Sample records for performance equations final

  1. Pattern of mathematic representation ability in magnetic electricity problem

    NASA Astrophysics Data System (ADS)

    Hau, R. R. H.; Marwoto, P.; Putra, N. M. D.

    2018-03-01

    The mathematic representation ability in solving magnetic electricity problem gives information about the way students understand magnetic electricity. Students have varied mathematic representation pattern ability in solving magnetic electricity problem. This study aims to determine the pattern of students' mathematic representation ability in solving magnet electrical problems.The research method used is qualitative. The subject of this study is the fourth semester students of UNNES Physics Education Study Program. The data collection is done by giving a description test that refers to the test of mathematical representation ability and interview about field line topic and Gauss law. The result of data analysis of student's mathematical representation ability in solving magnet electric problem is categorized into high, medium and low category. The ability of mathematical representations in the high category tends to use a pattern of making known and asked symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representation in the medium category tends to use several patterns of writing the known symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representations in the low category tends to use several patterns of making known symbols, writing equations, substituting quantities into equations, performing calculations and final answer.

  2. An Estimation Theory for Differential Equations and other Problems, with Applications.

    DTIC Science & Technology

    1981-11-01

    order differential -8- operators and M-operators, in particular, the Perron - Frobenius theory and generalizations. Convergence theory for iterative... THEORY FOR DIFFERENTIAL 0EQUATIONS AND OTHER FROBLEMS, WITH APPLICATIONS 0 ,Final Technical Report by Johann Schr6der November, 1981 EUROPEAN RESEARCH...COVERED An estimation theory for differential equations Final Report and other problrms, with app)lications A981 6. PERFORMING ORG. RN,-ORT NUMfFR 7

  3. Trichotomous goals of elementary school students learning English as a foreign language: a structural equation model.

    PubMed

    He, Tung-Hsien; Chang, Shan-Mao; Chen, Shu-Hui Eileen; Gou, Wen Johnny

    2012-02-01

    This study applied structural equation modeling (SEM) techniques to define the relations among trichotomous goals (mastery goals, performance-approach goals, and performance-avoidance goals), self-efficacy, use of metacognitive self-regulation strategies, positive belief in seeking help, and help-avoidance behavior. Elementary school students (N = 105), who were learning English as a foreign language, were surveyed using five self-report scales. The structural equation model showed that self-efficacy led to the adoption of mastery goals but discouraged the adoption of performance-approach goals and performance-avoidance goals. Furthermore, mastery goals increased the use of metacognitive self-regulation strategies, whereas performance-approach goals and performance-avoidance goals reduced their use. Mastery goals encouraged positive belief in help-seeking, but performance-avoidance goals decreased such belief. Finally, performance-avoidance goals directly led to help-avoidance behavior, whereas positive belief assumed a critical role in reducing help-avoidance. The established structural equation model illuminated the potential causal relations among these variables for the young learners in this study.

  4. Computer modeling of heat pipe performance

    NASA Technical Reports Server (NTRS)

    Peterson, G. P.

    1983-01-01

    A parametric study of the defining equations which govern the steady state operational characteristics of the Grumman monogroove dual passage heat pipe is presented. These defining equations are combined to develop a mathematical model which describes and predicts the operational and performance capabilities of a specific heat pipe given the necessary physical characteristics and working fluid. Included is a brief review of the current literature, a discussion of the governing equations, and a description of both the mathematical and computer model. Final results of preliminary test runs of the model are presented and compared with experimental tests on actual prototypes.

  5. A Structural Equation Model for Predicting Business Student Performance

    ERIC Educational Resources Information Center

    Pomykalski, James J.; Dion, Paul; Brock, James L.

    2008-01-01

    In this study, the authors developed a structural equation model that accounted for 79% of the variability of a student's final grade point average by using a sample size of 147 students. The model is based on student grades in 4 foundational business courses: introduction to business, macroeconomics, statistics, and using databases. Educators and…

  6. Numerical conformal mapping: Methods, applications, and theory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLillo, T.K.

    1995-11-01

    Section 1 of this report, briefly summarizes research performed under this grant during the first two years 1992 to 1994 and makes some overall remarks. Section 2, summarizes research performed during the final year from September, 1994 through May 31, 1995, more fully. The main achievement of the last period has been the application of numerical conformed mapping to the solution of the biharmonic equation. Section 3, summarizes travel, meetings, and other expenses supported by this grant during the final year.

  7. Equivalence of equations describing trace element distribution during equilibrium partial melting

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Drake, M. J.

    1976-01-01

    It is shown that four equations used for calculating the evolution of trace-element abundances during equilibrium partial melting are mathematically equivalent. The equations include those of Hertogen and Gijbels (1976), Shaw (1970), Schilling (1971), and O'Nions and Clarke (1972). The general form to which all these equations reduce is presented, and an analysis is performed to demonstrate their mathematical equivalence. It is noted that the utility of the general equation flows from the nature of equilibrium (i.e., the final state is independent of the path by which that state is attained).

  8. An Alternative to the Stay/Switch Equation Assessed When Using a Changeover-Delay

    PubMed Central

    MacDonall, James S.

    2015-01-01

    An alternative to the generalized matching equation for understanding concurrent performances is the stay/switch model. For the stay/switch model, the important events are the contingencies and behaviors at each alternative. The current experiment compares the descriptions by two stay/switch equations, the original, empirically derived stay/switch equation and a more theoretically derived equation based on ratios of stay to switch responses matching ratios of stay to switch reinforcers. The present experiment compared descriptions by the original stay/switch equation when using and not using a changeover delay. It also compared descriptions by the more theoretical equation with and without a changeover delay. Finally, it compared descriptions of the concurrent performances by these two equations. Rats were trained in 15 conditions on identical concurrent random-interval schedules in each component of a multiple schedule. A COD operated in only one component. There were no consistent differences in the variance accounted for by each equation of concurrent performances whether or not a COD was used. The simpler equation found greater sensitivity to stay than to switch reinforcers. It also found a COD eliminated the influence of switch reinforcers. Because estimates of parameters were more meaningful when using the more theoretical stay/switch equation it is preferred. PMID:26299548

  9. An alternative to the stay/switch equation assessed when using a changeover-delay.

    PubMed

    MacDonall, James S

    2015-11-01

    An alternative to the generalized matching equation for understanding concurrent performances is the stay/switch model. For the stay/switch model, the important events are the contingencies and behaviors at each alternative. The current experiment compares the descriptions by two stay/switch equations, the original, empirically derived stay/switch equation and a more theoretically derived equation based on ratios of stay to switch responses matching ratios of stay to switch reinforcers. The present experiment compared descriptions by the original stay/switch equation when using and not using a changeover delay. It also compared descriptions by the more theoretical equation with and without a changeover delay. Finally, it compared descriptions of the concurrent performances by these two equations. Rats were trained in 15 conditions on identical concurrent random-interval schedules in each component of a multiple schedule. A COD operated in only one component. There were no consistent differences in the variance accounted for by each equation of concurrent performances whether or not a COD was used. The simpler equation found greater sensitivity to stay than to switch reinforcers. It also found a COD eliminated the influence of switch reinforcers. Because estimates of parameters were more meaningful when using the more theoretical stay/switch equation it is preferred. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. On a modified form of navier-stokes equations for three-dimensional flows.

    PubMed

    Venetis, J

    2015-01-01

    A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces.

  11. On a Modified Form of Navier-Stokes Equations for Three-Dimensional Flows

    PubMed Central

    Venetis, J.

    2015-01-01

    A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces. PMID:25918743

  12. Steady and unsteady three-dimensional transonic flow computations by integral equation method

    NASA Technical Reports Server (NTRS)

    Hu, Hong

    1994-01-01

    This is the final technical report of the research performed under the grant: NAG1-1170, from the National Aeronautics and Space Administration. The report consists of three parts. The first part presents the work on unsteady flows around a zero-thickness wing. The second part presents the work on steady flows around non-zero thickness wings. The third part presents the massively parallel processing implementation and performance analysis of integral equation computations. At the end of the report, publications resulting from this grant are listed and attached.

  13. Analysis of Large Quasistatic Deformations of Inelastic Solids by a New Stress Based Finite Element Method. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Reed, Kenneth W.

    1992-01-01

    A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.

  14. Solving the interval type-2 fuzzy polynomial equation using the ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim

    2014-07-01

    Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.

  15. Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. III. Theory for the multilevel atom

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2016-06-01

    Context. We discuss the case of lines formed by scattering, which comprises both coherent and incoherent scattering. Both processes contribute to form the line profiles in the so-called second solar spectrum, which is the spectrum of the linear polarization of such lines observed close to the solar limb. However, most of the lines cannot be simply modeled with a two-level or two-term atom model, and we present a generalized formalism for this purpose. Aims: The aim is to obtain a formalism that is able to describe scattering in line centers (resonant scattering or incoherent scattering) and in far wings (Rayleigh/Raman scattering or coherent scattering) for a multilevel and multiline atom. Methods: The method is designed to overcome the Markov approximation, which is often performed in the atom-photon interaction description. The method was already presented in the two first papers of this series, but the final equations of those papers were for a two-level atom. Results: We present here the final equations generalized for the multilevel and multiline atom. We describe the main steps of the theoretical development, and, in particular, how we performed the series development to overcome the Markov approximation. Conclusions: The statistical equilibrium equations for the atomic density matrix and the radiative transfer equation coefficients are obtained with line profiles. The Doppler redistribution is also taken into account because we show that the statistical equilibrium equations must be solved for each atomic velocity class.

  16. Methods of Attenuation Correction for Dual-Wavelength and Dual-Polarization Weather Radar Data

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Liao, L.

    2007-01-01

    In writing the integral equations for the median mass diameter and number concentration, or comparable parameters of the raindrop size distribution, it is apparent that the forms of the equations for dual-polarization and dual-wavelength radar data are identical when attenuation effects are included. The differential backscattering and extinction coefficients appear in both sets of equations: for the dual-polarization equations, the differences are taken with respect to polarization at a fixed frequency while for the dual-wavelength equations, the differences are taken with respect to frequency at a fixed polarization. An alternative to the integral equation formulation is that based on the k-Z (attenuation coefficient-radar reflectivity factor) parameterization. This-technique was originally developed for attenuating single-wavelength radars, a variation of which has been applied to the TRMM Precipitation Radar data (PR). Extensions of this method have also been applied to dual-polarization data. In fact, it is not difficult to show that nearly identical equations are applicable as well to dualwavelength radar data. In this case, the equations for median mass diameter and number concentration take the form of coupled, but non-integral equations. Differences between this and the integral equation formulation are a consequence of the different ways in which attenuation correction is performed under the two formulations. For both techniques, the equations can be solved either forward from the radar outward or backward from the final range gate toward the radar. Although the forward-going solutions tend to be unstable as the attenuation out to the range of interest becomes large in some sense, an independent estimate of path attenuation is not required. This is analogous to the case of an attenuating single-wavelength radar where the forward solution to the Hitschfeld-Bordan equation becomes unstable as the attenuation increases. To circumvent this problem, the equations can be expressed in the form of a final-value problem so that the recursion begins at the far range gate and proceeds inward towards the radar. Solving the problem in this way traditionally requires estimates of path attenuation to the final gate: in the case of orthogonal linear polarizations, the attenuations at horizontal and vertical polarizations (same frequency) are required while in the dual-wavelength case, attenuations at the two frequencies (same polarization) are required.

  17. Deriving the Generalized Power and Efficiency Equations for Jet Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Lee, Hsing-Juin; Chang, Chih-Luong

    The kinetic power and efficiency equations for general jet propulsion systems are classically given in a much cursory, incomplete, and ununified format. This situation prohibits the propulsion designer from seeing the panorama of interrelated propulsion parameters and effects. And in some cases, it may lead to an energy-inefficient propulsion system design, or induce significant offset in propulsion performance as demonstrated in this study. Thus, herein we attempt to clarify some related concepts and to rigorously derive the associated generalized equations with a complete spectrum of physical parameters to be manipulated in quest of better performance. By a highly efficient interweaved transport scheme, we have derived the following equations for general jet propulsion systems: i.e., generalized total kinetic power, generalized kinetic power delivered to the jet propulsion system, generalized thrust power, generalized available propulsion power, and relevant generalized propulsive, thermal, and overall efficiency equations. Further, the variants of these equations under special conditions are also considered. For taking advantage of the above propulsion theories, we also illustrate some novel propulsion strategies in the final discussion, such as the dive-before-climb launch of rocket from highland mountain on eastbound rail, with perhaps minisatellites as the payloads.

  18. Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes

    NASA Technical Reports Server (NTRS)

    Marx, Yves P.

    1990-01-01

    An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.

  19. Application of the enhanced homotopy perturbation method to solve the fractional-order Bagley-Torvik differential equation

    NASA Astrophysics Data System (ADS)

    Zolfaghari, M.; Ghaderi, R.; Sheikhol Eslami, A.; Ranjbar, A.; Hosseinnia, S. H.; Momani, S.; Sadati, J.

    2009-10-01

    The enhanced homotopy perturbation method (EHPM) is applied for finding improved approximate solutions of the well-known Bagley-Torvik equation for three different cases. The main characteristic of the EHPM is using a stabilized linear part, which guarantees the stability and convergence of the overall solution. The results are finally compared with the Adams-Bashforth-Moulton numerical method, the Adomian decomposition method (ADM) and the fractional differential transform method (FDTM) to verify the performance of the EHPM.

  20. Neighboring extremal optimal control design including model mismatch errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T.J.; Hull, D.G.

    1994-11-01

    The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.

  1. KdV-like equations for fluid dynamics

    NASA Astrophysics Data System (ADS)

    Ruggieri, M.; Speciale, M. P.

    2014-12-01

    Main goal of the authors is to consider the generalized system of KdV equations ut+uxxx+2uux+2e1vvx+e2(uxv+uvx)+e3vxxx = 0 c1vt+vxxx+2vvx+c2vx+c3(e1(uxv+uvx)+2e2uux+e3uxxx) = 0 (1), and to construct the optimal system of one dimensional subalgebras. The reduction of the above system to ODEs through the optimal systems is performed and finally an application is shown.

  2. Exact comprehensive equations for the photon management properties of silicon nanowire

    PubMed Central

    Li, Yingfeng; Li, Meicheng; Li, Ruike; Fu, Pengfei; Wang, Tai; Luo, Younan; Mbengue, Joseph Michel; Trevor, Mwenya

    2016-01-01

    Unique photon management (PM) properties of silicon nanowire (SiNW) make it an attractive building block for a host of nanowire photonic devices including photodetectors, chemical and gas sensors, waveguides, optical switches, solar cells, and lasers. However, the lack of efficient equations for the quantitative estimation of the SiNW’s PM properties limits the rational design of such devices. Herein, we establish comprehensive equations to evaluate several important performance features for the PM properties of SiNW, based on theoretical simulations. Firstly, the relationships between the resonant wavelengths (RW), where SiNW can harvest light most effectively, and the size of SiNW are formulized. Then, equations for the light-harvesting efficiency at RW, which determines the single-frequency performance limit of SiNW-based photonic devices, are established. Finally, equations for the light-harvesting efficiency of SiNW in full-spectrum, which are of great significance in photovoltaics, are established. Furthermore, using these equations, we have derived four extra formulas to estimate the optimal size of SiNW in light-harvesting. These equations can reproduce majority of the reported experimental and theoretical results with only ~5% error deviations. Our study fills up a gap in quantitatively predicting the SiNW’s PM properties, which will contribute significantly to its practical applications. PMID:27103087

  3. Fourth-order numerical solutions of diffusion equation by using SOR method with Crank-Nicolson approach

    NASA Astrophysics Data System (ADS)

    Muhiddin, F. A.; Sulaiman, J.

    2017-09-01

    The aim of this paper is to investigate the effectiveness of the Successive Over-Relaxation (SOR) iterative method by using the fourth-order Crank-Nicolson (CN) discretization scheme to derive a five-point Crank-Nicolson approximation equation in order to solve diffusion equation. From this approximation equation, clearly, it can be shown that corresponding system of five-point approximation equations can be generated and then solved iteratively. In order to access the performance results of the proposed iterative method with the fourth-order CN scheme, another point iterative method which is Gauss-Seidel (GS), also presented as a reference method. Finally the numerical results obtained from the use of the fourth-order CN discretization scheme, it can be pointed out that the SOR iterative method is superior in terms of number of iterations, execution time, and maximum absolute error.

  4. Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Guo; Li, Zhe; Liu, Yong-Jun

    2018-01-01

    In this paper, we study the pricing problem of the continuously monitored fixed and floating strike geometric Asian power options in a mixed fractional Brownian motion environment. First, we derive both closed-form solutions and mixed fractional partial differential equations for fixed and floating strike geometric Asian power options based on delta-hedging strategy and partial differential equation method. Second, we present the lower and upper bounds of the prices of fixed and floating strike geometric Asian power options under the assumption that both risk-free interest rate and volatility are interval numbers. Finally, numerical studies are performed to illustrate the performance of our proposed pricing model.

  5. Objective Lightning Probability Forecasting for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Wheeler, Mark

    2005-01-01

    Five logistic regression equations were created that predict the probability of cloud-to-ground lightning occurrence for the day in the KSC/CCAFS area for each month in the warm season. These equations integrated the results from several studies over recent years to improve thunderstorm forecasting at KSC/CCAFS. All of the equations outperform persistence, which is known to outperform NPTI, the current objective tool used in 45 WS lightning forecasting operations. The equations also performed well in other tests. As a result, the new equations will be added to the current set of tools used by the 45 WS to determine the probability of lightning for their daily planning forecast. The results from these equations are meant to be used as first-guess guidance when developing the lightning probability forecast for the day. They provide an objective base from which forecasters can use other observations, model data, consultation with other forecasters, and their own experience to create the final lightning probability for the 1100 UTC briefing.

  6. Demographic Faultlines: A Meta-Analysis of the Literature

    ERIC Educational Resources Information Center

    Thatcher, Sherry M. B.; Patel, Pankaj C.

    2011-01-01

    We propose and test a theoretical model focusing on antecedents and consequences of demographic faultlines. We also posit contingencies that affect overall team dynamics in the context of demographic faultlines, such as the study setting and performance measurement. Using meta-analysis structural equation modeling with a final data set consisting…

  7. Double-Plate Penetration Equations

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.

    2000-01-01

    This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.

  8. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles. Part 2: Applications

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1980-01-01

    A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.

  9. Transformed Fourier and Fick equations for the control of heat and mass diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenneau, S.; Petiteau, D.; Zerrad, M.

    We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves,more » the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.« less

  10. Single wall penetration equations

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.

    1991-01-01

    Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.

  11. Developing physician pay arrangements: the cash and care equation.

    PubMed

    Levitch, J H

    1998-11-01

    Developing physician compensation packages that help a healthcare organization meet its business objectives while satisfying physician pay expectations requires new ways of linking pay to physician performance. Such compensation arrangements specifically should include pay tied to defined performance standards, compensation linked to group performance, performance incentives based on realistic, achievable goals, work performance measured by common criteria, and similar pay ensured for similar work. Final pay arrangements also should include items that are sometimes overlooked, such as fully delineated job responsibilities, performance measures aligned correctly with performance areas, and the value of benefits considered in the cash compensation levels.

  12. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Chao, D. F. K.

    1983-01-01

    Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  13. [Why are some high achievers on the course final exam unsuccessful on the proficiency exam in English?].

    PubMed

    Matsunuma, Mitsuyasu

    2009-04-01

    This study examined why some high achievers on the course final exam were unsuccessful on the proficiency exam in English. We hypothesized that the learning motives and learning behaviors (learning strategy, learning time) had different effects on the outcomes of the exams. First, the relation between the variables was investigated using structural equation modeling. Second, the learning behaviors of students who got good marks on both exams were compared with students who did well only on the course final exam. The results were as follows. (a) Learning motives influenced test performance via learning behaviors. (b) Content-attached motives influenced all variables concerning learning behaviors. (c) Content-detached motives influenced all variables concerning learning behaviors that were related only to the course final exam. (d) The students who got good marks on both exams performed the learning behaviors that were useful on the proficiency exam more frequently than the students who did well only on the course final exam.

  14. Predictions Regarding the Performance of Field Emission Cathodes in Radio Frequency Guns

    DTIC Science & Technology

    2010-01-01

    b2b by equation 2.3. Finally, ηb = ab/fb as defined in equation 2.5. Next...2.11) with η (r, z) = √ r2 + (z − fb)2 + √ r2 + (z + fb) 2 2fb where, summarizing from above, fb = √ a2 b − b2b and ηb = ab fb = ab √ a2 b − b2b ...1 2 x, to rewrite the equations as ze ≈ ab [ 1− 1 2 ( r bb )2 ] zc ≈ cr [ 1− 1 2 ( r cr )2 ] + ab − cr. or ze ≈ ab − 1 2 abr 2 b2b zc ≈ ab − 1 2 r2

  15. Geometric and Algebraic Approaches in the Concept of Complex Numbers

    ERIC Educational Resources Information Center

    Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.

    2006-01-01

    This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…

  16. Algorithms for parallel and vector computations

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1995-01-01

    This is a final report on work performed under NASA grant NAG-1-1112-FOP during the period March, 1990 through February 1995. Four major topics are covered: (1) solution of nonlinear poisson-type equations; (2) parallel reduced system conjugate gradient method; (3) orderings for conjugate gradient preconditioners, and (4) SOR as a preconditioner.

  17. Second-order Boltzmann equation: gauge dependence and gauge invariance

    NASA Astrophysics Data System (ADS)

    Naruko, Atsushi; Pitrou, Cyril; Koyama, Kazuya; Sasaki, Misao

    2013-08-01

    In the context of cosmological perturbation theory, we derive the second-order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equation are revisited and extended given this more general framework: (i) the polarization of light is incorporated in this formalism by using a tensor-valued distribution function; (ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; (iii) we perform a separation between temperature and spectral distortion, both for the intensity and polarization for the first time; (iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gauge dependence for the observed temperature.

  18. Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)

    NASA Technical Reports Server (NTRS)

    Kakad, Yogendra P.

    1992-01-01

    This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.

  19. Accurate expansion of cylindrical paraxial waves for its straightforward implementation in electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-01-01

    The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.

  20. Hybrid Rocket Performance Prediction with Coupling Method of CFD and Thermal Conduction Calculation

    NASA Astrophysics Data System (ADS)

    Funami, Yuki; Shimada, Toru

    The final purpose of this study is to develop a design tool for hybrid rocket engines. This tool is a computer code which will be used in order to investigate rocket performance characteristics and unsteady phenomena lasting through the burning time, such as fuel regression or combustion oscillation. When phenomena inside a combustion chamber, namely boundary layer combustion, are described, it is difficult to use rigorous models for this target. It is because calculation cost may be too expensive. Therefore simple models are required for this calculation. In this study, quasi-one-dimensional compressible Euler equations for flowfields inside a chamber and the equation for thermal conduction inside a solid fuel are numerically solved. The energy balance equation at the solid fuel surface is solved to estimate fuel regression rate. Heat feedback model is Karabeyoglu's model dependent on total mass flux. Combustion model is global single step reaction model for 4 chemical species or chemical equilibrium model for 9 chemical species. As a first step, steady-state solutions are reported.

  1. Non-singular acoustic cloak derived by the ray tracing method with rotationally symmetric transformations

    PubMed Central

    Wu, Linzhi

    2016-01-01

    Recently, the ray tracing method has been used to derive the non-singular cylindrical invisibility cloaks for out-of-plane shear waves, which is impossible via the transformation method directly owing to the singular push-forward mapping. In this paper, the method is adopted to design a kind of non-singular acoustic cloak. Based on Hamilton's equations of motion, eikonal equation and pre-designed ray equations, we derive several constraint equations for bulk modulus and density tensor. On the premise that the perfect matching conditions are satisfied, a series of non-singular physical profiles can be obtained by arranging the singular terms reasonably. The physical profiles derived by the ray tracing method will degenerate to the transformation-based solutions when taking the transport equation into consideration. This illuminates the essence of the newly designed cloaks that they are actually the so-called eikonal cloaks that can accurately control the paths of energy flux but with small disturbance in energy distribution along the paths. The near-perfect invisible performance has been demonstrated by the numerical ray tracing results and the pressure distribution snapshots. Finally, a kind of reduced cloak is conceived, and the good invisible performance has been measured quantitatively by the normalized scattering width. PMID:27118884

  2. The Impact of the Measures of Academic Progress (MAP) Program on Student Reading Achievement. Final Report. NCEE 2013-4000

    ERIC Educational Resources Information Center

    Cordray, David; Pion, Georgine; Brandt, Chris; Molefe, Ayrin; Toby, Megan

    2012-01-01

    During the past decade, the use of standardized benchmark measures to differentiate and individualize instruction for students received renewed attention from educators. Although teachers may use their own assessments (tests, quizzes, homework, problem sets) for monitoring learning, it is challenging for them to equate performance on classroom…

  3. Analytical study on the thermal performance of a partially wet constructal T-shaped fin

    NASA Astrophysics Data System (ADS)

    Hazarika, Saheera Azmi; Zeeshan, Mohd; Bhanja, Dipankar; Nath, Sujit

    2017-07-01

    The present paper addresses the thermal analysis of a T-shaped fin under partially wet condition by adopting a cubic variation of the humidity ratio of saturated air with the corresponding fin surface temperature. The point separating the dry and wet parts may lie either in the flange or stem part of the fin and so, two different cases having different governing equations and boundary conditions are analyzed in this paper. Since the governing equations are highly non-linear, they are solved by using an analytical technique called the Differential Transform Method and subsequently, the dry fin length, temperature distribution and fin performances are evaluated and analyzed for a wide range of the various psychometric, geometric and thermo-physical parameters. Finally, it can be highlighted that relative humidity has a pronounced effect on the performance parameters when the fin surface is partially wet whereas this effect is marginally small for fully wet surface.

  4. Robust fast controller design via nonlinear fractional differential equations.

    PubMed

    Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong

    2017-07-01

    A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

    NASA Astrophysics Data System (ADS)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

    2017-11-01

    Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

  6. Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus

    NASA Astrophysics Data System (ADS)

    Chen, Shanzhen; Jiang, Xiaoyun

    2012-08-01

    In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.

  7. Dispersion of capillary waves in elliptical cylindrical jets

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Dolatabadi, Ali

    2011-11-01

    In this work motion of a low speed liquid jet issuing from an elliptic orifice through the air is studied. Mathematical solution of viscous free-surface flow for this asymmetric geometry is simplified by using one-dimensional Cosserat (directed curve) equations which can be assumed as a low order form of Navier-Stokes equations for slender jets. Linear solution is performed and temporal and spatial dispersion equations are derived. Growth rate and phase speed of unstable and stable modes under various conditions are presented. The possibility of instability of asymmetric disturbances is studied too. With distance down the jet, major and minor axes are altered and finally jet breaks up due to capillary instability. The effect of jet velocity and viscosity and also orifice ellipticity on axis-switching and breakup is investigated.

  8. Nonlinearity analysis of measurement model for vision-based optical navigation system

    NASA Astrophysics Data System (ADS)

    Li, Jianguo; Cui, Hutao; Tian, Yang

    2015-02-01

    In the autonomous optical navigation system based on line-of-sight vector observation, nonlinearity of measurement model is highly correlated with the navigation performance. By quantitatively calculating the degree of nonlinearity of the focal plane model and the unit vector model, this paper focuses on determining which optical measurement model performs better. Firstly, measurement equations and measurement noise statistics of these two line-of-sight measurement models are established based on perspective projection co-linearity equation. Then the nonlinear effects of measurement model on the filter performance are analyzed within the framework of the Extended Kalman filter, also the degrees of nonlinearity of two measurement models are compared using the curvature measure theory from differential geometry. Finally, a simulation of star-tracker-based attitude determination is presented to confirm the superiority of the unit vector measurement model. Simulation results show that the magnitude of curvature nonlinearity measurement is consistent with the filter performance, and the unit vector measurement model yields higher estimation precision and faster convergence properties.

  9. A Variable Turbulent Schmidt Number Formulation for Scramjet Application

    NASA Technical Reports Server (NTRS)

    Xiao, X.; Edwards, J. R.; Hassan, H. A.; Cutler, A. D.

    2004-01-01

    In high speed engines, thorough turbulent mixing of fuel and air is required to obtain high performance and high efficiency. Thus, the ability to predict turbulent mixing is crucial in obtaining accurate numerical simulation of an engine and its performance. Current state of the art in CFD simulation is to assume both turbulent Prandtl number and Schmidt numbers to be constants. However, since the mixing of fuel and air is inversely proportional to the Schmidt number, a value of 0.45 for the Schmidt number will produce twice as much diffusion as that with a value of 0.9. Because of this, current CFD tools and models have not been able to provide the needed guidance required for the efficient design of a scramjet engine. The goal of this investigation is to develop the framework needed to calculate turbulent Prandtl and Schmidt numbers as part of the solution. This requires four additional equations: two for the temperature variance and its dissipation rate and two for the concentration variance and its dissipation rate. In the current investigation emphasis will be placed on studying mixing without reactions. For such flows, variable Prandtl number does not play a major role in determining the flow. This, however, will have to be addressed when combustion is present. The approach to be used is similar to that used to develop the k-zeta model. In this approach, relevant equations are derived from the exact Navier-Stokes equations and each individual correlation is modeled. This ensures that relevant physics is incorporated into the model equations. This task has been accomplished. The final set of equations have no wall or damping functions. Moreover, they are tensorially consistent and Galilean invariant. The derivation of the model equations is rather lengthy and thus will not be incorporated into this abstract, but will be included in the final paper. As a preliminary to formulating the proposed model, the original k-zeta model with constant turbulent Prandtl and Schmidt numbers is used to model the supersonic coaxial jet mixing experiments involving He, O2 and air.

  10. An analytic performance model of disk arrays and its application

    NASA Technical Reports Server (NTRS)

    Lee, Edward K.; Katz, Randy H.

    1991-01-01

    As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.

  11. SU-E-T-598: Parametric Equation for Quick and Reliable Estimate of Stray Neutron Doses in Proton Therapy and Application for Intracranial Tumor Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfrate, A; Farah, J; Sayah, R

    2015-06-15

    Purpose: Development of a parametric equation suitable for a daily use in routine clinic to provide estimates of stray neutron doses in proton therapy. Methods: Monte Carlo (MC) calculations using the UF-NCI 1-year-old phantom were exercised to determine the variation of stray neutron doses as a function of irradiation parameters while performing intracranial treatments. This was done by individually changing the proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and the air gap size while their impact on neutron doses were put into a single equation. The variation of neutron doses with distance from the target volumemore » was also included in it. Then, a first step consisted in establishing the fitting coefficients by using 221 learning data which were neutron absorbed doses obtained with MC simulations while a second step consisted in validating the final equation. Results: The variation of stray neutron doses with irradiation parameters were fitted with linear, polynomial, etc. model while a power-law model was used to fit the variation of stray neutron doses with the distance from the target volume. The parametric equation fitted well MC simulations while establishing fitting coefficients as the discrepancies on the estimate of neutron absorbed doses were within 10%. The discrepancy can reach ∼25% for the bladder, the farthest organ from the target volume. Finally, the validation showed results in compliance with MC calculations since the discrepancies were also within 10% for head-and-neck and thoracic organs while they can reach ∼25%, again for pelvic organs. Conclusion: The parametric equation presents promising results and will be validated for other target sites as well as other facilities to go towards a universal method.« less

  12. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  13. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and less computation time than required by the tridiagonal method. The performance of the adaptive grid method tends to degrade as the solution process proceeds in time, but still remains faster than the tridiagonal scheme.

  14. Electrolytic hydrogen production: An analysis and review

    NASA Technical Reports Server (NTRS)

    Evangelista, J.; Phillips, B.; Gordon, L.

    1975-01-01

    The thermodynamics of water electrolysis cells is presented, followed by a review of current and future technology of commercial cells. The irreversibilities involved are analyzed and the resulting equations assembled into a computer simulation model of electrolysis cell efficiency. The model is tested by comparing predictions based on the model to actual commercial cell performance, and a parametric investigation of operating conditions is performed. Finally, the simulation model is applied to a study of electrolysis cell dynamics through consideration of an ideal pulsed electrolyzer.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Haitao, E-mail: liaoht@cae.ac.cn

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results inmore » an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.« less

  16. Efficient sensitivity analysis method for chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao

    2016-05-01

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results in an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.

  17. Final Report, DE-FG01-06ER25718 Domain Decomposition and Parallel Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widlund, Olof B.

    2015-06-09

    The goal of this project is to develop and improve domain decomposition algorithms for a variety of partial differential equations such as those of linear elasticity and electro-magnetics.These iterative methods are designed for massively parallel computing systems and allow the fast solution of the very large systems of algebraic equations that arise in large scale and complicated simulations. A special emphasis is placed on problems arising from Maxwell's equation. The approximate solvers, the preconditioners, are combined with the conjugate gradient method and must always include a solver of a coarse model in order to have a performance which is independentmore » of the number of processors used in the computer simulation. A recent development allows for an adaptive construction of this coarse component of the preconditioner.« less

  18. An analytical theory of a scattering of radio waves on meteoric ionization - II. Solution of the integro-differential equation in case of backscatter

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-12-01

    The integro-differential equation for the polarization vector P inside the meteor trail, representing the analytical solution of the set of Maxwell equations, is solved for the case of backscattering of radio waves on meteoric ionization. The transversal and longitudinal dimensions of a typical meteor trail are small in comparison to the distances to both transmitter and receiver and so the phase factor appearing in the kernel of the integral equation is large and rapidly changing. This allows us to use the method of stationary phase to obtain an approximate solution of the integral equation for the scattered field and for the corresponding generalized radar equation. The final solution is obtained by expanding it into the complete set of Bessel functions, which results in solving a system of linear algebraic equations for the coefficients of the expansion. The time behaviour of the meteor echoes is then obtained using the generalized radar equation. Examples are given for values of the electron density spanning a range from underdense meteor echoes to overdense meteor echoes. We show that the time behaviour of overdense meteor echoes using this method is very different from the one obtained using purely numerical solutions of the Maxwell equations. Our results are in much better agreement with the observations performed e.g. by the Ondřejov radar.

  19. A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows

    NASA Astrophysics Data System (ADS)

    Bernard-Champmartin, Aude; De Vuyst, Florian

    2014-10-01

    In 2002, Després and Lagoutière [17] proposed a low-diffusive advection scheme for pure transport equation problems, which is particularly accurate for step-shaped solutions, and thus suited for interface tracking procedure by a color function. This has been extended by Kokh and Lagoutière [28] in the context of compressible multifluid flows using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid three-equation models. The Eulerian numerical scheme has two ingredients: a robust remapped Lagrange solver for the solution of the volume-averaged equations, and a low diffusive compressive scheme for the advection of the gas mass fraction. Numerical experiments show the performance of the computational approach on various flow reference problems: dam break, sloshing of a tank filled with water, water-water impact and finally a case of Rayleigh-Taylor instability. One of the advantages of the present interface capturing solver is its natural implementation on parallel processors or computers.

  20. Lattice Boltzmann model for high-order nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  1. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    PubMed

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  2. Investigation of micromixing by acoustically oscillated sharp-edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-01-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel. PMID:27158292

  3. Investigation of micromixing by acoustically oscillated sharp-edges.

    PubMed

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-03-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.

  4. Autonomous rotor heat engine

    NASA Astrophysics Data System (ADS)

    Roulet, Alexandre; Nimmrichter, Stefan; Arrazola, Juan Miguel; Seah, Stella; Scarani, Valerio

    2017-06-01

    The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics. Our model draws inspiration from actual piston engines and is built from closed-system Hamiltonians and weak bath coupling terms. We analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations. In the quantum case, we perform numerical simulations of the master equation. Finally, we perform a dynamic and thermodynamic analysis of the engine's behavior for several parameter regimes in both the classical and quantum case and find that the latter exhibits a consistently lower efficiency due to additional noise.

  5. Contribution to the optimal shape design of two-dimensional internal flows with embedded shocks

    NASA Technical Reports Server (NTRS)

    Iollo, Angelo; Salas, Manuel D.

    1995-01-01

    We explore the practicability of optimal shape design for flows modeled by the Euler equations. We define a functional whose minimum represents the optimality condition. The gradient of the functional with respect to the geometry is calculated with the Lagrange multipliers, which are determined by solving a co-state equation. The optimization problem is then examined by comparing the performance of several gradient-based optimization algorithms. In this formulation, the flow field can be computed to an arbitrary order of accuracy. Finally, some results for internal flows with embedded shocks are presented, including a case for which the solution to the inverse problem does not belong to the design space.

  6. Laplace and the era of differential equations

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2012-11-01

    Between about 1790 and 1850 French mathematicians dominated not only mathematics, but also all other sciences. The belief that a particular physical phenomenon has to correspond to a single differential equation originates from the enormous influence Laplace and his contemporary compatriots had in all European learned circles. It will be shown that at the beginning of the nineteenth century Newton's "fluxionary calculus" finally gave way to a French-type notation of handling differential equations. A heated dispute in the Philosophical Magazine between Challis, Airy and Stokes, all three of them famous Cambridge professors of mathematics, then serves to illustrate the era of differential equations. A remark about Schrödinger and his equation for the hydrogen atom finally will lead back to present times.

  7. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    NASA Astrophysics Data System (ADS)

    Bhadauria, B. S.; Singh, M. K.; Singh, A.; Singh, B. K.; Kiran, P.

    2016-12-01

    In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  8. Computer simulations of phase field drops on super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Fedeli, Livio

    2017-09-01

    We present a novel quasi-Newton continuation procedure that efficiently solves the system of nonlinear equations arising from the discretization of a phase field model for wetting phenomena. We perform a comparative numerical analysis that shows the improved speed of convergence gained with respect to other numerical schemes. Moreover, we discuss the conditions that, on a theoretical level, guarantee the convergence of this method. At each iterative step, a suitable continuation procedure develops and passes to the nonlinear solver an accurate initial guess. Discretization performs through cell-centered finite differences. The resulting system of equations is solved on a composite grid that uses dynamic mesh refinement and multi-grid techniques. The final code achieves three-dimensional, realistic computer experiments comparable to those produced in laboratory settings. This code offers not only new insights into the phenomenology of super-hydrophobicity, but also serves as a reliable predictive tool for the study of hydrophobic surfaces.

  9. [Anthropometric model for the prediction of appendicular skeletal muscle mass in Chilean older adults].

    PubMed

    Lera, Lydia; Albala, Cecilia; Ángel, Bárbara; Sánchez, Hugo; Picrin, Yaisy; Hormazabal, María José; Quiero, Andrea

    2014-03-01

    To develop a predictive model of appendicular skeletal muscle mass (ASM) based on anthropometric measurements in elderly from Santiago, Chile. 616 community dwelling, non-disabled subjects ≥ 60 years (mean 69.9 ± 5.2 years) living in Santiago, 64.6% female, participating in ALEXANDROS study. Anthropometric measurements, handgrip strength, mobility tests and DEXA were performed. Step by step linear regression models were used to associate ASM from DEXA with anthropometric variables, age and sex. The sample was divided at random into two to obtain prediction equations for both subsamples, which were mutually validated by double cross-validation. The high correlation between the values of observed and predicted MMAE in both sub-samples and the low degree of shrinkage allowed developing the final prediction equation with the total sample. The cross-validity coefficient between prediction models from the subsamples (0.941 and 0.9409) and the shrinkage (0.004 and 0.006) were similar in both equations. The final prediction model obtained from the total sample was: ASM (kg) = 0.107(weight in kg) + 0.251( knee height in cm) + 0.197 (Calf Circumference in cm) +0.047 (dynamometry in kg) - 0.034 (Hip Circumference in cm) + 3.417 (Man) - 0.020 (age years) - 7.646 (R2 = 0.89). The mean ASM obtained by the prediction equation and the DEXA measurement were similar (16.8 ± 4.0 vs 16.9 ± 3.7) and highly concordant according Bland and Altman (95% CI: -2.6 -2.7) and Lin (concordance correlation coefficient = 0.94) methods. We obtained a low cost anthropometric equation to determine the appendicular skeletal muscle mass useful for the screening of sarcopenia in older adults. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  10. Correlating Engine NOx Emission with Biodiesel Composition

    NASA Astrophysics Data System (ADS)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2017-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  11. Weighted triangulation adjustment

    USGS Publications Warehouse

    Anderson, Walter L.

    1969-01-01

    The variation of coordinates method is employed to perform a weighted least squares adjustment of horizontal survey networks. Geodetic coordinates are required for each fixed and adjustable station. A preliminary inverse geodetic position computation is made for each observed line. Weights associated with each observed equation for direction, azimuth, and distance are applied in the formation of the normal equations in-the least squares adjustment. The number of normal equations that may be solved is twice the number of new stations and less than 150. When the normal equations are solved, shifts are produced at adjustable stations. Previously computed correction factors are applied to the shifts and a most probable geodetic position is found for each adjustable station. Pinal azimuths and distances are computed. These may be written onto magnetic tape for subsequent computation of state plane or grid coordinates. Input consists of punch cards containing project identification, program options, and position and observation information. Results listed include preliminary and final positions, residuals, observation equations, solution of the normal equations showing magnitudes of shifts, and a plot of each adjusted and fixed station. During processing, data sets containing irrecoverable errors are rejected and the type of error is listed. The computer resumes processing of additional data sets.. Other conditions cause warning-errors to be issued, and processing continues with the current data set.

  12. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows.

    PubMed

    Liang, H; Shi, B C; Guo, Z L; Chai, Z H

    2014-05-01

    In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.

  13. Dynamics of open quantum systems by interpolation of von Neumann and classical master equations, and its application to quantum annealing

    NASA Astrophysics Data System (ADS)

    Kadowaki, Tadashi

    2018-02-01

    We propose a method to interpolate dynamics of von Neumann and classical master equations with an arbitrary mixing parameter to investigate the thermal effects in quantum dynamics. The two dynamics are mixed by intervening to continuously modify their solutions, thus coupling them indirectly instead of directly introducing a coupling term. This maintains the quantum system in a pure state even after the introduction of thermal effects and obtains not only a density matrix but also a state vector representation. Further, we demonstrate that the dynamics of a two-level system can be rewritten as a set of standard differential equations, resulting in quantum dynamics that includes thermal relaxation. These equations are equivalent to the optical Bloch equations at the weak coupling and asymptotic limits, implying that the dynamics cause thermal effects naturally. Numerical simulations of ferromagnetic and frustrated systems support this idea. Finally, we use this method to study thermal effects in quantum annealing, revealing nontrivial performance improvements for a spin glass model over a certain range of annealing time. This result may enable us to optimize the annealing time of real annealing machines.

  14. Macroscopic Modeling of a One-Dimensional Electrochemical Cell using the Poisson-Nernst-Planck Equations

    NASA Astrophysics Data System (ADS)

    Yan, David

    This thesis presents the one-dimensional equations, numerical method and simulations of a model to characterize the dynamical operation of an electrochemical cell. This model extends the current state-of-the art in that it accounts, in a primitive way, for the physics of the electrolyte/electrode interface and incorporates diffuse-charge dynamics, temperature coupling, surface coverage, and polarization phenomena. The one-dimensional equations account for a system with one or two mobile ions of opposite charge, and the electrode reaction we consider (when one is needed) is a one-electron electrodeposition reaction. Though the modeled system is far from representing a realistic electrochemical device, our results show a range of dynamics and behaviors which have not been observed previously, and explore the numerical challenges required when adding more complexity to a model. Furthermore, the basic transport equations (which are developed in three spatial dimensions) can in future accomodate the inclusion of additional physics, and coupling to more complex boundary conditions that incorporate two-dimensional surface phenomena and multi-rate reactions. In the model, the Poisson-Nernst-Planck equations are used to model diffusion and electromigration in an electrolyte, and the generalized Frumkin-Butler-Volmer equation is used to model reaction kinetics at electrodes. An energy balance equation is derived and coupled to the diffusion-migration equation. The model also includes dielectric polarization effects by introducing different values of the dielectric permittivity in different regions of the bulk, as well as accounting for surface coverage effects due to adsorption, and finite size "crowding", or steric effects. Advection effects are not modeled but could in future be incorporated. In order to solve the coupled PDE's, we use a variable step size second order scheme in time and finite differencing in space. Numerical tests are performed on a simplified system and the scheme's stability and convergence properties are discussed. While evaluating different methods for discretizing the coupled flux boundary condition, we discover a thresholding behaviour in the adaptive time stepper, and perform additional tests to investigate it. Finally, a method based on ghost points is chosen for its favorable numerical properties compared to the alternatives. With this method, we are able to run simulations with a large range of parameters, including any value of the nondimensionalized Debye length epsilon. The numerical code is first used to run simulations to explore the effects of polarization, surface coverage, and temperature. The code is also used to perform frequency sweeps of input signals in order to mimic impedance spectroscopy experiments. Finally, in Chapter 5, we use our model to apply ramped voltages to electrochemical systems, and show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking (polarized) electrodes, and electrolytes with background charge. Linear sweep and cyclic voltammetry techniques are important tools for electrochemists and have a variety of applications in engineering. Voltammetry has classically been treated with the Randles-Sevcik equation, which assumes an electroneutral supported electrolyte. No general theory of linear-sweep voltammetry is available, however, for unsupported electrolytes and for other situations where diffuse charge effects play a role. We show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking electrodes, and membranes with fixed background charge. The analysis focuses on the coupling of Faradaic reactions and diffuse charge dynamics, but capacitive charging of the double layers is also studied, for early time transients at reactive electrodes and for non-reactive blocking electrodes. The final chapter highlights the role of diffuse charge in the context of voltammetry, and illustrates which regimes can be approximated using simple analytical expressions and which require more careful consideration.

  15. Convective thinning of the lithosphere - A mechanism for the initiation of continental rifting

    NASA Technical Reports Server (NTRS)

    Spohn, T.; Schubert, G.

    1982-01-01

    A model of lithospheric thinning, in which heat is convected to the base and conducted within the lithosphere, is presented. An analytical equation for determinining the amount of thinning attainable on increasing the heat flux from the asthenosphere is derived, and a formula for lithosphere thickness approximations as a function of time is given. Initial and final equilibrium thicknesses, thermal diffusivity, transition temperature profile, and plume temperature profile are all factors considered for performing rate of thinning determinations. In addition, between initial and final equilibrium states, lithospheric thinning occurs at a rate which is inversely proportional to the square root of the time. Finally, uplift resulting from thermal expansion upon lithospheric thinning is on the order of 10 to the 2nd to 10 to the 3rd m.

  16. The performance of Geiger mode avalanche photo-diodes in free space laser communication links

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2018-05-01

    Geiger mode avalanche photo-diode (APD) arrays, when used as detectors in laser communication (lasercom) receivers, promise better performance at lower signal levels than APDs operated in the linear mode. In this paper, we describe the basic operation of the Geiger mode APD array as a lasercom detector, concentrating on aspects relevant to the link design engineer (rather than, for example, describing the details of the physics of the basic device operation itself). Equations are developed that describe the effects of defocus and hold-off time on the relation between the number of photons detected by the array and the output of photo-electron counts. We show how to incorporate these equations into a link budget. The resulting predictions are validated by comparison against simulation results. Finally, we compare the performance of linear mode APD based receivers and Geiger mode APD array based receivers. Results show the Geiger mode receivers yield better performance, in terms of probability of bit error, at lower signal levels, except on links where there is an exceptionally large amount of background noise. Under those conditions, not surprisingly, the hold-off time degrades performance.

  17. ESEA Title I Linking Project. Final Report.

    ERIC Educational Resources Information Center

    Holmes, Susan E.

    The Rasch model for test score equating was compared with three other equating procedures as methods for implementing the norm referenced method (RMC Model A) of evaluating ESEA Title I projects. The Rasch model and its theoretical limitations were described. The three other equating methods used were: linear observed score equating, linear true…

  18. The Finite-Surface Method for incompressible flow: a step beyond staggered grid

    NASA Astrophysics Data System (ADS)

    Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru

    2017-11-01

    We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.

  19. Multiscale modelling for tokamak pedestals

    NASA Astrophysics Data System (ADS)

    Abel, I. G.

    2018-04-01

    Pedestal modelling is crucial to predict the performance of future fusion devices. Current modelling efforts suffer either from a lack of kinetic physics, or an excess of computational complexity. To ameliorate these problems, we take a first-principles multiscale approach to the pedestal. We will present three separate sets of equations, covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and pedestal turbulence, respectively. Precisely how these equations should be coupled to each other is covered in detail. This framework is completely self-consistent; it is derived from first principles by means of an asymptotic expansion of the fundamental Vlasov-Landau-Maxwell system in appropriate small parameters. The derivation exploits the narrowness of the pedestal region, the smallness of the thermal gyroradius and the low plasma (the ratio of thermal to magnetic pressures) typical of current pedestal operation to achieve its simplifications. The relationship between this framework and gyrokinetics is analysed, and possibilities to directly match our systems of equations onto multiscale gyrokinetics are explored. A detailed comparison between our model and other models in the literature is performed. Finally, the potential for matching this framework onto an open-field-line region is briefly discussed.

  20. Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation

    NASA Astrophysics Data System (ADS)

    Ormerod, Christopher M.

    2014-01-01

    We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E_6^{(1)} symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation.

  1. Symbolic generation of elastic rotor blade equations using a FORTRAN processor and numerical study on dynamic inflow effects on the stability of helicopter rotors

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1986-01-01

    The process of performing an automated stability analysis for an elastic-bladed helicopter rotor is discussed. A symbolic manipulation program, written in FORTRAN, is used to aid in the derivation of the governing equations of motion for the rotor. The blades undergo coupled bending and torsional deformations. Two-dimensional quasi-steady aerodynamics below stall are used. Although reversed flow effects are neglected, unsteady effects, modeled as dynamic inflow are included. Using a Lagrangian approach, the governing equations are derived in generalized coordinates using the symbolic program. The program generates the steady and perturbed equations and writes into subroutines to be called by numerical routines. The symbolic program can operate on both expressions and matrices. For the case of hovering flight, the blade and dynamic inflow equations are converted to equations in a multiblade coordinate system by rearranging the coefficients of the equations. For the case of forward flight, the multiblade equations are obtained through the symbolic program. The final multiblade equations are capable of accommodating any number of elastic blade modes. The computer implementation of this procedure consists of three stages: (1) the symbolic derivation of equations; (2) the coding of the equations into subroutines; and (3) the numerical study after identifying mass, damping, and stiffness coefficients. Damping results are presented in hover and in forward flight with and without dynamic inflow effects for various rotor blade models, including rigid blade lag-flap, elastic flap-lag, flap-lag-torsion, and quasi-static torsion. Results from dynamic inflow effects which are obtained from a lift deficiency function for a quasi-static inflow model in hover are also presented.

  2. Landslide-Generated Tsunami Model for Quick Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Franz, M.; Rudaz, B.; Locat, J.; Jaboyedoff, M.; Podladchikov, Y.

    2015-12-01

    Alpine regions are likely to be areas at risk regarding to landslide-induced tsunamis, because of the proximity between lakes and potential instabilities and due to the concentration of the population in valleys and on the lakes shores. In particular, dam lakes are often surrounded by steep slopes and frequently affect the stability of the banks. In order to assess comprehensively this phenomenon together with the induced risks, we have developed a 2.5D numerical model which aims to simulate the propagation of the landslide, the generation and the propagation of the wave and eventually the spread on the shores or the associated downstream flow. To perform this task, the process is done in three steps. Firstly, the geometry of the sliding mass is constructed using the Sloping Local Base Level (SLBL) concept. Secondly, the propagation of this volume is performed using a model based on viscous flow equations. Finally, the wave generation and its propagation are simulated using the shallow water equations stabilized by the Lax-Friedrichs scheme. The transition between wet and dry bed is performed by the combination of the two latter sets of equations. The proper behavior of our model is demonstrated by; (1) numerical tests from Toro (2001), and (2) by comparison with a real event where the horizontal run-up distance is known (Nicolet landslide, Quebec, Canada). The model is of particular interest due to its ability to perform quickly the 2.5D geometric model of the landslide, the tsunami simulation and, consequently, the hazard assessment.

  3. A highly parallel multigrid-like method for the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Tuminaro, Ray S.

    1989-01-01

    We consider a highly parallel multigrid-like method for the solution of the two dimensional steady Euler equations. The new method, introduced as filtering multigrid, is similar to a standard multigrid scheme in that convergence on the finest grid is accelerated by iterations on coarser grids. In the filtering method, however, additional fine grid subproblems are processed concurrently with coarse grid computations to further accelerate convergence. These additional problems are obtained by splitting the residual into a smooth and an oscillatory component. The smooth component is then used to form a coarse grid problem (similar to standard multigrid) while the oscillatory component is used for a fine grid subproblem. The primary advantage in the filtering approach is that fewer iterations are required and that most of the additional work per iteration can be performed in parallel with the standard coarse grid computations. We generalize the filtering algorithm to a version suitable for nonlinear problems. We emphasize that this generalization is conceptually straight-forward and relatively easy to implement. In particular, no explicit linearization (e.g., formation of Jacobians) needs to be performed (similar to the FAS multigrid approach). We illustrate the nonlinear version by applying it to the Euler equations, and presenting numerical results. Finally, a performance evaluation is made based on execution time models and convergence information obtained from numerical experiments.

  4. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.; Dowell, E. H.

    1974-01-01

    The equations of motion are developed by two complementary methods, Hamilton's principle and the Newtonian method. The resulting equations are valid to second order for long, straight, slender, homogeneous, isotropic beams undergoing moderate displacements. The ordering scheme is based on the restriction that squares of the bending slopes, the torsion deformation, and the chord/radius and thickness/radius ratios are negligible with respect to unity. All remaining nonlinear terms are retained. The equations are valid for beams with mass centroid axis and area centroid (tension) axis offsets from the elastic axis, nonuniform mass and stiffness section properties, variable pretwist, and a small precone angle. The strain-displacement relations are developed from an exact transformation between the deformed and undeformed coordinate systems. These nonlinear relations form an important contribution to the final equations. Several nonlinear structural and inertial terms in the final equations are identified that can substantially influence the aeroelastic stability and response of hingeless helicopter rotor blades.

  5. Dispersive approaches for three-particle final state interaction

    DOE PAGES

    Guo, Peng; Danilkin, Igor V.; Szczepaniak, Adam P.

    2015-10-30

    In this work, we presented different representations of Khuri-Treiman equation, the advantage and disadvantage of each representations are discussed. With a scattering amplitude toy model, we also studied the sensitivity of solution of KT equation to left-hand cut of toy model and to the different approximate methods. At last, we give a brief discussion of Watson's theorem when three particles in final states are involved.

  6. Asymptotic of the Solutions of Hyperbolic Equations with a Skew-Symmetric Perturbation

    NASA Astrophysics Data System (ADS)

    Gallagher, Isabelle

    1998-12-01

    Using methods introduced by S. Schochet inJ. Differential Equations114(1994), 476-512, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear operator. That result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system of the quasigeostrophic equations. Finally in the last part, we study the slightly compressible Euler equations by application of that same result.

  7. Experimental and numerical study on frost heave of saturated rock under uniform freezing conditions

    NASA Astrophysics Data System (ADS)

    Lv, Zhitao; Xia, Caichu; Li, Qiang

    2018-04-01

    A series of freezing experiments are conducted on saturated sandstone and mortar specimens to investigate the frost heave of saturated rock under uniform freezing conditions. The experimental results show that the frost heave of saturated rock is isotropic under uniform freezing conditions. During the freezing process, three stages are observed in the curves of variation of total frost heaving strain versus time: the thermal contraction stage, the frost heaving stage and the steady stage. Moreover, the amount of final stable frost heave first increases and then decreases with decrease in freezing temperature, and the maximum final stable frost heave occurs at different freezing temperature in saturated sandstone and mortar. Furthermore, a coupled thermal-mechanical (TM) model of frost heave of saturated rock is proposed in which a constraint coefficient \\zeta is used to consider the susceptibility of the internal rock grain structure to the expansion of pore ice. Then, numerical simulations are implemented with COMSOL to solve the governing equations of the TM model. Comparisons of the numerical results with the experimental results are performed to demonstrate the reliability of the model. The influences of elastic modulus and porosity on frost heave are also investigated, and the results show that the total frost heaving strain decreases non-linearly with increasing elastic modulus, and the decrease is significant when the elastic modulus is less than 3000 MPa, or approximately five times the elastic modulus of ice. In addition, the total frost heaving strain increases linearly with increasing porosity. Finally, an empirical equation between total frost heaving strain and freezing temperature is proposed and the equation well describes the variation of total frost heaving strain with freezing temperature.

  8. Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin.

    PubMed

    Bostanmaneshrad, Farshid; Partani, Sadegh; Noori, Roohollah; Nachtnebel, Hans-Peter; Berndtsson, Ronny; Adamowski, Jan Franklin

    2018-10-15

    To date, few studies have investigated the simultaneous effects of macro-scale parameters (MSPs) such as land use, population density, geology, and erosion layers on micro-scale water quality variables (MSWQVs). This research focused on an evaluation of the relationship between MSPs and MSWQVs in the Siminehrood River Basin, Iran. In addition, we investigated the importance of water particle travel time (hydrological distance) on this relationship. The MSWQVs included 13 physicochemical and biochemical parameters observed at 15 stations during three seasons. Primary screening was performed by utilizing three multivariate statistical analyses (Pearson's correlation, cluster and discriminant analyses) in seven series of observed data. These series included three separate seasonal data, three two-season data, and aggregated three-season data for investigation of relationships between MSPs and MSWQVs. Coupled data (pairs of MSWQVs and MSPs) repeated in at least two out of three statistical analyses were selected for final screening. The primary screening results demonstrated significant relationships between land use and phosphorus, total solids and turbidity, erosion levels and electrical conductivity, and erosion and total solids. Furthermore, water particle travel time effects were considered through three geographical pattern definitions of distance for each MSP by using two weighting methods. To find effective MSP factors on MSWQVs, a multivariate linear regression analysis was employed. Then, preliminary equations that estimated MSWQVs were developed. The preliminary equations were modified to adaptive equations to obtain the final models. The final models indicated that a new metric, referred to as hydrological distance, provided better MSWQV estimation and water quality prediction compared to the National Sanitation Foundation Water Quality Index. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  9. Study on micro-water measurement method based on SF6 insulation equipment in high altitude area

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Liu, Yajin; Yan, Jun; Liu, Zhijian; Yan, Yongfei

    2018-06-01

    Moisture content is an important indicator of the insulation and arc extinguishing performance of SF6 insulated electrical equipment. The research shows that moisture measurements are strongly influenced by altitude pressures and the different order of pressure correction and temperature correction calculation, different calculation results will result. Therefore, in this paper, we studies the pressure and temperature environment based on moisture test of SF6 gas insulated equipment in power industry. Firstly, the PVT characteristics of pure SF6 gas and water vapor were analyzed and put forward the necessity of pressure correction, then combined the Pitzer-Veli equation of SF6 gas and Water Pitzer-Veli equation to fit PVT equation of state of SF6-H20 that suitable for electric power industry and deduced the Correction Formula of Moisture Measurement in SF6 Gas. Finally, through experiments, completion of the calibration formula optimization and verification SF6 electrical equipment on, proof of the applicability and effectiveness of the correction formula.

  10. Modeling Solar Wind Flow with the Multi-Scale Fluid-Kinetic Simulation Suite

    DOE PAGES

    Pogorelov, N.V.; Borovikov, S. N.; Bedford, M. C.; ...

    2013-04-01

    Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. We have enhanced the code with additional physical treatments for the transport of turbulence and acceleration of pickup ions in the interplanetary space and at the termination shock. In this article, we present themore » results of our numerical simulation of the solar wind (SW) interaction with the local interstellar medium (LISM) in different time-dependent and stationary formulations. Numerical results are compared with the Ulysses, Voyager, and OMNI observations. Finally, the SW boundary conditions are derived from in-situ spacecraft measurements and remote observations.« less

  11. Non-invasive pressure difference estimation from PC-MRI using the work-energy equation

    PubMed Central

    Donati, Fabrizio; Figueroa, C. Alberto; Smith, Nicolas P.; Lamata, Pablo; Nordsletten, David A.

    2015-01-01

    Pressure difference is an accepted clinical biomarker for cardiovascular disease conditions such as aortic coarctation. Currently, measurements of pressure differences in the clinic rely on invasive techniques (catheterization), prompting development of non-invasive estimates based on blood flow. In this work, we propose a non-invasive estimation procedure deriving pressure difference from the work-energy equation for a Newtonian fluid. Spatial and temporal convergence is demonstrated on in silico Phase Contrast Magnetic Resonance Image (PC-MRI) phantoms with steady and transient flow fields. The method is also tested on an image dataset generated in silico from a 3D patient-specific Computational Fluid Dynamics (CFD) simulation and finally evaluated on a cohort of 9 subjects. The performance is compared to existing approaches based on steady and unsteady Bernoulli formulations as well as the pressure Poisson equation. The new technique shows good accuracy, robustness to noise, and robustness to the image segmentation process, illustrating the potential of this approach for non-invasive pressure difference estimation. PMID:26409245

  12. Marangoni Convection during Free Electron Laser Nitriding of Titanium

    NASA Astrophysics Data System (ADS)

    Höche, Daniel; Müller, Sven; Rapin, Gerd; Shinn, Michelle; Remdt, Elvira; Gubisch, Maik; Schaaf, Peter

    2009-08-01

    Pure titanium was treated by free electron laser (FEL) radiation in a nitrogen atmosphere. As a result, nitrogen diffusion occurs and a TiN coating was synthesized. Local gradients of interfacial tension due to the local heating lead to a Marangoni convection, which determines the track properties. Because of the experimental inaccessibility of time-dependent occurrences, finite element calculations were performed, to determine the physical processes such as heat transfer, melt flow, and mass transport. In order to calculate the surface deformation of the gas-liquid interface, the level set approach was used. The equations were modified and coupled with heat-transfer and diffusion equations. The process was characterized by dimensionless numbers such as the Reynolds, Peclet, and capillary numbers, to obtain more information about the acting forces and the coating development. Moreover, the nitrogen distribution was calculated using the corresponding transport equation. The simulations were compared with cross-sectional micrographs of the treated titanium sheets and checked for their validity. Finally, the process presented is discussed and compared with similar laser treatments.

  13. Error and Complexity Analysis for a Collocation-Grid-Projection Plus Precorrected-FFT Algorithm for Solving Potential Integral Equations with LaPlace or Helmholtz Kernels

    NASA Technical Reports Server (NTRS)

    Phillips, J. R.

    1996-01-01

    In this paper we derive error bounds for a collocation-grid-projection scheme tuned for use in multilevel methods for solving boundary-element discretizations of potential integral equations. The grid-projection scheme is then combined with a precorrected FFT style multilevel method for solving potential integral equations with 1/r and e(sup ikr)/r kernels. A complexity analysis of this combined method is given to show that for homogeneous problems, the method is order n natural log n nearly independent of the kernel. In addition, it is shown analytically and experimentally that for an inhomogeneity generated by a very finely discretized surface, the combined method slows to order n(sup 4/3). Finally, examples are given to show that the collocation-based grid-projection plus precorrected-FFT scheme is competitive with fast-multipole algorithms when considering realistic problems and 1/r kernels, but can be used over a range of spatial frequencies with only a small performance penalty.

  14. Solving Partial Differential Equations in a data-driven multiprocessor environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudiot, J.L.; Lin, C.M.; Hosseiniyar, M.

    1988-12-31

    Partial differential equations can be found in a host of engineering and scientific problems. The emergence of new parallel architectures has spurred research in the definition of parallel PDE solvers. Concurrently, highly programmable systems such as data-how architectures have been proposed for the exploitation of large scale parallelism. The implementation of some Partial Differential Equation solvers (such as the Jacobi method) on a tagged token data-flow graph is demonstrated here. Asynchronous methods (chaotic relaxation) are studied and new scheduling approaches (the Token No-Labeling scheme) are introduced in order to support the implementation of the asychronous methods in a data-driven environment.more » New high-level data-flow language program constructs are introduced in order to handle chaotic operations. Finally, the performance of the program graphs is demonstrated by a deterministic simulation of a message passing data-flow multiprocessor. An analysis of the overhead in the data-flow graphs is undertaken to demonstrate the limits of parallel operations in dataflow PDE program graphs.« less

  15. Dynamic Recrystallization Behavior of AISI 422 Stainless Steel During Hot Deformation Processes

    NASA Astrophysics Data System (ADS)

    Ahmadabadi, R. Mohammadi; Naderi, M.; Mohandesi, J. Aghazadeh; Cabrera, Jose Maria

    2018-02-01

    In this work, hot compression tests were performed to investigate the dynamic recrystallization (DRX) process of a martensitic stainless steel (AISI 422) at temperatures of 950, 1000, 1050, 1100 and 1150 °C and strain rates of 0.01, 0.1 and 1 s-1. The dependency of strain-hardening rate on flow stress was used to estimate the critical stress for the onset of DRX. Accordingly, the critical stress to peak stress ratio was calculated as 0.84. Moreover, the effect of true strain was examined by fitting stress values to an Arrhenius type constitutive equation, and then considering material constants as a function of strain by using a third-order polynomial equation. Finally, two constitutive models were used to investigate the competency of the strain-dependent constitutive equations to predict the flow stress curves of the studied steel. It was concluded that one model offers better precision on the flow stress values after the peak stress, while the other model gives more accurate results before the peak stress.

  16. Coupled rotor and fuselage equations of motion

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.

    1979-01-01

    The governing equations of motion of a helicopter rotor coupled to a rigid body fuselage are derived. A consistent formulation is used to derive nonlinear periodic coefficient equations of motion which are used to study coupled rotor/fuselage dynamics in forward flight. Rotor/fuselage coupling is documented and the importance of an ordering scheme in deriving nonlinear equations of motion is reviewed. The nature of the final equations and the use of multiblade coordinates are discussed.

  17. Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Part 1: constitutive equations

    NASA Astrophysics Data System (ADS)

    Kari, Leif

    2017-09-01

    The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.

  18. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations.

    PubMed

    Schüler, D; Alonso, S; Torcini, A; Bär, M

    2014-12-01

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.

  19. Adapting a Navier-Stokes code to the ICL-DAP

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1985-01-01

    The results of an experiment are reported, i.c., to adapt a Navier-Stokes code, originally developed on a serial computer, to concurrent processing on the CL Distributed Array Processor (DAP). The algorithm used in solving the Navier-Stokes equations is briefly described. The architecture of the DAP and DAP FORTRAN are also described. The modifications of the algorithm so as to fit the DAP are given and discussed. Finally, performance results are given and conclusions are drawn.

  20. Hybrid Parallelization of Adaptive MHD-Kinetic Module in Multi-Scale Fluid-Kinetic Simulation Suite

    DOE PAGES

    Borovikov, Sergey; Heerikhuisen, Jacob; Pogorelov, Nikolai

    2013-04-01

    The Multi-Scale Fluid-Kinetic Simulation Suite has a computational tool set for solving partially ionized flows. In this paper we focus on recent developments of the kinetic module which solves the Boltzmann equation using the Monte-Carlo method. The module has been recently redesigned to utilize intra-node hybrid parallelization. We describe in detail the redesign process, implementation issues, and modifications made to the code. Finally, we conduct a performance analysis.

  1. A parallel domain decomposition-based implicit method for the Cahn–Hilliard–Cook phase-field equation in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xiang; Yang, Chao; State Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100190

    2015-03-15

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracymore » (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.« less

  2. Novel Numerical Approaches to Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Diener, Peter

    2015-04-01

    Loop Quantum Gravity (LQG) is an (as yet incomplete) approach to the quantization of gravity. When applied to symmetry reduced cosmological spacetimes (Loop Quantum Cosmology or LQC) one of the predictions of the theory is that the Big Bang is replaced by a Big Bounce, i.e. a previously existing contracting universe underwent a bounce at finite volume before becoming our expanding universe. The evolution equations of LQC take the form of difference equations (with the discretization given by the theory) that in the large volume limit can be approximated by partial differential equations (PDEs). In this talk I will first discuss some of the unique challenges encountered when trying to numerically solve these difference equations. I will then present some of the novel approaches that have been employed to overcome the challenges. I will here focus primarily on the Chimera scheme that takes advantage of the fact that the LQC difference equations can be approximated by PDEs in the large volume limit. I will finally also briefly discuss some of the results that have been obtained using these numerical techniques by performing simulations in regions of parameter space that were previously unreachable. This work is supported by a grant from the John Templeton Foundation and by NSF grant PHYS1068743.

  3. Research advances and challenges in one-dimensional modeling of secondary settling tanks--a critical review.

    PubMed

    Li, Ben; Stenstrom, M K

    2014-11-15

    Sedimentation is one of the most important processes that determine the performance of the activated sludge process (ASP), and secondary settling tanks (SSTs) have been frequently investigated with the mathematical models for design and operation optimization. Nevertheless their performance is often far from satisfactory. The starting point of this paper is a review of the development of settling theory, focusing on batch settling and the development of flux theory, since they played an important role in the early stage of SST investigation. The second part is an explicit review of the established 1-D SST models, including the relevant physical law, various settling behaviors (hindered, transient, and compression settling), the constitutive functions, and their advantages and disadvantages. The third part is a discussion of numerical techniques required to solve the governing equation, which is usually a partial differential equation. Finally, the most important modeling challenges, such as settleability description, settling behavior understanding, are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. CFD comparison with centrifugal compressor measurements on a wide operating range

    NASA Astrophysics Data System (ADS)

    Le Sausse, P.; Fabrie, P.; Arnou, D.; Clunet, F.

    2013-04-01

    Centrifugal compressors are widely used in industrial applications thanks to their high efficiency. They are able to provide a wide operating range before reaching the flow barrier or surge limits. Performances and range are described by compressor maps obtained experimentally. After a description of performance test rig, this article compares measured centrifugal compressor performances with computational fluid dynamics results. These computations are performed at steady conditions with R134a refrigerant as fluid. Navier-Stokes equations, coupled with k-ɛ turbulence model, are solved by the commercial software ANSYS-CFX by means of volume finite method. Input conditions are varied in order to calculate several speed lines. Theoretical isentropic efficiency and theoretical surge line are finally compared to experimental data.

  5. General airplane performance

    NASA Technical Reports Server (NTRS)

    Rockfeller, W C

    1939-01-01

    Equations have been developed for the analysis of the performance of the ideal airplane, leading to an approximate physical interpretation of the performance problem. The basic sea-level airplane parameters have been generalized to altitude parameters and a new parameter has been introduced and physically interpreted. The performance analysis for actual airplanes has been obtained in terms of the equivalent ideal airplane in order that the charts developed for use in practical calculations will for the most part apply to any type of engine-propeller combination and system of control, the only additional material required consisting of the actual engine and propeller curves for propulsion unit. Finally, a more exact method for the calculation of the climb characteristics for the constant-speed controllable propeller is presented in the appendix.

  6. MPF: A portable message passing facility for shared memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Malony, Allen D.; Reed, Daniel A.; Mcguire, Patrick J.

    1987-01-01

    The design, implementation, and performance evaluation of a message passing facility (MPF) for shared memory multiprocessors are presented. The MPF is based on a message passing model conceptually similar to conversations. Participants (parallel processors) can enter or leave a conversation at any time. The message passing primitives for this model are implemented as a portable library of C function calls. The MPF is currently operational on a Sequent Balance 21000, and several parallel applications were developed and tested. Several simple benchmark programs are presented to establish interprocess communication performance for common patterns of interprocess communication. Finally, performance figures are presented for two parallel applications, linear systems solution, and iterative solution of partial differential equations.

  7. Time domain viscoelastic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard

    2017-06-01

    Viscous attenuation can have a strong impact on seismic wave propagation, but it is rarely taken into account in full waveform inversion (FWI). When viscoelasticity is considered in time domain FWI, the displacement formulation of the wave equation is usually used instead of the popular velocity-stress formulation. However, inversion schemes rely on the adjoint equations, which are quite different for the velocity-stress formulation than for the displacement formulation. In this paper, we apply the adjoint state method to the isotropic viscoelastic wave equation in the velocity-stress formulation based on the generalized standard linear solid rheology. By applying linear transformations to the wave equation before deriving the adjoint state equations, we obtain two symmetric sets of partial differential equations for the forward and adjoint variables. The resulting sets of equations only differ by a sign change and can be solved by the same numerical implementation. We also investigate the crosstalk between parameter classes (velocity and attenuation) of the viscoelastic equation. More specifically, we show that the attenuation levels can be used to recover the quality factors of P and S waves, but that they are very sensitive to velocity errors. Finally, we present a synthetic example of viscoelastic FWI in the context of monitoring CO2 geological sequestration. We show that FWI based on our formulation can indeed recover P- and S-wave velocities and their attenuation levels when attenuation is high enough. Both changes in velocity and attenuation levels recovered with FWI can be used to track the CO2 plume during and after injection. Further studies are required to evaluate the performance of viscoelastic FWI on real data.

  8. The Evolution of Finite Amplitude Wavetrains in Plane Channel Flow

    NASA Technical Reports Server (NTRS)

    Hewitt, R. E.; Hall, P.

    1996-01-01

    We consider a viscous incompressible fluid flow driven between two parallel plates by a constant pressure gradient. The flow is at a finite Reynolds number, with an 0(l) disturbance in the form of a traveling wave. A phase equation approach is used to discuss the evolution of slowly varying fully nonlinear two dimensional wavetrains. We consider uniform wavetrains in detail, showing that the development of a wavenumber perturbation is governed by Burgers equation in most cases. The wavenumber perturbation theory, constructed using the phase equation approach for a uniform wavetrain, is shown to be distinct from an amplitude perturbation expansion about the periodic flow. In fact we show that the amplitude equation contains only linear terms and is simply the heat equation. We review, briefly, the well known dynamics of Burgers equation, which imply that both shock structures and finite time singularities of the wavenumber perturbation can occur with respect to the slow scales. Numerical computations have been performed to identify areas of the (wavenumber, Reynolds number, energy) neutral surface for which each of these possibilities can occur. We note that the evolution equations will breakdown under certain circumstances, in particular for a weakly nonlinear secondary flow. Finally we extend the theory to three dimensions and discuss the limit of a weak spanwise dependence for uniform wavetrains, showing that two functions are required to describe the evolution. These unknowns are a phase and a pressure function which satisfy a pair of linearly coupled partial differential equations. The results obtained from applying the same analysis to the fully three dimensional problem are included as an appendix.

  9. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    NASA Astrophysics Data System (ADS)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  10. A New Twisting Somersault: 513XD

    NASA Astrophysics Data System (ADS)

    Tong, William; Dullin, Holger R.

    2017-12-01

    We present the mathematical framework of an athlete modelled as a system of coupled rigid bodies to simulate platform and springboard diving. Euler's equations of motion are generalised to non-rigid bodies and are then used to innovate a new dive sequence that in principle can be performed by real-world athletes. We begin by assuming that shape changes are instantaneous so that the equations of motion simplify enough to be solved analytically, and then use this insight to present a new dive (513XD) consisting of 1.5 somersaults and five twists using realistic shape changes. Finally, we demonstrate the phenomenon of converting pure somersaulting motion into pure twisting motion by using a sequence of impulsive shape changes, which may have applications in other fields such as space aeronautics.

  11. Numerical simulation of an electrothermal deicer pad. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Marano, J. J.

    1983-01-01

    A numerical simulation is developed to investigate the removal of ice from composite aircraft blades by means of electrothermal deicing. The model considers one dimensional, unsteady state heat transfer in the composite blade-ice body. The heat conduction equations are approximated by using the Crank-Nicolson finite difference scheme, and the phase change in the ice layer is handled using the Enthalpy method. To solve the system of equations which result, Gauss-Seidel iteration is used. The simulation computes the temperature profile in the composite blade-ice body, as well as the movement of the ice-water interface, as a function of time. This information can be used to evaluate deicer performance. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  12. Cartan symmetries and global dynamical systems analysis in a higher-order modified teleparallel theory

    NASA Astrophysics Data System (ADS)

    Karpathopoulos, L.; Basilakos, S.; Leon, G.; Paliathanasis, A.; Tsamparlis, M.

    2018-07-01

    In a higher-order modified teleparallel theory cosmological we present analytical cosmological solutions. In particular we determine forms of the unknown potential which drives the scalar field such that the field equations form a Liouville integrable system. For the determination of the conservation laws we apply the Cartan symmetries. Furthermore, inspired from our solutions, a toy model is studied and it is shown that it can describe the Supernova data, while at the same time introduces dark matter components in the Hubble function. When the extra matter source is a stiff fluid then we show how analytical solutions for Bianchi I universes can be constructed from our analysis. Finally, we perform a global dynamical analysis of the field equations by using variables different from that of the Hubble-normalization.

  13. MALBEC: a new CUDA-C ray-tracer in general relativity

    NASA Astrophysics Data System (ADS)

    Quiroga, G. D.

    2018-06-01

    A new CUDA-C code for tracing orbits around non-charged black holes is presented. This code, named MALBEC, take advantage of the graphic processing units and the CUDA platform for tracking null and timelike test particles in Schwarzschild and Kerr. Also, a new general set of equations that describe the closed circular orbits of any timelike test particle in the equatorial plane is derived. These equations are extremely important in order to compare the analytical behavior of the orbits with the numerical results and verify the correct implementation of the Runge-Kutta algorithm in MALBEC. Finally, other numerical tests are performed, demonstrating that MALBEC is able to reproduce some well-known results in these metrics in a faster and more efficient way than a conventional CPU implementation.

  14. New method to generate the solutions of the reduced Einstein equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou Bo-Yu; Li Wei

    In this paper, we present a new transformation in the solution space of the Ernst equation and investigate the relationship between the solutions of the Ernst equation and our transformation. We show that the Ernst equation is invariant under such a transformation; i.e., our transformation can be used to generate the new solutions of the Ernst equation from the old ones. Finally, we discuss the relationship between the Virasoro algebra and this transformation.

  15. Three-Dimensional Viscous Alternating Direction Implicit Algorithm and Strategies for Shape Optimization

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Baysal, Oktay

    1997-01-01

    A gradient-based shape optimization based on quasi-analytical sensitivities has been extended for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin-Layer Navier-Stokes (TLNS) equations. Initially, the viscous laminar flow analysis for a wing has been compared with an independent computational fluid dynamics (CFD) code which has been extensively validated. The new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4 with coarse- and fine-grid based computations performed with Euler and TLNS equations. The influence of the initial constraints on the geometry and aerodynamics of the optimized shape has been explored. Various final shapes generated for an identical initial problem formulation but with different optimization path options (coarse or fine grid, Euler or TLNS), have been aerodynamically evaluated via a common fine-grid TLNS-based analysis. The initial constraint conditions show significant bearing on the optimization results. Also, the results demonstrate that to produce an aerodynamically efficient design, it is imperative to include the viscous physics in the optimization procedure with the proper resolution. Based upon the present results, to better utilize the scarce computational resources, it is recommended that, a number of viscous coarse grid cases using either a preconditioned bi-conjugate gradient (PbCG) or an alternating-direction-implicit (ADI) method, should initially be employed to improve the optimization problem definition, the design space and initial shape. Optimized shapes should subsequently be analyzed using a high fidelity (viscous with fine-grid resolution) flow analysis to evaluate their true performance potential. Finally, a viscous fine-grid-based shape optimization should be conducted, using an ADI method, to accurately obtain the final optimized shape.

  16. Developing A New Predictive Dispersion Equation Based on Tidal Average (TA) Condition in Alluvial Estuaries

    NASA Astrophysics Data System (ADS)

    Anak Gisen, Jacqueline Isabella; Nijzink, Remko C.; Savenije, Hubert H. G.

    2014-05-01

    Dispersion mathematical representation of tidal mixing between sea water and fresh water in The definition of dispersion somehow remains unclear as it is not directly measurable. The role of dispersion is only meaningful if it is related to the appropriate temporal and spatial scale of mixing, which are identified as the tidal period, tidal excursion (longitudinal), width of estuary (lateral) and mixing depth (vertical). Moreover, the mixing pattern determines the salt intrusion length in an estuary. If a physically based description of the dispersion is defined, this would allow the analytical solution of the salt intrusion problem. The objective of this study is to develop a predictive equation for estimating the dispersion coefficient at tidal average (TA) condition, which can be applied in the salt intrusion model to predict the salinity profile for any estuary during different events. Utilizing available data of 72 measurements in 27 estuaries (including 6 recently studied estuaries in Malaysia), regressions analysis has been performed with various combinations of dimensionless parameters . The predictive dispersion equations have been developed for two different locations, at the mouth D0TA and at the inflection point D1TA (where the convergence length changes). Regressions have been carried out with two separated datasets: 1) more reliable data for calibration; and 2) less reliable data for validation. The combination of dimensionless ratios that give the best performance is selected as the final outcome which indicates that the dispersion coefficient is depending on the tidal excursion, tidal range, tidal velocity amplitude, friction and the Richardson Number. A limitation of the newly developed equation is that the friction is generally unknown. In order to compensate this problem, further analysis has been performed adopting the hydraulic model of Cai et. al. (2012) to estimate the friction and depth. Keywords: dispersion, alluvial estuaries, mixing, salt intrusion, predictive equation

  17. Modeling mass transfer and reaction of dilute solutes in a ternary phase system by the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Fu, Yu-Hang; Bai, Lin; Luo, Kai-Hong; Jin, Yong; Cheng, Yi

    2017-04-01

    In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.

  18. The Master Equation for Two-Level Accelerated Systems at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Tomazelli, J. L.; Cunha, R. O.

    2016-10-01

    In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.

  19. A Variational Assimilation Method for Satellite and Conventional Data: Development of Basic Model for Diagnosis of Cyclone Systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Scott, Robert W.; Chen, J.

    1991-01-01

    A summary is presented of the progress toward the completion of a comprehensive diagnostic objective analysis system based upon the calculus of variations. The approach was to first develop the objective analysis subject to the constraints that the final product satisfies the five basic primitive equations for a dry inviscid atmosphere: the two nonlinear horizontal momentum equations, the continuity equation, the hydrostatic equation, and the thermodynamic equation. Then, having derived the basic model, there would be added to it the equations for moist atmospheric processes and the radiative transfer equation.

  20. A dynamic response model for pressure sensors in continuum and high Knudsen number flows with large temperature gradients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.

    1996-01-01

    This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.

  1. Object-oriented philosophy in designing adaptive finite-element package for 3D elliptic deferential equations

    NASA Astrophysics Data System (ADS)

    Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.

    2007-12-01

    Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.

  2. Magnitude error bounds for sampled-data frequency response obtained from the truncation of an infinite series, and compensator improvement program

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.

    1972-01-01

    The frequency response method of analyzing control system performance is discussed, and the difficulty of obtaining the sampled frequency response of the continuous system is considered. An upper bound magnitude error equation is obtained which yields reasonable estimates of the actual error. Finalization of the compensator improvement program is also reported, and the program was used to design compensators for Saturn 5/S1-C dry workshop and Saturn 5/S1-C Skylab.

  3. The Empirical Derivation of Equations for Predicting Subjective Textual Information. Final Report.

    ERIC Educational Resources Information Center

    Kauffman, Dan; And Others

    A study was made to derive an equation for predicting the "subjective" textual information contained in a text of material written in the English language. Specifically, this investigation describes, by a mathematical equation, the relationship between the "subjective" information content of written textual material and the relative number of…

  4. Delayed Anaerobic Threshold in Heart Failure Patients With Atrial Fibrillation.

    PubMed

    Palermo, Pietro; Magrì, Damiano; Sciomer, Susanna; Stefanini, Elisa; Agalbato, Cecilia; Compagnino, Elisa; Chircu, Cristina M; Maffessanti, Francesco; Teodoru, Minodora; Agostoni, Piergiuseppe

    2016-01-01

    To assess whether atrial fibrillation (AF) in heart failure (HF) affects oxygen uptake at anaerobic threshold ((Equation is included in full-text article.)O2 AT) and heart rate (HR) kinetics. A total of 15 patients with HF and AF and 18 with HF and sinus rhythm (SR) performed a maximal incremental and 2 constant workload cycle ergometer cardiopulmonary exercise tests (below and above AT, at 25% and 75% of maximal workload, respectively). At constant workload tests, kinetics of (Equation is included in full-text article.)O2 and HR were assessed by calculating time constant (τ). HF patients with AF showed a similar peak (Equation is included in full-text article.)O2 to those with SR (16.7 ± 4.5 mL/kg/min vs 16.6 ± 3.9 mL/kg/min). However, (Equation is included in full-text article.)O2 AT (11.3 ± 2.9 mL/kg/min vs 9.3 ± 2.8 mL/kg/min; P < .05), peak HR (149 ± 18.8 bpm vs 116.4 ± 20.4 bpm; P < .001), HR AT (125.3 ± 19.1 bpm vs 90.3 ± 15.5 bpm; P < .001), and HR increase during exercise were greater in HF patients with AF. Finally, τHR and τ(Equation is included in full-text article.)O2 below and above AT were not significantly different. In HF patients with AF, despite a similar peak (Equation is included in full-text article.)O2 compared with patients with HF and SR, (Equation is included in full-text article.)O2 AT is higher because of a higher HR and a greater HR increase during exercise. One postulated mechanism would be a greater cardiac output increase at the beginning of exercise in HF patients with AF. The delayed AT generates uncertainty about the meaning of a (Equation is included in full-text article.)O2 value at AT in HF patients with AF, because a higher AT is usually associated with better performance and a better prognosis.

  5. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  6. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE PAGES

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.; ...

    2018-02-05

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  7. Predictive Variables of Half-Marathon Performance for Male Runners.

    PubMed

    Gómez-Molina, Josué; Ogueta-Alday, Ana; Camara, Jesus; Stickley, Christoper; Rodríguez-Marroyo, José A; García-López, Juan

    2017-06-01

    The aims of this study were to establish and validate various predictive equations of half-marathon performance. Seventy-eight half-marathon male runners participated in two different phases. Phase 1 (n = 48) was used to establish the equations for estimating half-marathon performance, and Phase 2 (n = 30) to validate these equations. Apart from half-marathon performance, training-related and anthropometric variables were recorded, and an incremental test on a treadmill was performed, in which physiological (VO 2max , speed at the anaerobic threshold, peak speed) and biomechanical variables (contact and flight times, step length and step rate) were registered. In Phase 1, half-marathon performance could be predicted to 90.3% by variables related to training and anthropometry (Equation 1), 94.9% by physiological variables (Equation 2), 93.7% by biomechanical parameters (Equation 3) and 96.2% by a general equation (Equation 4). Using these equations, in Phase 2 the predicted time was significantly correlated with performance (r = 0.78, 0.92, 0.90 and 0.95, respectively). The proposed equations and their validation showed a high prediction of half-marathon performance in long distance male runners, considered from different approaches. Furthermore, they improved the prediction performance of previous studies, which makes them a highly practical application in the field of training and performance.

  8. Undergraduate paramedic students cannot do drug calculations.

    PubMed

    Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett

    2012-01-01

    Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they 'did not have any drug calculations issues'. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment.

  9. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schüler, D.; Alonso, S.; Bär, M.

    2014-12-15

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexistingmore » static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.« less

  10. The vibroacoustic response and sound absorption performance of multilayer, microperforated rib-stiffened plates

    NASA Astrophysics Data System (ADS)

    Zhou, Haian; Wang, Xiaoming; Wu, Huayong; Meng, Jianbing

    2017-10-01

    The vibroacoustic response and sound absorption performance of a structure composed of multilayer plates and one rigid back wall are theoretically analyzed. In this structure, all plates are two-dimensional, microperforated, and periodically rib-stiffened. To investigate such a structural system, semianalytical models of one-layer and multilayer plate structures considering the vibration effects are first developed. Then approaches of the space harmonic method and Fourier transforms are applied to a one-layer plate, and finally the cascade connection method is utilized for a multilayer plate structure. Based on fundamental acoustic formulas, the vibroacoustic responses of microperforated stiffened plates are expressed as functions of a series of harmonic amplitudes of plate displacement, which are then solved by employing the numerical truncation method. Applying the inverse Fourier transform, wave propagation, and linear addition properties, the equations of the sound pressures and absorption coefficients for the one-layer and multilayer stiffened plates in physical space are finally derived. Using numerical examples, the effects of the most important physical parameters—for example, the perforation ratio of the plate, sound incident angles, and periodical rib spacing—on sound absorption performance are examined. Numerical results indicate that the sound absorption performance of the studied structure is effectively enhanced by the flexural vibration of the plate in water. Finally, the proposed approaches are validated by comparing the results of stiffened plates of the present work with solutions from previous studies.

  11. Distorting general relativity: gravity's rainbow and f(R) theories at work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garattini, Remo, E-mail: Remo.Garattini@unibg.it

    2013-06-01

    We compute the Zero Point Energy in a spherically symmetric background combining the high energy distortion of Gravity's Rainbow with the modification induced by a f(R) theory. Here f(R) is a generic analytic function of the Ricci curvature scalar R in 4D and in 3D. The explicit calculation is performed for a Schwarzschild metric. Due to the spherically symmetric property of the Schwarzschild metric we can compare the effects of the modification induced by a f(R) theory in 4D and in 3D. We find that the final effect of the combined theory is to have finite quantities that shift themore » Zero Point Energy. In this context we setup a Sturm-Liouville problem with the cosmological constant considered as the associated eigenvalue. The eigenvalue equation is a reformulation of the Wheeler-DeWitt equation which is analyzed by means of a variational approach based on gaussian trial functionals. With the help of a canonical decomposition, we find that the relevant contribution to one loop is given by the graviton quantum fluctuations around the given background. A final discussion on the connection of our result with the observed cosmological constant is also reported.« less

  12. Repeated retrieval practice and item difficulty: does criterion learning eliminate item difficulty effects?

    PubMed

    Vaughn, Kalif E; Rawson, Katherine A; Pyc, Mary A

    2013-12-01

    A wealth of previous research has established that retrieval practice promotes memory, particularly when retrieval is successful. Although successful retrieval promotes memory, it remains unclear whether successful retrieval promotes memory equally well for items of varying difficulty. Will easy items still outperform difficult items on a final test if all items have been correctly recalled equal numbers of times during practice? In two experiments, normatively difficult and easy Lithuanian-English word pairs were learned via test-restudy practice until each item had been correctly recalled a preassigned number of times (from 1 to 11 correct recalls). Despite equating the numbers of successful recalls during practice, performance on a delayed final cued-recall test was lower for difficult than for easy items. Experiment 2 was designed to diagnose whether the disadvantage for difficult items was due to deficits in cue memory, target memory, and/or associative memory. The results revealed a disadvantage for the difficult versus the easy items only on the associative recognition test, with no differences on cue recognition, and even an advantage on target recognition. Although successful retrieval enhanced memory for both difficult and easy items, equating retrieval success during practice did not eliminate normative item difficulty differences.

  13. On regularizing the MCTDH equations of motion

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Dieter; Wang, Haobin

    2018-03-01

    The Multiconfiguration Time-Dependent Hartree (MCTDH) approach leads to equations of motion (EOM) which become singular when there are unoccupied so-called single-particle functions (SPFs). Starting from a Hartree product, all SPFs, except the first one, are unoccupied initially. To solve the MCTDH-EOMs numerically, one therefore has to remove the singularity by a regularization procedure. Usually the inverse of a density matrix is regularized. Here we argue and show that regularizing the coefficient tensor, which in turn regularizes the density matrix as well, leads to an improved performance of the EOMs. The initially unoccupied SPFs are rotated faster into their "correct direction" in Hilbert space and the final results are less sensitive to the choice of the value of the regularization parameter. For a particular example (a spin-boson system studied with a transformed Hamiltonian), we could even show that only with the new regularization scheme could one obtain correct results. Finally, in Appendix A, a new integration scheme for the MCTDH-EOMs developed by Lubich and co-workers is discussed. It is argued that this scheme does not solve the problem of the unoccupied natural orbitals because this scheme ignores the latter and does not propagate them at all.

  14. Stable boundary conditions and difference schemes for Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Dutt, P.

    1985-01-01

    The Navier-Stokes equations can be viewed as an incompletely elliptic perturbation of the Euler equations. By using the entropy function for the Euler equations as a measure of energy for the Navier-Stokes equations, it was possible to obtain nonlinear energy estimates for the mixed initial boundary value problem. These estimates are used to derive boundary conditions which guarantee L2 boundedness even when the Reynolds number tends to infinity. Finally, a new difference scheme for modelling the Navier-Stokes equations in multidimensions for which it is possible to obtain discrete energy estimates exactly analogous to those we obtained for the differential equation was proposed.

  15. Predictive Variables of Half-Marathon Performance for Male Runners

    PubMed Central

    Gómez-Molina, Josué; Ogueta-Alday, Ana; Camara, Jesus; Stickley, Christoper; Rodríguez-Marroyo, José A.; García-López, Juan

    2017-01-01

    The aims of this study were to establish and validate various predictive equations of half-marathon performance. Seventy-eight half-marathon male runners participated in two different phases. Phase 1 (n = 48) was used to establish the equations for estimating half-marathon performance, and Phase 2 (n = 30) to validate these equations. Apart from half-marathon performance, training-related and anthropometric variables were recorded, and an incremental test on a treadmill was performed, in which physiological (VO2max, speed at the anaerobic threshold, peak speed) and biomechanical variables (contact and flight times, step length and step rate) were registered. In Phase 1, half-marathon performance could be predicted to 90.3% by variables related to training and anthropometry (Equation 1), 94.9% by physiological variables (Equation 2), 93.7% by biomechanical parameters (Equation 3) and 96.2% by a general equation (Equation 4). Using these equations, in Phase 2 the predicted time was significantly correlated with performance (r = 0.78, 0.92, 0.90 and 0.95, respectively). The proposed equations and their validation showed a high prediction of half-marathon performance in long distance male runners, considered from different approaches. Furthermore, they improved the prediction performance of previous studies, which makes them a highly practical application in the field of training and performance. Key points The present study obtained four equations involving anthropometric, training, physiological and biomechanical variables to estimate half-marathon performance. These equations were validated in a different population, demonstrating narrows ranges of prediction than previous studies and also their consistency. As a novelty, some biomechanical variables (i.e. step length and step rate at RCT, and maximal step length) have been related to half-marathon performance. PMID:28630571

  16. More on a Functional Equation

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    2006-01-01

    This classroom note presents a final solution for the functional equation: f(xy)=xf(y) + yf(x). The functional equation if formally similar to the familiar product rule of elementary calculus and this similarity prompted its study by Ren et al., who derived some results concerning it. The purpose of this present note is to extend these results and…

  17. Regular and singular pulse and front solutions and possible isochronous behavior in the short-pulse equation: Phase-plane, multi-infinite series and variational approaches

    NASA Astrophysics Data System (ADS)

    Gambino, G.; Tanriver, U.; Guha, P.; Choudhury, A. Ghose; Choudhury, S. Roy

    2015-02-01

    In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddle equilibrium points of the corresponding traveling-wave equations, as well as ensure simultaneous convergence and continuity of the multi-infinite series solutions for the homoclinic/heteroclinic orbits anchored by these saddle points. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. And finally, variational methods are employed to generate families of both regular and embedded solitary wave solutions for the SPE PDE. The technique for obtaining the embedded solitons incorporates several recent generalizations of the usual variational technique and it is thus topical in itself. One unusual feature of the solitary waves derived here is that we are able to obtain them in analytical form (within the assumed ansatz for the trial functions). Thus, a direct error analysis is performed, showing the accuracy of the resulting solitary waves. Given the importance of solitary wave solutions in wave dynamics and information propagation in nonlinear PDEs, as well as the fact that not much is known about solutions of the family of generalized SPE equations considered here, the results obtained are both new and timely.

  18. Quick estimate of oil discovery from gas-condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarem, A.M.

    1966-10-24

    A quick method of estimating the depletion performance of gas-condensate reservoirs is presented by graphical representations. The method is based on correlations reported in the literature and expresses recoverable liquid as function of gas reserves, producing gas-oil ratio, and initial and final reservoir pressures. The amount of recoverable liquid reserves (RLR) under depletion conditions, is estimated from an equation which is given. Where the liquid-reserves are in stock-tank barrels the gas reserves are in Mcf, with the arbitrary constant, N calculated from one graphical representation by dividing fractional oil recovery by the initial gas-oil ratio and multiplying 10U6D for convenience.more » An equation is given for estimating the coefficient C. These factors (N and C) can be determined from the graphical representations. An example calculation is included.« less

  19. Accessing Extreme Equation of State Conditions on the National Ignition Facility 

    DOE PAGES

    Fratanduono, D. E.; Swift, D.; Lazicki, A. E.; ...

    2017-12-01

    An understanding of the structure and composition of the gas giants (e.g., Jupiter and Saturn), terrestrial exoplanets, and stars is intimately tied to our understanding of the equation of state (EOS) of the elements and compounds that make up these astronomical bodies. An EOS is a mathematical relationship that describes the state of matter (i.e., gas, liquid, or solid) using the material properties of temperature, volume, pressure, and internal energy. The EOS characterizes the properties of a state of matter under a given set of physical conditions. Finally, in addition to constraining the composition of planets and stars, accurate EOSmore » models are important for describing astrophysical impacts (and for designing ways to steer asteroids for planetary defense) and for modeling the performance and predicting the effects of projectiles and explosives.« less

  20. Accessing Extreme Equation of State Conditions on the National Ignition Facility 

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fratanduono, D. E.; Swift, D.; Lazicki, A. E.

    An understanding of the structure and composition of the gas giants (e.g., Jupiter and Saturn), terrestrial exoplanets, and stars is intimately tied to our understanding of the equation of state (EOS) of the elements and compounds that make up these astronomical bodies. An EOS is a mathematical relationship that describes the state of matter (i.e., gas, liquid, or solid) using the material properties of temperature, volume, pressure, and internal energy. The EOS characterizes the properties of a state of matter under a given set of physical conditions. Finally, in addition to constraining the composition of planets and stars, accurate EOSmore » models are important for describing astrophysical impacts (and for designing ways to steer asteroids for planetary defense) and for modeling the performance and predicting the effects of projectiles and explosives.« less

  1. Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation

    NASA Astrophysics Data System (ADS)

    Essameldin, Mahmoud; Fleischmann, Friedrich; Henning, Thomas; Lang, Walter

    2017-02-01

    Freeform optical systems are playing an important role in the field of illumination engineering for redistributing the light intensity, because of its capability of achieving accurate and efficient results. The authors have presented the basic idea of the freeform lens design method at the 117th annual meeting of the German Society of Applied Optics (DGAOProceedings). Now, we demonstrate the feasibility of the design method by designing and evaluating a freeform lens. The concepts of luminous intensity mapping, energy conservation and differential equation are combined in designing a lens for non-imaging applications. The required procedures to design a lens including the simulations are explained in detail. The optical performance is investigated by using a numerical simulation of optical ray tracing. For evaluation, the results are compared with another recently published design method, showing the accurate performance of the proposed method using a reduced number of mapping angles. As a part of the tolerance analyses of the fabrication processes, the influence of the light source misalignments (translation and orientation) on the beam-shaping performance is presented. Finally, the importance of considering the extended light source while designing a freeform lens using the proposed method is discussed.

  2. Understanding and Modeling Teams As Dynamical Systems

    PubMed Central

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  3. SIVA/DIVA- INITIAL VALUE ORDINARY DIFFERENTIAL EQUATION SOLUTION VIA A VARIABLE ORDER ADAMS METHOD

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1994-01-01

    The SIVA/DIVA package is a collection of subroutines for the solution of ordinary differential equations. There are versions for single precision and double precision arithmetic. These solutions are applicable to stiff or nonstiff differential equations of first or second order. SIVA/DIVA requires fewer evaluations of derivatives than other variable order Adams predictor-corrector methods. There is an option for the direct integration of second order equations which can make integration of trajectory problems significantly more efficient. Other capabilities of SIVA/DIVA include: monitoring a user supplied function which can be separate from the derivative; dynamically controlling the step size; displaying or not displaying output at initial, final, and step size change points; saving the estimated local error; and reverse communication where subroutines return to the user for output or computation of derivatives instead of automatically performing calculations. The user must supply SIVA/DIVA with: 1) the number of equations; 2) initial values for the dependent and independent variables, integration stepsize, error tolerance, etc.; and 3) the driver program and operational parameters necessary for subroutine execution. SIVA/DIVA contains an extensive diagnostic message library should errors occur during execution. SIVA/DIVA is written in FORTRAN 77 for batch execution and is machine independent. It has a central memory requirement of approximately 120K of 8 bit bytes. This program was developed in 1983 and last updated in 1987.

  4. On the equivalence of the dual-wavelength and polarimetric equations for estimation of the raindrop size distribution

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Liao, Liang

    2006-01-01

    In writing the integral equations for the median mass diameter and particle concentration, or comparable parameters of the raindrop size distribution, it is apparent that when attenuation effects are included, the forms of the equations for polarimetric and dual wavelength radars are identical. In both sets of equations, differences in the backscattering and extinction cross sections appear: in the polarimetric equations, the differences are taken with respect polarization at a fixed frequency while for the dual wavelength equations, the differences are taken with respect to wavelength at a fixed polarization. Because the forms of the equations are the same, the ways in which they can be solved are similar as well. To avoid instabilities in the forward recursion procedure, the equations can be expressed in the form of a final-value. Solving the equations in this way traditionally has required estimates of the path attenuations to the final gate: either the attenuations at horizontal and vertical polarizations at the same frequency or attenuations at two frequencies with the same polarization. This has been done for dual-frequency (air/spaceborne case) and polarimetric radars by the respective use of the surface reference technique and the differential phase shift. An alternative to solving the constrained version of the equations is an iterative procedure recently proposed in which independent estimates of path attenuation are not required. Although the procedure has limitations, it appears to be quite useful. Simulations of the retrievals help clarify the relationship between the constrained and unconstrained approaches and their application to the polarimetric and dual-wavelength equations.

  5. Dynamical property analysis of fractionally damped van der pol oscillator and its application

    NASA Astrophysics Data System (ADS)

    Zhong, Qiuhui; Zhang, Chunrui

    2012-01-01

    In this paper, the fractionally damped van der pol equation was studied. Firstly, the fractionally damped van der pol equation was transformed into a set of integer order equations. Then the Lyapunov exponents diagram was given. Secondly, it was transformed into a set of fractional integral equations and solved by a predictor-corrector method. The time domain diagrams and phase trajectory were used to describe the dynamic behavior. Finally, the fractionally damped van der pol equation was used to detect a weak signal.

  6. Application of mathematical model methods for optimization tasks in construction materials technology

    NASA Astrophysics Data System (ADS)

    Fomina, E. V.; Kozhukhova, N. I.; Sverguzova, S. V.; Fomin, A. E.

    2018-05-01

    In this paper, the regression equations method for design of construction material was studied. Regression and polynomial equations representing the correlation between the studied parameters were proposed. The logic design and software interface of the regression equations method focused on parameter optimization to provide the energy saving effect at the stage of autoclave aerated concrete design considering the replacement of traditionally used quartz sand by coal mining by-product such as argillite. The mathematical model represented by a quadric polynomial for the design of experiment was obtained using calculated and experimental data. This allowed the estimation of relationship between the composition and final properties of the aerated concrete. The surface response graphically presented in a nomogram allowed the estimation of concrete properties in response to variation of composition within the x-space. The optimal range of argillite content was obtained leading to a reduction of raw materials demand, development of target plastic strength of aerated concrete as well as a reduction of curing time before autoclave treatment. Generally, this method allows the design of autoclave aerated concrete with required performance without additional resource and time costs.

  7. A numerical method for solving a nonlinear 2-D optimal control problem with the classical diffusion equation

    NASA Astrophysics Data System (ADS)

    Mamehrashi, K.; Yousefi, S. A.

    2017-02-01

    This paper presents a numerical solution for solving a nonlinear 2-D optimal control problem (2DOP). The performance index of a nonlinear 2DOP is described with a state and a control function. Furthermore, dynamic constraint of the system is given by a classical diffusion equation. It is preferred to use the Ritz method for finding the numerical solution of the problem. The method is based upon the Legendre polynomial basis. By using this method, the given optimisation nonlinear 2DOP reduces to the problem of solving a system of algebraic equations. The benefit of the method is that it provides greater flexibility in which the given initial and boundary conditions of the problem are imposed. Moreover, compared with the eigenfunction method, the satisfactory results are obtained only in a small number of polynomials order. This numerical approach is applicable and effective for such a kind of nonlinear 2DOP. The convergence of the method is extensively discussed and finally two illustrative examples are included to observe the validity and applicability of the new technique developed in the current work.

  8. Solutions of interval type-2 fuzzy polynomials using a new ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani

    2015-10-01

    A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.

  9. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Masood Khalique, Chaudry

    2018-05-01

    In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.

  10. Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham-Broer-Kaup-Like Equations

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Bin; Tian, Shou-Fu; Qin, Chun-Yan; Zhang, Tian-Tian

    2017-03-01

    In this article, a generalised Whitham-Broer-Kaup-Like (WBKL) equations is investigated, which can describe the bidirectional propagation of long waves in shallow water. The equations can be reduced to the dispersive long wave equations, variant Boussinesq equations, Whitham-Broer-Kaup-Like equations, etc. The Lie symmetry analysis method is used to consider the vector fields and optimal system of the equations. The similarity reductions are given on the basic of the optimal system. Furthermore, the power series solutions are derived by using the power series theory. Finally, based on a new theorem of conservation laws, the conservation laws associated with symmetries of this equations are constructed with a detailed derivation.

  11. Performance of bed-load transport equations relative to geomorphic significance: Predicting effective discharge and its transport rate

    Treesearch

    Jeffrey J. Barry; John M. Buffington; Peter Goodwin; John .G. King; William W. Emmett

    2008-01-01

    Previous studies assessing the accuracy of bed-load transport equations have considered equation performance statistically based on paired observations of measured and predicted bed-load transport rates. However, transport measurements were typically taken during low flows, biasing the assessment of equation performance toward low discharges, and because equation...

  12. Performance Parameters Analysis of an XD3P Peugeot Engine Using Artificial Neural Networks (ANN) Concept in MATLAB

    NASA Astrophysics Data System (ADS)

    Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.

    2015-04-01

    The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.

  13. Random matrix models, double-time Painlevé equations, and wireless relaying

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Haq, Nazmus S.; McKay, Matthew R.

    2013-06-01

    This paper gives an in-depth study of a multiple-antenna wireless communication scenario in which a weak signal received at an intermediate relay station is amplified and then forwarded to the final destination. The key quantity determining system performance is the statistical properties of the signal-to-noise ratio (SNR) γ at the destination. Under certain assumptions on the encoding structure, recent work has characterized the SNR distribution through its moment generating function, in terms of a certain Hankel determinant generated via a deformed Laguerre weight. Here, we employ two different methods to describe the Hankel determinant. First, we make use of ladder operators satisfied by orthogonal polynomials to give an exact characterization in terms of a "double-time" Painlevé differential equation, which reduces to Painlevé V under certain limits. Second, we employ Dyson's Coulomb fluid method to derive a closed form approximation for the Hankel determinant. The two characterizations are used to derive closed-form expressions for the cumulants of γ, and to compute performance quantities of engineering interest.

  14. Spacecraft Communications System Verification Using On-Axis Near Field Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Keating, Thomas; Baugh, Mark; Gosselin, R. B.; Lecha, Maria C.; Krebs, Carolyn A. (Technical Monitor)

    2000-01-01

    Determination of the readiness of a spacecraft for launch is a critical requirement. The final assembly of all subsystems must be verified. Testing of a communications system can mostly be done using closed-circuits (cabling to/from test ports), but the final connections to the antenna require radiation tests. The Tropical Rainfall Measuring Mission (TRMM) Project used a readily available 'near-fleld on-axis' equation to predict the values to be used for comparison with those obtained in a test program. Tests were performed in a 'clean room' environment at both Goddard Space Flight Center (GSFC) and in Japan at the Tanegashima Space Center (TnSC) launch facilities. Most of the measured values agreed with the predicted values to within 0.5 dB. This demonstrates that sometimes you can use relatively simple techniques to make antenna performance measurements when use of the 'far field ranges, anechoic chambers, or precision near-field ranges' are neither available nor practical. Test data and photographs are provided.

  15. Characterization of Defects in Scaled Mis Dielectrics with Variable Frequency Charge Pumping

    NASA Astrophysics Data System (ADS)

    Paulsen, Ronald Eugene

    1995-01-01

    Historically, the interface trap has been extensively investigated to determine the effects on device performance. Recently, much attention has been paid to trapping in near-interface oxide traps. Performance of high precision analog circuitry is affected by charge trapping in near-interface oxide traps which produces hysteresis, charge redistribution errors, and dielectric relaxation effects. In addition, the performance of low power digital circuitry, with reduced noise margins, may be drastically affected by the threshold voltage shifts associated with charge trapping in near -interface oxide traps. Since near-interface oxide traps may substantially alter the performance of devices, complete characterization of these defects is necessary. In this dissertation a new characterization technique, variable frequency charge pumping, is introduced which allows charge trapped at the interface to be distinguished from the charge trapped within the oxide. The new experimental technique is an extension of the charge pumping technique to low frequencies such that tunneling may occur from interface traps to near-interface oxide traps. A generalized charge pumping model, based on Shockley-Read-Hall statistics and trap-to-trap tunneling theory, has been developed which allows a more complete characterization of near-interface oxide traps. A pair of coupled differential equations governing the rate of change of occupied interface and near-interface oxide traps have been developed. Due to the experimental conditions in the charge pumping technique the equations may be decoupled, leading to an equation governing the rate of change of occupied interface traps and an equation governing the rate of change of occcupied near-interface oxide traps. Solving the interface trap equation and applying non-steady state charge dynamics leads to an interface trap component of the charge pumping current. In addition, solution to the near-interface oxide trap equation leads to an additional oxide trap component to the charge pumping current. Numerical simulations have been performed to support the analytical development of the generalized charge pumping model. By varying the frequency of the applied charge pumping waveform and monitoring the charge recombined per cycle, the contributions from interface traps may be separated from the contributions of the near-interface oxide traps. The generalized charge pumping model allows characterization of the density and spatial distribution of near-interface oxide traps from this variable frequency charge pumping technique. Characterization of interface and near-interface oxide trap generation has been performed on devices exposed to ionizing radiation, hot electron injection, and high -field/Fowler-Nordheim stressing. Finally, using SONOS nonvolatile memory devices, a framework has been established for experimentally determining not only the spatial distribution of near-interface oxide traps, but also the energetic distribution. An experimental approach, based on tri-level charge pumping, is discussed which allows the energetic distribution of near-interface oxide traps to be determined.

  16. Symmetry Reductions and Group-Invariant Radial Solutions to the n-Dimensional Wave Equation

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Zhao, Songlin

    2018-01-01

    In this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.

  17. Characteristics of steady vibration in a rotating hub-beam system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Liu, Caishan; Ma, Wei

    2016-02-01

    A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.

  18. Instability, rupture and fluctuations in thin liquid films: Theory and computations

    NASA Astrophysics Data System (ADS)

    Gvalani, Rishabh; Duran-Olivencia, Miguel; Kalliadasis, Serafim; Pavliotis, Grigorios

    2017-11-01

    Thin liquid films are ubiquitous in natural phenomena and technological applications. They are commonly studied via deterministic hydrodynamic equations, but thermal fluctuations often play a crucial role that still needs to be understood. An example of this is dewetting, which involves the rupture of a thin liquid film and the formation of droplets. Such a process is thermally activated and requires fluctuations to be taken into account self-consistently. Here we present an analytical and numerical study of a stochastic thin-film equation derived from first principles. We scrutinise the behaviour of the stochastic thin film equation in the limit of perfectly correlated noise along the wall-normal direction. We also perform Monte Carlo simulations of the stochastic equation by adopting a numerical scheme based on a spectral collocation method. The numerical scheme allows us to explore the fluctuating dynamics of the thin film and the behaviour of the system's free energy close to rupture. Finally, we also study the effect of the noise intensity on the rupture time, which is in good agreement with previous works. Imperial College London (ICL) President's PhD Scholarship; European Research Council Advanced Grant No. 247031; EPSRC Grants EP/L025159, EP/L020564, EP/P031587, EP/L024926, and EP/L016230/1.

  19. Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology.

    PubMed

    Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan

    2015-07-01

    Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Dynamical density functional theory for arbitrary-shape colloidal fluids including inertia and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Duran-Olivencia, Miguel A.; Goddard, Ben; Kalliadasis, Serafim

    2015-11-01

    Over the last few decades the classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become a remarkably powerful tool in the study of colloidal fluids. Recently there has been extensive research to generalise all previous DDFTs finally yielding a general DDFT equation (for spherical particles) which takes into account both inertia and hydrodynamic interactions (HI) which strongly influence non-equilibrium properties. The present work will be devoted to a further generalisation of such a framework to systems of anisotropic particles. To this end, the kinetic equation for the Brownian particle distribution function is derived starting from the Liouville equation and making use of Zwanzig's projection-operator techniques. By averaging over all but one particle, a DDFT equation is finally obtained with some similarities to that for spherical colloids. However, there is now an inevitable translational-rotational coupling which affects the diffusivity of asymmetric particles. Lastly, in the overdamped (high friction) limit the theory is notably simplified leading to a DDFT equation which agrees with previous derivations. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  1. Reliable Quantification of the Potential for Equations Based on Spot Urine Samples to Estimate Population Salt Intake: Protocol for a Systematic Review and Meta-Analysis.

    PubMed

    Huang, Liping; Crino, Michelle; Wu, Jason Hy; Woodward, Mark; Land, Mary-Anne; McLean, Rachael; Webster, Jacqui; Enkhtungalag, Batsaikhan; Nowson, Caryl A; Elliott, Paul; Cogswell, Mary; Toft, Ulla; Mill, Jose G; Furlanetto, Tania W; Ilich, Jasminka Z; Hong, Yet Hoi; Cohall, Damian; Luzardo, Leonella; Noboa, Oscar; Holm, Ellen; Gerbes, Alexander L; Senousy, Bahaa; Pinar Kara, Sonat; Brewster, Lizzy M; Ueshima, Hirotsugu; Subramanian, Srinivas; Teo, Boon Wee; Allen, Norrina; Choudhury, Sohel Reza; Polonia, Jorge; Yasuda, Yoshinari; Campbell, Norm Rc; Neal, Bruce; Petersen, Kristina S

    2016-09-21

    Methods based on spot urine samples (a single sample at one time-point) have been identified as a possible alternative approach to 24-hour urine samples for determining mean population salt intake. The aim of this study is to identify a reliable method for estimating mean population salt intake from spot urine samples. This will be done by comparing the performance of existing equations against one other and against estimates derived from 24-hour urine samples. The effects of factors such as ethnicity, sex, age, body mass index, antihypertensive drug use, health status, and timing of spot urine collection will be explored. The capacity of spot urine samples to measure change in salt intake over time will also be determined. Finally, we aim to develop a novel equation (or equations) that performs better than existing equations to estimate mean population salt intake. A systematic review and meta-analysis of individual participant data will be conducted. A search has been conducted to identify human studies that report salt (or sodium) excretion based upon 24-hour urine samples and spot urine samples. There were no restrictions on language, study sample size, or characteristics of the study population. MEDLINE via OvidSP (1946-present), Premedline via OvidSP, EMBASE, Global Health via OvidSP (1910-present), and the Cochrane Library were searched, and two reviewers identified eligible studies. The authors of these studies will be invited to contribute data according to a standard format. Individual participant records will be compiled and a series of analyses will be completed to: (1) compare existing equations for estimating 24-hour salt intake from spot urine samples with 24-hour urine samples, and assess the degree of bias according to key demographic and clinical characteristics; (2) assess the reliability of using spot urine samples to measure population changes in salt intake overtime; and (3) develop a novel equation that performs better than existing equations to estimate mean population salt intake. The search strategy identified 538 records; 100 records were obtained for review in full text and 73 have been confirmed as eligible. In addition, 68 abstracts were identified, some of which may contain data eligible for inclusion. Individual participant data will be requested from the authors of eligible studies. Many equations for estimating salt intake from spot urine samples have been developed and validated, although most have been studied in very specific settings. This meta-analysis of individual participant data will enable a much broader understanding of the capacity for spot urine samples to estimate population salt intake.

  2. Analytical analysis and implementation of a low-speed high-torque permanent magnet vernier in-wheel motor for electric vehicle

    NASA Astrophysics Data System (ADS)

    Li, Jiangui; Wang, Junhua; Zhigang, Zhao; Yan, Weili

    2012-04-01

    In this paper, analytical analysis of the permanent magnet vernier (PMV) is presented. The key is to analytically solve the governing Laplacian/quasi-Poissonian field equations in the motor regions. By using the time-stepping finite element method, the analytical method is verified. Hence, the performances of the PMV machine are quantitatively compared with that of the analytical results. The analytical results agree well with the finite element method results. Finally, the experimental results are given to further show the validity of the analysis.

  3. Iterative algorithms for computing the feedback Nash equilibrium point for positive systems

    NASA Astrophysics Data System (ADS)

    Ivanov, I.; Imsland, Lars; Bogdanova, B.

    2017-03-01

    The paper studies N-player linear quadratic differential games on an infinite time horizon with deterministic feedback information structure. It introduces two iterative methods (the Newton method as well as its accelerated modification) in order to compute the stabilising solution of a set of generalised algebraic Riccati equations. The latter is related to the Nash equilibrium point of the considered game model. Moreover, we derive the sufficient conditions for convergence of the proposed methods. Finally, we discuss two numerical examples so as to illustrate the performance of both of the algorithms.

  4. Faddeev-Jackiw quantization of topological invariants: Euler and Pontryagin classes

    NASA Astrophysics Data System (ADS)

    Escalante, Alberto; Medel-Portugal, C.

    2018-04-01

    The symplectic analysis for the four dimensional Pontryagin and Euler invariants is performed within the Faddeev-Jackiw context. The Faddeev-Jackiw constraints and the generalized Faddeev-Jackiw brackets are reported; we show that in spite of the Pontryagin and Euler classes give rise the same equations of motion, its respective symplectic structures are different to each other. In addition, a quantum state that solves the Faddeev-Jackiw constraints is found, and we show that the quantum states for these invariants are different to each other. Finally, we present some remarks and conclusions.

  5. Modal analysis for Liapunov stability of rotating elastic bodies. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Colin, A. D.

    1973-01-01

    This study consisted of four parallel efforts: (1) modal analyses of elastic continua for Liapunov stability analysis of flexible spacecraft; (2) development of general purpose simulation equations for arbitrary spacecraft; (3) evaluation of alternative mathematical models for elastic components of spacecraft; and (4) examination of the influence of vehicle flexibility on spacecraft attitude control system performance. A complete record is given of achievements under tasks (1) and (3), in the form of technical appendices, and a summary description of progress under tasks two and four.

  6. New variational principles for locating periodic orbits of differential equations.

    PubMed

    Boghosian, Bruce M; Fazendeiro, Luis M; Lätt, Jonas; Tang, Hui; Coveney, Peter V

    2011-06-13

    We present new methods for the determination of periodic orbits of general dynamical systems. Iterative algorithms for finding solutions by these methods, for both the exact continuum case, and for approximate discrete representations suitable for numerical implementation, are discussed. Finally, we describe our approach to the computation of unstable periodic orbits of the driven Navier-Stokes equations, simulated using the lattice Boltzmann equation.

  7. A Novel Blast-mitigation Concept for Light Tactical Vehicles

    DTIC Science & Technology

    2013-01-01

    analysis which utilizes the mass and energy (but not linear momentum ) conservation equations is provided. It should be noted that the identical final...results could be obtained using an analogous analysis which combines the mass and the linear momentum conservation equations. For a calorically...governing mass, linear momentum and energy conservation and heat conduction equations are solved within ABAQUS/ Explicit with a second-order accurate

  8. Computational cost of two alternative formulations of Cahn-Hilliard equations

    NASA Astrophysics Data System (ADS)

    Paszyński, Maciej; Gurgul, Grzegorz; Łoś, Marcin; Szeliga, Danuta

    2018-05-01

    In this paper we propose two formulations of Cahn-Hilliard equations, which have several applications in cancer growth modeling and material science phase-field simulations. The first formulation uses one C4 partial differential equations (PDEs) the second one uses two C2 PDEs. Finally, we compare the computational costs of direct solvers for both formulations, using the refined isogeometric analysis (rIGA) approach.

  9. Exact solutions in 3D new massive gravity.

    PubMed

    Ahmedov, Haji; Aliev, Alikram N

    2011-01-14

    We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the "square root" of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.

  10. Exact Solutions in 3D New Massive Gravity

    NASA Astrophysics Data System (ADS)

    Ahmedov, Haji; Aliev, Alikram N.

    2011-01-01

    We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the “square root” of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.

  11. The Dirac equation in Schwarzschild black hole coupled to a stationary electromagnetic field

    NASA Astrophysics Data System (ADS)

    Al-Badawi, A.; Owaidat, M. Q.

    2017-08-01

    We study the Dirac equation in a spacetime that represents the nonlinear superposition of the Schwarzschild solution to an external, stationary electromagnetic field. The set of equations representing the uncharged Dirac particle in the Newman-Penrose formalism is decoupled into a radial and an angular parts. We obtain exact analytical solutions of the angular equations. We manage to obtain the radial wave equations with effective potentials. Finally, we study the potentials by plotting them as a function of radial distance and examine the effect of the twisting parameter and the frequencies on the potentials.

  12. Cosmic equation of state from combined angular diameter distances: Does the tension with luminosity distances exist?

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Zhu, Zong-Hong

    2014-10-01

    Using relatively complete observational data concerning four angular diameter distance (ADD) measurements and combined SN +GRB observations representing current luminosity distance (LD) data, this paper investigates the compatibility of these two cosmological distances considering three classes of dark energy equation of state (EoS) reconstruction. In particular, we use strongly gravitationally lensed systems from various large systematic gravitational lens surveys and galaxy clusters, which yield the Hubble constant independent ratio between two angular diameter distances Dl s/Ds data. Our results demonstrate that, with more general categories of standard ruler data, ADD and LD data are compatible at 1 σ level. Second, we note that consistency between ADD and LD data is maintained irrespective of the EoS parametrizations: there is a good match between the universally explored Chevalier-Polarski-Linder model and other formulations of cosmic equation of state. Especially for the truncated generalized equation of state (GEoS) model with β =-2 , the conclusions obtained with ADD and LD are almost the same. Finally, statistical analysis of generalized dark energy equation of state performed on four classes of ADD data provides stringent constraints on the EoS parameters w0 , wβ, and β , which suggest that dark energy was a subdominant component at early times. Moreover, the GEoS parametrization with β ≃1 seems to be a more favorable two-parameter model to characterize the cosmic equation of state, because the combined angular diameter distance data (SGL +CBF +BAO +WMAP 9 ) provide the best-fit value β =0.75 1-0.480+0.465 .

  13. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less

  14. Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles

    NASA Astrophysics Data System (ADS)

    Aghababa, Mohammad Pourmahmood; Amrollahi, Mohammad Hossein; Borjkhani, Mehdi

    2012-09-01

    In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a numerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defined. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.

  15. Numerical Simulation of A Right-moving Storm Over France

    NASA Astrophysics Data System (ADS)

    Chancibault, K.; Ducrocq, V.; Lafore, J.-Ph.

    A three-dimensional non-hydrostatic mesoscale model is used to simulate the right- moving storm produced through storm splitting, on 30 may 1999, over northern France. The initial state is provided by the French 3D-var ARPEGE analysis and the simuation is performed with two interactive nested domains. The aim of this study is to improve our understanding of such storm dynamics. A vor- ticity analysis has been carried out, with emphasis on stretching and tilting terms of the vertical vorticity equation, thanks to the backward trajectories. The baroclinic produc- tion and stretching terms of the horizontal vorticity equation have also been studied to understand the interaction between the horizontal vorticity and a mesoscale thermal line. Finally, the spatial and temporal variation of the Storm Relative Environmental Helicity has been examined. Most of the results compare well with previous results on right-moving storms ob- tained from theoritical or numerical studies from idealized homogeneous base state.

  16. A computationally efficient modelling of laminar separation bubbles

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.

    1988-01-01

    The goal of this research is to accurately predict the characteristics of the laminar separation bubble and its effects on airfoil performance. To this end, a model of the bubble is under development and will be incorporated in the analysis section of the Eppler and Somers program. As a first step in this direction, an existing bubble model was inserted into the program. It was decided to address the problem of the short bubble before attempting the prediction of the long bubble. In the second place, an integral boundary-layer method is believed more desirable than a finite difference approach. While these two methods achieve similar prediction accuracy, finite-difference methods tend to involve significantly longer computer run times than the integral methods. Finally, as the boundary-layer analysis in the Eppler and Somers program employs the momentum and kinetic energy integral equations, a short-bubble model compatible with these equations is most preferable.

  17. Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure

    NASA Astrophysics Data System (ADS)

    Bescond, M.; Logoteta, D.; Michelini, F.; Cavassilas, N.; Yan, T.; Yangui, A.; Lannoo, M.; Hirakawa, K.

    2018-02-01

    We study by means of full quantum simulations the operating principle and performance of a semiconductor heterostructure refrigerator combining resonant tunneling filtering and thermionic emission. Our model takes into account the coupling between the electric and thermal currents by self-consistently solving the transport equations within the non-equilibrium Green’s function framework and the heat equation. We show that the device can achieve relatively high cooling power values, while in the considered implementation, the maximum lattice temperature drop is severely limited by the thermal conductivity of the constituting materials. In such an out-of-equilibrium structure, we then emphasize the significant deviation of the phonon temperature from its electronic counterpart which can vary over several hundred Kelvin. The interplay between those two temperatures and the impact on the electrochemical potential is also discussed. Finally, viable options toward an optimization of the device are proposed.

  18. Deterministic multidimensional nonuniform gap sampling.

    PubMed

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Lattice Boltzmann simulation of antiplane shear loading of a stationary crack

    NASA Astrophysics Data System (ADS)

    Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf

    2018-01-01

    In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.

  20. Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure.

    PubMed

    Bescond, M; Logoteta, D; Michelini, F; Cavassilas, N; Yan, T; Yangui, A; Lannoo, M; Hirakawa, K

    2018-02-14

    We study by means of full quantum simulations the operating principle and performance of a semiconductor heterostructure refrigerator combining resonant tunneling filtering and thermionic emission. Our model takes into account the coupling between the electric and thermal currents by self-consistently solving the transport equations within the non-equilibrium Green's function framework and the heat equation. We show that the device can achieve relatively high cooling power values, while in the considered implementation, the maximum lattice temperature drop is severely limited by the thermal conductivity of the constituting materials. In such an out-of-equilibrium structure, we then emphasize the significant deviation of the phonon temperature from its electronic counterpart which can vary over several hundred Kelvin. The interplay between those two temperatures and the impact on the electrochemical potential is also discussed. Finally, viable options toward an optimization of the device are proposed.

  1. Eigenvalue equation and core-mode cutoff of weakly guiding tapered fiber as three layer optical waveguide and used as biochemical sensor.

    PubMed

    Linslal, C L; Mohan, P M S; Halder, A; Gangopadhyay, T K

    2012-06-01

    The core-mode cutoff plays a major role in evanescent field absorption based sensors. A method has been proposed to calculate the core-mode cutoff by solving the eigenvalue equations of a weakly guiding three layer optical waveguide graphically. The variation of normalized waveguide parameter (V) is also calculated with different wavelengths at core-mode cutoff. At the first step, theoretical analysis of tapered fiber parameters has been performed for core-mode cutoff. The taper angle of an adiabatic tapered fiber is also analyzed using the length-scale criterion. Secondly, single-mode tapered fiber has been developed to make a precision sensor element suitable for chemical detection. Finally, the sensor element has been used to detect absorption peak of ethylenediamine. Results are presented in which an absorption peak at 1540 nm is observed.

  2. Verification of CFD model of plane jet used for smoke free zone separation in case of fire

    NASA Astrophysics Data System (ADS)

    Krajewski, Grzegorz; Suchy, Przemysław

    2018-01-01

    This paper presents the basic information about the use of air curtains in fire safety, as a barrier for heat and smoke. Mathematical model of an air curtain presented hereallows estimation of velocity of air in various points of space, including the velocity of air from an angled air curtain. Presented equations show how various parameters influence the performance of air curtain. Further, authors present results of their air curtain performance. Authors of that article have done tests in a real scale model. Tests results were used to verify chosen turbulence model and boundary conditions. Results of new studies are presented with regards to the performance of air curtain in case of fire, and final remarks on its design are given.

  3. Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Number

    NASA Technical Reports Server (NTRS)

    Xiao, X.; Edwards, J. R.; Hassan, H. A.

    2004-01-01

    Present simulation of turbulent flows involving shock wave/boundary layer interaction invariably overestimates heat flux by almost a factor of two. One possible reason for such a performance is a result of the fact that the turbulence models employed make use of Morkovin's hypothesis. This hypothesis is valid for non-hypersonic Mach numbers and moderate rates of heat transfer. At hypersonic Mach numbers, high rates of heat transfer exist in regions where shock wave/boundary layer interactions are important. As a result, one should not expect traditional turbulence models to yield accurate results. The goal of this investigation is to explore the role of a variable Prandtl number formulation in predicting heat flux in flows dominated by strong shock wave/boundary layer interactions. The intended applications involve external flows in the absence of combustion such as those encountered in supersonic inlets. This can be achieved by adding equations for the temperature variance and its dissipation rate. Such equations can be derived from the exact Navier-Stokes equations. Traditionally, modeled equations are based on the low speed energy equation where the pressure gradient term and the term responsible for energy dissipation are ignored. It is clear that such assumptions are not valid for hypersonic flows. The approach used here is based on the procedure used in deriving the k-zeta model, in which the exact equations that governed k, the variance of velocity, and zeta, the variance of vorticity, were derived and modeled. For the variable turbulent Prandtl number, the exact equations that govern the temperature variance and its dissipation rate are derived and modeled term by term. The resulting set of equations are free of damping and wall functions and are coordinate-system independent. Moreover, modeled correlations are tensorially consistent and invariant under Galilean transformation. The final set of equations will be given in the paper.

  4. An evaluation of fluid bed drying of aqueous granulations.

    PubMed

    Hlinak, A J; Saleki-Gerhardt, A

    2000-01-01

    The purpose of the work described was twofold: (a) to apply heat and mass balance approaches to evaluate the fluid bed drying cycle of an aqueous granulation, and (b) to determine the effect of the temperature and relative humidity of the drying air on the ability to meet a predetermined moisture content specification. Water content determinations were performed using Karl Fischer titration, and Computrac and Mark 1 moisture analyzers. The water vapor sorption isotherms were measured using a gravimetric moisture sorption apparatus with vacuum-drying capability. Temperature, relative humidity, and air flow were measured during the drying cycle of a production-scale fluid bed dryer. Heat and mass balance equations were used to calculate the evaporation rates. Evaporation rates calculated from heat and mass balance equations agreed well with the experimental data, whereas equilibrium moisture content values provided useful information for determination of the upper limit for inlet air humidity. Increasing the air flow rate and inlet temperature reduced the drying time through the effect on the primary driving force. As expected, additional drying of granules during the equilibration period did not show a significant impact on reducing the final moisture content of granules. Reducing the drying temperature resulted in measurement of higher equilibrium moisture content for the granules, which was in good agreement with the water vapor sorption data. Heat and mass balance equations can be used to successfully model the fluid bed drying cycle of aqueous granulations. The water vapor sorption characteristics of granules dictate the final moisture content at a given temperature and relative humidity.

  5. Undergraduate paramedic students cannot do drug calculations

    PubMed Central

    Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett

    2012-01-01

    BACKGROUND: Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. METHODS: A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. RESULTS: The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they ‘did not have any drug calculations issues’. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. CONCLUSIONS: This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment. PMID:25215067

  6. Prediction of unsteady transonic flow around missile configurations

    NASA Technical Reports Server (NTRS)

    Nixon, D.; Reisenthel, P. H.; Torres, T. O.; Klopfer, G. H.

    1990-01-01

    This paper describes the preliminary development of a method for predicting the unsteady transonic flow around missiles at transonic and supersonic speeds, with the final goal of developing a computer code for use in aeroelastic calculations or during maneuvers. The basic equations derived for this method are an extension of those derived by Klopfer and Nixon (1989) for steady flow and are a subset of the Euler equations. In this approach, the five Euler equations are reduced to an equation similar to the three-dimensional unsteady potential equation, and a two-dimensional Poisson equation. In addition, one of the equations in this method is almost identical to the potential equation for which there are well tested computer codes, allowing the development of a prediction method based in part on proved technology.

  7. Development of equations to predict the influence of floor space on average daily gain, average daily feed intake and gain : feed ratio of finishing pigs.

    PubMed

    Flohr, J R; Dritz, S S; Tokach, M D; Woodworth, J C; DeRouchey, J M; Goodband, R D

    2018-05-01

    Floor space allowance for pigs has substantial effects on pig growth and welfare. Data from 30 papers examining the influence of floor space allowance on the growth of finishing pigs was used in a meta-analysis to develop alternative prediction equations for average daily gain (ADG), average daily feed intake (ADFI) and gain : feed ratio (G : F). Treatment means were compiled in a database that contained 30 papers for ADG and 28 papers for ADFI and G : F. The predictor variables evaluated were floor space (m2/pig), k (floor space/final BW0.67), Initial BW, Final BW, feed space (pigs per feeder hole), water space (pigs per waterer), group size (pigs per pen), gender, floor type and study length (d). Multivariable general linear mixed model regression equations were used. Floor space treatments within each experiment were the observational and experimental unit. The optimum equations to predict ADG, ADFI and G : F were: ADG, g=337.57+(16 468×k)-(237 350×k 2)-(3.1209×initial BW (kg))+(2.569×final BW (kg))+(71.6918×k×initial BW (kg)); ADFI, g=833.41+(24 785×k)-(388 998×k 2)-(3.0027×initial BW (kg))+(11.246×final BW (kg))+(187.61×k×initial BW (kg)); G : F=predicted ADG/predicted ADFI. Overall, the meta-analysis indicates that BW is an important predictor of ADG and ADFI even after computing the constant coefficient k, which utilizes final BW in its calculation. This suggests including initial and final BW improves the prediction over using k as a predictor alone. In addition, the analysis also indicated that G : F of finishing pigs is influenced by floor space allowance, whereas individual studies have concluded variable results.

  8. Infinite Conservation Laws, Continuous Symmetries and Invariant Solutions of Some Discrete Integrable Equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Feng; Zhang, Xiang-Zhi; Dong, Huan-He

    2017-12-01

    Two new shift operators are introduced for which a few differential-difference equations are generated by applying the R-matrix method. These equations can be reduced to the standard Toda lattice equation and (1+1)-dimensional and (2+1)-dimensional Toda-type equations which have important applications in hydrodynamics, plasma physics, and so on. Based on these consequences, we deduce the Hamiltonian structures of two discrete systems. Finally, we obtain some new infinite conservation laws of two discrete equations and employ Lie-point transformation group to obtain some continuous symmetries and part of invariant solutions for the (1+1) and (2+1)-dimensional Toda-type equations. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11

  9. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review.

    PubMed

    Earley, Amy; Miskulin, Dana; Lamb, Edmund J; Levey, Andrew S; Uhlig, Katrin

    2012-06-05

    Clinical laboratories are increasingly reporting estimated glomerular filtration rate (GFR) by using serum creatinine assays traceable to a standard reference material. To review the performance of GFR estimating equations to inform the selection of a single equation by laboratories and the interpretation of estimated GFR by clinicians. A systematic search of MEDLINE, without language restriction, between 1999 and 21 October 2011. Cross-sectional studies in adults that compared the performance of 2 or more creatinine-based GFR estimating equations with a reference GFR measurement. Eligible equations were derived or reexpressed and validated by using creatinine measurements traceable to the standard reference material. Reviewers extracted data on study population characteristics, measured GFR, creatinine assay, and equation performance. Eligible studies compared the MDRD (Modification of Diet in Renal Disease) Study and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equations or modifications thereof. In 12 studies in North America, Europe, and Australia, the CKD-EPI equation performed better at higher GFRs (approximately >60 mL/min per 1.73 m(2)) and the MDRD Study equation performed better at lower GFRs. In 5 of 8 studies in Asia and Africa, the equations were modified to improve their performance by adding a coefficient derived in the local population or removing a coefficient. Methods of GFR measurement and study populations were heterogeneous. Neither the CKD-EPI nor the MDRD Study equation is optimal for all populations and GFR ranges. Using a single equation for reporting requires a tradeoff to optimize performance at either higher or lower GFR ranges. A general practice and public health perspective favors the CKD-EPI equation. Kidney Disease: Improving Global Outcomes.

  10. Using phenomenological models for forecasting the 2015 Ebola challenge.

    PubMed

    Pell, Bruce; Kuang, Yang; Viboud, Cecile; Chowell, Gerardo

    2018-03-01

    The rising number of novel pathogens threatening the human population has motivated the application of mathematical modeling for forecasting the trajectory and size of epidemics. We summarize the real-time forecasting results of the logistic equation during the 2015 Ebola challenge focused on predicting synthetic data derived from a detailed individual-based model of Ebola transmission dynamics and control. We also carry out a post-challenge comparison of two simple phenomenological models. In particular, we systematically compare the logistic growth model and a recently introduced generalized Richards model (GRM) that captures a range of early epidemic growth profiles ranging from sub-exponential to exponential growth. Specifically, we assess the performance of each model for estimating the reproduction number, generate short-term forecasts of the epidemic trajectory, and predict the final epidemic size. During the challenge the logistic equation consistently underestimated the final epidemic size, peak timing and the number of cases at peak timing with an average mean absolute percentage error (MAPE) of 0.49, 0.36 and 0.40, respectively. Post-challenge, the GRM which has the flexibility to reproduce a range of epidemic growth profiles ranging from early sub-exponential to exponential growth dynamics outperformed the logistic growth model in ascertaining the final epidemic size as more incidence data was made available, while the logistic model underestimated the final epidemic even with an increasing amount of data of the evolving epidemic. Incidence forecasts provided by the generalized Richards model performed better across all scenarios and time points than the logistic growth model with mean RMS decreasing from 78.00 (logistic) to 60.80 (GRM). Both models provided reasonable predictions of the effective reproduction number, but the GRM slightly outperformed the logistic growth model with a MAPE of 0.08 compared to 0.10, averaged across all scenarios and time points. Our findings further support the consideration of transmission models that incorporate flexible early epidemic growth profiles in the forecasting toolkit. Such models are particularly useful for quickly evaluating a developing infectious disease outbreak using only case incidence time series of the early phase of an infectious disease outbreak. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (3).

    PubMed

    Murase, Kenya

    2016-01-01

    In this issue, simultaneous differential equations were introduced. These differential equations are often used in the field of medical physics. The methods for solving them were also introduced, which include Laplace transform and matrix methods. Some examples were also introduced, in which Laplace transform and matrix methods were applied to solving simultaneous differential equations derived from a three-compartment kinetic model for analyzing the glucose metabolism in tissues and Bloch equations for describing the behavior of the macroscopic magnetization in magnetic resonance imaging.In the next (final) issue, partial differential equations and various methods for solving them will be introduced together with some examples in medical physics.

  12. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    NASA Astrophysics Data System (ADS)

    Elliott, T. S.; Majdalani, J.

    2014-11-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.

  13. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  14. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE PAGES

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2017-09-28

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  15. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  16. Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes

    ERIC Educational Resources Information Center

    Gauthier, N.

    2004-01-01

    An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…

  17. Fluctuations of thermodynamic quantities calculated from the fundamental equation of thermodynamics

    NASA Astrophysics Data System (ADS)

    Yan, Zijun; Chen, Jincan

    1992-02-01

    On the basis of the probability distribution of the various values of the fluctuation and the fundamental equation of thermodynamics of any given system, a simple and useful method of calculating the fluctuations is presented. By using the method, the fluctuations of thermodynamic quantities can be directly determined from the fundamental equation of thermodynamics. Finally, some examples are given to illustrate the use of the method.

  18. Research on Nonlinear Dynamical Systems.

    DTIC Science & Technology

    1983-01-10

    Applied Math., to appear. [26] Variational inequalities and flow in porous media, LCDS’Lecture Notes, Brown University #LN 82-1, July 1982. [27] On...approximation schemes for parabolic and hyperbolic systems of partial differential equations, including higher order equations of elasticity based on the...51,58,59,63,64,69]. Finally, stability and bifurcation in parabolic partial differential equations is the focus of [64,65,67,72,73]. In addition to these broad

  19. Influence of plasticity models upon the outcome of simulated hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Thomas, John N.

    1994-07-01

    This paper describes the results of numerical simulations of aluminum upon aluminum impacts which were performed with the CTH hydrocode to determine the effect plasticity formulations upon the final perforation size in the targets. The targets were 1 mm and 5 mm thick plates and the projectiles were 10 mm by 10 mm right circular cylinders. Both targets and projectiles were represented as 2024 aluminium alloy. The hydrocode simulations were run in a two-dimensional cylindrical geometry. Normal impacts at velocites between 5 and 15 km/s were simulated. Three isotropic yield stress models were explored in the simulations: an elastic-perfectly plastic model and the Johnson-Cook and Steinberg-Guinan-Lund viscoplastic models. The fracture behavior was modeled by a simple tensile pressure criterion. The simulations show that using the three strength models resulted in only minor differences in the final perforation diameter. The simulation results were used to construct an equation to predict the final hole size resulting from impacts on thin targets.

  20. Simulation of the Beating Heart Based on Physically Modeling aDeformable Balloon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-07-18

    The motion of the beating heart is complex and createsartifacts in SPECT and x-ray CT images. Phantoms such as the JaszczakDynamic Cardiac Phantom are used to simulate cardiac motion forevaluationof acquisition and data processing protocols used for cardiacimaging. Two concentric elastic membranes filled with water are connectedto tubing and pump apparatus for creating fluid flow in and out of theinner volume to simulate motion of the heart. In the present report, themovement of two concentric balloons is solved numerically in order tocreate a computer simulation of the motion of the moving membranes in theJaszczak Dynamic Cardiac Phantom. A system ofmore » differential equations,based on the physical properties, determine the motion. Two methods aretested for solving the system of differential equations. The results ofboth methods are similar providing a final shape that does not convergeto a trivial circular profile. Finally,a tomographic imaging simulationis performed by acquiring static projections of the moving shape andreconstructing the result to observe motion artifacts. Two cases aretaken into account: in one case each projection angle is sampled for ashort time interval and the other case is sampled for a longer timeinterval. The longer sampling acquisition shows a clear improvement indecreasing the tomographic streaking artifacts.« less

  1. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  2. Optical solitons, complexitons, Gaussian soliton and power series solutions of a generalized Hirota equation

    NASA Astrophysics Data System (ADS)

    Mao, Jin-Jin; Tian, Shou-Fu; Zou, Li; Zhang, Tian-Tian

    2018-05-01

    In this paper, we consider a generalized Hirota equation with a bounded potential, which can be used to describe the propagation properties of optical soliton solutions. By employing the hypothetical method and the sub-equation method, we construct the bright soliton, dark soliton, complexitons and Gaussian soliton solutions of the Hirota equation. Moreover, we explicitly derive the power series solutions with their convergence analysis. Finally, we provide the graphical analysis of such soliton solutions in order to better understand their dynamical behavior.

  3. Mathematical Tools for Image Reconstruction

    DTIC Science & Technology

    1991-07-01

    l.Diffuse tomography 2.Concentrating a signal in the physical and spectral domains. 3.New explicit solutions for the Kadomtsev - Petviashvili equation 4...the case of the Schroedinger equation it was possible to "beat Heisenberg" with piecewise linear potentials. Finally let me say that the paper Some

  4. Wigner distribution functions for complex dynamical systems: the emergence of the Wigner-Boltzmann equation.

    PubMed

    Sels, Dries; Brosens, Fons

    2013-10-01

    The equation of motion for the reduced Wigner function of a system coupled to an external quantum system is presented for the specific case when the external quantum system can be modeled as a set of harmonic oscillators. The result is derived from the Wigner function formulation of the Feynman-Vernon influence functional theory. It is shown how the true self-energy for the equation of motion is connected with the influence functional for the path integral. Explicit expressions are derived in terms of the bare Wigner propagator. Finally, we show under which approximations the resulting equation of motion reduces to the Wigner-Boltzmann equation.

  5. Partial polarization: a comprehensive student exercise

    NASA Astrophysics Data System (ADS)

    Topasna, Gregory A.; Topasna, Daniela M.

    2015-10-01

    We present a comprehensive student exercise in partial polarization. Students are first introduced to the concept of partial polarization using Fresnel Equations. Next, MATHCAD is used to compute and graph the reflectance for dielectrics materials. The students then design and construct a simple, easy to use collimated light source for their experiment, which is performed on an optical breadboard using optical components typically found in an optics lab above the introductory level. The students obtain reflection data that is compared with their model by a nonlinear least square fit using EXCEL. Sources of error and uncertainty are discussed and students present a final written report. In this one exercise students learn how an experiment is constructed "from the ground up". They gain practical experience on data modeling and analysis, working with optical equipment, machining and construction, and preparing a final presentation.

  6. Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com; Mahalingam, A.; Uthayakumar, A.

    We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons,more » study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.« less

  7. A novel double loop control model design for chemical unstable processes.

    PubMed

    Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He

    2014-03-01

    In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods. © 2013 ISA Published by ISA All rights reserved.

  8. Adaptive nonlinear control for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Black, William S.

    We present the background and motivation for ground vehicle autonomy, and focus on uses for space-exploration. Using a simple design example of an autonomous ground vehicle we derive the equations of motion. After providing the mathematical background for nonlinear systems and control we present two common methods for exactly linearizing nonlinear systems, feedback linearization and backstepping. We use these in combination with three adaptive control methods: model reference adaptive control, adaptive sliding mode control, and extremum-seeking model reference adaptive control. We show the performances of each combination through several simulation results. We then consider disturbances in the system, and design nonlinear disturbance observers for both single-input-single-output and multi-input-multi-output systems. Finally, we show the performance of these observers with simulation results.

  9. On homogeneous second order linear general quantum difference equations.

    PubMed

    Faried, Nashat; Shehata, Enas M; El Zafarani, Rasha M

    2017-01-01

    In this paper, we prove the existence and uniqueness of solutions of the β -Cauchy problem of second order β -difference equations [Formula: see text] [Formula: see text], in a neighborhood of the unique fixed point [Formula: see text] of the strictly increasing continuous function β , defined on an interval [Formula: see text]. These equations are based on the general quantum difference operator [Formula: see text], which is defined by [Formula: see text], [Formula: see text]. We also construct a fundamental set of solutions for the second order linear homogeneous β -difference equations when the coefficients are constants and study the different cases of the roots of their characteristic equations. Finally, we drive the Euler-Cauchy β -difference equation.

  10. Methods for estimating selected low-flow frequency statistics and mean annual flow for ungaged locations on streams in North Georgia

    USGS Publications Warehouse

    Gotvald, Anthony J.

    2017-01-13

    The U.S. Geological Survey, in cooperation with the Georgia Department of Natural Resources, Environmental Protection Division, developed regional regression equations for estimating selected low-flow frequency and mean annual flow statistics for ungaged streams in north Georgia that are not substantially affected by regulation, diversions, or urbanization. Selected low-flow frequency statistics and basin characteristics for 56 streamgage locations within north Georgia and 75 miles beyond the State’s borders in Alabama, Tennessee, North Carolina, and South Carolina were combined to form the final dataset used in the regional regression analysis. Because some of the streamgages in the study recorded zero flow, the final regression equations were developed using weighted left-censored regression analysis to analyze the flow data in an unbiased manner, with weights based on the number of years of record. The set of equations includes the annual minimum 1- and 7-day average streamflow with the 10-year recurrence interval (referred to as 1Q10 and 7Q10), monthly 7Q10, and mean annual flow. The final regional regression equations are functions of drainage area, mean annual precipitation, and relief ratio for the selected low-flow frequency statistics and drainage area and mean annual precipitation for mean annual flow. The average standard error of estimate was 13.7 percent for the mean annual flow regression equation and ranged from 26.1 to 91.6 percent for the selected low-flow frequency equations.The equations, which are based on data from streams with little to no flow alterations, can be used to provide estimates of the natural flows for selected ungaged stream locations in the area of Georgia north of the Fall Line. The regression equations are not to be used to estimate flows for streams that have been altered by the effects of major dams, surface-water withdrawals, groundwater withdrawals (pumping wells), diversions, or wastewater discharges. The regression equations should be used only for ungaged sites with drainage areas between 1.67 and 576 square miles, mean annual precipitation between 47.6 and 81.6 inches, and relief ratios between 0.146 and 0.607; these are the ranges of the explanatory variables used to develop the equations. An attempt was made to develop regional regression equations for the area of Georgia south of the Fall Line by using the same approach used during this study for north Georgia; however, the equations resulted with high average standard errors of estimates and poorly predicted flows below 0.5 cubic foot per second, which may be attributed to the karst topography common in that area.The final regression equations developed from this study are planned to be incorporated into the U.S. Geological Survey StreamStats program. StreamStats is a Web-based geographic information system that provides users with access to an assortment of analytical tools useful for water-resources planning and management, and for engineering design applications, such as the design of bridges. The StreamStats program provides streamflow statistics and basin characteristics for U.S. Geological Survey streamgage locations and ungaged sites of interest. StreamStats also can compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in Georgia.

  11. Towards a wave theory of charged beam transport: A collection of thoughts

    NASA Technical Reports Server (NTRS)

    Dattoli, G.; Mari, C.; Torre, A.

    1992-01-01

    We formulate in a rigorous way a wave theory of charged beam linear transport. The Wigner distribution function is introduced and provides the link with classical mechanics. Finally, the von Neumann equation is shown to coincide with the Liouville equation for the nonlinear transport.

  12. More on Chemical Reaction Balancing.

    ERIC Educational Resources Information Center

    Swinehart, D. F.

    1985-01-01

    A previous article stated that only the matrix method was powerful enough to balance a particular chemical equation. Shows how this equation can be balanced without using the matrix method. The approach taken involves writing partial mathematical reactions and redox half-reactions, and combining them to yield the final balanced reaction. (JN)

  13. Body composition prediction equations based on deuterium oxide dilution method in Mexican children: a national study.

    PubMed

    Ramírez, E; Valencia, M E; Bourges, H; Espinosa, T; Moya-Camarena, S Y; Salazar, G; Alemán-Mateo, H

    2012-10-01

    Obesity and undernutrition co-exist in many regions of Mexico. However, accurate assessments are difficult because epidemiological data on body composition are not available. The aim of this study was to facilitate assessments of body composition in Mexican school children of different geographical regions and ethnicity by developing equations for bioelectrical impedance and anthropometry based on deuterium oxide dilution. We evaluated 336 subjects (143 belonged to six major indigenous groups) from Northern, Central and Southern Mexico. We measured height (Ht), weight (Wt), tricipital skinfold (Tricp-SKF) and resistance (R) based on a bioimpedance analysis (BIA). Fat-free mass (FFM) and fat mass (FM) were estimated from measurements of total body water with the deuterium dilution technique. The final BIA equation was FFM (kg)=0.661 × Ht²/R+0.200 × Wt-0.320. The R² was 0.96; the square root of the mean square error (SRMSE) was 1.39 kg. The final anthropometric equation was FM (kg)=-1.067 × sex+0.458 × Tricp-SKF+0.263 × Wt-5.407. The R² was 0.91; SRMSE was 1.60 kg. The BIA equation had a bias of 0.095 kg and precision of 1.43 kg. The anthropometric equation had a bias of 0.047 kg and precision of 1.58 kg. We validated two equations for evaluating body composition in Mexican indigenous and non-indigenous children and youth from three main regions of the country. These equations provided reliable estimates and will promote a better understanding of both obesity and undernutrition.

  14. Using instrumental variables to estimate a Cox's proportional hazards regression subject to additive confounding

    PubMed Central

    Tosteson, Tor D.; Morden, Nancy E.; Stukel, Therese A.; O'Malley, A. James

    2014-01-01

    The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox's proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival. PMID:25506259

  15. Using instrumental variables to estimate a Cox's proportional hazards regression subject to additive confounding.

    PubMed

    MacKenzie, Todd A; Tosteson, Tor D; Morden, Nancy E; Stukel, Therese A; O'Malley, A James

    2014-06-01

    The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox's proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival.

  16. Aeroelastic effects in multirotor vehicles. Part 2: Methods of solution and results illustrating coupled rotor/body aeromechanical stability

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.

    1987-01-01

    This report is a sequel to the earlier report titled, Aeroelastic Effects in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part 1: Formulation of Equations of Motion (NASA CR-3822). The trim and stability equations are presented for a twin rotor system with a buoyant envelope and an underslung load attached to a flexible supporting structure. These equations are specialized for the case of hovering flight. A stability analysis, for such a vehicle with 31 degrees of freedom, yields a total of 62 eigenvalues. A careful parametric study is performed to identify the various blade and vehicle modes, as well as the coupling between various modes. Finally, it is shown that the coupled rotor/vehicle stability analysis provides information on both the aeroelastic stability as well as complete vehicle dynamic stability. Also presented are the results of an analytical study aimed at predicting the aeromechanical stability of a single rotor helicopter in ground resonance. The theoretical results are found to be in good agreement with the experimental results, thereby validating the analytical model for the dynamics of the coupled rotor/support system.

  17. Modeling interfacial area transport in multi-fluid systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarbro, Stephen Lee

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacialmore » area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.« less

  18. Application of recursive Gibbs-Appell formulation in deriving the equations of motion of N-viscoelastic robotic manipulators in 3D space using Timoshenko Beam Theory

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Shafei, A. M.

    2013-02-01

    The goal of this paper is to describe the application of Gibbs-Appell (G-A) formulation and the assumed modes method to the mathematical modeling of N-viscoelastic link manipulators. The paper's focus is on obtaining accurate and complete equations of motion which encompass the most related structural properties of lightweight elastic manipulators. In this study, two important damping mechanisms, namely, the structural viscoelasticity (Kelvin-Voigt) effect (as internal damping) and the viscous air effect (as external damping) have been considered. To include the effects of shear and rotational inertia, the assumption of Timoshenko beam (TB) theory (TBT) has been applied. Gravity, torsion, and longitudinal elongation effects have also been included in the formulations. To systematically derive the equations of motion and improve the computational efficiency, a recursive algorithm has been used in the modeling of the system. In this algorithm, all the mathematical operations are carried out by only 3×3 and 3×1 matrices. Finally, a computational simulation for a manipulator with two elastic links is performed in order to verify the proposed method.

  19. Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob

    2004-01-01

    Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS

  20. Method based on the Laplace equations to reconstruct the river terrain for two-dimensional hydrodynamic numerical modeling

    NASA Astrophysics Data System (ADS)

    Lai, Ruixun; Wang, Min; Yang, Ming; Zhang, Chao

    2018-02-01

    The accuracy of the widely-used two-dimensional hydrodynamic numerical model depends on the quality of the river terrain model, particularly in the main channel. However, in most cases, the bathymetry of the river channel is difficult or expensive to obtain in the field, and there is a lack of available data to describe the geometry of the river channel. We introduce a method that originates from the grid generation with the elliptic equation to generate streamlines of the river channel. The streamlines are numerically solved with the Laplace equations. In the process, streamlines in the physical domain are first computed in a computational domain, and then transformed back to the physical domain. The interpolated streamlines are integrated with the surrounding topography to reconstruct the entire river terrain model. The approach was applied to a meandering reach in the Qinhe River, which is a tributary in the middle of the Yellow River, China. Cross-sectional validation and the two-dimensional shallow-water equations are used to test the performance of the river terrain generated. The results show that the approach can reconstruct the river terrain using the data from measured cross-sections. Furthermore, the created river terrain can maintain a geometrical shape consistent with the measurements, while generating a smooth main channel. Finally, several limitations and opportunities for future research are discussed.

  1. The rate of bubble growth in a superheated liquid in pool boiling

    NASA Astrophysics Data System (ADS)

    Abdollahi, Mohammad Reza; Jafarian, Mehdi; Jamialahmadi, Mohammad

    2017-12-01

    A semi-empirical model for the estimation of the rate of bubble growth in nucleate pool boiling is presented, considering a new equation to estimate the temperature history of the bubble in the bulk of liquid. The conservation equations of energy, mass and momentum have been firstly derived and solved analytically. The present analytical model of the bubble growth predicts that the radius of the bubble grows as a function of √{t}.{\\operatorname{erf}}( N√{t}) , while so far the bubble growth rate has been mainly correlated to √{t} in the previous studies. In the next step, the analytical solutions were used to develop a new semi-empirical equation. To achieve this, firstly the analytical solution were non-dimensionalised and then the experimental data, available in the literature, were applied to tune the dimensionless coefficients appeared in the dimensionless equation. Finally, the reliability of the proposed semi-empirical model was assessed through comparison of the model predictions with the available experimental data in the literature, which were not applied in the tuning of the dimensionless parameters of the model. The comparison of the model predictions with other proposed models in the literature was also performed. These comparisons show that this model enables more accurate predictions than previously proposed models with a deviation of less than 10% in a wide range of operating conditions.

  2. Numerical investigation of a modified family of centered schemes applied to multiphase equations with nonconservative sources

    NASA Astrophysics Data System (ADS)

    Crochet, M. W.; Gonthier, K. A.

    2013-12-01

    Systems of hyperbolic partial differential equations are frequently used to model the flow of multiphase mixtures. These equations often contain sources, referred to as nozzling terms, that cannot be posed in divergence form, and have proven to be particularly challenging in the development of finite-volume methods. Upwind schemes have recently shown promise in properly resolving the steady wave solution of the associated multiphase Riemann problem. However, these methods require a full characteristic decomposition of the system eigenstructure, which may be either unavailable or computationally expensive. Central schemes, such as the Kurganov-Tadmor (KT) family of methods, require minimal characteristic information, which makes them easily applicable to systems with an arbitrary number of phases. However, the proper implementation of nozzling terms in these schemes has been mathematically ambiguous. The primary objectives of this work are twofold: first, an extension of the KT family of schemes is proposed that formally accounts for the nonconservative nozzling sources. This modification results in a semidiscrete form that retains the simplicity of its predecessor and introduces little additional computational expense. Second, this modified method is applied to multiple, but equivalent, forms of the multiphase equations to perform a numerical study by solving several one-dimensional test problems. Both ideal and Mie-Grüneisen equations of state are used, with the results compared to an analytical solution. This study demonstrates that the magnitudes of the resulting numerical errors are sensitive to the form of the equations considered, and suggests an optimal form to minimize these errors. Finally, a separate modification of the wave propagation speeds used in the KT family is also suggested that can reduce the extent of numerical diffusion in multiphase flows.

  3. Gyrofluid theory and simulation of electromagnetic turbulence and transport in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Snyder, Philip Benjamin

    1999-11-01

    Turbulence and transport in toroidal plasmas is studied via the development of an electromagnetic gyrofluid model, and its implementation in realistic nonlinear simulations. This work extends earlier electrostatic gyrofluid models to include magnetic fluctuations and non-adiabatic passing electron dynamics. A new set of electron fluid equations is derived from the drift kinetic equation, via an expansion in the electron-ion mass ratio. These electron equations include descriptions of linear and nonlinear drift motion, Landau damping, and electron-ion collisions. Ion moment equations are derived from the electromagnetic gyrokinetic equation, and the gyrokinetic Poisson's Equation and Ampere's Law close the system. The model is benchmarked with linear gyrokinetic calculations, and good agreement is found for both the finite-β ion temperature gradient (ITG) and kinetic Alfvén ballooning (KBM) instabilities. Nonlinear simulations of ITG and KBM-driven turbulence are performed in toroidal flux tube geometry at a range of values of plasma β, and electromagnetic effects are found to significantly impact turbulent heat and particle transport. At low values of β, transport is reduced, as expected due to the finite-β stabilization of the ITG mode. However, as β approaches the Ideal-MHD stability threshold, transport can increase. In the presence of dissipation provided by a model of electron Landau damping and electron-ion collisions, this transport increase can be quite dramatic. Finally, the results of the simulations are compared to tokamak experiments, and encouraging agreement is found with measured density and temperature fluctuation spectra. Direct comparisons of transport fluxes reveal that electromagnetic effects are important at characteristic edge parameters, bringing predicted fluxes more closely in line with observations.

  4. Calculations of transonic boattail flow at small angle of attack

    NASA Technical Reports Server (NTRS)

    Nakayama, A.; Chow, W. L.

    1979-01-01

    A transonic flow past a boattailed afterbody under a small angle of attack was examined. It is known that the viscous effect offers significant modifications of the pressure distribution on the afterbody. Thus, the formulation for the inviscid flow was based on the consideration of a flow past a nonaxisymmetric body. The full three dimensional potential equation was solved through numerical relaxation, and quasi-axisymmetric boundary layer calculations were performed to estimate the displacement effect. It was observed again that the viscous effects were not negligible. The trend of the final results agreed well with the experimental data.

  5. A family of wave equations with some remarkable properties.

    PubMed

    da Silva, Priscila Leal; Freire, Igor Leite; Sampaio, Júlio Cesar Santos

    2018-02-01

    We consider a family of homogeneous nonlinear dispersive equations with two arbitrary parameters. Conservation laws are established from the point symmetries and imply that the whole family admits square integrable solutions. Recursion operators are found for two members of the family investigated. For one of them, a Lax pair is also obtained, proving its complete integrability. From the Lax pair, we construct a Miura-type transformation relating the original equation to the Korteweg-de Vries (KdV) equation. This transformation, on the other hand, enables us to obtain solutions of the equation from the kernel of a Schrödinger operator with potential parametrized by the solutions of the KdV equation. In particular, this allows us to exhibit a kink solution to the completely integrable equation from the 1-soliton solution of the KdV equation. Finally, peakon-type solutions are also found for a certain choice of the parameters, although for this particular case the equation is reduced to a homogeneous second-order nonlinear evolution equation.

  6. First-order reactant in homogeneous turbulence before the final period of decay. [contaminant fluctuations in chemical reaction

    NASA Technical Reports Server (NTRS)

    Kumar, P.; Patel, S. R.

    1974-01-01

    A method is described for studying theoretically the concentration fluctuations of a dilute contaminate undergoing a first-order chemical reaction. The method is based on Deissler's (1958) theory for homogeneous turbulence for times before the final period, and it follows the approach used by Loeffler and Deissler (1961) to study temperature fluctuations in homogeneous turbulence. Four-point correlation equations are obtained; it is assumed that terms containing fifth-order correlation are very small in comparison with those containing fourth-order correlations, and can therefore be neglected. A spectrum equation is obtained in a form which can be solved numerically, yielding the decay law for the concentration fluctuations in homogeneous turbulence for the period much before the final period of decay.

  7. Evolution of basic equations for nearshore wave field

    PubMed Central

    ISOBE, Masahiko

    2013-01-01

    In this paper, a systematic, overall view of theories for periodic waves of permanent form, such as Stokes and cnoidal waves, is described first with their validity ranges. To deal with random waves, a method for estimating directional spectra is given. Then, various wave equations are introduced according to the assumptions included in their derivations. The mild-slope equation is derived for combined refraction and diffraction of linear periodic waves. Various parabolic approximations and time-dependent forms are proposed to include randomness and nonlinearity of waves as well as to simplify numerical calculation. Boussinesq equations are the equations developed for calculating nonlinear wave transformations in shallow water. Nonlinear mild-slope equations are derived as a set of wave equations to predict transformation of nonlinear random waves in the nearshore region. Finally, wave equations are classified systematically for a clear theoretical understanding and appropriate selection for specific applications. PMID:23318680

  8. Design of distributed PID-type dynamic matrix controller for fractional-order systems

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Zhang, Ridong

    2018-01-01

    With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.

  9. Distributed Optimal Consensus Control for Multiagent Systems With Input Delay.

    PubMed

    Zhang, Huaipin; Yue, Dong; Zhao, Wei; Hu, Songlin; Dou, Chunxia; Huaipin Zhang; Dong Yue; Wei Zhao; Songlin Hu; Chunxia Dou; Hu, Songlin; Zhang, Huaipin; Dou, Chunxia; Yue, Dong; Zhao, Wei

    2018-06-01

    This paper addresses the problem of distributed optimal consensus control for a continuous-time heterogeneous linear multiagent system subject to time varying input delays. First, by discretization and model transformation, the continuous-time input-delayed system is converted into a discrete-time delay-free system. Two delicate performance index functions are defined for these two systems. It is shown that the performance index functions are equivalent and the optimal consensus control problem of the input-delayed system can be cast into that of the delay-free system. Second, by virtue of the Hamilton-Jacobi-Bellman (HJB) equations, an optimal control policy for each agent is designed based on the delay-free system and a novel value iteration algorithm is proposed to learn the solutions to the HJB equations online. The proposed adaptive dynamic programming algorithm is implemented on the basis of a critic-action neural network (NN) structure. Third, it is proved that local consensus errors of the two systems and weight estimation errors of the critic-action NNs are uniformly ultimately bounded while the approximated control policies converge to their target values. Finally, two simulation examples are presented to illustrate the effectiveness of the developed method.

  10. Closed-form Static Analysis with Inertia Relief and Displacement-Dependent Loads Using a MSC/NASTRAN DMAP Alter

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.

    1995-01-01

    Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.

  11. Probabilistic numerics and uncertainty in computations

    PubMed Central

    Hennig, Philipp; Osborne, Michael A.; Girolami, Mark

    2015-01-01

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321

  12. Probabilistic numerics and uncertainty in computations.

    PubMed

    Hennig, Philipp; Osborne, Michael A; Girolami, Mark

    2015-07-08

    We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

  13. Simulation Model for the Piper PA-30 Light Maneuverable Aircraft in the Final Approach

    DOT National Transportation Integrated Search

    1971-07-01

    The report describes the Piper PA-30 'Twin Comanche' aircraft and a representative autopilot during the final approach configuration for simulation purposes. The aircraft is modeled by linearized six-degree-of-freedom perturbation equations reference...

  14. Analytic Development of a Reference Profile for the First Entry in a Skip Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Garcia-Llama, Eduardo

    2010-01-01

    This note shows that a feasible reference drag profile for the first entry portion of a skip entry can be generated as a polynomial expression of the velocity. The coefficients of that polynomial are found through the resolution of a system composed of m + 1 equations, where m is the degree of the drag polynomial. It has been shown that a minimum of five equations (m = 4) are required to establish the range and the initial and final conditions on velocity and flight path angle. It has been shown that at least one constraint on the trajectory can be imposed through the addition of one extra equation in the system, which must be accompanied by the increase in the degree of the drag polynomial. In order to simplify the resolution of the system of equations, the drag was considered as being a probability density function of the velocity, with the velocity as a distribution function of the drag. Combining this notion with the introduction of empirically derived constants, it has been shown that the system of equations required to generate the drag profile can be successfully reduced to a system of linear algebraic equations. For completeness, the resulting drag profiles have been flown using the feedback linearization method of differential geometric control as a guidance law with the error dynamics of a second order homogeneous equation in the form of a damped oscillator. Satisfactory results were achieved when the gains in the error dynamics were changed at a certain point along the trajectory that is dependent on the velocity and the curvature of the drag as a function of the velocity. Future work should study the capacity to update the drag profile in flight when dispersions are introduced. Also, future studies should attempt to link the first entry, as presented and controlled in this note, with a more standard control concept for the second entry, such as the Apollo entry guidance, to try to assess the overall skip entry performance. A guidance law that includes an integral feedback term, as is the case in the actual Space Shuttle entry guidance and as is proposed in Ref 29, could be tried in future studies to assess whether its use results in an improvement of the tracking performance, and to evaluate the design needs when determining the control gains.

  15. An artificial neural network to predict resting energy expenditure in obesity.

    PubMed

    Disse, Emmanuel; Ledoux, Séverine; Bétry, Cécile; Caussy, Cyrielle; Maitrepierre, Christine; Coupaye, Muriel; Laville, Martine; Simon, Chantal

    2017-09-01

    The resting energy expenditure (REE) determination is important in nutrition for adequate dietary prescription. The gold standard i.e. indirect calorimetry is not available in clinical settings. Thus, several predictive equations have been developed, but they lack of accuracy in subjects with extreme weight including obese populations. Artificial neural networks (ANN) are useful predictive tools in the area of artificial intelligence, used in numerous clinical fields. The aim of this study was to determine the relevance of ANN in predicting REE in obesity. A Multi-Layer Perceptron (MLP) feed-forward neural network with a back propagation algorithm was created and cross-validated in a cohort of 565 obese subjects (BMI within 30-50 kg m -2 ) with weight, height, sex and age as clinical inputs and REE measured by indirect calorimetry as output. The predictive performances of ANN were compared to those of 23 predictive REE equations in the training set and in two independent sets of 100 and 237 obese subjects for external validation. Among the 23 established prediction equations for REE evaluated, the Harris & Benedict equations recalculated by Roza were the most accurate for the obese population, followed by the USA DRI, Müller and the original Harris & Benedict equations. The final 5-fold cross-validated three-layer 4-3-1 feed-forward back propagation ANN model developed in that study improved precision and accuracy of REE prediction over linear equations (precision = 68.1%, MAPE = 8.6% and RMSPE = 210 kcal/d), independently from BMI subgroups within 30-50 kg m -2 . External validation confirmed the better predictive performances of ANN model (precision = 73% and 65%, MAPE = 7.7% and 8.6%, RMSPE = 187 kcal/d and 200 kcal/d in the 2 independent datasets) for the prediction of REE in obese subjects. We developed and validated an ANN model for the prediction of REE in obese subjects that is more precise and accurate than established REE predictive equations independent from BMI subgroups. For convenient use in clinical settings, we provide a simple ANN-REE calculator available at: https://www.crnh-rhone-alpes.fr/fr/ANN-REE-Calculator. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.

    PubMed

    Heydari, Ali; Balakrishnan, Sivasubramanya N

    2013-01-01

    To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.

  17. Measuring the quantum geometric tensor in two-dimensional photonic and exciton-polariton systems

    NASA Astrophysics Data System (ADS)

    Bleu, O.; Solnyshkov, D. D.; Malpuech, G.

    2018-05-01

    We propose theoretically a method that allows to measure all the components of the quantum geometric tensor (the metric tensor and the Berry curvature) in a photonic system. The method is based on standard optical measurements. It applies to two-band systems, which can be mapped to a pseudospin, and to four-band systems, which can be described by two entangled pseudospins. We apply this method to several specific cases. We consider a 2D planar cavity with two polarization eigenmodes, where the pseudospin measurement can be performed via polarization-resolved photoluminescence. We also consider the s band of a staggered honeycomb lattice with polarization-degenerate modes (scalar photons), where the sublattice pseudospin can be measured by performing spatially resolved interferometric measurements. We finally consider the s band of a honeycomb lattice with polarized (spinor) photons as an example of a four-band model. We simulate realistic experimental situations in all cases. We find the photon eigenstates by solving the Schrödinger equation including pumping and finite lifetime, and then simulate the measurements to finally extract realistic mappings of the k-dependent tensor components.

  18. Numerical Analysis of a Class of THM Coupled Model for Porous Materials

    NASA Astrophysics Data System (ADS)

    Liu, Tangwei; Zhou, Jingying; Lu, Hongzhi

    2018-01-01

    We consider the coupled models of the Thermo-hydro-mechanical (THM) problem for porous materials which arises in many engineering applications. Firstly, mathematical models of the THM coupled problem for porous materials were discussed. Secondly, for different cases, some numerical difference schemes of coupled model were constructed, respectively. Finally, aassuming that the original water vapour effect is neglectable and that the volume fraction of liquid phase and the solid phase are constants, the nonlinear equations can be reduced to linear equations. The discrete equations corresponding to the linear equations were solved by the Arnodli method.

  19. The method of projected characteristics for the evolution of magnetic arches

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.; Hu, Y. Q.; Wu, S. T.

    1987-01-01

    A numerical method of solving fully nonlinear MHD equation is described. In particular, the formulation based on the newly developed method of projected characteristics (Nakagawa, 1981) suitable to study the evolution of magnetic arches due to motions of their foot-points is presented. The final formulation is given in the form of difference equations; therefore, the analysis of numerical stability is also presented. Further, the most important derivation of physically self-consistent, time-dependent boundary conditions (i.e. the evolving boundary equations) is given in detail, and some results obtained with such boundary equations are reported.

  20. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  1. Growth or decay of cosmological inhomogeneities as a function of their equation of state

    NASA Astrophysics Data System (ADS)

    Comer, G. L.; Deruelle, Nathalie; Langlois, David; Parry, Joe

    1994-03-01

    We expand Einstein's equations in the synchronous gauge in terms of a purely space-dependent, ``seed,'' metric. The (nonlinear) solution accurately describes a universe inhomogeneous at scales larger than the Hubble radius. We show that the inhomogeneities grow or decay, as time increases, depending on the equation of state for the matter (supposed to be a perfect fluid). We then consider the case when matter is a scalar field with an arbitrary potential. Finally we discuss the generality of the model and show that it is an attractor for a class of generic solutions of Einstein's equations.

  2. Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model

    NASA Technical Reports Server (NTRS)

    Salas, M. D.; Kuruvila, G.

    1989-01-01

    The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.

  3. Whitham modulation theory for the Kadomtsev- Petviashvili equation.

    PubMed

    Ablowitz, Mark J; Biondini, Gino; Wang, Qiao

    2017-08-01

    The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.

  4. Whitham modulation theory for the Kadomtsev- Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Biondini, Gino; Wang, Qiao

    2017-08-01

    The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.

  5. Competitive aggregation dynamics using phase wave signals.

    PubMed

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2014-10-21

    Coupled equations of the phase equation and the equation of cell concentration n are proposed for competitive aggregation dynamics of slime mold in two dimensions. Phase waves are used as tactic signals of aggregation in this model. Several aggregation clusters are formed initially, and target patterns appear around the localized aggregation clusters. Owing to the competition among target patterns, the number of the localized aggregation clusters decreases, and finally one dominant localized pattern survives. If the phase equation is replaced with the complex Ginzburg-Landau equation, several spiral patterns appear, and n is localized near the center of the spiral patterns. After the competition among spiral patterns, one dominant spiral survives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. On the solutions of fractional order of evolution equations

    NASA Astrophysics Data System (ADS)

    Morales-Delgado, V. F.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.

    2017-01-01

    In this paper we present a discussion of generalized Cauchy problems in a diffusion wave process, we consider bi-fractional-order evolution equations in the Riemann-Liouville, Liouville-Caputo, and Caputo-Fabrizio sense. Through Fourier transforms and Laplace transform we derive closed-form solutions to the Cauchy problems mentioned above. Similarly, we establish fundamental solutions. Finally, we give an application of the above results to the determination of decompositions of Dirac type for bi-fractional-order equations and write a formula for the moments for the fractional vibration of a beam equation. This type of decomposition allows us to speak of internal degrees of freedom in the vibration of a beam equation.

  7. Application of integral equation theory to analyze stability of electric field in multimode microwave heating cavity

    NASA Astrophysics Data System (ADS)

    Tang, Zhengming; Hong, Tao; Chen, Fangyuan; Zhu, Huacheng; Huang, Kama

    2017-10-01

    Microwave heating uniformity is mainly dependent on and affected by electric field. However, little study has paid attention to its stability characteristics in multimode cavity. In this paper, this problem is studied by the theory of Freedholm integral equation. Firstly, Helmholtz equation and the electric dyadic Green's function are used to derive the electric field integral equation. Then, the stability of electric field is demonstrated as the characteristics of solutions to Freedholm integral equation. Finally, the stability characteristics are obtained and verified by finite element calculation. This study not only can provide a comprehensive interpretation of electric field in multimode cavity but also help us make better use of microwave energy.

  8. Authentic leadership, performance, and job satisfaction: the mediating role of empowerment.

    PubMed

    Wong, Carol A; Laschinger, Heather K S

    2013-04-01

    To report a study conducted to test a model linking authentic leadership of managers with nurses' perceptions of structural empowerment, performance, and job satisfaction. Authentic leadership has been proposed as the root element of effective leadership needed to build healthier work environments because there is special attention to the development of empowering leader-follower relationships. Although the influence of leadership style and empowerment on job satisfaction is well documented, there are few studies examining the influence of authentic leadership on nurses' empowerment and work outcomes. A non-experimental, predictive survey. In 2008, a random sample of 600 Registered Nurses working in acute care hospitals across Ontario in Canada was surveyed. The final sample consisted of 280 (48% response rate) nurses. Variables were measured using the Authentic Leadership Questionnaire, Conditions of Work Effectiveness Questionnaire, Global Job Satisfaction Survey, and General Performance scale. The theoretical model was tested using structural equation modelling. The final model fit the data acceptably. Authentic leadership significantly and positively influenced staff nurses' structural empowerment, which in turn increased job satisfaction and self-rated performance. The results suggest that the more managers are seen as authentic, by emphasizing transparency, balanced processing, self-awareness and high ethical standards, the more nurses perceive they have access to workplace empowerment structures, are satisfied with their work, and report higher performance. © 2012 Blackwell Publishing Ltd.

  9. Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization

    NASA Astrophysics Data System (ADS)

    Subramani, Deepak N.; Lermusiaux, Pierre F. J.

    2016-04-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.

  10. Analytical Dimensional Reduction of a Fuel Optimal Powered Descent Subproblem

    NASA Technical Reports Server (NTRS)

    Rea, Jeremy R.; Bishop, Robert H.

    2010-01-01

    Current renewed interest in exploration of the moon, Mars, and other planetary objects is driving technology development in many fields of space system design. In particular, there is a desire to land both robotic and human missions on the moon and elsewhere. The landing guidance system must be able to deliver the vehicle to a desired soft landing while meeting several constraints necessary for the safety of the vehicle. Due to performance limitations of current launch vehicles, it is desired to minimize the amount of fuel used. In addition, the landing site may change in real-time in order to avoid previously undetected hazards which become apparent during the landing maneuver. This complicated maneuver can be broken into simpler subproblems that bound the full problem. One such subproblem is to find a minimum-fuel landing solution that meets constraints on the initial state, final state, and bounded thrust acceleration magnitude. With the assumptions of constant gravity and negligible atmosphere, the form of the optimal steering law is known, and the equations of motion can be integrated analytically, resulting in a system of five equations in five unknowns. It is shown that this system of equations can be reduced analytically to two equations in two unknowns. With an additional assumption of constant thrust acceleration magnitude, this system can be reduced further to one equation in one unknown. It is shown that these unknowns can be bounded analytically. An algorithm is developed to quickly and reliably solve the resulting one-dimensional bounded search, and it is used as a real-time guidance applied to a lunar landing test case.

  11. Direct Discrete Method for Neutronic Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vosoughi, Naser; Akbar Salehi, Ali; Shahriari, Majid

    The objective of this paper is to introduce a new direct method for neutronic calculations. This method which is named Direct Discrete Method, is simpler than the neutron Transport equation and also more compatible with physical meaning of problems. This method is based on physic of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equations series without production of neutron transport differential equation and mandatory passing from differential equation bridge. We have produced neutron discrete equations for amore » cylindrical shape with two boundary conditions in one group energy. The correction of the results from this method are tested with MCNP-4B code execution. (authors)« less

  12. Curvature tensors unified field equations on SEXn

    NASA Astrophysics Data System (ADS)

    Chung, Kyung Tae; Lee, Il Young

    1988-09-01

    We study the curvature tensors and field equations in the n-dimensional SE manifold SEXn. We obtain several basic properties of the vectors S λ and U λ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEXn and one of its particular solutions is constructed and displayed.

  13. A Review of Crack Closure

    DTIC Science & Technology

    1984-04-01

    first by Paris and Erdogan [16]. Paris- Erdogan law ia represented by the equation Sda AAKn1 1 dN where A and n depend on the material and if these are...of I acelate tape , evaporation of gold on it, and the final support of the replica using electrodeposited copper [8,9]. Almost a similar procedure but...AKff for AK ýn the Paris- Erdogan law - see Equations (1) and (2). The applicability of these equations and their ability to account for the effects

  14. A homotopy analysis method for the nonlinear partial differential equations arising in engineering

    NASA Astrophysics Data System (ADS)

    Hariharan, G.

    2017-05-01

    In this article, we have established the homotopy analysis method (HAM) for solving a few partial differential equations arising in engineering. This technique provides the solutions in rapid convergence series with computable terms for the problems with high degree of nonlinear terms appearing in the governing differential equations. The convergence analysis of the proposed method is also discussed. Finally, we have given some illustrative examples to demonstrate the validity and applicability of the proposed method.

  15. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

    2018-03-01

    The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

  16. TRAC performance estimates

    NASA Technical Reports Server (NTRS)

    Everett, L.

    1992-01-01

    This report documents the performance characteristics of a Targeting Reflective Alignment Concept (TRAC) sensor. The performance will be documented for both short and long ranges. For long ranges, the sensor is used without the flat mirror attached to the target. To better understand the capabilities of the TRAC based sensors, an engineering model is required. The model can be used to better design the system for a particular application. This is necessary because there are many interrelated design variables in application. These include lense parameters, camera, and target configuration. The report presents first an analytical development of the performance, and second an experimental verification of the equations. In the analytical presentation it is assumed that the best vision resolution is a single pixel element. The experimental results suggest however that the resolution is better than 1 pixel. Hence the analytical results should be considered worst case conditions. The report also discusses advantages and limitations of the TRAC sensor in light of the performance estimates. Finally the report discusses potential improvements.

  17. Feynman path integral application on deriving black-scholes diffusion equation for european option pricing

    NASA Astrophysics Data System (ADS)

    Utama, Briandhika; Purqon, Acep

    2016-08-01

    Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods.

  18. Corrected Implicit Monte Carlo

    DOE PAGES

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    2018-01-02

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  19. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert

    1998-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion, a set of design equations has been derived to define the groove angles for each groove on the lens. These equations allow the distribution of light by wavelength within the image spot to be calculated. Combining these equations with the blackbody radiation equations, energy distribution, power, and flux within the image spot can be calculated. In addition, equations have been derived to design a lens to produce maximum flux in a given spot size. Using these equations, a lens may be designed to optimize the spot energy concentration for given energy source.

  20. The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.

    PubMed

    Lehtonen, Jussi

    2018-01-01

    A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  2. A general numerical model for wave rotor analysis

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel W.

    1992-01-01

    Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.

  3. Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong

    2017-07-01

    The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.

  4. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speck, Thomas; Menzel, Andreas M.; Bialké, Julian

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation ontomore » that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.« less

  5. Performance of a cavity-method-based algorithm for the prize-collecting Steiner tree problem on graphs

    NASA Astrophysics Data System (ADS)

    Biazzo, Indaco; Braunstein, Alfredo; Zecchina, Riccardo

    2012-08-01

    We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the dhea solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.

  6. CCOMP: An efficient algorithm for complex roots computation of determinantal equations

    NASA Astrophysics Data System (ADS)

    Zouros, Grigorios P.

    2018-01-01

    In this paper a free Python algorithm, entitled CCOMP (Complex roots COMPutation), is developed for the efficient computation of complex roots of determinantal equations inside a prescribed complex domain. The key to the method presented is the efficient determination of the candidate points inside the domain which, in their close neighborhood, a complex root may lie. Once these points are detected, the algorithm proceeds to a two-dimensional minimization problem with respect to the minimum modulus eigenvalue of the system matrix. In the core of CCOMP exist three sub-algorithms whose tasks are the efficient estimation of the minimum modulus eigenvalues of the system matrix inside the prescribed domain, the efficient computation of candidate points which guarantee the existence of minima, and finally, the computation of minima via bound constrained minimization algorithms. Theoretical results and heuristics support the development and the performance of the algorithm, which is discussed in detail. CCOMP supports general complex matrices, and its efficiency, applicability and validity is demonstrated to a variety of microwave applications.

  7. Explicit methods in extended phase space for inseparable Hamiltonian problems

    NASA Astrophysics Data System (ADS)

    Pihajoki, Pauli

    2015-03-01

    We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.

  8. Construction of optimum controls and trajectories of motion of the center of masses of a spacecraft equipped with the solar sail and low-thrust engine, using quaternions and Kustaanheimo-Stiefel variables

    NASA Astrophysics Data System (ADS)

    Sapunkov, Ya. G.; Chelnokov, Yu. N.

    2014-11-01

    The problem of optimum rendezvous of a controllable spacecraft (SC) with an uncontrollable spacecraft, moving over a Keplerian elliptic orbit in the gravitational field of the Sun, is considered. Control of the SC is performed using a solar sail and low-thrust engine. For solving the problem, the regular quaternion equations of the two-body problem with the Kustaanheimo-Stiefel variables and the Pontryagin maximum principle are used. The combined integral quality functional, which characterizes energy consumption for controllable SC transition from an initial to final state and the time spent for this transition, is used as a minimized functional. The differential boundary-value optimization problems are formulated, and their first integrals are found. Examples of numerical solution of problems are presented. The paper develops the application [1-6] of quaternion regular equations with the Kustaanheimo-Stiefel variables in the space flight mechanics.

  9. Computation of multi-dimensional viscous supersonic jet flow

    NASA Technical Reports Server (NTRS)

    Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.

    1986-01-01

    A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.

  10. Computation of multi-dimensional viscous supersonic flow

    NASA Technical Reports Server (NTRS)

    Buggeln, R. C.; Kim, Y. N.; Mcdonald, H.

    1986-01-01

    A method has been developed for two- and three-dimensional computations of viscous supersonic jet flows interacting with an external flow. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases associated with supersonic jet flow is presented and compared with other calculations for axisymmetric cases. Demonstration calculations indicate that the computational technique has great promise as a tool for calculating a wide range of supersonic flow problems including jet flow. Finally, a User's Manual is presented for the computer code used to perform the calculations.

  11. Numerical approximation of the electromechanical coupling in the left ventricle with inclusion of the Purkinje network.

    PubMed

    Landajuela, Mikel; Vergara, Christian; Gerbi, Antonello; Dedé, Luca; Formaggia, Luca; Quarteroni, Alfio

    2018-03-25

    In this work, we consider the numerical approximation of the electromechanical coupling in the left ventricle with inclusion of the Purkinje network. The mathematical model couples the 3D elastodynamics and bidomain equations for the electrophysiology in the myocardium with the 1D monodomain equation in the Purkinje network. For the numerical solution of the coupled problem, we consider a fixed-point iterative algorithm that enables a partitioned solution of the myocardium and Purkinje network problems. Different levels of myocardium-Purkinje network splitting are considered and analyzed. The results are compared with those obtained using standard strategies proposed in the literature to trigger the electrical activation. Finally, we present a numerical study that, although performed in an idealized computational domain, features all the physiological issues that characterize a heartbeat simulation, including the initiation of the signal in the Purkinje network and the systolic and diastolic phases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. A new parametric method to smooth time-series data of metabolites in metabolic networks.

    PubMed

    Miyawaki, Atsuko; Sriyudthsak, Kansuporn; Hirai, Masami Yokota; Shiraishi, Fumihide

    2016-12-01

    Mathematical modeling of large-scale metabolic networks usually requires smoothing of metabolite time-series data to account for measurement or biological errors. Accordingly, the accuracy of smoothing curves strongly affects the subsequent estimation of model parameters. Here, an efficient parametric method is proposed for smoothing metabolite time-series data, and its performance is evaluated. To simplify parameter estimation, the method uses S-system-type equations with simple power law-type efflux terms. Iterative calculation using this method was found to readily converge, because parameters are estimated stepwise. Importantly, smoothing curves are determined so that metabolite concentrations satisfy mass balances. Furthermore, the slopes of smoothing curves are useful in estimating parameters, because they are probably close to their true behaviors regardless of errors that may be present in the actual data. Finally, calculations for each differential equation were found to converge in much less than one second if initial parameters are set at appropriate (guessed) values. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    NASA Astrophysics Data System (ADS)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (<80 ns) stage of plasma expansion. At longer delay times, it was not applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  14. Development and Validation of a Fast, Accurate and Cost-Effective Aeroservoelastic Method on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Goodwin, Sabine A.; Raj, P.

    1999-01-01

    Progress to date towards the development and validation of a fast, accurate and cost-effective aeroelastic method for advanced parallel computing platforms such as the IBM SP2 and the SGI Origin 2000 is presented in this paper. The ENSAERO code, developed at the NASA-Ames Research Center has been selected for this effort. The code allows for the computation of aeroelastic responses by simultaneously integrating the Euler or Navier-Stokes equations and the modal structural equations of motion. To assess the computational performance and accuracy of the ENSAERO code, this paper reports the results of the Navier-Stokes simulations of the transonic flow over a flexible aeroelastic wing body configuration. In addition, a forced harmonic oscillation analysis in the frequency domain and an analysis in the time domain are done on a wing undergoing a rigid pitch and plunge motion. Finally, to demonstrate the ENSAERO flutter-analysis capability, aeroelastic Euler and Navier-Stokes computations on an L-1011 wind tunnel model including pylon, nacelle and empennage are underway. All computational solutions are compared with experimental data to assess the level of accuracy of ENSAERO. As the computations described above are performed, a meticulous log of computational performance in terms of wall clock time, execution speed, memory and disk storage is kept. Code scalability is also demonstrated by studying the impact of varying the number of processors on computational performance on the IBM SP2 and the Origin 2000 systems.

  15. Investigation of two and three parameter equations of state for cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Jenkins, Susan L.; Majumdar, Alok K.; Hendricks, Robert C.

    1990-01-01

    Two-phase flows are a common occurrence in cryogenic engines and an accurate evaluation of the heat-transfer coefficient in two-phase flow is of significant importance in their analysis and design. The thermodynamic equation of state plays a key role in calculating the heat transfer coefficient which is a function of thermodynamic and thermophysical properties. An investigation has been performed to study the performance of two- and three-parameter equations of state to calculate the compressibility factor of cryogenic fluids along the saturation loci. The two-parameter equations considered here are van der Waals and Redlich-Kwong equations of state. The three-parameter equation represented here is the generalized Benedict-Webb-Rubin (BWR) equation of Lee and Kesler. Results have been compared with the modified BWR equation of Bender and the extended BWR equations of Stewart. Seven cryogenic fluids have been tested; oxygen, hydrogen, helium, nitrogen, argon, neon, and air. The performance of the generalized BWR equation is poor for hydrogen and helium. The van der Waals equation is found to be inaccurate for air near the critical point. For helium, all three equations of state become inaccurate near the critical point.

  16. Inertial measurement unit pre-processors and post-flight STS-1 comparisons

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Mcconnell, J. G.

    1981-01-01

    The flight results show that the relative tri-redundant Inertial Measurement Unit IMU performance throughout the entire entry flight was within the expected accuracy. Comparisons are presented which show differences in the accumulated sensed velocity changes as measured by the tri-redundant IMUs (in Mean Equator and Equinox of 1950.0), differences in the equivalent inertial Euler angles as measured with respect to the M50 system, and finally, preliminary instrument calibrations determined relative to the ensemble average measurement set. Also, differences in the derived body axes rates and accelerations are presented. Because of the excellent performance of the IMUs during the STS-1 entry, the selection as to which particular IMU would best serve as the dynamic data source for entry reconstruction is arbitrary.

  17. Investigation on the Nonlinear Control System of High-Pressure Common Rail (HPCR) System in a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Cai, Le; Mao, Xiaobing; Ma, Zhexuan

    2018-02-01

    This study first constructed the nonlinear mathematical model of the high-pressure common rail (HPCR) system in the diesel engine. Then, the nonlinear state transformation was performed using the flow’s calculation and the standard state space equation was acquired. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrate that sliding-mode variable structure control algorithm shows favorable control performances and overcome the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.

  18. Performance of Creatinine and Cystatin C GFR Estimating Equations in an HIV-positive population on Antiretrovirals

    PubMed Central

    INKER, Lesley A; WYATT, Christina; CREAMER, Rebecca; HELLINGER, James; HOTTA, Matthew; LEPPO, Maia; LEVEY, Andrew S; OKPARAVERO, Aghogho; GRAHAM, Hiba; SAVAGE, Karen; SCHMID, Christopher H; TIGHIOUART, Hocine; WALLACH, Fran; KRISHNASAMI, Zipporah

    2013-01-01

    Objective To evaluate the performance of CKD-EPI creatinine, cystatin C and creatinine-cystatin C estimating equations in HIV-positive patients. Methods We evaluated the performance of the MDRD Study and CKD-EPI creatinine 2009, CKD-EPI cystatin C 2012 and CKD-EPI creatinine-cystatin C 2012 glomerular filtration rate (GFR) estimating equations compared to GFR measured using plasma clearance of iohexol in 200 HIV-positive patients on stable antiretroviral therapy. Creatinine and cystatin C assays were standardized to certified reference materials. Results Of the 200 participants, median (IQR) CD4 count was 536 (421) and 61% had an undetectable HIV-viral load. Mean (SD) measured GFR (mGFR) was 87 (26) ml/min/1.73m2. All CKD-EPI equations performed better than the MDRD Study equation. All three CKD-EPI equations had similar bias and precision. The cystatin C equation was not more accurate than the creatinine equation. The creatinine-cystatin C equation was significantly more accurate than the cystatin C equation and there was a trend toward greater accuracy than the creatinine equation. Accuracy was equal or better in most subgroups with the combined equation compared to either alone. Conclusions The CKD-EPI cystatin C equation does not appear to be more accurate than the CKD-EPI creatinine equation in patients who are HIV-positive, supporting the use of the CKD-EPI creatinine equation for routine clinical care for use in North American populations with HIV. The use of both filtration markers together as a confirmatory test for decreased estimated GFR based on creatinine in individuals who are HIV-positive requires further study. PMID:22842844

  19. A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm

    NASA Astrophysics Data System (ADS)

    Auroux, D.; Blum, J.

    2008-03-01

    This paper deals with a new data assimilation algorithm, called Back and Forth Nudging. The standard nudging technique consists in adding to the equations of the model a relaxation term that is supposed to force the observations to the model. The BFN algorithm consists in repeatedly performing forward and backward integrations of the model with relaxation (or nudging) terms, using opposite signs in the direct and inverse integrations, so as to make the backward evolution numerically stable. This algorithm has first been tested on the standard Lorenz model with discrete observations (perfect or noisy) and compared with the variational assimilation method. The same type of study has then been performed on the viscous Burgers equation, comparing again with the variational method and focusing on the time evolution of the reconstruction error, i.e. the difference between the reference trajectory and the identified one over a time period composed of an assimilation period followed by a prediction period. The possible use of the BFN algorithm as an initialization for the variational method has also been investigated. Finally the algorithm has been tested on a layered quasi-geostrophic model with sea-surface height observations. The behaviours of the two algorithms have been compared in the presence of perfect or noisy observations, and also for imperfect models. This has allowed us to reach a conclusion concerning the relative performances of the two algorithms.

  20. Final report for “Extreme-scale Algorithms and Solver Resilience”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gropp, William Douglas

    2017-06-30

    This is a joint project with principal investigators at Oak Ridge National Laboratory, Sandia National Laboratories, the University of California at Berkeley, and the University of Tennessee. Our part of the project involves developing performance models for highly scalable algorithms and the development of latency tolerant iterative methods. During this project, we extended our performance models for the Multigrid method for solving large systems of linear equations and conducted experiments with highly scalable variants of conjugate gradient methods that avoid blocking synchronization. In addition, we worked with the other members of the project on alternative techniques for resilience and reproducibility.more » We also presented an alternative approach for reproducible dot-products in parallel computations that performs almost as well as the conventional approach by separating the order of computation from the details of the decomposition of vectors across the processes.« less

  1. Implementation of an ADI method on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    The implementation of an ADI method for solving the diffusion equation on three parallel/vector computers is discussed. The computers were chosen so as to encompass a variety of architectures. They are: the MPP, an SIMD machine with 16K bit serial processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector processors. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the FLEX/32 and CRAY/2 while the cyclic elimination algorithm is used to solve these systems on the MPP. The implementation of the method is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.

  2. Implementation of an ADI method on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    In this paper the implementation of an ADI method for solving the diffusion equation on three parallel/vector computers is discussed. The computers were chosen so as to encompass a variety of architectures. They are the MPP, an SIMD machine with 16-Kbit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2, an MIMD machine with four vector processors. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the Flex/32 and Cray/2 while the cyclic elimination algorithm is used to solve these systems on the MPP. The implementation of the method is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally conclusions are presented.

  3. A theory of post-stall transients in axial compression systems. I - Development of equations

    NASA Technical Reports Server (NTRS)

    Moore, F. K.; Greitzer, E. M.

    1985-01-01

    An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.

  4. On the relationship between the classical Dicke-Jaynes-Cummings-Gaudin model and the nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dianlou; Geng, Xue

    2013-05-15

    In this paper, the relationship between the classical Dicke-Jaynes-Cummings-Gaudin (DJCG) model and the nonlinear Schroedinger (NLS) equation is studied. It is shown that the classical DJCG model is equivalent to a stationary NLS equation. Moreover, the standard NLS equation can be solved by the classical DJCG model and a suitably chosen higher order flow. Further, it is also shown that classical DJCG model can be transformed into the classical Gaudin spin model in an external magnetic field through a deformation of Lax matrix. Finally, the separated variables are constructed on the common level sets of Casimir functions and the generalizedmore » action-angle coordinates are introduced via the Hamilton-Jacobi equation.« less

  5. The solution of transcendental equations

    NASA Technical Reports Server (NTRS)

    Agrawal, K. M.; Outlaw, R.

    1973-01-01

    Some of the existing methods to globally approximate the roots of transcendental equations namely, Graeffe's method, are studied. Summation of the reciprocated roots, Whittaker-Bernoulli method, and the extension of Bernoulli's method via Koenig's theorem are presented. The Aitken's delta squared process is used to accelerate the convergence. Finally, the suitability of these methods is discussed in various cases.

  6. Power loss of an oscillating electric dipole in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghaderipoor, L.; Mehramiz, A.

    2012-12-15

    A system of linearized quantum plasma equations (quantum hydrodynamic model) has been used for investigating the dispersion equation for electrostatic waves in the plasma. Furthermore, dispersion relations and their modifications due to quantum effects are used for calculating the power loss of an oscillating electric dipole. Finally, the results are compared in quantum and classical regimes.

  7. A Deduction of the Golden Spiral Equation via Powers of the Golden Ratio ?

    ERIC Educational Resources Information Center

    Zahn, Maurício

    2017-01-01

    This paper presents an interesting deduction of the Golden Spiral equation in a suitable polar coordinate system. For this purpose, the concepts of Golden Ratio and Golden Rectangle, and a significant result for the calculation of powers of the Golden Ratio ? using terms of the Fibonacci sequence are mentioned. Finally, various geometrical…

  8. New solitary wave solutions to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff and the Kadomtsev-Petviashvili hierarchy equations

    NASA Astrophysics Data System (ADS)

    Baskonus, Haci Mehmet; Sulaiman, Tukur Abdulkadir; Bulut, Hasan

    2017-10-01

    In this paper, with the help of Wolfram Mathematica 9 we employ the powerful sine-Gordon expansion method in investigating the solution structures of the two well known nonlinear evolution equations, namely; Calogero-Bogoyavlenskii-Schiff and Kadomtsev-Petviashvili hierarchy equations. We obtain new solutions with complex, hyperbolic and trigonometric function structures. All the obtained solutions in this paper verified their corresponding equations. We also plot the three- and two-dimensional graphics of all the obtained solutions in this paper by using the same program in Wolfram Mathematica 9. We finally submit a comprehensive conclusion.

  9. Electron-acoustic Instability Simulated By Modified Zakharov Equations

    NASA Astrophysics Data System (ADS)

    Jásenský, V.; Fiala, V.; Vána, O.; Trávnícek, P.; Hellinger, P.

    We present non-linear equations describing processes in plasma when electron - acoustic waves are excited. These waves are present for instance in the vicinity of Earth's bow shock and in the polar ionosphere. Frequently they are excited by an elec- tron beam in a plasma with two electron populations, a cold and hot one. We derive modified Zakharov equations from kinetic theory for such a case together with numer- ical method for solving of this type of equations. Bispectral analysis is used to show which non-linear wave processes are of importance in course of the instability. Finally, we compare these results with similar simulations using Vlasov approach.

  10. Some special solutions to the Hyperbolic NLS equation

    NASA Astrophysics Data System (ADS)

    Vuillon, Laurent; Dutykh, Denys; Fedele, Francesco

    2018-04-01

    The Hyperbolic Nonlinear SCHRöDINGER equation (HypNLS) arises as a model for the dynamics of three-dimensional narrow-band deep water gravity waves. In this study, the symmetries and conservation laws of this equation are computed. The PETVIASHVILI method is then exploited to numerically compute bi-periodic time-harmonic solutions of the HypNLS equation. In physical space they represent non-localized standing waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them using symbolic dynamics and the language of substitutions. Finally, the dynamics of a slightly perturbed standing wave is numerically investigated by means a highly accurate FOURIER solver.

  11. Behavior of a spin-1/2 massive charged particle in Schwarzschild immersed in an electromagnetic universe

    NASA Astrophysics Data System (ADS)

    Al-Badawi, A.

    2018-02-01

    The Dirac equation is considered in a spacetime that represents a Schwarzschild metric coupled to a uniform external electromagnetic field. Due to the presence of electromagnetic field from the surroundings, the interaction with the spin-1/2 massive charged particle is considered. The equations of the spin-1/2 massive charged particle are separated into radial and angular equations by adopting the Newman-Penrose formalism. The angular equations obtained are similar to the Schwarzschild geometry. For the radial equations we manage to obtain the one dimensional Schrödinger-type wave equations with effective potentials. Finally, we study the behavior of the potentials by plotting them as a function of radial distance and expose the effect of the external parameter, charge and the frequency of the particle on them.

  12. An implicit time-marching method for the three-dimensional Navier-Stokes equations of contravariant velocity components

    NASA Astrophysics Data System (ADS)

    Daiguji, Hisaaki; Yamamoto, Satoru

    1988-12-01

    The implicit time-marching finite-difference method for solving the three-dimensional compressible Euler equations developed by the authors is extended to the Navier-Stokes equations. The distinctive features of this method are to make use of momentum equations of contravariant velocities instead of physical boundaries, and to be able to treat the periodic boundary condition for the three-dimensional impeller flow easily. These equations can be solved by using the same techniques as the Euler equations, such as the delta-form approximate factorization, diagonalization and upstreaming. In addition to them, a simplified total variation diminishing scheme by the authors is applied to the present method in order to capture strong shock waves clearly. Finally, the computed results of the three-dimensional flow through a transonic compressor rotor with tip clearance are shown.

  13. Differential equation of exospheric lateral transport and its application to terrestrial hydrogen

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1973-01-01

    The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.

  14. Wave propagation problem for a micropolar elastic waveguide

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-04-01

    A propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The mathematical model of the linear (or even nonlinear) micropolar elasticity is also expanded to a field theory model by variational least action integral and the least action principle. The governing coupled vector differential equations of the linear micropolar elasticity are given. The translational displacements and microrotations in the harmonic coupled wave are decomposed into potential and vortex parts. Calibrating equations providing simplification of the equations for the wave potentials are proposed. The coupled differential equations are then reduced to uncoupled ones and finally to the Helmholtz wave equations. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency range.

  15. A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi

    2016-09-01

    We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.

  16. Nonlinear Riccati equations as a unifying link between linear quantum mechanics and other fields of physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-04-01

    Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.

  17. Prediction of oxygen consumption in cardiac rehabilitation patients performing leg ergometry

    NASA Astrophysics Data System (ADS)

    Alvarez, John Gershwin

    The purpose of this study was two-fold. First, to determine the validity of the ACSM leg ergometry equation in the prediction of steady-state oxygen consumption (VO2) in a heterogeneous population of cardiac patients. Second, to determine whether a more accurate prediction equation could be developed for use in the cardiac population. Thirty-one cardiac rehabilitation patients participated in the study of which 24 were men and 7 were women. Biometric variables (mean +/- sd) of the participants were as follows: age = 61.9 +/- 9.5 years; height = 172.6 +/- 1.6 cm; and body mass = 82.3 +/- 10.6 kg. Subjects exercised on a MonarchTM cycle ergometer at 0, 180, 360, 540 and 720 kgm ˙ min-1. The length of each stage was five minutes. Heart rate, ECG, and VO2 were continuously monitored. Blood pressure and heart rate were collected at the end of each stage. Steady state VO 2 was calculated for each stage using the average of the last two minutes. Correlation coefficients, standard error of estimate, coefficient of determination, total error, and mean bias were used to determine the accuracy of the ACSM equation (1995). The analysis found the ACSM equation to be a valid means of estimating VO2 in cardiac patients. Simple linear regression was used to develop a new equation. Regression analysis found workload to be a significant predictor of VO2. The following equation is the result: VO2 = (1.6 x kgm ˙ min-1) + 444 ml ˙ min-1. The r of the equation was .78 (p < .05) and the standard error of estimate was 211 ml ˙ min-1. Analysis of variance was used to determine significant differences between means for actual and predicted VO2 values for each equation. The analysis found the ACSM and new equation to significantly (p < .05) under predict VO2 during unloaded pedaling. Furthermore, the ACSM equation was found to significantly (p < .05) under predict VO 2 during the first loaded stage of exercise. When the accuracy of the ACSM and new equations were compared based on correlation coefficients, coefficients of determinations, SEEs, total error, and mean bias the new equation was found to have equal or better accuracy at all workloads. The final form of the new equation is: VO2 (ml ˙ min-1) = (kgm ˙ min-1 x 1.6 ml ˙ kgm-1) + (3.5 ml ˙ kg-1 ˙ min-1 x body mass in kg) + 156 ml ˙ min-1.

  18. Predictive equations for central obesity via anthropometrics, stereovision imaging, and MRI in adults

    PubMed Central

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2013-01-01

    Objective Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Design and Methods Participants (67 men and 55 women) were measured for anthropometrics, and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. Results The final total abdominal adiposity prediction equation was –470.28+7.10waist circumference–91.01gender+5.74sagittal diameter (R²=89.9%); subcutaneous adiposity was –172.37+8.57waist circumference–62.65gender–450.16stereovision waist-to-hip ratio (R²=90.4%); and visceral adiposity was –96.76+11.48central obesity depth–5.09 central obesity width+204.74stereovision waist-to-hip ratio–18.59gender (R²=71.7%). R² significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. Conclusions SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. PMID:23613161

  19. Predictive equations for central obesity via anthropometrics, stereovision imaging and MRI in adults.

    PubMed

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2014-03-01

    Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Participants (67 men and 55 women) were measured for anthropometrics and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. The final total abdominal adiposity prediction equation was -470.28 + 7.10 waist circumference - 91.01 gender + 5.74 sagittal diameter (R2 = 89.9%), subcutaneous adiposity was -172.37 + 8.57 waist circumference - 62.65 gender - 450.16 stereovision waist-to-hip ratio (R2 =90.4%), and visceral adiposity was -96.76 + 11.48 central obesity depth - 5.09 central obesity width + 204.74 stereovision waist-to-hip ratio - 18.59 gender (R2 = 71.7%). R2 significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. Copyright © 2013 The Obesity Society.

  20. Precision measurement of refractive index of air based on laser synthetic wavelength interferometry with Edlén equation estimation.

    PubMed

    Yan, Liping; Chen, Benyong; Zhang, Enzheng; Zhang, Shihua; Yang, Ye

    2015-08-01

    A novel method for the precision measurement of refractive index of air (n(air)) based on the combining of the laser synthetic wavelength interferometry with the Edlén equation estimation is proposed. First, a n(air_e) is calculated from the modified Edlén equation according to environmental parameters measured by low precision sensors with an uncertainty of 10(-6). Second, a unique integral fringe number N corresponding to n(air) is determined based on the calculated n(air_e). Then, a fractional fringe ε corresponding to n(air) with high accuracy can be obtained according to the principle of fringe subdivision of laser synthetic wavelength interferometry. Finally, high accurate measurement of n(air) is achieved according to the determined fringes N and ε. The merit of the proposed method is that it not only solves the problem of the measurement accuracy of n(air) being limited by the accuracies of environmental sensors, but also avoids adopting complicated vacuum pumping to measure the integral fringe N in the method of conventional laser interferometry. To verify the feasibility of the proposed method, comparison experiments with Edlén equations in short time and in long time were performed. Experimental results show that the measurement accuracy of n(air) is better than 2.5 × 10(-8) in short time tests and 6.2 × 10(-8) in long time tests.

  1. Cross-Validation of Predictor Equations for Armor Crewman Performance

    DTIC Science & Technology

    1980-01-01

    Technical Report 447 CROSS-VALIDATION OF PREDICTOR EQUATIONS FOR ARMOR CREWMAN PERFORMANCE Anthony J. Maitland , Newell K. Eaton, and Janet F. Neft...ORG. REPORT NUMBER Anthony J/ Maitland . Newell K/EatorV. and B OTATO RN UBR. 9- PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT, PROJECT...Technical Report 447 CROSS-VALIDATION OF PREDICTOR EQUATIONS FOR ARMOR CREWMAN PERFORMANCE Anthony J. Maitland , Newell K. Eaton, Accession For and

  2. Antenna gain of actively compensated free-space optical communication systems under strong turbulence conditions.

    PubMed

    Juarez, Juan C; Brown, David M; Young, David W

    2014-05-19

    Current Strehl ratio models for actively compensated free-space optical communications terminals do not accurately predict system performance under strong turbulence conditions as they are based on weak turbulence theory. For evaluation of compensated systems, we present an approach for simulating the Strehl ratio with both low-order (tip/tilt) and higher-order (adaptive optics) correction. Our simulation results are then compared to the published models and their range of turbulence validity is assessed. Finally, we propose a new Strehl ratio model and antenna gain equation that are valid for general turbulence conditions independent of the degree of compensation.

  3. Microscopic approaches to liquid nitromethane detonation properties.

    PubMed

    Hervouët, Anaïs; Desbiens, Nicolas; Bourasseau, Emeric; Maillet, Jean-Bernard

    2008-04-24

    In this paper, thermodynamic and chemical properties of nitromethane are investigated using microscopic simulations. The Hugoniot curve of the inert explosive is computed using Monte Carlo simulations with a modified version of the adaptative Erpenbeck equation of state and a recently developed intermolecular potential. Molecular dynamic simulations of nitromethane decomposition have been performed using a reactive potential, allowing the calculation of kinetic rate constants and activation energies. Finally, the Crussard curve of detonation products as well as thermodynamic properties at the Chapman-Jouguet (CJ) point are computed using reactive ensemble Monte Carlo simulations. Results are in good agreement with both thermochemical calculations and experimental measurements.

  4. Transient Seepage Analyses in Levee Engineering Practice

    DTIC Science & Technology

    2016-07-01

    and contractors in conventional engineering practice has outpaced the development of guidance documents and design recommendations. The major...ERDC TR-16-8 99 B.5 Final solution The final solution is obtained by first solving for ht from Equation B.5 as follows: t t tssˆh h h  (B

  5. Finding Horndeski theories with Einstein gravity limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge, E-mail: ryanm@roe.ac.uk, E-mail: llo@roe.ac.uk, E-mail: jorpega@roe.ac.uk

    The Horndeski action is the most general scalar-tensor theory with at most second-order derivatives in the equations of motion, thus evading Ostrogradsky instabilities and making it of interest when modifying gravity at large scales. To pass local tests of gravity, these modifications predominantly rely on nonlinear screening mechanisms that recover Einstein's Theory of General Relativity in regions of high density. We derive a set of conditions on the four free functions of the Horndeski action that examine whether a specific model embedded in the action possesses an Einstein gravity limit or not. For this purpose, we develop a new andmore » surprisingly simple scaling method that identifies dominant terms in the equations of motion by considering formal limits of the couplings that enter through the new terms in the modified action. This enables us to find regimes where nonlinear terms dominate and Einstein's field equations are recovered to leading order. Together with an efficient approximation of the scalar field profile, one can then further evaluate whether these limits can be attributed to a genuine screening effect. For illustration, we apply the analysis to both a cubic galileon and a chameleon model as well as to Brans-Dicke theory. Finally, we emphasise that the scaling method also provides a natural approach for performing post-Newtonian expansions in screened regimes.« less

  6. Friction factor and heat transfer of nanofluids containing cylindrical nanoparticles in laminar pipe flow

    NASA Astrophysics Data System (ADS)

    Lin, Jianzhong; Xia, Yi; Ku, Xiaoke

    2014-10-01

    Numerical simulations of polyalphaolefins-Al2O3 nanofluids containing cylindrical nanoparticles in a laminar pipe flow are performed by solving the Navier-Stokes equation with term of cylindrical nanoparticles, the general dynamic equation for cylindrical nanoparticles, and equation for nanoparticle orientation. The distributions of particle number and volume concentration, the friction factor, and heat transfer are obtained and analyzed. The results show that distributions of nanoparticle number and volume concentration are non-uniform across the section, with larger and smaller values in the region near the pipe center and near the wall, respectively. The non-uniformity becomes significant with the increase in the axial distance from the inlet. The friction factor decreases with increasing Reynolds number. The relationships between the friction factor and the nanoparticle volume concentration as well as particle aspect ratio are dependent on the Reynolds number. The Nusselt number of nanofluids, directly proportional to the Reynolds number, particle volume concentration, and particle aspect ratio, is higher near the pipe entrance than at the downstream locations. The rate of increase in Nusselt number at lower particle volume concentration is more than that at higher concentration. Finally, the expressions of friction factor and Nusselt number as a function of particle volume concentration, particle aspect ratio, and Reynolds number are derived based on the numerical data.

  7. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  8. Performance of Chronic Kidney Disease Epidemiology Collaboration Creatinine-Cystatin C Equation for Estimating Kidney Function in Cirrhosis

    PubMed Central

    Mindikoglu, Ayse L.; Dowling, Thomas C.; Weir, Matthew R.; Seliger, Stephen L.; Christenson, Robert H.; Magder, Laurence S.

    2013-01-01

    Conventional creatinine-based glomerular filtration rate (GFR) equations are insufficiently accurate for estimating GFR in cirrhosis. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) recently proposed an equation to estimate GFR in subjects without cirrhosis using both serum creatinine and cystatin C levels. Performance of the new CKD-EPI creatinine-cystatin C equation (2012) was superior to previous creatinine- or cystatin C-based GFR equations. To evaluate the performance of the CKD-EPI creatinine-cystatin C equation in subjects with cirrhosis, we compared it to GFR measured by non-radiolabeled iothalamate plasma clearance (mGFR) in 72 subjects with cirrhosis. We compared the “bias”, “precision” and “accuracy” of the new CKD-EPI creatinine-cystatin C equation to that of 24-hour urinary creatinine clearance (CrCl), Cockcroft-Gault (CG) and previously reported creatinine- and/or cystatin C-based GFR-estimating equations. Accuracy of CKD-EPI creatinine-cystatin C equation as quantified by root mean squared error of difference scores [differences between mGFR and estimated GFR (eGFR) or between mGFR and CrCl, or between mGFR and CG equation for each subject] (RMSE=23.56) was significantly better than that of CrCl (37.69, P=0.001), CG (RMSE=36.12, P=0.002) and GFR-estimating equations based on cystatin C only. Its accuracy as quantified by percentage of eGFRs that differed by greater than 30% with respect to mGFR was significantly better compared to CrCl (P=0.024), CG (P=0.0001), 4-variable MDRD (P=0.027) and CKD-EPI creatinine 2009 (P=0.012) equations. However, for 23.61% of the subjects, GFR estimated by CKD-EPI creatinine-cystatin C equation differed from the mGFR by more than 30%. CONCLUSIONS The diagnostic performance of CKD-EPI creatinine-cystatin C equation (2012) in patients with cirrhosis was superior to conventional equations in clinical practice for estimating GFR. However, its diagnostic performance was substantially worse than reported in subjects without cirrhosis. PMID:23744636

  9. Ince's limits for confluent and double-confluent Heun equations

    NASA Astrophysics Data System (ADS)

    Bonorino Figueiredo, B. D.

    2005-11-01

    We find pairs of solutions to a differential equation which is obtained as a special limit of a generalized spheroidal wave equation (this is also known as confluent Heun equation). One solution in each pair is given by a series of hypergeometric functions and converges for any finite value of the independent variable z, while the other is given by a series of modified Bessel functions and converges for ∣z∣>∣z0∣, where z0 denotes a regular singularity. For short, the preceding limit is called Ince's limit after Ince who have used the same procedure to get the Mathieu equations from the Whittaker-Hill ones. We find as well that, when z0 tends to zero, the Ince limit of the generalized spheroidal wave equation turns out to be the Ince limit of a double-confluent Heun equation, for which solutions are provided. Finally, we show that the Schrödinger equation for inverse fourth- and sixth-power potentials reduces to peculiar cases of the double-confluent Heun equation and its Ince's limit, respectively.

  10. Lie Symmetry Analysis, Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy-Gibbons Equation

    NASA Astrophysics Data System (ADS)

    Feng, Lian-Li; Tian, Shou-Fu; Wang, Xiu-Bin; Zhang, Tian-Tian

    2016-09-01

    In this paper, the time fractional Fordy-Gibbons equation is investigated with Riemann-Liouville derivative. The equation can be reduced to the Caudrey-Dodd-Gibbon equation, Savada-Kotera equation and the Kaup-Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method. Supported by the Fundamental Research Funds for Key Discipline Construction under Grant No. XZD201602, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527

  11. Hagedorn Temperature of AdS5/CFT4 via Integrability

    NASA Astrophysics Data System (ADS)

    Harmark, Troels; Wilhelm, Matthias

    2018-02-01

    We establish a framework for calculating the Hagedorn temperature of AdS5/CFT4 via integrability. Concretely, we derive the thermodynamic Bethe ansatz equations that yield the Hagedorn temperature of planar N =4 super Yang-Mills theory at any value of the 't Hooft coupling. We solve these equations perturbatively at weak coupling via the associated Y system, confirming the known results at tree level and one-loop order as well as deriving the previously unknown two-loop Hagedorn temperature. Finally, we comment on solving the equations at finite coupling.

  12. Test problems for inviscid transonic flow

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1979-01-01

    Solving of test problems with the TRANDES program is discussed. This method utilizes the full, inviscid, perturbation potential flow equation in a Cartesian grid system that is stretched to infinity. This equation is represented by a nonconservative system of finite difference equations that includes at supersonic points a rotated difference scheme and is solved by column relaxation. The solution usually starts from a zero perturbation potential on a very coarse grid (typically 13 by 7) followed by several grid halvings until a final solution is obtained on a fine grid (97 by 49).

  13. Exact renormalization group equation for the Lifshitz critical point

    NASA Astrophysics Data System (ADS)

    Bervillier, C.

    2004-10-01

    An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.

  14. Singularity Preserving Numerical Methods for Boundary Integral Equations

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  15. On the thermodynamics of the Swift-Hohenberg theory

    NASA Astrophysics Data System (ADS)

    Espath, L. F. R.; Sarmiento, A. F.; Dalcin, L.; Calo, V. M.

    2017-11-01

    We present the microbalance including the microforces, the first- and second-order microstresses for the Swift-Hohenberg equation concomitantly with their constitutive equations, which are consistent with the free-energy imbalance. We provide an explicit form for the microstress structure for a free-energy functional endowed with second-order spatial derivatives. Additionally, we generalize the Swift-Hohenberg theory via a proper constitutive process. Finally, we present one highly resolved three-dimensional numerical simulation to demonstrate the particular form of the resulting microstresses and their interactions in the evolution of the Swift-Hohenberg equation.

  16. Consistent Correlations for Parameterised Boolean Equation Systems with Applications in Correctness Proofs for Manipulations

    NASA Astrophysics Data System (ADS)

    Willemse, Tim A. C.

    We introduce the concept of consistent correlations for parameterised Boolean equation systems (PBESs), motivated largely by the laborious proofs of correctness required for most manipulations in this setting. Consistent correlations focus on relating the equations that occur in PBESs, rather than their solutions. For a fragment of PBESs, consistent correlations are shown to coincide with a recently introduced form of bisimulation. Finally, we show that bisimilarity on processes induces consistent correlations on PBESs encoding model checking problems. We apply our theory to two example manipulations from the literature.

  17. A Comparison of QSAR Based Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected Traditional Chemical Warfare Agents and Simulants

    DTIC Science & Technology

    2014-07-01

    Labs uses parameterized Hammett -type equations to describe 1500 possible combinations of more than 650 ionizable functional groups. The change in...of the form ⋯ , ⋯ Equation (1) where Ypred is the predicted property, c0 is a constant, c1 to cn are coefficients from the...regression to the training set of measurements, X1 to Xn represent molecular or fragment or field-based descriptors, and the final term in Equation 1

  18. On a new semi-discrete integrable combination of Burgers and Sharma-Tasso-Olver equation

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-qiong

    2017-02-01

    In this paper, a new semi-discrete integrable combination of Burgers and Sharma-Tasso-Olver equation is investigated. The underlying integrable structures like the Lax pair, the infinite number of conservation laws, the Darboux-Bäcklund transformation, and the solutions are presented in the explicit form. The theory of the semi-discrete equation including integrable properties yields the corresponding theory of the continuous counterpart in the continuous limit. Finally, numerical experiments are provided to demonstrate the effectiveness of the developed integrable semi-discretization algorithms.

  19. Study of conformally flat polytropes with tilted congruence

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Sadiq, Sobia

    This paper is aimed to study the modeling of spherically symmetric spacetime in the presence of anisotropic dissipative fluid configuration. This is accomplished for an observer moving relative to matter content using two cases of polytropic equation-of-state under conformally flat condition. We formulate the corresponding generalized Tolman-Oppenheimer-Volkoff equation, mass equation, as well as energy conditions for both cases. The conformally flat condition is imposed to find an expression for anisotropy which helps to study spherically symmetric polytropes. Finally, Tolman mass is used to analyze stability of the resulting models.

  20. A new fictitious domain approach for Stokes equation

    NASA Astrophysics Data System (ADS)

    Yang, Min

    2017-10-01

    The purpose of this paper is to present a new fictitious domain approach based on the Nietzsche’s method combining with a penalty method for the Stokes equation. This method allows for an easy and flexible handling of the geometrical aspects. Stability and a priori error estimate are proved. Finally, a numerical experiment is provided to verify the theoretical findings.

  1. Performance Analysis of Scientific and Engineering Applications Using MPInside and TAU

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Mehrotra, Piyush; Taylor, Kenichi Jun Haeng; Shende, Sameer Suresh; Biswas, Rupak

    2010-01-01

    In this paper, we present performance analysis of two NASA applications using performance tools like Tuning and Analysis Utilities (TAU) and SGI MPInside. MITgcmUV and OVERFLOW are two production-quality applications used extensively by scientists and engineers at NASA. MITgcmUV is a global ocean simulation model, developed by the Estimating the Circulation and Climate of the Ocean (ECCO) Consortium, for solving the fluid equations of motion using the hydrostatic approximation. OVERFLOW is a general-purpose Navier-Stokes solver for computational fluid dynamics (CFD) problems. Using these tools, we analyze the MPI functions (MPI_Sendrecv, MPI_Bcast, MPI_Reduce, MPI_Allreduce, MPI_Barrier, etc.) with respect to message size of each rank, time consumed by each function, and how ranks communicate. MPI communication is further analyzed by studying the performance of MPI functions used in these two applications as a function of message size and number of cores. Finally, we present the compute time, communication time, and I/O time as a function of the number of cores.

  2. A resilient and efficient CFD framework: Statistical learning tools for multi-fidelity and heterogeneous information fusion

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-09-01

    Exascale-level simulations require fault-resilient algorithms that are robust against repeated and expected software and/or hardware failures during computations, which may render the simulation results unsatisfactory. If each processor can share some global information about the simulation from a coarse, limited accuracy but relatively costless auxiliary simulator we can effectively fill-in the missing spatial data at the required times by a statistical learning technique - multi-level Gaussian process regression, on the fly; this has been demonstrated in previous work [1]. Based on the previous work, we also employ another (nonlinear) statistical learning technique, Diffusion Maps, that detects computational redundancy in time and hence accelerate the simulation by projective time integration, giving the overall computation a "patch dynamics" flavor. Furthermore, we are now able to perform information fusion with multi-fidelity and heterogeneous data (including stochastic data). Finally, we set the foundations of a new framework in CFD, called patch simulation, that combines information fusion techniques from, in principle, multiple fidelity and resolution simulations (and even experiments) with a new adaptive timestep refinement technique. We present two benchmark problems (the heat equation and the Navier-Stokes equations) to demonstrate the new capability that statistical learning tools can bring to traditional scientific computing algorithms. For each problem, we rely on heterogeneous and multi-fidelity data, either from a coarse simulation of the same equation or from a stochastic, particle-based, more "microscopic" simulation. We consider, as such "auxiliary" models, a Monte Carlo random walk for the heat equation and a dissipative particle dynamics (DPD) model for the Navier-Stokes equations. More broadly, in this paper we demonstrate the symbiotic and synergistic combination of statistical learning, domain decomposition, and scientific computing in exascale simulations.

  3. The stationary flow in a heterogeneous compliant vessel network

    NASA Astrophysics Data System (ADS)

    Filoche, Marcel; Florens, Magali

    2011-09-01

    We introduce a mathematical model of the hydrodynamic transport into systems consisting in a network of connected flexible pipes. In each pipe of the network, the flow is assumed to be steady and one-dimensional. The fluid-structure interaction is described through tube laws which relate the pipe diameter to the pressure difference across the pipe wall. We show that the resulting one-dimensional differential equation describing the flow in the pipe can be exactly integrated if one is able to estimate averages of the Reynolds number along the pipe. The differential equation is then transformed into a non linear scalar equation relating pressures at both ends of the pipe and the flow rate in the pipe. These equations are coupled throughout the network with mass conservation equations for the flow and zero pressure losses at the branching points of the network. This allows us to derive a general model for the computation of the flow into very large inhomogeneous networks consisting of several thousands of flexible pipes. This model is then applied to perform numerical simulations of the human lung airway system at exhalation. The topology of the system and the tube laws are taken from morphometric and physiological data in the literature. We find good qualitative and quantitative agreement between the simulation results and flow-volume loops measured in real patients. In particular, expiratory flow limitation which is an essential characteristic of forced expiration is found to be well reproduced by our simulations. Finally, a mathematical model of a pathology (Chronic Obstructive Pulmonary Disease) is introduced which allows us to quantitatively assess the influence of a moderate or severe alteration of the airway compliances.

  4. Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization

    NASA Astrophysics Data System (ADS)

    Morency, C.

    2017-12-01

    Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Hopf bifurcation in a nonlocal nonlinear transport equation stemming from stochastic neural dynamics

    NASA Astrophysics Data System (ADS)

    Drogoul, Audric; Veltz, Romain

    2017-02-01

    In this work, we provide three different numerical evidences for the occurrence of a Hopf bifurcation in a recently derived [De Masi et al., J. Stat. Phys. 158, 866-902 (2015) and Fournier and löcherbach, Ann. Inst. H. Poincaré Probab. Stat. 52, 1844-1876 (2016)] mean field limit of a stochastic network of excitatory spiking neurons. The mean field limit is a challenging nonlocal nonlinear transport equation with boundary conditions. The first evidence relies on the computation of the spectrum of the linearized equation. The second stems from the simulation of the full mean field. Finally, the last evidence comes from the simulation of the network for a large number of neurons. We provide a "recipe" to find such bifurcation which nicely complements the works in De Masi et al. [J. Stat. Phys. 158, 866-902 (2015)] and Fournier and löcherbach [Ann. Inst. H. Poincaré Probab. Stat. 52, 1844-1876 (2016)]. This suggests in return to revisit theoretically these mean field equations from a dynamical point of view. Finally, this work shows how the noise level impacts the transition from asynchronous activity to partial synchronization in excitatory globally pulse-coupled networks.

  6. SU-F-T-414: Mathematical Formulation of Gantry Starting Angle for Right Medial Tangential Arc in Left Intact Partial Breast Irradiation Using Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, U; Sarkar, B; Kaur, H

    Purpose: To choose appropriate gantry starting angle for partial left breast irradiation using volumetric modulated arc therapy (VMAT). Methods: A random patient of left breast carcinoma was selected for this study. The slice which was selected for this mathematical formulation was having maximum breast thickness and maximum medial and lateral tangential distance. After this appropriate isocenter was chosen on that CT slice. The distances between various points were measured by the measuring tool in Monaco 5.00.04. Using the various trigonometric equations, a final equation was derived which shows the relationship between Gantry start angle, isocenter Location and tissue thickness. Results:more » The final equation for gantry start for right medial tangential arc is given asStarting angle = 270°+tan^(−1)(sin(θ)/(x-1/x-2 +cosθ))The above equation was tested for 10 cases and it was found to be appropriate for all the cases. Conclusion: Gantry starting angle for partial arc irradiation depends upon Breast thickness, Distance between Medial and lateral tangent and isocenter location.« less

  7. Superposition of elliptic functions as solutions for a large number of nonlinear equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Avinash; Saxena, Avadh

    2014-03-15

    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well asmore » for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.« less

  8. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

  9. Extremal equilibria for reaction-diffusion equations in bounded domains and applications

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro

    We show the existence of two special equilibria, the extremal ones, for a wide class of reaction-diffusion equations in bounded domains with several boundary conditions, including non-linear ones. They give bounds for the asymptotic dynamics and so for the attractor. Some results on the existence and/or uniqueness of positive solutions are also obtained. As a consequence, several well-known results on the existence and/or uniqueness of solutions for elliptic equations are revisited in a unified way obtaining, in addition, information on the dynamics of the associated parabolic problem. Finally, we ilustrate the use of the general results by applying them to the case of logistic equations. In fact, we obtain a detailed picture of the positive dynamics depending on the parameters appearing in the equation.

  10. Momentum Maps and Stochastic Clebsch Action Principles

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  11. Incompressible spectral-element method: Derivation of equations

    NASA Technical Reports Server (NTRS)

    Deanna, Russell G.

    1993-01-01

    A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.

  12. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  13. Covariant Conformal Decomposition of Einstein Equations

    NASA Astrophysics Data System (ADS)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  14. Equations for Automotive-Transmission Performance

    NASA Technical Reports Server (NTRS)

    Chazanoff, S.; Aston, M. B.; Chapman, C. P.

    1984-01-01

    Curve-fitting procedure ensures high confidence levels. Threedimensional plot represents performance of small automatic transmission coasting in second gear. In equation for plot, PL power loss, S speed and T torque. Equations applicable to manual and automatic transmissions over wide range of speed, torque, and efficiency.

  15. Brute force meets Bruno force in parameter optimisation: introduction of novel constraints for parameter accuracy improvement by symbolic computation.

    PubMed

    Nakatsui, M; Horimoto, K; Lemaire, F; Ürgüplü, A; Sedoglavic, A; Boulier, F

    2011-09-01

    Recent remarkable advances in computer performance have enabled us to estimate parameter values by the huge power of numerical computation, the so-called 'Brute force', resulting in the high-speed simultaneous estimation of a large number of parameter values. However, these advancements have not been fully utilised to improve the accuracy of parameter estimation. Here the authors review a novel method for parameter estimation using symbolic computation power, 'Bruno force', named after Bruno Buchberger, who found the Gröbner base. In the method, the objective functions combining the symbolic computation techniques are formulated. First, the authors utilise a symbolic computation technique, differential elimination, which symbolically reduces an equivalent system of differential equations to a system in a given model. Second, since its equivalent system is frequently composed of large equations, the system is further simplified by another symbolic computation. The performance of the authors' method for parameter accuracy improvement is illustrated by two representative models in biology, a simple cascade model and a negative feedback model in comparison with the previous numerical methods. Finally, the limits and extensions of the authors' method are discussed, in terms of the possible power of 'Bruno force' for the development of a new horizon in parameter estimation.

  16. Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Lucas-Serrano, A.; Font, J. A.; Ibáñez, J. M.; Martí, J. M.

    2004-12-01

    We assess the suitability of a recent high-resolution central scheme developed by \\cite{kurganov} for the solution of the relativistic hydrodynamic equations. The novelty of this approach relies on the absence of Riemann solvers in the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime. Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and cylindrical coordinates. The simulations reported clearly show the capabilities of the numerical scheme of yielding satisfactory results, with an accuracy comparable to that obtained by the so-called high-resolution shock-capturing schemes based upon Riemann solvers (Godunov-type schemes), even well inside the ultrarelativistic regime. Such a central scheme can be straightforwardly applied to hyperbolic systems of conservation laws for which the characteristic structure is not explicitly known, or in cases where a numerical computation of the exact solution of the Riemann problem is prohibitively expensive. Finally, we present comparisons with results obtained using various Godunov-type schemes as well as with those obtained using other high-resolution central schemes which have recently been reported in the literature.

  17. The Effects of Supervisors' Support and Mediating Factors on the Nurses' Job Performance Using Structural Equation Modeling: A Case Study.

    PubMed

    Ravangard, Ramin; Yasami, Shamim; Shokrpour, Nasrin; Sajjadnia, Zahra; Farhadi, Payam

    2015-01-01

    Nurses are the largest group and an important part of the providers in the health care systems that who a key role in hospitals. Any defect and deficiency in their work can result in irreversible outcomes. This study aimed to determine the effect of supervisors' support and mediating factors on the job performance (JOBPER) of 400 nurses working in the teaching hospitals affiliated to Shiraz University of Medical Sciences, using structural equation modeling. The results showed that the supervisor's support had a significant negative effect on work-family conflict (t = -2.57) and a positive effect on organizational commitment (t = 4.03); Work-family conflict had a significant positive effect on job stress (t = 11.24) and a negative effect on organizational commitment (t = -3.35) and JOBPER (t = -2.29). Family-work conflict had a positive effect on job stress (t = 4.48) and a negative effect on organizational commitment (t = -2.54). Finally, job stress had a negative effect (t = -3.30), and organizational commitment showed a positive effect (t = 5.96) on the studied nurses' JOBPER. According to the results, supervisor's support could influence JOBPER through reducing work-family conflict and increasing organizational commitment. Therefore, to improve the nurses' JOBPER in the hospitals, some strategies are recommended.

  18. A Schrödinger equation for solving the Bender-Brody-Müller conjecture

    NASA Astrophysics Data System (ADS)

    Moxley, Frederick Ira

    2017-11-01

    The Hamiltonian of a quantum mechanical system has an affiliated spectrum. If this spectrum is the sequence of prime numbers, a connection between quantum mechanics and the nontrivial zeros of the Riemann zeta function can be made. In this case, the Riemann zeta function is analogous to chaotic quantum systems, as the harmonic oscillator is for integrable quantum systems. Such quantum Riemann zeta function analogies have led to the Bender-Brody-Müller (BBM) conjecture, which involves a non-Hermitian Hamiltonian that maps to the zeros of the Riemann zeta function. If the BBM Hamiltonian can be shown to be Hermitian, then the Riemann Hypothesis follows. As such, herein we perform a symmetrization procedure of the BBM Hamiltonian to obtain a unique Hermitian Hamiltonian that maps to the zeros of the analytic continuation of the Riemann zeta function, and discuss the eigenvalues of the results. Moreover, a second quantization of the resulting Schrödinger equation is performed, and a convergent solution for the nontrivial zeros of the analytic continuation of the Riemann zeta function is obtained. Finally, the Hilbert-Pólya conjecture is discussed, and it is heuristically shown that the real part of every nontrivial zero of the Riemann zeta function converges at σ = 1/2.

  19. An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets.

    PubMed

    Escobar-Bahamondes, P; Oba, M; Beauchemin, K A

    2017-01-01

    The study determined the performance of equations to predict enteric methane (CH4) from beef cattle fed forage- and grain-based diets. Many equations are available to predict CH4 from beef cattle and the predictions vary substantially among equations. The aims were to (1) construct a database of CH4 emissions for beef cattle from published literature, and (2) identify the most precise and accurate extant CH4 prediction models for beef cattle fed diets varying in forage content. The database was comprised of treatment means of CH4 production from in vivo beef studies published from 2000 to 2015. Criteria to include data in the database were as follows: animal description, intakes, diet composition and CH4 production. In all, 54 published equations that predict CH4 production from diet composition were evaluated. Precision and accuracy of the equations were evaluated using the concordance correlation coefficient (r c ), root mean square prediction error (RMSPE), model efficiency and analysis of errors. Equations were ranked using a combined index of the various statistical assessments based on principal component analysis. The final database contained 53 studies and 207 treatment means that were divided into two data sets: diets containing ⩾400 g/kg dry matter (DM) forage (n=116) and diets containing ⩽200 g/kg DM forage (n=42). Diets containing between ⩽400 and ⩾200 g/kg DM forage were not included in the analysis because of their limited numbers (n=6). Outliers, treatment means where feed was fed restrictively and diets with CH4 mitigation additives were omitted (n=43). Using the high-forage dataset the best-fit equations were the International Panel on Climate Change Tier 2 method, 3 equations for steers that considered gross energy intake (GEI) and body weight and an equation that considered dry matter intake and starch:neutral detergent fiber with r c ranging from 0.60 to 0.73 and RMSPE from 35.6 to 45.9 g/day. For the high-grain diets, the 5 best-fit equations considered intakes of metabolisable energy, cellulose, hemicellulose and fat, or for steers GEI and body weight, with r c ranging from 0.35 to 0.52 and RMSPE from 47.4 to 62.9 g/day. Ranking of extant CH4 prediction equations for their accuracy and precision differed with forage content of the diet. When used for cattle fed high-grain diets, extant CH4 prediction models were generally imprecise and lacked accuracy.

  20. PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzocri, D.; Rabiti, C.; Luzzi, L.

    2016-09-01

    This paper describes the development of a new numerical algorithm (called PolyPole-1) to efficiently solve the equation for intra-granular fission gas release in nuclear fuel. The work was carried out in collaboration with Politecnico di Milano and Institute for Transuranium Elements. The PolyPole-1 algorithms is being implemented in INL's fuels code BISON code as part of BISON's fission gas release model. The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of themore » corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this work, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, with the addition of polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of the PolyPole-1 solution is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.« less

  1. Prototyping method for Bragg-type atom interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, Brandon; Krygier, Michael; Heward, Jeffrey

    2011-10-15

    We present a method for rapid modeling of new Bragg ultracold atom-interferometer (AI) designs useful for assessing the performance of such interferometers. The method simulates the overall effect on the condensate wave function in a given AI design using two separate elements. These are (1) modeling the effect of a Bragg pulse on the wave function and (2) approximating the evolution of the wave function during the intervals between the pulses. The actual sequence of these pulses and intervals is then followed to determine the approximate final wave function from which the interference pattern can be calculated. The exact evolutionmore » between pulses is assumed to be governed by the Gross-Pitaevskii (GP) equation whose solution is approximated using a Lagrangian variational method to facilitate rapid estimation of performance. The method presented here is an extension of an earlier one that was used to analyze the results of an experiment [J. E. Simsarian et al., Phys. Rev. Lett. 85, 2040 (2000)], where the phase of a Bose-Einstein condensate was measured using a Mach-Zehnder-type Bragg AI. We have developed both 1D and 3D versions of this method and we have determined their validity by comparing their predicted interference patterns with those obtained by numerical integration of the 1D GP equation and with the results of the above experiment. We find excellent agreement between the 1D interference patterns predicted by this method and those found by the GP equation. We show that we can reproduce all of the results of that experiment without recourse to an ad hoc velocity-kick correction needed by the earlier method, including some experimental results that the earlier model did not predict. We also found that this method provides estimates of 1D interference patterns at least four orders-of-magnitude faster than direct numerical solution of the 1D GP equation.« less

  2. Dynamics modelling and Hybrid Suppression Control of space robots performing cooperative object manipulation

    NASA Astrophysics Data System (ADS)

    Zarafshan, P.; Moosavian, S. Ali A.

    2013-10-01

    Dynamics modelling and control of multi-body space robotic systems composed of rigid and flexible elements is elaborated here. Control of such systems is highly complicated due to severe under-actuated condition caused by flexible elements, and an inherent uneven nonlinear dynamics. Therefore, developing a compact dynamics model with the requirement of limited computations is extremely useful for controller design, also to develop simulation studies in support of design improvement, and finally for practical implementations. In this paper, the Rigid-Flexible Interactive dynamics Modelling (RFIM) approach is introduced as a combination of Lagrange and Newton-Euler methods, in which the motion equations of rigid and flexible members are separately developed in an explicit closed form. These equations are then assembled and solved simultaneously at each time step by considering the mutual interaction and constraint forces. The proposed approach yields a compact model rather than common accumulation approach that leads to a massive set of equations in which the dynamics of flexible elements is united with the dynamics equations of rigid members. To reveal such merits of this new approach, a Hybrid Suppression Control (HSC) for a cooperative object manipulation task will be proposed, and applied to usual space systems. A Wheeled Mobile Robotic (WMR) system with flexible appendages as a typical space rover is considered which contains a rigid main body equipped with two manipulating arms and two flexible solar panels, and next a Space Free Flying Robotic system (SFFR) with flexible members is studied. Modelling verification of these complicated systems is vigorously performed using ANSYS and ADAMS programs, while the limited computations of RFIM approach provides an efficient tool for the proposed controller design. Furthermore, it will be shown that the vibrations of the flexible solar panels results in disturbing forces on the base which may produce undesirable errors and perturb the object manipulation task. So, it is shown that these effects can be significantly eliminated by the proposed Hybrid Suppression Control algorithm.

  3. Optical soliton solutions, periodic wave solutions and complexitons of the cubic Schrödinger equation with a bounded potential

    NASA Astrophysics Data System (ADS)

    Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Zou, Li

    2018-01-01

    In this paper, we consider the cubic Schrödinger equation with a bounded potential, which describes the propagation properties of optical soliton solutions. By employing an ansatz method, we precisely derive the bright and dark soliton solutions of the equation. Moreover, we obtain three classes of analytic periodic wave solutions expressed in terms of the Jacobi's elliptic functions including cn ,sn and dn functions. Finally, by using a tanh function method, its complexitons solutions are derived in a very natural way. It is hoped that our results can enrich the nonlinear dynamical behaviors of the cubic Schrödinger equation with a bounded potential.

  4. Classification of the Lie and Noether point symmetries for the Wave and the Klein-Gordon equations in pp-wave spacetimes

    NASA Astrophysics Data System (ADS)

    Paliathanasis, A.; Tsamparlis, M.; Mustafa, M. T.

    2018-02-01

    A complete classification of the Lie and Noether point symmetries for the Klein-Gordon and the wave equation in pp-wave spacetimes is obtained. The classification analysis is carried out by reducing the problem of the determination of the point symmetries to the problem of existence of conformal killing vectors on the pp-wave spacetimes. Employing the existing results for the isometry classes of the pp-wave spacetimes, the functional form of the potential is determined for which the Klein-Gordon equation admits point symmetries and Noetherian conservation law. Finally the Lie and Noether point symmetries of the wave equation are derived.

  5. Evaluation of equations that estimate glomerular filtration rate in renal transplant recipients.

    PubMed

    De Alencastro, M G; Veronese, F V; Vicari, A R; Gonçalves, L F; Manfro, R C

    2014-03-01

    The accuracy of equations that estimate the glomerular filtration rate (GFR) in renal transplant patients has not been established; thus their performance was assessed in stable renal transplant patients. Renal transplant patients (N.=213) with stable graft function were enrolled. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was used as the reference method and compared with the Cockcroft-Gault (CG), Modification of Diet in Renal Disease (MDRD), Mayo Clinic (MC) and Nankivell equations. Bias, accuracy and concordance rates were determined for all equation relative to CKD-EPI. Mean estimated GFR values of the equations differed significantly from the CKD-EPI values, though the correlations with the reference method were significant. Values of MDRD differed from the CG, MC and Nankivell estimations. The best agreement to classify the chronic kidney disease (CKD) stages was for the MDRD (Kappa=0.649, P<0.001), and for the other equations the agreement was moderate. The MDRD had less bias and narrower agreement limits but underestimated the GFR at levels above 60 mL/min/1.73 m2. Conversely, the CG, MC and Nankivell equations overestimated the GFR, and the Nankivell equation had the worst performance. The MDRD equation P15 and P30 values were higher than those of the other equations (P<0.001). Despite their correlations, equations estimated the GFR and CKD stage differently. The MDRD equation was the most accurate, but the sub-optimal performance of all the equations precludes their accurate use in clinical practice.

  6. Modeling of ultrashort pulse generation in mode-locked VECSELs

    NASA Astrophysics Data System (ADS)

    Kilen, I.; Koch, S. W.; Hader, J.; Moloney, J. V.

    2016-03-01

    We present a study of various models for the mode-locked pulse dynamics in a vertical external-cavity surface emitting laser with a saturable absorber. The semiconductor Bloch equations are used to model microscopically the light-matter interaction and the carrier dynamics. Maxwell's equations describe the pulse propagation. Scattering contributions due to higher order correlation effects are approximated using effective rates that are found from a comparison to solving the microscopic scattering equations on the second Born-Markov level. It is shown that the simulations result in the same mode-locked final state whether the system is initialized with a test pulse close to the final mode-locked pulse or the full field build-up from statistical noise is considered. The influence of the cavity design is studied. The longest pulses are found for a standard V-cavity while a linear cavity and a V-cavity with an high reflectivity mirror in the middle are shown to produce similar, much shorter pulses.

  7. Cosmological solutions and finite time singularities in Finslerian geometry

    NASA Astrophysics Data System (ADS)

    Paul, Nupur; de, S. S.; Rahaman, Farook

    2018-03-01

    We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.

  8. A novel explicit equation for the friction factor prediction in the annular flow with drag-reducing polymer

    NASA Astrophysics Data System (ADS)

    Lakzian, Esmail; Masoudifar, Amir; Saghi, Hassan

    2017-03-01

    In this paper, a novel explicit equation is presented for the friction factor prediction in the annular flow with drag reducing polymer (DRP). By using dimensional analyses and curve fitting on the published experimental data, the suggested equation is derived based on the logarithmic velocity profiles and power law in boundary layers. In the next step, a least squares method is used to calibrate the presented equation. Then, the equation is used to friction factor prediction of the gas-liquid mixture with DRP and the results are compared with the experimental data and the Al-Sarkhi ones. Finally, drag reduction (DR) is applied as the ratio of the friction factor reduction using DRP to the friction factor without DRP. The DR results show that the suggested equation has a better agreement with the experimental data in comparison with the pervious equations. The results also show that DR prediction decreases with the increase of the gas superficial velocity.

  9. Thermodynamic properties of oxygen and nitrogen III

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Jacobsen, R. T.; Myers, A. F.

    1972-01-01

    The final equation for nitrogen was determined. In the work on the equation of state for nitrogen, coefficients were determined by constraining the critical point to selected critical point parameters. Comparisons of this equation with all the P-density-T data were made, as well as comparisons to all other thermodynamic data reported in the literature. The extrapolation of the equation of state was studied for vapor to higher temperatures and lower temperatures, and for the liquid surface to the saturated liquid and the fusion lines. A new vapor pressure equation was also determined which was constrained to the same critical temperature, pressure, and slope (dP/dT) as the equation of state. Work on the equation of state for oxygen included studies for improving the equation at the critical point. Comparisons of velocity of sound data for oxygen were also made between values calculated with a preliminary equation of state and experimental data. Functions for the calculation of the derived thermodynamic properties using the equation of state are given, together with the derivative and integral functions for the calculation of the thermodynamic properties using the equations of state. Summary tables of the thermodynamic properties of nitrogen and oxygen are also included to serve as a check for those preparing computer programs using the equations of state.

  10. The physics behind Van der Burgh's empirical equation, providing a new predictive equation for salinity intrusion in estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2017-07-01

    The practical value of the surprisingly simple Van der Burgh equation in predicting saline water intrusion in alluvial estuaries is well documented, but the physical foundation of the equation is still weak. In this paper we provide a connection between the empirical equation and the theoretical literature, leading to a theoretical range of Van der Burgh's coefficient of 1/2 < K < 2/3 for density-driven mixing which falls within the feasible range of 0 < K < 1. In addition, we developed a one-dimensional predictive equation for the dispersion of salinity as a function of local hydraulic parameters that can vary along the estuary axis, including mixing due to tide-driven residual circulation. This type of mixing is relevant in the wider part of alluvial estuaries where preferential ebb and flood channels appear. Subsequently, this dispersion equation is combined with the salt balance equation to obtain a new predictive analytical equation for the longitudinal salinity distribution. Finally, the new equation was tested and applied to a large database of observations in alluvial estuaries, whereby the calibrated K values appeared to correspond well to the theoretical range.

  11. A detailed description of the uncertainty analysis for high area ratio rocket nozzle tests at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac

    1987-01-01

    A preliminary uncertainty analysis was performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis is presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.

  12. The role of attention during retrieval in working-memory span: a dual-task study.

    PubMed

    Healey, M Karl; Miyake, Akira

    2009-04-01

    We tested the hypothesis that retrieving target words in operation span (OSpan) involves attention-demanding processes. Participants completed the standard OSpan task and a modified version in which all equations preceded all target words. Recall took place under either full attention or easy versus hard divided-attention conditions. Recall suffered under divided attention with the recall decrement being greater for the hard secondary task. Moreover, secondary-task performance was disrupted more by the standard OSpan task than by the modified version with the hard secondary task showing the larger decrement. Finally, the time taken to start recalling the first word was considerably longer for the standard version than for the modified version. These results are consistent with the proposal that successful OSpan task performance in part involves the attention-demanding retrieval of targets from long-term memory.

  13. A detailed description of the uncertainty analysis for High Area Ratio Rocket Nozzle tests at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac

    1987-01-01

    A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.

  14. Dynamics and Hall-edge-state mixing of localized electrons in a two-channel Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Bellentani, Laura; Beggi, Andrea; Bordone, Paolo; Bertoni, Andrea

    2018-05-01

    We present a numerical study of a multichannel electronic Mach-Zehnder interferometer, based on magnetically driven noninteracting edge states. The electron path is defined by a full-scale potential landscape on the two-dimensional electron gas at filling factor 2, assuming initially only the first Landau level as filled. We tailor the two beamsplitters with 50 % interchannel mixing and measure Aharonov-Bohm oscillations in the transmission probability of the second channel. We perform time-dependent simulations by solving the electron Schrödinger equation through a parallel implementation of the split-step Fourier method, and we describe the charge-carrier wave function as a Gaussian wave packet of edge states. We finally develop a simplified theoretical model to explain the features observed in the transmission probability, and we propose possible strategies to optimize gate performances.

  15. How students process equations in solving quantitative synthesis problems? Role of mathematical complexity in students' mathematical performance

    NASA Astrophysics Data System (ADS)

    Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan

    2017-12-01

    We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students' mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students' simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students' formulation and combination of equations. Several reasons may explain this difference, including the students' different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.

  16. Reference Ellipsoid and Geoid in Chronometric Geodesy

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.

    2016-02-01

    Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height). We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it in chronometric geodesy by making use of the anomalous gravity potential.

  17. A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows

    NASA Astrophysics Data System (ADS)

    Joshi, Vaibhav; Jaiman, Rajeev K.

    2018-05-01

    We present a positivity preserving variational scheme for the phase-field modeling of incompressible two-phase flows with high density ratio. The variational finite element technique relies on the Allen-Cahn phase-field equation for capturing the phase interface on a fixed Eulerian mesh with mass conservative and energy-stable discretization. The mass conservation is achieved by enforcing a Lagrange multiplier which has both temporal and spatial dependence on the underlying solution of the phase-field equation. To make the scheme energy-stable in a variational sense, we discretize the spatial part of the Lagrange multiplier in the phase-field equation by the mid-point approximation. The proposed variational technique is designed to reduce the spurious and unphysical oscillations in the solution while maintaining the second-order accuracy of both spatial and temporal discretizations. We integrate the Allen-Cahn phase-field equation with the incompressible Navier-Stokes equations for modeling a broad range of two-phase flow and fluid-fluid interface problems. The coupling of the implicit discretizations corresponding to the phase-field and the incompressible flow equations is achieved via nonlinear partitioned iterative procedure. Comparison of results between the standard linear stabilized finite element method and the present variational formulation shows a remarkable reduction of oscillations in the solution while retaining the boundedness of the phase-indicator field. We perform a standalone test to verify the accuracy and stability of the Allen-Cahn two-phase solver. We examine the convergence and accuracy properties of the coupled phase-field solver through the standard benchmarks of the Laplace-Young law and a sloshing tank problem. Two- and three-dimensional dam break problems are simulated to assess the capability of the phase-field solver for complex air-water interfaces involving topological changes on unstructured meshes. Finally, we demonstrate the phase-field solver for a practical offshore engineering application of wave-structure interaction.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisio, Alessandro; D’Ariano, Giacomo Mauro; Tosini, Alessandro, E-mail: alessandro.tosini@unipv.it

    We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound withmore » experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of a hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics. - Highlights: • The free Dirac field in one space dimension as a quantum cellular automaton. • Large scale limit of the automaton and the emergence of the Dirac equation. • Dispersive differential equation for the evolution of smooth states on the automaton. • Optimal discrimination between the automaton evolution and the Dirac equation.« less

  19. User’s Guide for the VTRPE (Variable Terrain Radio Parabolic Equation) Computer Model

    DTIC Science & Technology

    1991-10-01

    propagation effects and antenna characteristics in radar system performance calculations. the radar transmission equation is oiten employed. Fol- lowing Kerr.2...electromagnetic wave equations for the complex electric and magnetic radiation fields. The model accounts for the effects of nonuniform atmospheric refractivity...mission equation, that is used in the performance prediction and analysis of radar and communication systems. Optimized fast Fourier transform (FFT

  20. Compact Representations of Extended Causal Models

    DTIC Science & Technology

    2012-10-01

    get a yet more compact representation by assuming that, by default , it is typical for the variables to obey the structural equations. Finally, in...Halpern and Hitchcock (2011), is to incorporate considerations about about defaults , typicality, and normality. “Normality” and its cognates (“normal...atypical to violate it. 17 Variables typically obey the structural equations. Thus, it is often far more efficient to assume this holds by default

  1. Generalized INF-SUP condition for Chebyshev approximation of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bernardi, Christine; Canuto, Claudio; Maday, Yvon

    1986-01-01

    An abstract mixed problem and its approximation are studied; both are well-posed if and only if several inf-sup conditions are satisfied. These results are applied to a spectral Galerkin method for the Stokes problem in a square, when it is formulated in Chebyshev weighted Sobolev spaces. Finally, a collocation method for the Navier-Stokes equations at Chebyshev nodes is analyzed.

  2. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanuddin; Departments of Physics, Tanjungpura University, Jl Ahmad Yani Pontianak 78124 Indonesia bobby@fi.itb.ac.id; Azwar, A.

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time.

  3. Recent advances in two-phase flow numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahaffy, J.H.; Macian, R.

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  4. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2010-01-01

    Complex material behavior is represented by a single equation of product form to account for interaction among the various factors. The factors are selected by the physics of the problem and the environment that the model is to represent. For example, different factors will be required for each to represent temperature, moisture, erosion, corrosion, etc. It is important that the equation represent the physics of the behavior in its entirety accurately. The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the external launch tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points - the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used were obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated. The problem lies in how to represent the divot weight with a single equation. A unique solution to this problem is a multi-factor equation of product form. Each factor is of the following form (1 xi/xf)ei, where xi is the initial value, usually at ambient conditions, xf the final value, and ei the exponent that makes the curve represented unimodal that meets the initial and final values. The exponents are either evaluated by test data or by technical judgment. A minor disadvantage may be the selection of exponents in the absence of any empirical data. This form has been used successfully in describing the foam ejected in simulated space environmental conditions. Seven factors were required to represent the ejected foam. The exponents were evaluated by least squares method from experimental data. The equation is used and it can represent multiple factors in other problems as well; for example, evaluation of fatigue life, creep life, fracture toughness, and structural fracture, as well as optimization functions. The software is rather simplistic. Required inputs are initial value, final value, and an exponent for each factor. The number of factors is open-ended. The value is updated as each factor is evaluated. If a factor goes to zero, the previous value is used in the evaluation.

  5. The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.

  6. A note on the relations between thermodynamics, energy definitions and Friedmann equations

    NASA Astrophysics Data System (ADS)

    Moradpour, H.; Nunes, Rafael C.; Abreu, Everton M. C.; Neto, Jorge Ananias

    2017-04-01

    We investigate the relation between the Friedmann and thermodynamic pressure equations, through solving the Friedmann and thermodynamic pressure equations simultaneously. Our investigation shows that a perfect fluid, as a suitable solution for the Friedmann equations leading to the standard modeling of the universe expansion history, cannot simultaneously satisfy the thermodynamic pressure equation and those of Friedmann. Moreover, we consider various energy definitions, such as the Komar mass, and solve the Friedmann and thermodynamic pressure equations simultaneously to get some models for dark energy fluids. The cosmological consequences of obtained solutions are also addressed. Our results indicate that some of obtained solutions may unify the dominated fluid in both the primary inflationary and current accelerating eras into one model. In addition, by taking into account a cosmic fluid of a known equation of state (EoS), and combining it with the Friedmann and thermodynamic pressure equations, we obtain the corresponding energy of these cosmic fluids and face their limitations. Finally, we point out the cosmological features of this cosmic fluid and also study its observational constraints.

  7. A vectorized Poisson solver over a spherical shell and its application to the quasi-geostrophic omega-equation

    NASA Technical Reports Server (NTRS)

    Mullenmeister, Paul

    1988-01-01

    The quasi-geostrophic omega-equation in flux form is developed as an example of a Poisson problem over a spherical shell. Solutions of this equation are obtained by applying a two-parameter Chebyshev solver in vector layout for CDC 200 series computers. The performance of this vectorized algorithm greatly exceeds the performance of its scalar analog. The algorithm generates solutions of the omega-equation which are compared with the omega fields calculated with the aid of the mass continuity equation.

  8. Primer vector theory applied to the linear relative-motion equations. [for N-impulse space trajectory optimization

    NASA Technical Reports Server (NTRS)

    Jezewski, D.

    1980-01-01

    Prime vector theory is used in analyzing a set of linear relative-motion equations - the Clohessy-Wiltshire (C/W) equations - to determine the criteria and necessary conditions for an optimal N-impulse trajectory. The analysis develops the analytical criteria for improving a solution by: (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of: (1) fixed-end conditions, two impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized renezvous problem.

  9. Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp

    The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculatingmore » the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.« less

  10. Covariant formulation of scalar-torsion gravity

    NASA Astrophysics Data System (ADS)

    Hohmann, Manuel; Järv, Laur; Ualikhanova, Ulbossyn

    2018-05-01

    We consider a generalized teleparallel theory of gravitation, where the action contains an arbitrary function of the torsion scalar and a scalar field, f (T ,ϕ ) , thus encompassing the cases of f (T ) gravity and a nonminimally coupled scalar field as subclasses. The action is manifestly Lorentz invariant when besides the tetrad one allows for a flat but nontrivial spin connection. We derive the field equations and demonstrate how the antisymmetric part of the tetrad equations is automatically satisfied when the spin connection equation holds. The spin connection equation is a vital part of the covariant formulation, since it determines the spin connection associated with a given tetrad. We discuss how the spin connection equation can be solved in general and provide the cosmological and spherically symmetric examples. Finally, we generalize the theory to an arbitrary number of scalar fields.

  11. Performance of mixed formulations for the particle finite element method in soil mechanics problems

    NASA Astrophysics Data System (ADS)

    Monforte, Lluís; Carbonell, Josep Maria; Arroyo, Marcos; Gens, Antonio

    2017-07-01

    This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy's law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.

  12. The coupling of fluids, dynamics, and controls on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  13. Evaluation of Maryland abutment scour equation through selected threshold velocity methods

    USGS Publications Warehouse

    Benedict, S.T.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Maryland State Highway Administration, used field measurements of scour to evaluate the sensitivity of the Maryland abutment scour equation to the critical (or threshold) velocity variable. Four selected methods for estimating threshold velocity were applied to the Maryland abutment scour equation, and the predicted scour to the field measurements were compared. Results indicated that performance of the Maryland abutment scour equation was sensitive to the threshold velocity with some threshold velocity methods producing better estimates of predicted scour than did others. In addition, results indicated that regional stream characteristics can affect the performance of the Maryland abutment scour equation with moderate-gradient streams performing differently from low-gradient streams. On the basis of the findings of the investigation, guidance for selecting threshold velocity methods for application to the Maryland abutment scour equation are provided, and limitations are noted.

  14. Couple of the Variational Iteration Method and Fractional-Order Legendre Functions Method for Fractional Differential Equations

    PubMed Central

    Song, Junqiang; Leng, Hongze; Lu, Fengshun

    2014-01-01

    We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique. PMID:24511303

  15. The influence of dynamic inflow and torsional flexibility on rotor damping in forward flight from symbolically generated equations

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Warmbrodt, W.

    1985-01-01

    The combined effects of blade torsion and dynamic inflow on the aeroelastic stability of an elastic rotor blade in forward flight are studied. The governing sets of equations of motion (fully nonlinear, linearized, and multiblade equations) used in this study are derived symbolically using a program written in FORTRAN. Stability results are presented for different structural models with and without dynamic inflow. A combination of symbolic and numerical programs at the proper stage in the derivation process makes the obtainment of final stability results an efficient and straightforward procedure.

  16. Computational methods for vortex dominated compressible flows

    NASA Technical Reports Server (NTRS)

    Murman, Earll M.

    1987-01-01

    The principal objectives were to: understand the mechanisms by which Euler equation computations model leading edge vortex flows; understand the vortical and shock wave structures that may exist for different wing shapes, angles of incidence, and Mach numbers; and compare calculations with experiments in order to ascertain the limitations and advantages of Euler equation models. The initial approach utilized the cell centered finite volume Jameson scheme. The final calculation utilized a cell vertex finite volume method on an unstructured grid. Both methods used Runge-Kutta four stage schemes for integrating the equations. The principal findings are briefly summarized.

  17. Energy conservation and H theorem for the Enskog-Vlasov equation

    NASA Astrophysics Data System (ADS)

    Benilov, E. S.; Benilov, M. S.

    2018-06-01

    The Enskog-Vlasov (EV) equation is a widely used semiphenomenological model of gas-liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.

  18. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations

    NASA Astrophysics Data System (ADS)

    Antoine, Xavier; Duboscq, Romain

    2015-08-01

    GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows (Antoine and Duboscq, 2014), is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-Pitaevskii equations (Antoine, et al., 2013). Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are provided to show how the code works for the complex dynamics of BEC problems.

  19. Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data

    NASA Astrophysics Data System (ADS)

    Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. T.

    2018-01-01

    We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.

  20. Dynamics in a Maximally Symmetric Universe

    NASA Astrophysics Data System (ADS)

    Bewketu, Asnakew

    2016-03-01

    Our present understanding of the evolution of the universe relies upon the Friedmann- Robertson- Walker cosmological models. This model is so successful that it is now being considered as the Standard Model of Cosmology. So in this work we derive the Fried- mann equations using the Friedmann-Robertson-Walker metric together with Einstein field equation and then we give a simple method to reduce Friedmann equations to a second order linear differential equation when it is supplemented with a time dependent equation of state. Furthermore, as illustrative examples, we solve this equation for some specific time dependent equation of states. And also by using the Friedmann equations with some time dependent equation of state we try to determine the cosmic scale factor(the rate at which the universe expands) and age of the Friedmann universe, for the matter dominated era, radiation dominated era and for both matter and radiation dominated era by considering different cases. We have finally discussed the observable quantities that can be evidences for the accelerated expansion of the Friedmann universe. I would like to acknowledge Addis Ababa University for its financial and material support to my work on the title mentioned above.

  1. Equating Multidimensional Tests under a Random Groups Design: A Comparison of Various Equating Procedures

    ERIC Educational Resources Information Center

    Lee, Eunjung

    2013-01-01

    The purpose of this research was to compare the equating performance of various equating procedures for the multidimensional tests. To examine the various equating procedures, simulated data sets were used that were generated based on a multidimensional item response theory (MIRT) framework. Various equating procedures were examined, including…

  2. A Formalism for Covariant Polarized Radiative Transport by Ray Tracing

    NASA Astrophysics Data System (ADS)

    Gammie, Charles F.; Leung, Po Kin

    2012-06-01

    We write down a covariant formalism for polarized radiative transfer appropriate for ray tracing through a turbulent plasma. The polarized radiation field is represented by the polarization tensor (coherency matrix) N αβ ≡ langa α k a*β k rang, where ak is a Fourier coefficient for the vector potential. Using Maxwell's equations, the Liouville-Vlasov equation, and the WKB approximation, we show that the transport equation in vacuo is k μ∇μ N αβ = 0. We show that this is equivalent to Broderick & Blandford's formalism based on invariant Stokes parameters and a rotation coefficient, and suggest a modification that may reduce truncation error in some situations. Finally, we write down several alternative approaches to integrating the transfer equation.

  3. Lie symmetry analysis, conservation laws, solitary and periodic waves for a coupled Burger equation

    NASA Astrophysics Data System (ADS)

    Xu, Mei-Juan; Tian, Shou-Fu; Tu, Jian-Min; Zhang, Tian-Tian

    2017-01-01

    Under investigation in this paper is a generalized (2 + 1)-dimensional coupled Burger equation with variable coefficients, which describes lots of nonlinear physical phenomena in geophysical fluid dynamics, condense matter physics and lattice dynamics. By employing the Lie group method, the symmetry reductions and exact explicit solutions are obtained, respectively. Based on a direct method, the conservations laws of the equation are also derived. Furthermore, by virtue of the Painlevé analysis, we successfully obtain the integrable condition on the variable coefficients, which plays an important role in further studying the integrability of the equation. Finally, its auto-Bäcklund transformation as well as some new analytic solutions including solitary and periodic waves are also presented via algebraic and differential manipulation.

  4. The Fundamental Solution of the Linearized Navier Stokes Equations for Spinning Bodies in Three Spatial Dimensions Time Dependent Case

    NASA Astrophysics Data System (ADS)

    Thomann, Enrique A.; Guenther, Ronald B.

    2006-02-01

    Explicit formulae for the fundamental solution of the linearized time dependent Navier Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces L p (R 3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.

  5. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  6. Equations of motion for a flexible spacecraft-lumped parameter idealization

    NASA Technical Reports Server (NTRS)

    Storch, Joel; Gates, Stephen

    1982-01-01

    The equations of motion for a flexible vehicle capable of arbitrary translational and rotational motions in inertial space accompanied by small elastic deformations are derived in an unabridged form. The vehicle is idealized as consisting of a single rigid body with an ensemble of mass particles interconnected by massless elastic structure. The internal elastic restoring forces are quantified in terms of a stiffness matrix. A transformation and truncation of elastic degrees of freedom is made in the interest of numerical integration efficiency. Deformation dependent terms are partitioned into a hierarchy of significance. The final set of motion equations are brought to a fully assembled first order form suitable for direct digital implementation. A FORTRAN program implementing the equations is given and its salient features described.

  7. Survey and evaluation of multilayer insulation heat transfer measurements

    NASA Astrophysics Data System (ADS)

    Doenecke, Jochen

    About 40 papers treating multilayer insulations were studied and compared. Most of these papers present heat transfer measurements in addition to thermal analysis. Here the equations are given which are required for an evaluation of the measurements and in particular for comparisons. Equations are presented which are required to predict the influences of the packing density, temperatures, fraction of perforation area and interstitial pressure. The equation giving gas conductivity versus pressure is modified according to measurements. In space the interstitial pressure is usually below 0.01 Pa and the heat transfer can be expressed as the sum of a conductive and radiative term. The equation finally proposed for spacecraft permits to consider the influence of temperature, number of layers, blanket size and perforation area.

  8. A review of physically based models for soil erosion by water

    NASA Astrophysics Data System (ADS)

    Le, Minh-Hoang; Cerdan, Olivier; Sochala, Pierre; Cheviron, Bruno; Brivois, Olivier; Cordier, Stéphane

    2010-05-01

    Physically-based models rely on fundamental physical equations describing stream flow and sediment and associated nutrient generation in a catchment. This paper reviews several existing erosion and sediment transport approaches. The process of erosion include soil detachment, transport and deposition, we present various forms of equations and empirical formulas used when modelling and quantifying each of these processes. In particular, we detail models describing rainfall and infiltration effects and the system of equations to describe the overland flow and the evolution of the topography. We also present the formulas for the flow transport capacity and the erodibility functions. Finally, we present some recent numerical schemes to approach the shallow water equations and it's coupling with infiltration and erosion source terms.

  9. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    DOE PAGES

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; ...

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, alongmore » with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.« less

  10. Optimization of post-column reactor radius in capillary high performance liquid chromatography Effect of chromatographic column diameter and particle diameter

    PubMed Central

    Xu, Hongjuan; Weber, Stephen G.

    2006-01-01

    A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886

  11. Multi-flexible-body analysis for application to wind turbine control design

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon

    The objective of the present research is to build a theoretical and computational framework for the aeroelastic analysis of flexible rotating systems, more specifically with special application to a wind turbine control design. The methodology is based on the integration of Kane's approach for the analysis of the multi-rigid-body subsystem and a mixed finite element method for the analysis of the flexible-body subsystem. The combined analysis is then strongly coupled with an aerodynamic model based on Blade Element Momentum theory for inflow model. The unified framework from the analysis of subsystems is represented as, in a symbolic manner, a set of nonlinear ordinary differential equations with time-variant, periodic coefficients, which describe the aeroelastic behavior of whole system. The framework can be directly applied to control design due to its symbolic characteristics. The solution procedures for the equations are presented for the study of nonlinear simulation, periodic steady-state solution, and Floquet stability of the linearized system about the steady-state solution. Finally the linear periodic system equation can be obtained with both system and control matrices as explicit functions of time, which can be directly applicable to control design. The structural model is validated by comparison of its results with those from software, some of which is commercial. The stability of the linearized system about periodic steady-state solution is different from that obtained about a constant steady-state solution, which have been conventional in the field of wind turbine dynamics. Parametric studies are performed on a wind turbine model with various pitch angles, precone angles, and rotor speeds. Combined with composite material, their effects on wind turbine aeroelastic stability are investigated. Finally it is suggested that the aeroelastic stability analysis and control design for the whole system is crucial for the design of wind turbines, and the present research breaks new ground in the ability to treat the issue.

  12. Performance and Difficulties of Students in Formulating and Solving Quadratic Equations with One Unknown

    ERIC Educational Resources Information Center

    Didis, Makbule Gozde; Erbas, Ayhan Kursat

    2015-01-01

    This study attempts to investigate the performance of tenth-grade students in solving quadratic equations with one unknown, using symbolic equation and word-problem representations. The participants were 217 tenth-grade students, from three different public high schools. Data was collected through an open-ended questionnaire comprising eight…

  13. Non-minimally coupled scalar field cosmology with torsion

    NASA Astrophysics Data System (ADS)

    Cid, Antonella; Izaurieta, Fernando; Leon, Genly; Medina, Perla; Narbona, Daniela

    2018-04-01

    In this work we present a generalized Brans-Dicke lagrangian including a non-minimally coupled Gauss-Bonnet term without imposing the vanishing torsion condition. In the resulting field equations, the torsion is closely related to the dynamics of the scalar field, i.e., if non-minimally coupled terms are present in the theory, then the torsion must be present. For the studied lagrangian we analyze the cosmological consequences of an effective torsional fluid and we show that this fluid can be responsible for the current acceleration of the universe. Finally, we perform a detailed dynamical system analysis to describe the qualitative features of the model, we find that accelerated stages are a generic feature of this scenario.

  14. State-to-state rotational energy-transfer measurements in the nu(2) = 1 state of ammonia by infrared-infrared double resonance

    NASA Technical Reports Server (NTRS)

    Abel, Bernd; Coy, Stephen L.; Klaassen, Jody J.; Steinfeld, Jeffrey I.

    1992-01-01

    The state-resolved rotational (R-R, R-T) energy transfer in (N-14)H3 (for NH3-NH3 and NH3-Ar collisions) was studied using an IR double-resonance laser spectroscopic technique. Measurements of both the total rate of depopulation by collisions, and the rates of transfer into specific final rovibrational states (v,J,K) were performed using time-resolved tunable diode laser absorption spectroscopy. A kinetic master-equation analysis of time-resolved level populatons was carried out, yielding state-to-state rate constants and propensity rules for NH3-NH3 and NH3-Ar collisions.

  15. Design and numerical simulation of novel giant magnetostrictive ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Li, Pengyang; Liu, Qiang; Li, Shujuan; Wang, Quandai; Zhang, Dongya; Li, Yan

    This paper provides a design method of a novel giant magnetostrictive ultrasonic transducer utilized in incremental sheet metal forming. The frequency equations of the ultrasonic vibrator were deduced and the corresponding correctness verified by the modal and harmonic response characteristic through the finite element method (FEM) and ANSYS software. In addition, the magnetic field of the vibrator system was designed and verified by the ANSYS. Finally, the frequency tests based on the impedance response analysis and the amplitude measurements based on the laser displacement sensor were performed on the prototype. The results confirmed the appropriate design of this transducer, setting the foundation for a low mechanical quality factor and satisfying amplitude.

  16. Thermal characteristics of second harmonic generation by phase matched calorimetry.

    PubMed

    Lim, Hwan Hong; Kurimura, Sunao; Noguchi, Keisuke; Shoji, Ichiro

    2014-07-28

    We analyze a solution of the heat equation for second harmonic generation (SHG) with a focused Gaussian beam and simulate the temperature rise in SHG materials as a function of the second harmonic power and the focusing conditions. We also propose a quantitative value of the heat removal performance of SHG devices, referred to as the effective heat capacity Cα in phase matched calorimetry. We demonstrate the inverse relation between Cα and the focusing parameter ξ, and propose the universal quantity of the product of Cα and ξ for characterizing the thermal property of SHG devices. Finally, we discuss the strategy to manage thermal dephasing in SHG using the results from simulations.

  17. Optimal Pitch Thrust-Vector Angle and Benefits for all Flight Regimes

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Bolonkin, Alexander

    2000-01-01

    The NASA Dryden Flight Research Center is exploring the optimum thrust-vector angle on aircraft. Simple aerodynamic performance models for various phases of aircraft flight are developed and optimization equations and algorithms are presented in this report. Results of optimal angles of thrust vectors and associated benefits for various flight regimes of aircraft (takeoff, climb, cruise, descent, final approach, and landing) are given. Results for a typical wide-body transport aircraft are also given. The benefits accruable for this class of aircraft are small, but the technique can be applied to other conventionally configured aircraft. The lower L/D aerodynamic characteristics of fighters generally would produce larger benefits than those produced for transport aircraft.

  18. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  19. Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction

    NASA Astrophysics Data System (ADS)

    Khajanchi, Subhas

    This paper describes the synergistic interaction between the growth of malignant gliomas and the immune system interactions using a system of coupled ordinary differential equations (ODEs). The proposed mathematical model comprises the interaction of glioma cells, macrophages, activated Cytotoxic T-Lymphocytes (CTLs), the immunosuppressive factor TGF-β and the immuno-stimulatory factor IFN-γ. The dynamical behavior of the proposed system both analytically and numerically is investigated from the point of view of stability. By constructing Lyapunov functions, the global behavior of the glioma-free and the interior equilibrium point have been analyzed under some assumptions. Finally, we perform numerical simulations in order to illustrate our analytical findings by varying the system parameters.

  20. A high efficiency motor/generator for magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Niemeyer, W. L.; Studer, P.; Kirk, J. A.; Anand, D. K.; Zmood, R. B.

    1989-01-01

    The authors discuss the theory and design of a brushless direct current motor for use in a flywheel energy storage system. The motor design is optimized for a nominal 4.5-in outside diameter operating within a speed range of 33,000-66,000 revolutions per minute with a 140-V maximum supply voltage. The equations which govern the motor's operation are used to compute a series of acceptable design parameter combinations for ideal operation. Engineering tradeoffs are then performed to minimize the irrecoverable energy loss while remaining within the design constraint boundaries. A final integrated structural design whose features allow it to be incorporated with the 500-Wh magnetically suspended flywheel is presented.

  1. Evolutionary grinding model for nanometric control of surface roughness for aspheric optical surfaces.

    PubMed

    Han, Jeong-Yeol; Kim, Sug-Whan; Han, Inwoo; Kim, Geon-Hee

    2008-03-17

    A new evolutionary grinding process model has been developed for nanometric control of material removal from an aspheric surface of Zerodur substrate. The model incorporates novel control features such as i) a growing database; ii) an evolving, multi-variable regression equation; and iii) an adaptive correction factor for target surface roughness (Ra) for the next machine run. This process model demonstrated a unique evolutionary controllability of machining performance resulting in the final grinding accuracy (i.e. averaged difference between target and measured surface roughness) of -0.2+/-2.3(sigma) nm Ra over seven trial machine runs for the target surface roughness ranging from 115 nm to 64 nm Ra.

  2. Hafnium transistor design for neural interfacing.

    PubMed

    Parent, David W; Basham, Eric J

    2008-01-01

    A design methodology is presented that uses the EKV model and the g(m)/I(D) biasing technique to design hafnium oxide field effect transistors that are suitable for neural recording circuitry. The DC gain of a common source amplifier is correlated to the structural properties of a Field Effect Transistor (FET) and a Metal Insulator Semiconductor (MIS) capacitor. This approach allows a transistor designer to use a design flow that starts with simple and intuitive 1-D equations for gain that can be verified in 1-D MIS capacitor TCAD simulations, before final TCAD process verification of transistor properties. The DC gain of a common source amplifier is optimized by using fast 1-D simulations and using slower, complex 2-D simulations only for verification. The 1-D equations are used to show that the increased dielectric constant of hafnium oxide allows a higher DC gain for a given oxide thickness. An additional benefit is that the MIS capacitor can be employed to test additional performance parameters important to an open gate transistor such as dielectric stability and ionic penetration.

  3. Thermodynamic analysis of onset characteristics in a miniature thermoacoustic Stirling engine

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Zhou, Gang; Li, Qing

    2013-06-01

    This paper analyzes the onset characteristics of a miniature thermoacoustic Stirling heat engine using the thermodynamic analysis method. The governing equations of components are reduced from the basic thermodynamic relations and the linear thermoacoustic theory. By solving the governing equation group numerically, the oscillation frequencies and onset temperatures are obtained. The dependences of the kinds of working gas, the length of resonator tube, the diameter of resonator tube, on the oscillation frequency are calculated. Meanwhile, the influences of hydraulic radius and mean pressure on the onset temperature for different working gas are also presented. The calculation results indicate that there exists an optimal dimensionless hydraulic radius to obtain the lowest onset temperature, whose value lies in the range of 0.30-0.35 for different working gases. Furthermore, the amplitude and phase relationship of pressures and volume flows are analyzed in the time-domain. Some experiments have been performed to validate the calculations. The calculation results agree well with the experimental values. Finally, an error analysis is made, giving the reasons that cause the errors of theoretical calculations.

  4. Modeling for intra-body communication with bone effect.

    PubMed

    Pun, S H; Gao, Y M; Mak, P U; Du, M; Vai, M I

    2009-01-01

    Intra-body communication (IBC) is a new, different "wireless" communication technique based on the human tissue. This short range "wireless" communication technology provides an alternative solution to wearable sensors, home health system, telemedicine and implanted devices. The development of the IBC enables the possibilities of providing less complexity and convenient communication methodologies for these devices. By regarding human tissue as communication channel, IBC making use of the conductivities properties of human tissue to send electrical signal from transmitter to receiver. In this paper, the authors proposed a new mathematical model for galvanic coupling type IBC based on a human limb. Starting from the electromagnetic theory, the authors treat human tissue as volume conductor, which is in analogous with the bioelectric phenomena analysis. In order to explain the mechanism of galvanic coupling type technique of IBC, applying the quasi-static approximation, the governing equation can be reduced to Laplace Equation. Finally, the analytical model is evaluated with on-body measurement for testing its performance. The comparison result shows that the developed mathematical model can provide good approximation for galvanic coupling type IBC on human limb under low operating frequencies.

  5. Void Formation during Diffusion - Two-Dimensional Approach

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2016-06-01

    The final set of equations defining the interdiffusion process in solid state is presented. The model is supplemented by vacancy evolution equation. The competition between the Kirkendall shift, backstress effect and vacancy migration is considered. The proper diffusion flux based on the Nernst-Planck formula is proposed. As a result, the comparison of the experimental and calculated evolution of the void formation in the Fe-Pd diffusion couple is shown.

  6. The relativistic equations of stellar structure and evolution. Stars with degenerate neutron cores. 1: Structure of equilibrium models

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Zytkow, A. N.

    1976-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general relativistic version of the mixing-length formalism for convection is presented. Finally, it is argued that in previous work on spherical systems general relativity theorists have identified the wrong quantity as "total mass-energy inside radius r."

  7. Transition to turbulence in plane channel flows

    NASA Technical Reports Server (NTRS)

    Biringen, S.

    1984-01-01

    Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.

  8. Relationship between long working hours and depression: a 3-year longitudinal study of clerical workers.

    PubMed

    Amagasa, Takashi; Nakayama, Takeo

    2013-08-01

    To clarify how long working hours affect the likelihood of current and future depression. Using data from four repeated measurements collected from 218 clerical workers, four models associating work-related factors to the depressive mood scale were established. The final model was constructed after comparing and testing the goodness-of-fit index using structural equation modeling. Multiple logistic regression analysis was also performed. The final model showed the best fit (normed fit index = 0.908; goodness-of-fit index = 0.936; root-mean-square error of approximation = 0.018). Its standardized total effect indicated that long working hours affected depression at the time of evaluation and 1 to 3 years later. The odds ratio for depression risk was 14.7 in employees who were not long-hours overworked according to the initial survey but who were long-hours overworked according to the second survey. Long working hours increase current and future risks of depression.

  9. Space Radiation Transport Methods Development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.

  10. Fundamentals of continuum mechanics – classical approaches and new trends

    NASA Astrophysics Data System (ADS)

    Altenbach, H.

    2018-04-01

    Continuum mechanics is a branch of mechanics that deals with the analysis of the mechanical behavior of materials modeled as a continuous manifold. Continuum mechanics models begin mostly by introducing of three-dimensional Euclidean space. The points within this region are defined as material points with prescribed properties. Each material point is characterized by a position vector which is continuous in time. Thus, the body changes in a way which is realistic, globally invertible at all times and orientation-preserving, so that the body cannot intersect itself and as transformations which produce mirror reflections are not possible in nature. For the mathematical formulation of the model it is also assumed to be twice continuously differentiable, so that differential equations describing the motion may be formulated. Finally, the kinematical relations, the balance equations, the constitutive and evolution equations and the boundary and/or initial conditions should be defined. If the physical fields are non-smooth jump conditions must be taken into account. The basic equations of continuum mechanics are presented following a short introduction. Additionally, some examples of solid deformable continua will be discussed within the presentation. Finally, advanced models of continuum mechanics will be introduced. The paper is dedicated to Alexander Manzhirov’s 60th birthday.

  11. Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon min-max optimal control problems with uncertainty

    NASA Astrophysics Data System (ADS)

    Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.

    2018-03-01

    The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.

  12. Performance of parallel computation using CUDA for solving the one-dimensional elasticity equations

    NASA Astrophysics Data System (ADS)

    Darmawan, J. B. B.; Mungkasi, S.

    2017-01-01

    In this paper, we investigate the performance of parallel computation in solving the one-dimensional elasticity equations. Elasticity equations are usually implemented in engineering science. Solving these equations fast and efficiently is desired. Therefore, we propose the use of parallel computation. Our parallel computation uses CUDA of the NVIDIA. Our research results show that parallel computation using CUDA has a great advantage and is powerful when the computation is of large scale.

  13. Relations between nonlinear Riccati equations and other equations in fundamental physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-10-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.

  14. A geometric nonlinear degenerated shell element using a mixed formulation with independently assumed strain fields. Final Report; Ph.D. Thesis, 1989

    NASA Technical Reports Server (NTRS)

    Graf, Wiley E.

    1991-01-01

    A mixed formulation is chosen to overcome deficiencies of the standard displacement-based shell model. Element development is traced from the incremental variational principle on through to the final set of equilibrium equations. Particular attention is paid to developing specific guidelines for selecting the optimal set of strain parameters. A discussion of constraint index concepts and their predictive capability related to locking is included. Performance characteristics of the elements are assessed in a wide variety of linear and nonlinear plate/shell problems. Despite limiting the study to geometric nonlinear analysis, a substantial amount of additional insight concerning the finite element modeling of thin plate/shell structures is provided. For example, in nonlinear analysis, given the same mesh and load step size, mixed elements converge in fewer iterations than equivalent displacement-based models. It is also demonstrated that, in mixed formulations, lower order elements are preferred. Additionally, meshes used to obtain accurate linear solutions do not necessarily converge to the correct nonlinear solution. Finally, a new form of locking was identified associated with employing elements designed for biaxial bending in uniaxial bending applications.

  15. The associations among fundamental movement skills, self-reported physical activity and academic performance during junior high school in Finland.

    PubMed

    Jaakkola, Timo; Hillman, Charles; Kalaja, Sami; Liukkonen, Jarmo

    2015-01-01

    The purpose of this study was to analyse the longitudinal associations between (1) fundamental movement skills (FMSs) and academic performance, and (2) self-reported physical activity and academic performance through junior high school in Finland. The participants of the study were 325 Finnish students (162 girls and 163 boys), who were 13 years old at the beginning of the study at Grade 7. Students performed three FMS tests and responded to a self-reported physical activity questionnaire at Grades 7 and 8. Marks in Finnish language, mathematics and history from Grades 7, 8 and 9 were collected. Structural equation modelling with multigroup method demonstrated that in the boys' group, a correlation (0.17) appeared between FMS and academic performance measured at Grade 7. The results also indicated that FMS collected at Grade 8 were significantly but weakly (path coefficient 0.14) associated with academic performance at Grade 9 for both gender groups. Finally, the results of this study demonstrated that self-reported physical activity was not significantly related to academic performance during junior high school. The findings of this study suggest that mastery of FMS may contribute to better student achievement during junior high school.

  16. Stress stiffening and approximate equations in flexible multibody dynamics

    NASA Technical Reports Server (NTRS)

    Padilla, Carlos E.; Vonflotow, Andreas H.

    1993-01-01

    A useful model for open chains of flexible bodies undergoing large rigid body motions, but small elastic deformations, is one in which the equations of motion are linearized in the small elastic deformations and deformation rates. For slow rigid body motions, the correctly linearized, or consistent, set of equations can be compared to prematurely linearized, or inconsistent, equations and to 'oversimplified,' or ruthless, equations through the use of open loop dynamic simulations. It has been shown that the inconsistent model should never be used, while the ruthless model should be used whenever possible. The consistent and inconsistent models differ by stress stiffening terms. These are due to zeroth-order stresses effecting virtual work via nonlinear strain-displacement terms. In this paper we examine in detail the nature of these stress stiffening terms and conclude that they are significant only when the associated zeroth-order stresses approach 'buckling' stresses. Finally it is emphasized that when the stress stiffening terms are negligible the ruthlessly linearized equations should be used.

  17. Methods for determining magnitude and frequency of floods in California, based on data through water year 2006

    USGS Publications Warehouse

    Gotvald, Anthony J.; Barth, Nancy A.; Veilleux, Andrea G.; Parrett, Charles

    2012-01-01

    Methods for estimating the magnitude and frequency of floods in California that are not substantially affected by regulation or diversions have been updated. Annual peak-flow data through water year 2006 were analyzed for 771 streamflow-gaging stations (streamgages) in California having 10 or more years of data. Flood-frequency estimates were computed for the streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Low-outlier and historic information were incorporated into the flood-frequency analysis, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low outliers. Special methods for fitting the distribution were developed for streamgages in the desert region in southeastern California. Additionally, basin characteristics for the streamgages were computed by using a geographical information system. Regional regression analysis, using generalized least squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins in California that are outside of the southeastern desert region. Flood-frequency estimates and basin characteristics for 630 streamgages were combined to form the final database used in the regional regression analysis. Five hydrologic regions were developed for the area of California outside of the desert region. The final regional regression equations are functions of drainage area and mean annual precipitation for four of the five regions. In one region, the Sierra Nevada region, the final equations are functions of drainage area, mean basin elevation, and mean annual precipitation. Average standard errors of prediction for the regression equations in all five regions range from 42.7 to 161.9 percent. For the desert region of California, an analysis of 33 streamgages was used to develop regional estimates of all three parameters (mean, standard deviation, and skew) of the log-Pearson Type III distribution. The regional estimates were then used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins. The final regional regression equations are functions of drainage area. Average standard errors of prediction for these regression equations range from 214.2 to 856.2 percent. Annual peak-flow data through water year 2006 were analyzed for eight streamgages in California having 10 or more years of data considered to be affected by urbanization. Flood-frequency estimates were computed for the urban streamgages by fitting a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Regression analysis could not be used to develop flood-frequency estimation equations for urban streams because of the limited number of sites. Flood-frequency estimates for the eight urban sites were graphically compared to flood-frequency estimates for 630 non-urban sites. The regression equations developed from this study will be incorporated into the U.S. Geological Survey (USGS) StreamStats program. The StreamStats program is a Web-based application that provides streamflow statistics and basin characteristics for USGS streamgages and ungaged sites of interest. StreamStats can also compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in California.

  18. Numerically simulated comparative performance of a scramjet and shcramjet at Mach 11

    NASA Astrophysics Data System (ADS)

    Chan, Jonathan

    This study investigates the design and aeropropulsive performance of a complete, hydrogen powered, shock-induced combustion ramjet (shcramjet) at a flight Mach number of 11 and altitude of 34.5 km. The design includes a Prandtl-Meyer compression inlet, cantilevered ramp fuel injectors, a shock-inducing wedge and a divergent nozzle. Numerical studies are undertaken using the WARP code that solves the three-dimensional Favre-averaged Navier-Stokes equations closed by the Wilcox k-o turbulence model and the Jachimowski H2/air chemical kinetics model. Studies of fuel injection properties, mixing duct length, combustor wedge and nozzle geometry are completed to maximize the overall performance of the vehicle. The final shcramjet configuration generates a specific impulse of 1110 s. A comparison is undertaken with a scramjet vehicle at identical flight conditions and using many of the same components. The comparable scramjet generates a higher specific impulse of 1450 s although it is significantly larger and therefore heavier.

  19. Stability of Rigidly Rotating Relativistic Stars with Soft Equations of State against Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru

    2004-04-01

    We study secular stability against a quasi-radial oscillation for rigidly rotating stars with soft equations of state in general relativity. The polytropic equations of state with polytropic index n between 3 and 3.05 are adopted for modeling the rotating stars. The stability is determined in terms of the turning-point method. It is found that (1) for n>~3.04, all the rigidly rotating stars are unstable against the quasi-radial oscillation and (2) for n>~3.01, the nondimensional angular momentum parameter q≡cJ/GM2 (where J, M, G, and c denote the angular momentum, the gravitational mass, the gravitational constant, and the speed of light, respectively) for all marginally stable rotating stars is larger than unity. A semianalytic calculation is also performed, and good agreement with the numerical results is confirmed. The final outcome after axisymmetric gravitational collapse of rigidly rotating and marginally stable massive stars with q>1 is predicted, assuming that the rest-mass distribution as a function of the specific angular momentum is preserved and that the pressure never halt the collapse. It is found that even for 1~2.5, the significant angular momentum will prevent the direct formation of a black hole.

  20. Relationship between structural and dynamic properties of Al-rich Al-Cu melts: Beyond the Stokes-Einstein relation

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2016-12-01

    We perform ab initio molecular dynamics simulations to study structural and transport properties in liquid A l1 -xC ux alloys, with copper composition x ≤0.4 , in relation to the applicability of the Stokes-Einstein (SE) equation in these melts. To begin, we find that self-diffusion coefficients and viscosity are composition dependent, while their temperature dependence follows an Arrhenius-type behavior, except for x =0.4 at low temperature. Then, we find that the applicability of the SE equation is also composition dependent, and its breakdown in the liquid regime above the liquidus temperature can be related to different local ordering around each species. In this case, we emphasize the difficulty of extracting effective atomic radii from interatomic distances found in liquid phases, but we see a clear correlation between transport properties and local ordering described through the structural entropy approximated by the two-body contribution. We use these findings to reformulate the SE equation within the framework of Rosenfeld's scaling law in terms of partial structural entropies, and we demonstrate that the breakdown of the SE relation can be related to their temperature dependence. Finally, we also use this framework to derive a simple relation between the ratio of the self-diffusivities of the components and the ratio of their partial structural entropies.

  1. Analysis of hysteresis effect on the vibration motion of a bimodal non-uniform micro-cantilever using MCS theory

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Korayem, A. H.; Hosseini Hashemi, Sh.

    2016-02-01

    Nowadays, to enhance the performance of atomic force microscopy (AFM) micro-cantilevers (MCs) during imaging, reduce costs and increase the surface topography precision, advanced MCs equipped with piezoelectric layers are utilized. Using the modified couple stress (MCS) theory not only makes the modeling more exhaustive, but also increases the accuracy of prediction of the vibration behavior of the system. In this paper, Hamilton's principle by consideration of the MCS theory has been used to extract the equations. In addition, to discretize the equations, differential quadrature method has been adopted. Analysis of the hysteresis effect on the vibration behavior of the AFM MC is of significant importance. Thus, to model the hysteresis effect, Bouc-Wen method, which is solved simultaneously with the vibration equations of non-uniform Timoshenko beam, has been utilized. Furthermore, a bimodal excitation of the MC has been considered. The results reveal that the hysteresis effect appears as a phase difference in the time response. Finally, the effect of the geometric parameters on the vibration frequency of the system which is excited by combination of the first two vibration modes of the non-uniform piezoelectric MC has been examined. The results indicate the considerable effect of the MC length in comparison with other geometric parameters such as the MC width and thickness.

  2. [Maternal depressive symptoms and anxiety and interference in the mother/child relationship based on a prenatal cohort: an approach with structural equations modeling].

    PubMed

    Morais, Adriana Oliveira Dias de Sousa; Simões, Vanda Maria Ferreira; Rodrigues, Lívia Dos Santos; Batista, Rosângela Fernandes Lucena; Lamy, Zeni Carvalho; Carvalho, Carolina Abreu de; Silva, Antônio Augusto Moura da; Ribeiro, Marizélia Rodrigues Costa

    2017-07-13

    This study aimed to investigate the association between maternal depressive symptoms and anxiety and interference in the mother/child relationship, using structural equations modeling. Data were used from a prospective cohort study initiated during the prenatal period with 1,140 mothers in São Luís, Maranhão State, Brazil. Data were collected during prenatal care and when the children reached two years of age. Interference in the mother/child relationship was measured with the Postpartum Bonding Questionnaire - PBQ (N = 1,140). In the initial theoretical model, socioeconomic status determined the maternal demographic, psychosocial, and social support factors, which determined the outcome, i.e., the mother/child relationship. Adjustments were performed by structural equations modeling, using Mplus 7.0. The final model showed good fit (RMSEA = 0.047; CFI = 0.984; TLI = 0.981). Depressive symptoms in pregnancy and the postpartum were associated with higher PBQ scores, indicating interference in the mother/child relationship. The greatest effect was from depressive symptoms in pregnancy. Other factors associated with higher PBQ scores were lower social support, unfavorable socioeconomic status, and living without a partner, by indirect association. Anxiety symptoms and maternal age were not associated with the mother/child relationship. The results suggest that identifying and treating depression in pregnancy and postpartum can improve mother/child bonding in childhood.

  3. Symmetry investigations on the incompressible stationary axisymmetric Euler equations with swirl

    NASA Astrophysics Data System (ADS)

    Frewer, M.; Oberlack, M.; Guenther, S.

    2007-08-01

    We discuss the incompressible stationary axisymmetric Euler equations with swirl, for which we derive via a scalar stream function an equivalent representation, the Bragg-Hawthorne equation [Bragg, S.L., Hawthorne, W.R., 1950. Some exact solutions of the flow through annular cascade actuator discs. J. Aero. Sci. 17, 243]. Despite this obvious equivalence, we will show that under a local Lie point symmetry analysis the Bragg-Hawthorne equation exposes itself as not being fully equivalent to the original Euler equations. This is reflected in the way that it possesses additional symmetries not being admitted by its counterpart. In other words, a symmetry of the Bragg-Hawthorne equation is in general not a symmetry of the Euler equations. Not the differential Euler equations but rather a set of integro-differential equations attains full equivalence to the Bragg-Hawthorne equation. For these intermediate Euler equations, it is interesting to note that local symmetries of the Bragg-Hawthorne equation transform to local as well as to nonlocal symmetries. This behaviour, on the one hand, is in accordance with Zawistowski's result [Zawistowski, Z.J., 2001. Symmetries of integro-differential equations. Rep. Math. Phys. 48, 269; Zawistowski, Z.J., 2004. General criterion of invariance for integro-differential equations. Rep. Math. Phys. 54, 341] that it is possible for integro-differential equations to admit local Lie point symmetries. On the other hand, with this transformation process we collect symmetries which cannot be obtained when carrying out a usual local Lie point symmetry analysis. Finally, the symmetry classification of the Bragg-Hawthorne equation is used to find analytical solutions for the phenomenon of vortex breakdown.

  4. Development of 1RM Prediction Equations for Bench Press in Moderately Trained Men.

    PubMed

    Macht, Jordan W; Abel, Mark G; Mullineaux, David R; Yates, James W

    2016-10-01

    Macht, JW, Abel, MG, Mullineaux, DR, and Yates, JW. Development of 1RM prediction equations for bench press in moderately trained men. J Strength Cond Res 30(10): 2901-2906, 2016-There are a variety of established 1 repetition maximum (1RM) prediction equations, however, very few prediction equations use anthropometric characteristics exclusively or in part, to estimate 1RM strength. Therefore, the purpose of this study was to develop an original 1RM prediction equation for bench press using anthropometric and performance characteristics in moderately trained male subjects. Sixty male subjects (21.2 ± 2.4 years) completed a 1RM bench press and were randomly assigned a load to complete as many repetitions as possible. In addition, body composition, upper-body anthropometric characteristics, and handgrip strength were assessed. Regression analysis was used to develop a performance-based 1RM prediction equation: 1RM = 1.20 repetition weight + 2.19 repetitions to fatigue - 0.56 biacromial width (cm) + 9.6 (R = 0.99, standard error of estimate [SEE] = 3.5 kg). Regression analysis to develop a nonperformance-based 1RM prediction equation yielded: 1RM (kg) = 0.997 cross-sectional area (CSA) (cm) + 0.401 chest circumference (cm) - 0.385%fat - 0.185 arm length (cm) + 36.7 (R = 0.81, SEE = 13.0 kg). The performance prediction equations developed in this study had high validity coefficients, minimal mean bias, and small limits of agreement. The anthropometric equations had moderately high validity coefficient but larger limits of agreement. The practical applications of this study indicate that the inclusion of anthropometric characteristics and performance variables produce a valid prediction equation for 1RM strength. In addition, the CSA of the arm uses a simple nonperformance method of estimating the lifter's 1RM. This information may be used to predict the starting load for a lifter performing a 1RM prediction protocol or a 1RM testing protocol.

  5. Eigenvalue sensitivity analysis of planar frames with variable joint and support locations

    NASA Technical Reports Server (NTRS)

    Chuang, Ching H.; Hou, Gene J. W.

    1991-01-01

    Two sensitivity equations are derived in this study based upon the continuum approach for eigenvalue sensitivity analysis of planar frame structures with variable joint and support locations. A variational form of an eigenvalue equation is first derived in which all of the quantities are expressed in the local coordinate system attached to each member. Material derivative of this variational equation is then sought to account for changes in member's length and orientation resulting form the perturbation of joint and support locations. Finally, eigenvalue sensitivity equations are formulated in either domain quantities (by the domain method) or boundary quantities (by the boundary method). It is concluded that the sensitivity equation derived by the boundary method is more efficient in computation but less accurate than that of the domain method. Nevertheless, both of them in terms of computational efficiency are superior to the conventional direct differentiation method and the finite difference method.

  6. Feynman-Kac formula for stochastic hybrid systems.

    PubMed

    Bressloff, Paul C

    2017-01-01

    We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.

  7. Stability: Conservation laws, Painlevé analysis and exact solutions for S-KP equation in coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    EL-Kalaawy, O. H.; Moawad, S. M.; Wael, Shrouk

    The propagation of nonlinear waves in unmagnetized strongly coupled dusty plasma with Boltzmann distributed electrons, iso-nonthermal distributed ions and negatively charged dust grains is considered. The basic set of fluid equations is reduced to the Schamel Kadomtsev-Petviashvili (S-KP) equation by using the reductive perturbation method. The variational principle and conservation laws of S-KP equation are obtained. It is shown that the S-KP equation is non-integrable using Painlevé analysis. A set of new exact solutions are obtained by auto-Bäcklund transformations. The stability analysis is discussed for the existence of dust acoustic solitary waves (DASWs) and it is found that the physical parameters have strong effects on the stability criterion. In additional to, the electric field and the true Mach number of this solution are investigated. Finally, we will study the physical meanings of solutions.

  8. Effective quadrature formula in solving linear integro-differential equations of order two

    NASA Astrophysics Data System (ADS)

    Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.

    2017-08-01

    In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.

  9. Underwater photogrammetric theoretical equations and technique

    NASA Astrophysics Data System (ADS)

    Fan, Ya-bing; Huang, Guiping; Qin, Gui-qin; Chen, Zheng

    2011-12-01

    In order to have a high level of accuracy of measurement in underwater close-range photogrammetry, this article deals with a study of three varieties of model equations according to the way of imaging upon the water. First, the paper makes a careful analysis for the two varieties of theoretical equations and finds out that there are some serious limitations in practical application and has an in-depth study for the third model equation. Second, one special project for this measurement has designed correspondingly. Finally, one rigid antenna has been tested by underwater photogrammetry. The experimental results show that the precision of 3D coordinates measurement is 0.94mm, which validates the availability and operability in practical application with this third equation. It can satisfy the measurement requirements of refraction correction, improving levels of accuracy of underwater close-range photogrammetry, as well as strong antijamming and stabilization.

  10. Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

    NASA Technical Reports Server (NTRS)

    Yan, Jue; Shu, Chi-Wang; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh.

  11. Scaled equation of state parameters for gases in the critical region

    NASA Technical Reports Server (NTRS)

    Sengers, J. M. H. L.; Greer, W. L.; Sengers, J. V.

    1976-01-01

    In the light of recent theoretical developments, the paper presents an accurate characterization of anomalous thermodynamic behavior of xenon, helium 4, helium 3, carbon dioxide, steam and oxygen in the critical region. This behavior is associated with long range fluctuations in the system and the physical properties depend primarily on a single variable, namely, the correlation length. A description of the thermodynamic behavior of fluids in terms of scaling laws is formulated, and the two successfully used scaled equations of state (NBS equation and Linear Model parametric equation) are compared. Methods for fitting both equations to experimental equation of state data are developed and formulated, and the optimum fit for each of the two scaled equations of the above gases are presented and the results are compared. By extending the experimental data for the above one-component fluids to partially miscible binary liquids, superfluid liquid helium, ferromagnets and solids exhibiting order-disorder transitions, the principle of universality is concluded. Finally by using this principle, the critical regions for nine additional fluids are described.

  12. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-06-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  13. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-04-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  14. 40 CFR 98.274 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) Fuel properties needed to perform the calculations in Equations AA-1 and AA-2 of this subpart... frequently than annually, then the high heat value used in Equation AA-1 of this subpart must be based on the... performed more frequently than annually, then the mass of spent liquor solids used in Equation AA-1 of this...

  15. 40 CFR 98.274 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (b) Fuel properties needed to perform the calculations in Equations AA-1 and AA-2 of this subpart... frequently than annually, then the high heat value used in Equation AA-1 of this subpart must be based on the... performed more frequently than annually, then the mass of spent liquor solids used in Equation AA-1 of this...

  16. 40 CFR 98.274 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) Fuel properties needed to perform the calculations in Equations AA-1 and AA-2 of this subpart... frequently than annually, then the high heat value used in Equation AA-1 of this subpart must be based on the... performed more frequently than annually, then the mass of spent liquor solids used in Equation AA-1 of this...

  17. 40 CFR 98.274 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (b) Fuel properties needed to perform the calculations in Equations AA-1 and AA-2 of this subpart... frequently than annually, then the high heat value used in Equation AA-1 of this subpart must be based on the... performed more frequently than annually, then the mass of spent liquor solids used in Equation AA-1 of this...

  18. Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations

    NASA Astrophysics Data System (ADS)

    Blanchet, Steve; Di Bari, Pasquale; Jones, David A.; Marzola, Luca

    2013-01-01

    Leptogenesis with heavy neutrino flavours is discussed within a density matrix formalism. We write the density matrix equation, describing the generation of the matter-antimatter asymmetry, for an arbitrary choice of the right-handed (RH) neutrino masses. For hierarchical RH neutrino masses lying in the fully flavoured regimes, this reduces to multiple-stage Boltzmann equations. In this case we recover and extend results previously derived within a quantum state collapse description. We confirm the generic existence of phantom terms. However, taking into account the effect of gauge interactions, we show that they are washed out at the production with a wash-out rate that is halved compared to that one acting on the total asymmetry. In the N1-dominated scenario they cancel without contributing to the final baryon asymmetry. In other scenarios they do not in general and they have to be taken into account. We also confirm that there is a (orthogonal) component in the asymmetry produced by the heavier RH neutrinos which completely escapes the washout from the lighter RH neutrinos and show that phantom terms additionally contribute to it. The other (parallel) component is washed out with the usual exponential factor, even for weak washout. Finally, as an illustration, we study the two RH neutrino model in the light of the above findings, showing that phantom terms can contribute to the final asymmetry also in this case.

  19. Final Technical Report for Years 1-4 of the Early Career Research Project "Viscosity and equation of state of hot and dense QCD matter" - ARRA portion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molnar, Denes

    2014-04-14

    The Section below summarizes research activities and achievements during the first four years of the PI’s Early Career Research Project (ECRP). Two main areas have been advanced: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time) on both single-CPU and parallel computers; ii) development of a self-consistent framework to convert viscous fluids to particles, and application of this framework to relativistic heavy-ion collisions, in particular, determination of the shear viscosity. Year 5 of the ECRP is under a separate award number, and therefore itmore » has its own report document ’Final Technical Report for Year 5 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCDmatter”’ (award DE-SC0008028). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Topical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).« less

  20. Infrared length scale and extrapolations for the no-core shell model

    DOE PAGES

    Wendt, K. A.; Forssén, C.; Papenbrock, T.; ...

    2015-06-03

    In this paper, we precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In the NCSM, the A-body Hilbert space is truncated by the total energy, and the IR length can be determined by equating the intrinsic kinetic energy of A nucleons in the NCSM space to that of A nucleons in a 3(A-1)-dimensional hyper-radial well with a Dirichlet boundary condition for the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by performing large-scale NCSM calculations for 6Li. We apply our result and perform accurate IR extrapolations for bound statesmore » of 4He, 6He, 6Li, and 7Li. Finally, we also attempt to extrapolate NCSM results for 10B and 16O with bare interactions from chiral effective field theory over tens of MeV.« less

  1. Reduction of Simulation Times for High-Q Structures using the Resonance Equation

    DOE PAGES

    Hall, Thomas Wesley; Bandaru, Prabhakar R.; Rees, Daniel Earl

    2015-11-17

    Simulating steady state performance of high quality factor (Q) resonant RF structures is computationally difficult for structures with sizes on the order of more than a few wavelengths because of the long times (on the order of ~ 0.1 ms) required to achieve steady state in comparison with maximum time step that can be used in the simulation (typically, on the order of ~ 1 ps). This paper presents analytical and computational approaches that can be used to accelerate the simulation of the steady state performance of such structures. The basis of the proposed approach is the utilization of amore » larger amplitude signal at the beginning to achieve steady state earlier relative to the nominal input signal. Finally, the methodology for finding the necessary input signal is then discussed in detail, and the validity of the approach is evaluated.« less

  2. Model-Free Adaptive Control for Unknown Nonlinear Zero-Sum Differential Game.

    PubMed

    Zhong, Xiangnan; He, Haibo; Wang, Ding; Ni, Zhen

    2018-05-01

    In this paper, we present a new model-free globalized dual heuristic dynamic programming (GDHP) approach for the discrete-time nonlinear zero-sum game problems. First, the online learning algorithm is proposed based on the GDHP method to solve the Hamilton-Jacobi-Isaacs equation associated with optimal regulation control problem. By setting backward one step of the definition of performance index, the requirement of system dynamics, or an identifier is relaxed in the proposed method. Then, three neural networks are established to approximate the optimal saddle point feedback control law, the disturbance law, and the performance index, respectively. The explicit updating rules for these three neural networks are provided based on the data generated during the online learning along the system trajectories. The stability analysis in terms of the neural network approximation errors is discussed based on the Lyapunov approach. Finally, two simulation examples are provided to show the effectiveness of the proposed method.

  3. Parallel Domain Decomposition Formulation and Software for Large-Scale Sparse Symmetrical/Unsymmetrical Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Watson, Willie R. (Technical Monitor)

    2005-01-01

    The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.

  4. Note: Design and capability verification of fillet triangle flexible support

    NASA Astrophysics Data System (ADS)

    Wang, Tao; San, Xiao-Gang; Gao, Shi-Jie; Wang, Jing; Ni, Ying-Xue; Sang, Zhi-Xin

    2017-12-01

    By increasing the section thickness of a triangular flexible hinge, this study focuses on optimal selection of parameters of fillet triangle flexible hinges and flexible support. Based on Castigliano's second theorem, the flexibility expression of the fillet triangle flexible hinge was derived. Then, the case design is performed, and the comparison of three types of flexible hinges with this type of flexible hinge was carried out. The finite element models of fillet triangle flexible hinges and flexible support were built, and then the simulation results of performance parameters were calculated. Finally, the experiment platform was established to validate analysis results. The maximum error is less than 8%, which verifies the accuracy of the simulation process and equations derived; also the fundamental frequency fits the requirements of the system. The fillet triangle flexible hinge is proved to have the advantages of high precision and low flexibility.

  5. GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials

    DOE PAGES

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; ...

    2016-07-12

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn–Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. In this paper, we present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Finally, using the Craymore » XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.« less

  6. Evidence that judgments of learning are causally related to study choice.

    PubMed

    Metcalfe, Janet; Finn, Bridgid

    2008-02-01

    Three experiments investigated whether study choice was directly related to judgments of learning (JOLs) by examining people's choices in cases in which JOLs were dissociated from recall. In Experiment 1, items were given either three repetitions or one repetition on Trial 1. Items given three repetitions received one on Trial 2, and those given one repetition received three on Trial 2-equating performance at the end of Trial 2, but yielding different immediate Trial 2 JOLs. Study choice followed the "illusory" JOLs. A delayed JOL condition in Experiment 2 did not show this JOL bias and neither did study choice. Finally, using a paradigm (Koriat & Bjork, 2005) in which similar JOLs are given to forward and backward associative pairs, despite much worse performance on the backward pairs, study choice again followed the mistaken JOLs. We concluded that JOLs-what people believe they know-directly influence people's study choices.

  7. Note: Design and capability verification of fillet triangle flexible support.

    PubMed

    Wang, Tao; San, Xiao-Gang; Gao, Shi-Jie; Wang, Jing; Ni, Ying-Xue; Sang, Zhi-Xin

    2017-12-01

    By increasing the section thickness of a triangular flexible hinge, this study focuses on optimal selection of parameters of fillet triangle flexible hinges and flexible support. Based on Castigliano's second theorem, the flexibility expression of the fillet triangle flexible hinge was derived. Then, the case design is performed, and the comparison of three types of flexible hinges with this type of flexible hinge was carried out. The finite element models of fillet triangle flexible hinges and flexible support were built, and then the simulation results of performance parameters were calculated. Finally, the experiment platform was established to validate analysis results. The maximum error is less than 8%, which verifies the accuracy of the simulation process and equations derived; also the fundamental frequency fits the requirements of the system. The fillet triangle flexible hinge is proved to have the advantages of high precision and low flexibility.

  8. Improvements in Mixing Time and Mixing Uniformity in Devices Designed for Studies of Protein Folding Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shuhuai; Bakajin, Olgica

    2007-08-01

    Using a microfluidic laminar flow mixer designed for studies of protein folding kinetics, we demonstrate a mixing time of 1 +/- 1 micros with sample consumption on the order of femtomoles. We recognize two limitations of previously proposed designs: (1) size and shape of the mixing region, which limits mixing uniformity and (2) the formation of Dean vortices at high flow rates, which limits the mixing time. We address these limitations by using a narrow shape-optimized nozzle and by reducing the bend of the side channel streamlines. The final design, which combines both of these features, achieves the best performance.more » We quantified the mixing performance of the different designs by numerical simulation of coupled Navier-Stokes and convection-diffusion equations and experiments using fluorescence resonance energy-transfer (FRET)-labeled DNA.« less

  9. Simulation Research on Vehicle Active Suspension Controller Based on G1 Method

    NASA Astrophysics Data System (ADS)

    Li, Gen; Li, Hang; Zhang, Shuaiyang; Luo, Qiuhui

    2017-09-01

    Based on the order relation analysis method (G1 method), the optimal linear controller of vehicle active suspension is designed. The system of the main and passive suspension of the single wheel vehicle is modeled and the system input signal model is determined. Secondly, the system motion state space equation is established by the kinetic knowledge and the optimal linear controller design is completed with the optimal control theory. The weighting coefficient of the performance index coefficients of the main passive suspension is determined by the relational analysis method. Finally, the model is simulated in Simulink. The simulation results show that: the optimal weight value is determined by using the sequence relation analysis method under the condition of given road conditions, and the vehicle acceleration, suspension stroke and tire motion displacement are optimized to improve the comprehensive performance of the vehicle, and the active control is controlled within the requirements.

  10. Design and modeling of new suspension system using direct drive servo-valve system actuated by piezostack actuator

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Kim, Wan Ho; Choi, Seung-Bok

    2016-04-01

    This paper proposes a new type of a direct-drive valve (DDV) suspension system for vehicle controlled by the piezostack actuator associated with displacement amplifier. In order to achieve this goal, a new type of controllable piezostack DDV damper is designed and its performance evaluation of damping force is undertaken. Next, a full vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the governing equations of the motion for the proposed the piezostack DDV suspension system, the skyhook controller is implemented for the realization of the full vehicle. Analytical model of the whole suspension system is then derived and performance characteristics are analyzed through numerical simulation. Finally, vibration control responses of the vehicle suspension system such as vertical acceleration are evaluated under both bump and sine road conditions.

  11. Optimal focusing conditions of lenses using Gaussian beams

    DOE PAGES

    Franco, Juan Manuel; Cywiak, Moisés; Cywiak, David; ...

    2016-04-02

    By using the analytical equations of the propagation of Gaussian beams in which truncation exhibits negligible consequences, we describe a method that uses the value of the focal length of a focusing lens to classify its focusing performance. In this study, we show that for different distances between a laser and a focusing lens there are different planes where best focusing conditions can be obtained and we demonstrate how the value of the focal length impacts the lens focusing properties. To perform the classification we introduce the term delimiting focal length. As the value of the focal length used inmore » wave propagation theory is nominal and difficult to measure accurately, we describe an experimental approach to calculate its value matching our analytical description. Finally, we describe possible applications of the results for characterizing Gaussian sources, for measuring focal lengths and/or alternatively for characterizing piston-like movements.« less

  12. Thermogravimetric characterization and gasification of pecan nut shells.

    PubMed

    Aldana, Hugo; Lozano, Francisco J; Acevedo, Joaquín; Mendoza, Alberto

    2015-12-01

    This study focuses on the evaluation of pecan nut shells as an alternative source of energy through pyrolysis and gasification. The physicochemical characteristics of the selected biomass that can influence the process efficiency, consumption rates, and the product yield, as well as create operational problems, were determined. In addition, the thermal decomposition kinetics necessary for prediction of consumption rates and yields were determined. Finally, the performance of a downdraft gasifier fed with pecan nut shells was analyzed in terms of process efficiency and exit gas characteristics. It was found that the pyrolytic decomposition of the nut shells can be modeled adequately using a single equation considering two independent parallel reactions. The performance of the gasification process can be influenced by the particle size and air flow rate, requiring a proper combination of these parameters for reliable operation and production of a valuable syngas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    PubMed

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  14. Investigating the effects of ICT on innovation and performance of European hospitals: an exploratory study.

    PubMed

    Arvanitis, Spyros; Loukis, Euripidis N

    2016-05-01

    Hospitals are making big investments in various types of ICT, so it is important to investigate their effects on innovation and performance. This paper presents an empirical study in this direction, based on data for 743 hospitals from 18 European countries. We specified and estimated econometrically five equations: one for product innovation, one for process innovation and three equations for the three different dimensions of (ICT-enabled) hospital performance. All five equations included various ICT-related variables reflecting ICT infrastructure and a series of important ICT applications, some of them hospital-specific, and some others of general business use, and also ICT personnel (viewed as a kind of 'soft' ICT investment), while the performance equations also included the two innovation measures.

  15. Performance of Predictive Equations Specifically Developed to Estimate Resting Energy Expenditure in Ventilated Critically Ill Children.

    PubMed

    Jotterand Chaparro, Corinne; Taffé, Patrick; Moullet, Clémence; Laure Depeyre, Jocelyne; Longchamp, David; Perez, Marie-Hélène; Cotting, Jacques

    2017-05-01

    To determine, based on indirect calorimetry measurements, the biases of predictive equations specifically developed recently for estimating resting energy expenditure (REE) in ventilated critically ill children, or developed for healthy populations but used in critically ill children. A secondary analysis study was performed using our data on REE measured in a previous prospective study on protein and energy needs in pediatric intensive care unit. We included 75 ventilated critically ill children (median age, 21 months) in whom 407 indirect calorimetry measurements were performed. Fifteen predictive equations were used to estimate REE: the equations of White, Meyer, Mehta, Schofield, Henry, the World Health Organization, Fleisch, and Harris-Benedict and the tables of Talbot. Their differential and proportional biases (with 95% CIs) were computed and the bias plotted in graphs. The Bland-Altman method was also used. Most equations underestimated and overestimated REE between 200 and 1000 kcal/day. The equations of Mehta, Schofield, and Henry and the tables of Talbot had a bias ≤10%, but the 95% CI was large and contained values by far beyond ±10% for low REE values. Other specific equations for critically ill children had even wider biases. In ventilated critically ill children, none of the predictive equations tested met the performance criteria for the entire range of REE between 200 and 1000 kcal/day. Even the equations with the smallest bias may entail a risk of underfeeding or overfeeding, especially in the youngest children. Indirect calorimetry measurement must be preferred. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Peak flow regression equations For small, ungaged streams in Maine: Comparing map-based to field-based variables

    USGS Publications Warehouse

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2015-01-01

    Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.

  17. OpenMP performance for benchmark 2D shallow water equations using LBM

    NASA Astrophysics Data System (ADS)

    Sabri, Khairul; Rabbani, Hasbi; Gunawan, Putu Harry

    2018-03-01

    Shallow water equations or commonly referred as Saint-Venant equations are used to model fluid phenomena. These equations can be solved numerically using several methods, like Lattice Boltzmann method (LBM), SIMPLE-like Method, Finite Difference Method, Godunov-type Method, and Finite Volume Method. In this paper, the shallow water equation will be approximated using LBM or known as LABSWE and will be simulated in performance of parallel programming using OpenMP. To evaluate the performance between 2 and 4 threads parallel algorithm, ten various number of grids Lx and Ly are elaborated. The results show that using OpenMP platform, the computational time for solving LABSWE can be decreased. For instance using grid sizes 1000 × 500, the speedup of 2 and 4 threads is observed 93.54 s and 333.243 s respectively.

  18. Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation

    NASA Astrophysics Data System (ADS)

    Tan, Wei; Dai, Houping; Dai, Zhengde; Zhong, Wenyong

    2017-11-01

    A periodic breather-wave solution is obtained using homoclinic test approach and Hirota's bilinear method with a small perturbation parameter u0 for the (2+1)-dimensional generalized Kadomtsev-Petviashvili equation. Based on the periodic breather-wave, a lump solution is emerged by limit behaviour. Finally, three different forms of the space-time structure of the lump solution are investigated and discussed using the extreme value theory.

  19. Supply Rate and Equilibrium Inventory of Air Force Enlisted Personnel: A Simultaneous Model of the Accession and Retention Markets Incorporating Force Level Constraints. Final Report for Period July 1969-June 1976.

    ERIC Educational Resources Information Center

    DeVany, Arthur S.; And Others

    This research was designed to develop and test a model of the Air Force manpower market. The study indicates that previous manpower supply studies failed to account for simultaneous determination of enlistments and retentions and misinterpreted regressions as supply equations. They are, instead, reduced form equations resulting from joint…

  20. Finite element approximation of an optimal control problem for the von Karman equations

    NASA Technical Reports Server (NTRS)

    Hou, L. Steven; Turner, James C.

    1994-01-01

    This paper is concerned with optimal control problems for the von Karman equations with distributed controls. We first show that optimal solutions exist. We then show that Lagrange multipliers may be used to enforce the constraints and derive an optimality system from which optimal states and controls may be deduced. Finally we define finite element approximations of solutions for the optimality system and derive error estimates for the approximations.

  1. Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management

    NASA Astrophysics Data System (ADS)

    Koleva, M. N.

    2011-11-01

    In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.

  2. Baecklund transformation, Lax pair, and solutions for the Caudrey-Dodd-Gibbon equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Qixing; Sun Kun; Jiang Yan

    2011-01-15

    By using Bell polynomials and symbolic computation, we investigate the Caudrey-Dodd-Gibbon equation analytically. Through a generalization of Bells polynomials, its bilinear form is derived, based on which, the periodic wave solution and soliton solutions are presented. And the soliton solutions with graphic analysis are also given. Furthermore, Baecklund transformation and Lax pair are derived via the Bells exponential polynomials. Finally, the Ablowitz-Kaup-Newell-Segur system is constructed.

  3. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    NASA Astrophysics Data System (ADS)

    Bo, Z.; Chen, J. H.

    2010-02-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  4. A derivation of the beam equation

    NASA Astrophysics Data System (ADS)

    Duque, Daniel

    2016-01-01

    The Euler-Bernoulli equation describing the deflection of a beam is a vital tool in structural and mechanical engineering. However, its derivation usually entails a number of intermediate steps that may confuse engineering or science students at the beginnig of their undergraduate studies. We explain how this equation may be deduced, beginning with an approximate expression for the energy, from which the forces and finally the equation itself may be obtained. The description is begun at the level of small ‘particles’, and the continuum level is taken later on. However, when a computational solution is sought, the description turns back to the discrete level again. We first consider the easier case of a string under tension, and then focus on the beam. Numerical solutions for several loads are obtained.

  5. Aeroelastic Analyses of the SemiSpan SuperSonic Transport (S4T) Wind Tunnel Model at Mach 0.95

    NASA Technical Reports Server (NTRS)

    Hur, Jiyoung

    2014-01-01

    Detailed aeroelastic analyses of the SemiSpan SuperSonic Transport (S4T) wind tunnel model at Mach 0.95 with a 1.75deg fixed angle of attack are presented. First, a numerical procedure using the Computational Fluids Laboratory 3-Dimensional (CFL3D) Version 6.4 flow solver is investigated. The mesh update method for structured multi-block grids was successfully applied to the Navier-Stokes simulations. Second, the steady aerodynamic analyses with a rigid structure of the S4T wind tunnel model are reviewed in transonic flow. Third, the static analyses were performed for both the Euler and Navier-Stokes equations. Both the Euler and Navier-Stokes equations predicted a significant increase of lift forces, compared to the results from the rigid structure of the S4T wind-tunnel model, over various dynamic pressures. Finally, dynamic aeroelastic analyses were performed to investigate the flutter condition of the S4T wind tunnel model at the transonic Mach number. The condition of flutter was observed at a dynamic pressure of approximately 75.0-psf for the Navier-Stokes simulations. However, it was observed that the flutter condition occurred a dynamic pressure of approximately 47.27-psf for the Euler simulations. Also, the computational efficiency of the aeroelastic analyses for the S4T wind tunnel model has been assessed.

  6. Investigation of culvert hydraulics related to juvenile fish passage. Final research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, M.E.; Downs, R.C.

    1996-01-01

    Culverts often create barriers to the upstream migration of juvenile fish. The objective of this study was to determine hydraulic characteristics of culverts with different flow conditions. Methods of predicting flow profiles were developed by both Chiu and Mountjoy. Two equations were compared to experimental results. An area of flow corresponding to a predetermined allowable velocity can be calculated using Mountjoy equation. This can then be used in the design of culverts as fish passage guidelines. The report contains a summary of background information, experimental methodology, the results of experimental tests, and an analysis of both the Chiu and Mountjoymore » equations.« less

  7. The short pulse equation by a Riemann-Hilbert approach

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech

    2017-07-01

    We develop a Riemann-Hilbert approach to the inverse scattering transform method for the short pulse (SP) equation u_{xt}=u+{1/6}(u^3)_{xx} with zero boundary conditions (as |x|→ ∞). This approach is directly applied to a Lax pair for the SP equation. It allows us to give a parametric representation of the solution to the Cauchy problem. This representation is then used for studying the longtime behavior of the solution as well as for retrieving the soliton solutions. Finally, the analysis of the longtime behavior allows us to formulate, in spectral terms, a sufficient condition for the wave breaking.

  8. Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method

    NASA Astrophysics Data System (ADS)

    Jain, Sonal

    2018-01-01

    In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.

  9. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert, Jr.

    1999-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.

  10. A 1D radiative transfer benchmark with polarization via doubling and adding

    NASA Astrophysics Data System (ADS)

    Ganapol, B. D.

    2017-11-01

    Highly precise numerical solutions to the radiative transfer equation with polarization present a special challenge. Here, we establish a precise numerical solution to the radiative transfer equation with combined Rayleigh and isotropic scattering in a 1D-slab medium with simple polarization. The 2-Stokes vector solution for the fully discretized radiative transfer equation in space and direction derives from the method of doubling and adding enhanced through convergence acceleration. Updates to benchmark solutions found in the literature to seven places for reflectance and transmittance as well as for angular flux follow. Finally, we conclude with the numerical solution in a partially randomly absorbing heterogeneous medium.

  11. Formulation of the aeroelastic stability and response problem of coupled rotor/support systems

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Friedmann, P.

    1979-01-01

    The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.

  12. A semigroup approach to the strong ergodic theorem of the multistate stable population process.

    PubMed

    Inaba, H

    1988-01-01

    "In this paper we first formulate the dynamics of multistate stable population processes as a partial differential equation. Next, we rewrite this equation as an abstract differential equation in a Banach space, and solve it by using the theory of strongly continuous semigroups of bounded linear operators. Subsequently, we investigate the asymptotic behavior of this semigroup to show the strong ergodic theorem which states that there exists a stable distribution independent of the initial distribution. Finally, we introduce the dual problem in order to obtain a logical definition for the reproductive value and we discuss its applications." (SUMMARY IN FRE) excerpt

  13. Wave equations on anti self dual (ASD) manifolds

    NASA Astrophysics Data System (ADS)

    Bashingwa, Jean-Juste; Kara, A. H.

    2017-11-01

    In this paper, we study and perform analyses of the wave equation on some manifolds with non diagonal metric g_{ij} which are of neutral signatures. These include the invariance properties, variational symmetries and conservation laws. In the recent past, wave equations on the standard (space time) Lorentzian manifolds have been performed but not on the manifolds from metrics of neutral signatures.

  14. Multivariant function model generation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The development of computer programs applicable to space vehicle guidance was conducted. The subjects discussed are as follows: (1) determination of optimum reentry trajectories, (2) development of equations for performance of trajectory computation, (3) vehicle control for fuel optimization, (4) development of equations for performance trajectory computations, (5) applications and solution of Hamilton-Jacobi equation, and (6) stresses in dome shaped shells with discontinuities at the apex.

  15. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study.

    PubMed

    Hägglund, Martin; Waldén, Markus; Magnusson, Henrik; Kristenson, Karolina; Bengtsson, Håkan; Ekstrand, Jan

    2013-08-01

    The influence of injuries on team performance in football has only been scarcely investigated. To study the association between injury rates and team performance in the domestic league play, and in European cups, in male professional football. 24 football teams from nine European countries were followed prospectively for 11 seasons (2001-2012), including 155 team-seasons. Individual training and match exposure and time-loss injuries were registered. To analyse the effect of injury rates on performance, a Generalised Estimating Equation was used to fit a linear regression on team-level data. Each team's season injury rate and performance were evaluated using its own preceding season data for comparison in the analyses. 7792 injuries were reported during 1 026 104 exposure hours. The total injury incidence was 7.7 injuries/1000 h, injury burden 130 injury days lost/1000 h and player match availability 86%. Lower injury burden (p=0.011) and higher match availability (p=0.031) were associated with higher final league ranking. Similarly, lower injury incidence (p=0.035), lower injury burden (p<0.001) and higher match availability (p<0.001) were associated with increased points per league match. Finally, lower injury burden (p=0.043) and higher match availability (p=0.048) were associated with an increase in the Union of European Football Association (UEFA) Season Club Coefficient, reflecting success in the UEFA Champions League or Europa League. Injuries had a significant influence on performance in the league play and in European cups in male professional football. The findings stress the importance of injury prevention to increase a team's chances of success.

  16. Tsunami Simulation using CIP Method with Characteristic Curve Equations and TVD-MacCormack Method

    NASA Astrophysics Data System (ADS)

    Fukazawa, Souki; Tosaka, Hiroyuki

    2015-04-01

    After entering 21st century, we already had two big tsunami disasters associated with Mw9 earthquakes in Sumatra and Japan. To mitigate the damages of tsunami, the numerical simulation technology combined with information technologies could provide reliable predictions in planning countermeasures to prevent the damage to the social system, making safety maps, and submitting early evacuation information to the residents. Shallow water equations are still solved not only for global scale simulation of the ocean tsunami propagation but also for local scale simulation of overland inundation in many tsunami simulators though three-dimensional model starts to be used due to improvement of CPU. One-dimensional shallow water equations are below: partial bm{Q}/partial t+partial bm{E}/partial x=bm{S} in which bm{Q}=( D M )), bm{E}=( M M^2/D+gD^2/2 )), bm{S}=( 0 -gDpartial z/partial x-gn2 M|M| /D7/3 )). where D[m] is total water depth; M[m^2/s] is water flux; z[m] is topography; g[m/s^2] is the gravitational acceleration; n[s/m1/3] is Manning's roughness coefficient. To solve these, the staggered leapfrog scheme is used in a lot of wide-scale tsunami simulator. But this scheme has a problem that lagging phase error occurs when courant number is small. In some practical simulation, a kind of diffusion term is added. In this study, we developed two wide-scale tsunami simulators with different schemes and compared usual scheme and other schemes in practicability and validity. One is a total variation diminishing modification of the MacCormack method (TVD-MacCormack method) which is famous for the simulation of compressible fluids. The other is the Cubic Interpolated Profile (CIP) method with characteristic curve equations transformed from shallow water equations. Characteristic curve equations derived from shallow water equations are below: partial R_x±/partial t+C_x±partial R_x±/partial x=∓ g/2partial z/partial x in which R_x±=√{gD}± u/2, C_x±=u± √{gD}. where u[m/s] is water velocity. It is difficult to solve the inundation on the land with these methods though These two methods are applicable to the ocean tsunami propagation. We studied how to apply these methods to overland inundation and how to couple the ocean global model with the land local model. Simple case studies of ocean tsunami propagation and overland tsunami inundation were performed to validate three methods comparing the results with theoretical solution. Finally, we performed case studies of the Great East Japan Earthquake in 2011 and confirmed the applicability to the actual tsunami.

  17. On the large eddy simulation of turbulent flows in complex geometry

    NASA Technical Reports Server (NTRS)

    Ghosal, Sandip

    1993-01-01

    Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy equations. The complication is caused by the fact that a filtering operation with a nonuniform filter width in general does not commute with the operation of differentiation. This is one of the issues that we have looked at in detail as it is basic to any attempt at applying LES to complex geometry flows. Our principal findings are summarized.

  18. Source imaging of potential fields through a matrix space-domain algorithm

    NASA Astrophysics Data System (ADS)

    Baniamerian, Jamaledin; Oskooi, Behrooz; Fedi, Maurizio

    2017-01-01

    Imaging of potential fields yields a fast 3D representation of the source distribution of potential fields. Imaging methods are all based on multiscale methods allowing the source parameters of potential fields to be estimated from a simultaneous analysis of the field at various scales or, in other words, at many altitudes. Accuracy in performing upward continuation and differentiation of the field has therefore a key role for this class of methods. We here describe an accurate method for performing upward continuation and vertical differentiation in the space-domain. We perform a direct discretization of the integral equations for upward continuation and Hilbert transform; from these equations we then define matrix operators performing the transformation, which are symmetric (upward continuation) or anti-symmetric (differentiation), respectively. Thanks to these properties, just the first row of the matrices needs to be computed, so to decrease dramatically the computation cost. Our approach allows a simple procedure, with the advantage of not involving large data extension or tapering, as due instead in case of Fourier domain computation. It also allows level-to-drape upward continuation and a stable differentiation at high frequencies; finally, upward continuation and differentiation kernels may be merged into a single kernel. The accuracy of our approach is shown to be important for multi-scale algorithms, such as the continuous wavelet transform or the DEXP (depth from extreme point method), because border errors, which tend to propagate largely at the largest scales, are radically reduced. The application of our algorithm to synthetic and real-case gravity and magnetic data sets confirms the accuracy of our space domain strategy over FFT algorithms and standard convolution procedures.

  19. A Comprehensive Review on the Predictive Performance of the Sheiner-Tozer and Derivative Equations for the Correction of Phenytoin Concentrations.

    PubMed

    Kiang, Tony K L; Ensom, Mary H H

    2016-04-01

    In settings where free phenytoin concentrations are not available, the Sheiner-Tozer equation-Corrected total phenytoin concentration = Observed total phenytoin concentration/[(0.2 × Albumin) + 0.1]; phenytoin in µg/mL, albumin in g/dL-and its derivative equations are commonly used to correct for altered phenytoin binding to albumin. The objective of this article was to provide a comprehensive and updated review on the predictive performance of these equations in various patient populations. A literature search of PubMed, EMBASE, and Google Scholar was conducted using combinations of the following terms: Sheiner-Tozer, Winter-Tozer, phenytoin, predictive equation, precision, bias, free fraction. All English-language articles up to November 2015 (excluding abstracts) were evaluated. This review shows the Sheiner-Tozer equation to be biased and imprecise in various critical care, head trauma, and general neurology patient populations. Factors contributing to bias and imprecision include the following: albumin concentration, free phenytoin assay temperature, experimental conditions (eg, timing of concentration sampling, steady-state dosing conditions), renal function, age, concomitant medications, and patient type. Although derivative equations using varying albumin coefficients have improved accuracy (without much improvement in precision) in intensive care and elderly patients, these equations still require further validation. Further experiments are also needed to yield derivative equations with good predictive performance in all populations as well as to validate the equations' impact on actual patient efficacy and toxicity outcomes. More complex, multivariate predictive equations may be required to capture all variables that can potentially affect phenytoin pharmacokinetics and clinical therapeutic outcomes. © The Author(s) 2016.

  20. Receptor binding kinetics equations: Derivation using the Laplace transform method.

    PubMed

    Hoare, Sam R J

    Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time-dependent pharmacological activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  2. The Examination of the Classification of Students into Performance Categories by Two Different Equating Methods

    ERIC Educational Resources Information Center

    Keller, Lisa A.; Keller, Robert R.; Parker, Pauline A.

    2011-01-01

    This study investigates the comparability of two item response theory based equating methods: true score equating (TSE), and estimated true equating (ETE). Additionally, six scaling methods were implemented within each equating method: mean-sigma, mean-mean, two versions of fixed common item parameter, Stocking and Lord, and Haebara. Empirical…

  3. Modeling the microstructural changes during hot tandem rolling of AA5 XXX aluminum alloys: Part I. Microstructural evolution

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Samarasekera, I. V.; Brimacombe, J. K.; Hawbolt, E. B.; Lloyd, D. J.

    1998-06-01

    A comprehensive mathematical model of the hot tandem rolling process for aluminum alloys has been developed. Reflecting the complex thermomechanical and microstructural changes effected in the alloys during rolling, the model incorporated heat flow, plastic deformation, kinetics of static recrystallization, final recrystallized grain size, and texture evolution. The results of this microstructural engineering study, combining computer modeling, laboratory tests, and industrial measurements, are presented in three parts. In this Part I, laboratory measurements of static recrystallization kinetics and final recrystallized grain size are described for AA5182 and AA5052 aluminum alloys and expressed quantitatively by semiempirical equations. In Part II, laboratory measurements of the texture evolution during static recrystallization are described for each of the alloys and expressed mathematically using a modified form of the Avrami equation. Finally, Part III of this article describes the development of an overall mathematical model for an industrial aluminum hot tandem rolling process which incorporates the microstructure and texture equations developed and the model validation using industrial data. The laboratory measurements for the microstructural evolution were carried out using industrially rolled material and a state-of-the-art plane strain compression tester at Alcan International. Each sample was given a single deformation and heat treated in a salt bath at 400 °C for various lengths of time to effect different levels of recrystallization in the samples. The range of hot-working conditions used for the laboratory study was chosen to represent conditions typically seen in industrial aluminum hot tandem rolling processes, i.e., deformation temperatures of 350 °C to 500 °C, strain rates of 0.5 to 100 seconds and total strains of 0.5 to 2.0. The semiempirical equations developed indicated that both the recrystallization kinetics and the final recrystallized grain size were dependent on the deformation history of the material i.e., total strain and Zener-Hollomon parameter ( Z), where Z = dot \\varepsilon exp left( {{Q_{def} }/{RT_{def }}} right) and time at the recrystallization temperature.

  4. Validity of a heart rate monitor during work in the laboratory and on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Moore, A. D. Jr; Lee, S. M.; Greenisen, M. C.; Bishop, P.

    1997-01-01

    Accurate heart rate measurement during work is required for many industrial hygiene and ergonomics situations. The purpose of this investigation was to determine the validity of heart rate measurements obtained by a simple, lightweight, commercially available wrist-worn heart rate monitor (HRM) during work (cycle exercise) sessions conducted in the laboratory and also during the particularly challenging work environment of space flight. Three different comparisons were made. The first compared HRM data to simultaneous electrocardiogram (ECG) recordings of varying heart rates that were generated by an ECG simulator. The second compared HRM data to ECG recordings collected during work sessions of 14 subjects in the laboratory. Finally, ECG downlink and HRM data were compared in four astronauts who performed cycle exercise during space flight. The data were analyzed using regression techniques. The results were that the HRM recorded virtually identical heart rates compared with ECG recordings for the data set generated by an ECG simulator. The regression equation for the relationship between ECG versus HRM heart rate data during work in the laboratory was: ECG HR = 0.99 x (HRM) + 0.82 (r2 = 0.99). Finally, the agreement between ECG downlink data and HRM data during space flight was also very high, with the regression equation being: Downlink ECG HR = 1.05 x (HRM) -5.71 (r2 = 0.99). The results of this study indicate that the HRM provides accurate data and may be used to reliably obtain valid data regarding heart rate responses during work.

  5. A Model for Determining the Effect of the Wind Velocity on 100 m Sprinting Performance.

    PubMed

    Janjic, Natasa; Kapor, Darko; Doder, Dragan; Petrovic, Aleksandar; Doder, Radoslava

    2017-06-01

    This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10 -3 m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10 -2 m/s and cannot be neglected.

  6. A Model for Determining the Effect of the Wind Velocity on 100 m Sprinting Performance

    PubMed Central

    Janjic, Natasa; Kapor, Darko; Doder, Dragan; Petrovic, Aleksandar; Doder, Radoslava

    2017-01-01

    Abstract This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10-3 m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10-2 m/s and cannot be neglected. PMID:28713468

  7. Tidal formation of Hot Jupiters in binary star systems

    NASA Astrophysics Data System (ADS)

    Bataille, M.; Libert, A.-S.; Correia, A. C. M.

    2015-10-01

    More than 150 Hot Jupiters with orbital periods less than 10 days have been detected. Their in-situ formation is physically unlikely. We need therefore to understand the migration of these planets from high distance (several AUs). Three main models are currently extensively studied: disk-planet interactions (e.g. [3]), planet-planet scattering (e.g. [4]) and Kozai migration (e.g. [2]). Here we focus on this last mechanism, and aim to understand which dynamical effects are the most active in the accumulation of planetary companions with low orbital periods in binary star systems. To do so, we investigate the secular evolution of Hot Jupiters in binary star systems. Our goal is to study analytically the 3-day pile-up observed in their orbital period. Our framework is the hierarchical three-body problem, with the effects of tides, stellar oblateness, and general relativity. Both the orbital evolution and the spin evolution are considered. Using the averaged equations of motion in a vectorial formalism of [1], we have performed # 100000 numerical simulations of well diversified three-body systems, reproducing and generalizing the numerical results of [2]. Based on a thorough analysis of the initial and final configurations of the systems, we have identified different categories of secular evolutions present in the simulations, and proposed for each one a simplified set of equations reproducing the evolution. Statistics about spin-orbit misalignements and mutual inclinations between the orbital planes of the Hot Jupiter and the star companion are also provided. Finally, we show that the extent of the 3 day pile-up is very dependent on the initial parameters of the simulations.

  8. Spectral Estimation: An Overdetermined Rational Model Equation Approach.

    DTIC Science & Technology

    1982-09-15

    A-A123 122 SPECTRAL ESTIMATION: AN OVERDETERMINEO RATIONAL MODEL 1/2 EQUATION APPROACH..(U) ARIZONA STATE UNIV TEMPE DEPT OF ELECTRICAL AND COMPUTER...2 0 447,_______ 4. TITLE (mAd Sabile) S. TYPE or REPORT a PEP40D COVERED Spectral Estimation; An Overdeteruined Rational Final Report 9/3 D/8 to...andmmd&t, by uwek 7a5 4 Rational Spectral Estimation, ARMA mo~Ie1, AR model, NMA Mdle, Spectrum, Singular Value Decomposition. Adaptivb Implementatlan

  9. A model of a fishery with fish stock involving delay equations.

    PubMed

    Auger, P; Ducrot, Arnaud

    2009-12-13

    The aim of this paper is to provide a new mathematical model for a fishery by including a stock variable for the resource. This model takes the form of an infinite delay differential equation. It is mathematically studied and a bifurcation analysis of the steady states is fulfilled. Depending on the different parameters of the problem, we show that Hopf bifurcation may occur leading to oscillating behaviours of the system. The mathematical results are finally discussed.

  10. Fractional Poisson Fields and Martingales

    NASA Astrophysics Data System (ADS)

    Aletti, Giacomo; Leonenko, Nikolai; Merzbach, Ely

    2018-02-01

    We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.

  11. Existence and discrete approximation for optimization problems governed by fractional differential equations

    NASA Astrophysics Data System (ADS)

    Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng

    2018-06-01

    We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.

  12. A Nonlinear differential equation model of Asthma effect of environmental pollution using LHAM

    NASA Astrophysics Data System (ADS)

    Joseph, G. Arul; Balamuralitharan, S.

    2018-04-01

    In this paper, we investigated a nonlinear differential equation mathematical model to study the spread of asthma in the environmental pollutants from industry and mainly from tobacco smoke from smokers in different type of population. Smoking is the main cause to spread Asthma in the environment. Numerical simulation is also discussed. Finally by using Liao’s Homotopy analysis Method (LHAM), we found that the approximate analytical solution of Asthmatic disease in the environmental.

  13. The New Field Quantities and the Poynting Theorem in Material Medium with Magnetic Monopoles

    NASA Astrophysics Data System (ADS)

    Zor, Ömer

    2016-12-01

    The duality transformation was used to define the polarization mechanisms that arise from magnetic monopoles. Then, a dimensional analysis was conducted to describe the displacement and magnetic intensity vectors (constitutive equations) in SI units. Finally, symmetric Maxwell equations in a material medium with new field quantities were introduced. Hence, the Lorentz force and the Poynting theorem were defined with these new field quantities, and many possible definitions of them were constructed.

  14. Gamma-ray burst: evolution of the fireball and afterglow

    NASA Astrophysics Data System (ADS)

    Huang, W. G.; Yang, P. B.; Lu, Y.

    2001-02-01

    After the main part of a GRB, its fireball continuously expands. With the hydrodynamic equations for the postburst fireball, the authors study the distribution of electrons which changes with time. The equations are solved numerically and the relations of the flux density of Optical afterglow in R band as well as the X-ray afterglow with time have been obtained. The results fit the observations quite well. Finally the shortcomings of the fireball + blast model are discussed.

  15. An eye for relations: eye-tracking indicates long-term negative effects of operational thinking on understanding of math equivalence.

    PubMed

    Chesney, Dana L; McNeil, Nicole M; Brockmole, James R; Kelley, Ken

    2013-10-01

    Prior knowledge in the domain of mathematics can sometimes interfere with learning and performance in that domain. One of the best examples of this phenomenon is in students' difficulties solving equations with operations on both sides of the equal sign. Elementary school children in the U.S. typically acquire incorrect, operational schemata rather than correct, relational schemata for interpreting equations. Researchers have argued that these operational schemata are never unlearned and can continue to affect performance for years to come, even after relational schemata are learned. In the present study, we investigated whether and how operational schemata negatively affect undergraduates' performance on equations. We monitored the eye movements of 64 undergraduate students while they solved a set of equations that are typically used to assess children's adherence to operational schemata (e.g., 3 + 4 + 5 = 3 + __). Participants did not perform at ceiling on these equations, particularly when under time pressure. Converging evidence from performance and eye movements showed that operational schemata are sometimes activated instead of relational schemata. Eye movement patterns reflective of the activation of relational schemata were specifically lacking when participants solved equations by adding up all the numbers or adding the numbers before the equal sign, but not when they used other types of incorrect strategies. These findings demonstrate that the negative effects of acquiring operational schemata extend far beyond elementary school.

  16. Potential Impact of Increased Numbers of Physicians upon Physician Behavior, Access to, and Cost of, Medical Care. Final Report.

    ERIC Educational Resources Information Center

    Musgrave, Gerald L.

    The potential impact of the increasing supply of physicians on physician behavior, the cost of medical services, and access to services is addressed in detail in this final research report. Econometric modeling and analyses of economic activity within the health sector were undertaken. An eight equation model of the hospital and physician sectors…

  17. Renal function assessment in atrial fibrillation: Usefulness of chronic kidney disease epidemiology collaboration vs re-expressed 4 variable modification of diet in renal disease.

    PubMed

    Abumuaileq, Rami Riziq-Yousef; Abu-Assi, Emad; López-López, Andrea; Raposeiras-Roubin, Sergio; Rodríguez-Mañero, Moisés; Martínez-Sande, Luis; García-Seara, Francisco Javier; Fernandez-López, Xesus Alberte; González-Juanatey, Jose Ramón

    2015-10-26

    To compare the performance of the re-expressed Modification of Diet in Renal Disease equation vs the new Chronic Kidney Disease Epidemiology Collaboration equation in patients with non-valvular atrial fibrillation. We studied 911 consecutive patients with non-valvular atrial fibrillation on vitamin-K antagonist. The performance of the re-expressed Modification of Diet in Renal Disease equation vs the new Chronic Kidney Disease Epidemiology Collaboration equation in patients with non-valvular atrial fibrillation with respect to either a composite endpoint of major bleeding, thromboembolic events and all-cause mortality or each individual component of the composite endpoint was assessed using continuous and categorical ≥ 60, 59-30, and < 30 mL/min per 1.73 m(2) estimated glomerular filtration rate. During 10 ± 3 mo, the composite endpoint occurred in 98 (10.8%) patients: 30 patients developed major bleeding, 18 had thromboembolic events, and 60 died. The new equation provided lower prevalence of renal dysfunction < 60 mL/min per 1.73 m(2) (32.9%), compared with the re-expressed equation (34.1%). Estimated glomerular filtration rate from both equations was independent predictor of composite endpoint (HR = 0.98 and 0.97 for the re-expressed and the new equation, respectively; P < 0.0001) and all-cause mortality (HR = 0.98 for both equations, P < 0.01). Strong association with thromboembolic events was observed only when estimated glomerular filtration rate was < 30 mL/min per 1.73 m(2): HR is 5.1 for the re-expressed equation, and HR = 5.0 for the new equation. No significant association with major bleeding was observed for both equations. The new equation reduced the prevalence of renal dysfunction. Both equations performed similarly in predicting major adverse outcomes.

  18. Evolution of the concentration PDF in random environments modeled by global random walk

    NASA Astrophysics Data System (ADS)

    Suciu, Nicolae; Vamos, Calin; Attinger, Sabine; Knabner, Peter

    2013-04-01

    The evolution of the probability density function (PDF) of concentrations of chemical species transported in random environments is often modeled by ensembles of notional particles. The particles move in physical space along stochastic-Lagrangian trajectories governed by Ito equations, with drift coefficients given by the local values of the resolved velocity field and diffusion coefficients obtained by stochastic or space-filtering upscaling procedures. A general model for the sub-grid mixing also can be formulated as a system of Ito equations solving for trajectories in the composition space. The PDF is finally estimated by the number of particles in space-concentration control volumes. In spite of their efficiency, Lagrangian approaches suffer from two severe limitations. Since the particle trajectories are constructed sequentially, the demanded computing resources increase linearly with the number of particles. Moreover, the need to gather particles at the center of computational cells to perform the mixing step and to estimate statistical parameters, as well as the interpolation of various terms to particle positions, inevitably produce numerical diffusion in either particle-mesh or grid-free particle methods. To overcome these limitations, we introduce a global random walk method to solve the system of Ito equations in physical and composition spaces, which models the evolution of the random concentration's PDF. The algorithm consists of a superposition on a regular lattice of many weak Euler schemes for the set of Ito equations. Since all particles starting from a site of the space-concentration lattice are spread in a single numerical procedure, one obtains PDF estimates at the lattice sites at computational costs comparable with those for solving the system of Ito equations associated to a single particle. The new method avoids the limitations concerning the number of particles in Lagrangian approaches, completely removes the numerical diffusion, and speeds up the computation by orders of magnitude. The approach is illustrated for the transport of passive scalars in heterogeneous aquifers, with hydraulic conductivity modeled as a random field.

  19. Linearized simulation of flow over wind farms and complex terrains.

    PubMed

    Segalini, Antonio

    2017-04-13

    The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  20. Combining CFD simulations with blockoriented heatflow-network model for prediction of photovoltaic energy-production

    NASA Astrophysics Data System (ADS)

    Haber, I. E.; Farkas, I.

    2011-01-01

    The exterior factors which influencing the working circumstances of photovoltaic modules are the irradiation, the optical air layer (Air Mass - AM), the irradiation angle, the environmental temperature and the cooling effect of the wind. The efficiency of photovoltaic (PV) devices is inversely proportional to the cell temperature and therefore the mounting of the PV modules can have a big affect on the cooling, due to wind flow-around and naturally convection. The construction of the modules could be described by a heatflow-network model, and that can define the equation which determines the cells temperature. An equation like this can be solved as a block oriented model with hybrid-analogue simulator such as Matlab-Simulink. In view of the flow field and the heat transfer, witch was calculated numerically, the heat transfer coefficients can be determined. Five inflow rates were set up for both pitched and flat roof cases, to let the trend of the heat transfer coefficient know, while these functions can be used for the Matlab/Simulink model. To model the free convection flows, the Boussinesq-approximation were used, integrated into the Navier-Stokes equations and the energy equation. It has been found that under a constant solar heat gain, the air velocity around the modules and behind the pitched-roof mounted module is increasing, proportionately to the wind velocities, and as result the heat transfer coefficient increases linearly, and can be described by a function in both cases. To the block based model the meteorological parameters and the results of the CFD simulations as single functions were attached. The final aim was to make a model that could be used for planning photovoltaic systems, and define their accurate performance for better sizing of an array of modules.

Top