Program for the development of high temperature electrical materials and components
NASA Technical Reports Server (NTRS)
Neff, W. S.; Lowry, L. R.
1972-01-01
Evaluation of high temperature, space-vacuum performance of selected electrical materials and components, high temperature capacitor development, and evaluation, construction, and endurance testing of compression sealed pyrolytic boron nitride slot insulation are described. The first subject above covered the aging evaluation of electrical devices constructed from selected electrical materials. Individual materials performances were also evaluated and reported. The second subject included study of methods of improving electrical performance of pyrolytic boron nitride capacitors. The third portion was conducted to evaluate the thermal and electrical performance of pyrolytic boron nitride as stator slot liner material under varied temperature and compressive loading. Conclusions and recommendations are presented.
Performance evaluation of seal coat materials and designs.
DOT National Transportation Integrated Search
2011-01-01
"This project presents an evaluation of seal coat materials and design method. The primary objectives of this research are 1) to evaluate seal coat performance : from various combinations of aggregates and emulsions in terms of aggregate loss; 2) to ...
Performance prediction evaluation of ceramic materials in point-focusing solar receivers
NASA Technical Reports Server (NTRS)
Ewing, J.; Zwissler, J.
1979-01-01
A performance prediction was adapted to evaluate the use of ceramic materials in solar receivers for point focusing distributed applications. System requirements were determined including the receiver operating environment and system operating parameters for various engine types. Preliminary receiver designs were evolved from these system requirements. Specific receiver designs were then evaluated to determine material functional requirements.
Tribo-performance evaluation of ecofriendly brake friction composite materials
NASA Astrophysics Data System (ADS)
Kumar, Naresh; Singh, Tej; Grewal, G. S.
2018-05-01
This paper presents the potential of natural fibre in brake friction materials. Natural fibre filled ecofriendly brake friction materials were developed without Kevlar fibre evaluated for tribo-performance on a chase friction testing machine following SAE J 661a standard. Experimental results indicated that natural fibre enhances the fade performance, but depresses the friction and wear performance, whereas Kevlar fibre improves the friction, wear and recovery performance but depresses the fade performance. Also the results revealed that with the increase in natural fibre content, the friction and fade performances enhanced.
Evaluation of Eco-Efficiency and Performance of Retrofit Materials
NASA Astrophysics Data System (ADS)
Gopinath, Smitha; Rama Chandra Murthy, A.; Iyer, Nagesh R.; Kokila, S.
2015-12-01
In this work three materials namely Fiber Reinforced Polymer (FRP), ferrocement and Textile Reinforced Concrete (TRC) have been evaluated towards their performance efficiency and eco-effectiveness for sustainable retrofitting applications. Investigations have been carried out for flexural strengthening of RC beams with FRP, ferrocement and TRC. It is observed that in the case of FRP, it is not possible to tailor the material according to design requirements and most of the time strengthened structure becomes over stiff. Eco-effectiveness of these retrofitting materials has been evaluated by computing the embodied energy. It is observed that the amount of CO2 emitted by TRC is less compared to other retrofit materials. Further, the performance point of retrofitted RC frames has been evaluated and damage index has been calculated to find out the effective retrofit material. It is concluded that, if RC frame is retrofitted with FRP and TRC, it undergoes less damage compared to ferrocement.
High performance dielectric materials development
NASA Technical Reports Server (NTRS)
Piche, Joe; Kirchner, Ted; Jayaraj, K.
1994-01-01
The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.
High performance dielectric materials development
NASA Astrophysics Data System (ADS)
Piche, Joe; Kirchner, Ted; Jayaraj, K.
1994-09-01
The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.
High Performance COPVs for In-Space Storage of High Pressure Cryogenic Fuels
NASA Technical Reports Server (NTRS)
Schneider, Judy; Dyess, Mark; Hastings, Chad; Wang, Jun
2008-01-01
Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. As part of this study, material tests of candidate fiber and resin systems were used as the basis for the selection of the material combinations for evaluation in a COPV at cryogenic conditions. This comprehensive approach has also been expanded to address issues with impact damage tolerance and material degradation due to environmental factors. KEY WORDS: Cryogenic testing, evaluation and applications for pressure vessels, COPVs, tanks, or storage vessels.
An evaluation of improved structural materials in marine piling.
DOT National Transportation Integrated Search
1980-11-01
A study to evaluate the production and field performance of marine piling fabricated with improved structural materials is currently being performed by the Oregon State Highway Division under the sponsorship of the Federal Highway Administration. In ...
Evaluation and prediction of long-term environmental effects on nonmetallic materials
NASA Technical Reports Server (NTRS)
1982-01-01
Changes in functional properties of a broad spectrum of nonmetallic materials as a function of environment and exposure time were evaluated. Models for predicting long-term material performance are discussed. A literature search on specific materials in the space and simulated space environment was carried out and evaluated.
Development and performance evaluation of fiber reinforced polymer bridge.
DOT National Transportation Integrated Search
2014-03-01
Fiber reinforced polymers (FRP) have become more popular construction materials in the last decade due to the reduction of : material costs. The installation and performance evaluation of the first FRP-wrapped balsa wood bridge in Louisiana is descri...
NASA Technical Reports Server (NTRS)
Stackpoole, M.; Kao, D.; Qu, V.; Gonzales, G.
2013-01-01
Phenolic Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center. As a thermal protection material, PICA has the advantages of being able to withstand high heat fluxes with a relatively low density. This ablative material was used as the forebody heat shield material for the Stardust sample return capsule, which re-entered the Earths atmosphere in 2006. Based on PICA, SpaceX developed a variant, PICA-X, and used it as the heat shield material for its Dragon spacecraft, which successfully orbited the Earth and re-entered the atmosphere during the COTS Demo Flight 1 in 2010. Post-flight analysis was previously performed on the Stardust PICA heat shield material. Similarly, a near-stagnation core was obtained from the post-flight Dragon 1 heat shield, which was retrieved from the Pacific Ocean. Materials testing and analyses were performed on the core to evaluate its ablation performance and post-flight properties. Comparisons between PICA and PICA-X are made where applicable. Stardust and Dragon offer rare opportunities to evaluate materials post-flight - this data is beneficial in understanding material performance and also improves modeling capabilities.
Fabrication and Improvement of Lmsc's All-silica RSI
NASA Technical Reports Server (NTRS)
Beasley, R. M.; Izu, Y. D.; Nakano, H. N.; Ozolin, A. A.; Peachman, A.
1973-01-01
The LI-1500 and LI-900 all silica RSI materials have made the transition from laboratory to manufacturing operation. Improvements in both quality and reproducibility have been achieved. The LI-1500 material has displayed superior reliability in evaluations conducted at various facilities. The dependable performance of the material is attributed to the adherence to the stringent requirements of the numerous material, process, and product control evaluations and inspection points performed during manufacture.
Evaluation of ceramics for stator application: Gas turbine engine report
NASA Technical Reports Server (NTRS)
Trela, W.; Havstad, P. H.
1978-01-01
Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1979-01-01
A trowellable closeout/repair material designated as MTA-2 was developed and evaluated for use on the Solid Rocket Booster. This material is composed of an epoxy-polysulfide binder and is highly filled with phenolic microballoons for density control and ablative performance. Mechanical property testing and thermal testing were performed in a wind tunnel to simulate the combined Solid Rocket Booster trajectory aeroshear and heating environments. The material is characterized by excellent thermal performance and was used extensively on the Space Shuttle STS-1 and STS-2 flight hardware.
Evaluation of heat sink materials for thermal management of lithium batteries
NASA Astrophysics Data System (ADS)
Dimpault-Darcy, E. C.; Miller, K.
Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.
Evaluation of heat sink materials for thermal management of lithium batteries
NASA Technical Reports Server (NTRS)
Dimpault-Darcy, E. C.; Miller, K.
1988-01-01
Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.
Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N. Suman; Tadi, Durga Prasad
2016-01-01
Objectives: This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Materials and Methods: Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. Results: When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Conclusion: Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In moist condition, aquasil performed significantly better than impregum. Regarding gypsum compatibility according to ADA specification, in dry condition both the materials performed almost equally, and in moist condition aquasil performed better than impregum. When tested by macroscopic evaluation, impregum performed better than aquasil in both the conditions. PMID:27583217
Silicon materials task of the low cost solar array project, part 2
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Rai-Choudhury, P.; Blais, P. D.; Mccormick, J. R.
1976-01-01
Purity requirements for solar cell grade silicon material was developed and defined by evaluating the effects of specific impurities and impurity levels on the performance of silicon solar cells. Also, data was generated forming the basis for cost-tradeoff analyses of silicon solar cell material. Growth, evaluation, solar cell fabrication and testing was completed for the baseline boron-doped Czochralski material. Measurements indicate Cn and Mn seriously degrade cell performance, while neither Ni nor Cu produce any serious reduction in cell efficiency.
A study of the stress wave factor technique for evaluation of composite materials
NASA Technical Reports Server (NTRS)
Duke, J. C., Jr.; Henneke, E. G., II; Kiernan, M. T.; Grosskopf, P. P.
1989-01-01
The acousto-ultrasonic approach for nondestructive evaluation provides a measurement procedure for quantifying the integrated effect of globally distributed damage characteristic of fiber reinforced composite materials. The evaluation procedure provides a stress wave factor that correlates closely with several material performance parameters. The procedure was investigated for a variety of materials including advanced composites, hybrid structure bonds, adhesive bonds, wood products, and wire rope. The research program focused primarily on development of fundamental understanding and applications advancements of acousto-ultrasonics for materials characterization. This involves characterization of materials for which detection, location, and identification of imperfections cannot at present be analyzed satisfactorily with mechanical performance prediction models. In addition to presenting definitive studies on application potentials, the understanding of the acousto-ultrasonic method as applied to advanced composites is reviewed.
ERIC Educational Resources Information Center
Mechling, Linda C.; Ayres, Kevin M.; Foster, Ashley L.; Bryant, Kathryn J.
2015-01-01
The purpose of this study was to evaluate the ability of four high school-aged students with a diagnosis of autism spectrum disorder and moderate intellectual disability to generalize performance of skills when using materials different from those presented through video models. An adapted alternating treatments design was used to evaluate student…
Solar industrial process heat systems: An assessment of standards for materials and components
NASA Astrophysics Data System (ADS)
Rossiter, W. J.; Shipp, W. E.
1981-09-01
A study was conducted to obtain information on the performance of materials and components in operational solar industrial process heat (PH) systems, and to provide recommendations for the development of standards including evaluative test procedures for materials and components. An assessment of the needs for standards for evaluating the long-term performance of materials and components of IPH systems was made. The assessment was based on the availability of existing standards, and information obtained from a field survey of operational systems, the literature, and discussions with individuals in the industry. Field inspections of 10 operational IPH systems were performed.
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Schimmel, Morry L.
1989-01-01
To overcome serious weaknesses in determining the performance of initiating devices, a novel 'ignitability test method', representing actual design interfaces and ignition materials, has been developed. Ignition device output consists of heat, light, gas an burning particles. Past research methods have evaluated these parameters individually. This paper describes the development and demonstration of an ignitability test method combining all these parameters, and the quantitative assessment of the ignition performance of two widely used percussion primers, the M42C1-PA101 and the M42C2-793. The ignition materials used for this evaluation were several powder, granule and pellet sizes of black powder and boron-potassium nitrate. This test method should be useful for performance evaluation of all initiator types, quality assurance, evaluation of ignition interfaces, and service life studies of initiators and ignition materials.
Standard test evaluation of graphite fiber/resin matrix composite materials for improved toughness
NASA Technical Reports Server (NTRS)
Chapman, Andrew J.
1984-01-01
Programs sponsored by NASA with the commercial transport manufacturers to develop a technology data base are required to design and build composite wing and fuselage structures. To realize the full potential of composite structures in these strength critical designs, material systems having improved ductility and interlaminar toughness are being sought. To promote systematic evaluation of new materials, NASA and the commercial transport manufacturers have selected and standardized a set of five common tests. These tests evaluate open hole tension and compression performance, compression performance after impact at an energy level of 20 ft-lb, and resistance to delamination. Ten toughened resin matrix/graphite fiber composites were evaluated using this series of tests, and their performance is compared with a widely used composite system.
Wi, Seunghwan; Chang, Seong Jin; Jeong, Su-Gwang; Lee, Jongki; Kim, Taeyeon; Park, Kyung-Won; Lee, Dong Ryeol; Kim, Sumin
2017-07-26
Porous carbon materials are advantageous in adsorbing pollutants due to their wide range of specific surface areas, pore diameter, and pore volume. Among the porous carbon materials in the current study, expanded graphite, xGnP, xGnP C-300, xGnP C-500, and xGnP C-750 were prepared as adsorbent materials. Brunauer-Emmett-Teller (BET) analysis was conducted to select the adsorbent material through the analysis of the specific surface area, pore size, and pore volume of the prepared porous carbon materials. Morphological analysis using SEM was also performed. The xGnP C-500 as adsorbent material was applied to a mortar adhesive that is widely used in the installation of interior building materials. The toluene adsorption performances of the specimens were evaluated using 20 L small chamber. Furthermore, the performance of the mortar adhesive, as indicated by the shear bond strength, length change rate, and water retention rate, was analyzed according to the required test method specified in the Korean standards. It was confirmed that for the mortar adhesives prepared using the xGnP C-500 as adsorbent material, the toluene adsorption performance was excellent and satisfied the required physical properties.
NASA Technical Reports Server (NTRS)
Boes, D. J.
1984-01-01
This report describes the results of a program designed to evaluate the breakaway friction and dynamic friction/wear characteristics of materials having potential for use as load bearing components in a high-performance high-temperature heavy duty diesel engine. Ten candidate materials were selected, six of which were evaluated under all possible material combinations as both stationary as well as moving breakaway specimens. The remaining materials were evaluated either in the static mode against themselves and all other materials, or against themselves only. Experiments were performed at five temperatures up to 650 C (1200 F) and unit pressures of 700 kPa (100 lb/sq in.), 3500 kPa (500 lb/sq in.), and 7000 kPa (1000 lb/sq in.). Experimental results indicate that under dynamic conditions, four of the ten materials exhibited good to excellent friction/wear characteristics in various material combinations. These materials were: titanium carbide, silicon nitride, silicon carbide (reaction sintered), and Refel (SiC).
Evaluation of high performance pavement and bridge deck wearing surface repair materials.
DOT National Transportation Integrated Search
2016-08-01
This project provided for a laboratory and field testing of several high performance repair materials for : pavements and concrete bridge decks. The main purpose was to provide ODOT with materials and procedures : to shorten road and bridge closures....
TOXICITY TESTING, RISK ASSESSMENT, AND OPTIONS FOR DREDGED MATERIAL MANAGEMENT
Programs for evaluating proposed discharges of dredged material into waters of the United States specify a tiered testing and evaluation protocol that includes performance of acute and chronic bioassays to assess toxicity of the dredged sediments. Although these evaluations refl...
For Piping Corrosive Wastes--Glass, Metal Or Plastic? Laboratory Design Notes.
ERIC Educational Resources Information Center
Sell, J. Clyde
1964-01-01
Materials (piping and joints) for waste-piping systems are evaluated and a material or materials best qualified for above ground service in health research facilities are recommended. Evaluation is based on cost and performance because the potential value of any material depends on its ability to compete in both areas. In general, the following…
Chang, Seong Jin; Jeong, Su-Gwang; Lee, Jongki; Kim, Taeyeon; Park, Kyung-Won; Lee, Dong Ryeol; Kim, Sumin
2017-01-01
Porous carbon materials are advantageous in adsorbing pollutants due to their wide range of specific surface areas, pore diameter, and pore volume. Among the porous carbon materials in the current study, expanded graphite, xGnP, xGnP C-300, xGnP C-500, and xGnP C-750 were prepared as adsorbent materials. Brunauer–Emmett–Teller (BET) analysis was conducted to select the adsorbent material through the analysis of the specific surface area, pore size, and pore volume of the prepared porous carbon materials. Morphological analysis using SEM was also performed. The xGnP C-500 as adsorbent material was applied to a mortar adhesive that is widely used in the installation of interior building materials. The toluene adsorption performances of the specimens were evaluated using 20 L small chamber. Furthermore, the performance of the mortar adhesive, as indicated by the shear bond strength, length change rate, and water retention rate, was analyzed according to the required test method specified in the Korean standards. It was confirmed that for the mortar adhesives prepared using the xGnP C-500 as adsorbent material, the toluene adsorption performance was excellent and satisfied the required physical properties. PMID:28773214
Development of COPVS for High pressure, In-Space, Cryogenic Fuel Storage
NASA Technical Reports Server (NTRS)
DeLay, Tom; Schneider, Judy; Dyess, Mark; Hastings, Chad; Noorda, Ryan; Noorda, Jared; Patterson, James
2008-01-01
Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. To evaluate the ultimate performance, various polymeric COPV's have been statically burst tested at cryogenic conditions before and after exposure to irradiation. Materials selected for these COPVs were based on the measured mechanical properties of candidate resin systems and fibers that were also tested at cryogenic conditions before and after exposure to irradiation. The correlation of COPV burst pressures with the constituent material properties has proven to be a valuable screening method for selection of suitable candidate materials with resistance to material degradation due to exposure to temperature and radiation.
BMDO materials testing in the EOIM-3 experiment
NASA Technical Reports Server (NTRS)
Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Liang, Ranty H.
1995-01-01
The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a testbed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground-based exposure evaluation was conducted using the Fast Atom Sample Tester (FAST) atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 flight materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 20) atoms/sq cm. The ground-based exposure fluence of 2.0 - 2.5 x 10(exp 20) atoms/sq cm permits direct comparison with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground-based exposure are summarized here. A more detailed correlation study is presented in the JPL Publication 93-31 entitled 'Flight-and Ground-Test Correlation Study of BMDO SDS Materials: Phase 1 Report'. In general, the majority of the materials survived the AO environment with their performance tolerances maintained for the duration of the exposure. Optical materials, baffles, and coatings performed extremely well as did most of the thermal coatings and tribological materials. A few of the candidate radiator, threat shielding, and structural materials showed significant degradation. Many of the coatings designed to protect against AO erosion of sensitive materials performed this function well.
Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N Suman; Tadi, Durga Prasad
2016-01-01
This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In moist condition, aquasil performed significantly better than impregum. Regarding gypsum compatibility according to ADA specification, in dry condition both the materials performed almost equally, and in moist condition aquasil performed better than impregum. When tested by macroscopic evaluation, impregum performed better than aquasil in both the conditions.
Durability and smart condition assessment of ultra-high performance concrete in cold climates.
DOT National Transportation Integrated Search
2016-12-31
The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test...
Evaluation of cold mixes for winter pothole repair.
DOT National Transportation Integrated Search
1995-01-01
This study was conducted to evaluate the performance of 13 proprietary cold-mix patching materials, 4 of which are currently approved under a Virginia Department of Transportation (VDOT) Special Provision for High Quality Cold Patching Materials. Col...
Evaluation and Validation of Organic Materials for Advanced Stirling Convertors (ASCs): Overview
NASA Technical Reports Server (NTRS)
Shin, Euy-Sik Eugene
2015-01-01
Various organic materials are used as essential parts in Stirling Convertors for their unique properties and functionalities such as bonding, potting, sealing, thread locking, insulation, and lubrication. More efficient Advanced Stirling Convertors (ASC) are being developed for future space applications especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration or lunar surface power or Mars rovers, and others. Thus, performance, durability, and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations based on their mission specifications. In general, thermal stability, radiation hardness, outgassing, and material compatibility of the selected organics have been systematically evaluated while their process and fabrication conditions and procedures were being optimized. Service environment-simulated long term aging tests up to 4 years were performed as a function of temperature for durability assessment of the most critical organic material systems.
3500-hour durability testing of ceramic materials for automotive gas turbine engines
NASA Technical Reports Server (NTRS)
Carruthers, W. D.; Richerson, D. W.; Benn, K. W.
1980-01-01
A two-year durability program was performed by AiResearch Phoenix to evaluate four commercially available ceramic materials under simulated automotive gas turbine combustor discharge conditions. These conditions included extended cyclic thermal exposures up to 2500 F and 3500 hr. The four materials selected for evaluation were Norton NCX-34 hot pressed silicon nitride, AiResearch RBN 101 reaction bonded silicon nitride, Carborundum pressureless sintered alpha-SiC and Pure Carbon Co. (British Nuclear Fuels, Ltd.) Refel reaction sintered silicon carbide. These materials were initially exposed to 350 hr/1750 cycles at 1200 and 1370 C. Subsequent exposures to 1050, 2100 and 3500 hr were performed on those materials maintaining 50% of baseline strength after the initial exposure. Additional evaluations of exposed bars included dimensional and weight changes, dye penetrant, specific damping capacity changes, SEM fractography, and X-ray diffraction.
Materials development and evaluation for the ceramic helical expander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landingham, R.L.; Taylor, R.W.
The supporting role of the materials program for the ceramic helical expander program is described. The materials problems for this rotory expander in an extremely severe environment-a direct coal-fired Brayton topping cycle is defined. Readily available materials and methods for possible solution to these material problems as well as initiating some longer-range studies to improve reliability were evaluated. A preliminary screening of materials in hot coal-fired environments to select candidate materials and coating was made. More detailed evaluations of these candidate materials-reaction-bonded silicon nitride (RBSN) and Si--Al--O--N (Sialon) system- and coatings-chemical-vapor-deposited silicon nitride (CVD-Si/sub 3/N/sub 4/) and CVD-Sialon need tomore » be performed. Termination of the helical expander program abruptly stopped the materials program during this evaluation.« less
Materials development and evaluation for the ceramic helical expander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landingham, R.L.; Taylor, R.W.
The supporting role of the materials program for the ceramic helical expander program is described. The materials problems for this rotory expander in an extremely severe environment - a direct coal-fired Brayton topping cycle is defined. Readily available materials and methods are evaluated for possible solution to these material problems as well as initiating some longer-range studies to improve reliability. A preliminary screening of materials in hot coal-fired environments to select candidate materials and coating, was made, but there is a need to perform more detailed evaluations of these candidate materials-reaction-bonded silicon nitride (RBSN) and Si--Al--O--N (Sialon) system- and coatings-chemical-vapor-depositedmore » silicon nitride (CVD-Si/sub 3/N/sub 4/) and CVD-Sialon. Termination of the helical expander program abruptly stopped the materials program during this evaluation.« less
Materials management: stretching the "household" budget.
Carpe, R H; Carroll, P E
1987-11-01
As CFOs assume responsibility for the materials management function because of the potential to maximize cash flow, achieve economies of scale, decrease costs, and streamline operations, they look for guidelines to evaluate performance. Conducting a systems operations audit can aid in assessing that performance. CFOs can determine whether materials management processes are working "smarter, nor harder."
Trackless tack coat materials : a laboratory evaluation performance acceptance.
DOT National Transportation Integrated Search
2012-06-01
The purpose of this study was to develop, demonstrate, and document laboratory procedures that could be used by the : Virginia Department of Transportation (VDOT) to evaluate non-tracking tack coat materials. The procedures would be used to : qualify...
Research of Flammability of Fireproof Materials in Ship Safety
NASA Astrophysics Data System (ADS)
Jiang, Yizhou; Han, Duanfeng; Zhang, Ziwei
2017-09-01
This paper analyzes the classification, performance and application of ship fireproof and heat insulating materials, and describes the test standard and performance evaluation criteria of the non-combustibility, low flame-spread characteristics and smoke and toxicity of marine fireproof materials in detail. So the paper has certain reference value and guidance significance for the selection of heat insulating materials with fire divisions and the use of flammable materials on board in accordance with requirements.
NASA Technical Reports Server (NTRS)
1973-01-01
The heat transfer characteristics of various materials used for the thermal insulation of spacecraft are discussed. Techniques for conducting thermal performance analysis, structural performance analysis, and dynamic analysis are described. Processes for producing and finishing the materials are explained. The methods for determining reliability, system safety, materials tests, and design effectiveness are explained.
EVALUATIONS ON ASR DAMAGE OF CONCRETE STRUCTURE AND ITS STRUCTURAL PERFORMANCE
NASA Astrophysics Data System (ADS)
Ueda, Naoshi; Nakamura, Hikaru; Kunieda, Minoru; Maeno, Hirofumi; Morishit, Noriaki; Asai, Hiroshi
In this paper, experiments and finite element analyses were conducted in order to evaluate effects of ASR on structural performance of RC and PC structures. From the experimental results, it was confirmed that the ASR expansion was affected by the restraint of reinforcement and the magnitude of prestress. The material properties of concrete damaged by ASR had anisotropic characteristics depending on the degree of ASR expansion. Therefore, when the structural performance of RC and PC structures were evaluated by using the material properties of core concrete, the direction and place where cylinder specimens were cored should be considered. On the other hand, by means of proposed analytical method, ASR expansion behaviors of RC and PC beams and changing of their structural performance were evaluated. As the results, it was confirmed that PC structure had much advantage comparing with RC structure regarding the structural performance under ASR damage because of restraint by prestress against the ASR.
Performance evaluation of subgrade stabilization with recycled materials.
DOT National Transportation Integrated Search
2016-02-29
Due to rising costs of good quality acceptable materials for remove/replace options and traditional : subgrade stabilization materials, MDOT is in need to identify potential recycled materials to treat : unacceptable subgrade soils. Use of recycled m...
Nondestructive evaluation of composite materials - A design philosophy
NASA Technical Reports Server (NTRS)
Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.
1984-01-01
Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.
Gurram, Ravi; Krishna, C H Vamsi; Reddy, K Mahendranadh; Reddy, G V K Mohan; Shastry, Y Mahadev
2014-12-01
The study was undertaken to evaluate the biaxial flexural strength, biaxial flexural strength after etching with 9 % HF acid and fracture toughness of three commonly used pressable all ceramic core materials. Ninety glass ceramic specimens were fabricated from three commercially available leucite based core ceramic material (1) Esthetic Empress, (2) Cergo, and (3) Performance Plus. Thirty discs of each material were divided into three groups of 10 discs each. Biaxial flexural strength (30 discs,) Biaxial flexural strength for samples treated with 9 % HF acid (30 discs) and fracture toughness (30 discs) were evaluated. Core material Performance Plus had the lowest biaxial strength of 124.89 MPa, Cergo had strength of 152.22 MPa and the highest value of 163.95 was reported for Esthetic Empress. For samples treated 9 % HF, Performance Plus had the lowest biaxial strength of 98.37 MPa, Cergo had strength of 117.42 MPa and the highest value of 143.74 was reported for Esthetic Empress. Core material Performance Plus had the lowest fracture toughness of 1.063 MPa, Cergo had strength of 1.112 MPa and the highest value of 1.225 was reported for Esthetic Empress. The results shows that Esthetic Empress had better mechanical properties compared to Cergo had Performance Plus in relation to the parameters tested.
Dentinal tubule occluding capability of nano-hydroxyapatite; The in-vitro evaluation.
Baglar, Serdar; Erdem, Umit; Dogan, Mustafa; Turkoz, Mustafa
2018-04-29
In this in-vitro study, the effectiveness of experimental pure nano-hydroxyapatite (nHAP) and 1%, 2%, and 3% F¯ doped nano-HAp on dentine tubule occlusion was investigated. And also, the cytotoxicity of materials used in the experiment was evaluated. Nano-HAp types were synthesized by the precipitation method. Forty dentin specimens were randomly divided into five groups of; 1-no treatment (control), 2-specimens treated with 10% pure nano-HAp and 3, 4, 5 specimens treated with 1%, 2%, and 3% F - doped 10% nano-HAp, respectively. To evaluate the effectiveness of the materials used; pH, FTIR, and scanning electron microscopy evaluations were performed before and after degredation in simulated body fluid. To determine cytotoxicity of the materials, MTT assay was performed. Statistical evaluations were performed with F and t tests. All of the nano-HAp materials used in this study built up an effective covering layer on the dentin surfaces even with plugs in tubules. It was found that this layer had also a resistance to degradation. None of the evaluated nano-HAp types were have toxicity. Fluoride doping showed a positive effect on physical and chemical stability until a critical value of 1% F - . The all evaluated nano-HAp types may be effectively used in dentin hypersensitivity treatment. The formed nano-HAp layers were seem to resistant to hydrolic deletion. The pure and 1% F - doped nano-HAp showed the highest biocompatibility thus it was assessed that pure and 1% F - doped materials may be used as an active ingredient in dentin hypersensitivity agents. © 2018 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
DelPapa, Steven V.
2005-01-01
Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.
Clinical performance of a glass ionomer restorative system: a 6-year evaluation.
Gurgan, Sevil; Kutuk, Zeynep Bilge; Ergin, Esra; Oztas, Sema Seval; Cakir, Filiz Yalcin
2017-09-01
The aim of this study is to evaluate the long-term clinical performance of a glass ionomer (GI) restorative system in the restoration of posterior teeth compared with a micro-filled hybrid posterior composite. A total of 140 (80 Cl1 and 60 Cl2) lesions in 59 patients were restored with a GI system (Equia) or a micro hybrid composite (Gradia Direct). Restorations were evaluated at baseline and yearly during 6 years according to the modified-USPHS criteria. Negative replicas at each recall were observed under SEM to evaluate surface characteristics. Data were analyzed with Cohcran's Q and McNemar's tests (p < 0.05). One hundred fifteen (70 Cl1 and 45 Cl2) restorations were evaluated in 47 patients with a recall rate of 79.6% at 6 years. Significant differences were found in marginal adaptation and marginal discoloration for both restorative materials for Cl1 and Cl2 restorations (p < 0.05). However, none of the materials were superior to the other (p > 0.05). A significant decrease in color match was observed in Equia restorations (p < 0.05). Only one Cl2 Equia restoration was missing at 3 years and another one at 4 years. No failures were observed at 5 and 6 years. Both materials exhibited clinically successful performance after 6 years. SEM evaluations were in accordance with the clinical findings. Both materials showed a good clinical performance for the restoration of posterior teeth during the 6-year evaluation. The clinical effectiveness of Equia and Gradia Direct Posterior was acceptable in Cl1 and Cl2 cavities subsequent to 6-year evaluation.
Utilization of Additive Manufacturing in Evaluating the Performance of Internally Defected Materials
NASA Astrophysics Data System (ADS)
Mourad, A.-H. I.; Ghazal, A. M.; Syam, M. M.; Qadi, O. D. Al; Jassmi, H. Al
2018-05-01
The elimination of internal defects in a material present in the raw material or generated during the manufacturing or service is difficult. The inclusions of the defects have an adverse effect on the load bearing capacity. The presence of the cracks subjected to a specific orientation in materials or machinery can cause devastating unexpected failure during operation. Analysis of the failure in the components with cracks is more confined to analytical and numerical evaluation. The experimental evaluation has been tedious due to the complexity of replicating the actual defected component. The potential of additive manufacturing in developing user-defined components with cracks for the experimental evaluation is explored in this research. The present research investigated the effect of the internal elliptical cracks aligned at different orientations on the mechanical performance of polylactic acid (Green filament). The Fusion Deposition Method was utilized for the development of the standard tensile specimens with internal elliptical crack oriented at 0°, 45° and 90° using UltiMaker 2. The results proved that there is a considerable reduction in the load bearing capacity due to the presence of the cracks. The maximum load bearing capacity decreased by 15.01% for the specimen with crack inclined at 0° to the lateral axis compared to crack- free specimen. The nature of the fracture and the stress-strain graph evidently showcase the brittle nature of the material. The SEM image of the fractured region proved the phenomenal characteristics such as strong adhesion between the layers and the proper material flow. In the light of the results of this work, it can be concluded that the 3-D printing methodology is effective for evaluating the mechanical performance of the internally defected material.
ERIC Educational Resources Information Center
Courtenay-Hall, Pamela
1998-01-01
Discusses the problem of environmental bias and critiques Michael Sanera's approach to evaluation of environmental education performance. Notes that problems result from bias in curriculum materials. Contains 20 references. (DDR)
Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming
2016-03-01
To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.
Evaluation of Containment Boxes as a Fire Mitigation Method in Elevated Oxygen Conditions
NASA Technical Reports Server (NTRS)
Juarez, Alfredo; Harper, Susana; Perez, Horacio
2016-01-01
NASA performed testing to evaluate the efficacy of fire containment boxes without forced ventilation. Configurational flammability testing was performed on a simulation avionics box replicating critical design features and filled with materials possessing representative flammability characteristics. This paper discusses the box's ability, under simulated end-use conditions, to inhibit the propagation of combustion to surrounding materials. Analysis was also performed to evaluate the potential for the fire containment box to serve as an overheat/ignition source to temperature sensitive equipment (such as items with lithium-ion batteries). Unrealistically severe combustion scenarios were used as a means to better understand the fire containment mechanism. These scenarios were achieved by utilizing materials/fuels not typically used in space vehicles due to flammability concerns. Oxygen depletion, during combustion within the fire containment boxes, drove self-extinguishment and proved an effective method of fire containment
An evaluation of dental operative simulation materials.
He, Li-Hong; Foster Page, Lyndie; Purton, David
2012-01-01
The study was to evaluate the performance of different materials used in dental operative simulation and compare them with those of natural teeth. Three typical phantom teeth materials were compared with extracted permanent teeth by a nanoindentation system and evaluated by students and registered dentists on the drilling sensation of the materials. Moreover, the tool life (machinability) of new cylindrical diamond burs on cutting the sample materials was tested and the burs were observed. Although student and dentist evaluations were scattered and inconclusive, it was found that elastic modulus (E) and hardness (H) were not the main factors in determining the drilling sensation of the materials. The sensation of drilling is a reflection of cutting force and power consumption.An ideal material for dental simulation should be able to generate similar drilling resistance to that of natural tooth, which is the machinability of the material.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Evaluations AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice... improve performance. For gas transmission pipelines, Sec. Sec. 192.911(i) and 192.945 define the...
Solubility and bacterial sealing ability of MTA and root-end filling materials.
Espir, Camila Galletti; Guerreiro-Tanomaru, Juliane Maria; Spin-Neto, Rubens; Chávez-Andrade, Gisselle Moraima; Berbert, Fabio Luiz Camargo Villela; Tanomaru-Filho, Mario
2016-04-01
Objective To evaluate solubility and sealing ability of Mineral Trioxide Aggregate (MTA) and root-end filling materials. Material and Methods The materials evaluated were: MTA, Calcium Silicate Cement with zirconium oxide (CSC/ZrO2), and zinc oxide/eugenol (ZOE). Solubility test was performed according to ANSI/ADA. The difference between initial and final mass of the materials was analyzed after immersion in distilled water for 7 and 30 days. Retrograde cavities in human teeth with single straight root canal were performed by using ultrasonic tip CVD 9.5107-8. The cavities were filled with the evaluated materials to evaluate sealing ability using the bacterial leakage test with Enterococcus faecalis. Bacterial leakage was evaluated every 24 hours for six weeks observing the turbidity of Brain Heart infusion (BHI) medium in contact with root apex. Data were submitted to ANOVA followed by Tukey tests (solubility), and Kruskal-Wallis and Dunn tests (sealing ability) at a 5% significance level. Results For the 7-day period, ZOE presented highest solubility when compared with the other groups (p<0.05). For the 30-day period, no difference was observed among the materials. Lower bacterial leakage was observed for MTA and CSC/ZrO2, and both presented better results than ZOE (p<0.05). Conclusion MTA and CSC/ZrO2 presented better bacterial sealing capacity, which may be related to lower initial solubility observed for these materials in relation to ZOE.
Evaluation available encapsulation materials for low-cost long-life silicon photovoltaic arrays
NASA Technical Reports Server (NTRS)
Carmichael, D. C.; Gaines, G. B.; Noel, G. T.; Sliemers, F. A.; Nance, G. P.; Bunk, A. R.; Brockway, M. C.
1978-01-01
Experimental evaluation of selected encapsulation designs and materials based on an earlier study which have potential for use in low cost, long-life photovoltaic arrays are reported. The performance of candidate materials and encapsulated cells were evaluated principally for three types of encapsulation designs based on their potentially low materials and processing costs: (1) polymeric coatings, transparent conformal coatings over the cell with a structural-support substrate; (2) polymeric film lamination, cells laminated between two films or sheets of polymeric materials; and (3) glass-covered systems, cells adhesively bonded to a glass cover (superstrate) with a polymeric pottant and a glass or other substrate material. Several other design types, including those utilizing polymer sheet and pottant materials, were also included in the investigation.
ERIC Educational Resources Information Center
Yamada, Masanori; Kitamura, Satoshi; Shimada, Noriko; Utashiro, Takafumi; Shigeta, Katsusuke; Yamaguchi, Etsuji; Harrison, Richard; Yamauchi, Yuhei; Nakahara, Jun
2011-01-01
This study aims to verify the effectiveness of English language materials using mobile devices for business people in terms of the effect on motivation, overall learning performance, and practical performance in real business situations. We compared the use of materials developed from business English for a sales department in a company…
NASA Technical Reports Server (NTRS)
Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.
2009-01-01
This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated
NASA Technical Reports Server (NTRS)
1996-01-01
Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform, and reliable results that will ensure that separator materials have the desired properties for long life and good performance in secondary alkaline cells.
DOT National Transportation Integrated Search
2011-03-01
Historically the prequalification or selection of pavement marking materials (PMMs) is mainly based on : product specifications and lab testing, which do not correlate well with the field performance of the products. : On the other hand, there is no ...
Knight, Marlene E.; Sanborn, Brett; Song, Bo; ...
2017-01-26
Elastomeric materials are used as shock isolation materials in a variety of environments to dampen vibrations and/or absorb energy from external impact to minimize energy transfer between two objects or bodies. Some applications require the shock isolation materials to behave as a low-pass mechanical filter to mitigate the shock/impact at high frequencies but transmit the energy at low frequencies with minimal attenuation. To fulfill this requirement, a shock isolation material needs to be carefully evaluated and selected with proper experimental design, procedures, and analyses. In this study, a Kolsky bar was modified with precompression (up to 15.5 kN) and confinementmore » capabilities to evaluate low-pass shock isolation performance in terms of acceleration attenuation through a variety of elastomers. Also investigated were the effects of preload and specimen geometry on the low-pass shock isolation response.« less
Evaluation of alternative phase change materials for energy storage in solar dynamic applications
NASA Technical Reports Server (NTRS)
Crane, R. A.; Dustin, M. O.
1988-01-01
The performance of fluoride salt and metallic thermal energy storage materials are compared in terms of basic performance as applied to solar dynamic power generation. Specific performance considerations include uniformity of cycle inlet temperature, peak cavity temperature, TES utilization, and system weights. Also investigated were means of enhancing the thermal conductivity of the salts and its effect on the system performance.
Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F
2016-08-03
Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.
Volozhin, A I; Grigor'ian, A S; Desiatnichenko, K S; Ozhelevskaia, S A; Doktorov, A A; Kurdiumov, S G; Fionova, E V; Gurin, A N; Karakov, K G
2008-01-01
In rat experiments the ability of noncollagen bone proteins (NCBP) in the composition of osteoplactic modified material Gapkol (not tanned in formalin and subjected to vacuum extraction) to increase bone reparation in comparison with traditional Gapkol was studied. Quantitative evaluation was performed on rat parietal bone and qualitative evaluation was performed on rat mandible. It was shown that Gapkol with NCBP (not tanned in formalin and subjected to vacuum extraction) increased reparative osteogenesis.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.
2013-01-01
As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address and enhance future mission needs and technical requirements. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics have been under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to inhibit the occurrence of an internal short circuit but preserves an ionic current. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material were evaluated with respect to dynamic mechanical properties and safety-related performance attributes, and the results of these evaluations were previously reported in "Part 1: Mechanical Properties" of this publication. This current paper presents safety-related performance results for these novel materials obtained by employing a complementary experimental methodology, which involved the analysis of separator impedance characteristics as a function of temperature. The experimental results from this study are discussed with respect to potential cell safety enhancement for future aerospace as well as for terrestrial energy storage needs, and they are compared with pertinent mechanical properties of these materials, as well as with current state-of-the practice separator materials.
Performance evaluation of DAAF as a booster material using the onionskin test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, John S; Francois, Elizabeth G; Hooks, Daniel E
Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in Diaminoazoxyfurazan (DAAF) for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemisphericalmore » IHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.« less
VI-G, Sec. 661, P.L. 91-230. Final Performance Report.
ERIC Educational Resources Information Center
1976
Presented is the final performance report of the CSDC model which is designed to provide services for learning disabled high school students. Sections cover the following program aspects: organizational structure, inservice sessions, identification of students, materials and equipment, evaluation of student performance, evaluation of the model,…
Evaluating the Environmental Performance of Wood-Based Biofuels
Bruce Lippke; Richard Bergman; Adam Taylor; Maureen E. Puettmann
2012-01-01
The nonprofit Consortium for Research on Renewable Industrial Materials (CORRIM) has been developing comprehensive environmental performance information on wood building materials consistent with life-cycle standards (http://www.corrim.org/). The articles published in this Special Issue of the Forest Products Journal extend the research by the...
78 FR 48726 - Placement of the Georgia Agreement State Program on Probation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
... the Integrated Materials Performance Evaluation Program (IMPEP). The Management Review Board (MRB), in... CONTACT: Lisa Dimmick, Office of Federal and State Materials and Environmental Management Programs, U.S... Agreement State radiation control programs, using performance indicators, to ensure that public health and...
Methodology for Evaluating Raw Material Changes to RSRM Elastomeric Insulation Materials
NASA Technical Reports Server (NTRS)
Mildenhall, Scott D.; McCool, Alex (Technical Monitor)
2001-01-01
The Reusable Solid Rocket Motor (RSRM) uses asbestos and silicon dioxide filled acrylonitrile butadiene rubber (AS-NBR) as the primary internal insulation to protect the case from heat. During the course of the RSRM Program, several changes have been made to the raw materials and processing of the AS-NBR elastomeric insulation material. These changes have been primarily caused by raw materials becoming obsolete. In addition, some process changes have been implemented that were deemed necessary to improve the quality and consistency of the AS-NBR insulation material. Each change has been evaluated using unique test efforts customized to determine the potential impacts of the specific raw material or process change. Following the evaluations, the various raw material and process changes were successfully implemented with no detectable effect on the performance of the AS-NBR insulation. This paper will discuss some of the raw material and process changes evaluated, the methodology used in designing the unique test plans, and the general evaluation results. A summary of the change history of RSRM AS-NBR internal insulation is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heep, Barbara K.; Weldert, Kai S.; Krysiak, Yasar
Superionic chalcopyrites have recently attracted interest in their use as potential thermoelectric materials because of extraordinary low thermal conductivities. To overcome long-term stability issues in thermoelectric generators using superionic materials at evaluated temperatures, materials need to be found that show good thermoelectric performance at moderate temperatures. Here, we present the structural and thermoelectric properties of the argyrodite Ag 8SiSe 6, which exhibits promising thermoelectric performance close to room temperature.
NASA Technical Reports Server (NTRS)
Simon, F. F.
1975-01-01
The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.
DOT National Transportation Integrated Search
1991-11-01
In 1989, two pavement striping tape materials were placed on two new asphalt pavements. A two-year performance evaluation of the materials has been completed by the Oregon State Highway Division's (OSHD's) Materials and Research Section. : On the fir...
Research of laser stealth performance test technology
NASA Astrophysics Data System (ADS)
Chen, Zhen-xing; Shi, Sheng-bing; Han, Fu-li; Wu, Yan-lin; Song, Chun-yan
2014-09-01
Laser stealth is an important way of photoelectric stealth weapons systems. According to operational principle of laser range finder, we actively explore and study the stealth performance approval testing technology of laser stealth materials, and bring forward and establish the stealth performance field test methods of stealth efficiency evaluation. Through contrastive test of two kinds of materials, the method is correct and effective.
Thermal Performance of Aircraft Polyurethane Seat Cushions
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1982-01-01
Aircraft seat materials were evaluated in terms of their thermal performance. The materials were evaluated using (a) thermogravimetric analysis, (b) differential scanning calorimetry, (c) a modified NBS smoke chamber to determine the rate of mass loss and (d) the NASA T-3 apparatus to determine the thermal efficiency. In this paper, the modified NBS smoke chamber will be described in detail since it provided the most conclusive results. The NBS smoke chamber was modified to measure the weight loss of material when exposed to a radiant heat source over the range of 2.5 to 7.5 W/sq cm. This chamber has been utilized to evaluate the thermal performance of various heat blocking layers utilized to protect the polyurethane cushioning foam used in aircraft seats. Various kinds of heat blocking layers were evaluated by monitoring the weight loss of miniature seat cushions when exposed to the radiant heat. The effectiveness of aluminized heat blocking systems was demonstrated when compared to conventional heat blocking layers such as neoprene. All heat blocking systems showed good fire protection capabilities when compared to the state-of-the-art, i.e., wool-nylon over polyurethane foam.
ERIC Educational Resources Information Center
Metzger, Christa; Lynch, Steven B.
1974-01-01
This paper describes the Performance Evaluation of the Education Leader (PEEL) program, initiated from a study to define the competent school administrator and to develop an instrument to measure administrative competence objectively and accurately. The resulting PEEL materials include the following: (a) "Guidelines for Evaluation: The School…
Evaluation of materials and design modifications for aircraft brakes
NASA Technical Reports Server (NTRS)
Ho, T. L.; Kennedy, F. E.; Peterson, M. B.
1975-01-01
A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.
Flexible Foam Protection Materials for Portable Life Support System Packaging Study
NASA Technical Reports Server (NTRS)
Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.
2009-01-01
This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell
Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang
2013-01-01
A cobalt-based thermoelectric compound Ca3Co2O6 (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm−2 is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032
Structural Evaluation of the RSRM Nozzle Replacement Adhesive
NASA Technical Reports Server (NTRS)
Batista-Rodriguez, A.; McLennan, M. L.; Palumbos, A. V.; Richardson, D. E.
1999-01-01
This paper describes the structural performance evaluation of a replacement adhesive for the Reusable Solid Rocket Motor (RSRM) nozzle utilizing finite element analysis. Due to material obsolescence and industrial safety issues, the two current structural adhesives, EA 913 and EA 946 are to be replaced with a new adhesive. TIGA 321. The structural evaluation in support of the adhesive replacement effort includes residual stress, transportation, and flight analyses. Factors of safety are calculated using the stress response from each analysis. The factors of safety are used as the limiting criteria to compare the replacement adhesive against the current adhesives. Included in this paper are the analytical approach, assumptions and modeling techniques as well as the results of the evaluation. An important factor to the evaluation is the similarity in constitutive material properties (elastic modulus and Poisson's ratio) between TIGA 321 and EA 913. This similarity leads to equivalent material response from the two adhesives. However, TIGA 321 surpasses EA 913's performance due to higher material capabilities. Conversely, the change in stress response from EA 946 to TIGA 321 is more apparent: this is primarily attributed to the difference in the modulii of the two adhesives, which differ by two orders of magnitude. The results of the bondline evaluation indicate that the replacement adhesive provides superior performance than the current adhesives with only minor exceptions. Furthermore, TIGA 321 causes only a minor chance in the response of the phenolic and metal components.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Guzik, Monica; Skierski, Michael
2011-01-01
As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address future mission needs and technical requirements and to provide new mission-enabling technologies. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics are actively under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to prevent the occurrence of an internal short-circuit while enabling ionic transport. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material have been evaluated with respect to dynamic mechanical properties and safety-related performance attributes. This paper presents the results of these evaluations in comparison to a current state-ofthe-practice separator material. The results are discussed with respect to potential opportunities to enhance the inherent safety characteristics and reliability of future, advanced lithium-ion cell chemistries.
Performance testing accountability measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.
The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay)more » measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.« less
NASA Technical Reports Server (NTRS)
Starke, E. A., Jr. (Editor)
1996-01-01
This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.
The report presents the approach that was developed to prepare reports on building materials for the Environmental Resource Guide (ERG), both technical materials reports and applications reports. It also: (1) presents data collection tools that could be used to replicate material...
Encapsulation materials research
NASA Technical Reports Server (NTRS)
Willis, P. B.
1984-01-01
Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.
Metals and metalloids treatment in contaminated neutral effluents using modified materials.
Calugaru, Iuliana Laura; Neculita, Carmen Mihaela; Genty, Thomas; Zagury, Gérald J
2018-04-15
Circumneutral surface water and groundwater can contain hazardous concentrations of metals and metalloids that can threaten organisms in surrounding ecosystems. Extensive research has been conducted over the past two decades to prevent, limit, and treat water pollution. Among the currently available treatment options is the use of natural and residual materials, which is generally regarded as effective and inexpensive. The modification of such materials enhances the removal capacity of metals and metalloids, as well as the physical and chemical stability of the materials and resulting sludge (after treatment). This paper reviews several modified materials that have produced and evaluated in the past twenty years to treat various contaminants in water under specific conditions. Important factors on performance improvement following the modifications are emphasized. Sorption capacity and kinetics, and element removal mechanisms are also discussed. Element recovery, material regeneration, water reuse, evaluation of treatment efficiency for real effluents are also considered, as well as the applicability of these materials in both active and passive treatment systems. Modified natural and residual materials are a promising option for the treatment of metals and metalloids in circumneutral contaminated waters. However, further research is necessary to evaluate their field-scale performance and to properly assess treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2002-07-01
The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.
New evaluation parameter for wearable thermoelectric generators
NASA Astrophysics Data System (ADS)
Wijethunge, Dimuthu; Kim, Woochul
2018-04-01
Wearable devices constitute a key application area for thermoelectric devices. However, owing to new constraints in wearable applications, a few conventional device optimization techniques are not appropriate and material evaluation parameters, such as figure of merit (zT) and power factor (PF), tend to be inadequate. We illustrated the incompleteness of zT and PF by performing simulations and considering different thermoelectric materials. The results indicate a weak correlation between device performance and zT and PF. In this study, we propose a new evaluation parameter, zTwearable, which is better suited for wearable applications compared to conventional zT. Owing to size restrictions, gap filler based device optimization is extremely critical in wearable devices. With respect to the occasions in which gap fillers are used, expressions for power, effective thermal conductivity (keff), and optimum load electrical ratio (mopt) are derived. According to the new parameters, the thermal conductivity of the material has become much more critical now. The proposed new evaluation parameter, namely, zTwearable, is extremely useful in the selection of an appropriate thermoelectric material among various candidates prior to the commencement of the actual design process.
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie
2014-01-01
CERMET fuel materials are being developed at the NASA Marshall Space Flight Center for a Nuclear Cryogenic Propulsion Stage. Recent work has resulted in the development and demonstration of a Compact Fuel Element Environmental Test (CFEET) System that is capable of subjecting depleted uranium fuel material samples to hot hydrogen. A critical obstacle to the development of an NCPS engine is the high-cost and safety concerns associated with developmental testing in nuclear environments. The purpose of this testing capability is to enable low-cost screening of candidate materials, fabrication processes, and further validation of concepts. The CERMET samples consist of depleted uranium dioxide (UO2) fuel particles in a tungsten metal matrix, which has been demonstrated on previous programs to provide improved performance and retention of fission products1. Numerous past programs have utilized hot hydrogen furnace testing to develop and evaluate fuel materials. The testing provides a reasonable simulation of temperature and thermal stress effects in a flowing hydrogen environment. Though no information is gained about radiation damage, the furnace testing is extremely valuable for development and verification of fuel element materials and processes. The current work includes testing of subscale W-UO2 slugs to evaluate fuel loss and stability. The materials are then fabricated into samples with seven cooling channels to test a more representative section of a fuel element. Several iterations of testing are being performed to evaluate fuel mass loss impacts from density, microstructure, fuel particle size and shape, chemistry, claddings, particle coatings, and stabilizers. The fuel materials and forms being evaluated on this effort have all been demonstrated to control fuel migration and loss. The objective is to verify performance improvements of the various materials and process options prior to expensive full scale fabrication and testing. Post test analysis will include weight percent fuel loss, microscopy, dimensional tolerance, and fuel stability.
2017-07-01
this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. DESTROY...non-destructively evaluate fiber distributions, orientation, and FRC posttest damage. This technique allows for a closer to meso scale investigation...performance all the while optimizing the material and improving desired performance by designing materials based on individual constituent
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Part of a series of eight student learning modules in vocational agriculture, this booklet deals with evaluation of livestock. It contains sections on carcass evaluation, the evaluation of performance and production, and the design of livestock production facilities. Each of the first two sections has a glossary, and all three conclude with a…
Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, J.; Sprik, S.; Ramsden, T.
2013-11-01
This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.
Nanostructured manganese oxide thin films as electrode material for supercapacitors
NASA Astrophysics Data System (ADS)
Xia, Hui; Lai, Man On; Lu, Li
2011-01-01
Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.
EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS
This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). his evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory....
EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS
This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). This evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory...
Multi-regime transport model for leaching behavior of heterogeneous porous materials.
Sanchez, F; Massry, I W; Eighmy, T; Kosson, D S
2003-01-01
Utilization of secondary materials in civil engineering applications (e.g. as substitutes for natural aggregates or binder constituents) requires assessment of the physical and environment properties of the product. Environmental assessment often necessitates evaluation of the potential for constituent release through leaching. Currently most leaching models used to estimate long-term field performance assume that the species of concern is uniformly dispersed in a homogeneous porous material. However, waste materials are often comprised of distinct components such as coarse or fine aggregates in a cement concrete or waste encapsulated in a stabilized matrix. The specific objectives of the research presented here were to (1) develop a one-dimensional, multi-regime transport model (i.e. MRT model) to describe the release of species from heterogeneous porous materials and, (2) evaluate simple limit cases using the model for species when release is not dependent on pH. Two different idealized model systems were considered: (1) a porous material contaminated with the species of interest and containing inert aggregates and, (2) a porous material containing the contaminant of interest only in the aggregates. The effect of three factors on constituent release were examined: (1) volume fraction of material occupied by the aggregates compared to a homogeneous porous material, (2) aggregate size and, (3) differences in mass transfer rates between the binder and the aggregates. Simulation results confirmed that assuming homogeneous materials to evaluate the release of contaminants from porous waste materials may result in erroneous long-term field performance assessment.
Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime.
Inoue, Yusuke; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Kaneko, Akiko; Woo, Taeseong; Kobayashi, Shingo; Shibuya, Tomokazu; Tanaka, Masaru; Kosukegawa, Hiroyuki; Saito, Itsuro; Isoyama, Takashi; Abe, Yusuke; Yambe, Tomoyuki; Someya, Takao; Sekino, Masaki
2017-05-01
There are recent reports of hybrid tissue-fabric materials with good performance-high biocompatibility and high mechanical strength. In this study, we demonstrate the capability of a hybrid material as a long-term filter for blood proteins. Polyester fabrics were implanted into rats to fabricate hybrid tissue-fabric material sheets. The hybrid materials comprised biological tissue grown on the fabric. The materials were extracted from the rat's body, approximately 100 days post-implantation. The tissues were decellularized to prevent immunological rejection. An antithrombogenicity test was performed by dropping blood onto the hybrid material surface. The hybrid material showed lesser blood coagulation than polysulfone and cellulose. Blood plasma was filtered using the hybrid material to evaluate the protein removal percentage and the lifetime of the hybrid material in vitro. The hybrid material showed a comparable performance to conventional filters for protein removal. Moreover, the hybrid material could work as a protein filter for 1 month, which is six times the lifetime of polysulfone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. D. Keiser; J. I. Cole
2007-09-01
Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. Thismore » temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.« less
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Tucker, D. S.; Patterson, W. J.; Franklin, S. W.; Gordon, G. H.; Hart, L.; Hodge, A. J.; Lance, D. G.; Russel, S. S.
1991-01-01
A test run was performed on IM6/3501-6 carbon-epoxy in which the material was processed, machined into specimens, and tested for damage tolerance capabilities. Nondestructive test data played a major role in this element of composite characterization. A time chart was produced showing the time the composite material spent within each Branch or Division in order to identify those areas which produce a long turnaround time. Instrumented drop weight testing was performed on the specimens with nondestructive evaluation being performed before and after the impacts. Destructive testing in the form of cross-sectional photomicrography and compression-after-impact testing were used. Results show that the processing and machining steps needed to be performed more rapidly if data on composite material is to be collected within a reasonable timeframe. The results of the damage tolerance testing showed that IM6/3501-6 is a brittle material that is very susceptible to impact damage.
Evaluation of materials for high performance solar arrays
NASA Technical Reports Server (NTRS)
Whitaker, A. F.; Smith, C. F., Jr.; Peacock, C. L., Jr.; Little, S. A.
1978-01-01
A program has been underway to evaluate materials for advanced solar arrays which are required to provide power to weight ratios up to 100 W/kg. Severe mission environments together with the lack of knowledge of space environmental materials degradation rates require the generation of irradiation and outgassing engineering data for use in the initial design phase of the flight solar arrays. Therefore, approximately 25 candidate array materials were subjected to selected mission environments of vacuum, UV, and particle irradiation, and their mechanical and/or optical properties were determined where appropriate.
Autonomous System for MISSE Temperature Measurements
NASA Technical Reports Server (NTRS)
Harvey, G. A.; Lash, T. J.; Kinard, W. H.; Bull, K.; deGeest, F.
2001-01-01
The Materials International Space Station Experiment (MISSE) is scheduled to be deployed during the summer of 2001. This experiment is a cooperative endeavor by NASA-LaRC, NASA-GRC, NASA MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials.
Evaluation of Space Power Materials Flown on the Passive Optical Sample Assembly
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; deGroh, Kim K.; Skowronski, Timothy J.; McCollum, Tim; Pippin, Gary; Bungay, Corey
1999-01-01
Evaluating the performance of materials on the exterior of spacecraft is of continuing interest, particularly in anticipation of those applications that will require a long duration in low Earth orbit. The Passive Optical Sample Assembly (POSA) experiment flown on the exterior of Mir as a risk mitigation experiment for the International Space Station was designed to better understand the interaction of materials with the low Earth orbit environment and to better understand the potential contamination threats that may be present in the vicinity of spacecraft. Deterioration in the optical performance of candidate space power materials due to the low Earth orbit environment, the contamination environment, or both, must be evaluated in order to propose measures to mitigate such deterioration. The thirty two samples of space power materials studied here include solar array blanket materials such as polyimide Kapton H and SiO(x) coated polyimide Kapton H, front surface aluminized sapphire, solar dynamic concentrator materials such as silver on spin coated polyimide and aluminum on spin coated polyimide, CV 1144 silicone, and the thermal control paint Z-93-P. The physical and optical properties that were evaluated prior to and after the POSA flight include mass, total, diffuse, and specular reflectance, solar absorptance, and infrared emittance. Additional post flight evaluation included scanning electron microscopy to observe surface features caused by the low Earth orbit environment and the contamination environment, and variable angle spectroscopic ellipsometry to identify contaminant type and thickness. This paper summarizes the results of pre- and post-flight measurements, identifies the mechanisms responsible for optical properties deterioration, and suggests improvements for the durability of materials in future missions.
Woven TPS Mechanical Property Evaluation
NASA Technical Reports Server (NTRS)
Gonzales, Gregory Lewis; Kao, David Jan-Woei; Stackpoole, Margaret M.
2013-01-01
Woven Thermal Protection Systems (WTPS) is a relatively new program funded by the Office of the Chief Technologist (OCT). The WTPS approach to producing TPS architectures uses precisely engineered 3-D weaving techniques that allow tailoring material characteristics needed to meet specific mission requirements. A series of mechanical tests were performed to evaluate performance of different weave types, and get a better understanding of failure modes expected in these three-dimensional architectures. These properties will aid in material down selection and guide selection of the appropriate WTPS for a potential mission.
Indirect Measures in Evaluation: On Not Knowing What We Don't Know
ERIC Educational Resources Information Center
Heath, Linda; DeHoek, Adam; Locatelli, Sara House
2012-01-01
Evaluators frequently make use of indirect measures of participant learning or skill mastery, with participants either being asked if they have learned material or mastered a skill or being asked to indicate how confident they are that they know the material or can perform the task in question. Unfortunately, myriad research in social psychology…
A survey of the economics of materials processing in space. [accenting biomedical materials
NASA Technical Reports Server (NTRS)
Miller, B. P.
1975-01-01
A survey of the economics of space materials processing has been performed with the objectives of identifying those areas of space materials processing that give preliminary indication of significant economic potential, and to identify possible approaches to quantify the economic potential. It is concluded that limited economic studies have been performed to date, primarily in the area of the processing of inorganic materials, but that the economics of space processing of biological material has not received adequate attention. Specific studies are recommended to evaluate the economic impact of human lymphocyte subgroup separation on organ transplantation, and on the separation and concentration of urokinase producing cells.
Lawson, Nathaniel C.; Robles, Augusto; Fu, Chin-Chuan; Lin, Chee Paul; Sawlani, Kanchan; Burgess, John O.
2016-01-01
Objectives To compare the clinical performance of Scotchbond™ Universal Adhesive used in self- and total-etch modes and two-bottle Scotchbond™ Multi-purpose Adhesive in total-etch mode for Class 5 non-carious cervical lesions (NCCLs). Methods 37 adults were recruited with 3 or 6 NCCLs (>1.5 mm deep). Teeth were isolated, and a short cervical bevel was prepared. Teeth were restored randomly with Scotchbond Universal total-etch, Scotchbond Universal self-etch or Scotchbond Multi-purpose followed with a composite resin. Restorations were evaluated at baseline, 6, 12 and 24 months for marginal adaptation, marginal discoloration, secondary caries, and sensitivity to cold using modified USPHS Criteria. Patients and evaluators were blinded. Logistic and linear regression models using a generalized estimating equation were applied to evaluate the effects of time and adhesive material on clinical assessment outcomes over the 24 month follow-up period. Kaplan–Meier method was used to compare the retention between adhesive materials. Results Clinical performance of all adhesive materials deteriorated over time for marginal adaptation, and discoloration (p <0.0001). Both Scotchbond Universal self-etch and Scotchbond Multi-purpose materials were more than three times as likely to contribute to less satisfying performance in marginal discoloration over time than Scotchbond Universal total-etch. The retention rates up to 24 months were 87.6%, 94.9% and 100% for Scotchbond Multi-purpose and Scotchbond Universal self-etch and total-etch, respectively. Conclusions Scotchbond Universal in self- and total- etch modes performed similar to or better than Scotchbond Multipurpose, respectively. Clinical significance 24 month evaluation of a universal adhesive indicates acceptable clinical performance, particularly in a total-etch mode. PMID:26231300
Pamela M. Kinsey
2015-09-30
The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.
The effect of configuration on strength, durability, and handle of Kevlar fabric-based materials
NASA Technical Reports Server (NTRS)
Reuter, L. L.; Munson, J. B.
1977-01-01
Five Kevlar based laminates and three Kevlar based coated materials were designed, hand made, and tested against comparative conventional Dacron based materials for strength, peel, tear, puncture, creases, and handle. Emphasis was placed on evaluating geometric orientation of constituents, use of elastomeric film in place of high modulus films, and the use of flying thread loom bias reinforcement of Kevlar yarns. Whereas, the performance of the Kevlar laminates was severely degraded by crease effects, significant gains in overall performance factors were shown for the coated Kevlar materials.
Evaluation of Wet-Weather Retroreflectivity
DOT National Transportation Integrated Search
2010-08-01
The Oregon Department of Transportation (ODOT) requires performance and durability testing of all pavement marking materials before they can be applied on construction projects on state highways. Manufacturers apply materials on a two-year test deck ...
Flight- and ground-test correlation study of BMDO SDS materials: Phase 1 report
NASA Technical Reports Server (NTRS)
Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Stiegman, Albert E.; Kenny, James T.; Liang, Ranty H.
1993-01-01
The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a test bed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground exposure evaluation was conducted using the FAST atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 2) atoms/sq. cm. The ground-exposed materials' fluence of 2.0 - 2.5 x 10(exp 2) atoms/sq. cm permits direct comparison of ground-exposed materials' performance with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground exposure are presented in this publication.
Evaluation of various fire retardants for use in wood flour--polyethylene composites
Nicole M. Stark; Robert H. White; Scott A. Mueller; Tim A. Osswald
2010-01-01
Wood-plastic composites represent a growing class of materials used by the residential construction industry and the furniture industry. For some applications in these industries, the fire performance of the material must be known, and in some cases improved. However, the fire performance of wood-plastic composites is not well understood, and there is little...
USDA-ARS?s Scientific Manuscript database
Inadequate storage facilities have contributed to severe maize postharvest losses in many developing countries. This study determined the potential of termite mound clay (TMC), a readily-available material in Nigeria, as a construction material for storage silos. The performance of the TMC silo was ...
DOT National Transportation Integrated Search
2017-06-01
This report presents the findings from an eight-year performance evaluation of eight cells (Cells 16-23) built at the Minnesota Road Research Facility (MnROAD) in 2008. The constructed cells were used for two performance evaluation studies of: 1) unb...
Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?
Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter
2006-01-01
To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks.
Compressive evaluation of homogeneous and graded epoxy-glass particulate composites.
Seaglar, J; Rousseau, C-E
2015-04-01
The propagation of stress waves in epoxy-glass particulate composites and graded materials was studied experimentally. Materials tested in this study consisted of an epoxy matrix with various concentrations of spherical glass particles having a mean diameter of 42μm. Plate impact experiments were performed using a gas gun. Embedded within the specimens were manganin stress gauges used to record propagating compressive longitudinal stress waves through the material. High strain rate experiments using a Split Hopkinson Pressure Bar (SHPB) apparatus were also performed to evaluate the dynamic strength of the specimens, while quasi-static compression tests were undertaken to characterize their quasi-static behavior. Ultrasonic wave speed measurements were carried-out in order to obtain additional material properties and characterize the gradation in functionally graded materials (FGM). It was found that low volume fractions of particles are detrimental to the performance of the material under impact loading, while concentrations in the range of about 30 to 45% by volume exhibit characteristics of higher degrees of scattering. This suggests that materials in this latter range would be more effective in the thwarting of destructive shock waves than the homogeneous matrix material. Impact testing of FGM specimens suggests that impact loading on the stiff (high volume fraction) face results in much higher levels of scattering. Therefore, such materials would be effective for use in light weight armor or as shielding materials due to their effective attenuation of mechanical impulses. Copyright © 2015 Elsevier B.V. All rights reserved.
Elaborated Odor Test for Extended Exposure
NASA Technical Reports Server (NTRS)
Buchanan, Vanessa D.; Henry, Emily J.; Mast, Dion J.; Harper, Susana A.; Beeson, Harold D.; Tapia, Alma S.
2016-01-01
Concerns were raised when incidental exposure to a proprietary bonding material revealed the material had an irritating odor. The NASA-STD-6001B document describes a supplemental test method option for programs to evaluate materials with odor concerns (Test 6, Odor Assessment). In addition to the supplemental standard odor assessment with less than 10 seconds of exposure, the NASA White Sands Test Facility (WSTF) Materials Flight Acceptance Testing section was requested to perform an odor test with an extended duration to evaluate effects of an extended exposure and to more closely simulate realistic exposure scenarios. With approval from the NASA Johnson Space Center Industrial Hygienist, WSTF developed a 15-minute odor test method. WSTF performed this extended-duration odor test to evaluate the odor and physical effects of the bonding material configured between two aluminum plates, after the safety of the gas was verified via toxicity analysis per NASA-STD-6001B Test 7, Determination of Offgassed Products. During extended-duration testing, odor panel members were arranged near the test material in a small room with the air handlers and doors closed to minimize dilution. The odor panel members wafted gas toward themselves and recorded their individual assessments of odor and physical effects at various intervals during the 15-minute exposure and posttest. A posttest interview was conducted to obtain further information. Testing was effective in providing data for comparison and selection of an optimal offgassing and odor containment configuration. The developed test method for extended exposure is proposed as a useful tool for further evaluating materials with identified odors of concern if continued use of the material is anticipated.
Buttner, Mark P.; Cruz, Patricia; Stetzenbach, Linda D.; Cronin, Tracy
2007-01-01
This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods. PMID:17416685
Buttner, Mark P; Cruz, Patricia; Stetzenbach, Linda D; Cronin, Tracy
2007-06-01
This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods.
Schmidt, Malene; Dige, Irene; Kirkevang, Lise-Lotte; Vaeth, Michael; Hørsted-Bindslev, Preben
2015-03-01
The aim of the present study was to investigate the clinical performance of a low-shrinkage silorane-based composite material (Filtek™ Silorane, 3 M-Espe) by comparing it with a methacrylate-based composite material (Ceram•X™, Dentsply DeTrey). A number of 72 patients (158 restorations) participated in the study. After 5 years, a total of 107 restorations (52 Filtek™ Silorane, 55 Ceram•X™) in 48 patients were evaluated. Only class II restorations were included. All the restorations were placed by the same dentist, and the restorations were scored by one experienced dentist/evaluator. Materials were applied following the manufacturer's instructions. The primary outcome was marginal adaptation. Secondary outcomes were: marginal discoloration, approximal contact, anatomic form, fracture, secondary caries, and hypersensitivity. After 5 years, no statistically significant differences between the two materials were found in marginal adaptation either occlusally (p = 0.96) or approximally (p = 0.62). No statistically significant differences were found between the two materials in terms of approximal contact, anatomic form, fractures, or discoloration. Secondary caries was found in two teeth (Filtek™ Silorane). One tooth showed hypersensitivity (Ceram•X™). Restorations of both materials were clinically acceptable after 5 years. This study did not find any advantage of the silorane-based composite over the methacrylate-based composite, which indicates that the low-shrinkage of Filtek™ Silorane may not be a determinant factor for clinical success in class II cavities. This paper is the first to evaluate the 5-year clinical performance of a low-shrinkage composite material.
Evaluating Opportunities to Improve Material and Energy Impacts in Commodity Supply Chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanes, Rebecca J.; Carpenter, Alberta
When evaluated at the process level, next-generation technologies may be more energy and emissions intensive than current technology. However, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Material Flows through Industry (MFI) scenario modeling tool. The MFI tool is a cradle-to-gate linear network model of the U.S. industrial sector that can model a wide range of manufacturing scenarios, including changes inmore » production technology, increases in industrial energy efficiency, and substitution between functionally equivalent materials. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing a steel supply chain to the supply chains of several functionally equivalent materials. Several of the alternatives to the baseline steel supply chain include next-generation production technologies and materials. Results of the case study show that aluminum production scenarios can out-perform the steel supply chain by using either an advanced smelting technology or an increased aluminum recycling rate. The next-generation material supply chains do not perform as well as either aluminum or steel, but may offer additional use phase reductions in energy and emissions that are outside the scope of the MFI tool. Future work will combine results from the MFI tool with a use phase analysis.« less
Probabilistic design of fibre concrete structures
NASA Astrophysics Data System (ADS)
Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.
2017-09-01
Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented methodology is illustrated on results from two probabilistic studies with different types of concrete structures related to practical applications and made from various materials (with the parameters obtained from real material tests).
An automated protocol for performance benchmarking a widefield fluorescence microscope.
Halter, Michael; Bier, Elianna; DeRose, Paul C; Cooksey, Gregory A; Choquette, Steven J; Plant, Anne L; Elliott, John T
2014-11-01
Widefield fluorescence microscopy is a highly used tool for visually assessing biological samples and for quantifying cell responses. Despite its widespread use in high content analysis and other imaging applications, few published methods exist for evaluating and benchmarking the analytical performance of a microscope. Easy-to-use benchmarking methods would facilitate the use of fluorescence imaging as a quantitative analytical tool in research applications, and would aid the determination of instrumental method validation for commercial product development applications. We describe and evaluate an automated method to characterize a fluorescence imaging system's performance by benchmarking the detection threshold, saturation, and linear dynamic range to a reference material. The benchmarking procedure is demonstrated using two different materials as the reference material, uranyl-ion-doped glass and Schott 475 GG filter glass. Both are suitable candidate reference materials that are homogeneously fluorescent and highly photostable, and the Schott 475 GG filter glass is currently commercially available. In addition to benchmarking the analytical performance, we also demonstrate that the reference materials provide for accurate day to day intensity calibration. Published 2014 Wiley Periodicals Inc. Published 2014 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of America.
Development of heat-storage building materials for passive-solar applications
NASA Astrophysics Data System (ADS)
Fletcher, J. W.
A heat storage building material to be used for passive solar applications and general load leveling within building spaces was developed. Specifically, PCM-filled plastic panels are to be developed as wallboard and ceiling panels. Three PCMs (CaCl2, 6H2O; Na2SO4, 10H2O; LiNO3, 3H2O are to be evaluated for use in the double walled, hollow channeled plastic panels. Laboratory development of the panels will include determination of filling and sealing techniques, behavior of the PCMs, container properties and materials compatibility. Testing will include vapor transmission, thermal cycle, dynamic performance, accelerated life and durability tests. In addition to development and testing, an applications analysis will be performed for specific passive solar applications. Conceptual design of a single family passive solar residence will be prepared and performance evaluated. Screening of the three PCM candidates is essentially complete.
Materials Flow through Industry Supply Chain Modeling Tool | Advanced
efficiency. It also performs supply chain scale analyses to quantify the impacts and benefits of next , read Evaluating opportunities to improve material and energy impacts in commodity supply chains
Evaluation of thermoplastic materials : final report.
DOT National Transportation Integrated Search
1975-04-01
In order to find a striping material which would last longer and have greater reflectance than the presently used traffic paint, research was performed on three relatively new thermoplastic marking compounds. The manufacturers of these products claim...
Identification and Evaluation of Operational Alternatives for Materials Data Bank
DOT National Transportation Integrated Search
1980-07-01
The Urban Mass Transportation Administration (UMTA) has expended considerable effort in assessing the fire performance characteristics of materials used in transit vehicles. The collection and dissemination of pertinent flammability information are a...
Anti Rohumaa; Toni Antikainen; Christopher G. Hunt; Charles R. Frihart; Mark Hughes
2016-01-01
Wood material surface properties play an important role in adhesive bond formation and performance. In the present study, a test method was developed to evaluate the integrity of the wood surface, and the results were used to understand bond performance. Materials used were rotary cut birch (Betula pendula Roth) veneers, produced from logs soaked at 20 or 70 °C prior...
Evaluation of SRM flex bearing materials and processes
NASA Technical Reports Server (NTRS)
Wood, T. E.
1980-01-01
Tensile, peel, and shear testing was performed on combinations of primers, adhesives, tycements and rubber compounds cured at various times and temperatures. The materials used in the fabrication of the solid rocket motor flex bearing as well as in other systems were evaluated. A compatibility study between adhesives and tycements was initiated. The flex bearing mold design was reviewed by our tooling experts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Alberta; Mann, Margaret; Gelman, Rachel
In evaluating next-generation materials and processes, the supply chain can have a large impact on the life cycle energy impacts. The Materials Flow through Industry (MFI) tool was developed for the Department of Energy's Advanced Manufacturing Office to be able to evaluate the energy impacts of the U.S. supply chain. The tool allows users to perform process comparisons, material substitutions, and grid modifications, and to see the effects of implementing sector efficiency potentials (Masanet, et al. 2009). This paper reviews the methodology of the tool and provides results around specific scenarios.
Evaluation of Material Nonlinearities Using Rectangular Pulse Trains for Excitation
NASA Astrophysics Data System (ADS)
Chaziachmetovas, Andrius; Svilainis, Linas; Kybartas, Darius; Aleksandrovas, Arturas; Liaukonis, Dobilas
Aim of the presented investigation was to evaluate the suitability of the rectangular pulse trains for nonlinear material parameters study. It was assumed that if duty cycle of the excitation is 50% then second harmonic is significantly reduced. Excitation signal frequency was fixed to the A/D sampling frequency and signal carefully gated to reduce the signal leak into neighbouring frequency bins. Sine wave correlation was used to extract the harmonics content. Results of nonlinear parameters measurement for several materials are given as performance comparison.
Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria
2017-08-01
To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Laguna, M. F.; Holgado, M.; Santamaría, B.; López, A.; Maigler, M.; Lavín, A.; de Vicente, J.; Soria, J.; Suarez, T.; Bardina, C.; Jara, M.; Sanza, F. J.; Casquel, R.; Otón, A.; Riesgo, T.
2015-03-01
Biophotonic Sensing Cells (BICELLs) are demonstrated to be an efficient technology for label-free biosensing and in concrete for evaluating dry eye diseases. The main advantage of BICELLs is its capability to be used by dropping directly a tear into the sensing surface without the need of complex microfluidics systems. Among this advantage, compact Point of Care read-out device is employed with the capability of evaluating different types of BICELLs packaged on Biochip-Kits that can be fabricated by using different sensing surfaces material. In this paper, we evaluate the performance of the combination of three sensing surface materials: (3-Glycidyloxypropyl) trimethoxysilane (GPTMS), SU-8 resist and Nitrocellulose (NC) for two different biomarkers relevant for dry eye diseases: PRDX-5 and ANXA-11.
NASA Astrophysics Data System (ADS)
Tachibana, Rie; Kohlhase, Naja; Näppi, Janne J.; Hironaka, Toru; Ota, Junko; Ishida, Takayuki; Regge, Daniele; Yoshida, Hiroyuki
2016-03-01
Accurate electronic cleansing (EC) for CT colonography (CTC) enables the visualization of the entire colonic surface without residual materials. In this study, we evaluated the accuracy of a novel multi-material electronic cleansing (MUMA-EC) scheme for non-cathartic ultra-low-dose dual-energy CTC (DE-CTC). The MUMA-EC performs a wateriodine material decomposition of the DE-CTC images and calculates virtual monochromatic images at multiple energies, after which a random forest classifier is used to label the images into the regions of lumen air, soft tissue, fecal tagging, and two types of partial-volume boundaries based on image-based features. After the labeling, materials other than soft tissue are subtracted from the CTC images. For pilot evaluation, 384 volumes of interest (VOIs), which represented sources of subtraction artifacts observed in current EC schemes, were sampled from 32 ultra-low-dose DE-CTC scans. The voxels in the VOIs were labeled manually to serve as a reference standard. The metric for EC accuracy was the mean overlap ratio between the labels of the reference standard and the labels generated by the MUMA-EC, a dualenergy EC (DE-EC), and a single-energy EC (SE-EC) scheme. Statistically significant differences were observed between the performance of the MUMA/DE-EC and the SE-EC methods (p<0.001). Visual assessment confirmed that the MUMA-EC generated less subtraction artifacts than did DE-EC and SE-EC. Our MUMA-EC scheme yielded superior performance over conventional SE-EC scheme in identifying and minimizing subtraction artifacts on noncathartic ultra-low-dose DE-CTC images.
NASA Astrophysics Data System (ADS)
Cândido, L. H. A.; Ferreira, D. B.; Júnior, W. Kindlein; Demori, R.; Mauler, R. S.
2014-05-01
The scope of this research is the recycling of polymers from mobile phones hulls discarded and the performance evaluation when they are submitted to the Recycling Cycle of Materials (RCM). The studied material was the ABS/PC blend in a 70/30 proportion. Different compositions were evaluated adding virgin material, recycled material and using the copolymer SBS as impact modifier. In order to evaluate the properties of material's composition, the samples were characterized by TGA, FTIR, SEM, IZOD impact strength and tensile strength tests. At the first stage, the presented results suggest the composition containing 25% of recycled material and 5% of SBS combines good mechanical performance to the higher content of recycled material and lower content of impact modifier providing major benefits to recycling plans. Five cycles (RCM) were applied in the second stage; they evidenced a decrease trend considering the impact strength. At first and second cycle the impact strength was higher than reference material (ABS/PC blend) and from the fourth cycle it was lower. The superiority impact strength in the first and second cycles can be attributed to impact modifier effect. The thermal tests and the spectrometry didn't show the presence of degradation process in the material and the TGA curves demonstrated the process stability. The impact surface of each sample was observed at SEM. The microstructures are not homogeneous presenting voids and lamellar appearance, although the outer surface presents no defects, demonstrating good moldability. The present work aims to assess the life cycle of the material from the successive recycling processes.
Evaluation of special surface treatment aged using UV, phase I.
DOT National Transportation Integrated Search
2011-08-01
Research was undertaken to evaluate the effectiveness of Tensars specialty polymer cement slurry : (coating) in reducing aging of asphalt binders and mixtures. The study was also aimed at evaluating the effect of this : material on performance cha...
Evaluation of an alternative deicing chemical vs. conventional sodium chloride.
DOT National Transportation Integrated Search
2004-07-01
A research project was initiated to evaluate the performance and cost effectiveness of a proprietary, pre-blended, : roadway-deicing chemical on New Hampshire highways. The evaluated material is a patented blend of sodium chloride, liquid : magnesium...
A fitness-for-purpose evaluation of fracture critical electro-slag welds.
DOT National Transportation Integrated Search
2009-03-01
A fitness-for-purpose evaluation was performed on the electro-slag flange welds of the West Fremont bridge approach : superstructures, per the request of FHWA. This evaluation required gathering knowledge of the material properties, fabrication : def...
Probabilistic Structural Evaluation of Uncertainties in Radiator Sandwich Panel Design
NASA Technical Reports Server (NTRS)
Kuguoglu, Latife; Ludwiczak, Damian
2006-01-01
The Jupiter Icy Moons Orbiter (JIMO) Space System is part of the NASA's Prometheus Program. As part of the JIMO engineering team at NASA Glenn Research Center, the structural design of the JIMO Heat Rejection Subsystem (HRS) is evaluated. An initial goal of this study was to perform sensitivity analyses to determine the relative importance of the input variables on the structural responses of the radiator panel. The desire was to let the sensitivity analysis information identify the important parameters. The probabilistic analysis methods illustrated here support this objective. The probabilistic structural performance evaluation of a HRS radiator sandwich panel was performed. The radiator panel structural performance was assessed in the presence of uncertainties in the loading, fabrication process variables, and material properties. The stress and displacement contours of the deterministic structural analysis at mean probability was performed and results presented. It is followed by a probabilistic evaluation to determine the effect of the primitive variables on the radiator panel structural performance. Based on uncertainties in material properties, structural geometry and loading, the results of the displacement and stress analysis are used as an input file for the probabilistic analysis of the panel. The sensitivity of the structural responses, such as maximum displacement and maximum tensile and compressive stresses of the facesheet in x and y directions and maximum VonMises stresses of the tube, to the loading and design variables is determined under the boundary condition where all edges of the radiator panel are pinned. Based on this study, design critical material and geometric parameters of the considered sandwich panel are identified.
High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillen, Donna; Greenwood, Lawrence R.; Parry, James
2014-06-22
A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated formore » up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.« less
Helium vs. Proton Induced Displacement Damage in Electronic Materials
NASA Technical Reports Server (NTRS)
Ringo, Sawnese; Barghouty, A. F.
2010-01-01
In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.
BOCA BASIC BUILDING CODE. 4TH ED., 1965 AND 1967. BOCA BASIC BUILDING CODE ACCUMULATIVE SUPPLEMENT.
ERIC Educational Resources Information Center
Building Officials Conference of America, Inc., Chicago, IL.
NATIONALLY RECOGNIZED STANDARDS FOR THE EVALUATION OF MINIMUM SAFE PRACTICE OR FOR DETERMINING THE PERFORMANCE OF MATERIALS OR SYSTEMS OF CONSTRUCTION HAVE BEEN COMPILED AS AN AID TO DESIGNERS AND LOCAL OFFICIALS. THE CODE PRESENTS REGULATIONS IN TERMS OF MEASURED PERFORMANCE RATHER THAN IN RIGID SPECIFICATION OF MATERIALS OR METHODS. THE AREAS…
Evaluation Method for Low-Temperature Performance of Lithium Battery
NASA Astrophysics Data System (ADS)
Wang, H. W.; Ma, Q.; Fu, Y. L.; Tao, Z. Q.; Xiao, H. Q.; Bai, H.; Bai, H.
2018-05-01
In this paper, the evaluation method for low temperature performance of lithium battery is established. The low temperature performance level was set up to determine the best operating temperature range of the lithium battery using different cathode materials. Results are shared with the consumers for the proper use of lithium battery to make it have a longer service life and avoid the occurrence of early rejection.
NASA Astrophysics Data System (ADS)
Tanaka, Ken-ichi; Ueno, Jun
2017-09-01
Reliable information of radioactivity inventory resulted from the radiological characterization is important in order to plan decommissioning planning and is also crucial in order to promote decommissioning in effectiveness and in safe. The information is referred to by planning of decommissioning strategy and by an application to regulator. Reliable information of radioactivity inventory can be used to optimize the decommissioning processes. In order to perform the radiological characterization reliably, we improved a procedure of an evaluation of neutron-activated materials for a Boiling Water Reactor (BWR). Neutron-activated materials are calculated with calculation codes and their validity should be verified with measurements. The evaluation of neutron-activated materials can be divided into two processes. One is a distribution calculation of neutron-flux. Another is an activation calculation of materials. The distribution calculation of neutron-flux is performed with neutron transport calculation codes with appropriate cross section library to simulate neutron transport phenomena well. Using the distribution of neutron-flux, we perform distribution calculations of radioactivity concentration. We also estimate a time dependent distribution of radioactivity classification and a radioactive-waste classification. The information obtained from the evaluation is utilized by other tasks in the preparatory tasks to make the decommissioning plan and the activity safe and rational.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, S.
Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].
Lo, Wai Ting; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne
2014-01-01
Orthotic insoles are commonly used in the treatment of the diabetic foot to prevent ulcerations. Choosing suitable insole material is vital for effective foot orthotic treatment. We examined seven types of orthotic materials. In consideration of the key requirements and end uses of orthotic insoles for the diabetic foot, including accommodation, cushioning, and control, we developed test methods for examining important physical properties, such as force reduction and compression properties, insole-skin friction, and shear properties, as well as thermal comfort properties of fabrication materials. A novel performance index that combines various material test results together was also proposed to quantify the overall performance of the insole materials. The investigation confirms that the insole-sock interface has a lower coefficient of friction and shearing stress than those of the insole-skin interface. It is also revealed that material brand and the corresponding density and cell volume, as well as thickness, are closely associated with the performance of moisture absorption and thermal comfort. On the basis of the proposed performance index, practitioners can better understand the properties and performance of various insole materials, thus prescribing suitable orthotic insoles for patients with diabetic foot.
40 CFR 63.7752 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (3) Records of performance tests and performance evaluations as required by § 63.10(b)(2)(viii). (4... cores, the Material Data Safety Sheet or other documentation that provides the chemical composition of... evaluation plan as required in § 63.8(d)(3). (3) Request for alternatives to relative accuracy tests for CEMS...
This report describes the performance evaluation of a fiber reinforced geopolymer spray-applied mortar, which has potential as a structural alternative to traditional open cut techniques used in large-diameter sewer pipes. Geopolymer is a sustainable green material that incorpor...
Pavement marking restriping strategy for ODOT district 11.
DOT National Transportation Integrated Search
2016-01-01
This study was initiated by ODOT to evaluate the performance of four : pavement marking materials (fast dry traffic paint, polyester, extruded : thermoplastic and epoxy) in order to determine which materials are most : suitable for the environmental ...
Assessing performance of alternative pavement marking materials.
DOT National Transportation Integrated Search
2010-01-01
Pavement markings need to be restriped from time to time to maintain retroreflectivity. : Knowing which material provides the most economically efficient solution is important. : Currently, no agreed upon method by which to evaluate the use of altern...
Reflection crack sealing study : final report.
DOT National Transportation Integrated Search
1969-06-01
This study is primarily an evaluation of the effectiveness of "Reclamite" when used as a sealant material for reflection cracks. A secondary objective was to determine the performance of our presently used material - cationic emulsified asphalt (RS-3...
NASA Astrophysics Data System (ADS)
Quintana, Oscar A.; Tong, Weidong
2017-12-01
We investigated the selective laser melting (SLM) process for development of Ti-6Al-4 V solid material with oxygen content corresponding to the extra low interstitial (ELI) and non-ELI conditions. The microstructure, chemistry, and tensile properties of samples in as-built and hot isostatically pressed (HIPed) condition were evaluated for both material types, while fatigue performance was evaluated by rotating bending fatigue tests on both smooth and notched SLM ELI and non-ELI Ti-6Al-4 V samples in HIPed condition.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2004-10-01
The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.
Materials testing protocol for small joint prostheses.
Savory, K M; Hutchinson, D T; Bloebaum, R
1994-10-01
In this article, a protocol for the evaluation of new materials for small joint prostheses is introduced. The testing methods employed in the protocol were developed by reviewing reported clinical failure modes and conditions found in vivo. The methods developed quantitatively evaluates the fatigue, fatigue crack propagation, and wear resistance properties of materials. For this study, a silicone elastomer similar to Dow Corning Silastic HP100, a radiation stable polypropylene, and a copolymer of polypropylene and ethylene propylene-diene monomer (EPDM) are evaluated. None of the materials tested demonstrated the ideal properties that are sought in a self-hinging joint prostheses. The silicone elastomer had excellent wear properties; however, cracks quickly propagated, causing catastrophic failure when fatigued. Conversely, the copolymer showed excellent fatigue crack propagation resistance and less than favorable wear properties. The polypropylene did not perform well in any evaluation.
Lee, Ki-Sun; Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan; Lee, Jeong-Yol
2017-01-01
The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.
Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan
2017-01-01
The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems. PMID:28386547
Glodt, Stephen R.; Pirkey, Kimberly D.
1998-01-01
Performance-evaluation studies provide customers of the U.S. Geological Survey National Water Quality Laboratory (NWQL) with data needed to evaluate performance and to compare of select laboratories for analytical work. The NWQL participates in national and international performance-evaluation (PE) studies that consist of samples of water, sediment, and aquatic biological materials for the analysis of inorganic constituents, organic compounds, and radionuclides. This Fact Sheet provides a summary of PE study results from January 1993 through April 1997. It should be of particular interest to USGS customers and potential customers of the NWQL, water-quality specialists, cooperators, and agencies of the Federal Government.
Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Burns, Erin A.
2004-01-01
Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing of the previously fixed transducers for ultrasonic velocity measurements.
Tack Coat Performance and Materials Study
DOT National Transportation Integrated Search
2017-06-01
A good bond provided by a tack coat can improve performance of asphalt overlays. The objectives of this research were: (1) develop a method for testing the bond between pavement layers; (2) evaluate the bond performance and predict long-term performa...
Measurement of the properties of lossy materials inside a finite conducting cylinder
NASA Technical Reports Server (NTRS)
Dominek, A.; Park, A.; Caldecott, R.
1988-01-01
Broadband, swept frequency measurement techniques were investigated for the evaluation of the electrical performance of thin, high temperature material coatings. Reflections and transmission measurements using an HP8510B Network Analyzer were developed for an existing high temperature test rig at NASA Lewis Research Center. Reflection measurements will be the initial approach used due to fixture simplicity even though surface wave transmission measurements would be more sensitive. The minimum goal is to monitor the electrical change of the material's performance as a function of temperature. If possible, the materials constitutive parameters, epsilon and muon will be found.
NASA Technical Reports Server (NTRS)
Legendre, P. J.; Holtz, T.; Sikra, J. C.
1980-01-01
The Performance of staple rayon fiber and AVTEX continuous rayon fiber was evaluated as precursor materials for heatshields. The materials studied were referenced to the IRC FM5055A heatshield materials flown during the past decade. Three different arc jet facilities were used to simulate portions of the reentry environment. The IRC FM5055A and the AVTEX FM5055G, both continuous rayon fiber woven materials having the phenolic impregnant filled with carbon particles were compared. The AVTEX continuous fiber, unfilled material FM5822A was also examined to a limited extent. Test results show that the AVTEX FM5055G material provided a close substitute for the IRC FM5055A material both in terms of thermal protection and roll torque performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRONOWSKI,DAVID R.
The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.
The ac and dc performance of polymeric insulating materials under accelerated aging in a fog chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorur, R.S.; Cherney, E.A.; Hackam, R.
1988-10-01
The paper presents the results of the dc performance of polymeric insulating materials in a fog chamber. The materials evaluated in fog produced from low (250 ..mu..S/cm) and high (1000 ..mu..S/cm) conductivity water include cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of either alumina trihydrate (ATH) or silica fillers, or both. Comparison is made of material performance obtained with ac which was reported in an earlier study. In both low and high conductivity fog, the time to failure with ac and +dc was very similar, but amore » reduction by a factor of about four was observed in the time to failure with -dc. For both ac and dc, silicone rubber performed better than EPDM samples in low conductivity fog, while the order of performance was reversed in high conductivity fog. A theoretical model to determine the effect of dry band discharges on material is presented. Good agreement of the predicted behavior of materials with the experimental findings is shown.« less
Development of the Spacecraft Materials Selector Expert System
NASA Technical Reports Server (NTRS)
Pippin, H. G.
2000-01-01
A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft is being developed under contract to the NASA SEE program. An artificial intelligence software package, the Boeing Expert System Tool (BEST), contains an inference engine used to operate knowledge bases constructed to selectively recall and distribute information about materials performance in space applications. This same system is used to make estimates of the environmental exposures expected for a given space flight. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described in this paper. A case history for a planned flight experiment on ISS is shown as an example of the use of the SMS, and capabilities and limitations of the knowledge base are discussed.
Advanced Technology Composite Fuselage-Structural Performance
NASA Technical Reports Server (NTRS)
Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.
1997-01-01
Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.
Evaluating MC&A effectiveness to verify the presence of nuclear materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, P. G.; Morzinski, J. A.; Ostenak, Carl A.
Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less
Low-Level Analytical Methodology Updates to Support Decontaminant Performance Evaluations
2011-06-01
from EPDM and tire rubber coupon materials that were spiked with a known amount of the chemical agent VX, treated with bleach decontaminant, and...to evaluate the performance of bleach decontaminant on EPDM and tire rubber coupons. Dose-confirmation or Tool samples were collected by delivering...components • An aging or damaged analytical column • Dirty detector • Other factors related to general instrument and/or sample analysis performance
Selection of High Temperature Organic Materials for Future Stirling Convertors
NASA Technical Reports Server (NTRS)
Shin, Euy-Sik Eugene
2017-01-01
In the future higher temperature Stirling convertors for improved efficiency and performance, various high temperature organic materials have been demanded as essential components for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The higher temperature capabilities would also allow current state-of-the-art (SOA) convertors to be used in additional missions, particularly those that require a Venus flyby for a gravity assist. Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of comprehensive structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, o-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This paper presents results of the three-step candidate evaluation processes, their application limitations, and the final selection recommendations.
Optimized growth and reorientation of anisotropic material based on evolution equations
NASA Astrophysics Data System (ADS)
Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus
2018-07-01
Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.
Evaluation of Dielectric-Barrier-Discharge Actuator Substrate Materials
NASA Technical Reports Server (NTRS)
Wilkinson, Stephen P.; Siochi, Emilie J.; Sauti, Godfrey; Xu, Tian-Bing; Meador, Mary Ann; Guo, Haiquan
2014-01-01
A key, enabling element of a dielectric barrier discharge (DBD) actuator is the dielectric substrate material. While various investigators have studied the performance of different homogeneous materials, most often in the context of related DBD experiments, fundamental studies focused solely on the dielectric materials have received less attention. The purpose of this study was to conduct an experimental assessment of the body-force-generating performance of a wide range of dielectric materials in search of opportunities to improve DBD actuator performance. Materials studied included commonly available plastics and glasses as well as a custom-fabricated polyimide aerogel. Diagnostics included static induced thrust, electrical circuit parameters for 2D surface discharges and 1D volume discharges, and dielectric material properties. Lumped-parameter circuit simulations for the 1D case were conducted showing good correspondence to experimental data provided that stray capacitances are included. The effect of atmospheric humidity on DBD performance was studied showing a large influence on thrust. The main conclusion is that for homogeneous, dielectric materials at forcing voltages less than that required for streamer formation, the material chemical composition appears to have no effect on body force generation when actuator impedance is properly accounted for.
An evaluation of GTAW-P versus GTA welding of alloy 718
NASA Technical Reports Server (NTRS)
Gamwell, W. R.; Kurgan, C.; Malone, T. W.
1991-01-01
Mechanical properties were evaluated to determine statistically whether the pulsed current gas tungsten arc welding (GTAW-P) process produces welds in alloy 718 with room temperature structural performance equivalent to current Space Shuttle Main Engine (SSME) welds manufactured by the constant current GTAW-P process. Evaluations were conducted on two base metal lots, two filler metal lots, two heat input levels, and two welding processes. The material form was 0.125-inch (3.175-mm) alloy 718 sheet. Prior to welding, sheets were treated to either the ST or STA-1 condition. After welding, panels were left as welded or heat treated to the STA-1 condition, and weld beads were left intact or machined flush. Statistical analyses were performed on yield strength, ultimate tensile strength (UTS), and high cycle fatigue (HCF) properties for all the post welded material conditions. Analyses of variance were performed on the data to determine if there were any significant effects on UTS or HCF life due to variations in base metal, filler metal, heat input level, or welding process. Statistical analyses showed that the GTAW-P process does produce welds with room temperature structural performance equivalent to current SSME welds manufactured by the GTAW process, regardless of prior material condition or post welding condition.
Advanced Booster Composite Case/Polybenzimidazole Nitrile Butadiene Rubber Insulation Development
NASA Technical Reports Server (NTRS)
Gentz, Steve; Taylor, Robert; Nettles, Mindy
2015-01-01
The NASA Engineering and Safety Center (NESC) was requested to examine processing sensitivities (e.g., cure temperature control/variance, debonds, density variations) of polybenzimidazole nitrile butadiene rubber (PBI-NBR) insulation, case fiber, and resin systems and to evaluate nondestructive evaluation (NDE) and damage tolerance methods/models required to support human-rated composite motor cases. The proposed use of composite motor cases in Blocks IA and II was expected to increase performance capability through optimizing operating pressure and increasing propellant mass fraction. This assessment was to support the evaluation of risk reduction for large booster component development/fabrication, NDE of low mass-to-strength ratio material structures, and solid booster propellant formulation as requested in the Space Launch System NASA Research Announcement for Advanced Booster Engineering Demonstration and/or Risk Reduction. Composite case materials and high-energy propellants represent an enabling capability in the Agency's ability to provide affordable, high-performing advanced booster concepts. The NESC team was requested to provide an assessment of co- and multiple-cure processing of composite case and PBI-NBR insulation materials and evaluation of high-energy propellant formulations.
Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Christiansen, Eric
2013-01-01
As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.
Short Wavelength Laser/Materials Interactions
1989-12-20
lasterials interaction phenomena and effects, and 4) materials evaluation. The program has led to major advances in science-based understanding of...3.0 RESULTS 5 3.1 MATERIALS SELECTION and CHARACTERIZATION 5 3.2 DEVELOPMENT of NEW INSTRUMENTATION 8 3.2.1 Laser Sources 8 3.2.2 Multiwavelength ...high temperature during laser irradiation. The program has led to major advances in science-based understanding of materials performance under extreme
Advanced Life Support Equivalent System Mass Guidelines Document
NASA Technical Reports Server (NTRS)
Levri, Julie; Fisher, John W.; Jones, Harry W.; Drysdale, Alan E.; Ewert, Michael K.; Hanford, Anthony J.; Hogan, John A.; Joshi, Jitendri, A.; Vaccari, David A.
2003-01-01
This document is a viewgraph presentation which provides guidelines for performing an Equivalent System Mass (ESM) evaluation for trade study purposes. The document: 1) Defines ESM; 2) Explains how to calculate ESM; 3) Discusses interpretation of ESM results. The document is designed to provide detailed instructive material for researchers who are performing ESM evaluations for the first time.
The application of space program fire retardant technology to housing
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Heising, K. W.
1973-01-01
A review of the NASA fire research and developed fire retardant materials is presented with the objective to analyze and evaluate the concepts and materials to determine the practical applicability to the housing industry. The report presents the NASA materials, their performance in a fire environment and areas where further evaluation is required. The review establishes where advancements in the state of the art have been achieved and points out reasons why these advancements can not be directly applied to the housing industry in the near future.
Skylab parasol material evaluation
NASA Technical Reports Server (NTRS)
Jacobs, S.
1975-01-01
Results of experimental work to evaluate the degradation rate of a parasol that was used as a means of alleviating thermal problems encountered soon after the launch of the Skylab 1 space vehicle are presented. Material selection criteria are discussed; the material chosen is described, and results of tests performed after environmental exposure at five facilities are given. The facilities used for exposure to ultraviolet radiation/thermal-vacuum environments and the equipment used for testing physical properties before and after exposure are described. Comparisons of ground test and flight test data are included.
Bone regeneration assessment by optical coherence tomography and MicroCT synchrotron radiation
NASA Astrophysics Data System (ADS)
Negrutiu, Meda L.; Sinescu, Cosmin; Canjau, Silvana; Manescu, Adrian; Topalá, Florin I.; Hoinoiu, Bogdan; Romînu, Mihai; Márcáuteanu, Corina; Duma, Virgil; Bradu, Adrian; Podoleanu, Adrian G.
2013-06-01
Bone grafting is a commonly performed surgical procedure to augment bone regeneration in a variety of orthopaedic and maxillofacial procedures, with autologous bone being considered as the "gold standard" bone-grafting material, as it combines all properties required in a bone-graft material: osteoinduction (bone morphogenetic proteins - BMPs - and other growth factors), osteogenesis (osteoprogenitor cells) and osteoconduction (scaffold). The problematic elements of bone regenerative materials are represented by their quality control methods, the adjustment of the initial bone regenerative material, the monitoring (noninvasive, if possible) during their osteoconduction and osteointegration period and biomedical evaluation of the new regenerated bone. One of the research directions was the interface investigation of the regenerative bone materials and their behavior at different time periods on the normal femoral rat bone. 12 rat femurs were used for this investigation. In each ones a 1 mm diameter hole were drilled and a bone grafting material was inserted in the artificial defect. The femurs were removed after one, three and six months. The defects repaired by bone grafting material were evaluated by optical coherence tomography working in Time Domain Mode at 1300 nm. Three dimensional reconstructions of the interfaces were generated. The validations of the results were evaluated by microCT. Synchrotron Radiation allows achieving high spatial resolution images to be generated with high signal-to-noise ratio. In addition, Synchrotron Radiation allows acquisition of volumes at different energies and volume subtraction to enhance contrast. Evaluation of the bone grafting material/bone interface with noninvasive methods such as optical coherence tomography could act as a valuable procedure that can be use in the future in the usual clinical techniques. The results were confirmed by microCT. Optical coherence tomography can be performed in vivo and can provide a qualitative and quantitative evaluation of the bone augmentation procedure.
Flexible thermal protection materials for entry systems
NASA Astrophysics Data System (ADS)
Kourtides, Demetrius A.
1993-02-01
Current programs addressed in aeroassist flight experiment are: (1) evaluation of thermal performance of advanced rigid and flexible insulations and reflective coating; (2) investigation of lighter than baseline materials; (3) investigation of rigid insulations which perform well; (4) study of flexible insulations which require ceramic coating; and (5) study of reflective coating effective at greater than 15 percent. In National Aerospace Plane (NASP), the programs addressed are: (1) high and low temperature insulations; and (2) attachment/standoff methodology critical which affects thermal performance.
Flexible thermal protection materials for entry systems
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.
1993-01-01
Current programs addressed in aeroassist flight experiment are: (1) evaluation of thermal performance of advanced rigid and flexible insulations and reflective coating; (2) investigation of lighter than baseline materials; (3) investigation of rigid insulations which perform well; (4) study of flexible insulations which require ceramic coating; and (5) study of reflective coating effective at greater than 15 percent. In National Aerospace Plane (NASP), the programs addressed are: (1) high and low temperature insulations; and (2) attachment/standoff methodology critical which affects thermal performance.
Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?
NASA Technical Reports Server (NTRS)
Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.
2016-01-01
NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.
Soto, Robert J; Schoenfisch, Mark H
2015-06-17
The utility of continuous glucose monitoring devices remains limited by an obstinate foreign body response (FBR) that degrades the analytical performance of the in vivo sensor. A number of novel materials that resist or delay the FBR have been proposed as outer, tissue-contacting glucose sensor membranes as a strategy to improve sensor accuracy. Traditionally, researchers have examined the ability of a material to minimize the host response by assessing adsorbed cell morphology and tissue histology. However, these techniques do not adequately predict in vivo glucose sensor function, necessitating sensor performance evaluation in a relevant animal model prior to human testing. Herein, the effects of critical experimental parameters, including the animal model and data processing methods, on the reliability and usefulness of preclinical sensor performance data are considered. © 2015 Diabetes Technology Society.
Barbadillo, M; Casero, E; Petit-Domínguez, M D; Vázquez, L; Pariente, F; Lorenzo, E
2009-12-15
The design and characterization of a new organic-inorganic hybrid composite material for glucose electrochemical sensing are described. This material is based on the entrapment of both gold nanoparticles (AuNPs) and glucose oxidase, which was chosen as a model, into a sol-gel matrix. The addition of spectroscopic grade graphite to this system, which confers conductivity, leads to the development of a material particularly attractive for electrochemical biosensor fabrication. The characterization of the hybrid composite material was performed using atomic force microscopy and scanning electron microscopy techniques. This composite material was applied to the determination of glucose in presence of hydroxymethylferrocene as a redox mediator. The system exhibits a clear electrocatalytic activity towards glucose, allowing its determination at 250 mV vs Ag/AgCl. The performance of the resulting enzyme biosensor was evaluated in terms of sensitivity, detection limit, linear response range, stability and accuracy. Finally, the enhancement of the analytical response of the resulting biosensor induced by the presence of gold nanoparticles was evaluated by comparison with a similar organic-inorganic hybrid composite material without AuNPs.
Roberts, M W; Folio, J; Moffa, J P; Guckes, A D
1992-03-01
This study evaluated the clinical performance of a visible light-cured small particle bimodally filled hybrid condensable composite resin system that included a dentin bonding agent compared with an amalgam alloy in class II restorations of permanent teeth. A total of 108 restorations were placed in 34 patients. Fifty-three composite resin and 55 amalgam restorations were inserted. Each restoration was evaluated immediately after placement and then on an annual basis for a 3-year period using the Public Health Service (PHS) criteria. In addition, the Moffa-Lugassy scale was used to measure the loss of material on the occlusal surface of these materials. One hundred percent of the resin and amalgam restorations were evaluated, measured, and reasons for replacement were recorded over the 3-year period. There was no significant difference (p greater than 0.05) in the clinical performance of the composite resin and the amalgam when evaluated by the PHS criteria. Analyses of wear at each of the three annual recall periods did not reveal any significant difference (p greater than 0.05) between the two restorative materials when measured by the Moffa-Lugassy scale.
Accelerated loading evaluation of foamed asphalt treated RAP layers in pavement performance.
DOT National Transportation Integrated Search
2013-12-01
Due to a lack of locally produced high-quality stone base materials, the Louisiana Department of Transportation and Development (LADOTD) is : continuously seeking alternative base materials in lieu of crushed stones used for roadway construction. Thi...
Boyer, Treavor H; Persaud, Amar; Banerjee, Poulomi; Palomino, Pedro
2011-10-15
Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry. Copyright © 2011 Elsevier Ltd. All rights reserved.
Adhesive evaluation of LARC-TPI and a water-soluble version of LARC-TPI
NASA Technical Reports Server (NTRS)
Progar, D. J.
1985-01-01
The results of a study to evaluate two Langley Research Center thermoplastic polimide (TPI) materials, identified as TPI/MTC for the material from Mitsui Toatsu Chemicals Inc. and TPI/H2O for the material from United Technologies Research Center, as high temperature thermoplastic adhesives and primers for bonding titanium (6AL-4V) adherends are discussed. A limited characterization of the materials was performed using a Diffuse Reflectance-Fourier Transform Infrared Spectroscopy (DR-FTIR) technique. Thermomechanical Analysis (TMA) and torsional braid techniques were used to determine glass transition temperature. The adhesive's strength, as determined by simple lap shear tests, as used to evaluate the effects of long term thermal exposure (up to 1000 hrs) at 204 deg C and a 72-hour water-boil.
Survey of materials for hydrazine propulsion systems in multicycle extended life applications
NASA Technical Reports Server (NTRS)
Coulbert, C. D.; Yankura, G.
1972-01-01
An assessment is presented of materials compatibility data for hydrazine monopropellant propulsion systems applicable to the Space Shuttle vehicle missions. Materials were evaluated for application over a 10-yr/100-mission operational lifetime with minimum refurbishment. A general materials compatibility rating for a broad range of materials and several propellants based primarily on static liquid propellant immersion testing and an in-depth evaluation of hydrazine decomposition as a function of purity, temperature, material, surface conditions, etc., are presented. The most promising polymeric material candidates for propellant diaphragms and seals appear to have little effect on increasing hydrazine decomposition rates, but the materials themselves do undergo changes in physical properties which can affect their 10-yr performance in multicycle applications. The available data on these physical properties of elastomeric materials as affected by exposure to hydrazine or related environments are presented.
Moore, Lynne; Turgeon, Alexis F; Sirois, Marie-Josée; Murat, Valérie; Lavoie, André
2011-09-01
Trauma center performance evaluations generally include adjustment for injury severity, age, and comorbidity. However, disparities across trauma centers may be due to other differences in source populations that are not accounted for, such as socioeconomic status (SES). We aimed to evaluate whether SES influences trauma center performance evaluations in an inclusive trauma system with universal access to health care. The study was based on data collected between 1999 and 2006 in a Canadian trauma system. Patient SES was quantified using an ecologic index of social and material deprivation. Performance evaluations were based on mortality adjusted using the Trauma Risk Adjustment Model. Agreement between performance results with and without additional adjustment for SES was evaluated with correlation coefficients. The study sample comprised a total of 71,784 patients from 48 trauma centers, including 3,828 deaths within 30 days (4.5%) and 5,549 deaths within 6 months (7.7%). The proportion of patients in the highest quintile of social and material deprivation varied from 3% to 43% and from 11% to 90% across hospitals, respectively. The correlation between performance results with or without adjustment for SES was almost perfect (r = 0.997; 95% CI 0.995-0.998) and the same hospital outliers were identified. We observed an important variation in SES across trauma centers but no change in risk-adjusted mortality estimates when SES was added to adjustment models. Results suggest that after adjustment for injury severity, age, comorbidity, and transfer status, disparities in SES across trauma center source populations do not influence trauma center performance evaluations in a system offering universal health coverage. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Emergent Properties and Toxicological Considerations for Nanohybrid Materials in Aquatic Systems
Saleh, Navid B.; Afrooz, A. R. M. Nabiul; Bisesi, Joseph H.; Aich, Nirupam; Plazas-Tuttle, Jaime; Sabo-Attwood, Tara
2014-01-01
Conjugation of multiple nanomaterials has become the focus of recent materials development. This new material class is commonly known as nanohybrids or “horizon nanomaterials”. Conjugation of metal/metal oxides with carbonaceous nanomaterials and overcoating or doping of one metal with another have been pursued to enhance material performance and/or incorporate multifunctionality into nano-enabled devices and processes. Nanohybrids are already at use in commercialized energy, electronics and medical products, which warrant immediate attention for their safety evaluation. These conjugated ensembles likely present a new set of physicochemical properties that are unique to their individual component attributes, hence increasing uncertainty in their risk evaluation. Established toxicological testing strategies and enumerated underlying mechanisms will thus need to be re-evaluated for the assessment of these horizon materials. This review will present a critical discussion on the altered physicochemical properties of nanohybrids and analyze the validity of existing nanotoxicology data against these unique properties. The article will also propose strategies to evaluate the conjugate materials’ safety to help undertake future toxicological research on the nanohybrid material class. PMID:28344229
Performance Evaluations of Ceramic Wafer Seals
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; DeMange, Jeffrey J.; Steinetz, Bruce M.
2006-01-01
Future hypersonic vehicles will require high temperature, dynamic seals in advanced ramjet/scramjet engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Seal temperatures in these locations can exceed 2000 F, especially when the seals are in contact with hot ceramic matrix composite sealing surfaces. NASA Glenn Research Center is developing advanced ceramic wafer seals to meet the needs of these applications. High temperature scrub tests performed between silicon nitride wafers and carbon-silicon carbide rub surfaces revealed high friction forces and evidence of material transfer from the rub surfaces to the wafer seals. Stickage between adjacent wafers was also observed after testing. Several design changes to the wafer seals were evaluated as possible solutions to these concerns. Wafers with recessed sides were evaluated as a potential means of reducing friction between adjacent wafers. Alternative wafer materials are also being considered as a means of reducing friction between the seals and their sealing surfaces and because the baseline silicon nitride wafer material (AS800) is no longer commercially available.
A Quasi-Optical Method for Measuring the Complex Permittivity of Materials.
1984-09-01
structural mechanics, flight dynamics; high-temperature thermomechanica, gas kinetics and radiation; research in environmental chemistry and...specific chemical reactions and radia- tion transport in rocket pluses, applied laser spectroscopy, laser chemistry, batery electrochemistry, space...corrosion; evaluation of materials in space environment ; materials performance In space transportation systems; anal- ysis of system vulnerability and
New materials drive high-performance aircraft
NASA Technical Reports Server (NTRS)
Ruhmann, Douglas C.; Bates, William F., Jr.; Dexter, H. B.; June, Reid B.
1992-01-01
This report shows how advanced composite materials and new processing methods are enabling lighter, lower cost aircraft structures. High-temperature polymers research will focus on systems capable of 50,000 to 100,000 hours of operation in the 212-400 F temperature range. Prospective materials being evaluated include high-temperature epoxies, toughened bismaleimides, cyanates, thermoplastics, polyimides and other polymers.
Thermal performance evaluation of the Solargenics solar collector at outdoor conditions
NASA Technical Reports Server (NTRS)
1978-01-01
Test procedures used during the performance of an evaluation program are presented. The test program was conducted to obtain the following performance data and information on the solar collector. (1) thermal performance data under outdoor conditions; (2) structural behavior of collector under static conditions; (3) effects of long term exposure to material weathering elements. The solargenics is a liquid, single-glazed, flat plate collector. Approximate dimensions of each collector are 240 inches long, 36 inches wide, and 3.5 inches in depth.
Wei, Guo-Zhen; Lu, Xia; Ke, Fu-Sheng; Huang, Ling; Li, Jun-Tao; Wang, Zhao-Xiang; Zhou, Zhi-You; Sun, Shi-Gang
2010-10-15
A cathode for high-rate performance lithium-ion batteries (LIBs) has been developed from a crystal habit-tuned nanoplate Li(Li(0.17)Ni(0.25)Mn(0.58))O₂ material, in which the proportion of (010) nanoplates (see figure) has been significantly increased. The results demonstrate that the fraction of the surface that is electrochemically active for Li(+) transportation is a key criterion for evaluating the different nanostructures of potential LIB materials.
Electrical Arc Ignition Testing for Constellation Program
NASA Technical Reports Server (NTRS)
Sparks, Kyle; Gallus, Timothy; Smith, Sarah
2009-01-01
NASA Johnson Space Center (JSC) Materials and Processes Branch requested that NASA JSC White Sands Test Facility (WSTF) perform testing for the Constellation Program to evaluate the hazard of electrical arc ignition of materials that could be in close proximity to batteries. Specifically, WSTF was requested to perform wire-break electrical arc tests to determine the current threshold for ignition of generic cotton woven fabric samples with a fixed voltage of 3.7 V, a common voltage for hand-held electrical devices. The wire-break test was developed during a previous test program to evaluate the hazard of electrical arc ignition inside the Extravehicular Mobility Unit [1].
Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations
Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; ...
2014-11-01
Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance.
NASA Technical Reports Server (NTRS)
Jassowski, Donald M.
1993-01-01
Propellants, chamber materials, and processes for fabrication of small high performance radiation cooled liquid rocket engines were evaluated to determine candidates for eventual demonstration in flight-type thrusters. Both storable and cryogenic propellant systems were considered. The storable propellant systems chosen for further study were nitrogen tetroxide oxidizer with either hydrazine or monomethylhydrazine as fuel. The cryogenic propellants chosen were oxygen with either hydrogen or methane as fuel. Chamber material candidates were chemical vapor deposition (CVD) rhenium protected from oxidation by CVD iridium for the chamber hot section, and film cooled wrought platinum-rhodium or regeneratively cooled stainless steel for the front end section exposed to partially reacted propellants. Laser diagnostics of the combustion products near the hot chamber surface and measurements at the surface layer were performed in a collaborative program at Sandia National Laboratories, Livermore, CA. The Material Sample Test Apparatus, a laboratory system to simulate the combustion environment in terms of gas and material temperature, composition, and pressure up to 6 Atm, was developed for these studies. Rocket engine simulator studies were conducted to evaluate the materials under simulated combustor flow conditions, in the diagnostic test chamber. These tests used the exhaust species measurement system, a device developed to monitor optically species composition and concentration in the chamber and exhaust by emission and absorption measurements.
Dentin bonding performance and interface observation of an MMA-based restorative material.
Shinagawa, Junichi; Inoue, Go; Nikaido, Toru; Ikeda, Masaomi; Sadr, Alireza; Tagami, Junji
2016-07-30
The purpose of this study was to evaluate bonding performance and dentin interface acid resistance using a 4-META/MMA-TBB based restorative material (BF) compared to a conventional 4-META/MMA-TBB resin cement (SB), and the effect of sodium fluoride (NaF) addition to the materials. Dentin surfaces were treated with 10% citric acid-3% ferric chloride (10-3) or 4-META containing self-etching primer (TP), followed by application of BF or SB polymer powders with or without NaF, to evaluate microtensile bond strength (µTBS) in six experimental groups; 10-3/SB, 10-3/BF, TP/SB, TP/BF, TP/SB/NaF and TP/BF/NaF. SEM observation of the resin-dentin interface was performed after acid-base challenge to evaluate interfacial dentin resistance to acid attack. TP/BF showed highest µTBS, while NaF polymers decreased µTBS. TP/BF showed funnel-shaped erosion at the interface, however, NaF polymers improved acid resistance of interface. In conclusion, BF demonstrated high µTBSs and low acid-resistance at the interface. NaF addition enhanced acid resistance but decreased µTBS.
Materials technology for Stirling space power converters
NASA Technical Reports Server (NTRS)
Baggenstoss, William; Mittendorf, Donald
1992-01-01
This program was conducted in support of the NASA LeRC development of the Stirling power converter (SPC) for space power applications. The objectives of this contract were: (1) to perform a technology review and analyses to support the evaluation of materials issues for the SPC; (2) to evaluate liquid metal compatibility issues of the SPC; (3) to evaluate and define a transient liquid phase diffusion bonding (TLPDB) process for the SPC joints to the Udimet 720 heater head; and (4) to evaluate alternative (to the TLPDB) joining techniques. In the technology review, several aspects of the current Stirling design were examined including the power converter assembly process, materials joining, gas bearings, and heat exchangers. The supporting analyses included GLIMPS power converter simulation in support of the materials studies, and system level analysis in support of the technology review. The liquid metal compatibility study evaluated process parameters for use in the Stirling power converter. The alternative joining techniques study looked at the applicability of various joining techniques to the Stirling power converter requirements.
Sol-gel, One Technology by Produced Nanohybrid with Anticorrosive Properties
NASA Astrophysics Data System (ADS)
Hernández-Padrón, Genoveva; García-Garduño, Margarita V.
The evolution of nanotechnology has been allowed modify the material properties since of chemical architecture. In this work, we development nanohybrids sol-gel process, silica particles are incorporated a functionalized polymer resin (type epoxy and/or phenolic) with carboxylic groups. When the metallic plate is coating formed film ceramic glass. The incorporation this particles into to polymeric matrix, allowed to obtain performance corrosive properties. The structural characteristics of the different materials prepared, phenolic resin (RF), the resin functionalized (RFF) and its corresponding hybrids (RF-SiO2 and RFF- SiO2), were studied by infrared spectroscopy and morphological changes were analyzed by scanning electron microscopy. Then cooper plates were coated with these materials to evaluate their corrosion performance. The corrosion performance evaluation for each of these coatings RF, RFF, RE- SiO2 and RFF- SiO2 were determined by the following tests: a misty saline chamber operated under accelerated corrosive conditions for corrosion advance measurement, abrasion and adhesion.
Simulated Reentry Heating by Torching
NASA Technical Reports Server (NTRS)
Harvey, Gale A.
2008-01-01
The two first order reentry heating parameters are peak heating flux (W/cm2) and peak heat load (kJ/cm2). Peak heating flux (and deceleration, gs) is higher for a ballistic reentry and peak heat load is higher for a lifting reentry. Manned vehicle reentries are generally lifting reentries at nominal 1-5 gs so that personnel will not be crushed by high deceleration force. A few off-nominal manned reentries have experienced 8 or more gs with corresponding high heating flux (but below nominal heat load). The Shuttle Orbiter reentries provide about an order of magnitude difference in peak heating flux at mid-bottom (TPS tiles, approximately 6 W/cm2 or 5 BTU/ft2- sec) and leading edge (RCC, approximately 60 W/cm2 or 50 BTU/ft2- sec). Orion lunar return and Mars sample lander are of the same order of magnitude as orbiter leading edge peak heat loads. Flight temperature measurements are available for some orbiter TPS tile and RCC locations. Return-to-Flight on-orbit tile-repair-candidate-material-heating performance was evaluated by matching propane torch heating of candidate-materials temperatures at several depths to orbiter TPS tile flight-temperatures. Char and ash characteristics, heat expansion, and temperature histories at several depths of the cure-in-place ablator were some of the TPS repair material performance characteristics measured. The final char surface was above the initial surface for the primary candidate (silicone based) material, in contrast to a receded surface for the Apollo-type ablative heat shield material. Candidate TPS materials for Orion CEV (LEO and lunar return), and for Mars sample lander are now being evaluated. Torching of a candidate ablator material, PICA, was performed to match the ablation experienced by the STARDUST PICA heat shield. Torching showed that the carbon fiberform skeleton in a sample of PICA was inhomogeneous in that sample, and allowed measurements (of the clumps and voids) of the inhomogeneity. Additional reentry heating-performance characterizations of high temperature insulation materials were performed.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2001-01-01
Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.
NASA Technical Reports Server (NTRS)
Steurer, W. H.
1980-01-01
A survey of all presently defined or proposed large space systems indicated an ever increasing demand for flexible components and materials, primarily as a result of the widening disparity between the stowage space of launch vehicles and the size of advanced systems. Typical flexible components and material requirements were identified on the basis of recurrence and/or functional commonality. This was followed by the evaluation of candidate materials and the search for material capabilities which promise to satisfy the postulated requirements. Particular attention was placed on thin films, and on the requirements of deployable antennas. The assessment of the performance of specific materials was based primarily on the failure mode, derived from a detailed failure analysis. In view of extensive on going work on thermal and environmental degradation effects, prime emphasis was placed on the assessment of the performance loss by meteoroid damage. Quantitative data were generated for tension members and antenna reflector materials. A methodology was developed for the representation of the overall materials performance as related to systems service life. A number of promising new concepts for flexible materials were identified.
VOLATILE ORGANO-METALLOIDS IN BIO-SOLID MATERIALS: ANALYSIS BY VACUUM DISTILLATION-GC/MS
An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)
was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Method
performance was evaluated for dimethylselenide (DMSe), dimethyldisel...
South Carolina Guide for Selling.
ERIC Educational Resources Information Center
Elliott, Ronald T.
This curriculum guide provides materials for a secondary course in salesmanship. It contains 6 units that cover 33 competencies. Each competency is presented in a standard format: performance objective, resources, teaching activities, evaluation, and supplementary materials, including an information sheet, exercises, and checklists. Units and…
ERIC Educational Resources Information Center
Jacobs, James A.
1994-01-01
This learning module on composites such as polymer matrix, metal matrix, ceramic matrix, particulate, and laminar includes a design brief giving context, objectives, evaluation, student outcomes, and quiz. (SK)
Evaluation of heat- and blast-protection materials
NASA Technical Reports Server (NTRS)
Morrison, J. D.; Lockhart, B. J.
1971-01-01
A program was initiated at the Kennedy Space Center in December 1967 and conducted through December 1969 to evaluate the performance of heat- and blast-protection materials for ground support equipment used during the Apollo/Saturn launches. Materials believed to be generally suitable for heat and blast protection were subjected to launch-exposure tests. Tests were made during the Apollo/Saturn 502, 503, and 505 launches. Tests were also made in a local laboratory, as an alternative to the restrictive requirements of launch-exposure tests, to determine the effects of torch-flame exposure on ablative materials. Five materials were found to be satisfactory in all major test categories. It was determined that torch-flame tests can probably be utilized as an acceptable substitute for the booster-engine-exhaust exposure tests for basic screening of candidate materials.
NASA Technical Reports Server (NTRS)
1998-01-01
This handbook establishes NASA program requirements for evaluation, testing, and selection of materials to preclude unsafe conditions related to flammability, odor, offgassing, and fluid compatibility. Materials intended for use in space vehicles, specified test facilities, and specified ground support equipment (GSE) must meet the requirements of this document. Additional materials performance requirements may be specified in other program or NASA center specific documentation. Responsible NASA centers materials organizations must include applicable requirements of this document in their materials control programs. Materials used in habitable areas of spacecraft, including the materials of the spacecraft, stowed equipment, and experiments, must be evaluated for flammability, odor, and offgassing characteristics. All materials used in other areas must be evaluated for flammability characteristics. In addition, materials that are exposed to liquid oxygen (LOX), gaseous oxygen (GOX), and other reactive fluids' must be evaluated for compatibility with the fluid in their use application. Materials exposed to pressurized breathing gases also must be evaluated for odor and offgassing characteristics. The worst-case anticipated use environment (most hazardous pressure, temperature, material thickness, and fluid exposure conditions) must be used in the evaluation process. Materials that have been shown to meet the criteria of the required tests are acceptable for further consideration in design. Whenever possible, materials should be selected that have already been shown to meet the test criteria in the use environment. Existing test data are compiled in the NASA Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) and published periodically as the latest revision of a joint document with Johnson Space Center (JSC), MSFC-HDBK-527/JSC 09604. MAPTIS can be accessed by computer datalink. Systems containing materials that have not been tested or do not meet the criteria of the required tests must be verified to be acceptable in the use configuration by analysis or testing. This verification rationale must be documented and submitted to the responsible NASA center materials organization for approval.
CMUTs with high-K atomic layer deposition dielectric material insulation layer.
Xu, Toby; Tekes, Coskun; Degertekin, F
2014-12-01
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.
Radiopacity evaluation of Portland and MTA-based cements by digital radiographic system
BORGES, Alvaro Henrique; PEDRO, Fabio Luiz Miranda; SEMANOFF-SEGUNDO, Alex; MIRANDA, Carlos Eduardo Saraiva; PÉCORA, Jesus Djalma; CRUZ FILHO, Antônio Miranda
2011-01-01
Objective The aim of the present study was to evaluate the radiopacity of Portland and MTA-based cements using the Digora TM digital radiographic system. Material and Methods The performed tests followed specification number 57 from the American National Standard Institute/American Dental Association (2000) for endodontic sealing materials. The materials were placed in 5 acrylic plates, especially designed for this experiment, along with a graduated aluminum stepwedge varying from 1 to 10 mm in thickness. The set was radiographed at a 30 cm focus-object distance and with 0.2 s exposure time. After the radiographs were taken, the optical laser readings of radiographs were performed by Digora TM system. Five radiographic density readings were performed for each studied material and for each step of the aluminum scale. Results White ProRoot MTA (155.99±8.04), gray ProRoot MTA (155.96±16.30) and MTA BIO (143.13±16.94) presented higher radiopacity values (p<0.05), while white non-structural Portland (119.76±22.34), gray Portland (109.71±4.90) and white structural Portland (99.59±12.88) presented lower radiopacity values (p<0.05). Conclusions It was concluded that MTA-based cements were the only materials presenting radiopacity within the ANSI/ADA specifications. PMID:21625738
NASA Astrophysics Data System (ADS)
Wu, Qiong; Liu, Jiaqi; Yuan, Chenpei; Li, Qiang; Wang, Heng-guo
2017-12-01
Nitrogen-doped 3D flower-like carbon materials (NFCs) have been fabricated using a simple and effective strategy, namely, the hierarchical assembly of polyimide (PI) and subsequent thermal treatment. The effect of pyrolysis temperature on the structural evolution process of PI is also investigated systematically. When evaluated as anode materials for lithium ion batteries (LIBs), the as-obtained NFCs, especially NFCs-550, exhibit good electrochemical performance, including a high reversible capacity (1488.1 mAh g-1 at 0.05 A g-1), excellent rate performance (287.6 mAh g-1 at 2 A g-1), and good cycling stability (645 mAh g-1 with 96% retention after 300 cycles at 0.1 A g-1). The good electrochemical performance is attributed to the synergistic effect between 3D flower-like nanostructure and high nitrogen content. This approach may provide some inspiration to construct a series of heteroatom doped and hierarchical structured carbon materials using polymers for LIBs.
Comparative in vitro study for orthodontic adhesives relatively to sorption and solubility
NASA Astrophysics Data System (ADS)
Muntean, A.; Mesaros, A.; Festila, D.; Moldovan, M.; Boboia, S.; Mesaros, M.
2015-12-01
Water sorption and solubility correspond to undesirable physical characteristics because it may cause micro leakage and dissolution for composite materials used for orthodontic attachment bonding. The aim of this study was to evaluate the performance of four composite materials employed in orthodontic as adhesives, relatively to water and 50% alcoholic solution, by means of in vitro tests of sorption and solubility. We used an experimental composite sealer SO® (ICCRR Cluj Napoca) and 3 commercial products already on the market: Blugloo® (Ormco), Opal Bond MV® (Ultradent) and Bond It® (DB orthodontics). Data were recorded and specific statistic tests were performed, revealing significant differences for all materials relatively to tested solutions. The materials expressed an adequate performance in terms of sorption and solubility, offering various alternatives for orthodontists.
Degradation Characterization of Thermal Interface Greases
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas J; Major, Joshua; Paret, Paul P
Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less
Degradation Characterization of Thermal Interface Greases: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas J; Major, Joshua; Paret, Paul P
Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less
Degradation Characterization of Thermal Interface Greases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Major, Joshua; Narumanchi, Sreekant V; Paret, Paul P
Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees C to 125 degrees C. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less
A laboratory study was performed in 1994-1995 to identify and estimate the influence of key characteristics for evaluating the performance of portable X-ray fluorescence (XRF) spectrometers. Six new/modified spectrometers, including HNU SEFA-Pb, Metorex X-MET, Niton X-L, Radiat...
A laboratory study was performed in 1994-1995 to identify and estimate the influence of key characteristics for evaluating the performance of portable X-ray fluorescence (XRF) spectrometers. Six new/modified spectrometers, including HNU SEFA-Pb, Metorex X-MET, Niton X-L, Radiat...
Evaluation of concrete pavements with materials-related distress : appendix G.
DOT National Transportation Integrated Search
2010-03-02
An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...
Evaluation of concrete pavements with materials-related distress : final report.
DOT National Transportation Integrated Search
2010-03-02
An evaluation of cores sampled from six concrete pavements was performed. Factors : contributing to pavement distress observed in the field were determined, including expansive : alkali-silica reactivity and freeze-thaw deterioration related to poor ...
Evaluation of concrete pavements with materials-related distress : appendix F.
DOT National Transportation Integrated Search
2010-03-02
An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...
Evaluation of concrete pavements with materials-related distress : appendix E.
DOT National Transportation Integrated Search
2010-03-02
An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...
Evaluation of concrete pavements with materials-related distress : appendix D.
DOT National Transportation Integrated Search
2010-03-02
An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...
Evaluation of concrete pavements with materials-related distress : appendix B.
DOT National Transportation Integrated Search
2010-02-02
An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...
Evaluation of concrete pavements with materials-related distress : appendix C.
DOT National Transportation Integrated Search
2010-03-02
An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...
Brouwer, Derk H; Aitken, Robert J; Oppl, Reinhard; Cherrie, John W
2005-09-01
This article proposes a common language for better understanding processes involved in dermal exposure and skin protection. A conceptual model has been developed that systematically describes the transport of agent mass from sources, eventually resulting in "loading" of the skin surface or the skin contaminant layer. In view of a harmonized glossary of exposure terminology this is considered the exposure surface. Loading is defined as agent mass present in this layer divided by the exposure surface area. Skin protective equipment (SPE) is meant to reduce uptake, that is, an agent crosses the absorption barrier of the skin, by intervening in the processes of loading the exposure surface; however, the design of the equipment may fail to cover skin surface entirely. In addition, part of the mass intercepted by the SPE may reach the skin surface either by permeation, penetration, or by transfer when touching the contaminated exterior of the SPE. Evaluation of SPE performance has earlier focused on chemical resistance performance testing for permeation, penetration, or degradation of SPE-materials. In use-scenario practice, however, all processes will occur concurrently. Thus, SPE field performance evaluation including user-SPE interaction complementary to material testing is warranted. Results of laboratory testing for SPE-materials are reported as substance-specific breakthrough times and permeation rates. SPE field performance should be evaluated for reduction of either uptake or parameters that reflect the outcome of dermal exposure. Ideally, this should be based on the results of intervention-type workplace studies, for (e.g., assessment of exposure loading). The level of reduction can be expressed as a protection factor (ratio without/with SPE) for different parameters of dermal exposure or uptake. It is concluded that for evaluation of SPE-type performance, generic protection factors can be derived for substance-independent processes (e.g., reduction of exposure loading) but not for substance-specific reduction of uptake.
NASA Technical Reports Server (NTRS)
Temple, Enoch C.
1994-01-01
The space industry has developed many composite materials that have high durability in proportion to their weights. Many of these materials have a likelihood for flaws that is higher than in traditional metals. There are also coverings (such as paint) that develop flaws that may adversely affect the performance of the system in which they are used. Therefore there is a need to monitor the soundness of composite structures. To meet this monitoring need, many nondestructive evaluation (NDE) systems have been developed. An NDE system is designed to detect material flaws and make flaw measurements without destroying the inspected item. Also, the detection operation is expected to be performed in a rapid manner in a field or production environment. Some of the most recent video-based NDE methodologies are shearography, holography, thermography, and video image correlation.
Performance and cost of materials for lithium-based rechargeable automotive batteries
NASA Astrophysics Data System (ADS)
Schmuch, Richard; Wagner, Ralf; Hörpel, Gerhard; Placke, Tobias; Winter, Martin
2018-04-01
It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.
Clinical Performance of a New Biomimetic Double Network Material
Dirxen, Christine; Blunck, Uwe; Preissner, Saskia
2013-01-01
Background: The development of ceramics during the last years was overwhelming. However, the focus was laid on the hardness and the strength of the restorative materials, resulting in high antagonistic tooth wear. This is critical for patients with bruxism. Objectives: The purpose of this study was to evaluate the clinical performance of the new double hybrid material for non-invasive treatment approaches. Material and Methods: The new approach of the material tested, was to modify ceramics to create a biomimetic material that has similar physical properties like dentin and enamel and is still as strong as conventional ceramics. Results: The produced crowns had a thickness ranging from 0.5 to 1.5 mm. To evaluate the clinical performance and durability of the crowns, the patient was examined half a year later. The crowns were still intact and soft tissues appeared healthy and this was achieved without any loss of tooth structure. Conclusions: The material can be milled to thin layers, but is still strong enough to prevent cracks which are stopped by the interpenetrating polymer within the network. Depending on the clinical situation, minimally- up to non-invasive restorations can be milled. Clinical Relevance: Dentistry aims in preservation of tooth structure. Patients suffering from loss of tooth structure (dental erosion, Amelogenesis imperfecta) or even young patients could benefit from minimally-invasive crowns. Due to a Vickers hardness between dentin and enamel, antagonistic tooth wear is very low. This might be interesting for treating patients with bruxism. PMID:24167534
Green material selection for sustainability: A hybrid MCDM approach.
Zhang, Honghao; Peng, Yong; Tian, Guangdong; Wang, Danqi; Xie, Pengpeng
2017-01-01
Green material selection is a crucial step for the material industry to comprehensively improve material properties and promote sustainable development. However, because of the subjectivity and conflicting evaluation criteria in its process, green material selection, as a multi-criteria decision making (MCDM) problem, has been a widespread concern to the relevant experts. Thus, this study proposes a hybrid MCDM approach that combines decision making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey relational analysis (GRA) and technique for order performance by similarity to ideal solution (TOPSIS) to select the optimal green material for sustainability based on the product's needs. A nonlinear programming model with constraints was proposed to obtain the integrated closeness index. Subsequently, an empirical application of rubbish bins was used to illustrate the proposed method. In addition, a sensitivity analysis and a comparison with existing methods were employed to validate the accuracy and stability of the obtained final results. We found that this method provides a more accurate and effective decision support tool for alternative evaluation or strategy selection.
Green material selection for sustainability: A hybrid MCDM approach
Zhang, Honghao; Peng, Yong; Tian, Guangdong; Wang, Danqi; Xie, Pengpeng
2017-01-01
Green material selection is a crucial step for the material industry to comprehensively improve material properties and promote sustainable development. However, because of the subjectivity and conflicting evaluation criteria in its process, green material selection, as a multi-criteria decision making (MCDM) problem, has been a widespread concern to the relevant experts. Thus, this study proposes a hybrid MCDM approach that combines decision making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey relational analysis (GRA) and technique for order performance by similarity to ideal solution (TOPSIS) to select the optimal green material for sustainability based on the product's needs. A nonlinear programming model with constraints was proposed to obtain the integrated closeness index. Subsequently, an empirical application of rubbish bins was used to illustrate the proposed method. In addition, a sensitivity analysis and a comparison with existing methods were employed to validate the accuracy and stability of the obtained final results. We found that this method provides a more accurate and effective decision support tool for alternative evaluation or strategy selection. PMID:28498864
Thomas, Treye; Thomas, Karluss; Sadrieh, Nakissa; Savage, Nora; Adair, Patricia; Bronaugh, Robert
2006-05-01
Considerable media attention has recently been given to novel applications for products that contain nanoscale materials. These products could have utility in several industries that market consumer products, including textiles, sporting equipment, cosmetics, consumer electronics, and household cleaners. Some of the purported benefits of these products include improved performance, convenience, lower cost, as well as other desirable features, when compared to the conventional products that do not contain nanoscale materials. Although there are numerous likely consumer advantages from products containing nanoscale materials, there is very little information available regarding consumer exposure to the nanoscale materials in these products or any associated risks from these exposures. This paper seeks to review a limited subset of products that contain nanoscale materials, assess the available data for evaluating the consumer exposures and potential hazards associated with these products, and discuss the capacity of U.S. regulatory agencies to address the potential risks associated with these products.
NASA Astrophysics Data System (ADS)
Sumiya, H.; Hamaki, K.; Harano, K.
2018-05-01
Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.
Solar Concentrator Advanced Development Program, Task 1
NASA Technical Reports Server (NTRS)
1986-01-01
Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.
Advances in electrode materials for Li-based rechargeable batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hui; Mao, Chengyu; Li, Jianlin
Rechargeable lithium-ion batteries store energy as chemical energy in electrode materials during charge and can convert the chemical energy into electrical energy when needed. Tremendous attention has been paid to screen electroactive materials, to evaluate their structural integrity and cycling reversibility, and to improve the performance of electrode materials. This review discusses recent advances in performance enhancement of both anode and cathode through nanoengineering active materials and applying surface coatings, in order to effectively deal with the challenges such as large volume variation, instable interface, limited cyclability and rate capability. We also introduce and discuss briefly the diversity and newmore » tendencies in finding alternative lithium storage materials, safe operation enabled in aqueous electrolytes, and configuring novel symmetric electrodes and lithium-based flow batteries.« less
NASA Astrophysics Data System (ADS)
Lokko, Mae-ling Jovenes
As global quantities of waste by-products from food production as well as the range of their applications increase, researchers are realizing critical opportunities to transform the burden of underutilized wastes into ecological profits. Within the tropical hot-humid region, where half the world's current and projected future population growth is concentrated, there is a dire demand for building materials to meet ambitious development schemes and rising housing deficits. However, the building sector has largely overlooked the potential of local agricultural wastes to serve as alternatives to energy-intensive, imported building technologies. Industrial ecologists have recently investigated the use of agrowaste biocomposites to replace conventional wood products that use harmful urea-formaldehyde, phenolic and isocyanate resins. Furthermore, developments in the performance of building material systems with respect to cost, energy, air quality management and construction innovation have evolved metrics about what constitutes material 'upcycling' within building life cycle. While these developments have largely been focused on technical and cost performance, much less attention has been paid to addressing deeply-seated social and cultural barriers to adoption that have sedimented over decades of importation. This dissertation evaluates the development coconut agricultural building material systems in four phases: (i) non-toxic, low-energy production of medium-high density boards (500-1200 kg/m3) from coconut fibers and emerging biobinders; (ii) characterization and evaluation of coconut agricultural building materials hygrothermal performance (iii) scaled-up design development of coconut modular building material systems and (iv) development of a value translation framework for the bottom-up distribution of value to stakeholders within the upcycling framework. This integrated design methodological approach is significant to develop ecological thinking around agrowaste building materials, influence social and cultural acceptability and create value translation frameworks that sufficiently characterize the composite value proposition of upcycled building systems.
Evaluation of HFC 245ca and HFC 236ea as foam blowing agents
NASA Technical Reports Server (NTRS)
Sharpe, Jon; Macarthur, Doug; Kollie, Tom; Graves, Ron; Liu, Matthew; Hendriks, Robert V.
1995-01-01
Hydrochlorofluorocarbon (HCFC) 141b has been selected as the interim blowing agent for use in urethane insulations on NASA's Space Shuttle External Tank. Due to the expected limited commercial lifetime of this material, research efforts at the NASA Thermal Protection Systems Materials Research Laboratory at the Marshall Space Flight Center are now being devoted to the identification and development of alternatives with zero ozone depletion potential. Physical blowing agents identified to date have included hydrocarbons, fluorocarbons, hydrofluoroethers, and more predominantly, hydrofluorocarbons (HFCs). The majority of the HFC evaluations in industry have focused on the more readily available, low boiling candidates such as HFC 134a. Higher boiling HFC candidates that could be handled at ambient conditions and use current processing equipment would be more desirable. This paper will describe results from a research program of two such candidate HFC's performed as a cooperative effort between Martin Marietta Manned Space Systems, the U.S. Environmental Protection Agency, and Oak Ridge National Laboratories. The purpose of this effort was to perform a cursory evaluation of the developmental HFC's 245ca and 236ea as blowing agents in urethane based insulations. These two materials were selected from screening tests of 37 C2, C3, and C4 isomers based on physical properties, atmospheric lifetime, flammability, estimated toxicity, difficulty of synthesis, suitability for dual use as a refrigerant, and other factors. Solubility of the two materials in typical foam components was tested, pour foaming trials were performed, and preliminary data were gathered regarding foam insulation performance.
10 CFR 216.4 - Evaluation by DOE of applications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Energy DEPARTMENT OF ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS... described supplies of materials and equipment, services, or facilities are critical and essential to the... and equipment, services, or facilities described in the application are critical and essential to an...
10 CFR 216.4 - Evaluation by DOE of applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Energy DEPARTMENT OF ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS... described supplies of materials and equipment, services, or facilities are critical and essential to the... and equipment, services, or facilities described in the application are critical and essential to an...
10 CFR 216.4 - Evaluation by DOE of applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Energy DEPARTMENT OF ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS... described supplies of materials and equipment, services, or facilities are critical and essential to the... and equipment, services, or facilities described in the application are critical and essential to an...
10 CFR 216.4 - Evaluation by DOE of applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Energy DEPARTMENT OF ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS... described supplies of materials and equipment, services, or facilities are critical and essential to the... and equipment, services, or facilities described in the application are critical and essential to an...
DOT National Transportation Integrated Search
2011-12-01
Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement structures and/or materials. However, running an APT experiment is expensive. It requires costly accelerated loading devic...
10 CFR 216.4 - Evaluation by DOE of applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Energy DEPARTMENT OF ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS... described supplies of materials and equipment, services, or facilities are critical and essential to the... and equipment, services, or facilities described in the application are critical and essential to an...
PEM fuel cell stack heat and mass management
NASA Technical Reports Server (NTRS)
Vanderborgh, Nicholas E.; Kimble, Michael C.; Huff, James R.; Hedstrom, James C.
1992-01-01
PEM stacks are under evaluation as candidates for future space power technology. Results of long-term operation on a set of contemporary stacks fitted with different proton exchange membrane materials are given. Data on water balances show effects of membrane materials on stack performance.
Prospects and progress of high Tc superconductivity for space applications
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Sokoloski, Marty M.
1991-01-01
Current research in the area of high temperature superconductivity is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAlO3 produced far superior RF characteristics when compared to metallic films on the same substrate. The achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high-Q filters. Melt texturing and melt-quenched techniques are being used to produce bulk material with optimized magnetic properties. These yttrium-enriched materials possess enhanced flux pinning characteristics and could lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies were conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magnetoplasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar, and Mars mission applications.
Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon
2014-01-01
In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis. PMID:28788708
Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon
2014-06-23
In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis.
Next Generation Anodes for Lithium Ion Batteries: Thermodynamic Understanding and Abuse Performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenton, Kyle R.; Allcorn, Eric; Nagasubramanian, Ganesan
As we develop new materials to increase performance of lithium ion batteries for electric vehicles, the impact of potential safety and reliability issues become increasingly important. In addition to electrochemical performance increases (capacity, energy, cycle life, etc.), there are a variety of materials advancements that can be made to improve lithium-ion battery safety. Issues including energetic thermal runaway, electrolyte decomposition and flammability, anode SEI stability, and cell-level abuse tolerance behavior. Introduction of a next generation materials, such as silicon based anode, requires a full understanding of the abuse response and degradation mechanisms for these anodes. This work aims to understandmore » the breakdown of these materials during abuse conditions in order to develop an inherently safe power source for our next generation electric vehicles. The effect of materials level changes (electrolytes, additives, silicon particle size, silicon loading, etc.) to cell level abuse response and runaway reactions will be determined using several techniques. Experimentation will start with base material evaluations in coin cells and overall runaway energy will be evaluated using techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and accelerating rate calorimetry (ARC). The goal is to understand the effect of materials parameters on the runaway reactions, which can then be correlated to the response seen on larger cells (18650). Experiments conducted showed that there was significant response from these electrodes. Efforts to minimize risk during testing were taken by development of a smaller capacity cylindrical design in order to quantify materials decision and how they manifest during abuse response.« less
NASA Astrophysics Data System (ADS)
Herran, C. Leigh; Huang, Yong; Chai, Wenxuan
2012-08-01
Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability.
This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...
Saeed, Diyar; Shalli, Shanaz; Fumoto, Hideyuki; Ootaki, Yoshio; Horai, Tetsuya; Anzai, Tomohiro; Zahr, Roula; Horvath, David J; Massiello, Alex L; Chen, Ji-Feng; Dessoffy, Raymond; Catanese, Jacquelyn; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka
2010-06-01
Zirconia is a ceramic with material properties ideal for journal bearing applications. The purpose of this study was to evaluate the use of zirconium oxide (zirconia) as a blood journal bearing material in the DexAide right ventricular assist device. Zirconia ceramic was used instead of titanium to manufacture the DexAide stator housing without changing the stator geometry or the remaining pump hardware components. Pump hydraulic performance, journal bearing reliability, biocompatibility, and motor efficiency data of the zirconia stator were evaluated in six chronic bovine experiments for 14-91 days and compared with data from chronic experiments using the titanium stator. Pump performance data including average in vivo pump flows and speeds using a zirconia stator showed no statistically significant difference to the average values for 16 prior titanium stator in vivo studies, with the exception of a 19% reduction in power consumption. Indices of hemolysis were comparable for both stator types. Results of coagulation assays and platelet aggregation tests for the zirconia stator implants showed no device-induced increase in platelet activation. Postexplant evaluation of the zirconia journal bearing surfaces showed no biologic deposition in any of the implants. In conclusion, zirconia ceramic can be used as a hemocompatible material to improve motor efficiency while maintaining hydraulic performance in a blood journal bearing application.
Evaluation of concrete pavements with materials-related distress : appendix A, part 1.
DOT National Transportation Integrated Search
2010-03-02
An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...
Evaluation of concrete pavements with materials-related distress : appendix A, part 3.
DOT National Transportation Integrated Search
2010-03-02
An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...
Evaluation of concrete pavements with materials-related distress : appendix A, part 2.
DOT National Transportation Integrated Search
2010-03-02
An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...
Digital multimedia instruction enhances teaching oral and maxillofacial suturing.
Weaver, J M; Lu, Mei; McCloskey, K L; Herndon, E S; Tanaka, W
2009-12-01
To develop digital multimedia instruction on intraoral suturing. A DVD was developed to describe instruments, materials, and techniques. Two groups of dental students were asked to close an incision in a simulated model. One used written materials only and another used additional DVD. The performance was evaluated using 10 grading criteria. Students who used the DVD performed better than students who did not. This DVD could be used widely in teaching dental students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Charles R.; Enos, David
2014-09-01
This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of used nuclear fuel. The work involves both characterization of the potential physical and chemical environment on the surface of the storage canisters and how it might evolve through time, and testing to evaluate performance of the canister materials under anticipated storage conditions.
Inorganic separator technology program
NASA Technical Reports Server (NTRS)
Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.
1973-01-01
Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.
Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brent Constantz; Randy Seeker; Martin Devenney
2010-06-30
Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which ismore » a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.« less
NASA Technical Reports Server (NTRS)
Hambourger, Paul D.
1997-01-01
To test and evaluate suitability of materials for use in space power systems and related space and commercial applications, and to achieve sufficient understanding of the mechanisms by which, the materials perform in their intended applications. Materials and proposed applications included but were not limited to: Improved anodes for lithium ion batteries, highly-transparent arc-proof solar array coatings, and improved surface materials for solar dynamic concentrators and receivers. Cooperation and interchange of data with industrial companies as appropriate.
Bisphenol A polycarbonate as a reference material
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.; Williams, J. B.
1977-01-01
Test methods require reference materials to standardize and maintain quality control. Various materials have been evaluated as possible reference materials, including a sample of bisphenol A polycarbonate without additives. Screening tests for relative toxicity under various experimental conditions were performed using male mice exposed to pyrolysis effluents over a 200-800 C temperature range. It was found that the bisphenol A polycarbonate served as a suitable reference material as it is available in large quantities, and does not significantly change with time.
Evaluation of Administrators: Issues and Practices. OSSC Bulletin Vol. 19, No. 10.
ERIC Educational Resources Information Center
Wills, Lewis A.
In this review of current practices it is observed that administrators are evaluated for two major purposes--(1) to provide a basis for school districts' decisions at the conclusion of the evaluation period, and (2) to provide feedback on performance to allow administrator improvement. A comparison is made of evaluation material from five school…
Evaluation of CVD silicon carbide for synchrotron radiation mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takacs, P.Z.
1981-07-01
Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense x-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, andmore » few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.« less
Evaluation of CVD silicon carbide for synchrotron radiation mirrors
NASA Astrophysics Data System (ADS)
Takacs, Peter Z.
1982-04-01
Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense X-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, and few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.
Fuel Performance Calculations for FeCrAl Cladding in BWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Nathan; Sweet, Ryan; Maldonado, G. Ivan
2015-01-01
This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behaviormore » of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.« less
NASA Astrophysics Data System (ADS)
Sait, Usha; Muthuswamy, Sreekumar
2016-05-01
Dielectric electro active polymer (DEAP) is a suitable actuator material that finds wide applications in the field of robotics and medical areas. This material is highly controllable, flexible, and capable of developing large strain. The influence of geometrical behavior becomes critical when the material is used as miniaturized actuation devices in robotic applications. The present work focuses on the effect of surface topography on the performance of flat (single sheet) and stacked-rolled DEAP actuators. The non-active areas in the form of elliptical spots that affect the performance of the actuator are identified using scanning electron microscope (SEM) and energy dissipated X-ray (EDX) experiments. Performance of DEAP actuation is critically evaluated, compared, and presented with analytical and experimental results.
Araújo, Célio U; Basting, Roberta T
2018-03-01
To perform an in situ evaluation of surface roughness and micromorphology of two soft liner materials for dentures at different time intervals. The surface roughness of materials may influence the adhesion of micro-organisms and inflammation of the mucosal tissues. The in situ evaluation of surface roughness and the micromorphology of soft liner materials over the course of time may present results different from those of in vitro studies, considering the constant presence of saliva and food, the changes in temperature and the pH level in the oral cavity. Forty-eight rectangular specimens of each of the two soft liner materials were fabricated: a silicone-based material (Mucopren Soft) and an acrylic resin-based material (Trusoft). The specimens were placed in the dentures of 12 participants (n = 12), and the materials were evaluated for surface roughness and micromorphology at different time intervals: 0, 7, 30 and 60 days. Roughness (Ra) was evaluated by means of a roughness tester. Surface micromorphology was evaluated by scanning electron microscopy. Analysis of variance for randomised block design and Tukey's test showed that surface roughness values were lower in the groups using the silicone-based material at all the time intervals (P < .0001). The average surface roughness was higher at time interval 0 than at the other intervals, for both materials (P < .0001). The surface micromorphology showed that the silicone material presented a more regular and smoother surface than the acrylic resin-based material. The surface roughness of acrylic resin-based and silicone-based denture soft liner materials decreased after 7 days of evaluation, leading to a smoother surface over time. The silicone-based material showed lower roughness values and a smoother surface than the acrylic resin-based material, thereby making it preferred when selecting more appropriate material, due its tendency to promote less biofilm build-up. © 2017 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Cavenago, B C; Ordinola-Zapata, R; Duarte, M A H; del Carpio-Perochena, A E; Villas-Bôas, M H; Marciano, M A; Bramante, C M; Moraes, I G
2014-11-01
To evaluate the volume of remaining filling material in the mesial root canals of mandibular molars after root canal retreatment with different procedures performed sequentially. The mesial root canals of 12 human first mandibular molars were instrumented using the BioRace system until a size 25, .06 taper instrument. The mesial roots were filled with gutta-percha and AH-Plus using a vertical compaction technique. The specimens were scanned using microcomputed tomography with a voxel size of 16.8 μm before and after the retreatment procedures. To remove the filling material, the root canals were enlarged until the size 40, .04 taper instrument. The second step was to irrigate the root canals with xylene in the attempt to clean the root canals with paper points. In the third step, the passive ultrasonic irrigation technique (PUI) was performed using 2.5% sodium hypochlorite. The initial and residual filling material volume (mm(3) ) after each step was evaluated from the 0.5 to 6.5 mm level. The obtained data were expressed in terms of percentage of residual filling material. Statistical analysis was performed using the Friedman test (P < 0.05). All specimens had residual filling materials after all retreatment procedures. Passive ultrasonic irrigation enhanced the elimination of residual filling material in comparison with the mechanical stage at the 0.5-2.5 mm and 4.5-6.5 mm levels (P < 0.05). No significant difference was found between xylene and PUI methods. Filling materials were not completely removed by any of the retreatment procedures. The use of xylene and PUI after mechanical instrumentation enhanced removal of materials during endodontic retreatment of anatomically complex teeth. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Seismic response of reinforced concrete frames at different damage levels
NASA Astrophysics Data System (ADS)
Morales-González, Merangeli; Vidot-Vega, Aidcer L.
2017-03-01
Performance-based seismic engineering is focused on the definition of limit states to represent different levels of damage, which can be described by material strains, drifts, displacements or even changes in dissipating properties and stiffness of the structure. This study presents a research plan to evaluate the behavior of reinforced concrete (RC) moment resistant frames at different performance levels established by the ASCE 41-06 seismic rehabilitation code. Sixteen RC plane moment frames with different span-to-depth ratios and three 3D RC frames were analyzed to evaluate their seismic behavior at different damage levels established by the ASCE 41-06. For each span-to-depth ratio, four different beam longitudinal reinforcement steel ratios were used that varied from 0.85 to 2.5% for the 2D frames. Nonlinear time history analyses of the frames were performed using scaled ground motions. The impact of different span-to-depth and reinforcement ratios on the damage levels was evaluated. Material strains, rotations and seismic hysteretic energy changes at different damage levels were studied.
Characterization of Alaskan HMA mixtures with the simple performance tester.
DOT National Transportation Integrated Search
2014-05-01
Material characterization provides basic and essential information for pavement design and the evaluation of hot mix asphalt (HMA). : This study focused on the accurate characterization of an Alaskan HMA mixture using an asphalt mixture performance t...
DOT National Transportation Integrated Search
2015-05-01
Improvements in the Long-Term Pavement Performance (LTPP) Programs climate data are needed to support current and future research into climate effects on pavement materials, design, and performance. The calibration and enhancement of the Mechanist...
Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, Chase A.; Gottfried, Jennifer L.; Snyder, Emily Gibb
2008-11-01
The performance of a man-portable laser induced breakdown spectrometer was evaluated for the detection of biological powders on indoor office surfaces and wipe materials. Identification of pure unknown powders was performed by comparing against a library of spectra containing biological agent surrogates and confusant materials, such as dusts, diesel soot, natural and artificial sweeteners, and drink powders, using linear correlation analysis. Simple models constructed using a second technique, partial least squares discriminant analysis, successfully identified Bacillus subtilis (BG) spores on wipe materials and office surfaces. Furthermore, these models were able to identify BG on materials not used in the trainingmore » of the model.« less
Infrared thermographic evaluation of marine composite structures
NASA Astrophysics Data System (ADS)
Jones, Thomas S.
1995-06-01
Glass fiber composite materials have been used for many years in the construction of pleasure, cruising, and racing marine vessels. These vessels have demonstrated excellent performance characteristics and have been reliable in service. Even so, as with all material systems, they are subject to damage from accident, neglect, and abuse. Traditional nondestructive inspection approaches are not always fully effective for examining composite marine structures. Infrared imaging offers a particularly attractive approach for the inspection of composite material structures. Glass fiber composites frequently possess a combination of thermal properties that make them good candidates for infrared thermographic evaluation while other nondestructive evaluation approaches provide limited success. Infrared thermography combines the advantages of being nondestructive with the capability of rapidly inspecting wide surface areas.
DOT National Transportation Integrated Search
2015-12-01
This research project comprehensively reviewed the state departments of transportations (DOTs) practices on : selecting and inspecting pavement marking materials (PMMs) and evaluated pavement marking : retroreflectivity data collected on the Georg...
Performance evaluation soil samples utilizing encapsulation technology
Dahlgran, J.R.
1999-08-17
Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.
Performance evaluation soil samples utilizing encapsulation technology
Dahlgran, James R.
1999-01-01
Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.
Spall Strength Measurements in Transparent Epoxy Polymers
NASA Astrophysics Data System (ADS)
Pepper, Jonathan; Rahmat, Meysam; Petel, Oren
2017-06-01
Polymer nanocomposites are seeing more frequent use in transparent armour applications. The role of the microstructure on the performance of these materials under dynamic tensile loading conditions is of particular interest. In the present study, a series of plate impact experiments was conducted in order to evaluate the dynamic response of an epoxy (EPON 828) cured with two differed hardeners. The purpose was to compare the role of these hardeners on the dynamic performance of the resulting transparent epoxy. The material response was resolved with a multi-channel photonic Doppler velocimeter. This system was used to determine the shock Hugoniot and dynamic tensile (spall) strength of the materials. The experimental results are presented in reference to spall theory and are evaluated against results predicted by an analytical model of the impacts. While varying the hardener did not change the shock Hugoniot of the epoxy, it did have an effect on the measured spall strengths.
NASA Technical Reports Server (NTRS)
Addington, L. A.; Ownby, P. D.; Yu, B. B.; Barsoum, M. W.; Romero, H. V.; Zealer, B. G.
1979-01-01
The development and evaluation of proprietary coatings of pure silicon carbide, silicon nitride, and aluminum nitride on less pure hot pressed substrates of the respective ceramic materials, is described. Silicon sessile drop experiments were performed on coated test specimens under controlled oxygen partial pressure. Prior to testing, X-ray diffraction and SEM characterization was performed. The reaction interfaces were characterized after testing with optical and scanning electron microscopy and Auger electron spectroscopy. Increasing the oxygen partial pressure was found to increase the molten silicon contact angle, apparently because adsorbed oxygen lowers the solid-vapor interfacial free energy. It was also found that adsorbed oxygen increased the degree of attack of molten silicon upon the chemical vapor deposited coatings. Cost projections show that reasonably priced, coated, molten silicon resistant refractory material shapes are obtainable.
NASA Astrophysics Data System (ADS)
Nakano, Kouichi
Austenitic stainless steel, which includes nickel for stabilizing austenitic structure, is used for various purposes, for example, for structural material, corrosion-resistant material, biomaterial etc. Nickel is set as one of the rare metals and economizing on nickel as the natural resources is required. On the other hand, nickel is one of the metals that cause metallic allergy frequently. Therefore, high nitrogen stainless steel, where nitrogen stabilizes austenitic structure instead of nickel, has been developed in Japan and some of the foreign countries for the above reason. When high nitrogen stainless steel is fused and bonded, dissolved nitrogen is released to the atmospheric area, and some of the material properties will change. In this study, we bonded high nitrogen stainless steel by stud welding process, which is able to bond at short time, and we evaluate joint performance. We have got some interesting results from the other tests and examinations.
Comparison of thermal insulation performance of fibrous materials for the advanced space suit.
Paul, Heather L; Diller, Kenneth R
2003-10-01
The current multi-layer insulation used in the extravehicular mobility unit (EMU) will not be effective in the atmosphere of Mars due to the presence of interstitial gases. Alternative thermal insulation means have been subjected to preliminary evaluation by NASA to attempt to identify a material that will meet the target conductivity of 0.005 W/m-K. This study analyzes numerically the thermal conductivity performance for three of these candidate insulating fiber materials in terms of various denier (size), interstitial void fractions, interstitial void media, and orientations to the applied temperature gradient to evaluate their applicability for the new Mars suit insulation. The results demonstrate that the best conductive insulation is achieved for a high-void-fraction configuration with a grooved fiber cross section, aerogel void medium, and the fibers oriented normal to the heat flux vector. However, this configuration still exceeds the target thermal conductivity by a factor of 1.5.
Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam
NASA Astrophysics Data System (ADS)
Armani, Clinton J.
Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via comparisons with experimental results. Additionally, the utility of the Monkman-Grant relationship to predicting creep-rupture life of the fiber tows at elevated temperature in air and in steam was demonstrated. Furthermore, the effects of steam on the compressive creep performance of bulk ceramic materials were also studied. Performance of fine grained, polycrystalline alumina (Al2O3) was investigated at 1100 and 1300°C in air and in steam. To evaluate the effect of silica doping during material processing both undoped and silica doped polycrystalline alumina specimens were tested. Finally, compressive creep performance of yttrium aluminum garnet (YAG, Y3Al5O12) was evaluated at 1300°C in air and in steam. Both undoped and silica doped YAG specimens were included in the study. YAG is being considered as the next-generation oxide fiber material. However, before considerable funding and effort are invested in a fiber development program, it is necessary to evaluate the creep performance of YAG at elevated temperature in steam. Results of this research demonstrated that both the undoped YAG and the silica doped YAG exhibited exceptional creep resistance at 1300°C in steam for grain sizes ˜1 microm. These results supplement the other promising features of YAG that make it a strong candidate material for the next generation ceramic fiber.
Evaluation of metal-polymeric fixed partial prosthesis using optical coherence tomography
NASA Astrophysics Data System (ADS)
Sinescu, C.; Negrutiu, M. L.; Duma, V. F.; Marcauteanu, C.; Topala, F. I.; Rominu, M.; Bradu, A.; Podoleanu, A. Gh.
2013-11-01
Metal-Polymeric fixed partial prosthesis is the usual prosthetic treatment for many dental patients. However, during the mastication the polymeric component of the prosthesis is fractured and will be lost. This fracture is caused by the material defects or by the fracture lines trapped inside the esthetic components of the prosthesis. This will finally lead to the failure of the prosthetic treatment. Nowadays, there is no method of identification and forecast for the materials defects of the polymeric materials. The aim of this paper is to demonstrate the capability of Optical Coherence Tomography (OCT) as a non-invasive clinical method that can be used for the evaluation of metal-polymeric fixed partial prostheses. Twenty metal-polymeric fixed partial prostheses were used for this study. The esthetic component of the prostheses has been Adoro (Ivoclar). Optical investigations of the metal prostheses have revealed no material defects or fracture lines. All the prostheses were temporary cemented in the oral cavities of the patients for six month. The non-invasive method used for the investigations was OCT working in Time Domain mode at 1300 nm. The evaluations of the prostheses were performed before and after their cementation in the patient mouths. All the imagistic results were performed in 2D and than in 3D, after the reconstruction. The results obtained after the OCT evaluation allowed for the identification of 4 metal-polymeric fixed partial prostheses with material defects immediately after finishing the technological procedures. After 6 month in the oral environment other 3 fixed partial prostheses revealed fracture lines. In conclusion, OCT proved to be a valuable tool for the noninvasive evaluation of the metal-polymeric fixed partial prostheses.
Clinical evaluation of flowable resins in non-carious cervical lesions: two-year results.
Celik, Cigdem; Ozgünaltay, Gül; Attar, Nuray
2007-01-01
This study evaluated the two-year clinical performance of one microhybrid composite and three different types of flowable resin materials in non-carious cervical lesions. A total of 252 noncarious cervical lesions were restored in 37 patients (12 male, 25 female) with Admira Flow, Dyract Flow, Filtek Flow and Filtek Z250, according to manufacturers' instructions. All the restorations were placed by one operator, and two other examiners evaluated the restorations clinically within one week after placement and after 6, 12, 18 and 24 months, using modified USPHS criteria. At the end of 24 months, 172 restorations were evaluated in 26 patients, with a recall rate of 68%. Statistical analysis was completed using the Pearson Chi-square and Fisher-Freeman-Halton tests (p < 0.05). Additionally, survival rates were analyzed with the Kaplan-Meier estimator and the Log-Rank test (p < 0.05). The Log-Rank test indicated statistically significant differences between the survival rates of Dyract Flow/Admira Flow and Dyract Flow/Filtek Z250 (p < 0.05). While there was a statistically significant difference between Dyract Flow and the other materials for color match at 12 and 18 months, no significant difference was observed among all of the materials tested at 24 months. Significant differences were revealed between Filtek Z250 and the other materials for marginal adaptation at 18 and 24 months (p < 0.05). With respect to marginal discoloration, secondary caries, surface texture and anatomic form, no significant differences were found between the resin materials (p > 0.05). It was concluded that different types of resin materials demonstrated acceptable clinical performance in non-carious cervical lesions, except for the retention rates of the Dyract Flow restorations.
EVALUATING MC AND A EFFECTIVENESS TO VERIFY THE PRESENCE OF NUCLEAR MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. G. DAWSON; J. A MORZINSKI; ET AL
Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less
Wormhole Formation in RSRM Nozzle Joint Backfill
NASA Technical Reports Server (NTRS)
Stevens, J.
2000-01-01
The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and predictions. Finally, two candidate replacement materials are being screened and "validated" using the developed test systems.
Nural Yilgor; Coskun Kose; Evren Terzi; Aysel Kanturk Figen; Rebecca Ibach; S. Nami Kartal; Sabriye Piskin
2014-01-01
Manufacturing panels from Tetra Pak® (TP) packaging material might be an alternative to conventional wood-based panels. This study evaluated some chemical and physical properties as well as biological, weathering, and fire performance of panels with and without zinc borate (ZnB) by using shredded TP packaging cartons. Such packaging material, a worldwide well-known...
NASA Astrophysics Data System (ADS)
Ishizaki, Yoshihiro; Kobayashi, Misao; Suzuki, Hironori; Futagami, Koichi
It is very suitable to select the polymer materials for the housings of surge arresters (SAs), because the polymer materials are generally soft and light weight. Therefore, many kinds of polymer-housed SAs using various polymer materials have been developed, and expanding into many countries. Considering these backgrounds, the JEC technical report (JEC-TR) 23002-2008; polymer-housed surge arrester(1) has been established based on the existent relevant standards of arresters, such as JEC-2371-2003; Insulator-housed surge arresters(2) and IEC 60099-4 Edition 2.2, Metal-oxide surge arresters (MOSAs) without gaps for a.c. systems(3) in order to introduce the technology and provide a common guide for testing of polymer-housed SAs. According as the JEC-TR, the various new applications of the polymer-housed SAs, which are caused by superior advantages such as compact, light weight, safe failure mode, anti-seismic performance, anti-pollution performance and cost efficiency design, have been realized recently in Japan. Therefore, this paper gives specific consideration on the superior performance of the polymer-housed SAs and the evaluation methods of the polymer-housed SAs, because there are some issues in the existent standards to be solved.
Three innovative technologies for stabilization of mercury were demonstrated in a treatability study performed on two waste rock materials from the Sulfur Bank Mercury Mine, a Superfund site in northern California. The treatability study was jointly sponsored by two EPA programs:...
USDA-ARS?s Scientific Manuscript database
Flue gas desulfurization gypsum (FGDG) may be a viable low-cost alternative bedding material for broiler production. In order to evaluate FGD gypsum’s viability, three consecutive trials were conducted to determine its influence on live performance (body weight, feed consumption, feed efficiency, an...
USDA-ARS?s Scientific Manuscript database
Thermal energy storage (TES) systems incorporated with phase change materials (PCMs) have potential applications to control energy use by building envelopes. However, it is essential to evaluate long term performance of the PCMs and cost effectiveness prior to full scale implementation. For this rea...
NASA Technical Reports Server (NTRS)
Waterman, A. W.; Huxford, R. L.; Nelson, W. G.
1976-01-01
Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.
Aging and the Haptic Perception of Material Properties.
Norman, J Farley; Adkins, Olivia C; Hoyng, Stevie C; Dowell, Catherine J; Pedersen, Lauren E; Gilliam, Ashley N
2016-12-01
The ability of 26 younger (mean age was 22.5 years) and older adults (mean age was 72.6 years) to haptically perceive material properties was evaluated. The participants manually explored (for 5 seconds) 42 surfaces twice and placed each of these 84 experimental stimuli into one of seven categories: paper, plastic, metal, wood, stone, fabric, and fur/leather. In general, the participants were best able to identify fur/leather and wood materials; in contrast, recognition performance was worst for stone and paper. Despite similar overall patterns of performance for younger and older participants, the younger adults' recognition accuracies were 26.5% higher. The participants' tactile acuities (assessed by tactile grating orientation discrimination) affected their ability to identify surface material. In particular, the Pearson r correlation coefficient relating the participants' grating orientation thresholds and their material identification performance was -0.8: The higher the participants' thresholds, the lower the material recognition ability. While older adults are able to effectively perceive the solid shape of environmental objects using the sense of touch, their ability to perceive surface materials is significantly compromised.
Expedient Spall Repair Methods and Equipment for Airfield Pavements Preprint
2009-08-01
placement (3). RESEACH OBJECTIVES AND SCOPE The objective of this research was to develop one or more methods that will allow field personnel to...cores were used to perform in-situ tensile pull-off tests to evaluate the bond between the repair material and the substrate. Also, a series of 4...inch diameters cores were cut, and direct shear tests were performed on the repair material/substrate interface. Finally, all spalls were trafficked for
Degradation of photovoltaic backsheet materials under multi-factor accelerated UV light exposures
NASA Astrophysics Data System (ADS)
Klinke, Addison G.; Gok, Abdulkerim; Ifeanyi, Silas I.; French, Roger H.; Bruckman, Laura S.
2017-08-01
Long term outdoor durability of photovoltaic (PV) module backsheets is critical to a module's power output over its lifetime. The use of uoropolymer-based backsheets or the addition of stabilizers to polyethylene-terephthalate (PET) and polyamide (PA) type backsheets can help extend their lifetime. This study presents the performance of 21 backsheets made of 8 different material combinations under ASTM G154 Cycle 4 accelerated light exposures. The backsheets were subjected to 4000 hours of high irradiance UVA light at a peak intensity of 1.55 W=m2 at 340 nm at 70°C with and without a condensing humidity cycle at 50°C. Backsheets were evaluated, with repeated measurements, using various evaluation techniques to identify and assess potential signs of degradation. These evaluations included the yellowness index (YI), CIE color space coordinates, and gloss at 20, 60, and 85°. The temporal evolution of the relative color change ΔE was statistically analyzed to develop a stress-response model which used the UVA light dose to predict color change. It was found that the PVF/PET/E backsheet performed the best while PET/PET/E and THV/PET/EVA backsheets performed the worst. Additionally, substantial variation in color change response, attributable to key manufacturing differences, was observed within a given material type.
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Tae-Kyun; Kim, Byung-Yun
2015-01-01
In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability. PMID:28793563
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Tae-Kyun; Kim, Byung-Yun
2015-09-17
In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... performance evaluation or test for a semi-regenerative catalytic reforming unit catalyst regenerator vent, you... properties. Examples of analytical methods include, but are not limited to: (i) Use of material balances...
Code of Federal Regulations, 2014 CFR
2014-07-01
... performance evaluation or test for a semi-regenerative catalytic reforming unit catalyst regenerator vent, you... properties. Examples of analytical methods include, but are not limited to: (i) Use of material balances...
Code of Federal Regulations, 2012 CFR
2012-07-01
... performance evaluation or test for a semi-regenerative catalytic reforming unit catalyst regenerator vent, you... properties. Examples of analytical methods include, but are not limited to: (i) Use of material balances...
NASA Astrophysics Data System (ADS)
Khalifa, H. E.; Deck, C. P.; Gutierrez, O.; Jacobsen, G. M.; Back, C. A.
2015-02-01
The use of silicon carbide (SiC) composites as structural materials in nuclear applications necessitates the development of a viable joining method. One critical application for nuclear-grade joining is the sealing of fuel within a cylindrical cladding. This paper demonstrates cylindrical joint feasibility using a low activation nuclear-grade joint material comprised entirely of β-SiC. While many papers have considered joining material, this paper takes into consideration the joint geometry and component form factor, as well as the material performance. Work focused specifically on characterizing the strength and permeability performance of joints between cylindrical SiC-SiC composites and monolithic SiC endplugs. The effects of environment and neutron irradiation were not evaluated in this study. Joint test specimens of different geometries were evaluated in their as-fabricated state, as well as after being subjected to thermal cycling and partial mechanical loading. A butted scarf geometry supplied the best combination of high strength and low permeability. A leak rate performance of 2 × 10-9 mbar l s-1 was maintained after thermal cycling and partial mechanical loading and sustained applied force of 3.4 kN, or an apparent strength of 77 MPa. This work shows that a cylindrical SiC-SiC composite tube sealed with a butted scarf endplug provides out-of-pile strength and permeability performance that meets light water reactor design requirements.
Radiation Damage Workshop report. [solar cells
NASA Technical Reports Server (NTRS)
Rahilly, W. P.
1980-01-01
The starting material, cell design/geometry, and cell processing/fabrication for silicon and gallium arsenide solar cells are addressed with reference to radiation damage. In general, it is concluded that diagnostic sensitivities and material purities are basic to making significant gains in end-of-life performance and thermal annealability. Further, GaAs material characterization is so sketchy that a well defined program to evaluate such material for solar cell application is needed to maximize GaAs cell technology benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, Michael D.; Dameron, Arrelaine A.; Reese, Matthew O.
2013-05-14
Many thin film photovoltaic (PV) technologies can be sensitive to corrosion induced by the presence of water vapor in the packaging materials. Typically impermeable front and backsheets are used in conjunction with an edge-seal around the perimeter to prevent water vapor ingress. These edge-seal materials are often made of a polyisobutylene resin filled with desiccant, which dramatically increases the time for moisture to reach sensitive module components. While edge-seals can prevent moisture ingress, even the lowest diffusivity transparent encapsulant materials are insufficient for the lifetime of a module. To evaluate the performance of edge-seal and encapsulant materials in a mannermore » that simulates their function in a PV module, an optical method was devised where ingress is detected by reaction of a Ca film with water. Using this method, we have exposed test samples to heat and humidity allowing quantitative comparison of different edge-seal and encapsulant materials. Next, we use measurements of polymer diffusivity and solubility to evaluate the ability to model this moisture ingress. Here, we find good agreement between these two methods highlighting the much greater ability of polyisobutylene materials to keep moisture out as compared with typical encapsulant materials used in the PV industry.« less
Laboratory and field evaluation of hot mix asphalt with high contents of reclaimed asphalt pavement
NASA Astrophysics Data System (ADS)
Van Winkle, Clinton Isaac
Currently in Iowa, the amount of RAP materials allowed for the surface layer is limited to 15% by weight. The objective of this project was to develop quality standards for inclusion of RAP content higher than 15% in asphalt mixtures. To meet Superpave mix design requirements, it was necessary to fractionate the RAP materials. Based on the extensive sieve-by-sieve analysis of RAP materials, the optimum sieve size to fractionate RAP materials was identified. To determine if the higher percentage of RAP materials than 15% can be used in Iowa's state highway, three test sections with 30.0%, 35.5% and 39.2% of RAP materials were constructed on Highway 6 in Iowa City. The construction of the field test sections was monitored and the cores were obtained to measure field densities of test sections. Field mixtures collected from test sections were compacted in the laboratory in order to test the moisture sensitivity using a Hamburg Wheel Tracking Device. The binder was extracted from the field mixtures with varying amounts of RAP materials and tested to determine the effects of RAP materials on the PG grade of a virgin binder. Field cores were taken from the various mix designs to determine the percent density of each test section. A condition survey of the test sections was then performed to evaluate the short-term performance.
NASA Astrophysics Data System (ADS)
Aim-O, P.; Wongsawaeng, D.; Phruksarojanakun, P.; Tancharakorn, S.
2017-06-01
High-density concrete exhibits high strength and can perform an important role of gamma ray attenuation. In order to upgrade this material’s radiation-shielding performance, hydrogen-rich material can be incorporated. Waste rubber from vehicles has high hydrogen content which is the prominent characteristic to attenuate neutron. The objective of this work was to evaluate the radiation-shielding properties of this composite material against neutron and photon radiations. Monte Carlo transport simulation was conducted to simulate radiation through the composite material. Am-241/Be was utilized for neutron source and Co-60 for photon source. Parameters of the study included volume percentages of waste rubber, lead and boron carbide and thickness of the shielding material. These designs were also fabricated and the radiation shielding properties were experimentally evaluated. The best neutron and gamma ray shielding material was determined to be high-density concrete mixed with 5 vol% crumb rubber and 5 vol% lead powder. This shielding material increased the neutron attenuation by 64% and photon attenuation by 68% compared to ordinary concrete. Also, increasing the waste rubber content to greater than 5% resulted in a decrease in the radiation attenuation. This innovative composite radiation shielding material not only benefits nuclear science and engineering applications, but also helps solve the environmental issue of waste rubber.
Material Characterization of Microsphere-Based Scaffolds with Encapsulated Raw Materials
Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.
2016-01-01
“Raw materials,” or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to ‘blank’ groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236
Gladys, S; Van Meerbeek, B; Lambrechts, P; Vanherle, G
1999-09-01
The purpose of this study was to compare the esthetics of 3 resin-modified glass-ionomer materials and 1 polyacid-modified resin composite to the esthetics of a conventional glass-ionomer control material. One hundred eighty-seven Class V cervical restorations were observed clinically over 18 months. The esthetic index system that was used evaluated color match, translucency or opacity, and surface roughness. The tested materials behaved very dissimilarly and inconsistently. In general, the esthetic results of the resin-modified glass-ionomer materials and the polyacid-modified resin composite were far from optimal. The esthetic appearance of restorations seriously deteriorated during clinical service, mainly because of discoloration of margins, changes in translucency and opacity, and rapidly appearing roughness or dullness on the surface. Both the resin-modified glass-ionomer materials and the polyacid-modified resin composite evaluated in this study performed better esthetically than did the conventional glass-ionomer material. Indications for these combination materials are limited to areas where esthetics is not a primary concern but where their ease of application may guarantee a more durable functional result.
Evaluation of Shielding Performance for Newly Developed Composite Materials
NASA Astrophysics Data System (ADS)
Evans, Beren Richard
This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.
Validation of Organics for Advanced Stirling Convertor (ASC)
NASA Astrophysics Data System (ADS)
Shin, E. Eugene; Scheiman, Dan; Cybulski, Michelle; Quade, Derek; Inghram, Linda; Burke, Chris
2008-01-01
Organic materials are an essential part of the Advanced Stirling Convertor (ASC) construction as adhesives, potting, wire insulation, lubrication coatings, bobbins, bumpers, insulators, thread lockers. Since a long lifetime of such convertors to be used in the Advanced Stirling Radioisotope Generator (ASRG), sometimes up to 17 years, is required in various space applications such as Mars rovers, deep space missions, and lunar surface power, performance, durability and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations. The objective of this study was to evaluate, validate, and recommend organics for use in ASCs. Systematic and extensive evaluation methodologies were developed and conducted for various organic materials. The overall efforts dealing with organics materials for the last several years are summarized in the key areas, e.g., process-fabrication optimization, adhesive bonding integrity, outgassing, thermal stability, and durability
Frictional Ignition Testing of Composite Materials
NASA Technical Reports Server (NTRS)
Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel
2006-01-01
The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.
CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer
Xu, Toby; Tekes, Coskun; Degertekin, F. Levent
2014-01-01
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SixNy) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2 such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD SixNy and 100-nm HfO2 insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786
Performance of an online translation tool when applied to patient educational material.
Khanna, Raman R; Karliner, Leah S; Eck, Matthias; Vittinghoff, Eric; Koenig, Christopher J; Fang, Margaret C
2011-11-01
Language barriers may prevent clinicians from tailoring patient educational material to the needs of individuals with limited English proficiency. Online translation tools could fill this gap, but their accuracy is unknown. We evaluated the accuracy of an online translation tool for patient educational material. We selected 45 sentences from a pamphlet available in both English and Spanish, and translated it into Spanish using GoogleTranslate™ (GT). Three bilingual Spanish speakers then performed a blinded evaluation on these 45 sentences, comparing GT-translated sentences to those translated professionally, along four domains: fluency (grammatical correctness), adequacy (information preservation), meaning (connotation maintenance), and severity (perceived dangerousness of an error if present). In addition, evaluators indicated whether they had a preference for either the GT-translated or professionally translated sentences. The GT-translated sentences had significantly lower fluency scores compared to the professional translation (3.4 vs. 4.7, P < 0.001), but similar adequacy (4.2 vs. 4.5, P = 0.19) and meaning (4.5 vs. 4.8, P = 0.29) scores. The GT-translated sentences were more likely to have any error (39% vs. 22%, P = 0.05), but not statistically more likely to have a severe error (4% vs. 2%, P = 0.61). Evaluators preferred the professional translation for complex sentences, but not for simple ones. When applied to patient educational material, GT performed comparably to professional human translation in terms of preserving information and meaning, though it was slightly worse in preserving grammar. In situations where professional human translations are unavailable or impractical, online translation may someday fill an important niche. Copyright © 2011 Society of Hospital Medicine.
Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)
NASA Technical Reports Server (NTRS)
Fleischman, G. L.; Tanzer, H. J.
1985-01-01
The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.
2010-01-01
To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.
Real-time and accelerated outdoor endurance testing of solar cells
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Anagnostou, E.
1977-01-01
Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.
Tranzit XPress : hazardous material fleet management and monitoring system : evaluation report
DOT National Transportation Integrated Search
1997-07-01
In this report the evaluation performed on the first phase of the Tranzit XPress system is presented. The system comprises of a traffic/safety control center, motor vehicle instrumentation, and a variety of off vehicle tools that communicate with eac...
Winter Roadway Maintenance Material Enhancers (Field) Evaluation
DOT National Transportation Integrated Search
2018-04-06
In this study, the performance and cost analysis of four deicers products, i.e., Aqua Salina (AS), Beet Heet (BH), Green Blast (GB), Magic Minus Zero (MMZ), and two references, Rock Salt (RS) and/or Salt Brine (SB) were evaluated through parking lot ...
Design and evaluation of brushless electrical generators
NASA Technical Reports Server (NTRS)
Collins, F. A.; Ellis, J. N.
1970-01-01
Ten design manuals assembled and nine computer programs are developed for evaluation of proposed designs of brushless rotating electrical generators. Design manual package provides all information required for generator design, and computer programs permit calculation of performance of specific designs including effects of materials.
Security Robots Lasers RSS Feed Prev Next Air Force scientists are developing an improved system for coating materials performance evaluations that will accelerate the implementation of new aircraft coatings . New Evaluation System Helps Air Force Better Understand Corrosion Air Force scientists are developing
A Thermal Imaging Instrument with Uncooled Detectors
NASA Technical Reports Server (NTRS)
Joseph, A. T.; Barrentine, E.; Brown, A.
2018-01-01
In this work, we performed an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We evaluated two different uncooled detector technologies uncooled microbolometers and thermopiles. We have also evaluated materials for use in in a uncooled thermopile detector concept.
Evaluation of Optional and/or Replacement Concrete Sealers
DOT National Transportation Integrated Search
2018-02-01
This is an In-House evaluation of products performed by ODOTs Office of Materials Management. ODOT Spends about $8M per year on coating concrete for esthetic purposes. Built into the coating is sealing capability to help protect the concrete and t...
Evaluation of alternative dowel bar materials and coatings.
DOT National Transportation Integrated Search
2011-11-01
This study provided for a continuation of the long-term performance evaluation of 1.5-in (38-mm) diameter FRP dowels : and Type 304 stainless steel solid dowels or mortar-filled tubes compared to epoxy-coated dowels. This primarily : included an eval...
Evaluation of Process Performance for Sustainable Hard Machining
NASA Astrophysics Data System (ADS)
Rotella, Giovanna; Umbrello, Domenico; , Oscar W. Dillon, Jr.; Jawahir, I. S.
This paper aims to evaluate the sustainability performance of machining operation of through-hardening steel, AISI 52100, taking into account the impact of the material removal process in its various aspects. Experiments were performed for dry and cryogenic cutting conditions using chamfered cubic boron nitride (CBN) tool inserts at varying cutting conditions (cutting speed and feed rate). Cutting forces, mechanical power, tool wear, white layer thickness, surface roughness and residual stresses were investigated in order to evaluate the effects of extreme in-process cooling on the machined surface. The results indicate that cryogenic cooling has the potential to be used for surface integrity enhancement for improved product life and more sustainable functional performance.
Creating A Coordinated Autos/UAW Reporting System (CARS) For Evaluating Health Plan Performance,
1999-09-01
open enrollment materials, information was made available to employees on internal Web sites. The Greater Detroit Area Health Council also reported...RAND Creating A Coordinated Autos/UAW Reporting System (CARS) For Evaluating Health Plan Performance Elizabeth A. McGlynn, John Adams, Jennifer...Hicks, David Klein DRU-2123-FMC September 1999 Prepared for DaimlerChrysler, Ford Motor Company, General Motors, and the United Auto Workers
NASA Technical Reports Server (NTRS)
Gamwell, W. R.; McGill, P. B.
2006-01-01
Aluminum-Beryllium metal matrix composite materials are useful due to their desirable performance characteristics for aerospace applications. Desirable characteristics of this material includes light-weight, dimensional stability, stiffness, good vibration damping characteristics, low coefficient of thermal expansion, and workability, This material is 3.5 times stiffer and 22% lighter than conventional aluminum alloys. electro-optical systems, advanced sensor and guidance components for flight and satellite systems, components for light-weight high-performance aircraft engines, and structural components for helicopters. Aluminum-beryllium materials are now available in the form of near net shape investment castings. In this materials properties characterization study, the cryogenic tensile and fracture properties of an investment casting alloy, Beralcast 363, were determined. Tensile testing was performed at 21 C (70 F), -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F), and fracture (K(sub lc) and da/dN) testing was performed at -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F). Their use is attractive for weight critical structural applications such as advanced
Rolling, slip and traction measurements on low modulus materials
NASA Technical Reports Server (NTRS)
Tevaarwerk, J. L.
1985-01-01
Traction and wear tests were performed on six low modulus materials (LMM). Three different traction tests were performed to determine the suitability of the material for use as traction rollers. These were the rolling, slip and endurance traction tests. For each material the combination LMM on LMM and LMM on steel were evaluated. Rolling traction test were conducted to determine the load - velocity limits, the rolling traction coefficient of the materials and to establish the type of failures that would result when loading beyond the limit. It was found that in general a simple constant rolling traction coefficient was enough to describe the results of all the test. The slip traction tests revealed that the peak traction coefficients were considerably higher than for lubricated traction contacts. The endurance traction tests were performed to establish the durability of the LMM under conditions of prolonged traction. Wear measurements were performed during and after the test. Energetic wear rates were determined from the wear measurements conducted in the endurance traction tests. These values show that the roller wear is not severe when reasonable levels of traction are transmitted.
Laboratory test methods for evaluating the fire response of aerospace materials
NASA Technical Reports Server (NTRS)
Hilado, C. J.
1979-01-01
The test methods which were developed or evaluated were intended to serve as means of comparing materials on the basis of specific responses under specific sets of test conditions, using apparatus, facilities, and personnel that would be within the capabilities of perhaps the majority of laboratories. Priority was given to test methods which showed promise of addressing the pre-ignition state of a potential fire. These test methods were intended to indicate which materials may present more hazard than others under specific test conditions. These test methods are discussed and arranged according to the stage of a fire to which they are most relevant. Some observations of material performance which resulted from this work are also discussed.
On the vibration properties of composite materials and structures
NASA Astrophysics Data System (ADS)
Lu, Y. P.; Neilson, H. C.; Roscoe, A. J.
1993-01-01
In recent years, there has been a widespread assumption that composite materials and structures offer enhanced vibration and acoustic properties. This assumption has to be evaluated or validated. The objective of this article is to address the subject of vibration characteristics and the related force transmissibility properties of composite structures. For a given composite beam made of Hercules AS4/3501-6 graphite/epoxy with a layered structure sequence of (0,0,30,-30)(sub 6S), resonance frequencies, structural damping, responses, impedances, and force transmissibility properties are determined, discussed, and compared with those of a steel beam. This article proposes a procedure to evaluate the vibration properties of individual composites. The criterion defined for performance comparison between composite materials and conventional materials is also discussed.
Commutability of food microbiology proficiency testing samples.
Abdelmassih, M; Polet, M; Goffaux, M-J; Planchon, V; Dierick, K; Mahillon, J
2014-03-01
Food microbiology proficiency testing (PT) is a useful tool to assess the analytical performances among laboratories. PT items should be close to routine samples to accurately evaluate the acceptability of the methods. However, most PT providers distribute exclusively artificial samples such as reference materials or irradiated foods. This raises the issue of the suitability of these samples because the equivalence-or 'commutability'-between results obtained on artificial vs. authentic food samples has not been demonstrated. In the clinical field, the use of noncommutable PT samples has led to erroneous evaluation of the performances when different analytical methods were used. This study aimed to provide a first assessment of the commutability of samples distributed in food microbiology PT. REQUASUD and IPH organized 13 food microbiology PTs including 10-28 participants. Three types of PT items were used: genuine food samples, sterile food samples and reference materials. The commutability of the artificial samples (reference material or sterile samples) was assessed by plotting the distribution of the results on natural and artificial PT samples. This comparison highlighted matrix-correlated issues when nonfood matrices, such as reference materials, were used. Artificially inoculated food samples, on the other hand, raised only isolated commutability issues. In the organization of a PT-scheme, authentic or artificially inoculated food samples are necessary to accurately evaluate the analytical performances. Reference materials, used as PT items because of their convenience, may present commutability issues leading to inaccurate penalizing conclusions for methods that would have provided accurate results on food samples. For the first time, the commutability of food microbiology PT samples was investigated. The nature of the samples provided by the organizer turned out to be an important factor because matrix effects can impact on the analytical results. © 2013 The Society for Applied Microbiology.
Kevlar 49/Epoxy COPV Aging Evaluation
NASA Technical Reports Server (NTRS)
Sutter, James K.; Salem, Jonathan L.; Thesken, John C.; Russell, Richard W.; Littell, Justin; Ruggeri, Charles; Leifeste, Mark R.
2008-01-01
NASA initiated an effort to determine if the aging of Kevlar 49/Epoxy composite overwrapped pressure vessels (COPV) affected their performance. This study briefly reviews the history and certification of composite pressure vessels employed on NASA Orbiters. Tests to evaluate overwrap tensile strength changes compared 30 year old samples from Orbiter vessels to new Kevlar/Epoxy pressure vessel materials. Other tests include transverse compression and thermal analyses (glass transition and moduli). Results from these tests do not indicate a noticeable effect due to aging of the overwrap materials.
Clinical evaluation of two "packable" posterior composite resins.
Lopes, L G; Cefaly, D F G; Franco, E B; Mondelli, R F L; Lauris, J R P; Navarro, M F L
2002-06-01
The purpose of this study was to evaluate the clinical performance of two "packable" posterior composites: Prodigy Condensable (P) (Kerr) and Definite (D) (Degussa). Thirty-six patients participated in the study. A total of 78 restorations were made, 40 with D and 38 with P. Each patient received at least two restorations, one of each studied material. The materials were handled according to the manufacturer's instructions. The restorations were finished and polished after 1 week. They were evaluated at baseline and after 1 year by two independent evaluators using the United States Public Health Service (USPHS) criteria. Colored slides were made of all the restorations. After 1 year, 35 patients and 76 restorations (39 with D and 37 with P) were available for evaluation. All restorations received A criteria except the following ones, which received B criteria: color P (one restoration) and D (one restoration), marginal staining P (three restorations) and D (two restorations), surface staining P (nine restorations) and D (three restorations), anatomic form P (one restoration) and D (three restorations), and marginal adaptation P (one restoration) and D (eight restorations). The obtained data were tabulated and statistically analyzed using the Fisher and McNemar tests. After 1 year, P showed a significant increase in superficial staining. For D, the marginal adaptation became significantly worse than baseline and P. The studied materials can be considered acceptable during this evaluation period. Further evaluations are necessary for a better clinical performance analysis.
NASA Astrophysics Data System (ADS)
Linker, Thomas M.; Lee, Glenn S.; Beekman, Matt
2018-06-01
The semi-analytical methods of thermoelectric energy conversion efficiency calculation based on the cumulative properties approach and reduced variables approach are compared for 21 high performance thermoelectric materials. Both approaches account for the temperature dependence of the material properties as well as the Thomson effect, thus the predicted conversion efficiencies are generally lower than that based on the conventional thermoelectric figure of merit ZT for nearly all of the materials evaluated. The two methods also predict material energy conversion efficiencies that are in very good agreement which each other, even for large temperature differences (average percent difference of 4% with maximum observed deviation of 11%). The tradeoff between obtaining a reliable assessment of a material's potential for thermoelectric applications and the complexity of implementation of the three models, as well as the advantages of using more accurate modeling approaches in evaluating new thermoelectric materials, are highlighted.
Design, durability and low cost processing technology for composite fan exit guide vanes
NASA Technical Reports Server (NTRS)
Blecherman, S. S.
1979-01-01
A lightweight composite fan exit guide vane for high bypass ratio gas turbine engine application was investigated. Eight candidate material/design combinations were evaluated by NASTRAN finite element analyses. A total of four combinations were selected for further analytical evaluation, part fabrication by two ventors, and fatigue test in dry and wet condition. A core and shell vane design was chosen in which the unidirectional graphite core fiber was the same for all candidates. The shell material, fiber orientation, and ply configuration were varied. Material tests were performed on raw material and composite specimens to establish specification requirements. Pre-test and post-test microstructural examination and nondestructive analyses were conducted to determine the effect of material variations on fatigue durability and failure mode. Relevant data were acquired with respect to design analysis, materials properties, inspection standards, improved durability, weight benefits, and part price of the composite fan exit guide vane.
Superconductivity devices: Commercial use of space
NASA Technical Reports Server (NTRS)
Haertling, Gene; Furman, Eugene; Hsi, Chi-Shiung; Li, Guang
1993-01-01
The processing and screen printing of the superconducting BSCCO and 123 YBCO materials on substrates is described. The resulting superconducting properties and the use of these materials as possible electrode materials for ferroelectrics at 77 K are evaluated. Also, work performed in the development of solid-state electromechanical actuators is reported. Specific details include the fabrication and processing of high strain PBZT and PLZT electrostrictive materials, the development of PSZT and PMN-based ceramics, and the testing and evaluation of these electrostrictive materials. Finally, the results of studies on a new processing technology for preparing piezoelectric and electrostrictive ceramic materials are summarized. The process involves a high temperature chemical reduction which leads to an internal pre-stressing of the oxide wafer. These reduced and internally biased oxide wafers (RAINBOW) can produce bending-mode actuator devices which possess a factor of ten more displacement and load bearing capacity than present-day benders.
Environmental Evaluation of Building Materials of 5 Slovak Buildings
NASA Astrophysics Data System (ADS)
Porhincak, Milan; Estokova, Adriana
2013-11-01
Building activity has recently led to the deterioration of environment and has become unsustainable. Several strategies have been introduced in order to minimize consumption of energy and resulting CO2 emissions having their origin in the operational phase. But also other stages of Life Cycle should are important to identify the overall environmental impact of construction sector. In this paper 5 similar Slovak buildings (family houses) were analyzed in terms of environmental performance of building materials used for their structures. Evaluation included the weight of used materials, embodied energy and embodied CO2 and SO2 emissions. Analysis has proven that the selection of building materials is an important factor which influences the environmental profile. Findings of the case study indicated that materials like concrete, ceramic or thermal insulation materials based on polystyrene and mineral wool are ones with the most negative environmental impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley
This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used asmore » inputs to both the material and economic evaluations.« less
Ion beam sputter modification of the surface morphology of biological implants
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Banks, B. A.
1976-01-01
The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.
Ion-beam-sputter modification of the surface morphology of biological implants
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Banks, B. A.
1977-01-01
The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.
Contamination in food from packaging material.
Lau, O W; Wong, S K
2000-06-16
Packaging has become an indispensible element in the food manufacturing process, and different types of additives, such as antioxidants, stabilizers, lubricants, anti-static and anti-blocking agents, have also been developed to improve the performance of polymeric packaging materials. Recently the packaging has been found to represent a source of contamination itself through the migration of substances from the packaging into food. Various analytical methods have been developed to analyze the migrants in the foodstuff, and migration evaluation procedures based on theoretical prediction of migration from plastic food contact material were also introduced recently. In this paper, the regulatory control, analytical methodology, factors affecting the migration and migration evaluation are reviewed.
Design and evaluation of a single-span bridge using ultra-high performance concrete.
DOT National Transportation Integrated Search
2009-09-01
"Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possib...
Design and evaluation of a single-span bridge using ultra-high performance concrete.
DOT National Transportation Integrated Search
2009-09-01
Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possibl...
NASA Astrophysics Data System (ADS)
Wu, W.; Zhou, D. J.; Adamski, D. J.; Young, D.; Wang, Y. W.
2017-09-01
A study of die wear was performed using an uncoated dual phase, 1,180 MPa ultimate tensile strength steel (DP1180) in a progressive die. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for forming operations on uncoated DP1180 steel and update OEM’s die standards based on the experimental results in the real production environment. In total, 100,800 hits were performed in manufacturing production conditions, where 33 die inserts with the combination of 10 die materials and 9 coatings were investigated. The die inserts were evaluated for surface wear using scanning electron microscopy and characterized in terms of die material and/or coating defects, failure mode, failure initiation and propagation. Surface roughness of the formed parts was characterized using a WYKO NT110 machine. The analytical analysis of the die inserts and formed parts, combined with the failure mode and service life, provide a basis for die material and coating selection for forming AHSS components. The conclusions of this study will guide the selection of die material and coatings for high-volume production of AHSS components.
NASA Technical Reports Server (NTRS)
Meyer, T. G.; Hill, J. T.; Weber, R. M.
1988-01-01
A viscoplastic material model for the high temperature turbine airfoil material B1900 + Hf was developed and was demonstrated in a three dimensional finite element analysis of a typical turbine airfoil. The demonstration problem is a simulated flight cycle and includes the appropriate transient thermal and mechanical loads typically experienced by these components. The Walker viscoplastic material model was shown to be efficient, stable and easily used. The demonstration is summarized and the performance of the material model is evaluated.
Improving Self-Pierce Rivet Performance through Processing and Alloy Development
NASA Astrophysics Data System (ADS)
Van Hall, Stephen N.
Spot welding has been used to join steel sheet material in the past during automotive manufacturing. The increasing use of aluminum and mixed materials to achieve continually increasing fuel economy standards requires mechanical joining methods to provide adequate impact performance. One such mechanical joining process is self-pierce riveting (SPR). Self-pierce riveting has grown in popularity in recent years due to fast cycle times, high static strength and fatigue performance as well as the ability to join many different sheet material combinations. Self-pierce rivet utilization has become limited due to the material properties of the rivet in two main areas: the joining of high-strength sheet material and joining of multiple sheet material combinations using a single rivet geometry, referred to as commonization. Two specific case studies have been developed to assess the failures that occur and evaluate potential solutions: joining of press-hardened steel (PHS) to Al6111 and improved commonization ability using a two layer aluminum joint that is currently joined with a specialized rivet. Riveting trials have been performed on each of the two case studies using cold forged rivets produced from 10B37 steel that has been heat-treated through a quench and temper process to a range of hardness levels to evaluate the failures that occur within the rivet. The failures occur with two different modes: buckling of the rivet at hardness values below 550 HV when joining PHS and Al6111 and fractures that occur in the rivet tail at hardness values above 550 HV during joining in each of the case studies under evaluation. The fractures have been attributed to a high degree of hoop strain that forms when the rivets are flared beyond the design specifications. A method to replicate the rivet flaring procedure under laboratory conditions has been developed by flaring the rivets through various strain paths to induce a hoop strain and the resultant fractures. The flaring method shows the ability to replicate the types of fractures that were observed during joining attempts while monitoring applied force, crosshead displacement and strain at the point of fracture at the rivet tail using digital image correlation. Alternative alloys including 4130, 4340 and 5160 were evaluated alongside 10B37 for improved performance after quenching and tempering, austempering and after being intentionally decarburized to varying degrees. The heat-treatments were evaluated through microscopy, fractography, rivet flaring and joining attempts for each case study and alloy under investigation. All of the alternative alloys showed no significant performance gains after being quenched and tempered or austempered. However, hoop strain to failure during flaring was increased between 2-4x after the rivets had been intentionally decarburized. The intentionally decarburized rivets were evaluated through joining trials and provided successful joining for each of the case studies under investigation using 10B37 rivets. Rivets produced from 4340 and 5160 also showed instances of success during joining attempts. The Cockroft and Latham failure criterion was evaluated in regards to rivet flaring through the development of finite element simulations using Abaqus. The Cockroft and Latham failure criterion was able to successfully predict the location of riveting fractures through multiple strain paths, rivet geometries and microstructures. Cockroft and Latham values from tensile tests of 10B37 wire led to an underestimate of the strain to failure when compared to the rivet flaring process for quenched and tempered rivets but was very similar to the strain predicted for rivets that had been intentionally decarburized.
Material characterization and modeling with shear ography
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Callahan, Virginia
1993-01-01
Shearography has emerged as a useful technique for nondestructible evaluation and materials characterization of aerospace materials. A suitable candidate for the technique is to determine the response of debonds on foam-metal interfaces such as the TPS system on the External Tank. The main thrust is to develop a model which allows valid interpretation of shearographic information on TPS type systems. Confirmation of the model with shearographic data will be performed.
Material Stream Strategy for Lithium and Inorganics (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safarik, Douglas Joseph; Dunn, Paul Stanton; Korzekwa, Deniece Rochelle
Design Agency Responsibilities: Manufacturing Support to meet Stockpile Stewardship goals for maintaining the nuclear stockpile through experimental and predictive modeling capability. Development and maintenance of Manufacturing Science expertise to assess material specifications and performance boundaries, and their relationship to processing parameters. Production Engineering Evaluations with competence in design requirements, material specifications, and manufacturing controls. Maintenance and enhancement of Aging Science expertise to support Stockpile Stewardship predictive science capability.
NASA Technical Reports Server (NTRS)
Stradling, J.; Pippen, D. L.
1985-01-01
The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brousseau, R.; Arnott, M.; Baldock, B.
1995-08-01
Cathodic protection is used increasingly to mitigate steel reinforcement corrosion in concrete. the performance of zinc materials as impressed current anodes was evaluated. The anode materials investigated included rolled zinc sheets, metallized zinc, and 85% Zn-15% Al. The circuit resistance and the adhesion of the anodes was monitored with polarization time. Overall performance of arc-sprayed zinc was good. However, its adhesion to the concrete surface slowly decreased as the current density, or the polarization period, increased. Penny blank sheets and metallized 85% Zn-15% Al were found unsuitable as impressed current anodes.
Amponsah, Isaac; Harrison, Kenneth W; Rizos, Dimitris C; Ziehl, Paul H
2008-01-01
There is a net emissions change when adopting new materials for use in civil infrastructure design. To evaluate the total net emissions change, one must consider changes in manufacture and associated life-cycle emissions, as well as changes in the quantity of material required. In addition, in principle one should also consider any differences in costs of the two designs because cost savings can be applied to other economic activities with associated environmental impacts. In this paper, a method is presented that combines these considerations to permit an evaluation of the net change in emissions when considering the adoption of emerging technologies/materials for civil infrastructure. The method factors in data on differences between a standard and new material for civil infrastructure, material requirements as specified in designs using both materials, and price information. The life-cycle assessment approach known as economic input-output life-cycle assessment (EIO-LCA) is utilized. A brief background on EIO-LCA is provided because its use is central to the method. The methodology is demonstrated with analysis of a switch from carbon steel to high-performance steel in military bridge design. The results are compared with a simplistic analysis that accounts for the weight reduction afforded by use of the high-performance steel but assuming no differences in manufacture.
A study of the stress wave factor technique for nondestructive evaluation of composite materials
NASA Technical Reports Server (NTRS)
Sarrafzadeh-Khoee, A.; Kiernan, M. T.; Duke, J. C., Jr.; Henneke, E. G., II
1986-01-01
The acousto-ultrasonic method of nondestructive evaluation is an extremely sensitive means of assessing material response. Efforts continue to complete the understanding of this method. In order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes.
Radiopacity evaluation of Portland and MTA-based cements by digital radiographic system.
Borges, Alvaro Henrique; Pedro, Fabio Luiz Miranda; Semanoff-Segundo, Alex; Miranda, Carlos Eduardo Saraiva; Pécora, Jesus Djalma; Cruz Filho, Antônio Miranda
2011-01-01
The aim of the present study was to evaluate the radiopacity of Portland and MTA-based cements using the Digora TM digital radiographic system. The performed tests followed specification number 57 from the American National Standard Institute/American Dental Association (2000) for endodontic sealing materials. The materials were placed in 5 acrylic plates, especially designed for this experiment, along with a graduated aluminum stepwedge varying from 1 to 10 mm in thickness. The set was radiographed at a 30 cm focus-object distance and with 0.2 s exposure time. After the radiographs were taken, the optical laser readings of radiographs were performed by Digora TM system. Five radiographic density readings were performed for each studied material and for each step of the aluminum scale. White ProRoot MTA (155.99±8.04), gray ProRoot MTA (155.96±16.30) and MTA BIO (143.13±16.94) presented higher radiopacity values (p<0.05), while white non-structural Portland (119.76±22.34), gray Portland (109.71±4.90) and white structural Portland (99.59±12.88) presented lower radiopacity values (p<0.05). It was concluded that MTA-based cements were the only materials presenting radiopacity within the ANSI/ADA specifications.
Electrochemical Impedance Of Inorganic-Zinc-Coated Steel
NASA Technical Reports Server (NTRS)
Macdowell, Louis G.
1992-01-01
Report describes preliminary experiments to evaluate both direct-current and alternating-current electrochemical impedance measurements as candidate techniques for use in accelerated corrosion testing of mild-steel panels coated with inorganic zinc-rich primers and exposed to seaside air. Basic idea behind experiments to compare electrochemical impedance measurements with anticorrosion performances of coating materials to determine whether measurements can be used to predict performances. Part of continuing program to identify anticorrosion coating materials protecting steel panels adequately for as long as 5 years and beyond.
Simple functionalization method for single conical pores with a polydopamine layer
NASA Astrophysics Data System (ADS)
Horiguchi, Yukichi; Goda, Tatsuro; Miyahara, Yuji
2018-04-01
Resistive pulse sensing (RPS) is an interesting analytical system in which micro- to nanosized pores are used to evaluate particles or small analytes. Recently, molecular immobilization techniques to improve the performance of RPS have been reported. The problem in functionalization for RPS is that molecular immobilization by chemical reaction is restricted by the pore material type. Herein, a simple functionalization is performed using mussel-inspired polydopamine as an intermediate layer to connect the pore material with functional molecules.
Du, Jia-Ren; Chen, Nian-Ke; Li, Xian-Bin; Xie, Sheng-Yi; Tian, Wei Quan; Wang, Xian-Yin; Tu, Hai-Ling; Sun, Hong-Bo
2016-02-23
Long-wave infrared (8-12 μm) transmitting materials play critical roles in space science and electronic science. However, the paradox between their mechanical strength and infrared transmitting performance seriously prohibits their applications in harsh external environment. From the experimental view, searching a good window material compatible with both properties is a vast trail-and-error engineering project, which is not readily achieved efficiently. In this work, we propose a very simple and efficient method to explore potential infrared window materials with suitable mechanical property by first-principles gene-like searching. Two hundred and fifty-three potential materials are evaluated to find their bulk modulus (for mechanical performance) and phonon vibrational frequency (for optical performance). Seven new potential candidates are selected, namely TiSe, TiS, MgS, CdF2, HgF2, CdO, and SrO. Especially, the performances of TiS and CdF2 can be comparable to that of the most popular commercial ZnS at high temperature. Finally, we propose possible ranges of infrared transmission for halogen, chalcogen and nitrogen compounds respectively to guide further exploration. The present strategy to explore IR window materials can significantly speed up the new development progress. The same idea can be used for other material rapid searching towards special functions and applications.
DYNSYL: a general-purpose dynamic simulator for chemical processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, G.K.; Rozsa, R.B.
1978-09-05
Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simplemore » material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing.« less
Designing fire safe interiors.
Belles, D W
1992-01-01
Any product that causes a fire to grow large is deficient in fire safety performance. A large fire in any building represents a serious hazard. Multiple-death fires almost always are linked to fires that grow quickly to a large size. Interior finishes have large, continuous surfaces over which fire can spread. They are regulated to slow initial fire growth, and must be qualified for use on the basis of fire tests. To obtain meaningful results, specimens must be representative of actual installation. Variables--such as the substrate, the adhesive, and product thickness and density--can affect product performance. The tunnel test may not adequately evaluate some products, such as foam plastics or textile wall coverings, thermoplastic materials, or materials of minimal mass. Where questions exist, products should be evaluated on a full-scale basis. Curtains and draperies are examples of products that ignite easily and spread flames readily. The present method for testing curtains and draperies evaluates one fabric at a time. Although a fabric tested alone may perform well, fabrics that meet test standards individually sometimes perform poorly when tested in combination. Contents and furnishings constitute the major fuels in many fires. Contents may involve paper products and other lightweight materials that are easily ignited and capable of fast fire growth. Similarly, a small source may ignite many items of furniture that are capable of sustained fire growth. Upholstered furniture can reach peak burning rates in less than 5 minutes. Furnishings have been associated with many multiple-death fires.(ABSTRACT TRUNCATED AT 250 WORDS)
On-line evaluation of multiloop digital controller performance
NASA Technical Reports Server (NTRS)
Wieseman, Carol D.
1993-01-01
The purpose of this presentation is to inform the Guidance and Control community of capabilities which were developed by the Aeroservoelasticity Branch to evaluate the performance of multivariable control laws, on-line, during wind-tunnel testing. The capabilities are generic enough to be useful for all kinds of on-line analyses involving multivariable control in experimental testing. Consequently, it was decided to present this material at this workshop even though it has been presented elsewhere. Topics covered include: essential on-line analysis requirements; on-line analysis capabilities; on-line analysis software; frequency domain procedures; controller performance evaluation frequency-domain flutter suppression; and plant determination.
Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.
2012-01-01
The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.
USDA-ARS?s Scientific Manuscript database
Establishing standards for meat tenderness based on Warner-Bratzler shear force (WBSF) is complicated by the lack of methods for certifying WBSF testing among texture systems or laboratories. The objective of this study was to determine the suitability of using gelatin gels as a reference material ...
USDA-ARS?s Scientific Manuscript database
In the U.S., concerns over the long-term sustainability of peat, perlite, and other media components have led to searches for alternative materials. FiberFill, a synthetic fiber made of recyclable polyethylene terephthalate, and Tencel, a cellulose fiber, are new materials with potential as substra...
ERIC Educational Resources Information Center
Hall-Wallace, Michelle K.; McAuliffe, Carla M.
2002-01-01
Investigates student learning that occurred with a Geographic Information Systems (GIS) based module on plate tectonics and geologic hazards. Examines factors in the design and implementation of the materials that impacted student learning. Reports positive correlations between student' spatial ability and performance. Includes 17 references.…
Advanced Beef Unit for Advanced Livestock Production Curriculum. Instructor's Guide. AGDEX 420/00.
ERIC Educational Resources Information Center
Sparks, Jim; Stewart, Bob R.
This instructor's guide for an advanced beef unit contains 15 lessons that build on Agricultural Science I and II competencies. Introductory materials include lists of performance objectives and competencies for the complete unit, suggestions for motivational technique/interest approach and evaluation, lists of references and materials for the…
ERIC Educational Resources Information Center
Blackwell, H. Richard
1963-01-01
An application method for evaluating the visual significance of reflected glare is described, based upon a number of decisions with respect to the relative importance of various aspects of visual performance. A standardized procedure for evaluating the overall effectiveness of lighting from photometric data on materials or installations is needed…
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.
2006-01-01
As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.
Shimasaki, Noriko; Shinohara, Katsuaki; Morikawa, Hideki
2017-12-07
For occupational safety, healthcare workers must select and wear appropriate personal protective equipment (PPE), protective clothing, and masks as countermeasures against exposure to infectious body fluids and blood splash. It is important for healthcare workers to ensure the protective performance of each PPE against penetration of pathogens. The International Standards Organization (ISO) 22609 test evaluates the effectiveness of medical facemasks to protect against penetration of splashed synthetic blood. However, in this method, the protective performance is determined only visually, without quantification of leaked liquid volume. Therefore, in this study, we modified the ISO 22609 test method to quantify the volume of leaked liquid and obtain a more accurate assessment of the protection performance. We tested non-woven and woven materials used for masks or protective clothing, and the performance of each material was classified using this new method. We found that the quantity of leaked synthetic blood was dependent on the structural characteristics of each material. These findings will allow healthcare workers to select the most appropriate PPE for a given situation or task.
SHIMASAKI, Noriko; SHINOHARA, Katsuaki; MORIKAWA, Hideki
2017-01-01
For occupational safety, healthcare workers must select and wear appropriate personal protective equipment (PPE), protective clothing, and masks as countermeasures against exposure to infectious body fluids and blood splash. It is important for healthcare workers to ensure the protective performance of each PPE against penetration of pathogens. The International Standards Organization (ISO) 22609 test evaluates the effectiveness of medical facemasks to protect against penetration of splashed synthetic blood. However, in this method, the protective performance is determined only visually, without quantification of leaked liquid volume. Therefore, in this study, we modified the ISO 22609 test method to quantify the volume of leaked liquid and obtain a more accurate assessment of the protection performance. We tested non-woven and woven materials used for masks or protective clothing, and the performance of each material was classified using this new method. We found that the quantity of leaked synthetic blood was dependent on the structural characteristics of each material. These findings will allow healthcare workers to select the most appropriate PPE for a given situation or task. PMID:28978815
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Gary D.; Assink, Roger Alan; Dargaville, Tim Richard
2005-11-01
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. Themore » overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.« less
2004-05-01
Significant Impact HELPQ - Hydrologic Evaluation of Leachate Production and Quality HELP - Hydrologic Evaluation of Landfill Performance LDC...BIOASSAY SURFACE RUNOFF CONTROLS • PONDING • TREATMENT • OTHERS (5.3.6) AND EVALUATE AND /OR GROUNDWATER /OR LEACHATE • • • LEACHATE TESTING... LEACHATE CONTROLS COVERS LINERS TREATMENT PLANT BIOASSAY PLANT UPTAKE CONTROLS • COVERS • SELECTIVE VEGETATION (5.1) (5.2) (5.3
High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B
2015-01-01
Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performedmore » on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.« less
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.
2008-01-01
AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.
Evaluating the methodology and performance of jetting and flooding of granular backfill materials.
DOT National Transportation Integrated Search
2014-11-01
Compaction of backfill in confined spaces on highway projects is often performed with small vibratory plates, based : solely on the experience of the contractor, leading to inadequate compaction. As a result, the backfill is prone to : erosion and of...
Performance-Based Assessment Resource Guide.
ERIC Educational Resources Information Center
Gilbert, Judith C.; Burger, Patricia
This resource guide reviews a variety of performance-based student assessment strategies, and provides examples of, and references for, the strategies. Strategies include anecdotal records, interviews, peer report and group evaluations, and portfolios. Materials in the guide include: (1) a resource guide update form for teachers; (2) department…
NASA Technical Reports Server (NTRS)
Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.
1974-01-01
The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.
DOT National Transportation Integrated Search
2015-04-01
In this study, a total of 28 mixture combinations were designed and evaluated to : determine the maximum allowable amount of reclaimed asphalt pavement (RAP) : material in friction courses without jeopardizing pavement cracking performance. The : exp...
Development and analysis of insulation constructions for aerospace wiring applications
NASA Astrophysics Data System (ADS)
Slenski, George A.; Woodford, Lynn M.
1993-03-01
The Wright Laboratory Materials Directorate at WPAFB, Ohio recently completed a research and development program under contract with the McDonnell Douglas Aerospace Company, St. Louis, Missouri. Program objectives were to develop wire insulation performance requirements, evaluate candidate insulations, and prepare preliminary specification sheets on the most promising candidates. Aircraft wiring continues to be a high maintenance item and a major contributor to electrically-related aircraft mishaps. Mishap data on aircraft show that chafing of insulation is the most common mode of wire failure. Improved wiring constructions are expected to increase aircraft performance and decrease costs by reducing maintenance actions. In the laboratory program, new insulation constructions were identified that had overall improved performance in evaluation tests when compared to currently available MIL-W-81381 and MIL-W-22759 wiring. These insulations are principally aromatic polyimide and crosslinked ethylene tetrafluoroethylene (ETFE), respectively. Candidate insulations identified in preliminary specification sheets were principally fluoropolymers with a polyimide inner layer. Examples of insulation properties evaluated included flammability, high temperature mechanical and electrical performance, fluid immersion, and susceptibility to arc propagation under applied power chafing conditions. Potential next generation wire insulation materials are also reviewed.
Evaluation of liners for a uranium-mill tailings disposal site: a status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buelt, J.L.; Hale, V.Q.; Barnes, S.M.
1981-05-01
The United States Department of Energy is conducting a program designed to reclaim or stabilize inactive uranium-mill tailings sites. This report presents the status of the Liner Evaluation Program. The purpose of the study was to identify eight prospective lining materials or composites for laboratory testing. The evaluation was performed by 1) reviewing proposed regulatory requirements to define the material performance criteria; 2) reviewing published literature and communicating with industrial and government experts experienced with lining materials and techniques; and 3) characterizing the tailings at three of the sites for calcium concentration, a selection of anions, radionuclides, organic solvents, andmore » acidity levels. The eight materials selected for laboratory testing are: natural soil amended with sodium-saturated montmorillonite (Volclay); locally available clay in conjunction with an asphalt emulsion radon suppression cover; locally available clay in conjunction with a multibarrier radon suppression cover; rubberized asphalt membrane; hydraulic asphalt concrete; chlorosulfonated polyethylene (hypalon) or high-density polyethylene; bentonite, sand and gravel mixture; and catalytic airblown asphalt membrane. The materials will be exposed in test units now being constructed to conditions such as wet/dry cycles, temperature cycles, oxidative environments, ion-exchange elements, etc. The results of the tests will identify the best material for field study. The status report also presents the information gathered during the field studies at Grand Junction, Colorado. Two liners, a bentonite, sand and gravel mixture, and a catalytic airblown asphalt membrane, were installed in a prepared trench and covered with tailings. The liners were instrumented and are being monitored for migration of moisture, radionuclides, and hazardous chemicals. The two liner materials will also be subjected to accelerated laboratory tests for a comparative assessment.« less
Furuse, Adilson Y; Gordon, Kathryn; Rodrigues, Flávia P; Silikas, Nick; Watts, David C
2008-11-01
To evaluate the colour-stability and gloss-retention of silorane versus dimethacrylate composites exposed to accelerated aging from daylight radiation. Five disc-shaped specimens of photo-cured resin-composites were prepared and manually polished for each material (Filtek Silorane, Herculite XRV, Tetric Evoceram and QuiXfil). Colour and gloss were evaluated before and after periods (baseline, 24, 72, 120 and 192 h) of accelerated photo-aging in xenon light following ISO 7491:2000. Colour measurements were performed with a colourimeter according to the CIE-Lab colour-space. The colour change (DeltaE) for each time was calculated. The surface gloss was measured using a glossmeter. Results were evaluated using one-way ANOVA and Tukey tests (alpha=0.05). Correlations between logtime, DeltaE and gloss were evaluated using Pearson's correlation (alpha=0.05). Materials generally decreased in L and a and increased in b. The strong exception was Filtek Silorane which maintained a and b. DeltaE was found to be a positive linear function of logtime for all materials. Materials varied in the magnitude and rate of increase of DeltaE with logtime: QuiXfil>Tetric EvoCeram>(Filtek Silorane>or=Herculite XRV). DeltaE remained<3.3 for Filtek Silorane and Herculite XRV. Gloss was found to be a negative linear function of logtime. Gloss was maximal in the sequence: Filtek Silorane approximately Tetric EvoCeram>Herculite XRV>QuiXfil. Silorane gave the best overall performance in stability over time, compared to a set of representative dimethacrylate composites.
Electrostatic Evaluation: SCAPE Suit Materials
NASA Technical Reports Server (NTRS)
Buhler, Charles; Calle, Carlos
2005-01-01
The surface resistivity tests are performed per the requirements of the ESD Association Standard Test Method ESD STM11.11*. These measurements are taken using a PRS-801 resistance system with an Electro Tech System (ETS) PRF-911 concentric ring resistance probe. The tests require a five pound weight on top of cylindrical electrodes and were conducted at both ambient and low humidity conditions. In order for materials to "pass" resistivity tests the surface of the materials must either be conductive or statically dissipative otherwise the materials "fail" ESD. Volume resistivity tests are also conducted to measure conductivity through the material as opposed to conductivity along the surface. These tests are conducted using the same PRS-801 resistance system with the Electro Tech System PRF-911 concentric ring resistance probe but are performed in accordance with ESD Association Standard Test Method ESD STM11.l2**.
Evaluation of graded limestone base course on a low volume road : final report.
DOT National Transportation Integrated Search
1985-04-01
Due to decreasing supplies of native aggregate which may be incorporated into a base course, other materials need to be evaluated for constructibility and performance. To this end, a graded limestone base was constructed on a low volume road and eval...
High Thermal Conductivity Polymer Composites for Low Cost Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-08-01
This factsheet describes a project that identified and evaluated commercially available and state-of-the-art polymer-based material options for manufacturing industrial and commercial non-metallic heat exchangers. A heat exchanger concept was also developed and its performance evaluated with heat transfer modeling tools.
DOT National Transportation Integrated Search
1973-01-01
Various curing and/or protective coatings were evaluated under three conditions: (1) accelerated laboratory freezing and thawing of specimens in 2 percent sodium chloride solution, (2) exposure in an outdoor area of slabs which were subjected to cont...
DOT National Transportation Integrated Search
1975-01-01
Various curing and/or protective coatings were evaluated under three conditions: (1) accelerated laboratory freezing and thawing of specimens in 2 percent sodium chloride solution, (2) exposure in an outdoor area of slabs subjected to controlled appl...
Design of materials with prescribed nonlinear properties
NASA Astrophysics Data System (ADS)
Wang, F.; Sigmund, O.; Jensen, J. S.
2014-09-01
We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests under finite deformation, i.e. stress-strain relations and Poissons ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties. The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poissons ratio for axial strain intervals of εi∈[0.00, 0.30].
Viscoelastic properties of elastomeric materials for O-ring applications
NASA Technical Reports Server (NTRS)
Bower, Mark V.
1989-01-01
Redesign of the Space Shuttle Solid Rocket Booster necessitated re-evaluation of the material used in the field joint O-ring seals. This research project was established to determine the viscoelastic characteristics of five candidate materials. The five materials are: two fluorocarbon compounds, two nitrile compounds, and a silicon compound. The materials were tested in a uniaxial compression test to determine the characteristic relaxation functions. These tests were performed at five different temperatures. A master material curve was developed for each material from the experimental data. The results of this study are compared to tensile relaxation tests. Application of these results to the design analysis is discussed in detail.
Unique Systems Analysis Task 7, Advanced Subsonic Technologies Evaluation Analysis
NASA Technical Reports Server (NTRS)
Eisenberg, Joseph D. (Technical Monitor); Bettner, J. L.; Stratton, S.
2004-01-01
To retain a preeminent U.S. position in the aircraft industry, aircraft passenger mile costs must be reduced while at the same time, meeting anticipated more stringent environmental regulations. A significant portion of these improvements will come from the propulsion system. A technology evaluation and system analysis was accomplished under this task, including areas such as aerodynamics and materials and improved methods for obtaining low noise and emissions. Previous subsonic evaluation analyses have identified key technologies in selected components for propulsion systems for year 2015 and beyond. Based on the current economic and competitive environment, it is clear that studies with nearer turn focus that have a direct impact on the propulsion industry s next generation product are required. This study will emphasize the year 2005 entry into service time period. The objective of this study was to determine which technologies and materials offer the greatest opportunities for improving propulsion systems. The goals are twofold. The first goal is to determine an acceptable compromise between the thermodynamic operating conditions for A) best performance, and B) acceptable noise and chemical emissions. The second goal is the evaluation of performance, weight and cost of advanced materials and concepts on the direct operating cost of an advanced regional transport of comparable technology level.
How to assess good candidate molecules for self-activated optical power limiting
NASA Astrophysics Data System (ADS)
Lundén, Hampus; Glimsdal, Eirik; Lindgren, Mikael; Lopes, Cesar
2018-03-01
Reverse saturable absorbers have shown great potential to attenuate laser radiation. Good candidate molecules and various particles have successfully been incorporated into different glass matrices, enabling the creation of self-activated filters against damaging laser radiation. Although the performance of such filters has been impressive, work is still ongoing to improve the performance in a wider range of wavelengths and pulse widths. The purpose of this tutorial is, from an optical engineering perspective, to give an understanding of the strengths and weaknesses of this class of smart materials, how relevant photophysical parameters are measured and influence system performance and comment on the pitfalls in experimental evaluation of materials. A numerical population model in combination with simple physical formulas is used to demonstrate system behavior from a performance standpoint. Geometrical reasoning shows the advantage of reverse saturable absorption over nonlinear scattering due to a fraction of scattered light being recollected by imaging system optics. The numerical population model illustrates the importance of the optical power limiting performance during the leading edge of a nanosecond pulse, which is most strongly influenced by changes in the two-photon absorption cross section and the triplet linear absorption cross section for a modeled Pt-acetylide. This tutorial not only targets optical engineers evaluating reverse saturable absorbing materials but also aims to assist researchers with a chemistry background working on optical power limiting materials. We also present photophysical data for a series of coumarins that can be useful for the determination of quantum yields and two-photon cross sections and show examples of characterization of molecules with excited triplet states.
Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram
2016-03-01
In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of Autoclave and Out-of-Autoclave Composites
NASA Technical Reports Server (NTRS)
Sutter, James K.; Kenner, W. Scott; Pelham, Larry; Miller, Sandi G.; Polis, Danel L.; Nailadi, Chaitra; Zimmerman, Thomas J.; Lort, Richard D.; Hou, Tan-Hung; Quade, Derek J.;
2010-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite dry structural applications on Ares V inspired the evaluation of autoclave and out-of-autoclave (OOA) composite materials. A NASA and industry team selected the most appropriate materials based on component requirements for a heavy lift launch vehicle. Autoclaved and OOA composites were fabricated and results will highlight differences in processing conditions, laminate quality, as well as initial room temperature thermal and mechanical performance. Results from this study compare solid laminates that were both fiber-placed and hand-laid. Due to the large size of heavy-lift launch vehicle composite structures, there is significant potential that the uncured composite material or prepreg will experience significant out-life during component fabrication. Therefore, prepreg out-life was a critical factor examined in this comparison. In order to rigorously test material suppliers recommended out-life, the NASA/Industry team extended the out-time of the uncured composite prepreg to values that were approximately 50% beyond the manufacturers out-time limits. Early results indicate that the OOA prepreg composite materials suffered in both composite quality and mechanical property performance from their extended out-time. However, the OOA materials performed similarly to the autoclaved composites when processed within a few days of exposure to ambient "shop" floor handling. Follow on studies evaluating autoclave and OOA aluminum honeycomb core sandwich composites are planned.
Correlation of mastication and masticatory movements and effect of chewing side preference.
Farias Gomes, Simone Guimarães; Custodio, William; Moura Jufer, Juliana Silva; Del Bel Cury, Altair Antoninha; Rodrigues Garcia, Renata Cunha Matheus
2010-01-01
The aims of this study were to correlate masticatory performance with mandibular movements during mastication, and to evaluate masticatory performance and mandibular movements of subjects with different types of mastication. Seventy-eight healthy dentate subjects were selected and divided into 2 groups: bilateral and unilateral chewers. This classification was set by using kinesiography during mastication of an artificial material. Unilateral mastication was defined as the majority of the cycles took place at one specific side. The same tracings used to define type of mastication were used to evaluate mandibular movements by means of its parameters. Masticatory performance was analyzed by comminution of the artificial material and a sieving method. Statistical analysis was performed by Spearman's correlation method, and Mann-Whitney and Student's t-test, when appropriate, at 5% significance level. No correlation was found between masticatory performance and parameters of mandibular movement during mastication. Bilateral chewers presented significantly better (p<0.05) masticatory performance than unilateral ones, however no differences in parameters of mandibular movement were found between groups. Within the limits of this study, it may be concluded that parameters of jaw movements during mastication are not related to masticatory performance, and that the presence of a preferred chewing side worsens mastication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Alan; Chaves, Chris
2015-04-04
The Department of Energy (DOE) has performed an evaluation of the technical bases for the default value for the atmospheric dispersion parameter χ/Q. This parameter appears in the calculation of radiological dose at the onsite receptor location (co-located worker at 100 meters) in safety analysis of DOE nuclear facilities. The results of the calculation are then used to determine whether safety significant engineered controls should be established to prevent and/or mitigate the event causing the release of hazardous material. An evaluation of methods for calculation of the dispersion of potential chemical releases for the purpose of estimating the chemical exposuremore » at the co-located worker location was also performed. DOE’s evaluation consisted of: (a) a review of the regulatory basis for the default χ/Q dispersion parameter; (b) an analysis of this parameter’s sensitivity to various factors that affect the dispersion of radioactive material; and (c) performance of additional independent calculations to assess the appropriate use of the default χ/Q value.« less
Readability and Understandability of Online Vocal Cord Paralysis Materials.
Balakrishnan, Vini; Chandy, Zachariah; Hseih, Amy; Bui, Thanh-Lan; Verma, Sunil P
2016-03-01
Patients use several online resources to learn about vocal cord paralysis (VCP). The objective of this study was to assess the readability and understandability of online VCP patient education materials (PEMs), with readability assessments and the Patient Education Materials Evaluation Tool (PEMAT), respectively. The relationship between readability and understandability was then analyzed. Descriptive and correlational design. Online PEMs were identified by performing a Google search with the term "vocal cord paralysis." After scientific webpages, news articles, and information for medical professionals were excluded, 29 articles from the first 50 search results were considered. Readability analysis was performed with 6 formulas. Four individuals with different educational backgrounds conducted understandability analysis with the PEMAT. Fleiss's Kappa interrater reliability analysis determined consistency among raters. Correlation between readability and understandability was determined with Pearson's correlation test. The reading level of the reviewed articles ranged from grades 9 to 17. Understandability ranged from 29% to 82%. Correlation analysis demonstrated a strong negative correlation between materials' readability and understandability (r = -0.462, P < .05). Online PEMs pertaining to VCP are written above the recommended reading levels. Overall, materials written at lower grade levels are more understandable. However, articles of identical grade levels had varying levels of understandability. The PEMAT may provide a more critical evaluation of the quality of a PEM when compared with readability formulas. Both readability and understandability should be used to evaluate PEMs. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Alternative High-Performance Motors with Non-Rare Earth Materials, Final Publishable Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galioto, Steven; Johnson, Francis
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the petroleum dependence of the transportation sector. To have significant effect, electric drive technologies must be economical in terms of cost, weight, and size while meeting performance and reliability expectations. The goal of the project is to develop traction motors that reduce or eliminate the use of rare-earth materials and meet the DoE specifications for such a traction motor. This is accomplished by evaluating and developing multiple motor topologies in conjunction with advanced materials. Eight non-permanent magnet motormore » topologies and two reduced or non-rare earth motor topologies are analyzed and compared using a common set of requirements. Five of the motors are built and tested to validate the analysis. This paper provides a detailed quantitative comparison of the different machine topologies that reduce or eliminate rare-earth materials. Conclusions are drawn from the analysis and test data to show the tradeoffs related to selecting each of the motor topologies with the hope of providing practicing engineers and researchers in the field enough guidelines for choosing the “optimum” machine topology that suits their applications and set of performance requirements. Four materials technologies were investigated for their ability to enable a reduced rare earth electric motor. Two of the technologies were soft magnetic materials, one was a non-rare-earth containing permanent magnet technology, and the last was an insulation material. These processing and performance of these materials were first demonstrated in small coupons. The coupon tests justified proceeding to larger scale processing for two of the materials technologies: 1) a dual-phase soft magnetic material for use in rotor laminates and 2) a high temperature insulation material for use as a slot liner in the stator. The dual phase soft magnetic material was produced at a scale sufficient to build and test a sub-scale motor prototype. The high temperature insulation material was first evaluated in a series of “statorettes” before being demonstrated in the stator of one of the full-scale motor prototypes. Testing of the dual phase material revealed issues with process variability in larger production volumes that are being addressed in a subsequent project. The performance of the high-temperature slot liner insulation was demonstrated during the operation of a full-scale prototype. Furthermore, the insulation material was shown to survive aging tests of 2000 hours and 280 °C and 800 hours at 300 °C. This program provides analysis and data to accelerate the introduction of hybrid electric vehicles into the U.S. road vehicle fleet and bring the added benefits of reduced fuel consumption and environmental impacts« less
Kayili, H Mehmet; Salih, Bekir
2016-08-01
Hydrophobic silicon-based material having magnetic properties was fairly synthesized by a classical sol-gel approach. Pepsin enzyme was encapsulated in the sol-gel material and the enzyme activity was evaluated in consequence of the digestion of some common proteins such as α- and β-casein, cytochrome c, myoglobin, and bovine serum albumin (BSA) both in a single protein batch and in the protein mixture. The optimum digestion time of the studied proteins using pepsin-encapsulated magnetic sol-gel material was found to be 20min. To produce the magnetic sol-gel material for convenient and easy proteomics applications, Fe3O4 was doped inside sol-gel material during the gelation step. It was observed that the activity of encapsulated pepsin was not affected by the amount of Fe3O4. Poly(ethylene glycol) was also inserted in sol-gel bulk to obtain suitable roughness and increase the hydrophilicity of the material surface to let protein molecules reach to the sol-gel material easily. The digestion of the protein mixture and non-fat bovine milk was performed with the pepsin-encapsulated magnetic sol-gel material and the digested solutions were analyzed using SDS-PAGE, MALDI-TOF-MS and LC-MS/MS for the protein identification. Reusability of the pepsin-encapsulated sol-gel material was examined and it was determined that they could be used at least 20 times. Finally, IgG digestions with a fast incubation time period were carried out using pepsin-encapsulated sol-gel material for generation of (Fab)2 product to evaluate the kinetic performance of the material. Copyright © 2016 Elsevier B.V. All rights reserved.
Performance of Cracked and Seated Rigid Airport Pavements.
1987-04-01
situ properties of the cracked PCC material and of the uncracked PCC. Additionally, a visual condition survey of the pavements under investigation was...the overall pavement evaluation effort. Results of the NDT testing program were used to determine the in-situ properties of the cracked PCC material ...combined with the NDT deflection basin slopes, led to the conclusion that the cracked and seated PCC layer is behaving as a semi-rigid material . 45 OVERLAY
Damage Tolerance Assessment Branch
NASA Technical Reports Server (NTRS)
Walker, James L.
2013-01-01
The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.
Feasibility studies for the treatment and reuse of contaminated marine sediments.
Bonomoa, L; Careghini, A; Dastoli, S; De Propris, L; Ferrari, G; Gabellini, M; Saponaro, S
2009-07-01
This paper presents preliminary results of laboratory tests aimed at evaluating the easibility of the remediation of marine sediments, which are polluted by mercury and petroleum hydrocarbons, dredged at the bay of Augusta (SR, Italy). The treatment is composed of two sequential steps: in the first, a cement-based granular material is produced (based on a high performance concrete approach); then, the volatile and the semi-volatile compounds in the granular material are removed by a thermal desorption step. Treated materials could be reused or put into caissons, according to their mechanical properties and environmental compatibility. The experiments were focused on evaluating the effect of the process parameter values on: (i) the evolution of cement hydration reactions, (ii) thermal desorption removal efficiencies, (iii) leaching behaviour of the treated material.
DOT National Transportation Integrated Search
1981-12-01
Construction and short-term pavement performance problems were noted in the Pacific Northwest and throughout the United States during the past five years. Several reasons have been suggested to explain this sudden change in pavement performance, such...
40 CFR 59.208 - Charcoal lighter material testing protocol.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the performance, design, and operation specifications of the prescribed equipment. A demonstration... Administrator prior to compliance testing, based on an evaluation of comparative performance specifications and... stack barbecue charcoal that is designed to be lit without the packaging, the same as in paragraph (h)(1...
40 CFR 59.208 - Charcoal lighter material testing protocol.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the performance, design, and operation specifications of the prescribed equipment. A demonstration... Administrator prior to compliance testing, based on an evaluation of comparative performance specifications and... stack barbecue charcoal that is designed to be lit without the packaging, the same as in paragraph (h)(1...
40 CFR 59.208 - Charcoal lighter material testing protocol.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the performance, design, and operation specifications of the prescribed equipment. A demonstration... Administrator prior to compliance testing, based on an evaluation of comparative performance specifications and... stack barbecue charcoal that is designed to be lit without the packaging, the same as in paragraph (h)(1...
Development of X-43A Mach 10 Leading Edges
NASA Technical Reports Server (NTRS)
Ohlhorst, Craig W.; Glass, David E.; Bruce, Walter E., III; Lindell, Michael C.; Vaughn, Wallace L.; Dirling, R. B., Jr.; Hogenson, P. A.; Nichols, J. M.; Risner, N. W.; Thompson, D. R.
2005-01-01
The nose leading edge of the Hyper-X Mach 10 vehicle was orginally anticipated to reach temperatures near 4000 F at the leading-edge stagnation line. A SiC coated carbon/carbon (C/C) leading-edge material will not survive that extreme temperature for even a short duration single flight. To identify a suitable leading edge for the Mach 10 vehicle, arc-jet testing was performed on thirteen leading-edge segments fabricated from different material systems to evaluate their performance in a simulated flight environment. Hf, Zr, Si, and Ir based materials, in most cases as a coating on C/C, were included in the evaluation. Afterwards, MER, Tucson, AZ was selected as the supplier of the flight vehicle leading edges. The nose and the vertical and horizontal tail leading edges were fabricated out of a 3:1 biased high thermal conductivity C/C. The leading edges were coated with a three layer coating comprised of a SiC conversion of the top surface of the C/C, followed by a chemical vapor deposited layer of SiC, followed by a thin chemical vapor deposited layer of HfC. This paper will describe the fabrication of the Mach 10 C/C leading edges and the testing performed to validate performance.
Analysis of the TREAT LEU Conceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.
2016-03-01
Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less
Ultrasonic assessment of additive manufactured Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Schehl, Norman; Kramb, Vicki; Dierken, Josiah; Aldrin, John; Schwalbach, Edwin; John, Reji
2018-04-01
Additive Manufacturing (AM) processes offer the potential for manufacturing cost savings and rapid insertion into service through production of near net shape components for complicated structures. Use of these parts in high reliability applications such as those in the aerospace industry will require nondestructive characterization methods to ensure post-process material quality in as-built condition. Ultrasonic methods can be used for this quality verification. Depending on the application, the service life of AM components can be sensitive to the part surface condition. The surface roughness and layered structure inherent to the electron-beam powder-bed fusion process necessitates new approaches to evaluate subsurface material integrity in its presence. Experimental methods and data analytics may improve the evaluation of as-built additively manufactured materials. This paper discusses the assessment of additively manufactured EBM Ti-6Al-4V panels using ultrasonic methods and the data analytics applied to evaluate material integrity. The assessment was done as an exploratory study as the discontinuities of interest in these test samples were not known when the measurements were performed. Water immersion ultrasonic techniques, including pulse-echo and through transmission with 10 MHz focused transducers, were used to explore the material integrity of as-built plates. Subsequent destructive mechanical tests of specimens extracted from the plates provided fracture locations indicating critical flaws. To further understand the effect of surface-roughness, an evaluation of ultrasonic response in the presence of as-built surfaces and with the surface removed was performed. The assessment of additive manufactured EBM Ti-6Al-4V panels with ultrasonic techniques indicated that ultrasonic energy was attenuated by the as-built surface roughness. In addition, feature detection was shown to be sensitive to experimental ultrasonic parameters and flaw morphology.
NASA Astrophysics Data System (ADS)
Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke
2018-02-01
Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.
Drug Abuse Films, Second Edition.
ERIC Educational Resources Information Center
National Coordinating Council on Drug Education, Washington, DC.
This second edition updates and expands a 1971 evaluation of films and audiovisuals related to drug education performed by the National Coordinating Council on Drug Education. Materials in this edition are evaluated both for accuracy and effectiveness as a communications tool. They are separated into two sections--films and other audiovisuals…
DOT National Transportation Integrated Search
2009-01-01
The objective of the sensitivity study was to evaluate the input parameters related to AC material properties, traffic, and climate that significantly or insignificantly influence the predicted performance for two specific SISSI flexible pavements: W...
NASA Technical Reports Server (NTRS)
Hadaway, James B.
1997-01-01
This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.
Improving the Precollegiate Curriculum on Latin America, Grades 6-12. Final Performance Report.
ERIC Educational Resources Information Center
Wirth, John D.
The Latin America Project, which developed print and nonprint materials for use in grades 6-12, is described. The two-year effort was conducted in five phases: survey of existing materials; the development of curriculum units; review of curriculum by teachers attending summer institutes; field testing and evaluation; and dissemination. Titles of…
Nickel cadmium cell designs negative to positive material ratio and precharge levels
NASA Technical Reports Server (NTRS)
Gross, S.
1977-01-01
A review is made of the factors affecting the choices of negative-to-positive materials ratio and negative precharge in nickel-cadmium cells. The effects of these variables on performance are given, and the different methods for setting precharge are evaluated. The effects of special operating requirements on the design are also discussed.
1991-07-01
This photograph shows the Solid Propellant Test Article (SPTA) test stand with the Modified Nasa Motor (M-NASA) test article at the Marshall Space Flight Center (MSFC). The SPTA test stand, 12-feet wide by 12-feet long by 24-feet high, was built in 1989 to provide comparative performance data on nozzle and case insulation material and to verify thermostructural analysis models. A modified NASA 48-inch solid motor (M-NASA motor) with a 12-foot blast tube and 10-inch throat makes up the SPTA. The M-NASA motor is being used to evaluate solid rocket motor internal non-asbestos insulation materials, nozzle designs, materials, and new inspection techniques. New internal motor case instrumentation techniques are also being evaluated.
NASA Technical Reports Server (NTRS)
James, G. H.; Imbrie, P. K.; Hill, P. S.; Allen, D. H.; Haisler, W. E.
1988-01-01
Four current viscoplastic models are compared experimentally for Inconel 718 at 593 C. This material system responds with apparent negative strain rate sensitivity, undergoes cyclic work softening, and is susceptible to low cycle fatigue. A series of tests were performed to create a data base from which to evaluate material constants. A method to evaluate the constants is developed which draws on common assumptions for this type of material, recent advances by other researchers, and iterative techniques. A complex history test, not used in calculating the constants, is then used to compare the predictive capabilities of the models. The combination of exponentially based inelastic strain rate equations and dynamic recovery is shown to model this material system with the greatest success. The method of constant calculation developed was successfully applied to the complex material response encountered. Backstress measuring tests were found to be invaluable and to warrant further development.
Flat-plate solar array project. Volume 7: Module encapsulation
NASA Astrophysics Data System (ADS)
Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.
1986-10-01
The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.
Flat-plate solar array project. Volume 7: Module encapsulation
NASA Technical Reports Server (NTRS)
Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.
1986-01-01
The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.
ERIC Educational Resources Information Center
Foster, Bruce E., Ed.
Volume 1 contains all the invited papers accepted for the symposium. The subject matter covered in the papers includes physiological, anthropometrical, psychological, sociological, and economic human requirements and methods of evaluation; physical requirements and methods of evaluation in mechanical, acoustical, thermal, dimensional stability,…
Lightweight fibrous nickel electrodes for nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Britton, Doris L.
1989-01-01
The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art sintered nickel electrodes. Lightweight fibrous materials or plaques are used as conductive supports for the nickel hydroxide active material. These materials are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C, and 2.74C. The electrodes that pass the initial tests are life cycle-tested in a low Earth orbit regime at 80 percent depth of discharge.
Finnish spectrolite as high-dose gamma detector
NASA Astrophysics Data System (ADS)
Antonio, Patrícia L.; Caldas, Linda V. E.
2015-11-01
A natural material called spectrolite, from Finland, was studied in this work. The purpose was to test it in gamma radiation beams to verify its performance as a high-dose detector. From this material, pellets were manufactured with two different concentrations of Teflon and spectrolite, and their responses were verified using two luminescent techniques: thermoluminescence (TL) and optically stimulated luminescence (OSL). The TL and OSL signals were evaluated by means of characterization tests of the material response, after exposure to a nominal absorbed dose interval of 5 Gy to 10 kGy. The results obtained, for both concentrations, showed a good performance of this material in beams of high-dose gamma radiation. Both techniques were utilized in order to investigate the properties of the spectrolite+Teflon samples for different applications.
Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions
NASA Technical Reports Server (NTRS)
Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming
2013-01-01
Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.
TRANSTRAIN: A program to compute strain transformations in composite materials
NASA Technical Reports Server (NTRS)
Ahmed, Rafiq
1990-01-01
Over the years, the solid rocket motor community has made increasing use of composite materials for thermal and structural applications. This is particularly true of solid rocket nozzles, which have used carbon phenolic and, increasingly, carbon-carbon materials to provide structural integrity and thermal protection at the high temperatures encountered during motor burn. To evaluate the degree of structural performance of nozzles and their materials and to verify analysis models, many subscale and full-scale tests are run. These provide engineers with valuable data needed to optimize design and to analyze nozzle hardware. Included among these data are strains, pressures, thrust, temperatures, and displacements. Recent nozzle test hardware has made increasing use of strain gauges embedded in the carbon composite material to measure internal strains. In order to evaluate strength, these data must be transformed into strains along the fiber directions. The fiber-direction stresses can then be calculated. A computer program written to help engineers correctly manipulate the strain data into a form that can be used to evaluate structural integrity of the nozzle is examined.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1985-01-01
This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goals are: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are that of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integability of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model.
Design of plywood and paper flywheel rotors
NASA Astrophysics Data System (ADS)
Erdman, A. G.; Hagen, D. L.; Gaff, S. A.
1982-05-01
Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of rotors are evaluated. Wound kraft paper, twine and plywood rotors are examined. Two hub attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Preliminary duration of load tests was performed on vacuum dried hexagonal birch plywood. Dynamic and static rotor hub fatigue equipment is designed. Moisture loss rates while vacuum drying plywood cylinders were measured, and the radial and axial diffusion coefficients were evaluated. Diffusion coefficients of epoxy coated plywood cylinders were also obtained. Economics of cellulosic and conventional rotors were examined. Plywood rotor manufacturing costs were evaluated. The optimum economic shape for laminated rotors is shown to be cylindrical. Vacuum container costs are parametrically derived and based on material properties and costs. Containment costs are significant and are included in comparisons. The optimum design stress and wound rotor configuration are calculated for seventeen examples. Plywood rotors appear to be marginally competitive with the steel hose wire or E glass rotors. High performance oriented kraft paper rotors potentially provide the lowest energy storage costs in stationary systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiaro, P.J.
A series of tests were performed at Oak Ridge National Laboratory (ORNL) to evaluate and characterize the radiological response of a ''Cricket'' radiation detection system. The ''Cricket'' is manufactured by RAD/COMM Systems Corp., which is located in Ontario, Canada. The system is designed to detect radioactive material that may be contained in scrap metal. The Cricket's detection unit is mounted to the base of a grappler and monitors material, while the grappler's tines hold the material. It can also be used to scan material in an attempt to isolate radioactive material if an alarm occurs. Testing was performed at themore » Environmental Effects Laboratory located at ORNL and operated by the Engineering Science and Technology Division. Tests performed included the following: (1) Background stability, (2) Energy response using {sup 241}Am, {sup 137}Cs, and {sup 60}Co, (3) Surface uniformity, (4) Angular dependence, (5) Alarm actuation, (6) Alarm threshold vs. background, (7) Shielding, (8) Response to {sup 235}U, (9) Response to neutrons using unmoderated {sup 252}Cf, and (10) Response to transient radiation. This report presents a summary of the test results. Background measurements were obtained prior to the performance of each individual test.« less
Performance of lightweight nickel electrodes
NASA Technical Reports Server (NTRS)
Britton, Doris L.
1988-01-01
The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low Earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.
Life Cycle Testing of Viscoelastic Material for Hubble Space Telescope Solar Array 3 Damper
NASA Technical Reports Server (NTRS)
Maly, Joseph R.; Reed, Benjamin B.; Viens, Michael J.; Parker, Bradford H.; Pendleton, Scott C.
2003-01-01
During the March 2002 Servicing Mission by Space Shuttle (STS 109), the Hubble Space Telescope (HST) was refurbished with two new solar arrays that now provide all of its power. These arrays were built with viscoelastic/titanium dampers, integral to the supporting masts, which reduce the interaction of the wing bending modes with the Telescope. Damping of over 3% of critical was achieved. To assess the damper s ability to maintain nominal performance over the 10-year on-orbit design goal, material specimens were subjected to an accelerated life test. The test matrix consisted of scheduled events to expose the specimens to pre-determined combinations of temperatures, frequencies, displacement levels, and numbers of cycles. These exposure events were designed to replicate the life environment of the damper from fabrication through testing to launch and life on-orbit. To determine whether material degradation occurred during the exposure sequence, material performance was evaluated before and after the accelerated aging with complex stiffness measurements. Based on comparison of pre- and post-life-cycle measurements, the material is expected to maintain nominal performance through end of life on-orbit. Recent telemetry from the Telescope indicates that the dampers are performing nominally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginley, D.
2014-06-01
To evaluate Plextronics new additives and derivatives in lithium-ion Battery Applications, Plextronics will provide to NREL, a starting point, including materials and initial data for proof of concept. The central focus of this project is to acertain the nature of the efficacy of the Plextronics additives through physical and electrical characterization, including evaluations of new derivatives, system evaluations on batteries made with Plexcore and to study long term cycling performance differences. The initial focus is to establish Plexcore mode of action to support the commercialization of the first commercial evaluations of Plexcore in Sept. 2013.
Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive
NASA Technical Reports Server (NTRS)
Evans, Kurt B.
1989-01-01
Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed.
DOT National Transportation Integrated Search
2009-06-01
Seasonal variation of measured pavement responses with temperature and its relationship to pavement performance has not been : thoroughly evaluated for ALF Experiments II and III. Such information may be used to improve instrumentation strategies in ...
DOT National Transportation Integrated Search
2011-12-01
Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement : design and performance through applying a simulative heavy vehicular load to the pavement section under controlled fi el...
10 CFR 74.59 - Quality assurance and accounting requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... analyses and evaluations of the design, installation, preoperational tests, calibration, and operation of... performed at a pre-determined frequency, indicate a need for recalibration. Calibrations and tests must be... necessary for performance of the material control tests required by § 74.53(b). (e) Measurement control. The...
10 CFR 74.59 - Quality assurance and accounting requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... analyses and evaluations of the design, installation, preoperational tests, calibration, and operation of... performed at a pre-determined frequency, indicate a need for recalibration. Calibrations and tests must be... necessary for performance of the material control tests required by § 74.53(b). (e) Measurement control. The...
Domains of the Florida Performance Measurement System.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee.
This monograph sets forth in detail the concepts included in the five domains of teaching as identified by the Florida Coalition for the Development of a Performance Evaluation System. The first domain, planning, includes the concepts: (1) content coverage; (2) utilization of instructional materials; (3) activity structure; (4) goal focusing; and…
Stress and Sealing Performance Analysis of Containment Vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
WU, TSU-TE
2005-05-24
This paper presents a numerical technique for analyzing the containment vessel subjected to the combined loading of closure-bolt torque and internal pressure. The detailed stress distributions in the O-rings generated by both the torque load and the internal pressure can be evaluated by using this method. Consequently, the sealing performance of the O-rings can be determined. The material of the O-rings can be represented by any available constitutive equation for hyperelastic material. In the numerical calculation of this paper, the form of the Mooney-Rivlin strain energy potential is used. The technique treats both the preloading process of bolt tightening andmore » the application of internal pressure as slow dynamic loads. Consequently, the problem can be evaluated using explicit numerical integration scheme.« less
Vanadium based materials as electrode materials for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo
2016-10-01
As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.
Thermal design of composite materials high temperature attachments
NASA Technical Reports Server (NTRS)
1972-01-01
The thermal aspects of using filamentary composite materials as primary airframe structures on advanced atmospheric entry spacecraft such as the space shuttle vehicle were investigated to identify and evaluate potential design approaches for maintaining composite structures within allowable temperature limits at thermal protection system (TPS) attachments and/or penetrations. The investigation included: (1) definition of thermophysical data for composite material structures; (2) parametric characterization and identification of the influence of the aerodynamic heating and attachment design parameters on composite material temperatures; (3) conceptual design, evaluation, and detailed thermal analyses of temperature limiting design concepts; and (4) the development of experimental data for assessment of the thermal design methodologies and data used for evaluation of the temperature-limiting design concepts. Temperature suppression attachment concepts were examined for relative merit. The simple isolator was identified as the most weight-effective concept and was selected for detail design, thermal analysis, and testing. Tests were performed on TPS standoff attachments to boron/aluminum, boron/polyimide and graphite/epoxy composite structures.
NASA Technical Reports Server (NTRS)
1977-01-01
Composite materials are discussed with emphasis on the identification of the characteristics of those materials that make them attractive for use in surface transportation. Potential uses of graphite composites are given including automotive applications and the effects of materials substitution on vehicle characteristics and performance. Preliminary estimates of the economic effects of the use of graphite composite materials on vehicle manufacturers and consumers are included. The combined impact on the national economy of vehicle design changes to meet mandated fuel efficiency requirements and the extensive use of graphite composite materials in the automotive industry is considered.
Revolutionary opportunities for materials and structures study
NASA Technical Reports Server (NTRS)
Schweiger, F. A.
1987-01-01
The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.
Material properties that predict preservative uptake for silicone hydrogel contact lenses.
Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B
2012-11-01
To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.
SEM evaluation of pulp reaction to different pulp capping materials in dog’s teeth
Asgary, Saeed; Parirokh, Masoud; Eghbal, Mohammad Jafar; Ghoddusi, Jamileh
2006-01-01
Introduction: This investigation evaluates the effects of mineral trioxide aggregate (MTA), calcium hydroxide (CH) and calcium enriched mixture (CEM) as pulp capping materials on dental pulp tissues. Materials and Methods: The experimental procedures were performed on eighteen intact dog canine teeth. The pulps were exposed. Cavities were randomly filled with CEM, MTA, or CH followed by glass ionomer filling. After 2 months, animals were sacrificed, each tooth was sectioned into halves, and the interface between each capping material and pulp tissue was evaluated by scanning electron microscope (SEM) in profile view of the specimens. Results: Dentinal bridge formation as the most characteristic reaction was resulted from SEM observation in all examined groups. Odontoblast-like cells were formed and create dens collagen network, which was calcified gradually by deposition of calcosphirit structures to form newly dentinal bridge. Conclusion: Based on the results of this in vivo study, it was concluded that these test materials are able to produce calcified tissue in underlying pulp in the case of being used as a pulp capping agent. Additionally, it appears that CEM has the potential to be used as a direct pulp capping material during vital pulp therapy. PMID:24379876
Evaluation of a standard test method for screening fuels in soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorini, S.S.; Schabron, J.F.
1996-12-31
A new screening method for fuel contamination in soils was recently developed as American Society for Testing and Materials (ASTM) Method D-5831-95, Standard Test Method for Screening Fuels in Soils. This method uses low-toxicity chemicals and can be sued to screen organic- rich soils, as well as being fast, easy, and inexpensive to perform. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and cola oil, can be determined. The screening method for fuels in soils was evaluated by conducting a Collaborative study on the method.more » In the Collaborative study, a sand and an organic soil spiked with various concentrations of diesel fuel were tested. Data from the Collaborative study were used to determine the reproducibility (between participants) and repeatability (within participants) precision of the method for screening the test materials. The Collaborative study data also provide information on the performance of portable field equipment (patent pending) versus laboratory equipment for performing the screening method and a comparison of diesel concentration values determined using the screening method versus a laboratory method.« less
Evaluation of mechanical properties and durability performance of HDPE-wood composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tazi, M.; Erchiqui, F.; Kaddami, H.
The objective of this work is to evaluate the mechanical properties and durability performance of bio-composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The thermal and mechanical properties were successively characterized. The results indicate that adding wood fillers to a polymer matrix increases the degree of crystallinity and improves the tensile strength and ductility of composites. On the contrary, resistance to water absorption decreases as a function of the wood fillers. Scanning electron microscopy (SEM) was usedmore » to analyze morphological structure alteration when exposed to intense weathering. The biodegradability of bio-composites up to 97 days was also investigated; the results indicate that, by increasing the filler content, the amount of weight loss increased as well. In other words, even though the addition of sawdust to thermoplastic polymer improves the mechanical performance of a composite material, it also accelerates the biodegradation rate of the composite. An optimum amount of filler content might compromise the effect of biodegradation and mechanical properties of composite materials.« less
Durability Testing of Commercial Ceramic Materials
NASA Technical Reports Server (NTRS)
Schienle, J. L.
1996-01-01
Technical efforts by AlliedSignal Engines in DOE/NASA-funded project from February, 1978 through December, 1995 are reported in the fields ceramic materials for gas turbine engines and cyclic thermal durability testing. A total of 29 materials were evaluated in 40 cyclic oxidation exposure durability tests. Ceramic test bars were cyclically thermally exposed to a hot combustion environment at temperatures up to 1371 C (2500 F) for periods of up to 3500 hours, simulating conditions typically encountered by hot flowpath components in an automotive gas turbine engine. Before and after exposure, quarter-point flexure strength tests were performed on the specimens, and fractography examinations including scanning electron microscopy (SEM) were performed to determine failure origins.
Improved biological performance of magnesium by micro-arc oxidation
Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.
2014-01-01
Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications. PMID:25517917
Performance of coincidence-based PSD on LiF/ZnS Detectors for Multiplicity Counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Sean M.; Stave, Sean C.; Lintereur, Azaree
Abstract: Mass accountancy measurement is a nuclear nonproliferation application which utilizes coincidence and multiplicity counters to verify special nuclear material declarations. With a well-designed and efficient detector system, several relevant parameters of the material can be verified simultaneously. 6LiF/ZnS scintillating sheets may be used for this purpose due to a combination of high efficiency and short die-away times in systems designed with this material, but involve choices of detector geometry and exact material composition (e.g., the addition of Ni-quenching in the material) that must be optimized for the application. Multiplicity counting for verification of declared nuclear fuel mass involves neutronmore » detection in conditions where several neutrons arrive in a short time window, with confounding gamma rays. This paper considers coincidence-based Pulse-Shape Discrimination (PSD) techniques developed to work under conditions of high pileup, and the performance of these algorithms with different detection materials. Simulated and real data from modern LiF/ZnS scintillator systems are evaluated with these techniques and the relationship between the performance under pileup and material characteristics (e.g., neutron peak width and total light collection efficiency) are determined, to allow for an optimal choice of detector and material.« less
A practical material decomposition method for x-ray dual spectral computed tomography.
Hu, Jingjing; Zhao, Xing
2016-03-17
X-ray dual spectral CT (DSCT) scans the measured object with two different x-ray spectra, and the acquired rawdata can be used to perform the material decomposition of the object. Direct calibration methods allow a faster material decomposition for DSCT and can be separated in two groups: image-based and rawdata-based. The image-based method is an approximative method, and beam hardening artifacts remain in the resulting material-selective images. The rawdata-based method generally obtains better image quality than the image-based method, but this method requires geometrically consistent rawdata. However, today's clinical dual energy CT scanners usually measure different rays for different energy spectra and acquire geometrically inconsistent rawdata sets, and thus cannot meet the requirement. This paper proposes a practical material decomposition method to perform rawdata-based material decomposition in the case of inconsistent measurement. This method first yields the desired consistent rawdata sets from the measured inconsistent rawdata sets, and then employs rawdata-based technique to perform material decomposition and reconstruct material-selective images. The proposed method was evaluated by use of simulated FORBILD thorax phantom rawdata and dental CT rawdata, and simulation results indicate that this method can produce highly quantitative DSCT images in the case of inconsistent DSCT measurements.
Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions
NASA Technical Reports Server (NTRS)
Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad
2004-01-01
The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Sakaida, Yasushi; Shinjo, Tetsuya; Hashimoto, Keisuke; Nakajima, Yasuyuki
2008-03-01
The present paper describes a novel class of bottom antireflective coating (BARC) and gap fill materials using dextrin derivatives. The general trend of interconnect fabrication for such a high performance LSI is to apply cupper (Cu)/ low-dielectric-constant (low-k) interconnect to reduce RC delay. A via-first dual damascene process is one of the most promising processes to fabricate Cu/ low-k interconnect due to its wide miss-alignment margin. The sacrificial materials containing dextrin derivatives under resist for lithography were developed in via-first dual damascene process. The dextrin derivatives in this study was obtained by the esterification of the hydroxyl groups of dextrin resulting in improved solubility in the resist solvents such as propylene glycol monomethylether, propylene glycol monomethylether acetate, and ethyl lactate due to avoid the issue of defects that were caused by incompatability. The etch rate of our developed BARC and gap fill materials using dextrin derivatives was more than two times faster than one of the ArF resists evaluated in a CF4 gas condition using reactive ion etching. The improved etch performance was also verified by comparison with poly(hydroxystyrene), acrylate-type materials and latest low-k materials as a reference. In addition to superior etch performance, these materials showed good resist profiles and via filling performance without voids in via holes.
Solid state phase change materials for thermal energy storage in passive solar heated buildings
NASA Astrophysics Data System (ADS)
Benson, D. K.; Christensen, C.
1983-11-01
A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.
Nondestructive evaluation of a ceramic matrix composite material
NASA Technical Reports Server (NTRS)
Grosskopf, Paul P.; Duke, John C., Jr.
1992-01-01
Monolithic ceramic materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited because of their sensitivity to small imperfections. To overcome this extreme sensitivity to small imperfections, ceramic matrix composite materials have been developed that have the ability to withstand some distributed damage. A borosilicate glass reinforced with several layers of silicon-carbide fiber mat has been studied. Four-point flexure and tension tests were performed not only to determine some of the material properties, but also to initiate a controlled amount of damage within each specimen. Acousto-ultrasonic (AU) measurements were performed periodically during mechanical testing. This paper will compare the AU results to the mechanical test results and data from other nondestructive methods including acoustic emission monitoring and X-ray radiography. It was found that the AU measurements were sensitive to the damage that had developed within the material.
Selenide isotope generator for the Galileo Mission: SIG thermal insulation evaluaion tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
Since the SIG program required the use of very high performance thermal insulation materials in rather severe thermal and environmental conditions, a thorough screening and testing program was performed. Several types of materials were included in the preliminary survey. Most promising were oxide and carbonaceous fibrous insulations, oxide and carbonaceous foamed materials, and multilayer materials with both powder and cloth spacers. The latter were only viable for the vacuum option. In all, over one hundred materials from more than sixty manufacturers were evaluated from literature and manufacturers' data. The list was pared to eighteen candidates in seven basic types, i.e.,more » fibrous microporous SiO/sub 2/, fibrous SiO/sub 2//Al/sub 2/O/sub 3/, fibrous ZrO/sub 2/, fibrous carbon, foamed SiO/sub 2/, foamed carbon, and multilayer. Test results are presented.« less
Damage tolerant functionally graded materials for advanced wear and friction applications
NASA Astrophysics Data System (ADS)
Prchlik, Lubos
The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to measure elastic-plastic properties of uniform and graded structures. In-situ curvature method used for residual stress and elastic modulus measurement was extended from uniform coatings to coatings with compositional/property gradients. Properties of composite and graded materials were measured using the inverse analysis. Conclusions. The specifics of the elastic-plastic response for thermally sprayed coatings were demonstrated. These included the strain dependence of elastic modulus and damage accumulation related to unloading/reloading loop formation. The measurement of elastic-plastic characteristics of composite coatings revealed the mixing and bonding mechanisms unique for thermally sprayed materials. Microstructural and compositional factors governing the frictional vs. abrasion response of carbide-metallic composite coatings were described. The measurement of abrasion resistance and friction sliding properties demonstrated that grading of cermet and ceramic coatings by adding moderate amount of metallic alloys can enhance elastic-properties radically and have a beneficial effect onto the coating performance.
Evaluation of advanced regenerator systems
NASA Technical Reports Server (NTRS)
Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.
1978-01-01
The major considerations are discussed which will affect the selection of a ceramic regenerative heat exchanger for an improved 100 HP automotive gas turbine engine. The regenerator considered for this application is about 36cm in diameter. Regenerator comparisons are made on the basis of material, method of fabrication, cost, and performance. A regenerator inlet temperature of 1000 C is assumed for performance comparisons, and laboratory test results are discussed for material comparisons at 1100 and 1200 C. Engine test results using the Ford 707 industrial gas turbine engine are also discussed.
Polythiophene nanocomposites as high performance electrode material for supercapacitor application
NASA Astrophysics Data System (ADS)
Vijeth, H.; Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Devendrappa, H.
2018-04-01
A polythiophene-aluminium oxide nanocomposite is prepared by in situ chemical polymerisation in presence of anionic surfactant camphor sulfonic acid (CSA). The characterisation of nano composite was done by X-ray Diffraction (XRD), surface morphology was studied using Atomic Force Microscopy (AFM). The electrochemical performance is evaluated using cyclic voltammetry in 1M H2SO4. As an electroactive material, it exhibits high specific capacitance of 654.5 and 757 F/g for PTH and PTHA nanocomposites at scan rate of 30mV s-1 respectively.
Hydrogen-bromine fuel cell advance component development
NASA Technical Reports Server (NTRS)
Charleston, Joann; Reed, James
1988-01-01
Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.
Toxicity of thermal degradation products of spacecraft materials
NASA Technical Reports Server (NTRS)
Lawrence, W. H.; Turner, J. E.; Sanford, C.; Foster, S.; Baldwin, E.; Oconnor, J.
1982-01-01
Three polymeric materials were evaluated for relative toxicity of their pyrolysis products to rats by inhalation: Y-7683 (LS 200), Y-7684 (Vonar 3 on Fiberglass), and Y-7685 (Vonar 3 on N W Polyester). Criteria employed for assessing relative toxicity were (1) lethality from in-chamber pyrolysis, (2) lethality from an outside-of-chamber pyrolysis MSTL Procedure, and (3) disruption of trained rats' shock-avoidance performance during sub-lethal exposures to in-chamber pyrolysis of the materials.
Aesthetic coatings for concrete bridge components
NASA Astrophysics Data System (ADS)
Kriha, Brent R.
This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application. A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to coating manufacturers, bridge contractors, and various DOT offices to identify high performing coating systems and best practices for surface preparation and application. These efforts supplemented a literature review investigating recent publications related to formulation, selection, surface preparation, application, and performance evaluation of coating materials.
Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones.
Dollinger, Jeanne; Dagès, Cécile; Voltz, Marc
2017-04-01
The performance of buffer zones for removing pesticides from runoff water varies greatly according to landscape settings, hydraulic regime, and system design. Evaluating the performance of buffers for a range of pesticides and environmental conditions can be very expensive. Recent studies suggested that the fluorescent dyes uranine and sulforhodamine B could be used as cost-effective surrogates of herbicides to evaluate buffer performance. However, while transformation mechanisms in buffers have been extensively documented, sorption processes of both dyes have rarely been investigated. In this study, we measured the adsorption, desorption, and kinetic sorption coefficients of uranine and sulforhodamine B for a diverse range of buffer zone materials (soils, litters, plants) and compared the adsorption coefficients (Kd) to those of selected herbicides. We also compared the global sorption capacity of 6 ditches, characterized by varying proportions of the aforementioned materials, between both dyes and a set of four herbicides using the sorption-induced pesticide retention indicator (SPRI). We found that both the individual Kd of uranine for the diverse buffer materials and the global sorption capacity of the ditches are equivalent to those of the herbicides diuron, isoproturon, and metolachlor. The Kd of sulforhodamine B on plants and soils are equivalent to those of glyphosate, and the global sorption capacities of the ditches are equivalent for both molecules. Hence, we demonstrate for the first time that uranine can be used as a proxy of moderately hydrophobic herbicides to evaluate the performance of buffer systems, whereas sulforhodamine B can serve as a proxy for more strongly sorbing herbicides.
NASA Technical Reports Server (NTRS)
Besser, P. J.
1976-01-01
Bubble domain materials and devices are discussed. One of the materials development goals was a materials system suitable for operation of 16 micrometer period bubble domain devices at 150 kHz over the temperature range -10 C to +60 C. Several material compositions and hard bubble suppression techniques were characterized and the most promising candidates were evaluated in device structures. The technique of pulsed laser stroboscopic microscopy was used to characterize bubble dynamic properties and device performance at 150 kHz. Techniques for large area LPE film growth were developed as a separate task. Device studies included detector optimization, passive replicator design and test and on-chip bridge evaluation. As a technology demonstration an 8 chip memory cell was designed, tested and delivered. The memory elements used in the cell were 10 kilobit serial registers.
Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing
2017-01-18
Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g -1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V₂O₅ cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V₂O₅ hollow material as a high-performance cathode for lithium-ion batteries.
Roll-to-Roll Advanced Materials Manufacturing DOE Lab Consortium - FY16 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Claus; Wood, III, David L.; Krumdick, Gregory
2016-12-01
A DOE laboratory consortium comprised of ORNL, ANL, NREL and LBNL, coordinating with Kodak’s Eastman Business Park (Kodak) and other selected industry partners, was formed to address enhancing battery electrode performance and R2R manufacturing challenges. The objective of the FY 2016 seed project was to develop a materials genome synthesis process amenable to R2R manufacturing and to provide modeling, simulation, processing, and manufacturing techniques that demonstrate the feasibility of process controls and scale-up potential for improved battery electrodes. The research efforts were to predict and measure changes and results in electrode morphology and performance based on process condition changes; tomore » evaluate mixed, active, particle size deposition and drying for novel electrode materials; and to model various process condition changes and the resulting morphology and electrode performance.« less
Evaluation of the durability of composite tidal turbine blades.
Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique
2013-02-28
The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models.
De Oliveira, Gildasio S; Jung, Michael; Mccaffery, Kirsten J; McCarthy, Robert J; Wolf, Michael S
2015-08-01
The main objective of the current investigation was to assess the readability of Internet-based patient education materials related to the field of anesthesiology. We hypothesized that the majority of patient education materials would not be written according to current recommended readability grade level. Online patient education materials describing procedures, risks, and management of anesthesia-related topics were identified using the search engine Google (available at www.google.com) using the terms anesthesia, anesthesiology, anesthesia risks, and anesthesia care. Cross-sectional evaluation. None. Assessments of content readability were performed using validated instruments (Flesch-Kincaid Grade Formulae, the Gunning Frequency of Gobbledygook, the New Dale-Chall Test, the Fry graph, and the Flesch Reading Ease score). Ninety-six Web sites containing Internet patient education materials (IPEMs) were evaluated. The median (interquartile range) readability grade level for all evaluated IPEMs was 13.5 (12.0-14.6). All the evaluated documents were classified at a greater readability level than the current recommended readability grade, P < .001. Readability grades were not significantly different among different IPEM sources. Assessment by the Flesch Reading Ease test classified all but 4 IPEMs as at least fairly difficult to read. Internet-based patient education materials related to the field of anesthesiology are currently written far above the recommended readability grade level. High complexity of written education materials likely limits access of information to millions of American patients. Redesign of online content of Web sites that provide patient education material regarding anesthesia could be an important step in improving access to information for patients with poor health literacy. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Zhang, Hao; Shao, Hezhu
Identifying materials with intrinsically high thermoelectric performance remains a challenge even with the aid of a high-throughput search. Here, using a chemically intuitive approach based on the bond-orbital theory, three anisotropic 2D group-V materials (monolayer black phosphorus, α-arsenene, and aW-antimonene) are identified as candidates for high thermoelectric energy conversion efficiency. Concepts, such as bond length, bond angle, and bond strength, are used to explain the trends in their electronic properties, such as the band gap and the effective mass. Our first principles calculations confirm that high carrier mobilities and large Seebeck coefficients can be obtained at the same time inmore » these materials, due to complex Fermi surfaces originating from the anisotropic structures. An intuitive understanding of how the bonding character affects phonon transport is also provided with emphasis on the importance of bonding strength and bond anharmonicity. High thermoelectric performance is observed in these materials. In conclusion, our approach provides a powerful tool to identify new thermoelectric materials and evaluate their transport properties.« less
Peng, Bo; Zhang, Hao; Shao, Hezhu; ...
2017-11-21
Identifying materials with intrinsically high thermoelectric performance remains a challenge even with the aid of a high-throughput search. Here, using a chemically intuitive approach based on the bond-orbital theory, three anisotropic 2D group-V materials (monolayer black phosphorus, α-arsenene, and aW-antimonene) are identified as candidates for high thermoelectric energy conversion efficiency. Concepts, such as bond length, bond angle, and bond strength, are used to explain the trends in their electronic properties, such as the band gap and the effective mass. Our first principles calculations confirm that high carrier mobilities and large Seebeck coefficients can be obtained at the same time inmore » these materials, due to complex Fermi surfaces originating from the anisotropic structures. An intuitive understanding of how the bonding character affects phonon transport is also provided with emphasis on the importance of bonding strength and bond anharmonicity. High thermoelectric performance is observed in these materials. In conclusion, our approach provides a powerful tool to identify new thermoelectric materials and evaluate their transport properties.« less
Screening of High Temperature Organic Materials for Future Stirling Convertors
NASA Technical Reports Server (NTRS)
Shin, Euy-sik E.; Scheiman, Daniel A.
2017-01-01
Along with major advancement of Stirling-based convertors, high temperature organics are needed to develop future higher temperature convertors for much improved efficiencies as well as to improve the margin of reliability for the current SOA (State-of-the-Art) convertors. The higher temperature capabilities would improve robustness of the convertors and also allow them to be used in additional missions, particularly ones that require a Venus flyby for a gravity assist. Various organic materials have been employed as essential components in the convertor for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of every possible material structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, O-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This report presents results of the three-step candidate evaluation processes, their application limitations, and the final selection recommendations.
Effects of simulant mixed waste on EPDM and butyl rubber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1997-11-01
The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; andmore » (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.« less
Summary results of the DOE flywheel development effort
NASA Astrophysics Data System (ADS)
Olszewski, M.; Martin, J. F.
1984-11-01
The technology and applications evaluation task focuses on defining performance and cost requirements for flywheels in the various areas of application. To date the DOE program has focused on automotive applications. The composite materials effort entails the testing of new commercial composites to determine their engineering properties. The rotor and containment development work uses data from these program elements to design and fabricate flywheels. The flywheels are then tested at the Oak Ridge Flywheel Evaluation Laboratory and their performance is evaluated to indicate possible areas for improvement. Once a rotor has been fully developed it is transferred to the private sector.
The 100 cm solar telescope primary mirror study
NASA Technical Reports Server (NTRS)
1975-01-01
The manufacturing impact of primary mirror configuration on the performance of a 100 cm aperture solar telescope was studied. Three primary mirror configurations were considered: solid, standard lightweight, and mushroom. All of these are of low expansion material. Specifically, the study consisted of evaluating the mirrors with regard to: manufacturing metrology, manufacturing risk factors and ultimate quality assessment. As a result of this evaluation, a performance comparison of the configurations was made, and a recommendation of mirror configuration is the final output. These evaluations, comparisons and recommendations are discussed in detail. Other investigations were completed and are documented in the appendices.
Design and evaluation of experimental ceramic automobile thermal reactors
NASA Technical Reports Server (NTRS)
Stone, P. L.; Blankenship, C. P.
1974-01-01
The paper summarizes the results obtained in an exploratory evaluation of ceramics for automobile thermal reactors. Candidate ceramic materials were evaluated in several reactor designs using both engine dynamometer and vehicle road tests. Silicon carbide contained in a corrugated metal support structure exhibited the best performance, lasting 1100 hours in engine dynamometer tests and for more than 38,600 kilimeters (24,000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.
Design and evaluation of experimental ceramic automobile thermal reactors
NASA Technical Reports Server (NTRS)
Stone, P. L.; Blankenship, C. P.
1974-01-01
The results obtained in an exploratory evaluation of ceramics for automobile thermal reactors are summarized. Candidate ceramic materials were evaluated in several reactor designs by using both engine-dynamometer and vehicle road tests. Silicon carbide contained in a corrugated-metal support structure exhibited the best performance, lasting 1100 hr in engine-dynamometer tests and more than 38,600 km (24000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as those containing silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.
Egilmez, Ferhan; Ergun, Gulfem; Cekic-Nagas, Isil; Vallittu, Pekka K; Lassila, Lippo V J
To evaluate the light transmission characteristics of different types, shades, and thicknesses of novel CAD/CAM materials and their effect on the degree of conversion (DC) of a dual-curing resin cement. Square specimens (12 × 12 mm2) of three CAD/CAM materials - GC Cerasmart, Lava Ultimate, Vita Enamic - of different thicknesses (1.00, 1.50, and 2.00 mm, n = 5 per thickness) were irradiated with an LED unit. The amount of transmitted light was quantified. Thereafter, the DC% of the dual-curing resin cement (RelyX Ultimate) was recorded after 15 min using Fourier transform infrared spectroscopy. Statistical analysis was performed using two-way ANOVA followed by the Tukey's HSD post-hoc test at a significance level of p < 0.05. Regression analysis was performed to investigate the correlation between the DC and radiant energy, and the DC and thickness. Although the type and shade of CAD/CAM material significantly affect transmitted light irradiation (p < 0.0001), degrees of conversion are similar when the CAD/CAM material or material shade were taken into consideration (p > 0.05). Conversely, material thickness significantly affected light transmission (p < 0.0001) and DC (p < 0.0001). Multiple effects of material, shade, and thickness did not significantly affect the evaluated parameters (p = 0.638 for light irradiation; p = 0.637 for DC). Linear regression analysis showed a correlation between delivered energy and DC% results of the Vita Enamic (R² = 0.4169, p < 0.0001). Reduced light transmission in 2-mm-thick specimens of all CAD/CAM materials indicates that proper curing of the cement beneath CAD/CAM materials should be ensured.
Ceramic automotive Stirling engine program
NASA Technical Reports Server (NTRS)
1986-01-01
The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.
Maintenance Operations Degradation of Airfield Pavement Markings
2012-03-01
polyurea . 1.4 Research Questions To answer the problem presented, several questions need to be addressed. The first is whether or not rubber...suitable for use on airfields. Further research is required. Cyrus and Frierson 2006 Polyurea The material showed poor performance in...evaluating polyurea and one evaluating polyester. Both studies were undertaken to evaluate the effectiveness of polyurea or polyester as a potential
Catauro, M; Papale, F; Bollino, F
2016-01-01
The objective of this study has been to develop low temperature sol-gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO · (1 - x)SiO2 (0.0
The applicability of a material-treatment laser pulse in non-destructive evaluations.
Hrovatin, R; Petkovsek, R; Diaci, J; Mozina, J
2006-12-22
A practical optodynamic study was performed to determine the usability of different lengths of laser pulses for the generation of ultrasonic transients in a solid material. The aim of the study was to evaluate the possibility of a dual use for a laser pulse-for laser material processing, on the one hand, and for the ultrasonic wave generation on the other-with both processes being combined on the same production line. The propagation of the laser-generated ultrasonic waves is evaluated by detecting and measuring with a PID-controlled stabilized interferometer. Thus, both systems provided the basic tools, the generation and detection of ultrasonic waves, for an ultrasonic, laser-based, non-destructive material evaluation. The ultrasonic transients generated by 'classical' nanosecond laser pulses were compared with the transients generated by industrial laser pulses with a duration of a few tenths of a microsecond. The experimental results are compared with the results of a time-of-flight analysis that also involved part of a mode-conversion analysis for both regimes in a layered material structure. The differences between the two waveforms were assessed in terms of their visibility, wavelength and resolution. The limit values were calculated and estimated for the laser-pulse parameters, when such pulses are intended for use in an ultrasonic, laser-based, non-destructive evaluation. The possibility of using an industrial marking laser for laser ultrasound generation is thus demonstrated.
Evaluation of Some Finishing Properties of Oil Palm Particleboard for Furniture Application
NASA Astrophysics Data System (ADS)
Ratnasingam, J.; Nyugen, V.; Ioras, F.
The finishing properties of particleboard made from the Empty-Fruit Bunch (EFB) of oil palm (Elaeis guineensis Jacq.) were evaluated for its suitability for furniture applications, using different coating and overlay materials. The results found that the thick plastic-formica overlay provided the best surface finish, in terms of surface smoothness, adhesion strength and impact resistance. Although the polyurethane lacquer provided an acceptable finish, its quality and performance is not comparable to that of the thick plastic overlay. Despite the fact that the use of such overlay material may render the material not aesthetically appealing and limit it to concealed applications or where the thick overlay material is tolerated, its cost competitiveness and environmental friendliness may be able to position the oil palm particleboard as a substitute for the conventional wood-based particleboard in the furniture manufacturing industry.
Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.
Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E
2013-01-01
Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Marlene E.; Sanborn, Brett; Song, Bo
Elastomeric materials are used as shock isolation materials in a variety of environments to dampen vibrations and/or absorb energy from external impact to minimize energy transfer between two objects or bodies. Some applications require the shock isolation materials to behave as a low-pass mechanical filter to mitigate the shock/impact at high frequencies but transmit the energy at low frequencies with minimal attenuation. To fulfill this requirement, a shock isolation material needs to be carefully evaluated and selected with proper experimental design, procedures, and analyses. In this study, a Kolsky bar was modified with precompression (up to 15.5 kN) and confinementmore » capabilities to evaluate low-pass shock isolation performance in terms of acceleration attenuation through a variety of elastomers. Also investigated were the effects of preload and specimen geometry on the low-pass shock isolation response.« less
Evaluation of antistripping additives.
DOT National Transportation Integrated Search
1989-01-01
Several chemical antistripping additives were used in field installations and compared to a similar installation using hydrated lime. The performance of the installations was monitored periodically, and material that was sampled during construction w...
DOT National Transportation Integrated Search
2002-07-25
The Bituminous Mixtures Laboratory (BML) specializes in the research of asphalt pavement mixtures. This lab supports FHWA's efforts to develop, evaluate and improve materials, mixture design technology and performance-based tests for asphalt paving m...
Testing and Comparative Evaluation of Space Shuttle Main Engine Flowmeter Bearings
NASA Technical Reports Server (NTRS)
Hissam, Andy; Leberman, Mike; McLeroy, Rick
2005-01-01
This paper provides a summary of testing of Space Shuttle Main Engine (SSME) flowmeter bearings and cage material. These tests were con&cM over a several month period in 2004 at the Marshall Space Flight Center. The test program's primary objective was to compare the performance of bearings using the existing cage material and bearings using a proposed replacement cage material. In order to meet the test objectives for this program, a flowmeter test rig was designed and fabricated to measure both breakaway and running torque for a flowmeter assembly. Other test parameters,,such as motor current and shaft speed, were also recorded and provide a means of comparing bearing performance. The flowmeter and bearings were tested in liquid hydrogen to simulate the flowmeter's operating environment as closely as possible. Based on the results from this testing, the bearings with the existing cage material are equivalent to the bearings with the proposed replacement cage material. No major differences exist between the old and new cage materials. Therefore, the new cage material is a suitable replacement for the existing cage material.
Shaw, Kathryn; Martins, Ricardo; Hadis, Mohammed Abdul; Burke, Trevor; Palin, William
2016-09-01
A majority of dental materials are manufactured by companies who have experience in the field. However, a number of "own label" materials have become available, principally marketed by distributors and other companies with little or no experience in the field. These materials are attractive because of their reduced cost, but they may have no research on which clinicians might base their potential performance. It is therefore the purpose of this work to compare the performance of different batches of a number of "own-label" dental materials with a similar number from manufacturers with experience in the field, using a variety of laboratory test regimes which include filler determination, degree of conversion, flexural strength and flexural modulus, in order to evaluate key material properties. The results indicated that own-label dental resin composites produced similar results to materials from established companies in terms of flexural strength characteristics and degree of conversion. However, a greater batch-to-batch variation in several mechanical and physical properties of the own-label materials was noted. Copyright© 2016 Dennis Barber Ltd.
DOT National Transportation Integrated Search
2008-01-01
This research involved a detailed laboratory study of a new test method for evaluating road base materials based on : the strength of the soil binder. In this test method, small test specimens (5.0in length and 0.75in square cross : section) of binde...
A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing. Here, we evaluated ten of these methods (BacH, BacHum-UCD, B. thetaiotaomic...
USDA-ARS?s Scientific Manuscript database
Chopped switchgrass (SG) and chopped bermudagrass (BG) were evaluated as alternatives to pine shavings (PS) for broiler litter over 3 flocks. Twenty-four pens were filled with the 3 litter types. Live performance parameters included mortality, BW, BW gain, feed consumption, and feed conversion. Mort...
ERIC Educational Resources Information Center
Weston-Sementelli, Jennifer L.; Allen, Laura K.; McNamara, Danielle S.
2016-01-01
Source-based essays are evaluated both on the quality of the writing and the content appropriate interpretation and use of source material. Hence, composing a high-quality source-based essay (an essay written based on source material) relies on skills related to both reading (the sources) and writing (the essay) skills. As such, source-based…
ERIC Educational Resources Information Center
Weston-Sementelli, Jennifer L.; Allen, Laura K.; McNamara, Danielle S.
2018-01-01
Source-based essays are evaluated both on the quality of the writing and the content appropriate interpretation and use of source material. Hence, composing a high-quality source-based essay (an essay written based on source material) relies on skills related to both reading (the sources) and writing (the essay) skills. As such, source-based…
Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation
NASA Technical Reports Server (NTRS)
Herring, Helen
2003-01-01
Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.
Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping
2008-06-01
We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance.
Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping
2014-01-01
We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance. PMID:24932051
Performance evaluation on cool roofs for green remodeling
NASA Astrophysics Data System (ADS)
Yun, Yosun; Cho, Dongwoo; Cho, Kyungjoo
2018-06-01
Cool roofs refer that maximize heat emission, and minimize the absorption of solar radiation energy, by applying high solar reflectance paints, or materials to roofs or rooftops. The application of cool roofs to existing buildings does not need to take structural issues into consideration, as rooftop greening, is an alternative that can be applied to existing buildings easily. This study installed a cool roofs on existing buildings, and evaluated the performances, using the results to propose certification standards for green remodeling, considering the cool roof-related standards.
Design and performance evaluation of a cryogenic condenser for an in-pile experiment
NASA Technical Reports Server (NTRS)
Graham, R. W.; Crum, R. J.; Hsu, Y.
1972-01-01
An apparatus was designed to enable in-pile irradiation of materials in liquid hydrogen at cryogenic temperatures. One of the principal components of this apparatus was a horizontal tube condenser. The performance of the condenser was evaluated by running a liquid-nitrogen prototype of the apparatus at heat loads comparable to or greater than those expected during the irradiation. The test showed that the condenser was capable of handling the design heat load and that the design procedure was sound.
Integrated learning in dentistry: baseline data and first evaluation at the Dental School of Basel.
Neuhaus, K W; Schegg, R; Krastl, G; Amato, M; Weiger, R; Walter, C
2008-08-01
Integrated learning modules were introduced and baseline information was collected, in order to identify the expectations regarding e-learning. Furthermore, first formative evaluation of fourth-year dental students was conducted and the experience gained with summative online assessment was reported. Questionnaires designed by Infratest dimap (Berlin, Germany) were distributed to undergraduate students (n = 72) of the School of Dentistry. The fourth-year dental students went through a preliminary evaluation process. An online test was evaluated and compared with a traditional examination. Sixty-three questionnaires were returned. Sixty-five per cent of the students were already familiar with e-learning. All but one student owned at least one personal computer or laptop. Ninety-one per cent of the students expected positive effects from the integration of online modules. Enhanced flexibility regarding time and location as well as comfortable access to learning materials were mentioned most frequently. Ninety per cent of the students expected to achieve better results by finding it easier to understand learning materials produced with multimedia tools. Sixty per cent of the students feared technical complications when using an online platform. The online test was successfully performed. A formative evaluation process demonstrated agreement between expectations and first experiences with e-learning. Most students expect the quality of their studies to improve by implementation of e-learning. Students appreciating regularly updated learning materials particularly emphasise the importance of its visualisation. Online tests might be an option for student's self-performance rating.
Detection and Evaluation of Pre-Preg Gaps and Overlaps in Glare Laminates
NASA Astrophysics Data System (ADS)
Nardi, Davide; Abouhamzeh, Morteza; Leonard, Rob; Sinke, Jos
2018-03-01
Gaps and overlaps between pre-preg plies represent common flaws in composite materials that can be introduced easily in an automated fibre placement manufacturing process and are potentially detrimental for the mechanical performances of the final laminates. Whereas gaps and overlaps have been addressed for full composite material, the topic has not been extended to a hybrid composite material such as Glare, a member of the family of Fibre Metal Laminates (FMLs). In this paper/research, the manufacturing, the detection, and the optical evaluation of intraply gaps and overlaps in Glare laminates are investigated. As part of an initial assessment study on the effect of gaps and overlaps on Glare, only the most critical lay-up has been considered. The experimental investigation started with the manufacturing of specimens having gaps and overlaps with different widths, followed by a non-destructive ultrasonic-inspection. An optical evaluation of the gaps and overlaps was performed by means of microscope image analysis of the cross sections of the specimens. The results from the non-destructive evaluations show the effectiveness of the ultrasonic detection of gaps and overlaps both in position, shape, width, and severity. The optical inspections confirm the accuracy of the non-destructive evaluation also adding useful insights about the geometrical features due to the presence of gaps and overlaps in the final Glare laminates. All the results justify the need for a further investigation on the effect of gaps and overlaps on the mechanical properties.
Watanabe, Takafumi; Arai, Fumihito
2018-01-01
Surgical simulators have recently attracted attention because they enable the evaluation of the surgical skills of medical doctors and the performance of medical devices. However, thermal damage to the human body during surgery is difficult to evaluate using conventional surgical simulators. In this study, we propose a functional surgical model with a temperature-indicating function for the evaluation of thermal damage during surgery. The simulator is made of a composite material of polydimethylsiloxane and a thermochromic dye, which produces an irreversible color change as the temperature increases. Using this material, we fabricated a three-dimensional blood vessel model using the lost-wax process. We succeeded in fabricating a renal vessel model for simulation of catheter ablation. Increases in the temperature of the materials can be measured by image analysis of their color change. The maximum measurement error of the temperature was approximately −1.6 °C/+2.4 °C within the range of 60 °C to 100 °C. PMID:29370139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messner, Mark C.; Sham, Sam; Wang, Yanli
This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT testmore » results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.« less
NASA Astrophysics Data System (ADS)
Mireles, Omar R.
Free-piston Stirling power convertors are under consideration by NASA for service in the Advanced Stirling Radioisotope Generator (ASRG) and Fission Surface Power (FSP) systems to enable aggressive exploration missions by providing a reliable and constant power supply. The ASRG must withstand environmental radiation conditions, while the FSP system must tolerate a mixed neutron and gamma-ray environment resulting from self-irradiation. Stirling-alternators utilize rare earth magnets and a variety of organic materials whose radiation limits dominate service life estimates and shielding requirements. The project objective was to demonstrate the performance of the alternator, identify materials that exhibit excessive radiation sensitivity, identify radiation tolerant substitutes, establish empirical dose limits, and demonstrate the feasibility of cost effective nuclear and radiation tests by selection of the appropriate personnel and test facilities as a function of hardware maturity. The Stirling Alternator Radiation Test Article (SARTA) was constructed from linear alternator components of a Stirling convertor and underwent significant pre-exposure characterization. The SARTA was operated at the Sandia National Laboratories Gamma Irradiation Facility to a dose of over 40 Mrad. Operating performance was within nominal variation, although modestly decreasing trends occurred in later runs as well as the detection of an electrical fault after the final exposure. Post-irradiation disassembly and internal inspection revealed minimal degradation of the majority of the organic components. Radiation testing of organic material coupons was conducted since the majority of the literature was inconsistent. These inconsistencies can be attributed to testing at environmental conditions vastly different than those Stirling-alternator organics will experience during operation. Samples were irradiated at the Texas A&M TRIGA reactor to above expected FSP neutron fluence. A thorough materials evaluation followed and results indicate that the majority of material properties experienced minimal statistically significant change.
Integrated Solar Upper Stage Technical Support
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
1998-01-01
NASA Lewis Research Center is participating in the Integrated Solar Upper Stage (ISUS) program. This program is a ground-based demonstration of an upper stage concept that will be used to generate both solar propulsion and solar power. Solar energy collected by a primary concentrator is directed into the aperture of a secondary concentrator and further concentrated into the aperture of a heat receiver. The energy stored in the receiver-absorber-converter is used to heat hydrogen gas to provide propulsion during the orbital transfer portion of the mission. During the balance of the mission, electric power is generated by thermionic diodes. Several materials issues were addressed as part of the technical support portion of the ISUS program, including: 1) Evaluation of primary concentrator coupons; 2) Evaluation of secondary concentrator coupons; 3) Evaluation of receiver-absorber-converter coupons; 4) Evaluation of in-test witness coupons. Two different types of primary concentrator coupons were evaluated from two different contractors-replicated coupons made from graphite-epoxy composite and coupons made from microsheet glass. Specular reflectivity measurements identified the replicated graphite-epoxy composite coupons as the primary concentrator material of choice. Several different secondary concentrator materials were evaluated, including a variety of silver and rhodium reflectors. The specular reflectivity of these materials was evaluated under vacuum at temperatures up to 800 C. The optical properties of several coupons of rhenium on graphite were evaluated to predict the thermal performance of the receiver-absorber-converter. Finally, during the ground test demonstration, witness coupons placed in strategic locations throughout the thermal vacuum facility were evaluated for contaminants. All testing for the ISUS program was completed successfully in 1997. Investigations related to materials issues have proven helpful in understanding the operation of the test article, leading to a potential ISUS flight test in 2002.
Simulated space environmental effects on a polyetherimide and its carbon fiber-reinforced composites
NASA Technical Reports Server (NTRS)
Kern, Kristen T.; Stancil, Phillip C.; Harries, Wynford L.; Long, Edward R., Jr.; Thibeault, Sheila A.
1993-01-01
The selection of materials for spacecraft construction requires identification of candidate materials which can perform reliably in the space environment. Understanding the effects of the space environment on the materials is an important step in the selection of candidate materials. This work examines the effects of energetic electrons, thermal cycling, electron radiation in conjunction with thermal cycling, and atomic oxygen on a thermoplastic polyetherimide and its carbon-fiber-reinforced composites. Composite materials made with non-sized fibers as well as materials made with fibers sized with an epoxy were evaluated. The mechanical and thermomechanical properties of the materials were studied and spectroscopic techniques were used to investigate the mechanisms for the observed effects. Considerations for future material development are suggested.
NASA Technical Reports Server (NTRS)
Clayton, J. Louie; Ehle, Curt; Saxon, Jeff (Technical Monitor)
2002-01-01
RSRM nozzle liner components have been analyzed and tested to explore the occurrence of anomalous material performance known as pocketing erosion. Primary physical factors that contribute to pocketing seem to include the geometric permeability, which governs pore pressure magnitudes and hence load, and carbon fiber high temperature tensile strength, which defines a material limiting capability. The study reports on the results of a coupled thermostructural finite element analysis of Carbon Cloth Phenolic (CCP) material tested at the Laser Hardened Material Evaluation Laboratory (the LHMEL facility). Modeled test configurations will be limited to the special case of where temperature gradients are oriented perpendicular to the composite material ply angle. Analyses were conducted using a transient, one-dimensional flow/thermal finite element code that models pore pressure and temperature distributions and in an explicitly coupled formulation, passes this information to a 2-dimensional finite element structural model for determination of the stress/deformation behavior of the orthotropic fiber/matrix CCP. Pore pressures are generated by thermal decomposition of the phenolic resin which evolve as a multi-component gas phase which is partially trapped in the porous microstructure of the composite. The nature of resultant pressures are described by using the Darcy relationships which have been modified to permit a multi-specie mass and momentum balance including water vapor condensation. Solution to the conjugate flow/thermal equations were performed using the SINDA code. Of particular importance to this problem was the implementation of a char and deformation state dependent (geometric) permeability as describing a first order interaction between the flow/thermal and structural models. Material property models are used to characterize the solid phase mechanical stiffness and failure. Structural calculations were performed using the ABAQUS code. Iterations were made between the two codes involving the dependent variables temperature, pressure and across-ply strain level. Model results comparisons are made for three different surface heat rates and dependent variable sensitivities discussed for the various cases.
Milling induced amorphisation and recrystallization of α-lactose monohydrate.
Badal Tejedor, Maria; Pazesh, Samaneh; Nordgren, Niklas; Schuleit, Michael; Rutland, Mark W; Alderborn, Göran; Millqvist-Fureby, Anna
2018-02-15
Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the α-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed α-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between unprocessed α-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spray-dried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon
Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less