4). The structural and optical properties of the samples were characterized by XRD, TEM, HRTEM, XPS and UV-vis absorption. The photoelectrochemical (PEC) performance of all samples were characterized through photocurrent and electrochemical impedance spectroscopy (EIS) measurement. The test results demonstrated that BCN nanosheets exhibited higher PEC performance with increasing substituted amount of boron.
Fayad, Laura M; Blakeley, Jaishri; Plotkin, Scott; Widemann, Brigitte; Jacobs, Michael A
2013-01-01
Purpose. WB-MRI is mainly used for tumor detection and surveillance. The purpose of this study is to establish the feasibility of WB-MRI at 3T for lesion characterization, with DWI/ADC-mapping and contrast-enhanced sequences, in patients with neurofibromatosis type 2 (NF-2) and schwannomatosis. Materials and Methods. At 3T, WB-MRI was performed in 11 subjects (10 NF-2 and 1 schwannomatosis) with STIR, T1, contrast-enhanced T1, and DWI/ADC mapping (b = 50, 400, 800 s/mm(2)). Two readers reviewed imaging for the presence and character of peripheral lesions. Lesion size and features (signal intensity, heterogeneity, enhancement characteristics, and ADC values) were recorded. Descriptive statistics were reported. Results. Twenty-three lesions were identified, with average size of 4.6 ± 2.8 cm. Lesions were characterized as tumors (21/23) or cysts (2/23) by contrast-enhancement properties (enhancement in tumors, no enhancement in cysts). On T1, tumors were homogeneously isointense (5/21) or hypointense (16/21); on STIR, tumors were hyperintense and homogeneous (10/21) or heterogeneous (11/21); on postcontrast T1, tumors enhanced homogeneously (14/21) or heterogeneously (7/21); on DWI, tumor ADC values were variable (range 0.8-2.7), suggesting variability in intrinsic tumor properties. Conclusion. WB-MRI with quantitative DWI and contrast-enhanced sequences at 3T is feasible and advances the utility of WB-MRI not only to include detection, but also to provide additional metrics for lesion characterization.
New directions for nanoscale thermoelectric materials research
NASA Technical Reports Server (NTRS)
Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, F.; Fleurial, J. P.; Gogna, P.
2005-01-01
Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena with both bulk samples containing nanoscale constituents and nanoscale materials exhibiting enhanced thermoelectric performance in their own right. Prior theoretical and experimental proof of principle studies on isolated quantum well and quantum wire samples have now evolved into studies on bulk samples containing nanostructured constituents. In this review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications. A review of some of the results obtained to date are presented.
Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds
NASA Astrophysics Data System (ADS)
Cosimbescu, Lelia; Wei, Xiaoliang; Vijayakumar, M.; Xu, Wu; Helm, Monte L.; Burton, Sarah D.; Sorensen, Christina M.; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-09-01
We report a series of ionically modified ferrocene compounds for hybrid lithium-organic non-aqueous redox flow batteries, based on the ferrocene/ferrocenium redox couple as the active catholyte material. Tetraalkylammonium ionic moieties were incorporated into the ferrocene structure, in order to enhance the solubility of the otherwise relatively insoluble ferrocene. The effect of various counter anions of the tetraalkylammonium ionized species appended to the ferrocene, such as bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, perchlorate, tetrafluoroborate, and dicyanamide on the solubility of the ferrocene was investigated. The solution chemistry of the ferrocene species was studied, in order to understand the mechanism of solubility enhancement. Finally, the electrochemical performance of these ionized ferrocene species was evaluated and shown to have excellent cell efficiency and superior cycling stability.
Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds.
Cosimbescu, Lelia; Wei, Xiaoliang; Vijayakumar, M; Xu, Wu; Helm, Monte L; Burton, Sarah D; Sorensen, Christina M; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-09-16
We report a series of ionically modified ferrocene compounds for hybrid lithium-organic non-aqueous redox flow batteries, based on the ferrocene/ferrocenium redox couple as the active catholyte material. Tetraalkylammonium ionic moieties were incorporated into the ferrocene structure, in order to enhance the solubility of the otherwise relatively insoluble ferrocene. The effect of various counter anions of the tetraalkylammonium ionized species appended to the ferrocene, such as bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, perchlorate, tetrafluoroborate, and dicyanamide on the solubility of the ferrocene was investigated. The solution chemistry of the ferrocene species was studied, in order to understand the mechanism of solubility enhancement. Finally, the electrochemical performance of these ionized ferrocene species was evaluated and shown to have excellent cell efficiency and superior cycling stability.
NASA Astrophysics Data System (ADS)
Venkata Reddy, V.; Gopi Krishna, M.; Praveen Kumar, K.; Naga Kishore, B. S.; Babu Rao, J.; Bhargava, NRMR
2018-02-01
Experiments have been performed under laboratory condition to review the mechanical behaviour of the hybrid composites with aluminium matrix A7075 alloy, reinforced with silicon carbide (SiC) and Flyash. This has been possible by fabricating the samples through usual stir casting technique. Scanning electron microscopy was used for microstructure analysis. Chemical characterization of both matrix and composites was performed by using EDAX. Density, hardness, tensile and deformation studies were conceded out on both the base alloy and composites. Enhanced hardness and deformed properties were observed for all the composites. Interestingly improved tensile results were obtained for the composites than alloy. Dispersion of (SiC) and Flyash particles in aluminium matrix enhances the hardness of the composites.
ZnO-based microrockets with light-enhanced propulsion.
Dong, Renfeng; Wang, Chun; Wang, Qinglong; Pei, Allen; She, Xueling; Zhang, Yuxian; Cai, Yuepeng
2017-10-12
Improving the propulsion of artificial micro-nanomotors represents an exciting nanotechnology challenge, especially considering their cargo delivery ability and fuel efficiency. In light of the excellent photocatalytic performance of zinc oxide (ZnO) and chemical catalytic properties of platinum (Pt), ZnO-Pt microrockets with light-enhanced propulsion have been developed by atomic layer deposition (ALD) technology. The velocity of such microrockets is dramatically doubled upon irradiation by 77 mW cm -2 ultraviolet (UV) light in 10% H 2 O 2 and is almost 3 times higher than the classic poly(3,4-ethylenedioxythiophene)-Pt microrockets (PEDOT-Pt microrockets) even in 6% H 2 O 2 under the same UV light. In addition, such micromotors not only retain the standard approach to improve propulsion by varying the fuel concentration, but also demonstrate a simple way to enhance the movement velocity by adjusting the UV light intensity. High reversibility and controllable "weak/strong" propulsion can be easily achieved by switching the UV irradiation on or off. Finally, light-enhanced propulsion has been investigated by electrochemical measurements which further confirm the enhanced photocatalytic properties of ZnO and Pt. The successful demonstration of ZnO-based microrockets with excellent light-enhanced propulsion is significant for developing highly efficient synthetic micro-nanomotors which have strong delivery ability and economic fuel requirements for future practical applications in the micro-nanoscale world.
NASA Astrophysics Data System (ADS)
Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei
2017-08-01
Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.
Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong
2017-10-18
A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.
Solution processible MoOx-incorporated graphene anode for efficient polymer light-emitting diodes
NASA Astrophysics Data System (ADS)
Lee, Dongchan; Kim, Donghyuk; Lee, Yonghee; Jeon, Duk Young
2017-06-01
Graphene has attracted great attention owing to its superb properties as an anode of organic or polymer light-emitting diodes (OLEDs or PLEDs). However, there are still barriers for graphene to replace existing indium tin oxide (ITO) due to relatively high sheet resistance and work function mismatch. In this study, PLEDs using molybdenum oxide (MoOx) nanoparticle-doped graphene are demonstrated on a plastic substrate to have a low sheet resistance and high work function. Also, this work shows how the doping amount influences the electronic properties of the graphene anode and the PLED performance. A facile and scalable spin coating process was used for doping graphene with MoOx. After doping, the sheet resistance and the optical transmittance of five-layer graphene were ˜180 Ω sq-1 and ˜88%, respectively. Moreover, the surface roughness of MoOx-doped graphene becomes smoother than that of pristine graphene. Furthermore, a nonlinear relationship was observed between the MoOx doping level and device performance. Therefore, a modified stacking structure of graphene electrode is presented to further enhance device performance. The maximum external quantum efficiency (EQE) and power efficiency of the PLED using the MoOx-doped graphene anode were 4.7% and 13.3 lm W-1, respectively. The MoOx-doped graphene anode showed enhanced device performance (261% for maximum EQE, 255% for maximum power efficiency) compared with the pristine graphene.
NASA Astrophysics Data System (ADS)
Jean, Ming-Der; Lei, Peng-Da; Kong, Ling-Hua; Liu, Cheng-Wu
2018-05-01
This study optimizes the thermal dissipation ability of aluminum nitride (AlN) ceramics to increase the thermal performance of light-emitting diode (LED) modulus. AlN powders are deposited on heat sink as a heat interface material, using an electrostatic spraying process. The junction temperature of the heat sink is developed by response surface methodology based on Taguchi methods. In addition, the structure and properties of the AlN coating are examined using X-ray photoelectron spectroscopy (XPS). In the XPS analysis, the AlN sub-peaks are observed at 72.79 eV for Al2p and 398.88 eV for N1s, and an N1s sub-peak is assigned to N-O at 398.60eV and Al-N bonding at 395.95eV, which allows good thermal properties. The results have shown that the use of AlN ceramic material on a heat sink can enhance the thermal performance of LED modules. In addition, the percentage error between the predicted and experimental results compared the quadric model with between the linear and he interaction models was found to be within 7.89%, indicating that it was a good predictor. Accordingly, RSM can effectively enhance the thermal performance of an LED, and the beneficial heat dissipation effects for AlN are improved by electrostatic spraying.
Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2009-01-01
Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.
de Groot, P J; Swierenga, H; Postma, G J; Melssen, W J; Buydens, L M C
2003-06-01
The combination of Raman and infrared spectroscopy on the one hand and wavelength selection on the other hand is used to improve the partial least-squares (PLS) prediction of seven selected yarn properties. These properties are important for on-line quality control during production. From 71 yarn samples, the Raman and infrared spectra are measured and reference methods are used to determine the selected properties. Making separate PLS models for all yarn properties using the Raman and infrared spectra, prior to wavelength selection, reveals that Raman spectroscopy outperforms infrared spectroscopy. If wavelength selection is applied, the PLS prediction error decreases and the correlation coefficient increases for all properties. However, a substantial wavelength selection effect is present for the infrared spectra compared to the Raman spectra. For the infrared spectra, wavelength selection results in PLS prediction errors comparable with the prediction performance of the Raman spectra prior to wavelength selection. Concatenating the Raman and infrared spectra does not enhance the PLS prediction performance, not even after wavelength selection. It is concluded that an infrared spectrometer, combined with a wavelength selection procedure, can be used if no (suitable) Raman instrument is available.
Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties.
Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue
2015-12-11
Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.
Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties
NASA Astrophysics Data System (ADS)
Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue
2015-12-01
Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Canhui; Zhang, Xinxing; Zhang, Wei
The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. Themore » results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.« less
NASA Astrophysics Data System (ADS)
Purty, B.; Choudhary, R. B.
2018-04-01
Copper doped titanium dioxide-polypyrrole (Cu-TiO2/PPY) composite was successfully synthesized via chemical oxidative in-situ polymerization process. The structural and morphological properties of Cu-TiO2/PPY composite were investigated using X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and transmission electron microscopy(TEM) techniques. The electrochemical properties of as-synthesized composite were studied using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopic (EIS) techniques. The novel Cu-TiO2/PPY composite showed enhanced volumetric capacitance ˜714 F cm-1 and gravimetric capacitance ˜674 F g-1 at 1 A g-1. In addition an excellent coulombic efficiency and comparabley low charge transfer resistance than pure PPY suggests improved supercapacitive performance of Cu-TiO2/PPY composite as an electrode material.
Ballistic thermoelectric properties of nitrogenated holey graphene nanostructures
NASA Astrophysics Data System (ADS)
Cao, Wei; Xiao, Huaping; Ouyang, Tao; Zhong, Jianxin
2017-11-01
In this study, we theoretically investigate the ballistic thermoelectric performance of a new two-dimensional material, nitrogenated holey graphene (NHG), using nonequilibrium Green's function method. The calculations show that compared to graphene, such novel single atomic layer structure exhibits better thermoelectric performance. At room temperature, the stable hole (electron) thermoelectric figure of merit ( Z T ) could approach 0.75 (0.2) and 0.6 (0.2) for zigzag-edged (Z-NHGNRs) and armchair-edged NHGNRs (A-NHGNRs), respectively. To achieve better thermoelectric performance, the effect of geometric engineering (chevron-type nanoribbons and rhomboid quantum dot) on the electronic and phononic transport properties of Z-NHGNRs is further discussed. The results indicate that structure modulation is indeed a viable approach to enhance the thermoelectric properties (the figure of merit could exceed 1.5 and 1.3 for the chevron-type and rhomboid quantum dot system, respectively). On analyzing the transport properties, such improvement on the figure of merit is mainly attributed to the increased Seebeck coefficient and reduced thermal conductance (including both electronic and phononic contributions). Our findings presented in this paper qualify NHG as a promising thermoelectric material and provide theoretical guidance for fabricating the outstanding thermoelectric devices.
Speech enhancement using the modified phase-opponency model.
Deshmukh, Om D; Espy-Wilson, Carol Y; Carney, Laurel H
2007-06-01
In this paper we present a model called the Modified Phase-Opponency (MPO) model for single-channel speech enhancement when the speech is corrupted by additive noise. The MPO model is based on the auditory PO model, proposed for detection of tones in noise. The PO model includes a physiologically realistic mechanism for processing the information in neural discharge times and exploits the frequency-dependent phase properties of the tuned filters in the auditory periphery by using a cross-auditory-nerve-fiber coincidence detection for extracting temporal cues. The MPO model alters the components of the PO model such that the basic functionality of the PO model is maintained but the properties of the model can be analyzed and modified independently. The MPO-based speech enhancement scheme does not need to estimate the noise characteristics nor does it assume that the noise satisfies any statistical model. The MPO technique leads to the lowest value of the LPC-based objective measures and the highest value of the perceptual evaluation of speech quality measure compared to other methods when the speech signals are corrupted by fluctuating noise. Combining the MPO speech enhancement technique with our aperiodicity, periodicity, and pitch detector further improves its performance.
Enhanced electrical transport and thermoelectric properties in Ni doped Cu3SbSe4
NASA Astrophysics Data System (ADS)
Kumar, Aparabal; Dhama, P.; Das, Anish; Sarkar, Kalyan Jyoti; Banerji, P.
2018-05-01
In this study, we report the enhanced thermoelectric performance of Cu3SbSe4 by Ni doping at Cu site. Cu3-xNixSbSe4 (x = 0, 0.01, 0.03, 0.05) were prepared by melt growth, ball milling followed by spark plasma sintering. Structural characterization, phase analysis and surface morphology were carried out using X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Electrical and thermal properties of all the samples were investigated in the temperature range 300 - 650 K. Decrease in electrical resistivity with Ni doping due to increase in carrier concentration with enhanced Seebeck coefficient via increase in density of state near the Fermi level gives a remarkably high power factor. At the same time, thermal conductivity was found to decrease due to increased carrier-phonon scattering and acoustic phonon scattering. Consequently, a remarkable enhancement in the thermoelectric figure of merit (ZT˜ 0.65) of Cu3-xNixSbSe4 was achieved for x = 0.01 sample. Thus, Ni doping is an effective approach to improve the efficiency of Cu3SbSe4.
Chu, Richard; Shumsky, Jed; Waterhouse, Barry D
2016-06-15
Methyphenidate (MPH) is the primary drug treatment of choice for ADHD. It is also frequently used off-label as a cognitive enhancer by otherwise healthy individuals from all age groups and walks of life. Military personnel, students, and health professionals use MPH illicitly to increase attention and improve workplace performance over extended periods of work activity. Despite the frequency of its use, the efficacy of MPH to enhance cognitive function across individuals and in a variety of circumstances is not well characterized. We sought to better understand MPH׳s cognitive enhancing properties in two different rodent models of attention. We found that MPH could enhance performance in a sustained attention task, but that its effects in this test were subject dependent. More specifically, MPH increased attention in low baseline performing rats but had little to no effect on high performing rats. MPH exerted a similar subject specific effect in a test of flexible attention, i.e. the attention set shifting task. In this test MPH increased behavioral flexibility in animals with poor flexibility but impaired performance in more flexible animals. Overall, our results indicate that the effects of MPH are subject-specific and depend on the baseline level of performance. Furthermore, good performance in in the sustained attention task was correlated with good performance in the flexible attention task; i.e. animals with better vigilance exhibited greater behavioral flexibility. The findings are discussed in terms of potential neurobiological substrates, in particular noradrenergic mechanisms, that might underlie subject specific performance and subject specific responses to MPH. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun
2013-12-01
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.
2013-01-01
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051
Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun
2013-12-26
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.
Biomimetic Materials by Freeze Casting
NASA Astrophysics Data System (ADS)
Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.
2013-06-01
Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.
Effects of catalyst pore structure and acid properties on the dehydration of glycerol.
Choi, Youngbo; Park, Hongseok; Yun, Yang Sik; Yi, Jongheop
2015-03-01
Hierarchical porous catalysts have recently attracted increasing interest because of the enhanced accessibility to active sites on such materials. In this context, previously reported hierarchically mesoporous ASN and ASPN materials are evaluated by applying them to the dehydration of glycerol, and demonstrate excellent catalytic performance. In addition, a comprehensive understanding of the effects of pore structures and the acid properties on the reaction through comparative studies with microporous HZSM-5 and mesoporous AlMCM-41 is provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The aphrodisiac and adaptogenic properties of ginseng.
Nocerino, E; Amato, M; Izzo, A A
2000-08-01
Ginseng is the root of the perennial herbs of Panax quinquefolium and Panax ginseng which contain a series of tetracyclic triterpenoid saponins (ginsenosides) as active ingredients. It is considered a tonic or adaptogenic that enhances physical performance (including sexual), promotes vitality and increases resistance to stress and ageing. The adaptogenic properties of ginseng are believed to be due to its effects on hypothalamic-pituitary-adrenal axis, resulting in elevated plasma corticotropin and corticosteroids levels. When used appropriately, ginseng appears to be safe. Nevertheless, documented side effects include hypertension, diarrhoea, restlessness, mastalgia and vaginal bleeding.
25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.
Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua
2014-04-09
Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
You, Tingting; Lang, Xiufeng; Huang, Anping; Yin, Penggang
2018-01-01
A computational study on aromatic dithiol derivatives (HS-Ar-X-Ar-SH, X = O, S, Se, NH, CH2, Ndbnd N, CHdbnd CH, Ctbnd C) interacting with gold cluster(s) was presented to investigate the chemical enhancement mechanism related to surface-enhanced Raman spectroscopy (SERS) for molecular junctions. Density functional theory (DFT) were performed on derivatives molecules as well as their single-end-linked (SEL) or double-end-linked (DEL) complexes for geometric, spectra, electronic and excitation properties, leading to discussions on dominant factor during SERS process. The resulted enhancement factors of SEL and DEL complexes exhibited specific dependency on linking atom or functional group between two phenyls, which was in accordance with the variation of polarizabilities and molecule-cluster transition energy.
Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy
Zhang, Jing; Li, Jinxing; Tang, Shiwei; Fang, Yangfu; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Zheng, Lirong; Cui, Xugao; Mei, Yongfeng
2015-01-01
The synergy effect in nature could enable fantastic improvement of functional properties and associated effects. The detection performance of surface-enhanced Raman scattering (SERS) can be highly strengthened under the cooperation with other factors. Here, greatly-enhanced SERS detection is realized based on rolled-up tubular nano-resonators decorated with silver nanoparticles. The synergy effect between whispering-gallery-mode (WGM) and surface plasmon leads to an extra enhancement at the order of 105 compared to non-resonant flat SERS substrates, which can be well tuned by altering the diameter of micron- and nanotubes and the excitation laser wavelengths. Such synchronous and coherent coupling between plasmonics and photonics could lead to new principle and design for various sub-wavelength optical devices, e.g. plasmonic waveguides and hyperbolic metamaterials. PMID:26443526
Synthesis and properties of silicon nanowire devices
NASA Astrophysics Data System (ADS)
Byon, Kumhyo
Silicon nanowire (SiNW) is a very attractive one-dimensional material for future nanoelectronic applications. Reliable control of key field effect transistor (FET) parameters such as conductance, mobility, threshold voltage and on/off ratio is crucial to the applications of SiNW to working logic devices and integrated circuits. In this thesis, we fabricated silicon nanowire field effect transistors (SiNW FETs) and studied the dependence of their electrical transport properties upon various parameters including SiNW growth conditions, post-growth doping, and contact annealing. From these studies, we found how different processes control important FET characteristics. Key accomplishments of this thesis include p-channel enhancement mode FETs, n-channel FETs by post-growth vapor doping and high performance ambipolar devices. In the first part of this work, single crystalline SiNWs were synthesized by thermal evaporation without gold catalysts. FETs were fabricated using both as-grown SiNWs and post-growth n-doped SiNWs. FET from p-type source materials behaves as a p-channel enhancement mode FET which is predominant in logic devices due to its fast operation and low power consumption. Using bismuth vapor, the as-grown SiNWs were doped into n-type materials. The majority carriers in SiNWs can therefore be controlled by proper choice of the vapor phase dopant species. Post-growth doping using vapor phase is applicable to other nanowire systems. In the second part, high performance ambipolar FETs were fabricated. A two step annealing process was used to control the Schottky barrier between SiNW and metal contacts in order to enhance device performance. Initial p-channel SiNW FETs were converted into ambipolar SiNW FETs after contact annealing. Furthermore, significant increases in both on/off ratio and channel mobilities were achieved after contact annealing. Promising device structures to implement ambipolar devices into large scale integrated circuits were proposed. The contributions of this study are to further understanding of the electrical transport properties of SiNWs and to provide optimized processes to fabricate emerging high performance nanoelectronic devices using SiNWs for future generation beyond bulk silicon.
Müller, Kerstin; Bugnicourt, Elodie; Latorre, Marcos; Jorda, Maria; Echegoyen Sanz, Yolanda; Lagaron, José M.; Miesbauer, Oliver; Bianchin, Alvise; Hankin, Steve; Bölz, Uwe; Pérez, Germán; Jesdinszki, Marius; Lindner, Martina; Scheuerer, Zuzana; Castelló, Sara; Schmid, Markus
2017-01-01
For the last decades, nanocomposites materials have been widely studied in the scientific literature as they provide substantial properties enhancements, even at low nanoparticles content. Their performance depends on a number of parameters but the nanoparticles dispersion and distribution state remains the key challenge in order to obtain the full nanocomposites’ potential in terms of, e.g., flame retardance, mechanical, barrier and thermal properties, etc., that would allow extending their use in the industry. While the amount of existing research and indeed review papers regarding the formulation of nanocomposites is already significant, after listing the most common applications, this review focuses more in-depth on the properties and materials of relevance in three target sectors: packaging, solar energy and automotive. In terms of advances in the processing of nanocomposites, this review discusses various enhancement technologies such as the use of ultrasounds for in-process nanoparticles dispersion. In the case of nanocoatings, it describes the different conventionally used processes as well as nanoparticles deposition by electro-hydrodynamic processing. All in all, this review gives the basics both in terms of composition and of processing aspects to reach optimal properties for using nanocomposites in the selected applications. As an outlook, up-to-date nanosafety issues are discussed. PMID:28362331
Müller, Kerstin; Bugnicourt, Elodie; Latorre, Marcos; Jorda, Maria; Echegoyen Sanz, Yolanda; Lagaron, José M; Miesbauer, Oliver; Bianchin, Alvise; Hankin, Steve; Bölz, Uwe; Pérez, Germán; Jesdinszki, Marius; Lindner, Martina; Scheuerer, Zuzana; Castelló, Sara; Schmid, Markus
2017-03-31
For the last decades, nanocomposites materials have been widely studied in the scientific literature as they provide substantial properties enhancements, even at low nanoparticles content. Their performance depends on a number of parameters but the nanoparticles dispersion and distribution state remains the key challenge in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier and thermal properties, etc., that would allow extending their use in the industry. While the amount of existing research and indeed review papers regarding the formulation of nanocomposites is already significant, after listing the most common applications, this review focuses more in-depth on the properties and materials of relevance in three target sectors: packaging, solar energy and automotive. In terms of advances in the processing of nanocomposites, this review discusses various enhancement technologies such as the use of ultrasounds for in-process nanoparticles dispersion. In the case of nanocoatings, it describes the different conventionally used processes as well as nanoparticles deposition by electro-hydrodynamic processing. All in all, this review gives the basics both in terms of composition and of processing aspects to reach optimal properties for using nanocomposites in the selected applications. As an outlook, up-to-date nanosafety issues are discussed.
Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.
Zhang, Cui-Ying; Lin, Xue; Feng, Bing; Liu, Xiao-Er; Bai, Xiao-Wen; Xu, Jia; Pi, Li; Xiao, Dong-Guang
2016-07-01
Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough. Furthermore, the baker's yeast strains with varying sucrase activities were constructed by deleting SUC2, which encodes sucrase or replacing the SUC2 promoter with the VPS8/TEF1 promoter. The results verify that the sucrase activity negatively affects the leavening ability of baker's yeast strains under high-sucrose conditions. Based on a certain level of osmotolerance, sucrase level plays a significant role in the fermentation performance of baker's yeast, and appropriate sucrase activity is an important determinant for the leavening property of baker's yeast in sweet dough. Therefore, modification on sucrase activity is an effective method for improving the leavening properties of baker's yeast in sweet dough. This finding provides guidance for the breeding of industrial baker's yeast strains for sweet dough leavening. The transformants BS1 with deleted SUC2 genetic background provided decreased sucrase activity (a decrease of 39.3 %) and exhibited enhanced leavening property (an increase of 12.4 %). Such a strain could be useful for industrial applications.
Systematic Investigation of the Alucone-Coating Enhancement on Silicon Anodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Seoung-Bum; Wang, Yikai; Xu, Jiagang
Polyvinylidene fluoride (PVDF) is the most popular binder in commercial lithium-ion batteries but is incompatible with a silicon (Si) anode because it fails to maintain the mechanical integrity of the Si electrode upon cycling. Here in this paper, an alucone coating synthesized by molecular layer deposition has been applied on the laminated electrode fabricated with PVDF to systematically study the sole impact of the surface modification on the electrochemical and mechanical properties of the Si electrode, without the interference of other functional polymer binders. The enhanced mechanical properties of the coated electrodes, confirmed by mechanical characterization, can help accommodate themore » repeated volume fluctuations, preserve the electrode structure during electrochemical reactions, and thereby, leading to a remarkable improvement of the electrochemical performance. Owing to the alucone coating, the Si electrodes achieve highly reversible cycling performance with a specific capacity of 1490 mA h g -1 (0.90 mA h cm -2) as compared to 550 mA h g -1 (0.19 mA h cm -2) observed in the uncoated Si electrode. This research elucidates the important role of surface modification in stabilizing the cycling performance and enabling a high level of material utilization at high mass loading. It also provides insights for the future development of Si anodes.« less
Systematic Investigation of the Alucone-Coating Enhancement on Silicon Anodes
Son, Seoung-Bum; Wang, Yikai; Xu, Jiagang; ...
2017-09-26
Polyvinylidene fluoride (PVDF) is the most popular binder in commercial lithium-ion batteries but is incompatible with a silicon (Si) anode because it fails to maintain the mechanical integrity of the Si electrode upon cycling. Here in this paper, an alucone coating synthesized by molecular layer deposition has been applied on the laminated electrode fabricated with PVDF to systematically study the sole impact of the surface modification on the electrochemical and mechanical properties of the Si electrode, without the interference of other functional polymer binders. The enhanced mechanical properties of the coated electrodes, confirmed by mechanical characterization, can help accommodate themore » repeated volume fluctuations, preserve the electrode structure during electrochemical reactions, and thereby, leading to a remarkable improvement of the electrochemical performance. Owing to the alucone coating, the Si electrodes achieve highly reversible cycling performance with a specific capacity of 1490 mA h g -1 (0.90 mA h cm -2) as compared to 550 mA h g -1 (0.19 mA h cm -2) observed in the uncoated Si electrode. This research elucidates the important role of surface modification in stabilizing the cycling performance and enabling a high level of material utilization at high mass loading. It also provides insights for the future development of Si anodes.« less
Optimizing performance of silicon-based p-n junction photodetectors by the piezo-phototronic effect.
Wang, Zhaona; Yu, Ruomeng; Wen, Xiaonan; Liu, Ying; Pan, Caofeng; Wu, Wenzhuo; Wang, Zhong Lin
2014-12-23
Silicon-based p-n junction photodetectors (PDs) play an essential role in optoelectronic applications for photosensing due to their outstanding compatibility with well-developed integrated circuit technology. The piezo-phototronic effect, a three-way coupling effect among semiconductor properties, piezoelectric polarizations, and photon excitation, has been demonstrated as an effective approach to tune/modulate the generation, separation, and recombination of photogenerated electron-hole pairs during optoelectronic processes in piezoelectric-semiconductor materials. Here, we utilize the strain-induced piezo-polarization charges in a piezoelectric n-ZnO layer to modulate the optoelectronic process initiated in a p-Si layer and thus optimize the performances of p-Si/ZnO NWs hybridized photodetectors for visible sensing via tuning the transport property of charge carriers across the Si/ZnO heterojunction interface. The maximum photoresponsivity R of 7.1 A/W and fastest rising time of 101 ms were obtained from these PDs when applying an external compressive strain of -0.10‰ on the ZnO NWs, corresponding to relative enhancement of 177% in R and shortening to 87% in response time, respectively. These results indicate a promising method to enhance/optimize the performances of non-piezoelectric semiconductor material (e.g., Si) based optoelectronic devices by the piezo-phototronic effect.
Zhang, Dan; Yang, Junyou; Jiang, Qinghui; Zhou, Zhiwei; Li, Xin; Xin, Jiwu; Basit, Abdul; Ren, Yangyang; He, Xu; Chu, Weijing; Hou, Jingdi
2017-08-30
The effect of Al-, Ga-, and In-doping on the thermoelectric (TE) properties of Cu 3 SbSe 4 has been comparatively studied on the basis of theoretical prediction and experimental validation. It is found that tiny Al/Ga/In substitution leads to a great enhancement of electrical conductivity with high carrier concentration and also large Seebeck coefficient due to the preserved high band degeneracy and thereby a remarkably high power factor. Ultimately, coupled with the depressed lattice thermal conductivity, all three elements (Al/Ga/In) substituted samples have obtained a highly improved thermoelectric performance with respect to undoped Cu 3 SbSe 4 . Compared to the samples at the same Al/In doping level, the slightly Ga-doped sample presents better TE performance over the wide temperature range, and the Cu 3 Sb 0.995 Ga 0.005 Se 4 sample presents a record high ZT value of 0.9 among single-doped Cu 3 SbSe 4 at 623 K, which is about 80% higher than that of pristine Cu 3 SbSe 4 . This work offers an alternative approach to boost the TE properties of Cu 3 SbSe 4 by selecting efficient dopant to weaken the coupling between electrical conductivity and Seebeck coefficient.
Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-ping
2014-01-01
Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications. PMID:24759082
Nano-based PCMs for building energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik
Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which themore » PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.« less
NASA Astrophysics Data System (ADS)
Zhao, Ningning; He, Cuicui; Liu, Jianbing; Gong, Hujun; An, Ting; Xu, Huixiang; Zhao, Fengqi; Hu, Rongzu; Ma, Haixia; Zhang, Jinzhong
2014-11-01
Three Fe2O3 particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe2O3 thermites using ultrasonic mixing. The properties of Fe2O3 and Al/Fe2O3 were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe2O3 thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparison to those of Fe2O3. The results show that the Al/Fe2O3 thermites are better than Fe2O3 in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe2O3 particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe2O3 and the corresponding thermite is attributed to the large specific surface area of Fe2O3. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe2O3 particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications.
NASA Astrophysics Data System (ADS)
Achsah, R. S.; Shyam, S.; Mayuri, N.; Anantharaj, R.
2018-04-01
Deep eutectic solvents (DES) and ionic liquids (ILs) have their applications in various fields of research and in industries due to their attractive physiochemical properties. In this study, the combined thermodynamic properties of DES (choline chloride-glycerol) + IL1 (1-butyl-3-methylimiazolium acetate) and DES(choline chloride-glycerol) + IL2 (1-ethyl-3-methylimadzolium ethyl sulphate) have been studied. The thermodynamic properties such as excess molar volume, partial molar volume, excess partial molar volume and apparent molar volume were calculated for different mole fractions ranging from 0 to 1 and varying temperatures from 293.15 K to 343.15 K. In order to know the solvent properties of DESs and ILs mixtures at different temperatures and their molecular interactions to enhance the solvent performance and process efficiency at fixed composition and temperature the thermodynamic properties were analyzed.
Fiber-Reinforced Reactive Nano-Epoxy Composites
NASA Technical Reports Server (NTRS)
Zhong, Wei-Hong
2011-01-01
An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).
NASA Astrophysics Data System (ADS)
Fu, Rongrong; Wang, Qingyao; Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun
2015-07-01
Ti3+ self-doped titanium-zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium-zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium-zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium-zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Rongrong; Wang, Qingyao; Gao, shanmin
2015-07-01
Ti3+ self-doped titanium–zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium–zinc hybrid oxidesmore » in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium–zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium–zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.« less
Tensile and burning properties of clay/phenolic/GF composite and its application
NASA Astrophysics Data System (ADS)
Diharjo, Kuncoro; Armunanto, V. Bram; Kristiawan, S. Adi
2016-03-01
Composite material has been widely used in automotive due to its properties can be improved by combining with reinforcement, like fiber and particle to enhance mechanical properties and burning resistance. This study aims to investigate the tensile and burning properties of hybrid composite combining glass fiber and clay in phenolic resin. The clay was produced from roof tile rejected by tile industries in Sokka, Kebumen, Indonesia. The composite was made using a press mold method for different number of laminates and orientation of woven-roving-glass-fiber/ WRGF (0/90 and ±45), and the total volume fraction of fiber and clay is constant 40%. The specimens were tested using universal testing machine for tensile properties and burning tests apparatus for burning resistance (time to ignite/ TTI and burning rate/ BR). The enhancing of the Clay/Penolic/GF composite can be performed by the increasing of GF laminates, and the composite with 0/90 orientation of WRGF has higher tensile strength and modulus compared to that with ±45 orientation of WRGF. Both composite with 0/90 and ±45 orientation of WRGF have similar burning resistance (TTI and BR) and the composite containing 13 laminates of WR-GF shows the best burning resistance. According to these properties, this composite has good opportunity to be applied as car body panels or other structure in industries due to save weight and high burning resistance.
Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhuomin
Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiativemore » properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to tailor the transmittance, reflectance, and absorptance of nanostructured materials. Furthermore, graphene can be used to enhance near-field coupling to increase the phonon tunneling probability. We have performed analysis of near-field thermophotovoltaic devices with backside reflecting mirror and with tungsten gratings. We have predicted a large enhancement of electroluminescent refrigeration at a separation distance down to 10 nm due to near-field thermal radiation effect. A heat flux measurement system is developed to measure the near-field radiation in vacuum. We have fabricated doped Si plates separated by sparsely distributed posts to create a 200-800 nm vacuum gap. Our measurement results demonstrate that 11 times enhancement of near-field thermal radiation between parallel doped-Si plates with a lateral dimension 1 cm by 1 cm.« less
Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Ayaskanta; Russ, Boris; Su, Norman C.
Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viablemore » hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less
Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing
Sahu, Ayaskanta; Russ, Boris; Su, Norman C.; ...
2017-01-01
Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viablemore » hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less
Kuang, Dongliang; Jiao, Yuan; Ye, Zhou; Lu, Zaihong; Chen, Huaxin; Yu, Jianying; liu, Ning
2018-01-01
Epoxidized soybean oil (ESO) was employed as a novel penetrant cooperating with a conventional rejuvenator (CR) for the recycling of reclaimed asphalt pavement (RAP). The influence of ESO on the diffusibility and the regenerating effects of CR on RAP were investigated. The diffusibility testing result shows that the diffusibility of CR is enhanced by the addition of ESO because the epoxy group in ESO can facilitate asphaltene dispersion due to its high polarity, which simultaneously reduces the viscosity and improves the fluidity of aged bitumen so as to allow diffusion of the rejuvenator into the aged bitumen. Road performance testing of a recycled hot mix asphalt mixture (RHMA) indicates that the fatigue and cracking resistance properties as well as the water stability of RHMA containing CR can be improved by the addition of ESO due to the diffusibility enhancement of CR, which boosts the regenerating effect of CR on aged bitumen in RAP. The fatigue and cracking resistance properties as well as the water stability of the recycled hot mix asphalt mixture containing CR with 7 wt % ESO approximate those of the hot mix asphalt mixture composed of the same virgin aggregates and bitumen. Taking into account the rutting resistance decline versus the addition of ESO, the content of ESO should not exceed 7 wt % of the conventional rejuvenator. PMID:29783675
Roles of Cu in the Enhanced Thermoelectric Properties in Bi0.5Sb1.5Te3
Hao, Feng; Qiu, Pengfei; Song, Qingfeng; Chen, Hongyi; Lu, Ping; Ren, Dudi; Shi, Xun; Chen, Lidong
2017-01-01
Recently, Cu-containing p-type Bi0.5Sb1.5Te3 materials have shown high thermoelectric performances and promising prospects for practical application in low-grade waste heat recovery. However, the position of Cu in Bi0.5Sb1.5Te3 is controversial, and the roles of Cu in the enhancement of thermoelectric performance are still not clear. In this study, via defects analysis and stability test, the possibility of Cu intercalation in p-type Bi0.5Sb1.5Te3 materials has been excluded, and the position of Cu is identified as doping at the Sb sites. Additionally, the effects of Cu dopants on the electrical and thermal transport properties have been systematically investigated. Besides introducing additional holes, Cu dopants can also significantly enhance the carrier mobility by decreasing the Debye screen length and weakening the interaction between carriers and phonons. Meanwhile, the Cu dopants interrupt the periodicity of lattice vibration and bring stronger anharmonicity, leading to extremely low lattice thermal conductivity. Combining the suppression on the intrinsic excitation, a high thermoelectric performance—with a maximum thermoelectric figure of merit of around 1.4 at 430 K—has been achieved in Cu0.005Bi0.5Sb1.495Te3, which is 70% higher than the Bi0.5Sb1.5Te3 matrix. PMID:28772610
Kuang, Dongliang; Jiao, Yuan; Ye, Zhou; Lu, Zaihong; Chen, Huaxin; Yu, Jianying; Liu, Ning
2018-05-18
Epoxidized soybean oil (ESO) was employed as a novel penetrant cooperating with a conventional rejuvenator (CR) for the recycling of reclaimed asphalt pavement (RAP). The influence of ESO on the diffusibility and the regenerating effects of CR on RAP were investigated. The diffusibility testing result shows that the diffusibility of CR is enhanced by the addition of ESO because the epoxy group in ESO can facilitate asphaltene dispersion due to its high polarity, which simultaneously reduces the viscosity and improves the fluidity of aged bitumen so as to allow diffusion of the rejuvenator into the aged bitumen. Road performance testing of a recycled hot mix asphalt mixture (RHMA) indicates that the fatigue and cracking resistance properties as well as the water stability of RHMA containing CR can be improved by the addition of ESO due to the diffusibility enhancement of CR, which boosts the regenerating effect of CR on aged bitumen in RAP. The fatigue and cracking resistance properties as well as the water stability of the recycled hot mix asphalt mixture containing CR with 7 wt % ESO approximate those of the hot mix asphalt mixture composed of the same virgin aggregates and bitumen. Taking into account the rutting resistance decline versus the addition of ESO, the content of ESO should not exceed 7 wt % of the conventional rejuvenator.
NASA Astrophysics Data System (ADS)
Chan, Chi-Wai; Carson, Louise; Smith, Graham C.; Morelli, Alessio; Lee, Seunghwan
2017-05-01
Implant failure caused by bacterial infection is extremely difficult to treat and usually requires the removal of the infected components. Despite the severe consequence of bacterial infection, research into bacterial infection of orthopaedic implants is still at an early stage compared to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live/dead staining. Surface chemistry was analysed by XPS and surface wettability was measured using the sessile drop method. The findings of this study indicated that the laser-treated CP Ti and Ti6Al4V surfaces exhibited a noticeable reduction in bacterial adhesion and possessed a bactericidal effect. Such properties were attributable to the combined effects of reduced hydrophobicity, thicker and stable oxide films and presence of laser-induced nano-features. No similar antibacterial effect was observed in the laser-treated CoCrMo.
Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam
2012-08-16
Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.
NASA Astrophysics Data System (ADS)
Chen, Yanli; Du, Lianhuan; Yang, Peihua; Sun, Peng; Yu, Xiang; Mai, Wenjie
2015-08-01
Here, we report robust, flexible CNT-based supercapacitor (SC) electrodes fabricated by electrodepositing polypyrrole (PPy) on freestanding vacuum-filtered CNT film. These electrodes demonstrate significantly improved mechanical properties (with the ultimate tensile strength of 16 MPa), and greatly enhanced electrochemical performance (5.6 times larger areal capacitance). The major drawback of conductive polymer electrodes is the fast capacitance decay caused by structural breakdown, which decreases cycling stability but this is not observed in our case. All-solid-state SCs assembled with the robust CNT/PPy electrodes exhibit excellent flexibility, long lifetime (95% capacitance retention after 10,000 cycles) and high electrochemical performance (a total device volumetric capacitance of 4.9 F/cm3). Moreover, a flexible SC pack is demonstrated to light up 53 LEDs or drive a digital watch, indicating the broad potential application of our SCs for portable/wearable electronics.
Personalizing Biomaterials for Precision Nanomedicine Considering the Local Tissue Microenvironment.
Oliva, Nuria; Unterman, Shimon; Zhang, Yi; Conde, João; Song, Hyun Seok; Artzi, Natalie
2015-08-05
New advances in (nano)biomaterial design coupled with the detailed study of tissue-biomaterial interactions can open a new chapter in personalized medicine, where biomaterials are chosen and designed to match specific tissue types and disease states. The notion of a "one size fits all" biomaterial no longer exists, as growing evidence points to the value of customizing material design to enhance (pre)clinical performance. The complex microenvironment in vivo at different tissue sites exhibits diverse cell types, tissue chemistry, tissue morphology, and mechanical stresses that are further altered by local pathology. This complex and dynamic environment may alter the implanted material's properties and in turn affect its in vivo performance. It is crucial, therefore, to carefully study tissue context and optimize biomaterials considering the implantation conditions. This practice would enable attaining predictable material performance and enhance clinical outcomes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yin, Jiefu; Takeuchi, Esther S.; Takeuchi, Kenneth J.; ...
2016-08-12
We demonstrated the synthesis and characterization of Mg-birnessite (Mg xMnO 2) with different crystallite sizes, prepared though low temperature precipitation and ion exchange. The influence of crystallite size on electrochemical performance of Mg-birnessite was studied for the first time, where material with smaller crystallite size was demonstrated to have enhanced capacity and rate capability in Li ion, Na ion, and Mg ion based electrolytes. Cation diffusion using GITT type testing demonstrated the ion diffusion coefficient of Mg 2+ was ~10× lower compared with Li + and Na +. This work illustrates that tuning of inorganic materials properties can lead tomore » significant enhancement of electrochemical performance in lithium, sodium as well as magnesium based batteries for materials such as Mg-birnessite and provides a deliberate approach to improve electrochemical performance.« less
High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions
Xie, Ting; Hasan, Md Rezaul; Qiu, Botong; Arinze, Ebuka S.; Nguyen, Nhan V.; Motayed, Abhishek; Thon, Susanna M.; Debnath, Ratan
2017-01-01
We report on the significant performance enhancement of SnO2 thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO2 p-n nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions. The peak responsivity of the PDs at a bias of 0.2 V improved from 1.9 A/W in a SnO2-only device to 10.3 A/W after CuO deposition. The wavelength-dependent photocurrent-to-dark current ratio was estimated to be ~ 592 for the CuO/SnO2 PD at 290 nm. The morphology, distribution of nanoparticles, and optical properties of the CuO/SnO2 heterostructured thin films are also investigated. PMID:28729741
Technical guide to crop tree release in hardwood forests
Gary W. Miller; Jeffrey W. Stringer; David C. Mercker
2007-01-01
Crop tree release (CTR) is a widely applicable silvicultural technique used to enhance the performance of individual trees. It offers flexibility in that it can be applied on small or large properties, and with certain modifications, it can be applied as a precommercial or commercial operation. By favoring the development of selected crop trees within a hardwood stand...
Air Force Research Laboratory Technology Milestones 2008
2008-01-01
futuristic ‘bots will possess self - healing properties as well, enhancing their resiliency to damage sustained during such missions. Leading the SuperBot...Matrix Composites Pollution Prevention Materials Polymeric Materials Power and Chemical Processes Quantitative Defect Characterization Robotics ...advanced self -sealing CMC manufactured by French company Snecma Propulsion Solide (SPS). Thus far, the seals have performed extremely well, and a
ERIC Educational Resources Information Center
Wray, Thomas K.
Chemical demonstrations can and do enhance an otherwise potentially dull subjects--the properties of hazardous materials. This book contains the recipes for presenting several chemical demonstrations. Demonstrations are designed to be relatively easy to perform and present minimal hazards if done properly. The book contains an introduction, safety…
R&D 100, 2016: Stress-Induced Fabrication
Fan, Hongyou; Brennan, Tom; Wise, Jack; Liu, Sheng; Hickman, Randy
2018-06-13
Stress-induced fabrication (SIF) uses compressive mechanical stress to create new nanomaterials with lower production costs and enhanced materials performance compared to traditional fabrication routes. Simple, innovative, and with more degrees of freedom than current chemical synthesis methods, SIF uses physical force instead of chemistry applied to form new nanomaterials with precisely controlled structure and tunable properties.
26 CFR 301.7506-1 - Administration of real estate acquired by the United States.
Code of Federal Regulations, 2010 CFR
2010-04-01
... methods will enhance the possibility of obtaining a higher price for the property. (3) Time and place of... cases, the district director may also require such persons to make deposits to secure the performance of... treasurer's check drawn on any bank or trust company incorporated under the laws of the United States or...
R&D 100, 2016: Stress-Induced Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Hongyou; Brennan, Tom; Wise, Jack
Stress-induced fabrication (SIF) uses compressive mechanical stress to create new nanomaterials with lower production costs and enhanced materials performance compared to traditional fabrication routes. Simple, innovative, and with more degrees of freedom than current chemical synthesis methods, SIF uses physical force instead of chemistry applied to form new nanomaterials with precisely controlled structure and tunable properties.
Chen, Ting-Ru; Sheng, Tian; Wu, Zhen-Guo; Li, Jun-Tao; Wang, En-Hui; Wu, Chun-Jin; Li, Hong-Tai; Guo, Xiao-Dong; Zhong, Ben-He; Huang, Ling; Sun, Shi-Gang
2018-03-28
Sodium-ion batteries (SIBs) have been regarded as a promising candidate for large-scale renewable energy storage system. Layered manganese oxide cathode possesses the advantages of high energy density, low cost and natural abundance while suffering from limited cycling life and poor rate capacity. To overcome these weaknesses, layer-tunnel hybrid material was developed and served as the cathode of SIB, which integrated high capacity, superior cycle ability, and rate performance. In the current work, the doping of copper was adopted to suppress the Jahn-Teller effect of Mn 3+ and to affect relevant structural parameters. Multifunctions of the Cu 2+ doping were carefully investigated. It was found that the structure component ratio is varied with the Cu 2+ doping amount. Results demonstrated that Na + /vacancy rearrangement and phase transitions were suppressed during cycling without sacrificing the reversible capacity and enhanced electrochemical performances evidenced with 96 mA h g -1 retained after 250 cycles at 4 C and 85 mA h g -1 at 8 C. Furthermore, ex situ X-ray diffraction has demonstrated high reversibility of the Na 0.6 Mn 0.9 Cu 0.1 O 2 cathode during Na + extraction/insertion processes and superior air stability that results in better storage properties. This study reveals that the Cu 2+ doping could be an effective strategy to tune the properties and related performances of Mn-based layer-tunnel hybrid cathode.
2013-01-01
Background The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task. Method In this paper, we propose a novel framework of histogram equalization with the aim of taking several desirable properties into account, namely the Multipurpose Beta Optimized Bi-Histogram Equalization (MBOBHE). This method performs the histogram optimization separately in both sub-histograms after the segmentation of histogram using an optimized separating point determined based on the regularization function constituted by three components. The result is then assessed by the qualitative and quantitative analysis to evaluate the essential aspects of histogram equalized image using a total of 160 hand radiographs that are implemented in testing and analyses which are acquired from hand bone online database. Result From the qualitative analysis, we found that basic bi-histogram equalizations are not capable of displaying the small features in image due to incorrect selection of separating point by focusing on only certain metric without considering the contrast enhancement and detail preservation. From the quantitative analysis, we found that MBOBHE correlates well with human visual perception, and this improvement shortens the evaluation time taken by inspector in assessing the bone age. Conclusions The proposed MBOBHE outperforms other existing methods regarding comprehensive performance of histogram equalization. All the features which are pertinent to bone age assessment are more protruding relative to other methods; this has shorten the required evaluation time in manual bone age assessment using TW method. While the accuracy remains unaffected or slightly better than using unprocessed original image. The holistic properties in terms of brightness preservation, detail preservation and contrast enhancement are simultaneous taken into consideration and thus the visual effect is contributive to manual inspection. PMID:23565999
Soft contact lens biomaterials from bioinspired phospholipid polymers.
Goda, Tatsuro; Ishihara, Kazuhiko
2006-03-01
Soft contact lens (SCL) biomaterials originated from the discovery of a poly(2-hydroxyethyl methacrylate) (poly[HEMA])-based hydrogel in 1960. Incorporation of hydrophilic polymers into poly(HEMA) hydrogels was performed in the 1970-1980s, which brought an increase in the equilibrium water content, leading to an enhancement of the oxygen permeability. Nowadays, the poly(HEMA)-based hydrogels have been applied in disposable SCL. At the same time, high oxygen-permeable silicone hydrogels were produced, which made it possible to continually wear SCL. Recently, numerous trials for improving the water wettability of silicone hydrogels have been performed. However, little attention has been paid to improving their anti-biofouling properties and biocompatibility. Since biomimetic phospholipid polymers possess excellent anti-biofouling properties and biocompatibility they have the potential to play a valuable role in the surface modification of the silicone hydrogel. The representative phospholipid polymers containing a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit suppressed nonspecific protein adsorption, increased cell compatibility and contributed to blood compatible biomaterials. The MPC polymer coating on the silicone hydrogel improved its water wettability and biocompatibility, while maintaining high oxygen permeability compared with the original silicone hydrogel. Furthermore, the newly prepared phospholipid-type intermolecular crosslinker made it possible to synthesize a 100% phospholipid polymer hydrogel that can enhance the anti-biofouling properties and biocompatibility. In this review, the authors discuss how polymer hydrogels should be designed in order to obtain a biocompatible SCL and future perspectives.
A preliminary evaluation of self-made nanobubble in contrast-enhanced ultrasound imaging
NASA Astrophysics Data System (ADS)
Li, Chunfang; Wu, Kaizhi; Li, Jing; Liu, Haijuan; Zhou, Qibing; Ding, Mingyue
2014-03-01
Nanoscale bubbles (nanobubbles) have been reported to improve contrast in tumor-targeted ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, a self-made nanobubble ultrasound contrast agent was preliminarily characterized and evaluated in-vitro and in-vivo. Fundamental properties such as morphology appearance, size distribution, zeta potential, bubble concentration (bubble numbers per milliliter contrast agent suspension) and the stability of nanobubbles were assessed by light microscope and particle sizing analysis. Then the concentration intensity curve and time intensity curves (TICs) were acquired by ultrasound imaging experiment in-vitro. Finally, the contrast-enhanced ultrasonography was performed on rat to investigate the procedure of liver perfusion. The results showed that the nanobubbles had good shape and uniform distribution with the average diameter of 507.9 nm, polydispersity index (PDI) of 0.527, and zeta potential of -19.17 mV. Significant contrast enhancement was observed in in-vitro ultrasound imaging, demonstrating that the self-made nanobubbles can enhance the contrast effect of ultrasound imaging efficiently in-vitro. Slightly contrast enhancement was observed in in-vivo ultrasound imaging, indicating that the nanobubbles are not stable enough in-vivo. Future work will be focused on improving the ultrasonic imaging performance, stability, and antibody binding of the nanoscale ultrasound contrast agent.
Wu, Haining; Dong, Jianfei; Qi, Gaojin; Zhang, Guoqi
2015-07-01
Enhancing the colorfulness of illuminated objects is a promising application of LED lighting for commercial, exhibiting, and scientific purposes. This paper proposes a method to enhance the color of illuminated objects for a given polychromatic lamp. Meanwhile, the light color is restricted to white. We further relax the white light constraints by introducing soft margins. Based on the spectral and electrical characteristics of LEDs and object surface properties, we determine the optimal mixing of the LED light spectrum by solving a numerical optimization problem, which is a quadratic fractional programming problem by formulation. Simulation studies show that the trade-off between the white light constraint and the level of the color enhancement can be adjusted by tuning an upper limit value of the soft margin. Furthermore, visual evaluation experiments are performed to evaluate human perception of the color enhancement. The experiments have verified the effectiveness of the proposed method.
2001-01-01
cin~tique Properties»> ou o IP »>. En fait, ces IP ne sont rien (exemple : un missile en vol libre ). Meme si on peut d’autres que des composants sur...probablement pas radicalement le problkme peuvent soit achet~s soit &tre issus de conceptions au niveau des composants 6lectroniques. pr&c~dentes. Les
2009-06-01
a specific regionally thinned microbridge design has 22 % higher stiffness than that of a standard pixel design with similar thermal properties. The...temps thermique τ plus petite (environ 1,6 ms) comparativement à la configuration standard (2,6 ms). D’un autre côté, la détectivité D* des...other hand, the increased speed is not accompanied by a loss of detection performance. The simulation results show that the thin pixel design
Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF)
NASA Technical Reports Server (NTRS)
Schattenburg, M. L.; Canizares, C. R.; Dewey, D.; Levine, A. M.; Markert, T. H.
1988-01-01
The use of transmission gratings with grazing-incidence telescopes in celestial X-ray astrononmy is reviewed. The basic properties of transmission grating spectrometers and the use of 'phased' gratings to enhance the diffraction efficiency are outlined. The fabrication of the gratings is examined, giving special attention to the AXAF High Energy Transmission Grating. The performance of finite-period thick gratings is briefly discussed, and the performance of the transmission grating spectrometers planned for SPECTROSAT and AXAF are examined.
Theoretical studies of Pt-Ti nanoparticles for potential use as PEMFC electrocatalysts.
Jennings, Paul C; Pollet, Bruno G; Johnston, Roy L
2012-03-07
A theoretical investigation is presented of alloying platinum with titanium to form binary Pt-Ti nanoalloys as an alternative to the expensive pure platinum catalysts commonly used for Proton Exchange Membrane Fuel Cell cathode electrocatalysts. Density Functional Theory calculations are performed to investigate compositional effects on structural properties as well as Oxygen Reduction Reaction kinetics and poisoning effects. High symmetry A(32)-B(6) clusters are studied to investigate structural properties. From these structures binding energies of hydroxyl and carbon monoxide are studied on a range of sites on the surface of the clusters. Promising results are obtained suggesting that the bimetallic Pt-Ti nanoalloys may exhibit enhanced properties compared to pure platinum catalysts.
Daytime variations of absorbing aerosols above clouds in the southeast Atlantic
NASA Astrophysics Data System (ADS)
Chang, Y. Y.; Christopher, S. A.
2016-12-01
The daytime variation of aerosol optical depth (AOD) above maritime stratocumulus clouds in the southeast Atlantic is investigated by merging geostationary data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) with NASA A-Train data sets. SEVIRI's 15-minute above cloud AOD and below aerosol cloud optical depth (COD) retrieval provides the opportunity to assess their direct radiative forcing using actual cloud and aerosol properties instead of using fixed values from polar-orbiting measurements. The impact of overlying aerosols above clouds on the cloud mask products are compared with active spaceborne lidar to examine the performance of the product. Uncertainty analyses of aerosol properties on the estimation of optical properties and radiative forcing are addressed.
Effect of halogenation on the nonlinear optical properties of porthyrin and substituted porphyrins
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.; Moore, Craig E.; Benloss, Angela; Thompson, Albert N., Jr.; Richards, Rosalie A.; Roney, Celeste A.; Sanghadasa, Mohan
1998-01-01
The effect that fluorine and chlorine substitution has on the nonlinear optical properties of porphyrin, tetramethylporphyrin and tetraphenylporphyrin has been theoretically studied. The calculations of nonlinear optical properties have been obtained by performing finite-field calculations on structures determined by semiempirical methods. In addition, tetra(p-chlorophenyl)porphyrin and tetra(p-bromophenyl)porphyrin were synthesized by the condensation of pyrrol and the appropriate aldehyde. Thin films of polymethylmethacrylate were obtained containing these materials, by spin coating onto glass substrates. The films were characterized by third-harmonic generation. It was determined that the experimental conditions enhance the third-order polarizability of the tetraphenylporphyrins by a factor of about 1.6.
Hartogsohn, Ido
2018-01-01
Past research has demonstrated to the ability of psychedelics to enhance suggestibility, and pointed to their ability to amplify perception of meaning. This paper examines the existing evidence for the meaning-enhancing properties of psychedelics, and argues that the tendency of these agents to enhance the perception of significance offers valuable clues to explaining their reported ability to stimulate a variety of therapeutic processes, enhance creativity, and instigate mystical-type experiences. Building upon previous research, which suggested the potential role of psychedelic meaning-enhancement in enhancing placebo response, the paper explores the mechanisms by which the meaning-amplifying properties of psychedelics might also play a role in enhancing creativity, as well as in effecting mystical-type experiences. The wider social and public-health implications of this hypothesis are discussed, and suggestions are made as to the various ways in which scientific understanding of the meaning-enhancing properties of psychedelics might be advanced and utilized.
DEEP: a general computational framework for predicting enhancers
Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B.
2015-01-01
Transcription regulation in multicellular eukaryotes is orchestrated by a number of DNA functional elements located at gene regulatory regions. Some regulatory regions (e.g. enhancers) are located far away from the gene they affect. Identification of distal regulatory elements is a challenge for the bioinformatics research. Although existing methodologies increased the number of computationally predicted enhancers, performance inconsistency of computational models across different cell-lines, class imbalance within the learning sets and ad hoc rules for selecting enhancer candidates for supervised learning, are some key questions that require further examination. In this study we developed DEEP, a novel ensemble prediction framework. DEEP integrates three components with diverse characteristics that streamline the analysis of enhancer's properties in a great variety of cellular conditions. In our method we train many individual classification models that we combine to classify DNA regions as enhancers or non-enhancers. DEEP uses features derived from histone modification marks or attributes coming from sequence characteristics. Experimental results indicate that DEEP performs better than four state-of-the-art methods on the ENCODE data. We report the first computational enhancer prediction results on FANTOM5 data where DEEP achieves 90.2% accuracy and 90% geometric mean (GM) of specificity and sensitivity across 36 different tissues. We further present results derived using in vivo-derived enhancer data from VISTA database. DEEP-VISTA, when tested on an independent test set, achieved GM of 80.1% and accuracy of 89.64%. DEEP framework is publicly available at http://cbrc.kaust.edu.sa/deep/. PMID:25378307
Murray, Martha M.; Fleming, Braden C.
2013-01-01
Background While ACL reconstruction is the treatment gold standard for ACL injury, it does not reduce the risk of post-traumatic osteoarthritis. Therefore, new treatments that minimize this postoperative complication are of interest. Bio-enhanced ACL repair, in which a bioactive scaffold is used to stimulate healing of an ACL transection, has shown considerable promise in short term studies. The long-term results of this technique and the effects of the bio-enhancement on the articular cartilage have not been previously evaluated in a large animal model. Hypothesis 1) The structural (tensile) properties of the porcine ACL at 6 and 12 months after injury are similar when treated with bio-enhanced ACL repair, bio-enhanced ACL reconstruction, or conventional ACL reconstruction, and all treatments yield results superior to untreated ACL transection. 2) After one year, macroscopic cartilage damage following bio-enhanced ACL repair is similar to bio-enhanced ACL reconstruction and less than conventional ACL reconstruction and untreated ACL transection. Study Design Controlled laboratory study (porcine model) Methods Sixty-two Yucatan mini-pigs underwent ACL transection and randomization to four experimental groups: 1) no treatment, 2) conventional ACL reconstruction, 3) “bio-enhanced” ACL reconstruction using a bioactive scaffold, and 4) “bio-enhanced” ACL repair using a bioactive scaffold. The biomechanical properties of the ligament or graft and macroscopic assessments of the cartilage surfaces were performed after 6 and 12 months of healing. Results The structural properties (i.e., linear stiffness, yield and maximum loads) of the ligament following bio-enhanced ACL repair were not significantly different from bio-enhanced ACL reconstruction or conventional ACL reconstruction, but were significantly greater than untreated ACL transection after 12 months of healing. Macroscopic cartilage damage after bio-enhanced ACL repair was significantly less than untreated ACL transection and bio-enhanced ACL reconstruction, and there was a strong trend (p=.068) that it was less than conventional ACL reconstruction in the porcine model at 12 months. Conclusions Bio-enhanced ACL repair produces a ligament that is biomechanically similar to an ACL graft and provides chondroprotection to the joint following ACL surgery. Clinical Relevance Bio-enhanced ACL repair may provide a new less invasive treatment option that reduces cartilage damage following joint injury. PMID:23857883
Enhanced Discharge Performance in a Ring Cusp Plasma Source
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.
2000-01-01
There is a need for a lightweight, low power ion thruster for space science missions. Such an ion thruster is under development at NASA Glenn Research Center. In an effort to better understand the discharge performance of this thruster, a thruster discharge chamber with an anode containing electrically isolated electrodes at the cusps was fabricated and tested. Characteristics of this ring cusp ion discharge were measured without ion beam extraction. Discharge current was measured at collection electrodes located at the magnetic cusps and at the anode body itself. Discharge performance and plasma properties were measured as a function of power, which was varied between 20 and 50 W. It was found that ion production costs decreased by as much as 20 percent when the two most downstream cusp electrodes were allowed to float. Floating the electrodes did not give rise to a significant increase in discharge power even though the plasma density increased markedly. The improved performance is attributed to enhanced electron containment.
NASA Astrophysics Data System (ADS)
Rostam, Abbas Babaei; Peyravi, Majid; Ghorbani, Mohsen; Jahanshahi, Mohsen
2018-01-01
In this study, sulfonated-polyethersulfone/polyrhodanine (SPES/PRh) membranes with antibacterial behavior were fabricated. Polyethersulfone (PES) sulfonation was performed to enhance its hydrophilicity and next polyrhodanine nanoparticles (PRhNPs) were synthesized along with the sulfonated PES (SPES) by polyrhodanine (PRh) in situ polymerization. The sulfonation step also helps making composite membrane due to development of probable bondings and polymers engagements. The constructed membranes characterization was performed by FTIR, FESEM, contact angle, 1H NMR, TGA and EDS analyses. SPES/PRh membrane had enhanced hydrophilicity and consequently better fluxes for aqueous solutions. The composite SPES/PRh membrane flux was improved to 139/78 L/m2 h comparing 58.21 L/m2 h for SPES one. Membrane operational performances, antibacterial and antibiofouling tests showed improved flux, better rejection and appropriate antibacterial and antibiofouling properties for SPES/PRh membrane. The 100% bacteria mortality for specified concentrations and appropriate inhibition zones up to 9 mm have been achieved. It is generally a suitable membrane to provide proper performance beside antibacterial and antibiofouling behavior.
Jin, Zhen; Yang, Meng; Chen, Shao-Hua; Liu, Jin-Huai; Li, Qun-Xiang; Huang, Xing-Jiu
2017-02-21
Herein, we revealed that the electrochemical behaviors on the detection of heavy metal ions (HMIs) would largely rely on the exposed facets of SnO 2 nanoparticles. Compared to the high-energy {221} facet, the low-energy {110} facet of SnO 2 possessed better electrochemical performance. The adsorption/desorption tests, density-functional theory (DFT) calculations, and X-ray absorption fine structure (XAFS) studies showed that the lower barrier energy of surface diffusion on {110} facet was critical for the superior electrochemical property, which was favorable for the ions diffusion on the electrode, and further leading the enhanced electrochemical performance. Through the combination of experiments and theoretical calculations, a reliable interpretation of the mechanism for electroanalysis of HMIs with nanomaterials exposed by different crystal facets has been provided. Furthermore, it provides a deep insight into understanding the key factor to improve the electrochemical performance for HMIs detection, so as to design high-performance electrochemical sensors.
Integration of a photonic crystal polarization beam splitter and waveguide bend.
Zheng, Wanhua; Xing, Mingxin; Ren, Gang; Johnson, Steven G; Zhou, Wenjun; Chen, Wei; Chen, Lianghui
2009-05-11
In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 degrees waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20 dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future.
Liu, Xingqiang; Yang, Xiaonian; Gao, Guoyun; Yang, Zhenyu; Liu, Haitao; Li, Qiang; Lou, Zheng; Shen, Guozhen; Liao, Lei; Pan, Caofeng; Lin Wang, Zhong
2016-08-23
We report high-performance self-aligned MoS2 field-effect transistors (FETs) with enhanced photoresponsivity by the piezo-phototronic effect. The FETs are fabricated based on monolayer MoS2 with a piezoelectric GaN nanowire (NW) as the local gate, and a self-aligned process is employed to define the source/drain electrodes. The fabrication method allows the preservation of the intrinsic property of MoS2 and suppresses the scattering center density in the MoS2/GaN interface, which results in high electrical and photoelectric performances. MoS2 FETs with channel lengths of ∼200 nm have been fabricated with a small subthreshold slope of 64 mV/dec. The photoresponsivity is 443.3 A·W(-1), with a fast response and recovery time of ∼5 ms under 550 nm light illumination. When strain is introduced into the GaN NW, the photoresponsivity is further enhanced to 734.5 A·W(-1) and maintains consistent response and recovery time, which is comparable with that of the mechanical exfoliation of MoS2 transistors. The approach presented here opens an avenue to high-performance top-gated piezo-enhanced MoS2 photodetectors.
Bedford, Nicholas M; Hughes, Zak E; Tang, Zhenghua; Li, Yue; Briggs, Beverly D; Ren, Yang; Swihart, Mark T; Petkov, Valeri G; Naik, Rajesh R; Knecht, Marc R; Walsh, Tiffany R
2016-01-20
Peptide-enabled nanoparticle (NP) synthesis routes can create and/or assemble functional nanomaterials under environmentally friendly conditions, with properties dictated by complex interactions at the biotic/abiotic interface. Manipulation of this interface through sequence modification can provide the capability for material properties to be tailored to create enhanced materials for energy, catalysis, and sensing applications. Fully realizing the potential of these materials requires a comprehensive understanding of sequence-dependent structure/function relationships that is presently lacking. In this work, the atomic-scale structures of a series of peptide-capped Au NPs are determined using a combination of atomic pair distribution function analysis of high-energy X-ray diffraction data and advanced molecular dynamics (MD) simulations. The Au NPs produced with different peptide sequences exhibit varying degrees of catalytic activity for the exemplar reaction 4-nitrophenol reduction. The experimentally derived atomic-scale NP configurations reveal sequence-dependent differences in structural order at the NP surface. Replica exchange with solute-tempering MD simulations are then used to predict the morphology of the peptide overlayer on these Au NPs and identify factors determining the structure/catalytic properties relationship. We show that the amount of exposed Au surface, the underlying surface structural disorder, and the interaction strength of the peptide with the Au surface all influence catalytic performance. A simplified computational prediction of catalytic performance is developed that can potentially serve as a screening tool for future studies. Our approach provides a platform for broadening the analysis of catalytic peptide-enabled metallic NP systems, potentially allowing for the development of rational design rules for property enhancement.
Gas Sensing Properties of ZnO-SnO2 Nanostructures.
Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen
2015-02-01
One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.
NASA Astrophysics Data System (ADS)
Yoon, Im Taek; Cho, Hak Dong; Lee, Sejoon; Roshchupkin, Dmitry V.
2018-02-01
We have fabricated as-grown ZnO nanorods (NRs) and carbon-assisted NR arrays on semi-insulating (100)-oriented Si substrates. We compared the structural and luminescent properties of them. High-resolution transmission microscopy, field emission scanning electron microscopy, x-ray diffraction and energy-dispersive x-ray revealed that the as-grown ZnO NRs and carbon-assisted ZnO NRs were single crystals with a hexagonal wurtzite structure, and grew with a c-axis orientation perpendicular to the Si substrate. These measurements show that the carbon-assisted ZnO NRs were better synthesized vertically on an Si substrate compared to the as-grown ZnO NRs. Photoluminescence measurements showed that luminescence intensity of the carbon-assisted ZnO NRs was enhanced compared to the as-grown ZnO NRs. The enhanced luminescence intensity of the carbon-assisted ZnO demonstrates the possible improvement in the performance of photovoltaic nanodevices based on ZnO-like materials. This method can be applied to the fabrication of well-aligned ZnO NRs used widely in optoelectronic devices.
Qiu, Xinlan; Lu, Limin; Leng, Jing; Yu, Yongfang; Wang, Wenmin; Jiang, Min; Bai, Ling
2016-01-01
A novel electrochemical platform was designed for the simultaneous determination of Sunset Yellow (SY) and Tartrazine (TT), synthetic food dyes, by combining the signal amplification properties of graphene oxide (GO) and the excellent electronic and antifouling properties of multi-walled carbon nanotubes (MWCNTs). Stable dispersion of GO/MWCNTs composite was produced by sonication mixing. Compared with glassy carbon, MWCNTs and GO electrodes, GO/MWCNTs electrode exhibited strong enhancement effect and greatly increased the oxidation signal of SY and TT. Under optimized conditions, the enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 0.09-8.0 μM, with a low limit of detection of 0.025 μM for SY and 0.01 μM for TT (S/N = 3), respectively. To further validate its possible application, the proposed method was successfully used for the determination of SY and TT in orange juice with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Organic/inorganic hybrid coatings for anticorrosion
NASA Astrophysics Data System (ADS)
He, Zhouying
Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The synergistic effect of the mixed sol-gel precursors was shown to enhance the overall properties and was also observed structurally by SAXS and SEM. The improved resistance to the acid undercutting was observed for mixed sol-gel precursors based hybrids. The application of hybrids provides excellent anticorrosive properties as observed in salt spray and EIS study. The formation of Al2O3 protective layer as well as M-O-Al covalent bond provided the basis for excellent corrosion protection on Al substrate. However, the generation of Fe ions as corrosion product caused the accumulation of electrolyte, which resulted in the delamination of the coating on steel substrate. In this way, the corrosion of steel substrate is much faster than that of Al substrate. The maintenance of high impedance and corresponding resistance and capacitance based on EIS results further confirmed the great anticorrosion performance of hybrids on both Al and steel substrate.
NASA Astrophysics Data System (ADS)
Ji, Jianying
Solid polymer electrolytes (SPEs) provide advantages over liquid electrolytes in terms of safety, reliability, less temperature sensitive, and simplicity of design. With the use of a SPE in lithium batteries, high specific energy and specific power, safe operation, flexibility in packaging, and low cost of fabrication can be expected. However, after 30 years, SPEs have rarely found commercial success due to the low ionic conductivity and/or insufficient mechanical properties, both of which are related to the movement of the polymer chains. Many physical/chemical methods have been exploited to simultaneously create enhancement in ionic conductivity and mechanical properties, and some suggested ways have shown promise. However, the complex strategies have always introduced other challenge issues and incurred extra costs for manufacturing. In such a context, the development of dry solid state electrolytes is the central challenge to be faced worldwide. This thesis deals with the approaches to improving ionic conductivity and mechanical properties simultaneously. The method is to apply two kinds of controllable organic fillers: copolymer and protein. Our work revealed that the commercial available copolymer, poly (ethylene oxide)- block-polyethylene (PEO-b-PE), possesses a capability for enhancing the multiple performances of poly(ethylene oxide)(PEO)-based polymer electrolyte. And the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs were examined. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties, while increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity. A rubber-like, soy protein-based SPE (s-SPE)was obtained by employing soy protein isolate (SPI), a soy product usually used as rigid fillers for enhancing mechanical properties of polymers, blended with poly(ethylene oxide)(PEO). The results indicated that the s-SPE with 55 wt% of SPI possesses a fully amorphous uniform structure having low Tg, in contrast with crystalline PEO-based SPE having discernable Tg and Tm. The conductivity and elasticity are both significantly improved with SPI involvement. Remarkably, this film has been elongated up to 100% without loss of ionic conductivity and 700% without mechanical damage.
Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds
Cosimbescu, Lelia; Wei, Xiaoliang; Vijayakumar, M.; Xu, Wu; Helm, Monte L.; Burton, Sarah D.; Sorensen, Christina M.; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-01-01
We report a series of ionically modified ferrocene compounds for hybrid lithium-organic non-aqueous redox flow batteries, based on the ferrocene/ferrocenium redox couple as the active catholyte material. Tetraalkylammonium ionic moieties were incorporated into the ferrocene structure, in order to enhance the solubility of the otherwise relatively insoluble ferrocene. The effect of various counter anions of the tetraalkylammonium ionized species appended to the ferrocene, such as bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, perchlorate, tetrafluoroborate, and dicyanamide on the solubility of the ferrocene was investigated. The solution chemistry of the ferrocene species was studied, in order to understand the mechanism of solubility enhancement. Finally, the electrochemical performance of these ionized ferrocene species was evaluated and shown to have excellent cell efficiency and superior cycling stability. PMID:26374254
Anion-tunable properties and electrochemical performance of functionalized ferrocene compounds
Cosimbescu, Lelia; Wei, Xiaoliang; Vijayakumar, M.; ...
2015-09-16
We report a series of ionically modified ferrocene compounds for hybrid lithium-organic non-aqueous redox flow batteries, based on the ferrocene/ferrocenium redox couple as the active catholyte material. Tetraalkylammonium ionic moieties were incorporated into the ferrocene structure, in order to enhance the solubility of the otherwise relatively insoluble ferrocene. The effect of various counter anions of the tetraalkylammonium ionized species appended to the ferrocene, such as bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, perchlorate, tetrafluoroborate, and dicyanamide on the solubility of the ferrocene was investigated. The solution chemistry of the ferrocene species was studied, in order to understand the mechanism of solubility enhancement. Lastly, the electrochemicalmore » performance of these ionized ferrocene species was evaluated and shown to have excellent cell efficiency and superior cycling stability.« less
Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures
NASA Astrophysics Data System (ADS)
Wang, Chao; Fan, Huiqing; Ren, Xiaohu; Fang, Jiawen
2018-02-01
To achieve better photocatalytic performance, we proposed a facile solid-state reaction method to produce CeO2/ZnO heterostructures. Ceria and zinc oxide were synthesized simultaneously by thoroughly grinding the mixture of zinc acetate dihydrate, cerium nitrate hexahydrate and sodium hydroxide. The morphology of the as-prepared heterostructures varies dramatically as different amount of ceria was introduced in the composition. The photocatalytic performance of CeO2/ZnO heterojunctions was 4.6 times higher than that of pure ZnO. The enhanced photocatalytic activity could be ascribed to that more electrons and holes could transport to the surface of catalysts and react with the pollution due to the extended light-responsive range, accelerated migration, increased specific surface area and suppressed recombination of photogenerated carriers.
Fayad, Laura M.; Blakeley, Jaishri; Plotkin, Scott; Widemann, Brigitte; Jacobs, Michael A.
2013-01-01
Purpose. WB-MRI is mainly used for tumor detection and surveillance. The purpose of this study is to establish the feasibility of WB-MRI at 3T for lesion characterization, with DWI/ADC-mapping and contrast-enhanced sequences, in patients with neurofibromatosis type 2 (NF-2) and schwannomatosis. Materials and Methods. At 3T, WB-MRI was performed in 11 subjects (10 NF-2 and 1 schwannomatosis) with STIR, T1, contrast-enhanced T1, and DWI/ADC mapping (b = 50, 400, 800 s/mm2). Two readers reviewed imaging for the presence and character of peripheral lesions. Lesion size and features (signal intensity, heterogeneity, enhancement characteristics, and ADC values) were recorded. Descriptive statistics were reported. Results. Twenty-three lesions were identified, with average size of 4.6 ± 2.8 cm. Lesions were characterized as tumors (21/23) or cysts (2/23) by contrast-enhancement properties (enhancement in tumors, no enhancement in cysts). On T1, tumors were homogeneously isointense (5/21) or hypointense (16/21); on STIR, tumors were hyperintense and homogeneous (10/21) or heterogeneous (11/21); on postcontrast T1, tumors enhanced homogeneously (14/21) or heterogeneously (7/21); on DWI, tumor ADC values were variable (range 0.8–2.7), suggesting variability in intrinsic tumor properties. Conclusion. WB-MRI with quantitative DWI and contrast-enhanced sequences at 3T is feasible and advances the utility of WB-MRI not only to include detection, but also to provide additional metrics for lesion characterization. PMID:24967287
Wang, Yaqun; Ding, Yu; Pan, Lijia; Shi, Ye; Yue, Zhuanghao; Shi, Yi; Yu, Guihua
2016-05-11
Organic electroactive materials represent a new generation of sustainable energy storage technology due to their unique features including environmental benignity, material sustainability, and highly tailorable properties. Here a carbonyl-based organic salt Na2C6O6, sodium rhodizonate (SR) dibasic, is systematically investigated for high-performance sodium-ion batteries. A combination of structural control, electrochemical analysis, and computational simulation show that rational morphological control can lead to significantly improved sodium storage performance. A facile antisolvent method was developed to synthesize microbulk, microrod, and nanorod structured SRs, which exhibit strong size-dependent sodium ion storage properties. The SR nanorod exhibited the best performance to deliver a reversible capacity of ∼190 mA h g(-1) at 0.1 C with over 90% retention after 100 cycles. At a high rate of 10 C, 50% of the capacity can be obtained due to enhanced reaction kinetics, and such high electrochemical activity maintains even at 80 °C. These results demonstrate a generic design route toward high-performance organic-based electrode materials for beyond Li-ion batteries. Using such a biomass-derived organic electrode material enables access to sustainable energy storage devices with low cost, high electrochemical performance and thermal stability.
NASA Astrophysics Data System (ADS)
Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong
2015-11-01
We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge-discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.
Xiang, Shulin; Wang, Xiaojun; Gupta, Manoj; Wu, Kun; Hu, Xiaoshi; Zheng, Mingyi
2016-01-01
In this work, graphene nanoplatelets (GNPs) reinforced magnesium (Mg) matrix composites were synthesised using the multi-step dispersion route. Well-dispersed but inhomogeneously distributed GNPs were obtained in the matrix. Compared with the monolithic alloy, the nanocomposites exhibited dramatically enhanced Young’s modulus, yield strength and ultimate tensile strength and relatively high plasticity, which mainly attributed to the significant heterogeneous laminated microstructure induced by the addition of GNPs. With increasing of the concentration of GNPs, mechanical properties of the composites were gradually improved. Especially, the strengthening efficiency of all the composites exceeded 100%, which was significantly higher than that of carbon nanotubes reinforced Mg matrix composites. The grain refinement and load transfer provided by the two-dimensional and wrinkled surface structure of GNPs were the dominated strengthening mechanisms of the composites. This investigation develops a new method for incorporating GNPs in metals for fabricating high-performance composites. PMID:27941839
NASA Astrophysics Data System (ADS)
Xiang, Shulin; Wang, Xiaojun; Gupta, Manoj; Wu, Kun; Hu, Xiaoshi; Zheng, Mingyi
2016-12-01
In this work, graphene nanoplatelets (GNPs) reinforced magnesium (Mg) matrix composites were synthesised using the multi-step dispersion route. Well-dispersed but inhomogeneously distributed GNPs were obtained in the matrix. Compared with the monolithic alloy, the nanocomposites exhibited dramatically enhanced Young’s modulus, yield strength and ultimate tensile strength and relatively high plasticity, which mainly attributed to the significant heterogeneous laminated microstructure induced by the addition of GNPs. With increasing of the concentration of GNPs, mechanical properties of the composites were gradually improved. Especially, the strengthening efficiency of all the composites exceeded 100%, which was significantly higher than that of carbon nanotubes reinforced Mg matrix composites. The grain refinement and load transfer provided by the two-dimensional and wrinkled surface structure of GNPs were the dominated strengthening mechanisms of the composites. This investigation develops a new method for incorporating GNPs in metals for fabricating high-performance composites.
Enhanced reaction kinetics in biological cells
NASA Astrophysics Data System (ADS)
Loverdo, C.; Bénichou, O.; Moreau, M.; Voituriez, R.
2008-02-01
The cell cytoskeleton is a striking example of an `active' medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties: a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose an analytical model of transport-limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers such as vesicles. We derive analytically the average interaction time with motor proteins that optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures such as axons.
Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.
Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo
2016-04-20
Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Ullah, Sami; Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com
The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffractionmore » technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.« less
Thermoelectric properties of semiconductor nanowire networks
Roslyak, Oleksiy; Piryatinski, Andrei
2016-03-28
To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor)network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi 2Te 3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNWmore » demonstrate an order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. In conclusion, we provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.« less
Investigation of the detection of shallow tunnels using electromagnetic and seismic waves
NASA Astrophysics Data System (ADS)
Counts, Tegan; Larson, Gregg; Gürbüz, Ali Cafer; McClellan, James H.; Scott, Waymond R., Jr.
2007-04-01
Multimodal detection of subsurface targets such as tunnels, pipes, reinforcement bars, and structures has been investigated using both ground-penetrating radar (GPR) and seismic sensors with signal processing techniques to enhance localization capabilities. Both systems have been tested in bi-static configurations but the GPR has been expanded to a multi-static configuration for improved performance. The use of two compatible sensors that sense different phenomena (GPR detects changes in electrical properties while the seismic system measures mechanical properties) increases the overall system's effectiveness in a wider range of soils and conditions. Two experimental scenarios have been investigated in a laboratory model with nearly homogeneous sand. Images formed from the raw data have been enhanced using beamforming inversion techniques and Hough Transform techniques to specifically address the detection of linear targets. The processed data clearly indicate the locations of the buried targets of various sizes at a range of depths.
NASA Astrophysics Data System (ADS)
Kumar, Prashant; Aggarwal, Shantanu; Narayana, Chandrabhas; Narayan, K. S.
2018-02-01
The role of indium in controlling the adhesion and the optical properties of fusible, low- melting alloys is highlighted in this work. The optical activity of indium-alloy/polymer interface is probed using surface-enhanced Raman spectroscopy, which shows a large increase in polymer Raman modes intensity. Signatures of plasmon and chemically enhanced Raman are visible for more than one polymer. Improvement in adhesion is also reflected in their ability to coat conformally onto the polymer surface resulting in a suitable interface for electrical transport. The electrical characteristics of alloy electrodes, which are printed in ambient conditions, are superior when compared to the thermally evaporated aluminum cathodes. Raman and responsivity measurements indicate that indium (In) forms metal/organic hybrid charge-transfer states at the alloy/polymer interface and assumes a decisive role in controlling the mechanical, optical, and electrical properties of these electrodes. Our studies suggest that the indium present in small quantities (˜5 wt. %) can significantly improve the overall performance of the low-temperature printable eutectic alloy electrodes.
NASA Astrophysics Data System (ADS)
Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy; Yeh, Chien-Jui; Leou, Keh-Chyang; Lin, I.-Nan
2017-12-01
A high-performance ZnO nanotubes (ZNTs)/needle-structured graphitic diamond (NGD) nanohybrid material was prepared and observed the electrochemical sensing properties of liquid acetone in water. Initially, we synthesized NGD film using bias-enhanced growth (BEG) process. Afterwards, a well-etched ZNTs were spatially grown on the NGD film using simple hydrothermal method, and utilized as sensing material for assemble an electrochemical sensor (via EGFET configuration) operating at room temperature. The systematic investigations depict the ultra-high sensing properties attained from ZNTs grown on NGD film. The NGD film mostly have needle or wire shaped diamond grains, which contributes extremely high electrical conductivity. Furthermore, needle shaped diamond grains cover with multi-layer graphitic material generates conduction channels for ZNTs and leads to enhance the oxygen residuals and species. The material stability and conductivity of NGD as well the defects exist with oxygen vacancies in ZNTs offers superior sensing properties. Thus, the interesting combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days).
Gabbai-Armelin, Paulo R; Renno, Ana Cm; Crovace, Murilo C; Magri, Angela Mp; Zanotto, Edgar D; Peitl, Oscar; Leeuwenburgh, Sander Cg; Jansen, John A; van den Beucken, Jeroen Jjp
2017-08-01
Calcium phosphates and bioactive glass ceramics have been considered promising biomaterials for use in surgeries. However, their moldability should be further enhanced. We here thereby report the handling, physicochemical features, and morphological characteristics of formulations consisting of carboxymethylcellulose-glycerol and hydroxyapatite-tricalcium phosphate or Biosilicate® particles. We hypothesized that combining either material with carboxymethylcellulose-glycerol would improve handling properties, retaining their bioactivity. In addition to scanning electron microscopy, cohesion, mineralization, pH, and viscoelastic properties of the novel formulations, cell culture experiments were performed to evaluate the cytotoxicity and cell proliferation. Putty-like formulations were obtained with improved cohesion and moldability. Remarkably, mineralization in simulated body fluid of hydroxyapatite-tricalcium phosphate/carboxymethylcellulose-glycerol formulations was enhanced compared to pure hydroxyapatite-tricalcium phosphate. Cell experiments showed that all formulations were noncytotoxic and that HA-TCP60 and BGC50 extracts led to an increased cell proliferation. We conclude that combining carboxymethylcellulose-glycerol with either hydroxyapatite-tricalcium phosphate or Biosilicate® allows for the generation of moldable putties, improves handling properties, and retains the ceramic bioactivity.
Pang, Jinhui; Liu, Xin; Zhang, Xueming; Wu, Yuying; Sun, Runcang
2013-01-01
More and more attention has been paid to environmentally friendly bio-based renewable materials as the substitution of fossil-based materials, due to the increasing environmental concerns. In this study, regenerated cellulose films with enhanced mechanical property were prepared via incorporating different plasticizers using ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as the solvent. The characteristics of the cellulose films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis (TG), X-ray diffraction (XRD), 13C Solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) and tensile testing. The results showed that the cellulose films exhibited a homogeneous and smooth surface structure. It was noted that the thermal stability of the regenerated cellulose film plasticized with glycerol was increased compared with other regenerated cellulose films. Furthermore, the incorporation of plasticizers dramatically strengthened the tensile strength and improved the hydrophobicity of cellulose films, as compared to the control sample. Therefore, these notable results exhibited the potential utilization in producing environmentally friendly cellulose films with high performance properties. PMID:28809209
Abdolmohammadi, Sanaz; Siyamak, Samira; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan; Rahman, Mohamad Zaki Ab; Azizi, Susan; Fatehi, Asma
2012-01-01
This study investigates the effects of calcium carbonate (CaCO3) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO3 were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO3 nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO3. Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO3. The thermal stability was best enhanced at 1 wt% of CaCO3 nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO3 nanocomposite. TEM micrograph displays good dispersion of CaCO3 at lower nanoparticle loading within the matrix. PMID:22605993
The novel solution for negative impact of out-of-band and outgassing by top coat materials in EUVL
NASA Astrophysics Data System (ADS)
Fujitani, Noriaki; Sakamoto, Rikimaru; Endo, Takafumi; Onishi, Ryuji; Nishita, Tokio; Yaguchi, Hiroaki; Ho, Bang-Ching
2013-03-01
EUV lithography (EUVL) is the most promising candidate of next generation technology for hp20nm node device manufacturing and beyond. However, the power of light source, masks and photo resists are the most critical issues for driving the EUVL. Especially, concerning about deterioration of the patterning performance by Out-of-Band (OoB) light existing in the EUV light, and contamination problem of exposure tool due to the resist outgassing are the key issues which have to be resolved in the material view point toward the high volume manufacturing by EUVL. This paper proposes the solution for these critical issues by applying the top coat material. The key characteristics for top coat material are the protection of the OoB effect, the prevention of the outgassing from resist as a barrier layer and enhancement of photo resist performance, like resist profile and process window. This paper describes the material design and performance. The optical property needs having the high absorbance of DUV light in OoB range and high transmittance for 13.5nm wavelength. Outgassing barrier property needs high broking property against non contamination chemical species from photo resist outgassing. The study of TOF-SIMS analysis indicates how much the polymer chemistry can impact for outgassing barrier property. The dependency of material design and lithography performance is also discussed.
Top-coatless 193nm positive-tone development immersion resist for logic application
NASA Astrophysics Data System (ADS)
Liu, Lian Cong; Yeh, Tsung Ju; Lin, Yeh-Sheng; Huang, Yu Chin; Kuo, Chien Wen; Huang, Wen Liang; Lin, Chia Hung; Yu, Chun Chi; Hsu, Ray; Wan, I.-Yuan; Lin, Jeff; Im, Kwang-Hwyi; Lim, Hae Jin; Jeon, Hyun K.; Suzuki, Yasuhiro; Xu, Cheng Bai
2015-03-01
In this paper, we summarize our development efforts for a top-coatless 193nm immersion positive tone development (PTD) contact hole (C/H) resist with improved litho and defect performances for logic application specifically with an advance node. The ultimate performance goal was to improve the depth of focus (DoF) margin, mask error enhancement factor (MEEF), critical dimension uniformity (CDU), contact edge roughness (CER), and defect performance. Also, the through pitch CD difference was supposed to be comparable to the previous control resist. Effects of polymer and PAG properties have been evaluated for this purpose. The material properties focused in the evaluation study were polymer activation energy (Ea), polymer solubility differentiated by polymerization process types, and diffusion length (DL) and acidity (pKa) of photoacid generator (PAG). Additionally, the impact of post exposure bake (PEB) temperature was investigated for process condition optimization. As a result of this study, a new resist formulation to satisfy all litho and defect performance was developed and production yield was further improved.
Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains
NASA Astrophysics Data System (ADS)
Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi
2013-03-01
We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.
Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate
Moradian, Siamak; Ameri, Farhad
2013-01-01
Attempts were made to modify polypropylene fibers by melt blending with polyethylene terephthalate in order to enhance the dyeability of the resultant fiber. Five blends of polypropylene/polyethylene terephthalate/compatibilizer were prepared and subsequently spun into fibers. Three disperse dyes were used to dye such modified fibers at boiling and 130°C. The dyeing performance of the blend fibers, as well as the morphological, chemical, thermal, and mechanical properties, of the corresponding blends was characterized by means of spectrophotometry, polarized optical microscopy, scanning electron microscopy (SEM), FT-IR spectroscopy, differential scanning calorimetry (DSC), and tensile testing. PMID:24288485
NASA Astrophysics Data System (ADS)
Hernández, Jaime J.; Monclús, Miguel A.; Navarro-Baena, Iván; Viela, Felipe; Molina-Aldareguia, Jon M.; Rodríguez, Isabel
2017-03-01
This paper presents a multifunctional polymer surface that provides superhydrophobicity and self-cleaning functions together with an enhancement in mechanical and electrical performance. These functionalities are produced by nanoimprinting high aspect ratio pillar arrays on polymeric matrix incorporating functional reinforcing elements. Two distinct matrix-filler systems are investigated specifically, Carbon Nanotube reinforced Polystyrene (CNT-PS) and Reduced Graphene Oxide reinforced Polyvinylidene Difluoride (RGO-PVDF). Mechanical characterization of the topographies by quantitative nanoindentation and nanoscratch tests are performed to evidence a considerable increase in stiffness, Young’s modulus and critical failure load with respect to the pristine polymers. The improvement on the mechanical properties is rationalized in terms of effective dispersion and penetration of the fillers into the imprinted structures as determined by confocal Raman and SEM studies. In addition, an increase in the degree of crystallization for the PVDF-RGO imprinted nanocomposite possibly accounts for the larger enhancement observed. Improvement of the mechanical ruggedness of functional textured surfaces with appropriate fillers will enable the implementation of multifunctional nanotextured materials in real applications.
NASA Astrophysics Data System (ADS)
Shukla, Ashish K.; Yadav, Vinayak M.; Kumar, Akash; Palani, I. A.; Manivannan, Anbarasu
2018-01-01
Polyimide (PI) offers promising features such as high strength and excellent thermal stability for flexible solar panels. The flexible solar cell demands maximum absorption of solar insolation through stacked layers to enhance its performance. However, the fluorescence emission (FE) in inactive polyimide substrate hinders the absorption of irradiated solar energy. In this research work, an attempt has been made to generate rippled morphology on PI substrate using laser processing that enhances the absorption and moderates the FE. These changes are confirmed by calculating the Urbach energy (Eu) of the rippled structure, which is found to be 2.5 times that of the pristine substrate. Furthermore, to reduce the FE, tungsten (W) was coated on the rippled structure of the laser-processed PI, and a significant reduction of 70% FE is achieved compared to the FE of unprocessed PI. These enhanced characteristics of PI obtained by laser processing will be highly helpful for improving the overall performance of flexible solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Williamson
A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete andmore » smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less
Dipole-modified graphene with ultrahigh gas sensibility
NASA Astrophysics Data System (ADS)
Jia, Ruokun; Xie, Peng; Feng, Yancong; Chen, Zhuo; Umar, Ahmad; Wang, Yao
2018-05-01
This study reports the supramolecular assembly of functional graphene-based materials with ultrahigh gas sensing performances which are induced by charge transfer enhancement. Two typical Donor-π-Accepter (D-π-A) structure molecules 4-aminoquinoline (4AQ, μ = 3.17 Debye) and 4-hydroxyquinoline (4HQ, μ = 1.98 Debye), with different charge transfer enhancing effects, were selected to modify reduce oxide graphene (rGO) via supramolecular assembly. Notably, compared to the 4HQ-rGO, the 4AQ-rGO exhibits more significant increase of gas response (Ra/Rg = 3.79) toward 10 ppm NO2, which is ascribed to the larger dipole moment (μ) of 4AQ and hence the more intensive enhancing effect of charge transfer on the interface of rGO. Meanwhile, 4AQ-rGO sensors also reveal superior comprehensive gas sensing performances, including excellent gas sensing selectivity, linearity, repeatability and stability. It is believed that the present work demonstrates an effective supramolecular approach of modifying rGO with strong dipoles to significantly improve gas sensing properties of graphene-based materials.
Vakhitov, T R; Katnov, V E; Grishin, P V; Stepin, S N; Grigoriev, D O
2017-03-01
An attempt to combine two 'green' compounds in nanocomposite microcontainers in order to increase protection properties of waterborne acryl-styrene copolymer (ASC) coatings has been made. N -lauroylsarcosine (NLS) served as a corrosion inhibitor, and linseed oil (LO) as a carrier-forming component. LO is compatible with this copolymer and can impart to the coating self-healing properties. For the evaluation of the protective performance, three types of coatings were compared. In the first two, NLS was introduced in the coating formulation in the forms of free powder and micro-containers filled with LO, correspondingly. The last one was a standard ASC coating without inhibitor at all. Low-carbon steel substrates were coated by these formulations by spraying and subjected subsequently to the neutral salt spray test according to DIN ISO 9227. Results of these tests as well as the data obtained by electrochemical study suggest that such containers can be used for the improvement of adhesion of ASC-based coatings to the substrate and for the enhancement of their protective performance upon integrity damage, whereas the barrier properties of intact coatings were decreased.
NASA Astrophysics Data System (ADS)
Mailhot, B.; Rivaton, A.; Gardette, J.-L.; Moustaghfir, A.; Tomasella, E.; Jacquet, M.; Ma, X.-G.; Komvopoulos, K.
2006-05-01
The chemical reactions resulting from ultraviolet radiation produce discoloration and significant changes in the surface properties of polycarbonate (PC). To prevent photon absorption from irradiation and oxygen diffusion and to enhance the surface nanomechanical properties of PC, thin ceramic coatings of ZnO and Al2O3 (both single- and multi-layer) were deposited on bulk PC by radio-frequency magnetron sputtering. The samples were irradiated at wavelengths greater than 300 nm, representative of outdoor conditions. Despite the effectiveness of ZnO to protect PC from irradiation damage, photocatalytic oxidation at the PC/ZnO interface was the limiting factor. To overcome this deficiency, a thin Al2O3 coating was used both as intermediate and top layer because of its higher hardness and wear resistance than ZnO. Therefore, PC/Al2O3/ZnO, PC/ZnO/Al2O3, and PC/Al2O3/ZnO/Al2O3 layered media were fabricated and their photodegradation properties were examined by infrared and ultraviolet-visible spectroscopy. It was found that the photocatalytic activity at the PC/ZnO interface was reduced in the presence of the intermediate Al2O3 layer that limited the oxygen permeability. Nanomechanical experiments performed with a surface force apparatus revealed that the previous coating systems enhanced both the surface nanohardness and the elastic modulus and reduced the coefficient of friction in the order of ZnO, Al2O3, and Al2O3/ZnO/Al2O3. Although irradiation increased the nanohardness and the elastic modulus of PC, the irradiation effect on the surface mechanical properties of ceramic-coated PC was secondary.
Oropeza-Aburto, Araceli; Cruz-Ramírez, Alfredo; Acevedo-Hernández, Gustavo J.; Pérez-Torres, Claudia-Anahí; Caballero-Pérez, Juan; Herrera-Estrella, Luis
2012-01-01
Plants have evolved a plethora of responses to cope with phosphate (Pi) deficiency, including the transcriptional activation of a large set of genes. Among Pi-responsive genes, the expression of the Arabidopsis phospholipase DZ2 (PLDZ2) is activated to participate in the degradation of phospholipids in roots in order to release Pi to support other cellular activities. A deletion analysis was performed to identify the regions determining the strength, tissue-specific expression, and Pi responsiveness of this regulatory region. This study also reports the identification and characterization of a transcriptional enhancer element that is present in the PLDZ2 promoter and able to confer Pi responsiveness to a minimal, inactive 35S promoter. This enhancer also shares the cytokinin and sucrose responsive properties observed for the intact PLDZ2 promoter. The EZ2 element contains two P1BS motifs, each of which is the DNA binding site of transcription factor PHR1. Mutation analysis showed that the P1BS motifs present in EZ2 are necessary but not sufficient for the enhancer function, revealing the importance of adjacent sequences. The structural organization of EZ2 is conserved in the orthologous genes of at least eight families of rosids, suggesting that architectural features such as the distance between the two P1BS motifs are also important for the regulatory properties of this enhancer element. PMID:22210906
Hierarchical Nafion enhanced carbon aerogels for sensing applications
NASA Astrophysics Data System (ADS)
Weng, Bo; Ding, Ailing; Liu, Yuqing; Diao, Jianglin; Razal, Joselito; Lau, King Tong; Shepherd, Roderick; Li, Changming; Chen, Jun
2016-02-01
This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 103 μA mM-1 cm-2 was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions.This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 103 μA mM-1 cm-2 was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08631k
NASA Astrophysics Data System (ADS)
Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.
2017-06-01
The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.
NASA Astrophysics Data System (ADS)
Torrisi, Lorenzo
2018-01-01
Measurements of ion acceleration in plasma produced by fs lasers at intensity of the order of 1018 W/cm2 have been performed in different European laboratories. The forward emission in target-normal-sheath-acceleration (TNSA) regime indicated that the maximum energy is a function of the laser parameters, of the irradiation conditions and of the target properties.In particular the laser intensity and contrast play an important role to maximize the ion acceleration enhancing the conversion efficiency. Also the use of suitable prepulses, focal distances and polarized laser light has important roles. Finally the target composition, surface, geometry and multilayered structure, permit to enhance the electric field driving the forward ion acceleration.Experimental measurements will be reported and discussed.
Size-dependent magnetic properties of FeGaB/Al2O3 multilayer micro-islands
NASA Astrophysics Data System (ADS)
Wang, X.; Gao, Y.; Chen, H.; Chen, Y.; Liang, X.; Lin, W.; Sun, N. X.
2018-06-01
Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200 μm ∼ 500 μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.
Formation of NiFe2O4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties
NASA Astrophysics Data System (ADS)
Xiao, Yinglin; Zai, Jiantao; Tian, Bingbing; Qian, Xuefeng
2017-07-01
A NiFe2O4/expanded graphite (NiFe2O4/EG) nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 mAh g-1 at a current of 1 A g-1 after 800 cycles. This good performance may be attributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure, efficiently accommodate volume changes in the NiFe2O4-based anodes, and alleviate aggregation of NiFe2O4 nanoparticles.
Superconductor-superconductor bilayers for enhancing single-photon detection
NASA Astrophysics Data System (ADS)
Ivry, Yachin; Surick, Jonathan J.; Barzilay, Maya; Kim, Chung-Soo; Najafi, Faraz; Kalfon-Cohen, Estelle; Dane, Andrew D.; Berggren, Karl K.
2017-10-01
Here, we optimized ultrathin films of granular NbN on SiO2 and of amorphous αW5Si3. We showed that hybrid superconducting nanowire single-photon detectors (SNSPDs) made of 2 nm thick αW5Si3 films over 2 nm thick NbN films exhibit advantageous coexistence of timing (<5 ns reset time and 52 ps timing jitter) and efficiency (>96% quantum efficiency) performance. We discuss the governing mechanism of this hybridization via the proximity effect. Our results demonstrate saturated SNSPDs performance at 1550 nm optical wavelength and suggest that such hybridization can significantly expand the range of available superconducting properties, impacting other nano-superconducting technologies. Lastly, this hybridization may be used to tune properties, such as the amorphous character of superconducting films.
Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbins, James; Heuser, Brent; Robertson, Ian
2015-04-22
This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on amore » variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited overall properties. With this understanding, the major materials development challenge is to provide a high uniformly distributed population of very fine ODS particles to be able to realize the full promise of dispersion strengthening. This should be a major goal of future work. This program had the further goal to develop graduate student researcher with the experience and capabilities to move this field forward. The support in this program was used for graduate student support and for research expenses; none of the program funds directly supported the faculty in the program. In this sense, the program was successful in supporting several very promising graduate researchers. Four of the graduate students supported here will complete their PhDs in 2015.« less
Sun, Jiadi; Zhu, Ye; Meng, Long; Chen, Peng; Shi, Tiantian; Liu, Xiaoya; Zheng, Yufeng
2016-11-01
Magnesium (Mg) has recently received increasing attention due to its unique biological performance, including cytocompatibility, antibacterial and biodegradable properties. However, rapid corrosion in physiological environment and potential toxicity limits its clinical applications. To improve the corrosion resistance meanwhile not compromise other excellent performance, self-assembled colloidal particles were deposited onto magnesium surfaces in ethanol by a simple and effective electrophoretic deposition (EPD) method. The fabricated functional nanostructured coatings were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM). The electrochemical test, pH value, and Mg ion concentration data show that the corrosion resistance of Mg samples is enhanced appreciably after surface treatment. In vitro cellular response and antibacterial capability of the modified Mg substrates are performed. Significantly increased cell adhesion and viability are observed from the coated Mg samples, and the amounts of adherent bacteria on the treated Mg surfaces diminish remarkably compared to the bare Mg. Furthermore, the bare and coated Mg samples were implanted in New Zealand white rabbits for 12 weeks to examine the in vivo long-term corrosion performance and in situ inflammation behavior. The experiment results confirmed that compared with bare Mg substrate the corrosion and foreign-body reactions of the coated Mg samples were suppressed. The above results suggested that our coatings, which effectively enhance the biocompatibility, antimicrobial properties, and corrosion resistance of Mg substrate, provide a simple and practical strategy to expedite clinical acceptance of biodegradableMg and its alloys. Biomedical Mg metals have been considered as promising biodegradable implants because of their intended functions, such as cytocompatibility, antibacterial, and biodegradable properties. However, rapid corrosion in physiological environment limits their clinical applications. Alloying and surface coatings have been used to reduce the degradation rate. But this would compromise other excellent performance of Mg samples, including antibacterial and anti-inflammatory activity. Thus, while the rapid degradation of Mg samples must be solved, good antibacterial property and acceptable cytocompatibility are also necessary. In this study, polymer-based coatings were fabricated on Mg surfaces by electrophoretic deposition of poly(isobornyl acrylate-co-dimethylaminoethyl methacrylate)/tannic acid (P(ISA-co-DMA)/TA) colloidal particles. It suggested that the coating materials effectively improved the biocompatibility, antimicrobial behavior, and corrosion resistance of biomedical Mg. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
What is the copper thin film thickness effect on thermal properties of NiTi/Cu bi-layer?
NASA Astrophysics Data System (ADS)
Fazeli, Sara; Vahedpour, Morteza; Khatiboleslam Sadrnezhaad, Sayed
2017-02-01
Molecular dynamics (MD) simulation was used to study of thermal properties of NiTi/Cu. Embedded atom method (EAM) potentials for describing of inter-atomic interaction and Nose-Hoover thermostat and barostat are employed. The melting of the bi-layers was considered by studying the temperature dependence of the cohesive energy and mean square displacement. To highlight the differences between bi-layers with various copper layer thickness, the effect of copper film thickness on thermal properties containing the cohesive energy, melting point, isobaric heat capacity and latent heat of fusion was estimated. The results show that thermal properties of bi-layer systems are higher than that of their corresponding of pure NiTi. But, these properties of bi-layer systems approximately are independent of copper film thicknesses. The mean square displacement (MSD) results show that, the diffusion coefficients enhance upon increasing of copper film thickness in a linear performance.
Technical note: Evaluation of a crucible furnace retort for laboratory torrefactions of wood chips
Thomas L. Eberhardt; Karen G. Reed
2014-01-01
Torrefaction is a thermal process that improves biomass performance as a fuel by property enhancements such as decreased moisture uptake and increased carbon density. Most studies to date have used very small amounts of finely ground biomass. This study reports the testing of a crucible furnace retort that was fabricated to produce intermediate quantities of torrefied...
Mechanical Properties of Polymer Nano-composites
NASA Astrophysics Data System (ADS)
Srivastava, Iti
Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is predicted to out-perform nanotubes. In the last few years, work has been done by researchers to study bulk mechanical properties of graphene platelets in polymer matrix. This thesis reports the extensive improvements observed in fatigue resistance and fracture toughness of epoxy using graphene platelet as a filler in very small quantities. Though significant property improvements like 75% increase in fracture toughness and 25-fold increase in fatigue resistance were observed for graphene epoxy nano-composites, the toughening mechanisms could not be delineated without thermo-mechanical and micro-mechanical tests. In this work, the bulk mechanical properties of graphene platelet-polymer nano-composites are studied and presented and the toughness mechanisms are identified by fractography, differential scanning calorimetry, and Raman spectroscopy; and then compared to predictions by theoretical models. Strong adherence to the matrix was found to be the key mechanism responsible for the effective reinforcement provided by graphene to the polymer. The strong graphene platelet-matrix interface also leads to extensive crack deflection, which was observed to be the major toughening mechanism in the nano-composite. In this thesis, the bulk mechanical property results are complemented by in-depth characterization of filler-polymer interfacial interactions and interphase formation using a battery of techniques including Raman spectroscopy and atomic force microscopy. Theoretical and empirical models proposed by Faber & Evans and Pezzotti were critically studied and applied. Pezzotti's model was found to corroborate well with experimental results and provided insight into enhancement mechanisms and explains the mechanisms underpinning the toughness loss at high graphene platelet weight fraction. The thesis provides conclusive evidences for the superiority of graphene as a filler for reinforcing polymer matrices. In conclusion, the thesis presents a thorough investigation of one- and two-dimensional carbon nanomaterials as fillers for high-performance polymer nano-composites. The extensive studies performed on graphene provide a strong foundation for graphene as a potential candidate for reinforcing polymers. The superior performance of graphene as a filler is attributed to graphene's high specific surface area, two-dimensional sheet geometry, strong filler-matrix adhesion and the outstanding mechanical properties of the sp2 carbon-bonding network in graphene. The improved mechanical properties of the graphene-polymer nano-composites, concurrent with the cost-effective production are both vital requirements of the industry in adoption of high strength-to-weight ratio polymer composites for various structural applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chenhong; University of the Chinese Academy of Sciences, Beijing 100049; Liu, Zhen
2016-08-21
The energy storage performance and charge-discharge properties of Pb{sub 0.98}La{sub 0.02}(Zr{sub 0.35}Sn{sub 0.55}Ti{sub 0.10}){sub 0.995}O{sub 3} (PLZST) antiferroelectric ceramics were investigated through directly measuring the hysteresis loops and pulse discharge current-time curves. The energy density only varies 0.2% per degree from 25 °C to 85 °C, and the energy efficiency maintains at about 90%. Furthermore, an approximate calculating model of maximum power density p{sub max} was established for the discharge process. Under a relatively high working electric field (8.2 kV/mm), this ceramics possess a greatly enhanced power density of 18 MW/cm{sup 3}. Moreover, the pulse power properties did not show degradation until 1500 timesmore » of charge-discharge cycling. The large released energy density, high energy efficiency, good temperature stability, greatly enhanced power density, and excellent fatigue endurance combined together make this PLZST ceramics an ideal candidate for pulse power applications.« less
The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J; Grant, Patrick S
2011-03-01
The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.
NASA Astrophysics Data System (ADS)
Yu, Weiwei; Chen, Xi'an; Mei, Wei; Chen, Chuansheng; Tsang, Yuenhong
2017-04-01
To improve the dispersion of reduced graphene oxide and enhance the photocatalytic property of reduced graphene oxide/Mg-doped ZnO composites (rGMZ), the reduced graphene oxide/WS2/Mg-doped ZnO composites (rGWMZ) were prepared by electrostatic self-assembly and coprecipitation methods. The effects of mass ratio of WS2 nanosheets to reduced graphene oxide (WS2/rGO wt.%) and calcination temperature on the photocatalytic and electrochemical property of rGWMZ composites were investigated. Experimental results showed that the photocatalytic efficiency of rGWMZ composites is three-fold compared with that of rGMZ composites when the WS2/rGO wt.% is 20.8% and calcination temperature is 500 °C, in which the degradation ratio Rhodamin B (RhB) can reach 95% within 15 min under the UV light and 90% within 90 min under simulated solar light. In addition, the rGWMZ show larger capacitance and smaller resistance than rGMZ. The enhancement for photocatalytic activity and electrochemical performance of rGWMZ is ascribed to improving the specific surface area, electrical conductivity and electronic storage capability because of the synergistic effect of rGO and WS2 nanosheets.
Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef
2013-08-01
A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, X.H., E-mail: drhuangxh@hotmail.com; Zhang, P.; Wu, J.B.
Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as themore » core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.« less
The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices
NASA Astrophysics Data System (ADS)
Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J.; Grant, Patrick S.
2011-03-01
The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.
Influence of heat treatment on structural, mechanical and wear properties of crosslinked UHMWPE.
Chiesa, R; Moscatelli, M; Giordano, C; Siccardi, F; Cigada, A
2004-01-01
New crosslinked ultra high molecular weight polyethylenes (UHMWPEs) have recently been developed, characterized and introduced in clinical applications. UHMWPE cross-linking treatments are very promising for reducing osteolysis induced by wear debris. The irradiation type, gamma or beta, the dosage and the thermal treatment performed during or following the irradiation process are all factors affecting polyethylene wear resistance. Thermal stabilization treatments performed after or during the irradiation process at a temperature above melting point (i.e. >130 degrees C) have been proven to effectively remove the free radicals generated during irradiation from UHMWPE, but their effect on the mechanical properties of UHMWPE are not completely clear. In addition to wear rate reduction, maintaining good mechanical properties is fundamental aspect in designing the new generation of crosslinked UHMWPE for artificial load bearing materials, especially considering the application in total knee replacements. In this study, we investigated the influence of different stabilization treatments, performed after gamma irradiation, on structural, wear and mechanical properties of UHMWPE. We performed four different stabilization treatments, with different temperatures and cooling rates, on 100 kGy gamma irradiated UHMWPE. Structural properties of UHMWPE were assessed by differential scanning calorimetry (DSC). To assess the mechanical performance of the materials, uni-axial tensile tests were performed according to the ASTM D638 standard, bi-axial tension performance was evaluated by small punch tests (ASTM F2183-02), toughness resistance was evaluated by the Izod method (ASTM F648), and cold flow resistance was analysed by a dynamic compressive test. Evaluation of wear resistance was by a multidirectional pin-on-disk screening machine. Materials considered were in "aged" and "non-aged" conditions. Results confirmed that cross-linking greatly enhances UHMWPE wear resistance, but introduces some detrimental effects on the mechanical properties. In this study, we found that the negative ef-fects on the mechanical properties of crosslinked UHMWPE can be modulated, to some extent, by choosing a thermal stabiliza-tion treatment at a correct temperature and cooling rate. (Journal of Applied Biomaterials & Biomechanics 2004; 2: 20-8).
Xiao, W; Wang, J N; Wang, J W; Huang, G J; Cheng, L; Jiang, L J; Wang, L G
2016-04-28
The quaternary compound semiconductor Cu2ZnSnS4 (CZTS) is a promising photovoltaic absorber material for thin-film solar cell applications. Density-functional theory calculations have been performed to investigate the structural and electronic properties of the CdS/CZTS heterointerfaces in CZTS-based cells. We find that CdS favors epitaxial growth on the Cu-Zn plane of CZTS along the direction of [100], which can eliminate the effects of the wrong bonds at the interfaces and enhance the energetic barrier for charge carrier recombination across the interfaces with an increased band gap. The band alignment is calculated for the epitaxial CZTS/CdS heterointerface by employing the HSE06 functional and the results show a type-II band alignment with VBO and CBO values of 0.95 eV and -0.05 eV, respectively. Also, the experimental phenomenon of Zn segregation at CdS/CZTS interfaces is corroborated. Zn segregation can enhance the stability of the heterointerfaces, but damage the solar cell performance by decreasing the band gap when the Zn concentration is sufficiently high. We show that besides the defects and undesired phases in CZTS, the heterointerfaces between the absorption layers (CZTS) and the buffer layer (CdS) can also be an important factor that affects the performance of CZTS cells. The present work provides a theoretical base for engineering the heterointerfaces and achieving better performance of CZTS-based solar cells.
Kazemifard, Sholeh; Naji, Leila; Afshar Taromi, Faramarz
2018-04-01
Ternary blend (TB) strategy has been considered as an effective method to enhance the photovoltaic performance of bulk heterojunction (BHJ) polymer solar cells (PSCs). Here, we report on TB-based PSCs containing two donor materials; poly-3-hexylthiophene (P3HT) and Rhodamine B (RhB) laser organic dye, and [6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM) as an acceptor. The influence of RhB weight percentage and injection volume was extensively studied. To gain insight into the influences of RhB on the photovoltaic performance of PSCs, physicochemical and optical properties of TBs were compared with those of BHJ binary blend as a standard. RhB broadened the light absorption properties of the active layer and played a bridging role between P3HT and PC 61 BM. The PCE and short-circuit current density (Jsc) of the optimized TB-based PSCs comprising of 0.5 wt% RhB reached 5% and 12.12 mA/cm 2 , respectively. Compared to BHJ standard cell, the PCE and the generated current was improved by two orders of magnitude due to higher photon harvest of the active layer, cascade energy level structure of TB components and a considerable decrease in the charge carrier recombination. The results suggest that RhB can be considered as an effective material for application in PSCs to attain high photovoltaic performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Špašková, Barbora; Lynn, Nicholas S.; Slabý, Jiří Bocková, Markéta; Homola, Jiří
2017-06-01
There remains a need for the multiplexed detection of biomolecules at extremely low concentrations in fields of medical diagnostics, food safety, and security. Surface plasmon resonance imaging is an established biosensing approach in which the measurement of the intensity of light across a sensor chip is correlated with the amount of target biomolecules captured by the respective areas on the chip. In this work, we present a new approach for this method allowing for enhanced bioanalytical performance via the introduction of nanostructured sensing chip and polarization contrast measurement, which enable the exploitation of both amplitude and phase properties of plasmonic resonances on the nanostructures. Here we will discuss a complex theoretical analysis of the sensor performance, whereby we investigate aspects related to both the optical performance as well as the transport of the analyte molecules to the functionalized surfaces. This analysis accounts for the geometrical parameters of the nanostructured sensing surface, the properties of functional coatings, and parameters related to the detection assay. Based on the results of the theoretical analysis, we fabricated sensing chips comprised of arrays of gold nanoparticles (by electron-beam lithography), which were modified by a biofunctional coating to allow for the selective capturing of the target biomolecules in the regions with high sensitivity. In addition, we developed a compact optical reader with an integrated microfluidic cell, allowing for the measurement from 50 independent sensing channels. The performance of this biosensor is demonstrated through the sensitive detection of short oligonucleotides down to the low picomolar level.
Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran
2017-07-07
High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.
Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao
2018-06-09
"Perfect" and defective models of CL-20/TNT cocrystal explosive were established. Molecular dynamics methods were introduced to determine the structures and predict the comprehensive performances, including stabilities, sensitivity, energy density and mechanical properties, of the different models. The influences of crystal defects on the properties of these explosives were investigated and evaluated. The results show that, compared with the "perfect" model, the rigidity and toughness of defective models are decreased, while the ductility, tenacity and plastic properties are enhanced. The binding energies, interaction energy of the trigger bond, and the cohesive energy density of defective crystals declined, thus implying that stabilities are weakened, the explosive molecule is activated, trigger bond strength is diminished and safety is worsened. Detonation performance showed that, owing to the influence of crystal defects, the density is lessened, detonation pressure and detonation velocity are also declined, i.e., the power of defective explosive is decreased. In a word, the crystal defects may have a favorable effect on the mechanical properties, but have a disadvantageous influence on sensitivity, stability and energy density of CL-20/TNT cocrystal explosive. The results could provide theoretical guidance and practical instructions to estimate the properties of defective crystal models.
Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui
2010-04-01
Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.
NASA Astrophysics Data System (ADS)
Pyo, Jun Beom; Kim, Byoung Soo; Park, Hyunchul; Kim, Tae Ann; Koo, Chong Min; Lee, Jonghwi; Son, Jeong Gon; Lee, Sang-Soo; Park, Jong Hyuk
2015-10-01
Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices.Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03814f
Graphene-based materials: fabrication and application for adsorption in analytical chemistry.
Wang, Xin; Liu, Bo; Lu, Qipeng; Qu, Qishu
2014-10-03
Graphene, a single layer of carbon atoms densely packed into a honeycomb crystal lattice with unique electronic, chemical, and mechanical properties, is the 2D allotrope of carbon. Owing to the remarkable properties, graphene and graphene-based materials are likely to find potential applications as a sorbent in analytical chemistry. The current review focuses predominantly on the recent development of graphene-based materials and demonstrates their enhanced performance in adsorption of organic compounds, metal ions, and solid phase extraction as well as in separation science since mostly 2012. Copyright © 2014 Elsevier B.V. All rights reserved.
Apetrei, Roxana-Mihaela; Carac, Geta; Bahrim, Gabriela; Ramanaviciene, Almira; Ramanavicius, Arunas
2018-06-01
The enhancement of bioelectrochemical properties of microorganism by in situ formation of conducting polymer within the cell structures (e.g. cell wall) was performed. The synthesis of polypyrrole (Ppy) within fungi (Aspergillus niger) cells was achieved. Two different Aspergillus niger strains were selected due to their ability to produce glucose oxidase, which initiated the Ppy formation through products of enzymatic reaction. The evolution of Ppy structural features was investigated by absorption spectroscopy, cyclic voltammetry and Fourier transform infrared spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.
Exploiting interfacial water properties for desalination and purification applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hongwu; Varma, Sameer; Nyman, May Devan
2008-09-01
A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.
Role of Alloying Additions in Glass Formation and Properties of Bulk Metallic Glasses
Chen, Na; Martin, Laura; Luzguine-Luzgin, Dmitri V.; Inoue, Akihisa
2010-01-01
Alloying addition, as a means of improving mechanical properties and saving on costs of materials, has been applied to a broad range of uses and products in the metallurgical fields. In the field of bulk metallic glasses (BMGs), alloying additions have also proven to play effective and important roles in promoting glass formation, enhancing thermal stability and improving plasticity of the materials. Here, we review the work on the role of alloying additions in glass formation and performance improvement of BMGs, with focus on our recent results of alloying additions in Pd-based BMGs. PMID:28883386
Lv, Huan; Wang, Xueqin; Fu, Qiuxia; Si, Yang; Yin, Xia; Li, Xiaoran; Sun, Gang; Yu, Jianyong; Ding, Bin
2017-11-15
Construction ion-exchange membranes with superb biomolecules adsorption and purification performance plays a greatly important role in the fields of biotechnological and biopharmaceutical industry, yet still remains an extremely challenging. Herein, we in situ synthesized the cis-butenedioic anhydride grafted poly(vinyl alcohol) hydrogel nanofibrous membranes (CBA-g-PVA HNFM) by combining electrospinning technique with the grafting-copolymerization crosslinking. Taking advantages of the large specific surface area which could provide numerous sites available for functional groups and biomolecules binding, highly tortuous and interconnected porous channel for biomolecules transfer, and enhanced mechanical strength, the resultant CBA-g-PVA HNFM exhibited relatively high binding amount of 170mgg -1 , rapid equilibrium time of 8h towards the biomolecule template of lysozyme, and the performance could be tailored by regulating the buffer properties and protein concentrations. Additionally, the resultant functional HNFM also possessed superior acid resistance property, excellent reversibility and regeneration performance. More importantly, the obtained CBA-g-PVA HNFM could directly extract lysozyme from fresh chicken eggs with capacity of 125mgg -1 , exhibiting excellent practical application properties. The fabrication of proposed CBA-g-PVA HNFM offers a feasible alternative for construction of ion-exchange chromatograph column for bio-separation and purification engineering. Copyright © 2017 Elsevier Inc. All rights reserved.
Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves.
Meyer, Cora; Stenberg, Lena; Gonzalez-Perez, Francisco; Wrobel, Sandra; Ronchi, Giulia; Udina, Esther; Suganuma, Seigo; Geuna, Stefano; Navarro, Xavier; Dahlin, Lars B; Grothe, Claudia; Haastert-Talini, Kirsten
2016-01-01
Biosynthetic nerve grafts are developed in order to complement or replace autologous nerve grafts for peripheral nerve reconstruction. Artificial nerve guides currently approved for clinical use are not widely applied in reconstructive surgery as they still have limitations especially when it comes to critical distance repair. Here we report a comprehensive analysis of fine-tuned chitosan nerve guides (CNGs) enhanced by introduction of a longitudinal chitosan film to reconstruct critical length 15 mm sciatic nerve defects in adult healthy Wistar or diabetic Goto-Kakizaki rats. Short and long term investigations demonstrated that the CNGs enhanced by the guiding structure of the introduced chitosan film significantly improved functional and morphological results of nerve regeneration in comparison to simple hollow CNGs. Importantly, this was detectable both in healthy and in diabetic rats (short term) and the regeneration outcome almost reached the outcome after autologous nerve grafting (long term). Hollow CNGs provide properties likely leading to a wider clinical acceptance than other artificial nerve guides and their performance can be increased by simple introduction of a chitosan film with the same advantageous properties. Therefore, the chitosan film enhanced CNGs represent a new generation medical device for peripheral nerve reconstruction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.
Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji
2015-05-21
Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.
NASA Astrophysics Data System (ADS)
Philip, Anish; Ankudze, Bright; Pakkanen, Tuula T.
2018-06-01
Large-sized gold nanoparticles (AuNPs) were synthesized with a new polyethylenimine - assisted seed - mediated method for surface-enhanced Raman scattering (SERS) studies. The size and polydispersity of gold nanoparticles are controlled in the growth step with the amounts of polyethylenimine (PEI) and seeds. Influence of three silicon oxide supports having different surface morphologies, namely halloysite (Hal) nanotubes, glass plates and inverse opal films of SiO2, on the performance of gold nanoparticles in Raman scattering of a 4-aminothiophenol (4-ATP) analyte was investigated. Electrostatic interaction between positively charged polyethylenimine-capped AuNPs and negatively charged surfaces of silicon oxide supports was utilized in fabrication of the SERS substrates using deposition and infiltration methods. The Au-photonic crystal of the three SERS substrate groups is the most active one as it showed the highest analytical enhancement factor (AEF) and the lowest detection limit of 1x10-8 M for 4-ATP. Coupling of the optical properties of photonic crystals with the plasmonic properties of AuNPs provided Au-photonic crystals with the high SERS activity. The AuNPs clusters formed both in the photonic crystal and on the glass plate are capable of forming more hot spots as compared to sparsely distributed AuNPs on Hal nanotubes and thereby increasing the SERS enhancement.
Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
Khaled, S M Z; Charpentier, Paul A; Rizkalla, Amin S
2011-02-01
X-ray contrast medium (BaSO(4) or ZrO(2)) used in commercially available PMMA bone cements imparts a detrimental effect on mechanical properties, particularly on flexural strength and fracture toughness. These lower properties facilitate the chance of implant loosening resulting from cement mantle failure. The present study was performed to examine the mechanical properties of a commercially available cement (CMW1) by introducing novel nanostructured titania fibers (n-TiO(2) fibers) into the cement matrix, with the fibers acting as a reinforcing phase. The hydrophilic nature of the n-TiO(2) fibers was modified by using a bifunctional monomer, methacrylic acid. The n-TiO(2) fiber content of the cement was varied from 0 to 2 wt%. Along with the mechanical properties (fracture toughness (K (IC)), flexural strength (FS), and flexural modulus (FM)) of the reinforced cements the following properties were investigated: complex viscosity-versus-time, maximum polymerization temperature (T (max)), dough time (t (dough)), setting time (t (set)), radiopacity, and in vitro biocompatibility. On the basis of the determined mechanical properties, the optimized composition was found at 1 wt% n-TiO(2) fibers, which provided a significant increase in K (IC) (63%), FS (20%), and FM (22%), while retaining the handling properties and in vitro biocompatibility compared to that exhibited by the control cement (CMW1). Moreover, compared to the control cement, there was no significant change in the radiopacity of any of the reinforced cements at p = 0.05. This study demonstrated a novel pathway to augment the mechanical properties of PMMA-based cement by providing an enhanced interfacial interaction and strong adhesion between the functionalized n-TiO( 2) fibers and PMMA matrix, which enhanced the effective load transfer within the cement.
Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement
Etcheverry, Mariana; Barbosa, Silvia E.
2012-01-01
Glass fibers (GF) are the reinforcement agent most used in polypropylene (PP) based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers. PMID:28817025
NASA Astrophysics Data System (ADS)
Yasin, Sohail; Curti, Massimo; Behary, Nemeshwaree; Perwuelz, Anne; Giraud, Stephane; Rovero, Giorgio; Guan, Jinping; Chen, Guoqiang
The n-methylol dimethyl phosphono propionamide (MDPA) flame retardant compounds are predominantly used for cotton fabric treatments with trimethylol melamine (TMM) to obtain better crosslinking and enhanced flame retardant properties. Nevertheless, such treatments are associated with a toxic issue of cancer-causing formaldehyde release. An eco-friendly finishing was used to get formaldehyde-free fixation of flame retardant to the cotton fabric. Citric acid as a crosslinking agent along with the sodium hypophosphite as a catalyst in the treatment was utilized. The process parameters of the treatment were enhanced for optimized flame retardant properties, in addition, low mechanical loss to the fabric by response surface methodology using Box-Behnken statistical design experiment methodology was achieved. The effects of concentrations on the fabric’s properties (flame retardancy and mechanical properties) were evaluated. The regression equations for the prediction of concentrations and mechanical properties of the fabric were also obtained for the eco-friendly treatment. The R-squared values of all the responses were above 0.95 for the reagents used, indicating the degree of relationship between the predicted values by the Box-Behnken design and the actual experimental results. It was also found that the concentration parameters (crosslinking reagents and catalysts) in the treatment formulation have a prime role in the overall performance of flame retardant cotton fabrics.
Chitosan membranes for tissue engineering: comparison of different crosslinkers.
Ruini, F; Tonda-Turo, C; Chiono, V; Ciardelli, G
2015-11-03
Chitosan (CS), a derivative of the naturally occurring biopolymer chitin, is an attractive material for biomedical applications thanks to its biocompatibility, biodegradability, antibacterial properties and ability to enhance cell adhesion and growth compared to other biopolymers. However, the physical and mechanical stability of CS based materials in aqueous solutions is limited and crosslinking agents are required to increase CS performances in a biological environment. In this work, the effect of three highly-biocompatible crosslinkers as genipin (GP), γ-glycidoxypropyltrimethoxysilane (GPTMS), dibasic sodium phosphate (DSP) and a combination of GPTMS and DSP (GPTMS_DSP) on CS physicochemical, thermal, morphological, mechanical properties, swelling and degradation behavior was investigated. Infrared spectroscopy and thermogravimetric analyses confirmed the chemical reaction between CS and the different crosslinkers. CS wettability was enhanced when CS was DSP ionically crosslinked showing contact angle values of about 65° and exhibiting a higher swelling behavior compared to covalently crosslinked films. Moreover, all the crosslinking methods analyzed improved the stability of CS in aqueous media, showed model molecule permeation in time and increased the mechanical properties when compared with non-crosslinked films. The possibility to tailor the final properties of CS scaffolds through crosslinking is a key strategy in applying CS in different biomedical and tissue engineering applications. The obtained results reveal that the optimization of the crosslinking mechanism provides CS membrane properties required in different biomedical applications.
NASA Astrophysics Data System (ADS)
Peyvandi, Amirpasha
Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods of exposure to chloride solutions, pointing at the benefits of nanoplatelets towards enhancement of concrete resistance to chloride ion diffusion. It was also found that the intensity of Thaumasite, a key species marking sulfate attack on cement hydrates, was lowered with the addition of graphite nanoplatelets in concrete exposed to sulfate solutions. Experimental evaluations were conducted on scaled-up production of concrete nanocomposite in precast concrete plants. Full-scale reinforced concrete pipes and beams were produced using concrete nanocomposites. Durability and structural tests indicated that the use of graphite nanoplatelets, alone or in combination with synthetic (PVA) fibers, produced significant gains in the durability characteristics, and also benefited the structural performance of precast reinforced concrete products. The material and scaled-up structural investigations conducted in the project concluded that lower-cost graphite nanomaterials (e.g., graphite nanoplatelets) offer significant potentials as multi-functional additives capable of enhancing the barrier, durability and mechanical performance of concrete materials. The benefits of graphite nanomaterials tend to be more pronounced in higher-performance concrete materials.
Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong
2018-01-28
The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties-including the thermal conductivity and viscosity-of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe's start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.
NASA Astrophysics Data System (ADS)
Deng, Xiaoyong; Zhang, Huixuan; Guo, Ruonan; Cheng, Xiuwen; Cheng, Qingfeng
2018-05-01
In the study, AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets (AgBr-Ti3+/TiO2 NRs/NSs) photoelectrode with enhanced visible light driven photocatalytic (PC) and photoelectrochemical (PECH) performance has been successfully fabricated by hydrothermal reaction, followed by sodium borohydride reduction and then successive ionic layer adsorption and reaction (SILAR) treatment. Afterwards, series of characterizations were conducted to study the physicochemical properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Results indicated that AgBr nano-cakes with sizes varying from 110 to 180 nm were uniformly decorated on the surface of Ti3+/TiO2 NRs/NSs to form AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Moreover, PC activity of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode was measured by degradation of methylene blue (MB). It was found that AgBr-Ti3+/TiO2 NRs/NSs photoelectrode exhibited higher PC activity (98.7%) than that of other samples within 150 min visible light illumination, owing to the enhancement of visible light harvesting and effective separation of photoproduced charges. Thus, AgBr nano-cakes and Ti3+ exerted a huge influence on the PC and PECH properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Furthermore, the possible enhanced visible light driven PC mechanism of AgBr-Ti3+/TiO2 NRs/NSs was proposed and confirmed.
Zhou, Han; Fan, Tongxiang; Ding, Jian; Zhang, Di; Guo, Qixin
2012-03-12
A general method has been developed for the synthesis of various hollow TiO2 micro/nanostructures with bacteria as templates to further study the structural effect on photocatalytic hydrogen evolution properties. TiO2 hollow spheres and hollow tubes, served as prototypes, are obtained via a surface sol-gel process using cocci and bacillus as biotemplates, respectively. The formation mechanisms are based on absorption of metal-alkoxide molecules from solution onto functional cell wall surfaces and subsequent hydrolysis to give nanometer-thick oxide layers. The UV-Vis absorption spectrum shows that the porous TiO2 hollow spheres have enhanced light harvesting property compared with the corresponding solid counterpart. This could be attributed to their unique hollow porous micro/nanostructures with microsized hollow cavities and nanovoids which could bring about multiple scattering and rayleigh scattering of light, respectively. The hollow TiO2 structures exhibit superior photocatalytic hydrogen evolution activities under UV and visible light irradiation in the presence of sacrificial reagents. The hydrogen evolution rate of hollow structures is about 3.6 times higher than the solid counterpart and 1.5 times higher than P25-TiO2. This work demonstrates the structural effect on enhancing the photocatalytic hydrogen evolution performance which would pave a new pathway to tailor and improve catalytic properties over a broad range.
John Day River Subbasin Fish Habitat Enhancement Project, 2005-2006 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Russ M.; Alley, Pamela D.; Delano, Kenneth H.
2006-03-01
Work undertaken in 2005 included: (1) Four new fence projects were completed thereby protecting 7.55 miles of stream with 9.1 miles of new riparian fence (2) Fence removal 1.7 miles of barbed wire. (3) Completed three spring developments (repair work on two BLM springs on Cottonwood Creek (Dayville), 1 solar on Rock Creek/ Collins property). (4) Dredge tail leveling completed on 0.9 miles of the Middle Fork of the John Day River (5) Cut, hauled and placed 30 junipers on Indian Creek/Kuhl property for bank stability. (6) Collected and planted 1500 willow cuttings on Mountain Creek/Jones property. (7) Conducted steelheadmore » redd counts on Lake Cr./Hoover property and Cottonwood Cr./Mascall properties (8) Seeded 200 lbs of native grass seed on projects where the sites were disturbed by fence construction activities. (9) Maintenance of all active project fences (72.74 miles), watergaps (60), spring developments (30) were checked and repairs performed. (10) Since the initiation of the Fish Habitat Program in 1984 we have installed 156.06 miles of riparian fence on leased property protecting 88.34 miles of anadromous fish bearing stream. With the addition of the Restoration and Enhancement Projects from 1996-2001, where the landowner received the materials, built and maintained the project we have a total of 230.92 miles of fence protecting 144.7 miles of stream and 3285 acres of riparian habitat.« less
Zhan, Jianchao; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei
2016-01-01
Electrospun gelatin(Gel) nanofibers scaffold has such defects as poor mechanical property and quick degradation due to high solubility. In this study, the in situ cross-linked electrospinning technique was used for the production of gelatin nanofibers. Deionized water was chosen as the spinning solvent and graphite oxide (GO) was chosen as the enhancer. The morphological structure, porosity, thermal property, moisture absorption, and moisture retention performance, hydrolysis resistance, mechanical property, and biocompatibility of the produced nanofibers were investigated. Compared with in situ cross-linked gelatin nanofibers scaffold, in situ cross-linked Gel-GO nanofibers scaffold has the following features: (1) the hydrophilicity, moisture absorption, and moisture retention performance slightly reduce, while the hydrolysis resistance is improved; (2) the breaking strength, breaking elongation, and Young's modulus are significantly improved; (3) the porosity slightly reduces while the biocompatibility considerably increases. The in situ cross-linked Gel-GO nanofibers scaffold is likely to be applied in such fields as drug delivery and scaffold for skin tissue engineering.
Sohn, So Hyeong; Han, Noh Soo; Park, Yong Jin; Park, Seung Min; An, Hee Sang; Kim, Dong-Wook; Min, Byoung Koun; Song, Jae Kyu
2014-12-28
The photophysical properties of CuInxGa1-xS2 (CIGS) thin films, prepared by solution-based coating methods, are investigated to understand the correlation between the optical properties of these films and the electrical characteristics of solar cells fabricated using these films. Photophysical properties, such as the depth-dependent band gap and carrier lifetime, turn out to be at play in determining the energy conversion efficiency of solar cells. A double grading of the band gap in CIGS films enhances solar cell efficiency, even when defect states disturb carrier collection by non-radiative decay. The combinational stacking of different density films leads to improved solar cell performance as well as efficient fabrication because a graded band gap and reduced shunt current increase carrier collection efficiency. The photodynamics of minority-carriers suggests that the suppression of defect states is a primary area of improvement in CIGS thin films prepared by solution-based methods.
Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays
NASA Astrophysics Data System (ADS)
Lou, Zheng; Yang, Xiaoli; Chen, Haoran; Liang, Zhongzhu
2018-02-01
A ZnO-SnO2 nanowires (NWs) array, as a metal oxide semiconductor, was successfully synthesized by a near-field electrospinning method for the applications as high performance ultraviolet photodetectors. Ultraviolet photodetectors based on a single nanowire exhibited excellent photoresponse properties to 300 nm ultraviolet light illumination including ultrahigh I on/I off ratios (up to 103), good stability and reproducibility because of the separation between photo-generated electron-hole pairs. Moreover, the NWs array shows an enhanced photosensing performance. Flexible photodetectors on the PI substrates with similar tendency properties were also fabricated. In addition, under various bending curvatures and cycles, the as-fabricated flexible photodetectors revealed mechanical flexibility and good stable electrical properties, showing that they have the potential for applications in future flexible photoelectron devices. Project supported by the National Science Foundation of China (No. 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine and Physics, Chinese Academy of Sciences.
Effects of rare earth oxide additive on surface and tribological properties of polyimide composites
NASA Astrophysics Data System (ADS)
Pan, Zihe; Wang, Tianchang; Chen, Li; Idziak, Stefan; Huang, Zhaohui; Zhao, Boxin
2017-09-01
Rare earth oxide La2O3 microparticles-reinforced polyimide (PI) composites (La-PI-Cs) were fabricated, aiming to improve the tribological property of PI. Surface roughness, surface composition, bulk structure, friction force (Ff) and coefficient of friction (COF) at macro/micro preload, and anti-wear performances of La-PI-Cs were studied and compared with neat PI. With La2O3 microparticles, La-PI-Cs showed larger surface roughness, lower surface energy, and higher hydrophobicity than neat PI, and displayed beneficial layered structure different from the compact structure of PI. Owing to these advantages, La-PI-Cs were found to show a 70% reduction in Ff and COF, and a 30% reduction in wear rate, indicating significantly lowered friction and enhanced anti-wear properties after adding La2O3 microparticles. Our research findings demonstrated an easy and low cost method to fabricate polymer composites with low friction and high wear resistance, and help meet the demanding of polymer composites with high tribological performances in broaden applications.
NASA Astrophysics Data System (ADS)
Lee, Young Tack; Hwang, Do Kyung; Im, Seongil
2015-11-01
Two-dimensional (2D) van der Waals (vdWs) materials are a class of new materials due to their unique physical properties. Of the many 2D vdWs materials, molybdenum disulfide (MoS2) is a representative n-type transition-metal dichalcogenide (TMD) semiconductor. Here, we report on a high-performance MoS2 nanosheet-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. In order to enhance the ohmic contact property, we use graphene flakes as source/drain electrodes prepared by using the direct imprinting method with an elastomer stamp. The MoS2 ferroelectric field-effect transistor (FeFET) shows the highest linear electron mobility value of 175 cm2/Vs with a high on/off current ratio of more than 107, and a very clear memory window of more than 15 V. The program and erase dynamics and the static retention properties are also well demonstrated.
Laser-assisted manufacturing of super-insulation materials
NASA Astrophysics Data System (ADS)
Wang, Zhen; Zhang, Tao; Park, Byung Kyu; Lee, Woo Il; Hwang, David
2017-02-01
Being lightweight materials with good mechanical and thermal properties, hollow glass micro-particles (HGMPs) have been widely studied for multiple applications. In this study, it is shown that by using reduced binder fraction diluted in solvent, enables minimal contacts among the HGMPs assisted by a natural capillary trend, as confirmed by optical and electron microscope imaging. Such material architecture fabricated in a composite level proves to have enhanced thermal insulation performance through quantitative thermal conductivity measurement. Mechanical strength has also been evaluated in terms of particle-binder bonding by tensile test via in-situ microscope inspection. Effect of laser treatment was examined for further improvement of thermal and mechanical properties by selective binder removal and efficient redistribution of remaining binder components. The fabricated composite materials have potential applications to building insulation materials for their scalable manufacturing nature, improved thermal insulation performance and reasonable mechanical strength. Further studies are needed to understand mechanical and thermal properties of the resulting composites, and key fabrication mechanisms involved with laser treatment of complex multi-component and multi-phase systems.
NASA Astrophysics Data System (ADS)
Muthalif, Mohammed Panthakkal Abdul; Lee, Young-Seok; Sunesh, Chozhidakath Damodharan; Kim, Hee-Je; Choe, Youngson
2017-02-01
In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including JSC = 9.40 mA cm-2, VOC = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, JSC = 7.12 mA cm-2, VOC = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV-vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.
NASA Astrophysics Data System (ADS)
Thirugnanam, Lavanya; Sundara, Ramaprabhu
2018-06-01
A combination of favorable composition and optimized anatase/rutile mixed-phase TiO2 (MPTNF)/Hydrogen exfoliated graphene (HEG) composite nanofibers (MPTNF/HEG) and anatase/rutile mixed-phase TiO2/reduced graphene oxide (rGO) composite nanofibers (MPTNF/rGO) have been reported to enhance the electrochemical properties for supercapacitor applications. These composite nanofibers have been synthesized by an efficient route of electrospinning together with the help of easy chemical methods. Both the composites exhibit good charge storage capability with enhanced pseudocapacitance and electric double-layer capacitance (EDLC) as confirmed by cyclic voltammetry studies. MPTNF/HEG composite showed maximum specific capacitance of 210.5 F/g at the current density of 1 A/g, which was mainly due to its availability of the more active sites for ions adsorption on a few layers of graphene wrapped TiO2 nanofiber surface. The synergistic effect of anatase/rutile mixed phase with one dimensional nanostructure and the electronic interaction between TiO2 and few layer graphene provided the subsequent improvement of ion adsorption capacity. Also exhibit excellent electrochemical performance to improve the capacitive properties of TiO2 electrode materials which is required for the development of flexible electrodes in energy storage devices and open up new opportunities for high performance supercapacitors.
Yoon, Seok Min; Lou, Sylvia J; Loser, Stephen; Smith, Jeremy; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J; Marks, Tobin
2012-12-12
Zinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection. Here we report that inserting nanoscopic copper hexadecafluorophthalocyanine (F(16)CuPc) layers, as thin films or nanowires, between the ITO anode and the ZnO IFL increases OPV performance by enhancing interfacial electron transport. In inverted P3HT:PC(61)BM cells, insertion of F(16)CuPc nanowires increases the short circuit current density (J(sc)) versus cells with only ZnO layers, yielding an enhanced power conversion efficiency (PCE) of ∼3.6% vs ∼3.0% for a control without the nanowire layer. Similar effects are observed for inverted PTB7:PC(71)BM cells where the PCE is increased from 8.1% to 8.6%. X-ray scattering, optical, and electrical measurements indicate that the performance enhancement is ascribable to both favorable alignment of the nanowire π-π stacking axes parallel to the photocurrent flow and to the increased interfacial layer-active layer contact area. These findings identify a promising strategy to enhance inverted OPV performance by inserting anisotropic nanostructures with π-π stacking aligned in the photocurrent flow direction.
Jin, Rencheng; Zhai, Qinghe; Wang, Qingyao
2017-10-09
Cobalt sulfide and molybdenum sulfide, with high theoretical capacities, have been considered as one of most promising anode materials for lithium-ion batteries (LIBs). However, the poor cyclability and low rate performances originating from the large volume expansion and poor electrical conductivity extremely inhibit their practical application. Here, the electrochemical performances are effectively improved by growing amorphous cobalt sulfide and molybdenum sulfide onto amorphous carbon-coated multiwalled carbon nanotubes (CNTs@C@CoS 2 and CNTs@C@MoS 2 ). The CNTs@C@CoS 2 presents a high reversible specific capacity of 1252 mAh g -1 at 0.2 Ag -1 , excellent rate performance of 672 mAh g -1 (5 Ag -1 ), and enhanced cycle life of 598 mAh g -1 after 500 cycles at 2 Ag -1 . For CNTs@C@MoS 2 , it exhibits a specific capacity of 1395 mAh g -1 , superior rate performance of 727 mAh g -1 at 5 Ag -1 , and long cycle stability (796 mAh g -1 after 500 cycles at 2 Ag -1 ). The enhanced electrochemical properties of the electrodes are probably ascribed to their amorphous nature, the combination of CNTs@C that adhered and hindered the agglomeration of CoS 2 and MoS 2 as well as the enhanced electronic conductivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang
2018-07-01
Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the E g 2 Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00 l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.
NASA Astrophysics Data System (ADS)
Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang
2018-04-01
Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the Eg 2Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.
NASA Astrophysics Data System (ADS)
He, Qiuchen; Zhou, Feng; Zhan, Su; Huang, Naibao; Tian, Yu
2018-02-01
The oxygen reduction reaction (ORR) is a crux step in the fuel cells, which is limited to the catalysts. Low-cost nonmetal inorganic catalysts were considered to be the best prospect that may replace platinum. Graphitic carbon nitride (g-C3N4), which has wide prospect in photocatalysis, was found with the activity of ORR. In calculation work, we used the elements of the VIA family (O, S, and Se) to dope g-C3N4 and investigated the electronic properties and the ability of O2 adsorption in details based on the first principle. The result suggested that the performance of ORR of g-C3N4 may be enhanced by O doping, which can uplift the Fermi level of g-C3N4 and weaken the OH- absorption ability to enhance the O2 adsorption ability. After that, we synthetised O/g-C3N4 and S/g-C3N4 to test their ORR performance. According to the result, O doping can significantly enhance the performance of ORR of g-C3N4 which correspond with the calculation result. Then, the photo-assistant method was used to further enhance the ORR of g-C3N4 which was caused by the transition of the photo-induced electrons of g-C3N4 from VB to CB.
Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO₂ Separation: A Review.
Janakiram, Saravanan; Ahmadi, Mahdi; Dai, Zhongde; Ansaloni, Luca; Deng, Liyuan
2018-05-14
Membrane technology has the potential to be an eco-friendly and energy-saving solution for the separation of CO₂ from different gaseous streams due to the lower cost and the superior manufacturing features. However, the performances of membranes made of conventional polymers are limited by the trade-off between the permeability and selectivity. Improving the membrane performance through the addition of nanofillers within the polymer matrix offers a promising strategy to achieve superior separation performance. This review aims at providing a complete overview of the recent advances in nanocomposite membranes for enhanced CO₂ separation. Nanofillers of various dimensions and properties are categorized and effects of nature and morphology of the 0D to 2D nanofillers in the corresponding nanocomposite membranes of different polymeric matrixes are discussed with regard to the CO₂ permeation properties. Moreover, a comprehensive summary of the performance data of various nanocomposite membranes is presented. Finally, the advantages and challenges of various nanocomposite membranes are discussed and the future research and development opportunities are proposed.
Near-infrared fluorescence image quality test methods for standardized performance evaluation
NASA Astrophysics Data System (ADS)
Kanniyappan, Udayakumar; Wang, Bohan; Yang, Charles; Ghassemi, Pejhman; Wang, Quanzeng; Chen, Yu; Pfefer, Joshua
2017-03-01
Near-infrared fluorescence (NIRF) imaging has gained much attention as a clinical method for enhancing visualization of cancers, perfusion and biological structures in surgical applications where a fluorescent dye is monitored by an imaging system. In order to address the emerging need for standardization of this innovative technology, it is necessary to develop and validate test methods suitable for objective, quantitative assessment of device performance. Towards this goal, we develop target-based test methods and investigate best practices for key NIRF imaging system performance characteristics including spatial resolution, depth of field and sensitivity. Characterization of fluorescence properties was performed by generating excitation-emission matrix properties of indocyanine green and quantum dots in biological solutions and matrix materials. A turbid, fluorophore-doped target was used, along with a resolution target for assessing image sharpness. Multi-well plates filled with either liquid or solid targets were generated to explore best practices for evaluating detection sensitivity. Overall, our results demonstrate the utility of objective, quantitative, target-based testing approaches as well as the need to consider a wide range of factors in establishing standardized approaches for NIRF imaging system performance.
NASA Astrophysics Data System (ADS)
Zeng, Yu; Chen, XiFang; Yi, Zao; Yi, Yougen; Xu, Xibin
2018-05-01
The pyramidal silicon substrate is formed by wet etching, then ZnO nanorods are grown on the surface of the pyramidal microstructure by a hydrothermal method to form a moth-eye composite heterostructure. The composite heterostructure of this material determines its excellent anti-reflection properties and ability to absorb light from all angles. In addition, due to the effective heterojunction binding area, the composite micro/nano structure has excellent photoelectric conversion performance. Its surface structure and the large specific surface area gives the material super hydrophilicity, excellent gas sensing characteristic, and photocatalytic properties. Based on the above characteristics, the micro/nano heterostructure can be used in solar cells, sensors, light-emitting devices, and photocatalytic fields.
Tuning relaxation dynamics and mechanical properties of polymer films of identical thickness
NASA Astrophysics Data System (ADS)
Kchaou, Marwa; Alcouffe, Pierre; Chandran, Sivasurender; Cassagnau, Philippe; Reiter, Günter; Al Akhrass, Samer
2018-03-01
Using dewetting as a characterization tool, we demonstrate that physical properties of thin polymer films can be regulated and tuned by employing variable processing conditions. For different molecular weights, the variable behavior of polystyrene films of identical thickness, prepared along systematically altered pathways, became predictable through a single parameter P , defined as the ratio of time required over time available for the equilibration of polymers. In particular, preparation-induced residual stresses, the corresponding relaxation times as well as the rupture probability of such films (of identical thickness) varied by orders of magnitude following scaling relations with P . Our experimental findings suggest that we can predictably enhance properties and hence maximize the performance of thin polymer films via appropriately chosen processing conditions.
NASA Astrophysics Data System (ADS)
Chang, Yunfei; Watson, Beecher; Fanton, Mark; Meyer, Richard J.; Messing, Gary L.
2017-12-01
In this work, both crystallographic texture and doping engineering strategies were integrated to develop relaxor-PbTiO3 (PT) based ternary ferroelectric ceramics with enhanced texture evolution and superior electromechanical properties. CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) piezoelectric ceramics with [001]c texture fraction ≥97% were synthesized by templated grain growth. The addition of CuO significantly promotes densification and oriented grain growth in the templated ceramics, leading to full texture development at dramatically reduced times and temperatures. Moreover, the CuO dopant remarkably enhances the piezoelectric properties of the textured ceramics while maintaining high phase transition temperatures and large coercive fields. Doping 0.125 wt. % CuO yields the electromechanical properties of d33 = 927 pC/N, d33* = 1510 pm/V, g33 = 43.2 × 10-3 Vm/N, Kp = 0.87, Ec=8.8 kV/cm, and tan δ = 1.3%, which are the best values reported so far in PIN-PMN-PT based ceramics. The high piezoelectric coefficient is mainly from the reversible piezoelectric response, with the irreversible contribution being on the order of 13.1%. We believe that this work not only facilitates closing the performance gap between ceramics and single crystals but also can expand relaxor-PT based piezoelectric application fields.
Novel optical properties of CdS:Zn rocksalt system (a theoretical study)
NASA Astrophysics Data System (ADS)
Khan, M. Junaid Iqbal; Nauman Usmani, M.; Kanwal, Zarfishan
2017-11-01
In present computational study, we focus on optical properties of Zn doped CdS for 1 × 1 × 2 and 2 × 2 × 2 supercell configurations. Cd atoms are substituted with Zn atoms and results for optical properties demonstrate different trends due to interaction of Zn with S atoms. The study has been performed by PBE-GGA approach using Wien2K within framework of DFT. TDOS and PDOS represent that S-3p states are responsible for conduction. For large supercell configuration, a tremendous change in optical properties has been observed due to different bonding. Optical absorption tends to increase in visible range which supports candidacy of Zn doped CdS for enhanced optoelectronic and nanotechnology applications.
Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites
NASA Technical Reports Server (NTRS)
Sun, Keun J.; Wincheski, Russell A.; Park, Cheol
2008-01-01
Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.
Designing with non-linear viscoelastic fluids
NASA Astrophysics Data System (ADS)
Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy
2017-11-01
Material design is typically limited to hard materials or simple fluids; however, design with more complex materials can provide ways to enhance performance. Using the Criminale-Ericksen-Filbey (CEF) constitutive model in the thin film lubrication limit, we derive a modified Reynolds Equation (based on asymptotic analysis) that includes shear thinning, first normal stress, and terminal regime viscoelastic effects. This allows for designing non-linear viscoelastic fluids in thin-film creeping flow scenarios, i.e. optimizing the shape of rheological material properties to achieve different design objectives. We solve the modified Reynolds equation using the pseudo-spectral method, and describe a case study in full-film lubricated sliding where optimal fluid properties are identified. These material-agnostic property targets can then guide formulation of complex fluids which may use polymeric, colloidal, or other creative approaches to achieve the desired non-Newtonian properties.
Bai, Wangfeng; Zheng, Peng; Wen, Fei; Zhang, Jingji; Chen, Daqin; Zhai, Jiwei; Ji, Zhenguo
2017-11-14
The development of (Bi 0.5 Na 0.5 )TiO 3 -based solid solutions with both high depolarization temperature T d and excellent piezoelectric and electromechanical properties for practical application is intractable because improved thermal stability is usually accompanied by a deterioration in piezoelectric and electromechanical performance. Herein, we report a 0-3 type 0.93(Bi 0.5 Na 0.5 )TiO 3 -0.07BaTiO 3 : 30 mol%ZnO composite (BNT-7BT : 0.3ZnO), in which the ZnO nanoparticles exist in two forms, to resolve the abovementioned long-standing obstacle. In this composite, Zn ions fill the boundaries of BNT-7BT grains, and residual Zn ions diffuse into the BNT-7BT lattice, as confirmed by XRD, Raman spectroscopy, and microstructure analysis. The BNT-7BT composite ceramics with a 0-3 type connectivity exhibited enhanced frequency-dependent electromechanical properties, fatigue characteristics, and thermal stabilities. More importantly, low poling field-driven large piezoelectric properties were observed for the composite ceramics as compared to the case of the pure BNT-7BT solid solution. A mechanism related to the ZnO-driven phase transition from the rhombohedral to tetragonal phase and built-in electric field to partially compensate the depolarization field was proposed to explain the achieved outstanding piezoelectric performance. This is the first time that the thermal stability, electromechanical behavior, and low poling field-driven high piezoelectric performance of BNT-based ceramics have been simultaneously optimized. Thus, our study provides a referential methodology to achieve novel piezoceramics with excellent piezoelectricity by composite engineering and opens up a new development window for the utilization of conventional BNT-based and other lead-free ceramics in practical applications.