Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon
2017-07-03
Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.
SANDS: an architecture for clinical decision support in a National Health Information Network.
Wright, Adam; Sittig, Dean F
2007-10-11
A new architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support) is introduced and its performance evaluated. The architecture provides a method for performing clinical decision support across a network, as in a health information exchange. Using the prototype we demonstrated that, first, a number of useful types of decision support can be carried out using our architecture; and, second, that the architecture exhibits desirable reliability and performance characteristics.
Poirazi, Panayiota; Neocleous, Costas; Pattichis, Costantinos S; Schizas, Christos N
2004-05-01
A three-layer neural network (NN) with novel adaptive architecture has been developed. The hidden layer of the network consists of slabs of single neuron models, where neurons within a slab--but not between slabs--have the same type of activation function. The network activation functions in all three layers have adaptable parameters. The network was trained using a biologically inspired, guided-annealing learning rule on a variety of medical data. Good training/testing classification performance was obtained on all data sets tested. The performance achieved was comparable to that of SVM classifiers. It was shown that the adaptive network architecture, inspired from the modular organization often encountered in the mammalian cerebral cortex, can benefit classification performance.
Learning, memory, and the role of neural network architecture.
Hermundstad, Ann M; Brown, Kevin S; Bassett, Danielle S; Carlson, Jean M
2011-06-01
The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.
Intrinsic and task-evoked network architectures of the human brain
Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.
2014-01-01
Summary Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organization. Further, a set of small but consistent changes common across tasks suggests the existence of a task-general network architecture distinguishing task states from rest. These results indicate the brain’s functional network architecture during task performance is shaped primarily by an intrinsic network architecture that is also present during rest, and secondarily by evoked task-general and task-specific network changes. This establishes a strong relationship between resting-state functional connectivity and task-evoked functional connectivity – areas of neuroscientific inquiry typically considered separately. PMID:24991964
On implementation of DCTCP on three-tier and fat-tree data center network topologies.
Zafar, Saima; Bashir, Abeer; Chaudhry, Shafique Ahmad
2016-01-01
A data center is a facility for housing computational and storage systems interconnected through a communication network called data center network (DCN). Due to a tremendous growth in the computational power, storage capacity and the number of inter-connected servers, the DCN faces challenges concerning efficiency, reliability and scalability. Although transmission control protocol (TCP) is a time-tested transport protocol in the Internet, DCN challenges such as inadequate buffer space in switches and bandwidth limitations have prompted the researchers to propose techniques to improve TCP performance or design new transport protocols for DCN. Data center TCP (DCTCP) emerge as one of the most promising solutions in this domain which employs the explicit congestion notification feature of TCP to enhance the TCP congestion control algorithm. While DCTCP has been analyzed for two-tier tree-based DCN topology for traffic between servers in the same rack which is common in cloud applications, it remains oblivious to the traffic patterns common in university and private enterprise networks which traverse the complete network interconnect spanning upper tier layers. We also recognize that DCTCP performance cannot remain unaffected by the underlying DCN architecture hence there is a need to test and compare DCTCP performance when implemented over diverse DCN architectures. Some of the most notable DCN architectures are the legacy three-tier, fat-tree, BCube, DCell, VL2, and CamCube. In this research, we simulate the two switch-centric DCN architectures; the widely deployed legacy three-tier architecture and the promising fat-tree architecture using network simulator and analyze the performance of DCTCP in terms of throughput and delay for realistic traffic patterns. We also examine how DCTCP prevents incast and outcast congestion when realistic DCN traffic patterns are employed in above mentioned topologies. Our results show that the underlying DCN architecture significantly impacts DCTCP performance. We find that DCTCP gives optimal performance in fat-tree topology and is most suitable for large networks.
Predicate calculus for an architecture of multiple neural networks
NASA Astrophysics Data System (ADS)
Consoli, Robert H.
1990-08-01
Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.
NASA Astrophysics Data System (ADS)
Dutta, Sandeep; Gros, Eric
2018-03-01
Deep Learning (DL) has been successfully applied in numerous fields fueled by increasing computational power and access to data. However, for medical imaging tasks, limited training set size is a common challenge when applying DL. This paper explores the applicability of DL to the task of classifying a single axial slice from a CT exam into one of six anatomy regions. A total of 29000 images selected from 223 CT exams were manually labeled for ground truth. An additional 54 exams were labeled and used as an independent test set. The network architecture developed for this application is composed of 6 convolutional layers and 2 fully connected layers with RELU non-linear activations between each layer. Max-pooling was used after every second convolutional layer, and a softmax layer was used at the end. Given this base architecture, the effect of inclusion of network architecture components such as Dropout and Batch Normalization on network performance and training is explored. The network performance as a function of training and validation set size is characterized by training each network architecture variation using 5,10,20,40,50 and 100% of the available training data. The performance comparison of the various network architectures was done for anatomy classification as well as two computer vision datasets. The anatomy classifier accuracy varied from 74.1% to 92.3% in this study depending on the training size and network layout used. Dropout layers improved the model accuracy for all training sizes.
A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1994-01-01
A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.
NASA Astrophysics Data System (ADS)
Gu, Jinghe; Li, Qiyun; Zeng, Pan; Meng, Yulin; Zhang, Xiukui; Wu, Ping; Zhou, Yiming
2017-08-01
Micro/nano-architectured transition-metal@C hybrids possess unique structural and compositional features toward lithium storage, and are thus expected to manifest ideal anodic performances in advanced lithium-ion batteries (LIBs). Herein, we propose a facile and scalable solid-state coordination and subsequent pyrolysis route for the formation of a novel type of micro/nano-architectured transition-metal@C hybrid (i.e., Ni@C nanosheet-assembled hierarchical network, Ni@C network). Moreover, this coordination-pyrolysis route has also been applied for the construction of bare carbon network using zinc salts instead of nickel salts as precursors. When applied as potential anodic materials in LIBs, the Ni@C network exhibits Ni-content-dependent electrochemical performances, and the partially-etched Ni@C network manifests markedly enhanced Li-storage performances in terms of specific capacities, cycle life, and rate capability than the pristine Ni@C network and carbon network. The proposed solid-state coordination and pyrolysis strategy would open up new opportunities for constructing micro/nano-architectured transition-metal@C hybrids as advanced anode materials for LIBs.
NASA Technical Reports Server (NTRS)
Benbenek, Daniel; Soloff, Jason; Lieb, Erica
2010-01-01
Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.
An Architecture for SCADA Network Forensics
NASA Astrophysics Data System (ADS)
Kilpatrick, Tim; Gonzalez, Jesus; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet
Supervisory control and data acquisition (SCADA) systems are widely used in industrial control and automation. Modern SCADA protocols often employ TCP/IP to transport sensor data and control signals. Meanwhile, corporate IT infrastructures are interconnecting with previously isolated SCADA networks. The use of TCP/IP as a carrier protocol and the interconnection of IT and SCADA networks raise serious security issues. This paper describes an architecture for SCADA network forensics. In addition to supporting forensic investigations of SCADA network incidents, the architecture incorporates mechanisms for monitoring process behavior, analyzing trends and optimizing plant performance.
Design of Power System Architectures for Small Spacecraft Systems
NASA Technical Reports Server (NTRS)
Momoh, James A.; Subramonian, Rama; Dias, Lakshman G.
1996-01-01
The objective of this research is to perform a trade study on several candidate power system architectures for small spacecrafts to be used in NASA's new millennium program. Three initial candidate architectures have been proposed by NASA and two other candidate architectures have been proposed by Howard University. Howard University is currently conducting the necessary analysis, synthesis, and simulation needed to perform the trade studies and arrive at the optimal power system architecture. Statistical, sensitivity and tolerant studies has been performed on the systems. It is concluded from present studies that certain components such as the series regulators, buck-boost converters and power converters can be minimized while retaining the desired functionality of the overall architecture. This in conjunction with battery scalability studies and system efficiency studies have enabled us to develop more economic architectures. Future studies will include artificial neural networks and fuzzy logic to analyze the performance of the systems. Fault simulation studies and fault diagnosis studies using EMTP and artificial neural networks will also be conducted.
The P-Mesh: A Commodity-based Scalable Network Architecture for Clusters
NASA Technical Reports Server (NTRS)
Nitzberg, Bill; Kuszmaul, Chris; Stockdale, Ian; Becker, Jeff; Jiang, John; Wong, Parkson; Tweten, David (Technical Monitor)
1998-01-01
We designed a new network architecture, the P-Mesh which combines the scalability and fault resilience of a torus with the performance of a switch. We compare the scalability, performance, and cost of the hub, switch, torus, tree, and P-Mesh architectures. The latter three are capable of scaling to thousands of nodes, however, the torus has severe performance limitations with that many processors. The tree and P-Mesh have similar latency, bandwidth, and bisection bandwidth, but the P-Mesh outperforms the switch architecture (a lower bound for tree performance) on 16-node NAB Parallel Benchmark tests by up to 23%, and costs 40% less. Further, the P-Mesh has better fault resilience characteristics. The P-Mesh architecture trades increased management overhead for lower cost, and is a good bridging technology while the price of tree uplinks is expensive.
MWAHCA: a multimedia wireless ad hoc cluster architecture.
Diaz, Juan R; Lloret, Jaime; Jimenez, Jose M; Sendra, Sandra
2014-01-01
Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2003-01-01
Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.
Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young
2016-04-18
Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.
Network-centric decision architecture for financial or 1/f data models
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Massey, Stoney; Case, Carl T.; Songy, Claude G.
2002-12-01
This paper presents a decision architecture algorithm for training neural equation based networks to make autonomous multi-goal oriented, multi-class decisions. These architectures make decisions based on their individual goals and draw from the same network centric feature set. Traditionally, these architectures are comprised of neural networks that offer marginal performance due to lack of convergence of the training set. We present an approach for autonomously extracting sample points as I/O exemplars for generation of multi-branch, multi-node decision architectures populated by adaptively derived neural equations. To test the robustness of this architecture, open source data sets in the form of financial time series were used, requiring a three-class decision space analogous to the lethal, non-lethal, and clutter discrimination problem. This algorithm and the results of its application are presented here.
A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potok, Thomas E; Schuman, Catherine D; Young, Steven R
Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determinemore » network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.« less
Neural network submodel as an abstraction tool: relating network performance to combat outcome
NASA Astrophysics Data System (ADS)
Jablunovsky, Greg; Dorman, Clark; Yaworsky, Paul S.
2000-06-01
Simulation of Command and Control (C2) networks has historically emphasized individual system performance with little architectural context or credible linkage to `bottom- line' measures of combat outcomes. Renewed interest in modeling C2 effects and relationships stems from emerging network intensive operational concepts. This demands improved methods to span the analytical hierarchy between C2 system performance models and theater-level models. Neural network technology offers a modeling approach that can abstract the essential behavior of higher resolution C2 models within a campaign simulation. The proposed methodology uses off-line learning of the relationships between network state and campaign-impacting performance of a complex C2 architecture and then approximation of that performance as a time-varying parameter in an aggregated simulation. Ultimately, this abstraction tool offers an increased fidelity of C2 system simulation that captures dynamic network dependencies within a campaign context.
Building and measuring a high performance network architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, William T.C.; Toole, Timothy; Fisher, Chuck
2001-04-20
Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning.more » The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.« less
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng
2014-08-01
Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.
Convolutional neural network architectures for predicting DNA–protein binding
Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.
2016-01-01
Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608
Ntofon, Okung-Dike; Channegowda, Mayur P; Efstathiou, Nikolaos; Rashidi Fard, Mehdi; Nejabati, Reza; Hunter, David K; Simeonidou, Dimitra
2013-02-25
In this paper, a novel Software-Defined Networking (SDN) architecture is proposed for high-end Ultra High Definition (UHD) media applications. UHD media applications require huge amounts of bandwidth that can only be met with high-capacity optical networks. In addition, there are requirements for control frameworks capable of delivering effective application performance with efficient network utilization. A novel SDN-based Controller that tightly integrates application-awareness with network control and management is proposed for such applications. An OpenFlow-enabled test-bed demonstrator is reported with performance evaluations of advanced online and offline media- and network-aware schedulers.
NASA Astrophysics Data System (ADS)
Liyanagedera, Chamika M.; Sengupta, Abhronil; Jaiswal, Akhilesh; Roy, Kaushik
2017-12-01
Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving "brainlike" compact and energy-efficient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.
MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture
Diaz, Juan R.; Jimenez, Jose M.; Sendra, Sandra
2014-01-01
Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal. PMID:24737996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Dagle, Jeffery E.
2008-07-31
The infrastructure of phasor measurements have evolved over the last two decades from isolated measurement units to networked measurement systems with footprints beyond individual utility companies. This is, to a great extent, a bottom-up self-evolving process except some local systems built by design. Given the number of phasor measurement units (PMUs) in the system is small (currently 70 each in western and eastern interconnections), current phasor network architecture works just fine. However, the architecture will become a bottleneck when large number of PMUs are installed (e.g. >1000~10000). The need for phasor architecture design has yet to be addressed. This papermore » reviews the current phasor networks and investigates future architectures, as related to the efforts undertaken by the North America SynchroPhasor Initiative (NASPI). Then it continues to present staged system tests to evaluate the performance of phasor networks, which is a common practice in the Western Electricity Coordinating Council (WECC) system. This is followed by field measurement evaluation and the implication of phasor quality issues on phasor applications.« less
Efficient self-organizing multilayer neural network for nonlinear system modeling.
Han, Hong-Gui; Wang, Li-Dan; Qiao, Jun-Fei
2013-07-01
It has been shown extensively that the dynamic behaviors of a neural system are strongly influenced by the network architecture and learning process. To establish an artificial neural network (ANN) with self-organizing architecture and suitable learning algorithm for nonlinear system modeling, an automatic axon-neural network (AANN) is investigated in the following respects. First, the network architecture is constructed automatically to change both the number of hidden neurons and topologies of the neural network during the training process. The approach introduced in adaptive connecting-and-pruning algorithm (ACP) is a type of mixed mode operation, which is equivalent to pruning or adding the connecting of the neurons, as well as inserting some required neurons directly. Secondly, the weights are adjusted, using a feedforward computation (FC) to obtain the information for the gradient during learning computation. Unlike most of the previous studies, AANN is able to self-organize the architecture and weights, and to improve the network performances. Also, the proposed AANN has been tested on a number of benchmark problems, ranging from nonlinear function approximating to nonlinear systems modeling. The experimental results show that AANN can have better performances than that of some existing neural networks. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
A generalized LSTM-like training algorithm for second-order recurrent neural networks
Monner, Derek; Reggia, James A.
2011-01-01
The Long Short Term Memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM’s original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting it’s applicability to a small set of network architectures. Here we introduce the Generalized Long Short-Term Memory (LSTM-g) training algorithm, which provides LSTM-like locality while being applicable without modification to a much wider range of second-order network architectures. With LSTM-g, all units have an identical set of operating instructions for both activation and learning, subject only to the configuration of their local environment in the network; this is in contrast to the original LSTM training algorithm, where each type of unit has its own activation and training instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes advantage of an additional source of back-propagated error which can enable better performance than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we demonstrate that training recurrent networks engineered for specific tasks can produce better results than single-layer networks. We conclude that LSTM-g has the potential to both improve the performance and broaden the applicability of spatially and temporally local gradient-based training algorithms for recurrent neural networks. PMID:21803542
Exploring the architectural trade space of NASAs Space Communication and Navigation Program
NASA Astrophysics Data System (ADS)
Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.
NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati- n networks. It then presents the generalities of possible architectures for future space communication and navigation networks. Finally, it describes the tools and methods being developed, clearly indicating the architectural decisions that have been taken into account as well as the systematic approach followed to model them. The purpose of this study is to explore the SCaN architectural tradespace by means of a computational tool. This paper describes the tool, while the tradespace exploration is underway.
Airport Surface Network Architecture Definition
NASA Technical Reports Server (NTRS)
Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.
2006-01-01
Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network performance and security.
NASA Astrophysics Data System (ADS)
Belapurkar, Rohit K.
Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.
Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks.
Alshinina, Remah; Elleithy, Khaled
2017-03-08
Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs.
Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks
Alshinina, Remah; Elleithy, Khaled
2017-01-01
Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs. PMID:28282896
Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel
2016-01-01
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894
Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel
2016-08-16
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.
A novel strategy for load balancing of distributed medical applications.
Logeswaran, Rajasvaran; Chen, Li-Choo
2012-04-01
Current trends in medicine, specifically in the electronic handling of medical applications, ranging from digital imaging, paperless hospital administration and electronic medical records, telemedicine, to computer-aided diagnosis, creates a burden on the network. Distributed Service Architectures, such as Intelligent Network (IN), Telecommunication Information Networking Architecture (TINA) and Open Service Access (OSA), are able to meet this new challenge. Distribution enables computational tasks to be spread among multiple processors; hence, performance is an important issue. This paper proposes a novel approach in load balancing, the Random Sender Initiated Algorithm, for distribution of tasks among several nodes sharing the same computational object (CO) instances in Distributed Service Architectures. Simulations illustrate that the proposed algorithm produces better network performance than the benchmark load balancing algorithms-the Random Node Selection Algorithm and the Shortest Queue Algorithm, especially under medium and heavily loaded conditions.
NASA Astrophysics Data System (ADS)
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-28
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young
2015-11-30
Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-01-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes. PMID:27465296
Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.
Shim, Yoonsik; Philippides, Andrew; Staras, Kevin; Husbands, Phil
2016-10-01
We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.
Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP
Staras, Kevin
2016-01-01
We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture. PMID:27760125
Agent Collaborative Target Localization and Classification in Wireless Sensor Networks
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.
Interconnection network architectures based on integrated orbital angular momentum emitters
NASA Astrophysics Data System (ADS)
Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella
2018-02-01
Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.
Recognition of degraded handwritten digits using dynamic Bayesian networks
NASA Astrophysics Data System (ADS)
Likforman-Sulem, Laurence; Sigelle, Marc
2007-01-01
We investigate in this paper the application of dynamic Bayesian networks (DBNs) to the recognition of handwritten digits. The main idea is to couple two separate HMMs into various architectures. First, a vertical HMM and a horizontal HMM are built observing the evolving streams of image columns and image rows respectively. Then, two coupled architectures are proposed to model interactions between these two streams and to capture the 2D nature of character images. Experiments performed on the MNIST handwritten digit database show that coupled architectures yield better recognition performances than non-coupled ones. Additional experiments conducted on artificially degraded (broken) characters demonstrate that coupled architectures better cope with such degradation than non coupled ones and than discriminative methods such as SVMs.
Multistage WDM access architecture employing cascaded AWGs
NASA Astrophysics Data System (ADS)
El-Nahal, F. I.; Mears, R. J.
2009-03-01
Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.
NASA Technical Reports Server (NTRS)
Shyy, Dong-Jye; Redman, Wayne
1993-01-01
For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tan, Yuanlong; Lin, Yi; Han, Jianrui; Lee, Young
2015-09-07
Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.
A performance analysis of advanced I/O architectures for PC-based network file servers
NASA Astrophysics Data System (ADS)
Huynh, K. D.; Khoshgoftaar, T. M.
1994-12-01
In the personal computing and workstation environments, more and more I/O adapters are becoming complete functional subsystems that are intelligent enough to handle I/O operations on their own without much intervention from the host processor. The IBM Subsystem Control Block (SCB) architecture has been defined to enhance the potential of these intelligent adapters by defining services and conventions that deliver command information and data to and from the adapters. In recent years, a new storage architecture, the Redundant Array of Independent Disks (RAID), has been quickly gaining acceptance in the world of computing. In this paper, we would like to discuss critical system design issues that are important to the performance of a network file server. We then present a performance analysis of the SCB architecture and disk array technology in typical network file server environments based on personal computers (PCs). One of the key issues investigated in this paper is whether a disk array can outperform a group of disks (of same type, same data capacity, and same cost) operating independently, not in parallel as in a disk array.
A neuro-fuzzy architecture for real-time applications
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Huang, Song
1992-01-01
Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.
A neural net approach to space vehicle guidance
NASA Technical Reports Server (NTRS)
Caglayan, Alper K.; Allen, Scott M.
1990-01-01
The space vehicle guidance problem is formulated using a neural network approach, and the appropriate neural net architecture for modeling optimum guidance trajectories is investigated. In particular, an investigation is made of the incorporation of prior knowledge about the characteristics of the optimal guidance solution into the neural network architecture. The online classification performance of the developed network is demonstrated using a synthesized network trained with a database of optimum guidance trajectories. Such a neural-network-based guidance approach can readily adapt to environment uncertainties such as those encountered by an AOTV during atmospheric maneuvers.
Hearne, Luke J; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B
2017-08-30
Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity. SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that such limitations arise from flexible, moment-to-moment reconfigurations of functional brain networks. It is less clear how such task-driven adaptive changes in connectivity relate to stable, intrinsic networks of the brain and behavioral performance. We found that increased reasoning demands rely on selective patterns of connectivity within cortical networks that emerged in addition to a more general, task-induced modular architecture. This task-driven architecture reverted to a more segregated resting-state architecture both immediately before and after the task. These findings reveal how flexibility in human brain networks is integral to achieving successful reasoning performance across different levels of cognitive demand. Copyright © 2017 the authors 0270-6474/17/378399-13$15.00/0.
Using Fuzzy Logic for Performance Evaluation in Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap S.
1992-01-01
Current reinforcement learning algorithms require long training periods which generally limit their applicability to small size problems. A new architecture is described which uses fuzzy rules to initialize its two neural networks: a neural network for performance evaluation and another for action selection. This architecture is applied to control of dynamic systems and it is demonstrated that it is possible to start with an approximate prior knowledge and learn to refine it through experiments using reinforcement learning.
Systemic risk on different interbank network topologies
NASA Astrophysics Data System (ADS)
Lenzu, Simone; Tedeschi, Gabriele
2012-09-01
In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.
Fiber Access Networks: Reliability Analysis and Swedish Broadband Market
NASA Astrophysics Data System (ADS)
Wosinska, Lena; Chen, Jiajia; Larsen, Claus Popp
Fiber access network architectures such as active optical networks (AONs) and passive optical networks (PONs) have been developed to support the growing bandwidth demand. Whereas particularly Swedish operators prefer AON, this may not be the case for operators in other countries. The choice depends on a combination of technical requirements, practical constraints, business models, and cost. Due to the increasing importance of reliable access to the network services, connection availability is becoming one of the most crucial issues for access networks, which should be reflected in the network owner's architecture decision. In many cases protection against failures is realized by adding backup resources. However, there is a trade off between the cost of protection and the level of service reliability since improving reliability performance by duplication of network resources (and capital expenditures CAPEX) may be too expensive. In this paper we present the evolution of fiber access networks and compare reliability performance in relation to investment and management cost for some representative cases. We consider both standard and novel architectures for deployment in both sparsely and densely populated areas. While some recent works focused on PON protection schemes with reduced CAPEX the current and future effort should be put on minimizing the operational expenditures (OPEX) during the access network lifetime.
Providing the full DDF link protection for bus-connected SIEPON based system architecture
NASA Astrophysics Data System (ADS)
Hwang, I.-Shyan; Pakpahan, Andrew Fernando; Liem, Andrew Tanny; Nikoukar, AliAkbar
2016-09-01
Currently a massive amount of traffic per second is delivered through EPON systems, one of the prominent access network technologies for delivering the next generation network. Therefore, it is vital to keep the EPON optical distribution network (ODN) working by providing the necessity protection mechanism in the deployed devices; otherwise, when failures occur it will cause a great loss for both network operators and business customers. In this paper, we propose a bus-connected architecture to protect and recover distribution drop fiber (DDF) link faults or transceiver failures at ONU(s) in SIEPON system. The proposed architecture provides a cost-effective architecture, which delivers the high fault-tolerance in handling multiple DDF faults, while also providing flexibility in choosing the backup ONU assignments. Simulation results show that the proposed architecture provides the reliability and maintains quality of service (QoS) performance in terms of mean packet delay, system throughput, packet loss and EF jitter when DDF link failures occur.
Rofoee, Bijan Rahimzadeh; Zervas, Georgios; Yan, Yan; Amaya, Norberto; Qin, Yixuan; Simeonidou, Dimitra
2013-03-11
The paper presents a novel network architecture on demand approach using on-chip and-off chip implementations, enabling programmable, highly efficient and transparent networking, well suited for intra-datacenter communications. The implemented FPGA-based adaptable line-card with on-chip design along with an architecture on demand (AoD) based off-chip flexible switching node, deliver single chip dual L2-Packet/L1-time shared optical network (TSON) server Network Interface Cards (NIC) interconnected through transparent AoD based switch. It enables hitless adaptation between Ethernet over wavelength switched network (EoWSON), and TSON based sub-wavelength switching, providing flexible bitrates, while meeting strict bandwidth, QoS requirements. The on and off-chip performance results show high throughput (9.86Ethernet, 8.68Gbps TSON), high QoS, as well as hitless switch-over.
Design of Distributed Engine Control Systems with Uncertain Delay.
Liu, Xiaofeng; Li, Yanxi; Sun, Xu
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.
Design of Distributed Engine Control Systems with Uncertain Delay
Li, Yanxi; Sun, Xu
2016-01-01
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005
Using SPEEDES to simulate the blue gene interconnect network
NASA Technical Reports Server (NTRS)
Springer, P.; Upchurch, E.
2003-01-01
JPL and the Center for Advanced Computer Architecture (CACR) is conducting application and simulation analyses of BG/L in order to establish a range of effectiveness for the Blue Gene/L MPP architecture in performing important classes of computations and to determine the design sensitivity of the global interconnect network in support of real world ASCI application execution.
High-performance, scalable optical network-on-chip architectures
NASA Astrophysics Data System (ADS)
Tan, Xianfang
The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of GWOR in optical communication and BFT in non-uniform traffic communication and three-dimension (3D) implementation. 5. A cycle-accurate NoC simulator is developed to evaluate the performance of proposed HONoC architectures. It is a comprehensive platform that can simulate both electronic and optical NoCs. Different size HONoC architectures are evaluated in terms of throughput, latency and energy dissipation. Simulation results confirm that HONoC achieves good network performance with lower power consumption.
Terzenidis, Nikos; Moralis-Pegios, Miltiadis; Mourgias-Alexandris, George; Vyrsokinos, Konstantinos; Pleros, Nikos
2018-04-02
Departing from traditional server-centric data center architectures towards disaggregated systems that can offer increased resource utilization at reduced cost and energy envelopes, the use of high-port switching with highly stringent latency and bandwidth requirements becomes a necessity. We present an optical switch architecture exploiting a hybrid broadcast-and-select/wavelength routing scheme with small-scale optical feedforward buffering. The architecture is experimentally demonstrated at 10Gb/s, reporting error-free performance with a power penalty of <2.5dB. Moreover, network simulations for a 256-node system, revealed low-latency values of only 605nsec, at throughput values reaching 80% when employing 2-packet-size optical buffers, while multi-rack network performance was also investigated.
NASA Technical Reports Server (NTRS)
Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary
1996-01-01
We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.
Planning assistance for the NASA 30/20 GHz program. Network control architecture study.
NASA Technical Reports Server (NTRS)
Inukai, T.; Bonnelycke, B.; Strickland, S.
1982-01-01
Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control.
Sawmill: A Logging File System for a High-Performance RAID Disk Array
1995-01-01
from limiting disk performance, new controller architectures connect the disks directly to the network so that data movement bypasses the file server...These developments raise two questions for file systems: how to get the best performance from a RAID, and how to use such a controller architecture ...the RAID-II storage system; this architecture provides a fast data path that moves data rapidly among the disks, high-speed controller memory, and the
Performance Analysis of a NASA Integrated Network Array
NASA Technical Reports Server (NTRS)
Nessel, James A.
2012-01-01
The Space Communications and Navigation (SCaN) Program is planning to integrate its individual networks into a unified network which will function as a single entity to provide services to user missions. This integrated network architecture is expected to provide SCaN customers with the capabilities to seamlessly use any of the available SCaN assets to support their missions to efficiently meet the collective needs of Agency missions. One potential optimal application of these assets, based on this envisioned architecture, is that of arraying across existing networks to significantly enhance data rates and/or link availabilities. As such, this document provides an analysis of the transmit and receive performance of a proposed SCaN inter-network antenna array. From the study, it is determined that a fully integrated internetwork array does not provide any significant advantage over an intra-network array, one in which the assets of an individual network are arrayed for enhanced performance. Therefore, it is the recommendation of this study that NASA proceed with an arraying concept, with a fundamental focus on a network-centric arraying.
Marsh, James; Glencross, Mashhuda; Pettifer, Steve; Hubbold, Roger
2006-01-01
Network architectures for collaborative virtual reality have traditionally been dominated by client-server and peer-to-peer approaches, with peer-to-peer strategies typically being favored where minimizing latency is a priority, and client-server where consistency is key. With increasingly sophisticated behavior models and the demand for better support for haptics, we argue that neither approach provides sufficient support for these scenarios and, thus, a hybrid architecture is required. We discuss the relative performance of different distribution strategies in the face of real network conditions and illustrate the problems they face. Finally, we present an architecture that successfully meets many of these challenges and demonstrate its use in a distributed virtual prototyping application which supports simultaneous collaboration for assembly, maintenance, and training applications utilizing haptics.
Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario
2018-03-01
Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.
Grierson, Claire S.
2018-01-01
Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli. Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution. PMID:29670941
Dietzel, Matthias; Baltzer, Pascal A T; Dietzel, Andreas; Zoubi, Ramy; Gröschel, Tobias; Burmeister, Hartmut P; Bogdan, Martin; Kaiser, Werner A
2012-07-01
Differential diagnosis of lesions in MR-Mammography (MRM) remains a complex task. The aim of this MRM study was to design and to test robustness of Artificial Neural Network architectures to predict malignancy using a large clinical database. For this IRB-approved investigation standardized protocols and study design were applied (T1w-FLASH; 0.1 mmol/kgBW Gd-DTPA; T2w-TSE; histological verification after MRM). All lesions were evaluated by two experienced (>500 MRM) radiologists in consensus. In every lesion, 18 previously published descriptors were assessed and documented in the database. An Artificial Neural Network (ANN) was developed to process this database (The-MathWorks/Inc., feed-forward-architecture/resilient back-propagation-algorithm). All 18 descriptors were set as input variables, whereas histological results (malignant vs. benign) was defined as classification variable. Initially, the ANN was optimized in terms of "Training Epochs" (TE), "Hidden Layers" (HL), "Learning Rate" (LR) and "Neurons" (N). Robustness of the ANN was addressed by repeated evaluation cycles (n: 9) with receiver operating characteristics (ROC) analysis of the results applying 4-fold Cross Validation. The best network architecture was identified comparing the corresponding Area under the ROC curve (AUC). Histopathology revealed 436 benign and 648 malignant lesions. Enhancing the level of complexity could not increase diagnostic accuracy of the network (P: n.s.). The optimized ANN architecture (TE: 20, HL: 1, N: 5, LR: 1.2) was accurate (mean-AUC 0.888; P: <0.001) and robust (CI: 0.885-0.892; range: 0.880-0.898). The optimized neural network showed robust performance and high diagnostic accuracy for prediction of malignancy on unknown data. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Group-multicast capable optical virtual private ring with contention avoidance
NASA Astrophysics Data System (ADS)
Peng, Yunfeng; Du, Shu; Long, Keping
2008-11-01
A ring based optical virtual private network (OVPN) employing contention sensing and avoidance is proposed to deliver multiple-to-multiple group-multicast traffic. The network architecture is presented and its operation principles as well as performance are investigated. The main contribution of this article is the presentation of an innovative group-multicast capable OVPN architecture with technologies available today.
Client/Server data serving for high performance computing
NASA Technical Reports Server (NTRS)
Wood, Chris
1994-01-01
This paper will attempt to examine the industry requirements for shared network data storage and sustained high speed (10's to 100's to thousands of megabytes per second) network data serving via the NFS and FTP protocol suite. It will discuss the current structural and architectural impediments to achieving these sorts of data rates cost effectively today on many general purpose servers and will describe and architecture and resulting product family that addresses these problems. The sustained performance levels that were achieved in the lab will be shown as well as a discussion of early customer experiences utilizing both the HIPPI-IP and ATM OC3-IP network interfaces.
Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.
Savareh, Behrouz Alizadeh; Emami, Hassan; Hajiabadi, Mohamadreza; Azimi, Seyed Majid; Ghafoori, Mahyar
2018-05-29
Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.
NASA Astrophysics Data System (ADS)
Al-Ajmi, R. M.; Abou-Ziyan, H. Z.; Mahmoud, M. A.
2012-01-01
This paper reports the results of a comprehensive study that aimed at identifying best neural network architecture and parameters to predict subcooled boiling characteristics of engine oils. A total of 57 different neural networks (NNs) that were derived from 14 different NN architectures were evaluated for four different prediction cases. The NNs were trained on experimental datasets performed on five engine oils of different chemical compositions. The performance of each NN was evaluated using a rigorous statistical analysis as well as careful examination of smoothness of predicted boiling curves. One NN, out of the 57 evaluated, correctly predicted the boiling curves for all cases considered either for individual oils or for all oils taken together. It was found that the pattern selection and weight update techniques strongly affect the performance of the NNs. It was also revealed that the use of descriptive statistical analysis such as R2, mean error, standard deviation, and T and slope tests, is a necessary but not sufficient condition for evaluating NN performance. The performance criteria should also include inspection of the smoothness of the predicted curves either visually or by plotting the slopes of these curves.
Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Li, Hui; Lin, Yi; Li, Gang; Han, Jianrui; Lee, Young; Ma, Teng
2014-07-28
Data center interconnection with elastic optical networks is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. We previously implemented enhanced software defined networking over elastic optical network for data center application [Opt. Express 21, 26990 (2013)]. On the basis of it, this study extends to consider the time-aware data center service scheduling with elastic service time and service bandwidth according to the various time sensitivity requirements. A novel time-aware enhanced software defined networking (TeSDN) architecture for elastic data center optical interconnection has been proposed in this paper, by introducing a time-aware resources scheduling (TaRS) scheme. The TeSDN can accommodate the data center services with required QoS considering the time dimensionality, and enhance cross stratum optimization of application and elastic optical network stratums resources based on spectrum elasticity, application elasticity and time elasticity. The overall feasibility and efficiency of the proposed architecture is experimentally verified on our OpenFlow-based testbed. The performance of TaRS scheme under heavy traffic load scenario is also quantitatively evaluated based on TeSDN architecture in terms of blocking probability and resource occupation rate.
Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold
2016-12-01
In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.
DeepX: Deep Learning Accelerator for Restricted Boltzmann Machine Artificial Neural Networks.
Kim, Lok-Won
2018-05-01
Although there have been many decades of research and commercial presence on high performance general purpose processors, there are still many applications that require fully customized hardware architectures for further computational acceleration. Recently, deep learning has been successfully used to learn in a wide variety of applications, but their heavy computation demand has considerably limited their practical applications. This paper proposes a fully pipelined acceleration architecture to alleviate high computational demand of an artificial neural network (ANN) which is restricted Boltzmann machine (RBM) ANNs. The implemented RBM ANN accelerator (integrating network size, using 128 input cases per batch, and running at a 303-MHz clock frequency) integrated in a state-of-the art field-programmable gate array (FPGA) (Xilinx Virtex 7 XC7V-2000T) provides a computational performance of 301-billion connection-updates-per-second and about 193 times higher performance than a software solution running on general purpose processors. Most importantly, the architecture enables over 4 times (12 times in batch learning) higher performance compared with a previous work when both are implemented in an FPGA device (XC2VP70).
Anatomically constrained neural network models for the categorization of facial expression
NASA Astrophysics Data System (ADS)
McMenamin, Brenton W.; Assadi, Amir H.
2004-12-01
The ability to recognize facial expression in humans is performed with the amygdala which uses parallel processing streams to identify the expressions quickly and accurately. Additionally, it is possible that a feedback mechanism may play a role in this process as well. Implementing a model with similar parallel structure and feedback mechanisms could be used to improve current facial recognition algorithms for which varied expressions are a source for error. An anatomically constrained artificial neural-network model was created that uses this parallel processing architecture and feedback to categorize facial expressions. The presence of a feedback mechanism was not found to significantly improve performance for models with parallel architecture. However the use of parallel processing streams significantly improved accuracy over a similar network that did not have parallel architecture. Further investigation is necessary to determine the benefits of using parallel streams and feedback mechanisms in more advanced object recognition tasks.
Anatomically constrained neural network models for the categorization of facial expression
NASA Astrophysics Data System (ADS)
McMenamin, Brenton W.; Assadi, Amir H.
2005-01-01
The ability to recognize facial expression in humans is performed with the amygdala which uses parallel processing streams to identify the expressions quickly and accurately. Additionally, it is possible that a feedback mechanism may play a role in this process as well. Implementing a model with similar parallel structure and feedback mechanisms could be used to improve current facial recognition algorithms for which varied expressions are a source for error. An anatomically constrained artificial neural-network model was created that uses this parallel processing architecture and feedback to categorize facial expressions. The presence of a feedback mechanism was not found to significantly improve performance for models with parallel architecture. However the use of parallel processing streams significantly improved accuracy over a similar network that did not have parallel architecture. Further investigation is necessary to determine the benefits of using parallel streams and feedback mechanisms in more advanced object recognition tasks.
Wang, S.; Huang, L. J.; Geng, L.; Scarpa, F.; Jiao, Y.; Peng, H. X.
2017-01-01
We present a new class of TiBw/Ti6Al4V composites with a network reinforcement architecture that exhibits a significant creep resistance compared to monolithic Ti6Al4V alloys. Creep tests performed at temperatures between 773 K and 923 K and stress range of 100 MPa-300 MPa indicate both a significant improvement of the composites creep resistance due to the network architecture made by the TiB whiskers (TiBw), and a decrease of the steady-state creep rates by augmenting the local volume fractions of TiBw in the network region. The deformation behavior is driven by a diffusion-controlled dislocation climb process. Moreover, the activation energies of these composites are significantly higher than that of Ti6Al4V alloys, indicating a higher creep resistance. The increase of the activation energy can be attributed to the TiBw architecture that severely impedes the movements of dislocation and grain boundary sliding and provides a tailoring of the stress transfer. These micromechanical mechanisms lead to a remarkable improvement of the creep resistance of these networked TiBw/Ti6Al4V composites featuring the special networked architecture. PMID:28094350
Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure
NASA Technical Reports Server (NTRS)
Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David
2016-01-01
Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.
Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure
NASA Technical Reports Server (NTRS)
Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David
2016-01-01
Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.
Long, Jeffrey W
2007-09-01
Ultraporous aperiodic solids, such as aerogels and ambigels, are sol-gel-derived equivalents of architectures. The walls are defined by the nanoscopic, covalently bonded solid network of the gel. The vast open, interconnected space characteristic of a building is represented by the three-dimensionally continuous nanoscopic pore network. We discuss how an architectural construct serves as a powerful metaphor that guides the chemist in the design of aerogel-like nanoarchitectures and in their physical and chemical transformation into multifunctional objects that yield high performance for rate-critical applications.
Space-Based Information Infrastructure Architecture for Broadband Services
NASA Technical Reports Server (NTRS)
Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.
1996-01-01
This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.
Gulzari, Usman Ali; Sajid, Muhammad; Anjum, Sheraz; Agha, Shahrukh; Torres, Frank Sill
2016-01-01
A Mesh topology is one of the most promising architecture due to its regular and simple structure for on-chip communication. Performance of mesh topology degraded greatly by increasing the network size due to small bisection width and large network diameter. In order to overcome this limitation, many researchers presented modified Mesh design by adding some extra links to improve its performance in terms of network latency and power consumption. The Cross-By-Pass-Mesh was presented by us as an improved version of Mesh topology by intelligent addition of extra links. This paper presents an efficient topology named Cross-By-Pass-Torus for further increase in the performance of the Cross-By-Pass-Mesh topology. The proposed design merges the best features of the Cross-By-Pass-Mesh and Torus, to reduce the network diameter, minimize the average number of hops between nodes, increase the bisection width and to enhance the overall performance of the network. In this paper, the architectural design of the topology is presented and analyzed against similar kind of 2D topologies in terms of average latency, throughput and power consumption. In order to certify the actual behavior of proposed topology, the synthetic traffic trace and five different real embedded application workloads are applied to the proposed as well as other competitor network topologies. The simulation results indicate that Cross-By-Pass-Torus is an efficient candidate among its predecessor's and competitor topologies due to its less average latency and increased throughput at a slight cost in network power and energy for on-chip communication.
The Aeronautical Data Link: Taxonomy, Architectural Analysis, and Optimization
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Goode, Plesent W.
2002-01-01
The future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) System will rely on global satellite navigation, and ground-based and satellite based communications via Multi-Protocol Networks (e.g. combined Aeronautical Telecommunications Network (ATN)/Internet Protocol (IP)) to bring about needed improvements in efficiency and safety of operations to meet increasing levels of air traffic. This paper will discuss the development of an approach that completely describes optimal data link architecture configuration and behavior to meet the multiple conflicting objectives of concurrent and different operations functions. The practical application of the approach enables the design and assessment of configurations relative to airspace operations phases. The approach includes a formal taxonomic classification, an architectural analysis methodology, and optimization techniques. The formal taxonomic classification provides a multidimensional correlation of data link performance with data link service, information protocol, spectrum, and technology mode; and to flight operations phase and environment. The architectural analysis methodology assesses the impact of a specific architecture configuration and behavior on the local ATM system performance. Deterministic and stochastic optimization techniques maximize architectural design effectiveness while addressing operational, technology, and policy constraints.
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network
Brennan, Robert W.
2017-01-01
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.
Taboun, Mohammed S; Brennan, Robert W
2017-09-14
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.
NASA Astrophysics Data System (ADS)
Park, Soomyung; Joo, Seong-Soon; Yae, Byung-Ho; Lee, Jong-Hyun
2002-07-01
In this paper, we present the Optical Cross-Connect (OXC) Management Control System Architecture, which has the scalability and robust maintenance and provides the distributed managing environment in the optical transport network. The OXC system we are developing, which is divided into the hardware and the internal and external software for the OXC system, is made up the OXC subsystem with the Optical Transport Network (OTN) sub layers-hardware and the optical switch control system, the signaling control protocol subsystem performing the User-to-Network Interface (UNI) and Network-to-Network Interface (NNI) signaling control, the Operation Administration Maintenance & Provisioning (OAM&P) subsystem, and the network management subsystem. And the OXC management control system has the features that can support the flexible expansion of the optical transport network, provide the connectivity to heterogeneous external network elements, be added or deleted without interrupting OAM&P services, be remotely operated, provide the global view and detail information for network planner and operator, and have Common Object Request Broker Architecture (CORBA) based the open system architecture adding and deleting the intelligent service networking functions easily in future. To meet these considerations, we adopt the object oriented development method in the whole developing steps of the system analysis, design, and implementation to build the OXC management control system with the scalability, the maintenance, and the distributed managing environment. As a consequently, the componentification for the OXC operation management functions of each subsystem makes the robust maintenance, and increases code reusability. Also, the component based OXC management control system architecture will have the flexibility and scalability in nature.
Smart photonic networks and computer security for image data
NASA Astrophysics Data System (ADS)
Campello, Jorge; Gill, John T.; Morf, Martin; Flynn, Michael J.
1998-02-01
Work reported here is part of a larger project on 'Smart Photonic Networks and Computer Security for Image Data', studying the interactions of coding and security, switching architecture simulations, and basic technologies. Coding and security: coding methods that are appropriate for data security in data fusion networks were investigated. These networks have several characteristics that distinguish them form other currently employed networks, such as Ethernet LANs or the Internet. The most significant characteristics are very high maximum data rates; predominance of image data; narrowcasting - transmission of data form one source to a designated set of receivers; data fusion - combining related data from several sources; simple sensor nodes with limited buffering. These characteristics affect both the lower level network design and the higher level coding methods.Data security encompasses privacy, integrity, reliability, and availability. Privacy, integrity, and reliability can be provided through encryption and coding for error detection and correction. Availability is primarily a network issue; network nodes must be protected against failure or routed around in the case of failure. One of the more promising techniques is the use of 'secret sharing'. We consider this method as a special case of our new space-time code diversity based algorithms for secure communication. These algorithms enable us to exploit parallelism and scalable multiplexing schemes to build photonic network architectures. A number of very high-speed switching and routing architectures and their relationships with very high performance processor architectures were studied. Indications are that routers for very high speed photonic networks can be designed using the very robust and distributed TCP/IP protocol, if suitable processor architecture support is available.
Dynamic extreme learning machine and its approximation capability.
Zhang, Rui; Lan, Yuan; Huang, Guang-Bin; Xu, Zong-Ben; Soh, Yeng Chai
2013-12-01
Extreme learning machines (ELMs) have been proposed for generalized single-hidden-layer feedforward networks which need not be neuron alike and perform well in both regression and classification applications. The problem of determining the suitable network architectures is recognized to be crucial in the successful application of ELMs. This paper first proposes a dynamic ELM (D-ELM) where the hidden nodes can be recruited or deleted dynamically according to their significance to network performance, so that not only the parameters can be adjusted but also the architecture can be self-adapted simultaneously. Then, this paper proves in theory that such D-ELM using Lebesgue p-integrable hidden activation functions can approximate any Lebesgue p-integrable function on a compact input set. Simulation results obtained over various test problems demonstrate and verify that the proposed D-ELM does a good job reducing the network size while preserving good generalization performance.
Distributed dynamic simulations of networked control and building performance applications.
Yahiaoui, Azzedine
2018-02-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.
Distributed dynamic simulations of networked control and building performance applications
Yahiaoui, Azzedine
2017-01-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper. PMID:29568135
A high performance parallel computing architecture for robust image features
NASA Astrophysics Data System (ADS)
Zhou, Renyan; Liu, Leibo; Wei, Shaojun
2014-03-01
A design of parallel architecture for image feature detection and description is proposed in this article. The major component of this architecture is a 2D cellular network composed of simple reprogrammable processors, enabling the Hessian Blob Detector and Haar Response Calculation, which are the most computing-intensive stage of the Speeded Up Robust Features (SURF) algorithm. Combining this 2D cellular network and dedicated hardware for SURF descriptors, this architecture achieves real-time image feature detection with minimal software in the host processor. A prototype FPGA implementation of the proposed architecture achieves 1318.9 GOPS general pixel processing @ 100 MHz clock and achieves up to 118 fps in VGA (640 × 480) image feature detection. The proposed architecture is stand-alone and scalable so it is easy to be migrated into VLSI implementation.
ReTrust: attack-resistant and lightweight trust management for medical sensor networks.
He, Daojing; Chen, Chun; Chan, Sammy; Bu, Jiajun; Vasilakos, Athanasios V
2012-07-01
Wireless medical sensor networks (MSNs) enable ubiquitous health monitoring of users during their everyday lives, at health sites, without restricting their freedom. Establishing trust among distributed network entities has been recognized as a powerful tool to improve the security and performance of distributed networks such as mobile ad hoc networks and sensor networks. However, most existing trust systems are not well suited for MSNs due to the unique operational and security requirements of MSNs. Moreover, similar to most security schemes, trust management methods themselves can be vulnerable to attacks. Unfortunately, this issue is often ignored in existing trust systems. In this paper, we identify the security and performance challenges facing a sensor network for wireless medical monitoring and suggest it should follow a two-tier architecture. Based on such an architecture, we develop an attack-resistant and lightweight trust management scheme named ReTrust. This paper also reports the experimental results of the Collection Tree Protocol using our proposed system in a network of TelosB motes, which show that ReTrust not only can efficiently detect malicious/faulty behaviors, but can also significantly improve the network performance in practice.
Parallel protein secondary structure prediction based on neural networks.
Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi
2004-01-01
Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.
A reliability analysis tool for SpaceWire network
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou
2017-04-01
A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.
NASA Technical Reports Server (NTRS)
Luna, C. de
2003-01-01
This session will help you tune up your skills and knowledge on the latest advances in network design and management, to keep your agency's data communications running at peak performance, with minimal cost and effort.
Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks
NASA Astrophysics Data System (ADS)
Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.
2015-10-01
The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.
Centralized and distributed control architectures under Foundation Fieldbus network.
Persechini, Maria Auxiliadora Muanis; Jota, Fábio Gonçalves
2013-01-01
This paper aims at discussing possible automation and control system architectures based on fieldbus networks in which the controllers can be implemented either in a centralized or in a distributed form. An experimental setup is used to demonstrate some of the addressed issues. The control and automation architecture is composed of a supervisory system, a programmable logic controller and various other devices connected to a Foundation Fieldbus H1 network. The procedures used in the network configuration, in the process modelling and in the design and implementation of controllers are described. The specificities of each one of the considered logical organizations are also discussed. Finally, experimental results are analysed using an algorithm for the assessment of control loops to compare the performances between the centralized and the distributed implementations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Reconfiguration of brain network architecture to support executive control in aging.
Gallen, Courtney L; Turner, Gary R; Adnan, Areeba; D'Esposito, Mark
2016-08-01
Aging is accompanied by declines in executive control abilities and changes in underlying brain network architecture. Here, we examined brain networks in young and older adults during a task-free resting state and an N-back task and investigated age-related changes in the modular network organization of the brain. Compared with young adults, older adults showed larger changes in network organization between resting state and task. Although young adults exhibited increased connectivity between lateral frontal regions and other network modules during the most difficult task condition, older adults also exhibited this pattern of increased connectivity during less-demanding task conditions. Moreover, the increase in between-module connectivity in older adults was related to faster task performance and greater fractional anisotropy of the superior longitudinal fasciculus. These results demonstrate that older adults who exhibit more pronounced network changes between a resting state and task have better executive control performance and greater structural connectivity of a core frontal-posterior white matter pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Convolutional neural networks for event-related potential detection: impact of the architecture.
Cecotti, H
2017-07-01
The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.
Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols
NASA Technical Reports Server (NTRS)
Schoolcraft, Joshua; Wilson, Keith
2011-01-01
Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of reliably delivering data at relatively high rates. Finally, performance characterizations from this data suggest performance optimizations to configuration and protocols for future optical-specific DTN space link scenarios.
3D multi-view convolutional neural networks for lung nodule classification
Kang, Guixia; Hou, Beibei; Zhang, Ningbo
2017-01-01
The 3D convolutional neural network (CNN) is able to make full use of the spatial 3D context information of lung nodules, and the multi-view strategy has been shown to be useful for improving the performance of 2D CNN in classifying lung nodules. In this paper, we explore the classification of lung nodules using the 3D multi-view convolutional neural networks (MV-CNN) with both chain architecture and directed acyclic graph architecture, including 3D Inception and 3D Inception-ResNet. All networks employ the multi-view-one-network strategy. We conduct a binary classification (benign and malignant) and a ternary classification (benign, primary malignant and metastatic malignant) on Computed Tomography (CT) images from Lung Image Database Consortium and Image Database Resource Initiative database (LIDC-IDRI). All results are obtained via 10-fold cross validation. As regards the MV-CNN with chain architecture, results show that the performance of 3D MV-CNN surpasses that of 2D MV-CNN by a significant margin. Finally, a 3D Inception network achieved an error rate of 4.59% for the binary classification and 7.70% for the ternary classification, both of which represent superior results for the corresponding task. We compare the multi-view-one-network strategy with the one-view-one-network strategy. The results reveal that the multi-view-one-network strategy can achieve a lower error rate than the one-view-one-network strategy. PMID:29145492
Performance Evaluation of Reliable Multicast Protocol for Checkout and Launch Control Systems
NASA Technical Reports Server (NTRS)
Shu, Wei Wennie; Porter, John
2000-01-01
The overall objective of this project is to study reliability and performance of Real Time Critical Network (RTCN) for checkout and launch control systems (CLCS). The major tasks include reliability and performance evaluation of Reliable Multicast (RM) package and fault tolerance analysis and design of dual redundant network architecture.
Networking and AI systems: Requirements and benefits
NASA Technical Reports Server (NTRS)
1988-01-01
The price performance benefits of network systems is well documented. The ability to share expensive resources sold timesharing for mainframes, department clusters of minicomputers, and now local area networks of workstations and servers. In the process, other fundamental system requirements emerged. These have now been generalized with open system requirements for hardware, software, applications and tools. The ability to interconnect a variety of vendor products has led to a specification of interfaces that allow new techniques to extend existing systems for new and exciting applications. As an example of the message passing system, local area networks provide a testbed for many of the issues addressed by future concurrent architectures: synchronization, load balancing, fault tolerance and scalability. Gold Hill has been working with a number of vendors on distributed architectures that range from a network of workstations to a hypercube of microprocessors with distributed memory. Results from early applications are promising both for performance and scalability.
Implications of behavioral architecture for the evolution of self-organized division of labor.
Duarte, A; Scholtens, E; Weissing, F J
2012-01-01
Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization.
Implications of Behavioral Architecture for the Evolution of Self-Organized Division of Labor
Duarte, A.; Scholtens, E.; Weissing, F. J.
2012-01-01
Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization. PMID:22457609
Architectural Design for European SST System
NASA Astrophysics Data System (ADS)
Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge
2013-08-01
The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.
Crowd counting via region based multi-channel convolution neural network
NASA Astrophysics Data System (ADS)
Cao, Xiaoguang; Gao, Siqi; Bai, Xiangzhi
2017-11-01
This paper proposed a novel region based multi-channel convolution neural network architecture for crowd counting. In order to effectively solve the perspective distortion in crowd datasets with a great diversity of scales, this work combines the main channel and three branch channels. These channels extract both the global and region features. And the results are used to estimate density map. Moreover, kernels with ladder-shaped sizes are designed across all the branch channels, which generate adaptive region features. Also, branch channels use relatively deep and shallow network to achieve more accurate detector. By using these strategies, the proposed architecture achieves state-of-the-art performance on ShanghaiTech datasets and competitive performance on UCF_CC_50 datasets.
2016-10-01
and implementation of embedded, adaptive feedback and performance assessment. The investigators also initiated work designing a Bayesian Belief ...training; Teamwork; Adaptive performance; Leadership; Simulation; Modeling; Bayesian belief networks (BBN) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Trauma teams Team training Teamwork Adaptability Adaptive performance Leadership Simulation Modeling Bayesian belief networks (BBN) 6
Doulamis, A D; Doulamis, N D; Kollias, S D
2003-01-01
Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.
On-board B-ISDN fast packet switching architectures. Phase 1: Study
NASA Technical Reports Server (NTRS)
Faris, Faris; Inukai, Thomas; Lee, Fred; Paul, Dilip; Shyy, Dong-Jye
1993-01-01
The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs.
Ion trap architectures and new directions
NASA Astrophysics Data System (ADS)
Siverns, James D.; Quraishi, Qudsia
2017-12-01
Trapped ion technology has seen advances in performance, robustness and versatility over the last decade. With increasing numbers of trapped ion groups worldwide, a myriad of trap architectures are currently in use. Applications of trapped ions include: quantum simulation, computing and networking, time standards and fundamental studies in quantum dynamics. Design of such traps is driven by these various research aims, but some universally desirable properties have lead to the development of ion trap foundries. Additionally, the excellent control achievable with trapped ions and the ability to do photonic readout has allowed progress on quantum networking using entanglement between remotely situated ion-based nodes. Here, we present a selection of trap architectures currently in use by the community and present their most salient characteristics, identifying features particularly suited for quantum networking. We also discuss our own in-house research efforts aimed at long-distance trapped ion networking.
End-to-end network models encompassing terrestrial, wireless, and satellite components
NASA Astrophysics Data System (ADS)
Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.
2004-08-01
Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.
NASA Astrophysics Data System (ADS)
Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma
2018-04-01
Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.
Clinical Named Entity Recognition Using Deep Learning Models.
Wu, Yonghui; Jiang, Min; Xu, Jun; Zhi, Degui; Xu, Hua
2017-01-01
Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the performance of current clinical NER systems. This study examined two popular deep learning architectures, the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields (CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the- art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported system that used both manually defined and unsupervised learning features. This study demonstrates the advantage of using deep neural network architectures for clinical concept extraction, including distributed feature representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for clinical NER.
Clinical Named Entity Recognition Using Deep Learning Models
Wu, Yonghui; Jiang, Min; Xu, Jun; Zhi, Degui; Xu, Hua
2017-01-01
Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the performance of current clinical NER systems. This study examined two popular deep learning architectures, the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields (CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the- art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported system that used both manually defined and unsupervised learning features. This study demonstrates the advantage of using deep neural network architectures for clinical concept extraction, including distributed feature representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for clinical NER. PMID:29854252
Jiang, Guangli; Liu, Leibo; Zhu, Wenping; Yin, Shouyi; Wei, Shaojun
2015-09-04
This paper proposes a real-time feature extraction VLSI architecture for high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system architecture is proposed. It increases the system throughput, provides flexibility in image resolution, and offers trade-offs between speed and scaling robustness. The architecture consists of a two-dimensional pipeline array that fully utilizes computational similarities in octaves. Secondly, a substructure (block-serial discrete-time cellular neural network) that can realize a nonlinear filter is proposed. This structure decreases the memory demand through the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in order to overcome the hardware design bottleneck through the polar sample pattern; a simplified method to realize rotation invariance is also presented. Finally, the proposed architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures.
SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.
Sripad, Athul; Sanchez, Giovanny; Zapata, Mireya; Pirrone, Vito; Dorta, Taho; Cambria, Salvatore; Marti, Albert; Krishnamourthy, Karthikeyan; Madrenas, Jordi
2018-01-01
Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of physical layer performance of hybrid optical-wireless access network
NASA Astrophysics Data System (ADS)
Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.
2011-09-01
The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.
NASA Astrophysics Data System (ADS)
Bhardwaj, Manish; McCaughan, Leon; Olkhovets, Anatoli; Korotky, Steven K.
2006-12-01
We formulate an analytic framework for the restoration performance of path-based restoration schemes in planar mesh networks. We analyze various switch architectures and signaling schemes and model their total restoration interval. We also evaluate the network global expectation value of the time to restore a demand as a function of network parameters. We analyze a wide range of nominally capacity-optimal planar mesh networks and find our analytic model to be in good agreement with numerical simulation data.
Loops in hierarchical channel networks
NASA Astrophysics Data System (ADS)
Katifori, Eleni; Magnasco, Marcelo
2012-02-01
Nature provides us with many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated and natural graphs extracted from digitized images of dicotyledonous leaves and animal vasculature. We calculate various metrics on the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.
A Network Scheduling Model for Distributed Control Simulation
NASA Technical Reports Server (NTRS)
Culley, Dennis; Thomas, George; Aretskin-Hariton, Eliot
2016-01-01
Distributed engine control is a hardware technology that radically alters the architecture for aircraft engine control systems. Of its own accord, it does not change the function of control, rather it seeks to address the implementation issues for weight-constrained vehicles that can limit overall system performance and increase life-cycle cost. However, an inherent feature of this technology, digital communication networks, alters the flow of information between critical elements of the closed-loop control. Whereas control information has been available continuously in conventional centralized control architectures through virtue of analog signaling, moving forward, it will be transmitted digitally in serial fashion over the network(s) in distributed control architectures. An underlying effect is that all of the control information arrives asynchronously and may not be available every loop interval of the controller, therefore it must be scheduled. This paper proposes a methodology for modeling the nominal data flow over these networks and examines the resulting impact for an aero turbine engine system simulation.
The challenges of archiving networked-based multimedia performances (Performance cryogenics)
NASA Astrophysics Data System (ADS)
Cohen, Elizabeth; Cooperstock, Jeremy; Kyriakakis, Chris
2002-11-01
Music archives and libraries have cultural preservation at the core of their charters. New forms of art often race ahead of the preservation infrastructure. The ability to stream multiple synchronized ultra-low latency streams of audio and video across a continent for a distributed interactive performance such as music and dance with high-definition video and multichannel audio raises a series of challenges for the architects of digital libraries and those responsible for cultural preservation. The archiving of such performances presents numerous challenges that go beyond simply recording each stream. Case studies of storage and subsequent retrieval issues for Internet2 collaborative performances are discussed. The development of shared reality and immersive environments generate issues about, What constitutes an archived performance that occurs across a network (in multiple spaces over time)? What are the families of necessary metadata to reconstruct this virtual world in another venue or era? For example, if the network exhibited changes in latency the performers most likely adapted. In a future recreation, the latency will most likely be completely different. We discuss the parameters of immersive environment acquisition and rendering, network architectures, software architecture, musical/choreographic scores, and environmental acoustics that must be considered to address this problem.
NASA Astrophysics Data System (ADS)
Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos
2014-12-01
The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).
Robust Architectures for Complex Multi-Agent Heterogeneous Systems
2014-07-23
establish the tradeoff between the control performance and the QoS of the communications network . We also derived the performance bound on the difference...accomplished within this time period leveraged the prior accomplishments in the area of networked multi-agent systems. The past work (prior to 2011...distributed control of uncertain networked systems [3]. Additionally, a preliminary collision avoidance algorithm has been developed for a team of
Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis.
Christodoulidis, Stergios; Anthimopoulos, Marios; Ebner, Lukas; Christe, Andreas; Mougiakakou, Stavroula
2017-01-01
Early diagnosis of interstitial lung diseases is crucial for their treatment, but even experienced physicians find it difficult, as their clinical manifestations are similar. In order to assist with the diagnosis, computer-aided diagnosis systems have been developed. These commonly rely on a fixed scale classifier that scans CT images, recognizes textural lung patterns, and generates a map of pathologies. In a previous study, we proposed a method for classifying lung tissue patterns using a deep convolutional neural network (CNN), with an architecture designed for the specific problem. In this study, we present an improved method for training the proposed network by transferring knowledge from the similar domain of general texture classification. Six publicly available texture databases are used to pretrain networks with the proposed architecture, which are then fine-tuned on the lung tissue data. The resulting CNNs are combined in an ensemble and their fused knowledge is compressed back to a network with the original architecture. The proposed approach resulted in an absolute increase of about 2% in the performance of the proposed CNN. The results demonstrate the potential of transfer learning in the field of medical image analysis, indicate the textural nature of the problem and show that the method used for training a network can be as important as designing its architecture.
Quantifying loopy network architectures.
Katifori, Eleni; Magnasco, Marcelo O
2012-01-01
Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.
Design of a neural network simulator on a transputer array
NASA Technical Reports Server (NTRS)
Mcintire, Gary; Villarreal, James; Baffes, Paul; Rua, Monica
1987-01-01
A brief summary of neural networks is presented which concentrates on the design constraints imposed. Major design issues are discussed together with analysis methods and the chosen solutions. Although the system will be capable of running on most transputer architectures, it currently is being implemented on a 40-transputer system connected to a toroidal architecture. Predictions show a performance level equivalent to that of a highly optimized simulator running on the SX-2 supercomputer.
Ad Hoc Network Architecture for Multi-Media Networks
2007-12-01
sensor network . Video traffic is modeled and simulations are performed via the use of the Sun Small Programmable Object Technology (Sun SPOT) Java...characteristics of video traffic must be studied and understood. This thesis focuses on evaluating the possibility of routing video images over a wireless
The deployment of routing protocols in distributed control plane of SDN.
Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu
2014-01-01
Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies.
Communication Needs Assessment for Distributed Turbine Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Behbahani, Alireza R.
2008-01-01
Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Software/hardware distributed processing network supporting the Ada environment
NASA Astrophysics Data System (ADS)
Wood, Richard J.; Pryk, Zen
1993-09-01
A high-performance, fault-tolerant, distributed network has been developed, tested, and demonstrated. The network is based on the MIPS Computer Systems, Inc. R3000 Risc for processing, VHSIC ASICs for high speed, reliable, inter-node communications and compatible commercial memory and I/O boards. The network is an evolution of the Advanced Onboard Signal Processor (AOSP) architecture. It supports Ada application software with an Ada- implemented operating system. A six-node implementation (capable of expansion up to 256 nodes) of the RISC multiprocessor architecture provides 120 MIPS of scalar throughput, 96 Mbytes of RAM and 24 Mbytes of non-volatile memory. The network provides for all ground processing applications, has merit for space-qualified RISC-based network, and interfaces to advanced Computer Aided Software Engineering (CASE) tools for application software development.
An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures
NASA Astrophysics Data System (ADS)
Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.
2009-07-01
A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.
NASA Technical Reports Server (NTRS)
Gibson, Jim; Jordan, Joe; Grant, Terry
1990-01-01
Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.
Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon
2011-01-01
Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values. PMID:22163687
Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon
2011-01-01
Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values.
Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.
Kim, Jason Z; Soffer, Jonathan M; Kahn, Ari E; Vettel, Jean M; Pasqualetti, Fabio; Bassett, Danielle S
2018-01-01
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
Role of graph architecture in controlling dynamical networks with applications to neural systems
NASA Astrophysics Data System (ADS)
Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.
2018-01-01
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
Mesh Network Architecture for Enabling Inter-Spacecraft Communication
NASA Technical Reports Server (NTRS)
Becker, Christopher; Merrill, Garrick
2017-01-01
To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..
Network planning study of the metro-optical-network-oriented 3G application
NASA Astrophysics Data System (ADS)
Gong, Qian; Xu, Rong; Lin, Jin Tong
2005-02-01
To compare with the 2G mobile communication, 3G technologies can supply the perfect service scope and performance. 3G is the trend of the mobile communication. So now to build the transmission network, it is needed to consider how the transmission network to support the 3G applications. For the 3G network architecture, it include the 2 part: Utran access network and core network. So the metro optical network should consider how to build the network to adapt the 3G applications. Include the metro core and access layer. In the metro core, we should consider the network should evolved towards the Mesh architecture with ASON function to realize the fast protection and restoration, quick end-to-end service provision, and high capacity cross-connect matrix etc. In the access layer, the network should have the ability to access the 3G services such as ATM interface with IMA function. In addition, the traffic grooming should be provided to improve the bandwidth utility. In this paper, first we present the MCC network situation, the network planning model will be introduced. Then we present the topology architecture, node capacity and traffic forecast. At last, based on our analysis, we will give a total solution to MCC to build their metro optical network toward to the mesh network with the consideration of 3G services.
Wishart Deep Stacking Network for Fast POLSAR Image Classification.
Jiao, Licheng; Liu, Fang
2016-05-11
Inspired by the popular deep learning architecture - Deep Stacking Network (DSN), a specific deep model for polarimetric synthetic aperture radar (POLSAR) image classification is proposed in this paper, which is named as Wishart Deep Stacking Network (W-DSN). First of all, a fast implementation of Wishart distance is achieved by a special linear transformation, which speeds up the classification of POLSAR image and makes it possible to use this polarimetric information in the following Neural Network (NN). Then a single-hidden-layer neural network based on the fast Wishart distance is defined for POLSAR image classification, which is named as Wishart Network (WN) and improves the classification accuracy. Finally, a multi-layer neural network is formed by stacking WNs, which is in fact the proposed deep learning architecture W-DSN for POLSAR image classification and improves the classification accuracy further. In addition, the structure of WN can be expanded in a straightforward way by adding hidden units if necessary, as well as the structure of the W-DSN. As a preliminary exploration on formulating specific deep learning architecture for POLSAR image classification, the proposed methods may establish a simple but clever connection between POLSAR image interpretation and deep learning. The experiment results tested on real POLSAR image show that the fast implementation of Wishart distance is very efficient (a POLSAR image with 768000 pixels can be classified in 0.53s), and both the single-hidden-layer architecture WN and the deep learning architecture W-DSN for POLSAR image classification perform well and work efficiently.
NATO Human View Architecture and Human Networks
NASA Technical Reports Server (NTRS)
Handley, Holly A. H.; Houston, Nancy P.
2010-01-01
The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.
Scale-space measures for graph topology link protein network architecture to function.
Hulsman, Marc; Dimitrakopoulos, Christos; de Ridder, Jeroen
2014-06-15
The network architecture of physical protein interactions is an important determinant for the molecular functions that are carried out within each cell. To study this relation, the network architecture can be characterized by graph topological characteristics such as shortest paths and network hubs. These characteristics have an important shortcoming: they do not take into account that interactions occur across different scales. This is important because some cellular functions may involve a single direct protein interaction (small scale), whereas others require more and/or indirect interactions, such as protein complexes (medium scale) and interactions between large modules of proteins (large scale). In this work, we derive generalized scale-aware versions of known graph topological measures based on diffusion kernels. We apply these to characterize the topology of networks across all scales simultaneously, generating a so-called graph topological scale-space. The comprehensive physical interaction network in yeast is used to show that scale-space based measures consistently give superior performance when distinguishing protein functional categories and three major types of functional interactions-genetic interaction, co-expression and perturbation interactions. Moreover, we demonstrate that graph topological scale spaces capture biologically meaningful features that provide new insights into the link between function and protein network architecture. Matlab(TM) code to calculate the scale-aware topological measures (STMs) is available at http://bioinformatics.tudelft.nl/TSSA © The Author 2014. Published by Oxford University Press.
NASA Technical Reports Server (NTRS)
Lee, Nathaniel; Welch, Bryan W.
2018-01-01
NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters.
Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N
2006-12-01
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
Yildirim, Özal
2018-05-01
Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Connectivity: Performance Portable Algorithms for graph connectivity v. 0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slota, George; Rajamanickam, Sivasankaran; Madduri, Kamesh
Graphs occur in several places in real world from road networks, social networks and scientific simulations. Connectivity is a graph analysis software to graph connectivity in modern architectures like multicore CPUs, Xeon Phi and GPUs.
All-optical OXC transition strategy from WDM optical network to elastic optical network.
Chen, Xin; Li, Juhao; Guo, Bingli; Zhu, Paikun; Tang, Ruizhi; Chen, Zhangyuan; He, Yongqi
2016-02-22
Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.
Noise Tolerance of Attractor and Feedforward Memory Models
Lim, Sukbin; Goldman, Mark S.
2017-01-01
In short-term memory networks, transient stimuli are represented by patterns of neural activity that persist long after stimulus offset. Here, we compare the performance of two prominent classes of memory networks, feedback-based attractor networks and feedforward networks, in conveying information about the amplitude of a briefly presented stimulus in the presence of gaussian noise. Using Fisher information as a metric of memory performance, we find that the optimal form of network architecture depends strongly on assumptions about the forms of nonlinearities in the network. For purely linear networks, we find that feedforward networks outperform attractor networks because noise is continually removed from feedforward networks when signals exit the network; as a result, feedforward networks can amplify signals they receive faster than noise accumulates over time. By contrast, attractor networks must operate in a signal-attenuating regime to avoid the buildup of noise. However, if the amplification of signals is limited by a finite dynamic range of neuronal responses or if noise is reset at the time of signal arrival, as suggested by recent experiments, we find that attractor networks can out-perform feedforward ones. Under a simple model in which neurons have a finite dynamic range, we find that the optimal attractor networks are forgetful if there is no mechanism for noise reduction with signal arrival but nonforgetful (perfect integrators) in the presence of a strong reset mechanism. Furthermore, we find that the maximal Fisher information for the feedforward and attractor networks exhibits power law decay as a function of time and scales linearly with the number of neurons. These results highlight prominent factors that lead to trade-offs in the memory performance of networks with different architectures and constraints, and suggest conditions under which attractor or feedforward networks may be best suited to storing information about previous stimuli. PMID:22091664
Le, Duc Van; Oh, Hoon; Yoon, Seokhoon
2013-07-05
In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.
Van Le, Duc; Oh, Hoon; Yoon, Seokhoon
2013-01-01
In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134
Fusion solution for soldier wearable gunfire detection systems
NASA Astrophysics Data System (ADS)
Cakiades, George; Desai, Sachi; Deligeorges, Socrates; Buckland, Bruce E.; George, Jemin
2012-06-01
Currently existing acoustic based Gunfire Detection Systems (GDS) such as soldier wearable, vehicle mounted, and fixed site devices provide enemy detection and localization capabilities to the user. However, the solution to the problem of portability versus performance tradeoff remains elusive. The Data Fusion Module (DFM), described herein, is a sensor/platform agnostic software supplemental tool that addresses this tradeoff problem by leveraging existing soldier networks to enhance GDS performance across a Tactical Combat Unit (TCU). The DFM software enhances performance by leveraging all available acoustic GDS information across the TCU synergistically to calculate highly accurate solutions more consistently than any individual GDS in the TCU. The networked sensor architecture provides additional capabilities addressing the multiple shooter/fire-fight problems in addition to sniper detection/localization. The addition of the fusion solution to the overall Size, Weight and Power & Cost (SWaP&C) is zero to negligible. At the end of the first-year effort, the DFM integrated sensor network's performance was impressive showing improvements upwards of 50% in comparison to a single sensor solution. Further improvements are expected when the networked sensor architecture created in this effort is fully exploited.
Multi-PON access network using a coarse AWG for smooth migration from TDM to WDM PON
NASA Astrophysics Data System (ADS)
Shachaf, Y.; Chang, C.-H.; Kourtessis, P.; Senior, J. M.
2007-06-01
An interoperable access network architecture based on a coarse array waveguide grating (AWG) is described, displaying dynamic wavelength assignment to manage the network load across multiple PONs. The multi-PON architecture utilizes coarse Gaussian channels of an AWG to facilitate scalability and smooth migration path between TDM and WDM PONs. Network simulations of a cross-operational protocol platform confirmed successful routing of individual PON clusters through 7 nm-wide passband windows of the AWG. Furthermore, polarization-dependent wavelength shift and phase errors of the device proved not to impose restrain on the routing performance. Optical transmission tests at 2.5 Gbit/s for distances up to 20 km are demonstrated.
NASA Astrophysics Data System (ADS)
Fink, Wolfgang
2009-05-01
Artificial neural networks (ANNs) are powerful methods for the classification of multi-dimensional data as well as for the control of dynamic systems. In general terms, ANNs consist of neurons that are, e.g., arranged in layers and interconnected by real-valued or binary neural couplings or weights. ANNs try mimicking the processing taking place in biological brains. The classification and generalization capabilities of ANNs are given by the interconnection architecture and the coupling strengths. To perform a certain classification or control task with a particular ANN architecture (i.e., number of neurons, number of layers, etc.), the inter-neuron couplings and their accordant coupling strengths must be determined (1) either by a priori design (i.e., manually) or (2) using training algorithms such as error back-propagation. The more complex the classification or control task, the less obvious it is how to determine an a priori design of an ANN, and, as a consequence, the architecture choice becomes somewhat arbitrary. Furthermore, rather than being able to determine for a given architecture directly the corresponding coupling strengths necessary to perform the classification or control task, these have to be obtained/learned through training of the ANN on test data. We report on the use of a Stochastic Optimization Framework (SOF; Fink, SPIE 2008) for the autonomous self-configuration of Artificial Neural Networks (i.e., the determination of number of hidden layers, number of neurons per hidden layer, interconnections between neurons, and respective coupling strengths) for performing classification or control tasks. This may provide an approach towards cognizant and self-adapting computing architectures and systems.
Sensor Network Architectures for Monitoring Underwater Pipelines
Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren
2011-01-01
This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669
Sensor network architectures for monitoring underwater pipelines.
Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren
2011-01-01
This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.
A proposal for an SDN-based SIEPON architecture
NASA Astrophysics Data System (ADS)
Khalili, Hamzeh; Sallent, Sebastià; Piney, José Ramón; Rincón, David
2017-11-01
Passive Optical Network (PON) elements such as Optical Line Terminal (OLT) and Optical Network Units (ONUs) are currently managed by inflexible legacy network management systems. Software-Defined Networking (SDN) is a new networking paradigm that improves the operation and management of networks. In this paper, we propose a novel architecture, based on the SDN concept, for Ethernet Passive Optical Networks (EPON) that includes the Service Interoperability standard (SIEPON). In our proposal, the OLT is partially virtualized and some of its functionalities are allocated to the core network management system, while the OLT itself is replaced by an OpenFlow (OF) switch. A new MultiPoint MAC Control (MPMC) sublayer extension based on the OpenFlow protocol is presented. This would allow the SDN controller to manage and enhance the resource utilization, flow monitoring, bandwidth assignment, quality-of-service (QoS) guarantees, and energy management of the optical network access, to name a few possibilities. The OpenFlow switch is extended with synchronous ports to retain the time-critical nature of the EPON network. OpenFlow messages are also extended with new functionalities to implement the concept of EPON Service Paths (ESPs). Our simulation-based results demonstrate the effectiveness of the new architecture, while retaining a similar (or improved) performance in terms of delay and throughput when compared to legacy PONs.
Advanced ground station architecture
NASA Technical Reports Server (NTRS)
Zillig, David; Benjamin, Ted
1994-01-01
This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.
Learning and diagnosing faults using neural networks
NASA Technical Reports Server (NTRS)
Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis
1990-01-01
Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.
NASA Astrophysics Data System (ADS)
Abeywickrama, Sandu; Furdek, Marija; Monti, Paolo; Wosinska, Lena; Wong, Elaine
2016-12-01
Core network survivability affects the reliability performance of telecommunication networks and remains one of the most important network design considerations. This paper critically examines the benefits arising from utilizing dual-homing in the optical access networks to provide resource-efficient protection against link and node failures in the optical core segment. Four novel, heuristic-based RWA algorithms that provide dedicated path protection in networks with dual-homing are proposed and studied. These algorithms protect against different failure scenarios (i.e. single link or node failures) and are implemented with different optimization objectives (i.e., minimization of wavelength usage and path length). Results obtained through simulations and comparison with baseline architectures indicate that exploiting dual-homed architecture in the access segment can bring significant improvements in terms of core network resource usage, connection availability, and power consumption.
Scalable Lunar Surface Networks and Adaptive Orbit Access
NASA Technical Reports Server (NTRS)
Wang, Xudong
2015-01-01
Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.
Performance Evaluation of Peer-to-Peer Progressive Download in Broadband Access Networks
NASA Astrophysics Data System (ADS)
Shibuya, Megumi; Ogishi, Tomohiko; Yamamoto, Shu
P2P (Peer-to-Peer) file sharing architectures have scalable and cost-effective features. Hence, the application of P2P architectures to media streaming is attractive and expected to be an alternative to the current video streaming using IP multicast or content delivery systems because the current systems require expensive network infrastructures and large scale centralized cache storage systems. In this paper, we investigate the P2P progressive download enabling Internet video streaming services. We demonstrated the capability of the P2P progressive download in both laboratory test network as well as in the Internet. Through the experiments, we clarified the contribution of the FTTH links to the P2P progressive download in the heterogeneous access networks consisting of FTTH and ADSL links. We analyzed the cause of some download performance degradation occurred in the experiment and discussed about the effective methods to provide the video streaming service using P2P progressive download in the current heterogeneous networks.
NASA Astrophysics Data System (ADS)
Xue, L.; Liu, C.; Wu, Y.; Li, H.
2018-04-01
Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the classification of roads, vegetation, buildings and water from remote Sensing Imagery is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for ground object segmentation and the results could be further improved. This paper used convolution neural network named U-Net, its structure has a contracting path and an expansive path to get high resolution output. In the network , We added BN layers, which is more conducive to the reverse pass. Moreover, after upsampling convolution , we add dropout layers to prevent overfitting. They are promoted to get more precise segmentation results. To verify this network architecture, we used a Kaggle dataset. Experimental results show that U-Net achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.
Optical multicast system for data center networks.
Samadi, Payman; Gupta, Varun; Xu, Junjie; Wang, Howard; Zussman, Gil; Bergman, Keren
2015-08-24
We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.
Network-driven design principles for neuromorphic systems.
Partzsch, Johannes; Schüffny, Rene
2015-01-01
Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems.
Network-driven design principles for neuromorphic systems
Partzsch, Johannes; Schüffny, Rene
2015-01-01
Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems. PMID:26539079
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, C; Elgorriaga, I; McConaghy, C
2001-07-03
Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mWmore » for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.« less
An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuman, Catherine D; Plank, James; Disney, Adam
2016-01-01
As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.
Integrated Sensor Architecture (ISA) for Live Virtual Constructive (LVC) Environments
2014-03-01
connect, publish their needs and capabilities, and interact with other systems even on disadvantaged networks. Within the ISA project, three levels of...constructive, disadvantaged network, sensor 1. INTRODUCTION In 2003 the Networked Sensors for the Future Force (NSFF) Advanced Technology Demonstration...While this combination is less optimal over disadvantaged networks, and we do not recommend it there, TCP and TLS perform adequately over networks with
Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Wu, Jialin; Lin, Yi; Han, Jianrui; Lee, Young
2015-05-18
Inter-data center interconnect with IP over elastic optical network (EON) is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resources integration among IP networks, optical networks and application stratums resources that allows to accommodate data center services. In view of this, this study extends to consider the service resilience in case of edge optical node failure. We propose a novel multi-stratum resources integrated resilience (MSRIR) architecture for the services in software defined inter-data center interconnect based on IP over EON. A global resources integrated resilience (GRIR) algorithm is introduced based on the proposed architecture. The MSRIR can enable cross stratum optimization and provide resilience using the multiple stratums resources, and enhance the data center service resilience responsiveness to the dynamic end-to-end service demands. The overall feasibility and efficiency of the proposed architecture is experimentally verified on the control plane of our OpenFlow-based enhanced SDN (eSDN) testbed. The performance of GRIR algorithm under heavy traffic load scenario is also quantitatively evaluated based on MSRIR architecture in terms of path blocking probability, resilience latency and resource utilization, compared with other resilience algorithms.
Survivable architectures for time and wavelength division multiplexed passive optical networks
NASA Astrophysics Data System (ADS)
Wong, Elaine
2014-08-01
The increased network reach and customer base of next-generation time and wavelength division multiplexed PON (TWDM-PONs) have necessitated rapid fault detection and subsequent restoration of services to its users. However, direct application of existing solutions for conventional PONs to TWDM-PONs is unsuitable as these schemes rely on the loss of signal (LOS) of upstream transmissions to trigger protection switching. As TWDM-PONs are required to potentially use sleep/doze mode optical network units (ONU), the loss of upstream transmission from a sleeping or dozing ONU could erroneously trigger protection switching. Further, TWDM-PONs require its monitoring modules for fiber/device fault detection to be more sensitive than those typically deployed in conventional PONs. To address the above issues, three survivable architectures that are compliant with TWDM-PON specifications are presented in this work. These architectures combine rapid detection and protection switching against multipoint failure, and most importantly do not rely on upstream transmissions for LOS activation. Survivability analyses as well as evaluations of the additional costs incurred to achieve survivability are performed and compared to the unprotected TWDM-PON. Network parameters that impact the maximum achievable network reach, maximum split ratio, connection availability, fault impact, and the incremental reliability costs for each proposed survivable architecture are highlighted.
The Aeronautical Data Link: Decision Framework for Architecture Analysis
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Goode, Plesent W.
2003-01-01
A decision analytic approach that develops optimal data link architecture configuration and behavior to meet multiple conflicting objectives of concurrent and different airspace operations functions has previously been developed. The approach, premised on a formal taxonomic classification that correlates data link performance with operations requirements, information requirements, and implementing technologies, provides a coherent methodology for data link architectural analysis from top-down and bottom-up perspectives. This paper follows the previous research by providing more specific approaches for mapping and transitioning between the lower levels of the decision framework. The goal of the architectural analysis methodology is to assess the impact of specific architecture configurations and behaviors on the efficiency, capacity, and safety of operations. This necessarily involves understanding the various capabilities, system level performance issues and performance and interface concepts related to the conceptual purpose of the architecture and to the underlying data link technologies. Efficient and goal-directed data link architectural network configuration is conditioned on quantifying the risks and uncertainties associated with complex structural interface decisions. Deterministic and stochastic optimal design approaches will be discussed that maximize the effectiveness of architectural designs.
2014-06-01
in large-scale datasets such as might be obtained by monitoring a corporate network or social network. Identifying guilty actors, rather than payload...by monitoring a corporate network or social network. Identifying guilty actors, rather than payload-carrying objects, is entirely novel in steganalysis...implementation using Compute Unified Device Architecture (CUDA) on NVIDIA graphics cards. The key to good performance is to combine computations so that
Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.
Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio
2008-11-24
Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor J.
2013-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.
The Deployment of Routing Protocols in Distributed Control Plane of SDN
Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu
2014-01-01
Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies. PMID:25250395
The Deep Space Network information system in the year 2000
NASA Technical Reports Server (NTRS)
Markley, R. W.; Beswick, C. A.
1992-01-01
The Deep Space Network (DSN), the largest, most sensitive scientific communications and radio navigation network in the world, is considered. Focus is made on the telemetry processing, monitor and control, and ground data transport architectures of the DSN ground information system envisioned for the year 2000. The telemetry architecture will be unified from the front-end area to the end user. It will provide highly automated monitor and control of the DSN, automated configuration of support activities, and a vastly improved human interface. Automated decision support systems will be in place for DSN resource management, performance analysis, fault diagnosis, and contingency management.
Architecture Study on Telemetry Coverage for Immediate Post-Separation Phase
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles; Kellogg, Kent; Stocklin, Frank; Zillig, David; Fielhauer, Karl
2008-01-01
This document is the viewgraphs that accompanies a paper that presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (< 10000 km) when most post-separation critical operations are executed, Earth-based network (e.g. Deep Space Network (DSN)) can only provide limited coverage, whereas space-based network (e.g. Space Network (SN)) can provide continuous coverage. 2) Commercial-off-the-shelf SN compatible transmitters are available for small satellite applications. In this paper we present the detailed coverage analysis of Earth-based and Space-based networks. We identify the key functional and performance requirements of the architecture, and describe the proposed selection criteria of the spacecraft transmitter. We conclude the paper with a proposed forward plan.
Network Theory: A Primer and Questions for Air Transportation Systems Applications
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.
2004-01-01
A new understanding (with potential applications to air transportation systems) has emerged in the past five years in the scientific field of networks. This development emerges in large part because we now have a new laboratory for developing theories about complex networks: The Internet. The premise of this new understanding is that most complex networks of interest, both of nature and of human contrivance, exhibit a fundamentally different behavior than thought for over two hundred years under classical graph theory. Classical theory held that networks exhibited random behavior, characterized by normal, (e.g., Gaussian or Poisson) degree distributions of the connectivity between nodes by links. The new understanding turns this idea on its head: networks of interest exhibit scale-free (or small world) degree distributions of connectivity, characterized by power law distributions. The implications of scale-free behavior for air transportation systems include the potential that some behaviors of complex system architectures might be analyzed through relatively simple approximations of local elements of the system. For air transportation applications, this presentation proposes a framework for constructing topologies (architectures) that represent the relationships between mobility, flight operations, aircraft requirements, and airspace capacity, and the related externalities in airspace procedures and architectures. The proposed architectures or topologies may serve as a framework for posing comparative and combinative analyses of performance, cost, security, environmental, and related metrics.
Computer architecture evaluation for structural dynamics computations: Project summary
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1989-01-01
The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.
A comparison of 1D and 2D LSTM architectures for the recognition of handwritten Arabic
NASA Astrophysics Data System (ADS)
Yousefi, Mohammad Reza; Soheili, Mohammad Reza; Breuel, Thomas M.; Stricker, Didier
2015-01-01
In this paper, we present an Arabic handwriting recognition method based on recurrent neural network. We use the Long Short Term Memory (LSTM) architecture, that have proven successful in different printed and handwritten OCR tasks. Applications of LSTM for handwriting recognition employ the two-dimensional architecture to deal with the variations in both vertical and horizontal axis. However, we show that using a simple pre-processing step that normalizes the position and baseline of letters, we can make use of 1D LSTM, which is faster in learning and convergence, and yet achieve superior performance. In a series of experiments on IFN/ENIT database for Arabic handwriting recognition, we demonstrate that our proposed pipeline can outperform 2D LSTM networks. Furthermore, we provide comparisons with 1D LSTM networks trained with manually crafted features to show that the automatically learned features in a globally trained 1D LSTM network with our normalization step can even outperform such systems.
Multiprocessor architecture: Synthesis and evaluation
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1990-01-01
Multiprocessor computed architecture evaluation for structural computations is the focus of the research effort described. Results obtained are expected to lead to more efficient use of existing architectures and to suggest designs for new, application specific, architectures. The brief descriptions given outline a number of related efforts directed toward this purpose. The difficulty is analyzing an existing architecture or in designing a new computer architecture lies in the fact that the performance of a particular architecture, within the context of a given application, is determined by a number of factors. These include, but are not limited to, the efficiency of the computation algorithm, the programming language and support environment, the quality of the program written in the programming language, the multiplicity of the processing elements, the characteristics of the individual processing elements, the interconnection network connecting processors and non-local memories, and the shared memory organization covering the spectrum from no shared memory (all local memory) to one global access memory. These performance determiners may be loosely classified as being software or hardware related. This distinction is not clear or even appropriate in many cases. The effect of the choice of algorithm is ignored by assuming that the algorithm is specified as given. Effort directed toward the removal of the effect of the programming language and program resulted in the design of a high-level parallel programming language. Two characteristics of the fundamental structure of the architecture (memory organization and interconnection network) are examined.
Grain-size considerations for optoelectronic multistage interconnection networks.
Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C
1992-09-10
This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost functions mentioned above. As VLSI minimum feature sizes decrease, the optimum grain size increases, whereas, if optical interconnect performance in terms of the detector power or modulator driving voltage requirements improves, the optimum grain size may be reduced. Finally, several architectural modifications to the system, such as K x K contention-free switches and sorting networks, are investigated and optimized for grain size. Results indicate that system bandwidth can be increased, but at the price of reduced performance/cost. The optoelectronic MIN architectures considered thus provide a broad range of performance/cost alternatives and offer a superior performance over purely electronic MIN's.
NASA Technical Reports Server (NTRS)
Markley, R. W.; Williams, B. F.
1993-01-01
NASA has proposed missions to the Moon and Mars that reflect three areas of emphasis: human presence, exploration, and space resource development for the benefit of Earth. A major requirement for such missions is a robust and reliable communications architecture. Network management--the ability to maintain some degree of human and automatic control over the span of the network from the space elements to the end users on Earth--is required to realize such robust and reliable communications. This article addresses several of the architectural issues associated with space network management. Round-trip delays, such as the 5- to 40-min delays in the Mars case, introduce a host of problems that must be solved by delegating significant control authority to remote nodes. Therefore, management hierarchy is one of the important architectural issues. The following article addresses these concerns, and proposes a network management approach based on emerging standards that covers the needs for fault, configuration, and performance management, delegated control authority, and hierarchical reporting of events. A relatively simple approach based on standards was demonstrated in the DSN 2000 Information Systems Laboratory, and the results are described.
High performance network and channel-based storage
NASA Technical Reports Server (NTRS)
Katz, Randy H.
1991-01-01
In the traditional mainframe-centered view of a computer system, storage devices are coupled to the system through complex hardware subsystems called input/output (I/O) channels. With the dramatic shift towards workstation-based computing, and its associated client/server model of computation, storage facilities are now found attached to file servers and distributed throughout the network. We discuss the underlying technology trends that are leading to high performance network-based storage, namely advances in networks, storage devices, and I/O controller and server architectures. We review several commercial systems and research prototypes that are leading to a new approach to high performance computing based on network-attached storage.
A network architecture for precision formation flying using the IEEE 802.11 MAC Protocol
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Gao, Jay L.; Jennings, Esther H.; Okino, Clayton
2005-01-01
Precision Formation Flying missions involve the tracking and maintenance of spacecraft in a desired geometric formation. The strong coupling of spacecraft in formation flying control requires inter-spacecraft communication to exchange information. In this paper, we present a network architecture that supports PFF control, from the initial random deployment phase to the final formation. We show that a suitable MAC layer for the application protocol is IEEE's 802.11 MAC protocol. IEEE 802.11 MAC has two modes of operations: DCF and PCF. We show that DCF is suitable for the initial deployment phase while switching to PCF when the spacecraft are in formation improves jitter and throughput. We also consider the effect of routing on protocol performance and suggest when it is profitable to turn off route discovery to achieve better network performance.
Generalized hypercube structures and hyperswitch communication network
NASA Technical Reports Server (NTRS)
Young, Steven D.
1992-01-01
This paper discusses an ongoing study that uses a recent development in communication control technology to implement hybrid hypercube structures. These architectures are similar to binary hypercubes, but they also provide added connectivity between the processors. This added connectivity increases communication reliability while decreasing the latency of interprocessor message passing. Because these factors directly determine the speed that can be obtained by multiprocessor systems, these architectures are attractive for applications such as remote exploration and experimentation, where high performance and ultrareliability are required. This paper describes and enumerates these architectures and discusses how they can be implemented with a modified version of the hyperswitch communication network (HCN). The HCN is analyzed because it has three attractive features that enable these architectures to be effective: speed, fault tolerance, and the ability to pass multiple messages simultaneously through the same hyperswitch controller.
A research on the application of software defined networking in satellite network architecture
NASA Astrophysics Data System (ADS)
Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing
2017-10-01
Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyonnais, Marc; Smith, Matt; Mace, Kate P.
SCinet is the purpose-built network that operates during the International Conference for High Performance Computing,Networking, Storage and Analysis (Super Computing or SC). Created each year for the conference, SCinet brings to life a high-capacity network that supports applications and experiments that are a hallmark of the SC conference. The network links the convention center to research and commercial networks around the world. This resource serves as a platform for exhibitors to demonstrate the advanced computing resources of their home institutions and elsewhere by supporting a wide variety of applications. Volunteers from academia, government and industry work together to design andmore » deliver the SCinet infrastructure. Industry vendors and carriers donate millions of dollars in equipment and services needed to build and support the local and wide area networks. Planning begins more than a year in advance of each SC conference and culminates in a high intensity installation in the days leading up to the conference. The SCinet architecture for SC16 illustrates a dramatic increase in participation from the vendor community, particularly those that focus on network equipment. Software-Defined Networking (SDN) and Data Center Networking (DCN) are present in nearly all aspects of the design.« less
Deep learning methods for protein torsion angle prediction.
Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin
2017-09-18
Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition
Sánchez, Daniela; Melin, Patricia
2017-01-01
A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition. PMID:28894461
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition.
Sánchez, Daniela; Melin, Patricia; Castillo, Oscar
2017-01-01
A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.
A large-scale photonic node architecture that utilizes interconnected OXC subsystems.
Iwai, Yuto; Hasegawa, Hiroshi; Sato, Ken-ichi
2013-01-14
We propose a novel photonic node architecture that is composed of interconnected small-scale optical cross-connect subsystems. We also developed an efficient dynamic network control algorithm that complies with a restriction on the number of intra-node fibers used for subsystem interconnection. Numerical evaluations verify that the proposed architecture offers almost the same performance as the equivalent single large-scale cross-connect switch, while enabling substantial hardware scale reductions.
NASA Technical Reports Server (NTRS)
Soltis, Steven R.; Ruwart, Thomas M.; OKeefe, Matthew T.
1996-01-01
The global file system (GFS) is a prototype design for a distributed file system in which cluster nodes physically share storage devices connected via a network-like fiber channel. Networks and network-attached storage devices have advanced to a level of performance and extensibility so that the previous disadvantages of shared disk architectures are no longer valid. This shared storage architecture attempts to exploit the sophistication of storage device technologies whereas a server architecture diminishes a device's role to that of a simple component. GFS distributes the file system responsibilities across processing nodes, storage across the devices, and file system resources across the entire storage pool. GFS caches data on the storage devices instead of the main memories of the machines. Consistency is established by using a locking mechanism maintained by the storage devices to facilitate atomic read-modify-write operations. The locking mechanism is being prototyped in the Silicon Graphics IRIX operating system and is accessed using standard Unix commands and modules.
NASA Astrophysics Data System (ADS)
Li, Xingfeng; Gan, Chaoqin; Liu, Zongkang; Yan, Yuqi; Qiao, HuBao
2018-01-01
In this paper, a novel architecture of hybrid PON for smart grid is proposed by introducing a wavelength-routing module (WRM). By using conventional optical passive components, a WRM with M ports is designed. The symmetry and passivity of the WRM makes it be easily integrated and very cheap in practice. Via the WRM, two types of network based on different ONU-interconnected manner can realize online access. Depending on optical switches and interconnecting fibers, full-fiber-fault protection and dynamic bandwidth allocation are realized in these networks. With the help of amplitude modulation, DPSK modulation and RSOA technology, wavelength triple-reuse is achieved. By means of injecting signals into left and right branches in access ring simultaneously, the transmission delay is decreased. Finally, the performance analysis and simulation of the network verifies the feasibility of the proposed architecture.
Photonic Quantum Networks formed from NV− centers
Nemoto, Kae; Trupke, Michael; Devitt, Simon J.; Scharfenberger, Burkhard; Buczak, Kathrin; Schmiedmayer, Jörg; Munro, William J.
2016-01-01
In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV−, with one nuclear spin from 15N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology. PMID:27215433
Photonic Quantum Networks formed from NV(-) centers.
Nemoto, Kae; Trupke, Michael; Devitt, Simon J; Scharfenberger, Burkhard; Buczak, Kathrin; Schmiedmayer, Jörg; Munro, William J
2016-05-24
In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV(-), with one nuclear spin from (15)N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology.
Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status.
Korfiatis, Panagiotis; Kline, Timothy L; Lachance, Daniel H; Parney, Ian F; Buckner, Jan C; Erickson, Bradley J
2017-10-01
Predicting methylation of the O6-methylguanine methyltransferase (MGMT) gene status utilizing MRI imaging is of high importance since it is a predictor of response and prognosis in brain tumors. In this study, we compare three different residual deep neural network (ResNet) architectures to evaluate their ability in predicting MGMT methylation status without the need for a distinct tumor segmentation step. We found that the ResNet50 (50 layers) architecture was the best performing model, achieving an accuracy of 94.90% (+/- 3.92%) for the test set (classification of a slice as no tumor, methylated MGMT, or non-methylated). ResNet34 (34 layers) achieved 80.72% (+/- 13.61%) while ResNet18 (18 layers) accuracy was 76.75% (+/- 20.67%). ResNet50 performance was statistically significantly better than both ResNet18 and ResNet34 architectures (p < 0.001). We report a method that alleviates the need of extensive preprocessing and acts as a proof of concept that deep neural architectures can be used to predict molecular biomarkers from routine medical images.
New scaling relation for information transfer in biological networks
Kim, Hyunju; Davies, Paul; Walker, Sara Imari
2015-01-01
We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781–4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös–Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883
QoS-aware integrated fiber-wireless standard compliant architecture based on XGPON and EDCA
NASA Astrophysics Data System (ADS)
Kaur, Ravneet; Srivastava, Anand
2018-01-01
Converged Fiber-Wireless (FiWi) broadband access network proves to be a promising candidate that is reliable, robust, cost efficient, ubiquitous and capable of providing huge amount of bandwidth. To meet the ever-increasing bandwidth requirements, it has become very crucial to investigate the performance issues that arise with the deployment of next-generation Passive Optical Network (PON) and its integration with various wireless technologies. Apart from providing high speed internet access for mass use, this combined architecture aims to enable delivery of high quality and effective e-services in different categories including health, education, finance, banking, agriculture and e-government. In this work, we present an integrated architecture of 10-Gigabit-capable PON (XG-PON) and Enhanced Distributed Channel Access (EDCA) that combines the benefits of both technologies to meet the QoS demands of subscribers. Performance evaluation of the standards-compliant hybrid network is done using discrete-event Network Simulator-3 (NS-3) and results are reported in terms of throughput, average delay, average packet loss rate and fairness index. Per-class throughput signifies effectiveness of QoS distribution whereas aggregate throughput indicates effective utilization of wireless channel. This work has not been reported so far to the best of our knowledge.
Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems
NASA Technical Reports Server (NTRS)
Innocenti, M.; Napolitano, M.
2003-01-01
Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.
Using a Communication Model to Collect Measurement Data through Mobile Devices
Bravo, José; Villarreal, Vladimir; Hervás, Ramón; Urzaiz, Gabriel
2012-01-01
Wireless systems and services have undergone remarkable development since the first mobile phone system was introduced in the early 1980s. The use of sensors in an Ambient Intelligence approach is a great solution in a medical environment. We define a communication architecture to facilitate the information transfer between all connected devices. This model is based in layers to allow the collection of measurement data to be used in our framework monitoring architecture. An overlay-based solution is built between network elements in order to provide an efficient and highly functional communication platform that allows the connection of a wide variety of devices and technologies, and serves also to perform additional functions such as the possibility to perform some processing in the network that may help to improve overall performance. PMID:23012542
Non-Intrusive Gaze Tracking Using Artificial Neural Networks
1994-01-05
We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Li, Yajie; Wang, Xinbo; Chen, Bowen; Zhang, Jie
2016-09-01
A hierarchical software-defined networking (SDN) control architecture is designed for multi-domain optical networks with the Open Daylight (ODL) controller. The OpenFlow-based Control Virtual Network Interface (CVNI) protocol is deployed between the network orchestrator and the domain controllers. Then, a dynamic bandwidth on demand (BoD) provisioning solution is proposed based on time scheduling in software-defined multi-domain optical networks (SD-MDON). Shared Risk Link Groups (SRLG)-disjoint routing schemes are adopted to separate each tenant for reliability. The SD-MDON testbed is built based on the proposed hierarchical control architecture. Then the proposed time scheduling-based BoD (Ts-BoD) solution is experimentally demonstrated on the testbed. The performance of the Ts-BoD solution is evaluated with respect to blocking probability, resource utilization, and lightpath setup latency.
NASA Astrophysics Data System (ADS)
Li, Ming; Yin, Hongxi; Xing, Fangyuan; Wang, Jingchao; Wang, Honghuan
2016-02-01
With the features of network virtualization and resource programming, Software Defined Optical Network (SDON) is considered as the future development trend of optical network, provisioning a more flexible, efficient and open network function, supporting intraconnection and interconnection of data centers. Meanwhile cloud platform can provide powerful computing, storage and management capabilities. In this paper, with the coordination of SDON and cloud platform, a multi-domain SDON architecture based on cloud control plane has been proposed, which is composed of data centers with database (DB), path computation element (PCE), SDON controller and orchestrator. In addition, the structure of the multidomain SDON orchestrator and OpenFlow-enabled optical node are proposed to realize the combination of centralized and distributed effective management and control platform. Finally, the functional verification and demonstration are performed through our optical experiment network.
Development of mini VSAT system
NASA Astrophysics Data System (ADS)
Lu, Shyue-Ching; Chiu, Wu-Jhy; Lin, Hen-Dao; Shih, Mu-Piao
1992-03-01
This paper presents the mini VSAT (very small aperture terminal) system, which is a low cost networking system providing economical alternatives to the business world's datacom needs. The system is designed to achieve the highest possible performance/price ratio for private VSAT networks that range from a few tens of remote terminals to large networks of several thousands remote terminals. The paper describes the system architecture, major features, hardware and software structure, access protocol and performance of the developed system.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Masters, Timothy D.; Lo, Joseph Y.; McKee, Dan
2001-07-01
A new neural network technology was developed for improving the benign/malignant diagnosis of breast cancer using mammogram findings. A new paradigm, Adaptive Boosting (AB), uses a markedly different theory in solutioning Computational Intelligence (CI) problems. AB, a new machine learning paradigm, focuses on finding weak learning algorithm(s) that initially need to provide slightly better than random performance (i.e., approximately 55%) when processing a mammogram training set. Then, by successive development of additional architectures (using the mammogram training set), the adaptive boosting process improves the performance of the basic Evolutionary Programming derived neural network architectures. The results of these several EP-derived hybrid architectures are then intelligently combined and tested using a similar validation mammogram data set. Optimization focused on improving specificity and positive predictive value at very high sensitivities, where an analysis of the performance of the hybrid would be most meaningful. Using the DUKE mammogram database of 500 biopsy proven samples, on average this hybrid was able to achieve (under statistical 5-fold cross-validation) a specificity of 48.3% and a positive predictive value (PPV) of 51.8% while maintaining 100% sensitivity. At 97% sensitivity, a specificity of 56.6% and a PPV of 55.8% were obtained.
Xie, Xiuqiang; Chen, Shuangqiang; Sun, Bing; Wang, Chengyin; Wang, Guoxiu
2015-09-07
Low-cost and sustainable sodium-ion batteries are regarded as a promising technology for large-scale energy storage and conversion. The development of high-rate anode materials is highly desirable for sodium-ion batteries. The optimization of mass transport and electron transfer is crucial in the discovery of electrode materials with good high-rate performances. Herein, we report the synthesis of 3 D interconnected SnO2 /graphene aerogels with a hierarchically porous structure as anode materials for sodium-ion batteries. The unique 3 D architecture was prepared by a facile in situ process, during which cross-linked 3 D conductive graphene networks with macro-/meso-sized hierarchical pores were formed and SnO2 nanoparticles were dispersed uniformly on the graphene surface simultaneously. Such a 3 D functional architecture not only facilitates the electrode-electrolyte interaction but also provides an efficient electron pathway within the graphene networks. When applied as anode materials in sodium-ion batteries, the as-prepared SnO2 /graphene aerogel exhibited high reversible capacity, improved cycling performance compared to SnO2 , and promising high-rate capability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Convolutional networks for fast, energy-efficient neuromorphic computing
Esser, Steven K.; Merolla, Paul A.; Arthur, John V.; Cassidy, Andrew S.; Appuswamy, Rathinakumar; Andreopoulos, Alexander; Berg, David J.; McKinstry, Jeffrey L.; Melano, Timothy; Barch, Davis R.; di Nolfo, Carmelo; Datta, Pallab; Amir, Arnon; Taba, Brian; Flickner, Myron D.; Modha, Dharmendra S.
2016-01-01
Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware’s underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer. PMID:27651489
Convolutional networks for fast, energy-efficient neuromorphic computing.
Esser, Steven K; Merolla, Paul A; Arthur, John V; Cassidy, Andrew S; Appuswamy, Rathinakumar; Andreopoulos, Alexander; Berg, David J; McKinstry, Jeffrey L; Melano, Timothy; Barch, Davis R; di Nolfo, Carmelo; Datta, Pallab; Amir, Arnon; Taba, Brian; Flickner, Myron D; Modha, Dharmendra S
2016-10-11
Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.
NASA Astrophysics Data System (ADS)
Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.
2017-11-01
Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.
An intelligent control system for failure detection and controller reconfiguration
NASA Technical Reports Server (NTRS)
Biswas, Saroj K.
1994-01-01
We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.
Next-Generation WDM Network Design and Routing
NASA Astrophysics Data System (ADS)
Tsang, Danny H. K.; Bensaou, Brahim
2003-08-01
Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical Burst Switching - Support of Multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule Paper Submission Deadline: November 1, 2003 Notification to Authors: January 15, 2004 Final Manuscripts to Publisher: February 15, 2004 Publication of Focus Issue: February/March 2004
Next-Generation WDM Network Design and Routing
NASA Astrophysics Data System (ADS)
Tsang, Danny H. K.; Bensaou, Brahim
2003-10-01
Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical burst switching - Support of multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule - Paper Submission Deadline: November 1, 2003 - Notification to Authors: January 15, 2004 - Final Manuscripts to Publisher: February 15, 2004 - Publication of Focus Issue: February/March 2004
Next-Generation WDM Network Design and Routing
NASA Astrophysics Data System (ADS)
Tsang, Danny H. K.; Bensaou, Brahim
2003-09-01
Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical burst switching - Support of multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule - Paper Submission Deadline: November 1, 2003 - Notification to Authors: January 15, 2004 - Final Manuscripts to Publisher: February 15, 2004 - Publication of Focus Issue: February/March 2004
Heterogeneous Spacecraft Networks
NASA Technical Reports Server (NTRS)
Nakamura, Yosuke (Inventor); Faber, Nicolas T. (Inventor); Frost, Chad R. (Inventor); Alena, Richard L. (Inventor)
2018-01-01
The present invention provides a heterogeneous spacecraft network including a network management architecture to facilitate communication between a plurality of operations centers and a plurality of data user communities. The network management architecture includes a plurality of network nodes in communication with the plurality of operations centers. The present invention also provides a method of communication for a heterogeneous spacecraft network. The method includes: transmitting data from a first space segment to a first ground segment; transmitting the data from the first ground segment to a network management architecture; transmitting data from a second space segment to a second ground segment, the second space and ground segments having incompatible communication systems with the first space and ground segments; transmitting the data from the second ground station to the network management architecture; and, transmitting data from the network management architecture to a plurality of data user communities.
FireFly: reconfigurable optical wireless networking data centers
NASA Astrophysics Data System (ADS)
Kavehrad, Mohsen; Deng, Peng; Gupta, H.; Longtin, J.; Das, S. R.; Sekar, V.
2017-01-01
We explore a novel, free-space optics based approach for building data center interconnects. Data centers (DCs) are a critical piece of today's networked applications in both private and public sectors. The key factors that have driven this trend are economies of scale, reduced management costs, better utilization of hardware via statistical multiplexing, and the ability to elastically scale applications in response to changing workload patterns. A robust DC network fabric is fundamental to the success of DCs and to ensure that the network does not become a bottleneck for high-performance applications. In this context, DC network design must satisfy several goals: high performance (e.g., high throughput and low latency), low equipment and management cost, robustness to dynamic traffic patterns, incremental expandability to add new servers or racks, and other practical concerns such as cabling complexity, and power and cooling costs. Current DC network architectures do not seem to provide a satisfactory solution, with respect to the above requirements. In particular, traditional static (wired) networks are either overprovisioned or oversubscribed. Recent works have tried to overcome the above limitations by augmenting a static (wired) "core" with some flexible links (RF-wireless or optical). These augmented architectures show promise, but offer only incremental improvement in performance. Specifically, RFwireless based augmented solutions also offer only limited performance improvement, due to inherent interference and range constraints of RF links. This paper explores an alternative design point—a fully flexible and all-wireless DC interrack network based on free-space optical (FSO) links. We call this FireFly as in; Free-space optical Inter-Rack nEtwork with high FLexibilitY. We will present our designs and tests using various configurations that can help the performance and reliability of the FSO links.
Real time network traffic monitoring for wireless local area networks based on compressed sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1994-01-01
A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.
Gramatikov, Boris I
2017-04-27
Reliable detection of central fixation and eye alignment is essential in the diagnosis of amblyopia ("lazy eye"), which can lead to blindness. Our lab has developed and reported earlier a pediatric vision screener that performs scanning of the retina around the fovea and analyzes changes in the polarization state of light as the scan progresses. Depending on the direction of gaze and the instrument design, the screener produces several signal frequencies that can be utilized in the detection of central fixation. The objective of this study was to compare artificial neural networks with classical statistical methods, with respect to their ability to detect central fixation reliably. A classical feedforward, pattern recognition, two-layer neural network architecture was used, consisting of one hidden layer and one output layer. The network has four inputs, representing normalized spectral powers at four signal frequencies generated during retinal birefringence scanning. The hidden layer contains four neurons. The output suggests presence or absence of central fixation. Backpropagation was used to train the network, using the gradient descent algorithm and the cross-entropy error as the performance function. The network was trained, validated and tested on a set of controlled calibration data obtained from 600 measurements from ten eyes in a previous study, and was additionally tested on a clinical set of 78 eyes, independently diagnosed by an ophthalmologist. In the first part of this study, a neural network was designed around the calibration set. With a proper architecture and training, the network provided performance that was comparable to classical statistical methods, allowing perfect separation between the central and paracentral fixation data, with both the sensitivity and the specificity of the instrument being 100%. In the second part of the study, the neural network was applied to the clinical data. It allowed reliable separation between normal subjects and affected subjects, its accuracy again matching that of the statistical methods. With a proper choice of a neural network architecture and a good, uncontaminated training data set, the artificial neural network can be an efficient classification tool for detecting central fixation based on retinal birefringence scanning.
Space Communications and Navigation (SCaN) Network Simulation Tool Development and Its Use Cases
NASA Technical Reports Server (NTRS)
Jennings, Esther; Borgen, Richard; Nguyen, Sam; Segui, John; Stoenescu, Tudor; Wang, Shin-Ywan; Woo, Simon; Barritt, Brian; Chevalier, Christine; Eddy, Wesley
2009-01-01
In this work, we focus on the development of a simulation tool to assist in analysis of current and future (proposed) network architectures for NASA. Specifically, the Space Communications and Navigation (SCaN) Network is being architected as an integrated set of new assets and a federation of upgraded legacy systems. The SCaN architecture for the initial missions for returning humans to the moon and beyond will include the Space Network (SN) and the Near-Earth Network (NEN). In addition to SCaN, the initial mission scenario involves a Crew Exploration Vehicle (CEV), the International Space Station (ISS) and NASA Integrated Services Network (NISN). We call the tool being developed the SCaN Network Integration and Engineering (SCaN NI&E) Simulator. The intended uses of such a simulator are: (1) to characterize performance of particular protocols and configurations in mission planning phases; (2) to optimize system configurations by testing a larger parameter space than may be feasible in either production networks or an emulated environment; (3) to test solutions in order to find issues/risks before committing more significant resources needed to produce real hardware or flight software systems. We describe two use cases of the tool: (1) standalone simulation of CEV to ISS baseline scenario to determine network performance, (2) participation in Distributed Simulation Integration Laboratory (DSIL) tests to perform function testing and verify interface and interoperability of geographically dispersed simulations/emulations.
A distributed parallel storage architecture and its potential application within EOSDIS
NASA Technical Reports Server (NTRS)
Johnston, William E.; Tierney, Brian; Feuquay, Jay; Butzer, Tony
1994-01-01
We describe the architecture, implementation, use of a scalable, high performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.
Clinical results of HIS, RIS, PACS integration using data integration CASE tools
NASA Astrophysics Data System (ADS)
Taira, Ricky K.; Chan, Hing-Ming; Breant, Claudine M.; Huang, Lu J.; Valentino, Daniel J.
1995-05-01
Current infrastructure research in PACS is dominated by the development of communication networks (local area networks, teleradiology, ATM networks, etc.), multimedia display workstations, and hierarchical image storage architectures. However, limited work has been performed on developing flexible, expansible, and intelligent information processing architectures for the vast decentralized image and text data repositories prevalent in healthcare environments. Patient information is often distributed among multiple data management systems. Current large-scale efforts to integrate medical information and knowledge sources have been costly with limited retrieval functionality. Software integration strategies to unify distributed data and knowledge sources is still lacking commercially. Systems heterogeneity (i.e., differences in hardware platforms, communication protocols, database management software, nomenclature, etc.) is at the heart of the problem and is unlikely to be standardized in the near future. In this paper, we demonstrate the use of newly available CASE (computer- aided software engineering) tools to rapidly integrate HIS, RIS, and PACS information systems. The advantages of these tools include fast development time (low-level code is generated from graphical specifications), and easy system maintenance (excellent documentation, easy to perform changes, and centralized code repository in an object-oriented database). The CASE tools are used to develop and manage the `middle-ware' in our client- mediator-serve architecture for systems integration. Our architecture is scalable and can accommodate heterogeneous database and communication protocols.
MACHETE: Environment for Space Networking Evaluation
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Segui, John S.; Woo, Simon
2010-01-01
Space Exploration missions requires the design and implementation of space networking that differs from terrestrial networks. In a space networking architecture, interplanetary communication protocols need to be designed, validated and evaluated carefully to support different mission requirements. As actual systems are expensive to build, it is essential to have a low cost method to validate and verify mission/system designs and operations. This can be accomplished through simulation. Simulation can aid design decisions where alternative solutions are being considered, support trade-studies and enable fast study of what-if scenarios. It can be used to identify risks, verify system performance against requirements, and as an initial test environment as one moves towards emulation and actual hardware implementation of the systems. We describe the development of Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) and its use cases in supporting architecture trade studies, protocol performance and its role in hybrid simulation/emulation. The MACHETE environment contains various tools and interfaces such that users may select the set of tools tailored for the specific simulation end goal. The use cases illustrate tool combinations for simulating space networking in different mission scenarios. This simulation environment is useful in supporting space networking design for planned and future missions as well as evaluating performance of existing networks where non-determinism exist in data traffic and/or link conditions.
ERIC Educational Resources Information Center
Amenyo, John-Thones
2012-01-01
Carefully engineered playable games can serve as vehicles for students and practitioners to learn and explore the programming of advanced computer architectures to execute applications, such as high performance computing (HPC) and complex, inter-networked, distributed systems. The article presents families of playable games that are grounded in…
An eConsent-based System Architecture Supporting Cooperation in Integrated Healthcare Networks.
Bergmann, Joachim; Bott, Oliver J; Hoffmann, Ina; Pretschner, Dietrich P
2005-01-01
The economical need for efficient healthcare leads to cooperative shared care networks. A virtual electronic health record is required, which integrates patient related information but reflects the distributed infrastructure and restricts access only to those health professionals involved into the care process. Our work aims on specification and development of a system architecture fulfilling these requirements to be used in concrete regional pilot studies. Methodical analysis and specification have been performed in a healthcare network using the formal method and modelling tool MOSAIK-M. The complexity of the application field was reduced by focusing on the scenario of thyroid disease care, which still includes various interdisciplinary cooperation. Result is an architecture for a secure distributed electronic health record for integrated care networks, specified in terms of a MOSAIK-M-based system model. The architecture proposes business processes, application services, and a sophisticated security concept, providing a platform for distributed document-based, patient-centred, and secure cooperation. A corresponding system prototype has been developed for pilot studies, using advanced application server technologies. The architecture combines a consolidated patient-centred document management with a decentralized system structure without needs for replication management. An eConsent-based approach assures, that access to the distributed health record remains under control of the patient. The proposed architecture replaces message-based communication approaches, because it implements a virtual health record providing complete and current information. Acceptance of the new communication services depends on compatibility with the clinical routine. Unique and cross-institutional identification of a patient is also a challenge, but will loose significance with establishing common patient cards.
A Survey of Techniques for Security Architecture Analysis
2003-05-01
to be corrected immediately. 49 DSTO-TR-1438 A software phenomenon is the "user innovation network", examples of such networks being "free" and "open...source" software projects. These networks have innovation development, production, distribution and consumption all being performed by users/self...manufacturers. "User innovation networks can function entirely independently of manufacturers because (1) at least some users have sufficient incentive to
A Holistic Management Architecture for Large-Scale Adaptive Networks
2007-09-01
transmission and processing overhead required for management. The challenges of building models to describe dynamic systems are well-known to the field of...increases the challenge of finding a simple approach to assessing the state of the network. Moreover, the performance state of one network link may be... challenging . These obstacles indicate the need for a less comprehensive-analytical, more systemic-holistic approach to managing networks. This approach might
Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network.
Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou
2011-09-01
To reduce the computational complexity of the bilinear recurrent neural network (BLRNN), a novel low-complexity nonlinear adaptive filter with a pipelined bilinear recurrent neural network (PBLRNN) is presented in this paper. The PBLRNN, inheriting the modular architectures of the pipelined RNN proposed by Haykin and Li, comprises a number of BLRNN modules that are cascaded in a chained form. Each module is implemented by a small-scale BLRNN with internal dynamics. Since those modules of the PBLRNN can be performed simultaneously in a pipelined parallelism fashion, it would result in a significant improvement of computational efficiency. Moreover, due to nesting module, the performance of the PBLRNN can be further improved. To suit for the modular architectures, a modified adaptive amplitude real-time recurrent learning algorithm is derived on the gradient descent approach. Extensive simulations are carried out to evaluate the performance of the PBLRNN on nonlinear system identification, nonlinear channel equalization, and chaotic time series prediction. Experimental results show that the PBLRNN provides considerably better performance compared to the single BLRNN and RNN models.
Scaling deep learning workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawande, Nitin A.; Landwehr, Joshua B.; Daily, Jeffrey A.
Deep Learning (DL) algorithms have become ubiquitous in data analytics. As a result, major computing vendors --- including NVIDIA, Intel, AMD, and IBM --- have architectural road-maps influenced by DL workloads. Furthermore, several vendors have recently advertised new computing products as accelerating large DL workloads. Unfortunately, it is difficult for data scientists to quantify the potential of these different products. This paper provides a performance and power analysis of important DL workloads on two major parallel architectures: NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with NVLink) and Intel Knights Landing (KNL) CPUs interconnected with Intel Omni-Path or Cray Aries. Ourmore » evaluation consists of a cross section of convolutional neural net workloads: CifarNet, AlexNet, GoogLeNet, and ResNet50 topologies using the Cifar10 and ImageNet datasets. The workloads are vendor-optimized for each architecture. Our analysis indicates that although GPUs provide the highest overall performance, the gap can close for some convolutional networks; and the KNL can be competitive in performance/watt. We find that NVLink facilitates scaling efficiency on GPUs. However, its importance is heavily dependent on neural network architecture. Furthermore, for weak-scaling --- sometimes encouraged by restricted GPU memory --- NVLink is less important.« less
Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-05-28
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.
Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-01-01
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087
Parallel Evolutionary Optimization for Neuromorphic Network Training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuman, Catherine D; Disney, Adam; Singh, Susheela
One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impactmore » the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.« less
von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert
2017-06-01
For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).
Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks
Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio
2008-01-01
Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper. PMID:27873941
Energy efficient sensor network implementations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, Janette R; Raby, Eric Y; Brennan, Sean M
In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study.more » We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.« less
Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant
Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; ...
2014-11-01
Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliencymore » is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.« less
Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.
Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T
2014-11-01
Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Wang, Zhengsuan; Jin, Wei; Qiu, Kun
2012-11-01
A novel realization method of the optical virtual private networks (OVPN) over multiprotocol label switching/optical packet switching (MPLS/OPS) networks is proposed. In this scheme, the introduction of MPLS control plane makes OVPN over OPS networks more reliable and easier; OVPN makes use of the concept of high reconfiguration of light-paths offered by MPLS, to set up secure tunnels of high bandwidth across intelligent OPS networks. Through resource management, the signal mechanism, connection control, and the architecture of the creation and maintenance of OVPN are efficiently realized. We also present an OVPN architecture with two traffic priorities, which is used to analyze the capacity, throughput, delay time of the proposed networks, and the packet loss rate performance of the OVPN over MPLS/OPS networks based on full mesh topology. The results validate the applicability of such reliable connectivity to high quality services in the OVPN over MPLS/OPS networks. Along with the results, the feasibility of the approach as the basis for the next generation networks is demonstrated and discussed.
Modeling and performance analysis of QoS data
NASA Astrophysics Data System (ADS)
Strzeciwilk, Dariusz; Zuberek, Włodzimierz M.
2016-09-01
The article presents the results of modeling and analysis of data transmission performance on systems that support quality of service. Models are designed and tested, taking into account multiservice network architecture, i.e. supporting the transmission of data related to different classes of traffic. Studied were mechanisms of traffic shaping systems, which are based on the Priority Queuing with an integrated source of data and the various sources of data that is generated. Discussed were the basic problems of the architecture supporting QoS and queuing systems. Designed and built were models based on Petri nets, supported by temporal logics. The use of simulation tools was to verify the mechanisms of shaping traffic with the applied queuing algorithms. It is shown that temporal models of Petri nets can be effectively used in the modeling and analysis of the performance of computer networks.
Deep learning with coherent nanophotonic circuits
NASA Astrophysics Data System (ADS)
Shen, Yichen; Harris, Nicholas C.; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Soljačić, Marin
2017-07-01
Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.
Design and deployment of an elastic network test-bed in IHEP data center based on SDN
NASA Astrophysics Data System (ADS)
Zeng, Shan; Qi, Fazhi; Chen, Gang
2017-10-01
High energy physics experiments produce huge amounts of raw data, while because of the sharing characteristics of the network resources, there is no guarantee of the available bandwidth for each experiment which may cause link congestion problems. On the other side, with the development of cloud computing technologies, IHEP have established a cloud platform based on OpenStack which can ensure the flexibility of the computing and storage resources, and more and more computing applications have been deployed on virtual machines established by OpenStack. However, under the traditional network architecture, network capability can’t be required elastically, which becomes the bottleneck of restricting the flexible application of cloud computing. In order to solve the above problems, we propose an elastic cloud data center network architecture based on SDN, and we also design a high performance controller cluster based on OpenDaylight. In the end, we present our current test results.
Networks for Autonomous Formation Flying Satellite Systems
NASA Technical Reports Server (NTRS)
Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.
2001-01-01
The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.
SPANNER: A Self-Repairing Spiking Neural Network Hardware Architecture.
Liu, Junxiu; Harkin, Jim; Maguire, Liam P; McDaid, Liam J; Wade, John J
2018-04-01
Recent research has shown that a glial cell of astrocyte underpins a self-repair mechanism in the human brain, where spiking neurons provide direct and indirect feedbacks to presynaptic terminals. These feedbacks modulate the synaptic transmission probability of release (PR). When synaptic faults occur, the neuron becomes silent or near silent due to the low PR of synapses; whereby the PRs of remaining healthy synapses are then increased by the indirect feedback from the astrocyte cell. In this paper, a novel hardware architecture of Self-rePAiring spiking Neural NEtwoRk (SPANNER) is proposed, which mimics this self-repairing capability in the human brain. This paper demonstrates that the hardware can self-detect and self-repair synaptic faults without the conventional components for the fault detection and fault repairing. Experimental results show that SPANNER can maintain the system performance with fault densities of up to 40%, and more importantly SPANNER has only a 20% performance degradation when the self-repairing architecture is significantly damaged at a fault density of 80%.
Bit-serial neuroprocessor architecture
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
2001-01-01
A neuroprocessor architecture employs a combination of bit-serial and serial-parallel techniques for implementing the neurons of the neuroprocessor. The neuroprocessor architecture includes a neural module containing a pool of neurons, a global controller, a sigmoid activation ROM look-up-table, a plurality of neuron state registers, and a synaptic weight RAM. The neuroprocessor reduces the number of neurons required to perform the task by time multiplexing groups of neurons from a fixed pool of neurons to achieve the successive hidden layers of a recurrent network topology.
High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles.
Aboutalebi, Seyed Hamed; Jalili, Rouhollah; Esrafilzadeh, Dorna; Salari, Maryam; Gholamvand, Zahra; Aminorroaya Yamini, Sima; Konstantinov, Konstantin; Shepherd, Roderick L; Chen, Jun; Moulton, Simon E; Innis, Peter Charles; Minett, Andrew I; Razal, Joselito M; Wallace, Gordon G
2014-03-25
The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.
Future benefits and applications of intelligent on-board processing to VSAT services
NASA Technical Reports Server (NTRS)
Price, Kent M.; Kwan, Robert K.; Edward, Ron; Faris, F.; Inukai, Tom
1992-01-01
The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified.
Topological structure and mechanics of glassy polymer networks.
Elder, Robert M; Sirk, Timothy W
2017-11-22
The influence of chain-level network architecture (i.e., topology) on mechanics was explored for unentangled polymer networks using a blend of coarse-grained molecular simulations and graph-theoretic concepts. A simple extension of the Watts-Strogatz model is proposed to control the graph properties of the network such that the corresponding physical properties can be studied with simulations. The architecture of polymer networks assembled with a dynamic curing approach were compared with the extended Watts-Strogatz model, and found to agree surprisingly well. The final cured structures of the dynamically-assembled networks were nearly an intermediate between lattice and random connections due to restrictions imposed by the finite length of the chains. Further, the uni-axial stress response, character of the bond breaking, and non-affine displacements of fully-cured glassy networks were analyzed as a function of the degree of disorder in the network architecture. It is shown that the architecture strongly affects the network stability, flow stress, onset of bond breaking, and ultimate stress while leaving the modulus and yield point nearly unchanged. The results show that internal restrictions imposed by the network architecture alter the chain-level response through changes to the crosslink dynamics in the flow regime and through the degree of coordinated chain failure at the ultimate stress. The properties considered here are shown to be sensitive to even incremental changes to the architecture and, therefore, the overall network architecture, beyond simple defects, is predicted to be a meaningful physical parameter in the mechanics of glassy polymer networks.
Electrooptical adaptive switching network for the hypercube computer
NASA Technical Reports Server (NTRS)
Chow, E.; Peterson, J.
1988-01-01
An all-optical network design for the hyperswitch network using regular free-space interconnects between electronic processor nodes is presented. The adaptive routing model used is described, and an adaptive routing control example is presented. The design demonstrates that existing electrooptical techniques are sufficient for implementing efficient parallel architectures without the need for more complex means of implementing arbitrary interconnection schemes. The electrooptical hyperswitch network significantly improves the communication performance of the hypercube computer.
A Mobile Sensor Network System for Monitoring of Unfriendly Environments.
Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo
2008-11-14
Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.
Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation
NASA Technical Reports Server (NTRS)
Stocker, John C.; Golomb, Andrew M.
2011-01-01
Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.
Integrated Operations Architecture Technology Assessment Study
NASA Technical Reports Server (NTRS)
2001-01-01
As part of NASA's Integrated Operations Architecture (IOA) Baseline, NASA will consolidate all communications operations. including ground-based, near-earth, and deep-space communications, into a single integrated network. This network will make maximum use of commercial equipment, services and standards. It will be an Internet Protocol (IP) based network. This study supports technology development planning for the IOA. The technical problems that may arise when LEO mission spacecraft interoperate with commercial satellite services were investigated. Commercial technology and services that could support the IOA were surveyed, and gaps in the capability of existing technology and techniques were identified. Recommendations were made on which gaps should be closed by means of NASA research and development funding. Several findings emerged from the interoperability assessment: in the NASA mission set, there is a preponderance of small. inexpensive, low data rate science missions; proposed commercial satellite communications services could potentially provide TDRSS-like data relay functions; and. IP and related protocols, such as TCP, require augmentation to operate in the mobile networking environment required by the space-to-ground portion of the IOA. Five case studies were performed in the technology assessment. Each case represented a realistic implementation of the near-earth portion of the IOA. The cases included the use of frequencies at L-band, Ka-band and the optical spectrum. The cases also represented both space relay architectures and direct-to-ground architectures. Some of the main recommendations resulting from the case studies are: select an architecture for the LEO/MEO communications network; pursue the development of a Ka-band space-qualified transmitter (and possibly a receiver), and a low-cost Ka-band ground terminal for a direct-to-ground network, pursue the development of an Inmarsat (L-band) space-qualified transceiver to implement a global, low data rate network for LEO/MEO, mission spacecraft; and, pursue developmental research for a miniaturized, high data rate optical transceiver.
Computing architecture for autonomous microgrids
Goldsmith, Steven Y.
2015-09-29
A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .
An All-Optical Access Metro Interface for Hybrid WDM/TDM PON Based on OBS
NASA Astrophysics Data System (ADS)
Segarra, Josep; Sales, Vicent; Prat, Josep
2007-04-01
A new all-optical access metro network interface based on optical burst switching (OBS) is proposed. A hybrid wavelength-division multiplexing/time-division multiplexing (WDM/TDM) access architecture with reflective optical network units (ONUs), an arrayed-waveguide-grating outside plant, and a tunable laser stack at the optical line terminal (OLT) is presented as a solution for the passive optical network. By means of OBS and a dynamic bandwidth allocation (DBA) protocol, which polls the ONUs, the available access bandwidth is managed. All the network intelligence and costly equipment is located at the OLT, where the DBA module is centrally implemented, providing quality of service (QoS). To scale this access network, an optical cross connect (OXC) is then used to attain a large number of ONUs by the same OLT. The hybrid WDM/TDM structure is also extended toward the metropolitan area network (MAN) by introducing the concept of OBS multiplexer (OBS-M). The network element OBS-M bridges the MAN and access networks by offering all-optical cross connection, wavelength conversion, and data signaling. The proposed innovative OBS-M node yields a full optical data network, interfacing access and metro with a geographically distributed access control. The resulting novel access metro architectures are nonblocking and, with an improved signaling, provide QoS, scalability, and very low latency. Finally, numerical analysis and simulations demonstrate the traffic performance of the proposed access scheme and all-optical access metro interface and architectures.
Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter
2010-01-01
The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052
Contention Modeling for Multithreaded Distributed Shared Memory Machines: The Cray XMT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Secchi, Simone; Tumeo, Antonino; Villa, Oreste
Distributed Shared Memory (DSM) machines are a wide class of multi-processor computing systems where a large virtually-shared address space is mapped on a network of physically distributed memories. High memory latency and network contention are two of the main factors that limit performance scaling of such architectures. Modern high-performance computing DSM systems have evolved toward exploitation of massive hardware multi-threading and fine-grained memory hashing to tolerate irregular latencies, avoid network hot-spots and enable high scaling. In order to model the performance of such large-scale machines, parallel simulation has been proved to be a promising approach to achieve good accuracy inmore » reasonable times. One of the most critical factors in solving the simulation speed-accuracy trade-off is network modeling. The Cray XMT is a massively multi-threaded supercomputing architecture that belongs to the DSM class, since it implements a globally-shared address space abstraction on top of a physically distributed memory substrate. In this paper, we discuss the development of a contention-aware network model intended to be integrated in a full-system XMT simulator. We start by measuring the effects of network contention in a 128-processor XMT machine and then investigate the trade-off that exists between simulation accuracy and speed, by comparing three network models which operate at different levels of accuracy. The comparison and model validation is performed by executing a string-matching algorithm on the full-system simulator and on the XMT, using three datasets that generate noticeably different contention patterns.« less
An information model for a virtual private optical network (OVPN) using virtual routers (VRs)
NASA Astrophysics Data System (ADS)
Vo, Viet Minh Nhat
2002-05-01
This paper describes a virtual private optical network architecture (Optical VPN - OVPN) based on virtual router (VR). It improves over architectures suggested for virtual private networks by using virtual routers with optical networks. The new things in this architecture are necessary changes to adapt to devices and protocols used in optical networks. This paper also presents information models for the OVPN: at the architecture level and at the service level. These are extensions to the DEN (directory enable network) and CIM (Common Information Model) for OVPNs using VRs. The goal is to propose a common management model using policies.
Experience with PACS in an ATM/Ethernet switched network environment.
Pelikan, E; Ganser, A; Kotter, E; Schrader, U; Timmermann, U
1998-03-01
Legacy local area network (LAN) technologies based on shared media concepts are not adequate for the growth of a large-scale picture archiving and communication system (PACS) in a client-server architecture. First, an asymmetric network load, due to the requests of a large number of PACS clients for only a few main servers, should be compensated by communication links to the servers with a higher bandwidth compared to the clients. Secondly, as the number of PACS nodes increases, the network throughout should not measurably cut production. These requirements can easily be fulfilled using switching technologies. Here asynchronous transfer mode (ATM) is clearly one of the hottest topics in networking because the ATM architecture provides integrated support for a variety of communication services, and it supports virtual networking. On the other hand, most of the imaging modalities are not yet ready for integration into a native ATM network. For a lot of nodes already joining an Ethernet, a cost-effective and pragmatic way to benefit from the switching concept would be a combined ATM/Ethernet switching environment. This incorporates an incremental migration strategy with the immediate benefits of high-speed, high-capacity ATM (for servers and high-sophisticated display workstations), while preserving elements of the existing network technologies. In addition, Ethernet switching instead of shared media Ethernet improves the performance considerably. The LAN emulation (LANE) specification by the ATM forum defines mechanisms that allow ATM networks to coexist with legacy systems using any data networking protocol. This paper points out the suitability of this network architecture in accordance with an appropriate system design.
Evaluation of a deep learning architecture for MR imaging prediction of ATRX in glioma patients
NASA Astrophysics Data System (ADS)
Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J.
2018-02-01
Predicting mutation/loss of alpha-thalassemia/mental retardation syndrome X-linked (ATRX) gene utilizing MR imaging is of high importance since it is a predictor of response and prognosis in brain tumors. In this study, we compare a deep neural network approach based on a residual deep neural network (ResNet) architecture and one based on a classical machine learning approach and evaluate their ability in predicting ATRX mutation status without the need for a distinct tumor segmentation step. We found that the ResNet50 (50 layers) architecture, pre trained on ImageNet data was the best performing model, achieving an accuracy of 0.91 for the test set (classification of a slice as no tumor, ATRX mutated, or mutated) in terms of f1 score in a test set of 35 cases. The SVM classifier achieved 0.63 for differentiating the Flair signal abnormality regions from the test patients based on their mutation status. We report a method that alleviates the need for extensive preprocessing and acts as a proof of concept that deep neural network architectures can be used to predict molecular biomarkers from routine medical images.
NASA Astrophysics Data System (ADS)
Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.
2011-06-01
We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.
NASA Astrophysics Data System (ADS)
Saha, Rony Kumer; Aswakul, Chaodit
2017-01-01
In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.
Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.
Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus
2017-01-01
Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.
Study on networking issues of medium earth orbit satellite communications systems
NASA Technical Reports Server (NTRS)
Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko
1993-01-01
Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.
Considerations on communications network protocols in deep space
NASA Technical Reports Server (NTRS)
Clare, L. P.; Agre, J. R.; Yan, T.
2001-01-01
Communications supporting deep space missions impose numerous unique constraints that impact the architectural choices made for cost-effectiveness. We are entering the era where networks that exist in deep space are needed to support planetary exploration. Cost-effective performance will require a balanced integration of applicable widely used standard protocols with new and innovative designs.
Cooperation and information replication in wireless networks.
Poularakis, Konstantinos; Tassiulas, Leandros
2016-03-06
A significant portion of today's network traffic is due to recurring downloads of a few popular contents. It has been observed that replicating the latter in caches installed at network edges-close to users-can drastically reduce network bandwidth usage and improve content access delay. Such caching architectures are gaining increasing interest in recent years as a way of dealing with the explosive traffic growth, fuelled further by the downward slope in storage space price. In this work, we provide an overview of caching with a particular emphasis on emerging network architectures that enable caching at the radio access network. In this context, novel challenges arise due to the broadcast nature of the wireless medium, which allows simultaneously serving multiple users tuned into a multicast stream, and the mobility of the users who may be frequently handed off from one cell tower to another. Existing results indicate that caching at the wireless edge has a great potential in removing bottlenecks on the wired backbone networks. Taking into consideration the schedule of multicast service and mobility profiles is crucial to extract maximum benefit in network performance. © 2016 The Author(s).
Hybrid Communication Architectures for Distributed Smart Grid Applications
Zhang, Jianhua; Hasandka, Adarsh; Wei, Jin; ...
2018-04-09
Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed amore » suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. In conclusion, the results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.« less
Hybrid Communication Architectures for Distributed Smart Grid Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianhua; Hasandka, Adarsh; Wei, Jin
Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed amore » suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. In conclusion, the results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.« less
NASA Technical Reports Server (NTRS)
Connell, Andrea M.
2011-01-01
The Deep Space Network (DSN) has three communication facilities which handle telemetry, commands, and other data relating to spacecraft missions. The network requires these three sites to share data with each other and with the Jet Propulsion Laboratory for processing and distribution. Many database management systems have replication capabilities built in, which means that data updates made at one location will be automatically propagated to other locations. This project examines multiple replication solutions, looking for stability, automation, flexibility, performance, and cost. After comparing these features, Oracle Streams is chosen for closer analysis. Two Streams environments are configured - one with a Master/Slave architecture, in which a single server is the source for all data updates, and the second with a Multi-Master architecture, in which updates originating from any of the servers will be propagated to all of the others. These environments are tested for data type support, conflict resolution, performance, changes to the data structure, and behavior during and after network or server outages. Through this experimentation, it is determined which requirements of the DSN can be met by Oracle Streams and which cannot.
UMA/GAN network architecture analysis
NASA Astrophysics Data System (ADS)
Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi
2009-07-01
This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.
A High Performance VLSI Computer Architecture For Computer Graphics
NASA Astrophysics Data System (ADS)
Chin, Chi-Yuan; Lin, Wen-Tai
1988-10-01
A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.
Scalable Architecture for Multihop Wireless ad Hoc Networks
NASA Technical Reports Server (NTRS)
Arabshahi, Payman; Gray, Andrew; Okino, Clayton; Yan, Tsun-Yee
2004-01-01
A scalable architecture for wireless digital data and voice communications via ad hoc networks has been proposed. Although the details of the architecture and of its implementation in hardware and software have yet to be developed, the broad outlines of the architecture are fairly clear: This architecture departs from current commercial wireless communication architectures, which are characterized by low effective bandwidth per user and are not well suited to low-cost, rapid scaling in large metropolitan areas. This architecture is inspired by a vision more akin to that of more than two dozen noncommercial community wireless networking organizations established by volunteers in North America and several European countries.
Trullo, Roger; Petitjean, Caroline; Nie, Dong; Shen, Dinggang; Ruan, Su
2017-09-01
Computed Tomography (CT) is the standard imaging technique for radiotherapy planning. The delineation of Organs at Risk (OAR) in thoracic CT images is a necessary step before radiotherapy, for preventing irradiation of healthy organs. However, due to low contrast, multi-organ segmentation is a challenge. In this paper, we focus on developing a novel framework for automatic delineation of OARs. Different from previous works in OAR segmentation where each organ is segmented separately, we propose two collaborative deep architectures to jointly segment all organs, including esophagus, heart, aorta and trachea. Since most of the organ borders are ill-defined, we believe spatial relationships must be taken into account to overcome the lack of contrast. The aim of combining two networks is to learn anatomical constraints with the first network, which will be used in the second network, when each OAR is segmented in turn. Specifically, we use the first deep architecture, a deep SharpMask architecture, for providing an effective combination of low-level representations with deep high-level features, and then take into account the spatial relationships between organs by the use of Conditional Random Fields (CRF). Next, the second deep architecture is employed to refine the segmentation of each organ by using the maps obtained on the first deep architecture to learn anatomical constraints for guiding and refining the segmentations. Experimental results show superior performance on 30 CT scans, comparing with other state-of-the-art methods.
An epidemic model for biological data fusion in ad hoc sensor networks
NASA Astrophysics Data System (ADS)
Chang, K. C.; Kotari, Vikas
2009-05-01
Bio terrorism can be a very refined and a catastrophic approach of attacking a nation. This requires the development of a complete architecture dedicatedly designed for this purpose which includes but is not limited to Sensing/Detection, Tracking and Fusion, Communication, and others. In this paper we focus on one such architecture and evaluate its performance. Various sensors for this specific purpose have been studied. The accent has been on use of Distributed systems such as ad-hoc networks and on application of epidemic data fusion algorithms to better manage the bio threat data. The emphasis has been on understanding the performance characteristics of these algorithms under diversified real time scenarios which are implemented through extensive JAVA based simulations. Through comparative studies on communication and fusion the performance of channel filter algorithm for the purpose of biological sensor data fusion are validated.
Thermalnet: a Deep Convolutional Network for Synthetic Thermal Image Generation
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Gorbatsevich, V. S.; Mizginov, V. A.
2017-05-01
Deep convolutional neural networks have dramatically changed the landscape of the modern computer vision. Nowadays methods based on deep neural networks show the best performance among image recognition and object detection algorithms. While polishing of network architectures received a lot of scholar attention, from the practical point of view the preparation of a large image dataset for a successful training of a neural network became one of major challenges. This challenge is particularly profound for image recognition in wavelengths lying outside the visible spectrum. For example no infrared or radar image datasets large enough for successful training of a deep neural network are available to date in public domain. Recent advances of deep neural networks prove that they are also capable to do arbitrary image transformations such as super-resolution image generation, grayscale image colorisation and imitation of style of a given artist. Thus a natural question arise: how could be deep neural networks used for augmentation of existing large image datasets? This paper is focused on the development of the Thermalnet deep convolutional neural network for augmentation of existing large visible image datasets with synthetic thermal images. The Thermalnet network architecture is inspired by colorisation deep neural networks.
An Overlay Architecture for Throughput Optimal Multipath Routing
2017-01-14
1 An Overlay Architecture for Throughput Optimal Multipath Routing Nathaniel M. Jones, Georgios S. Paschos, Brooke Shrader, and Eytan Modiano...decisions. In this work, we study an overlay architecture for dynamic routing such that only a subset of devices (overlay nodes) need to make dynamic routing...a legacy network. Network overlays are frequently used to deploy new communication architectures in legacy networks [13]. To accomplish this, messages
Networks: A Review of Their Technology, Architecture, and Implementation.
ERIC Educational Resources Information Center
Learn, Larry L.
1988-01-01
This overview of network-related technologies covers network elements, analog and digital signals, transmission media and their characteristics, equipment certification, multiplexing, network types, access technologies, network architectures local-area network technologies and attributes, protocols, internetworking, fiber optics versus satellites,…
Cosmic-ray discrimination capabilities of /ΔE-/E silicon nuclear telescopes using neural networks
NASA Astrophysics Data System (ADS)
Ambriola, M.; Bellotti, R.; Cafagna, F.; Castellano, M.; Ciacio, F.; Circella, M.; Marzo, C. N. D.; Montaruli, T.
2000-02-01
An isotope classifier of cosmic-ray events collected by space detectors has been implemented using a multi-layer perceptron neural architecture. In order to handle a great number of different isotopes a modular architecture of the ``mixture of experts'' type is proposed. The performance of this classifier has been tested on simulated data and has been compared with a ``classical'' classifying procedure. The quantitative comparison with traditional techniques shows that the neural approach has classification performances comparable - within /1% - with that of the classical one, with efficiency of the order of /98%. A possible hardware implementation of such a kind of neural architecture in future space missions is considered.
Boosted ARTMAP: modifications to fuzzy ARTMAP motivated by boosting theory.
Verzi, Stephen J; Heileman, Gregory L; Georgiopoulos, Michael
2006-05-01
In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values. Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical and theoretical results are presented to enhance the understanding of these architectures.
DOT National Transportation Integrated Search
2011-12-01
Researchers performed a system level technical study of physical layer and network layer performance of vehicular communication in a specially licensed Dedicated Short Range Communication (DSRC) 5.9 GHz frequency band. Physical layer analysis provide...
Scaling Deep Learning workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing
Gawande, Nitin A.; Daily, Jeff A.; Siegel, Charles; ...
2018-05-05
Deep Learning (DL) algorithms have become ubiquitous in data analytics. As a result, major computing vendors—including NVIDIA, Intel, AMD, and IBM—have architectural road maps influenced by DL workloads. Furthermore, several vendors have recently advertised new computing products as accelerating large DL workloads. Unfortunately, it is difficult for data scientists to quantify the potential of these different products. Here, this article provides a performance and power analysis of important DL workloads on two major parallel architectures: NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with NVLink) and Intel Knights Landing (KNL) CPUs interconnected with Intel Omni-Path or Cray Aries. Our evaluation consistsmore » of a cross section of convolutional neural net workloads: CifarNet, AlexNet, GoogLeNet, and ResNet50 topologies using the Cifar10 and ImageNet datasets. The workloads are vendor-optimized for each architecture. We use sequentially equivalent implementations to maintain iso-accuracy between parallel and sequential DL models. Our analysis indicates that although GPUs provide the highest overall performance, the gap can close for some convolutional networks; and the KNL can be competitive in performance/watt. We find that NVLink facilitates scaling efficiency on GPUs. However, its importance is heavily dependent on neural network architecture. Furthermore, for weak-scaling—sometimes encouraged by restricted GPU memory—NVLink is less important.« less
Scaling Deep Learning workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawande, Nitin A.; Daily, Jeff A.; Siegel, Charles
Deep Learning (DL) algorithms have become ubiquitous in data analytics. As a result, major computing vendors—including NVIDIA, Intel, AMD, and IBM—have architectural road maps influenced by DL workloads. Furthermore, several vendors have recently advertised new computing products as accelerating large DL workloads. Unfortunately, it is difficult for data scientists to quantify the potential of these different products. Here, this article provides a performance and power analysis of important DL workloads on two major parallel architectures: NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with NVLink) and Intel Knights Landing (KNL) CPUs interconnected with Intel Omni-Path or Cray Aries. Our evaluation consistsmore » of a cross section of convolutional neural net workloads: CifarNet, AlexNet, GoogLeNet, and ResNet50 topologies using the Cifar10 and ImageNet datasets. The workloads are vendor-optimized for each architecture. We use sequentially equivalent implementations to maintain iso-accuracy between parallel and sequential DL models. Our analysis indicates that although GPUs provide the highest overall performance, the gap can close for some convolutional networks; and the KNL can be competitive in performance/watt. We find that NVLink facilitates scaling efficiency on GPUs. However, its importance is heavily dependent on neural network architecture. Furthermore, for weak-scaling—sometimes encouraged by restricted GPU memory—NVLink is less important.« less
Novel elastic protection against DDF failures in an enhanced software-defined SIEPON
NASA Astrophysics Data System (ADS)
Pakpahan, Andrew Fernando; Hwang, I.-Shyan; Yu, Yu-Ming; Hsu, Wu-Hsiao; Liem, Andrew Tanny; Nikoukar, AliAkbar
2017-07-01
Ever-increasing bandwidth demands on passive optical networks (PONs) are pushing the utilization of every fiber strand to its limit. This is mandating comprehensive protection until the end of the distribution drop fiber (DDF). Hence, it is important to provide refined protection with an advanced fault-protection architecture and recovery mechanism that is able to cope with various DDF failures. We propose a novel elastic protection against DDF failures that incorporates a software-defined networking (SDN) capability and a bus protection line to enhance the resiliency of the existing Service Interoperability in Ethernet Passive Optical Networks (SIEPON) system. We propose the addition of an integrated SDN controller and flow tables to the optical line terminal and optical network units (ONUs) in order to deliver various DDF protection scenarios. The proposed architecture enables flexible assignment of backup ONU(s) in pre/post-fault conditions depending on the PON traffic load. A transient backup ONU and multiple backup ONUs can be deployed in the pre-fault and post-fault scenarios, respectively. Our extensively discussed simulation results show that our proposed architecture provides better overall throughput and drop probability compared to the architecture with a fixed DDF protection mechanism. It does so while still maintaining overall QoS performance in terms of packet delay, mean jitter, packet loss, and throughput under various fault conditions.
A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context.
Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo; Pozzebon, Alessandro
2018-04-21
This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented.
A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context
Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo
2018-01-01
This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented. PMID:29690552
Selective randomized load balancing and mesh networks with changing demands
NASA Astrophysics Data System (ADS)
Shepherd, F. B.; Winzer, P. J.
2006-05-01
We consider the problem of building cost-effective networks that are robust to dynamic changes in demand patterns. We compare several architectures using demand-oblivious routing strategies. Traditional approaches include single-hop architectures based on a (static or dynamic) circuit-switched core infrastructure and multihop (packet-switched) architectures based on point-to-point circuits in the core. To address demand uncertainty, we seek minimum cost networks that can carry the class of hose demand matrices. Apart from shortest-path routing, Valiant's randomized load balancing (RLB), and virtual private network (VPN) tree routing, we propose a third, highly attractive approach: selective randomized load balancing (SRLB). This is a blend of dual-hop hub routing and randomized load balancing that combines the advantages of both architectures in terms of network cost, delay, and delay jitter. In particular, we give empirical analyses for the cost (in terms of transport and switching equipment) for the discussed architectures, based on three representative carrier networks. Of these three networks, SRLB maintains the resilience properties of RLB while achieving significant cost reduction over all other architectures, including RLB and multihop Internet protocol/multiprotocol label switching (IP/MPLS) networks using VPN-tree routing.
Effectiveness of a Littoral Combat Ship as a Major Node in a Wireless Mesh Network
2017-03-01
17 Figure 6. Cloud Relay Groups . Source: Persistent Systems (2014a). .......................18 Figure 7. SolarWinds Network Performance Monitor...CIG Commander’s Initiative Group CLI Command Line Interface CN Core Network CODA Common Optical Digital Architecture CPS Cyber-Physical Systems...CSBA Center for Strategic and Budgetary CSG Carrier Strike Group DAMA Demand Assigned Multiple Access DDG Guided Missile Destroyer DL Distributed
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
...: Digital systems architecture composed of several connected networks. The proposed network architecture..., communication, and navigation systems (Aircraft Control Domain), 2. Airline business and administrative support... system architectures. Furthermore, 14 CFR regulations and current system safety assessment policy and...
An Adaptive Critic Approach to Reference Model Adaptation
NASA Technical Reports Server (NTRS)
Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.
2003-01-01
Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.
Performance management of multiple access communication networks
NASA Astrophysics Data System (ADS)
Lee, Suk; Ray, Asok
1993-12-01
This paper focuses on conceptual design, development, and implementation of a performance management tool for computer communication networks to serve large-scale integrated systems. The objective is to improve the network performance in handling various types of messages by on-line adjustment of protocol parameters. The techniques of perturbation analysis of Discrete Event Dynamic Systems (DEDS), stochastic approximation (SA), and learning automata have been used in formulating the algorithm of performance management. The efficacy of the performance management tool has been demonstrated on a network testbed. The conceptual design presented in this paper offers a step forward to bridging the gap between management standards and users' demands for efficient network operations since most standards such as ISO (International Standards Organization) and IEEE address only the architecture, services, and interfaces for network management. The proposed concept of performance management can also be used as a general framework to assist design, operation, and management of various DEDS such as computer integrated manufacturing and battlefield C(sup 3) (Command, Control, and Communications).
An enhanced performance through agent-based secure approach for mobile ad hoc networks
NASA Astrophysics Data System (ADS)
Bisen, Dhananjay; Sharma, Sanjeev
2018-01-01
This paper proposes an agent-based secure enhanced performance approach (AB-SEP) for mobile ad hoc network. In this approach, agent nodes are selected through optimal node reliability as a factor. This factor is calculated on the basis of node performance features such as degree difference, normalised distance value, energy level, mobility and optimal hello interval of node. After selection of agent nodes, a procedure of malicious behaviour detection is performed using fuzzy-based secure architecture (FBSA). To evaluate the performance of the proposed approach, comparative analysis is done with conventional schemes using performance parameters such as packet delivery ratio, throughput, total packet forwarding, network overhead, end-to-end delay and percentage of malicious detection.
Hybrid architecture for building secure sensor networks
NASA Astrophysics Data System (ADS)
Owens, Ken R., Jr.; Watkins, Steve E.
2012-04-01
Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.
Motion/imagery secure cloud enterprise architecture analysis
NASA Astrophysics Data System (ADS)
DeLay, John L.
2012-06-01
Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.
Ad hoc Laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Ma, Zongfeng; Shen, Jingshi
2016-03-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Ad hoc laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Shen, Jingshi
2017-10-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-15
... design features associated with the architecture and connectivity capabilities of the airplane's computer... novel or unusual design features: digital systems architecture composed of several connected networks. The architecture and network configuration may be used for, or interfaced with, a diverse set of...
Space Mobile Network: A Near Earth Communication and Navigation Architecture
NASA Technical Reports Server (NTRS)
Israel, Dave J.; Heckler, Greg; Menrad, Robert J.
2016-01-01
This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.
A performance analysis of DS-CDMA and SCPC VSAT networks
NASA Technical Reports Server (NTRS)
Hayes, David P.; Ha, Tri T.
1990-01-01
Spread-spectrum and single-channel-per-carrier (SCPC) transmission techniques work well in very small aperture terminal (VSAT) networks for multiple-access purposes while allowing the earth station antennas to remain small. Direct-sequence code-division multiple-access (DS-CDMA) is the simplest spread-spectrum technique to use in a VSAT network since a frequency synthesizer is not required for each terminal. An examination is made of the DS-CDMA and SCPC Ku-band VSAT satellite systems for low-density (64-kb/s or less) communications. A method for improving the standardf link analysis of DS-CDMA satellite-switched networks by including certain losses is developed. The performance of 50-channel full mesh and star network architectures is analyzed. The selection of operating conditions producing optimum performance is demonstrated.
Networking CD-ROMs: A Tutorial Introduction.
ERIC Educational Resources Information Center
Perone, Karen
1996-01-01
Provides an introduction to CD-ROM networking. Highlights include LAN (local area network) architectures for CD-ROM networks, peer-to-peer networks, shared file and dedicated file servers, commercial software/vendor solutions, problems, multiple hardware platforms, and multimedia. Six figures illustrate network architectures and a sidebar contains…
φ-evo: A program to evolve phenotypic models of biological networks.
Henry, Adrien; Hemery, Mathieu; François, Paul
2018-06-01
Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.
A Flexible System for Simulating Aeronautical Telecommunication Network
NASA Technical Reports Server (NTRS)
Maly, Kurt; Overstreet, C. M.; Andey, R.
1998-01-01
At Old Dominion University, we have built Aeronautical Telecommunication Network (ATN) Simulator with NASA being the fund provider. It provides a means to evaluate the impact of modified router scheduling algorithms on the network efficiency, to perform capacity studies on various network topologies and to monitor and study various aspects of ATN through graphical user interface (GUI). In this paper we describe briefly about the proposed ATN model and our abstraction of this model. Later we describe our simulator architecture highlighting some of the design specifications, scheduling algorithms and user interface. At the end, we have provided the results of performance studies on this simulator.
NASA Astrophysics Data System (ADS)
Choo, Seongho; Li, Vitaly; Choi, Dong Hee; Jung, Gi Deck; Park, Hong Seong; Ryuh, Youngsun
2005-12-01
On developing the personal robot system presently, the internal architecture is every module those occupy separated functions are connected through heterogeneous network system. This module-based architecture supports specialization and division of labor at not only designing but also implementation, as an effect of this architecture, it can reduce developing times and costs for modules. Furthermore, because every module is connected among other modules through network systems, we can get easy integrations and synergy effect to apply advanced mutual functions by co-working some modules. In this architecture, one of the most important technologies is the network middleware that takes charge communications among each modules connected through heterogeneous networks systems. The network middleware acts as the human nerve system inside of personal robot system; it relays, transmits, and translates information appropriately between modules that are similar to human organizations. The network middleware supports various hardware platform, heterogeneous network systems (Ethernet, Wireless LAN, USB, IEEE 1394, CAN, CDMA-SMS, RS-232C). This paper discussed some mechanisms about our network middleware to intercommunication and routing among modules, methods for real-time data communication and fault-tolerant network service. There have designed and implemented a layered network middleware scheme, distributed routing management, network monitoring/notification technology on heterogeneous networks for these goals. The main theme is how to make routing information in our network middleware. Additionally, with this routing information table, we appended some features. Now we are designing, making a new version network middleware (we call 'OO M/W') that can support object-oriented operation, also are updating program sources itself for object-oriented architecture. It is lighter, faster, and can support more operation systems and heterogeneous network systems, but other general purposed middlewares like CORBA, UPnP, etc. can support only one network protocol or operating system.
Li, Siqi; Jiang, Huiyan; Pang, Wenbo
2017-05-01
Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Convolutional Neural Network for Histopathological Analysis of Osteosarcoma.
Mishra, Rashika; Daescu, Ovidiu; Leavey, Patrick; Rakheja, Dinesh; Sengupta, Anita
2018-03-01
Pathologists often deal with high complexity and sometimes disagreement over osteosarcoma tumor classification due to cellular heterogeneity in the dataset. Segmentation and classification of histology tissue in H&E stained tumor image datasets is a challenging task because of intra-class variations, inter-class similarity, crowded context, and noisy data. In recent years, deep learning approaches have led to encouraging results in breast cancer and prostate cancer analysis. In this article, we propose convolutional neural network (CNN) as a tool to improve efficiency and accuracy of osteosarcoma tumor classification into tumor classes (viable tumor, necrosis) versus nontumor. The proposed CNN architecture contains eight learned layers: three sets of stacked two convolutional layers interspersed with max pooling layers for feature extraction and two fully connected layers with data augmentation strategies to boost performance. The use of a neural network results in higher accuracy of average 92% for the classification. We compare the proposed architecture with three existing and proven CNN architectures for image classification: AlexNet, LeNet, and VGGNet. We also provide a pipeline to calculate percentage necrosis in a given whole slide image. We conclude that the use of neural networks can assure both high accuracy and efficiency in osteosarcoma classification.
Network-analysis-guided synthesis of weisaconitine D and liljestrandinine
NASA Astrophysics Data System (ADS)
Marth, C. J.; Gallego, G. M.; Lee, J. C.; Lebold, T. P.; Kulyk, S.; Kou, K. G. M.; Qin, J.; Lilien, R.; Sarpong, R.
2015-12-01
General strategies for the chemical synthesis of organic compounds, especially of architecturally complex natural products, are not easily identified. Here we present a method to establish a strategy for such syntheses, which uses network analysis. This approach has led to the identification of a versatile synthetic intermediate that facilitated syntheses of the diterpenoid alkaloids weisaconitine D and liljestrandinine, and the core of gomandonine. We also developed a web-based graphing program that allows network analysis to be easily performed on molecules with complex frameworks. The diterpenoid alkaloids comprise some of the most architecturally complex and functional-group-dense secondary metabolites isolated. Consequently, they present a substantial challenge for chemical synthesis. The synthesis approach described here is a notable departure from other single-target-focused strategies adopted for the syntheses of related structures. Specifically, it affords not only the targeted natural products, but also intermediates and derivatives in the three subfamilies of diterpenoid alkaloids (C-18, C-19 and C-20), and so provides a unified synthetic strategy for these natural products. This work validates the utility of network analysis as a starting point for identifying strategies for the syntheses of architecturally complex secondary metabolites.
Unsupervised learning of digit recognition using spike-timing-dependent plasticity
Diehl, Peter U.; Cook, Matthew
2015-01-01
In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN) can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns), since most such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e., conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks. PMID:26941637
Enabling parallel simulation of large-scale HPC network systems
Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; ...
2016-04-07
Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less
Enabling parallel simulation of large-scale HPC network systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.
Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Jespersen, Dennis; Buning, Peter; Bailey, David (Technical Monitor)
1996-01-01
The Gorden Bell Prizes given out at Supercomputing every year includes at least two catergories: performance (highest GFLOP count) and price-performance (GFLOP/million $$) for real applications. In the past five years, the winners of the price-performance categories all came from networks of work-stations. This reflects three important facts: 1. supercomputers are still too expensive for the masses; 2. achieving high performance for real applications takes real work; and, most importantly; 3. it is possible to obtain acceptable performance for certain real applications on network of work stations. With the continued advance of network technology as well as increased performance of "desktop" workstation, the "Swarm of Ants vs. Herd of Elephants" debate, which began with vector multiprocessors (VPPs) against SIMD type multiprocessors (e.g. CM2), is now recast as VPPs against Symetric Multiprocessors (SMPs, e.g. SGI PowerChallenge). This paper reports on performance studies we performed solving a large scale (2-million grid pt.s) CFD problem involving a Boeing 747 based on a parallel version of OVERFLOW that utilizes message passing on PVM. A performance monitoring tool developed under NASA HPCC, called AIMS, was used to instrument and analyze the the performance data thus obtained. We plan to compare its performance data obtained across a wide spectrum of architectures including: the Cray C90, IBM/SP2, SGI/Power Challenge Cluster, to a group of workstations connected over a simple network. The metrics of comparison includes speed-up, price-performance, throughput, and turn-around time. We also plan to present a plan of attack for various issues that will make the execution of Grand Challenge Applications across the Global Information Infrastructure a reality.
NINJA: a noninvasive framework for internal computer security hardening
NASA Astrophysics Data System (ADS)
Allen, Thomas G.; Thomson, Steve
2004-07-01
Vulnerabilities are a growing problem in both the commercial and government sector. The latest vulnerability information compiled by CERT/CC, for the year ending Dec. 31, 2002 reported 4129 vulnerabilities representing a 100% increase over the 2001 [1] (the 2003 report has not been published at the time of this writing). It doesn"t take long to realize that the growth rate of vulnerabilities greatly exceeds the rate at which the vulnerabilities can be fixed. It also doesn"t take long to realize that our nation"s networks are growing less secure at an accelerating rate. As organizations become aware of vulnerabilities they may initiate efforts to resolve them, but quickly realize that the size of the remediation project is greater than their current resources can handle. In addition, many IT tools that suggest solutions to the problems in reality only address "some" of the vulnerabilities leaving the organization unsecured and back to square one in searching for solutions. This paper proposes an auditing framework called NINJA (acronym for Network Investigation Notification Joint Architecture) for noninvasive daily scanning/auditing based on common security vulnerabilities that repeatedly occur in a network environment. This framework is used for performing regular audits in order to harden an organizations security infrastructure. The framework is based on the results obtained by the Network Security Assessment Team (NSAT) which emulates adversarial computer network operations for US Air Force organizations. Auditing is the most time consuming factor involved in securing an organization's network infrastructure. The framework discussed in this paper uses existing scripting technologies to maintain a security hardened system at a defined level of performance as specified by the computer security audit team. Mobile agents which were under development at the time of this writing are used at a minimum to improve the noninvasiveness of our scans. In general, noninvasive scans with an adequate framework performed on a daily basis reduce the amount of security work load as well as the timeliness in performing remediation, as verified by the NINJA framework. A vulnerability assessment/auditing architecture based on mobile agent technology is proposed and examined at the end of the article as an enhancement to the current NINJA architecture.
CNTs in situ attached to α-Fe2O3 submicron spheres for enhancing lithium storage capacity.
Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Qiu, Peiyu; Sun, Rongjin; Yin, Ting; Cui, Daxiang
2015-01-14
In this work, we developed a facile hydrothermal method for synthesis of hybrid α-Fe2O3-carbon nanotubes (CNTs) architectures (α-Fe2O3-CNTs-1 and α-Fe2O3-CNTs-2). The CNTs are in situ attached to the α-Fe2O3 submicron spheres and form three-dimensional network robust architectures. The increase in the amount of CNTs in the network α-Fe2O3-CNTs architectures will significantly enhance the cycling and rate performance, as the flexible and robust CNTs could ensure the fast electron transport pathways, enhance the electronic conductivity, and improve the structural stability of the electrode. As for pure α-Fe2O3 submicron spheres, the capacity decreased significantly and retained at 377.4 mAh g(-1) after 11 cycles, and the capacity has a slightly increasing trend at the following cycling. In contrast, the network α-Fe2O3-CNTs-2 electrode shows the most remarkable performance. At the 60th cycle, the capacity of network α-Fe2O3-CNTs-2 (764.5 mAh g(-1)) is 1.78 times than that of α-Fe2O3 submicron spheres (428.3 mAh g(-1)). The long-term cycling performance (1000 cycles) of samples at a high current density of 5 C showed that the capacity of α-Fe2O3 submicron spheres fade to ∼37.3 mAh g(-1) at the 400th cycle and gradually increased to ∼116.7 mAh g(-1) at the 1000th cycle. The capacity of network α-Fe2O3-CNTs-2 maintained at ∼220.2 mAh g(-1) before the 400th cycle, arrived at ∼326.5 mAh g(-1) in the 615th, cycle and retained this value until 1000th cycle. The network α-Fe2O3-CNTs-2 composite could significantly enhance the cycling and rate performance than pure α-Fe2O3 submicron spheres composite.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.
1999-01-01
The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.
Interfacing a high performance disk array file server to a Gigabit LAN
NASA Technical Reports Server (NTRS)
Seshan, Srinivasan; Katz, Randy H.
1993-01-01
Our previous prototype, RAID-1, identified several bottlenecks in typical file server architectures. The most important bottleneck was the lack of a high-bandwidth path between disk, memory, and the network. Workstation servers, such as the Sun-4/280, have very slow access to peripherals on busses far from the CPU. For the RAID-2 system, we addressed this problem by designing a crossbar interconnect, Xbus board, that provides a 40MB/s path between disk, memory, and the network interfaces. However, this interconnect does not provide the system CPU with low latency access to control the various interfaces. To provide a high data rate to clients on the network, we were forced to carefully and efficiently design the network software. A block diagram of the system hardware architecture is given. In the following subsections, we describe pieces of the RAID-2 file server hardware that had a significant impact on the design of the network interface.
Physical-layer network coding for passive optical interconnect in datacenter networks.
Lin, Rui; Cheng, Yuxin; Guan, Xun; Tang, Ming; Liu, Deming; Chan, Chun-Kit; Chen, Jiajia
2017-07-24
We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASAs Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASAs four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. CNS previously developed a report which applied the methodology, to three space Internet-based communications scenarios for future missions. CNS conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. GRC selected for further analysis the scenario that involved unicast communications between a Low-Earth-Orbit (LEO) International Space Station (ISS) and a ground terminal Internet node via a Tracking and Data Relay Satellite (TDRS) transfer. This report contains a tradeoff analysis on the selected scenario. The analysis examines the performance characteristics of the various protocols and architectures. The tradeoff analysis incorporates the results of a CNS developed analytical model that examined performance parameters.
High-performance reconfigurable hardware architecture for restricted Boltzmann machines.
Ly, Daniel Le; Chow, Paul
2010-11-01
Despite the popularity and success of neural networks in research, the number of resulting commercial or industrial applications has been limited. A primary cause for this lack of adoption is that neural networks are usually implemented as software running on general-purpose processors. Hence, a hardware implementation that can exploit the inherent parallelism in neural networks is desired. This paper investigates how the restricted Boltzmann machine (RBM), which is a popular type of neural network, can be mapped to a high-performance hardware architecture on field-programmable gate array (FPGA) platforms. The proposed modular framework is designed to reduce the time complexity of the computations through heavily customized hardware engines. A method to partition large RBMs into smaller congruent components is also presented, allowing the distribution of one RBM across multiple FPGA resources. The framework is tested on a platform of four Xilinx Virtex II-Pro XC2VP70 FPGAs running at 100 MHz through a variety of different configurations. The maximum performance was obtained by instantiating an RBM of 256 × 256 nodes distributed across four FPGAs, which resulted in a computational speed of 3.13 billion connection-updates-per-second and a speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel processor.
Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman
2008-08-04
Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.
2010-07-22
dependent , providing a natural bandwidth match between compute cores and the memory subsystem. • High Bandwidth Dcnsity. Waveguides crossing the chip...simulate this memory access architecture on a 2S6-core chip with a concentrated 64-node network lIsing detailed traces of high-performance embedded...memory modulcs, wc placc memory access poi nts (MAPs) around the pcriphery of the chip connected to thc nctwork. These MAPs, shown in Figure 4, contain
Baladrón, Carlos; Aguiar, Javier M; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Hernández, Luis
2012-01-01
This paper presents a proposal for an Artificial Neural Network (ANN)-based architecture for completion and prediction of data retrieved by underwater sensors. Due to the specific conditions under which these sensors operate, it is not uncommon for them to fail, and maintenance operations are difficult and costly. Therefore, completion and prediction of the missing data can greatly improve the quality of the underwater datasets. A performance study using real data is presented to validate the approach, concluding that the proposed architecture is able to provide very low errors. The numbers show as well that the solution is especially suitable for cases where large portions of data are missing, while in situations where the missing values are isolated the improvement over other simple interpolation methods is limited.
Silicon Nanophotonics for Many-Core On-Chip Networks
NASA Astrophysics Data System (ADS)
Mohamed, Moustafa
Number of cores in many-core architectures are scaling to unprecedented levels requiring ever increasing communication capacity. Traditionally, architects follow the path of higher throughput at the expense of latency. This trend has evolved into being problematic for performance in many-core architectures. Moreover, the trends of power consumption is increasing with system scaling mandating nontraditional solutions. Nanophotonics can address these problems, offering benefits in the three frontiers of many-core processor design: Latency, bandwidth, and power. Nanophotonics leverage circuit-switching flow control allowing low latency; in addition, the power consumption of optical links is significantly lower compared to their electrical counterparts at intermediate and long links. Finally, through wave division multiplexing, we can keep the high bandwidth trends without sacrificing the throughput. This thesis focuses on realizing nanophotonics for communication in many-core architectures at different design levels considering reliability challenges that our fabrication and measurements reveal. First, we study how to design on-chip networks for low latency, low power, and high bandwidth by exploiting the full potential of nanophotonics. The design process considers device level limitations and capabilities on one hand, and system level demands in terms of power and performance on the other hand. The design involves the choice of devices, designing the optical link, the topology, the arbitration technique, and the routing mechanism. Next, we address the problem of reliability in on-chip networks. Reliability not only degrades performance but can block communication. Hence, we propose a reliability-aware design flow and present a reliability management technique based on this flow to address reliability in the system. In the proposed flow reliability is modeled and analyzed for at the device, architecture, and system level. Our reliability management technique is superior to existing solutions in terms of power and performance. In fact, our solution can scale to thousand core with low overhead.
Brain tumor segmentation with Deep Neural Networks.
Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo
2017-01-01
In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.
PNNI Performance Validation Test Report
NASA Technical Reports Server (NTRS)
Dimond, Robert P.
1999-01-01
Two Private Network-Network Interface (PNNI) neighboring peers were monitored with a protocol analyzer to understand and document how PNNI works with regards to initialization and recovery processes. With the processes documented, pertinent events were found and measured to determine the protocols behavior in several environments, which consisted of congestion and/or delay. Subsequent testing of the protocol in these environments was conducted to determine the protocol's suitability for use in satellite-terrestrial network architectures.
Architecture Study on Telemetry Coverage for Immediate Post-Separation Phase
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.; Kellogg, Kent H.; Stocklin, Frank J.; Zillig, David J.; Fielhauer, Karl B.
2008-01-01
This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed.This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (< 10000 km) when most post-separation critical operations are executed, Earth-based network (e.g. Deep Space Network (DSN)) can only provide limited coverage, whereas space-based network (e.g. Space Network (SN)) can provide continuous coverage. 2) Commercial-off-the-shelf SN compatible transmitters are available for small satellite applications. In this paper we present the detailed coverage analysis of Earth-based and Space-based networks. We identify the key functional and performance requirements of the architecture, and describe the proposed selection criteria of the spacecraft transmitter. We conclude the paper with a proposed forward plan.
Information network architectures
NASA Technical Reports Server (NTRS)
Murray, N. D.
1985-01-01
Graphs, charts, diagrams and outlines of information relative to information network architectures for advanced aerospace missions, such as the Space Station, are presented. Local area information networks are considered a likely technology solution. The principle needs for the network are listed.
BRAPH: A graph theory software for the analysis of brain connectivity
Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B.; Westman, Eric; Volpe, Giovanni
2017-01-01
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment. PMID:28763447
BRAPH: A graph theory software for the analysis of brain connectivity.
Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B; Westman, Eric; Volpe, Giovanni
2017-01-01
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH-BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.
Performance study of a data flow architecture
NASA Technical Reports Server (NTRS)
Adams, George
1985-01-01
Teams of scientists studied data flow concepts, static data flow machine architecture, and the VAL language. Each team mapped its application onto the machine and coded it in VAL. The principal findings of the study were: (1) Five of the seven applications used the full power of the target machine. The galactic simulation and multigrid fluid flow teams found that a significantly smaller version of the machine (16 processing elements) would suffice. (2) A number of machine design parameters including processing element (PE) function unit numbers, array memory size and bandwidth, and routing network capability were found to be crucial for optimal machine performance. (3) The study participants readily acquired VAL programming skills. (4) Participants learned that application-based performance evaluation is a sound method of evaluating new computer architectures, even those that are not fully specified. During the course of the study, participants developed models for using computers to solve numerical problems and for evaluating new architectures. These models form the bases for future evaluation studies.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2002-01-01
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
Efficient evaluation of wireless real-time control networks.
Horvath, Peter; Yampolskiy, Mark; Koutsoukos, Xenofon
2015-02-11
In this paper, we present a system simulation framework for the design and performance evaluation of complex wireless cyber-physical systems. We describe the simulator architecture and the specific developments that are required to simulate cyber-physical systems relying on multi-channel, multihop mesh networks. We introduce realistic and efficient physical layer models and a system simulation methodology, which provides statistically significant performance evaluation results with low computational complexity. The capabilities of the proposed framework are illustrated in the example of WirelessHART, a centralized, real-time, multi-hop mesh network designed for industrial control and monitor applications.
Edla, Damodar Reddy; Kuppili, Venkatanareshbabu; Dharavath, Ramesh; Beechu, Nareshkumar Reddy
2017-01-01
Low-power wearable devices for disease diagnosis are used at anytime and anywhere. These are non-invasive and pain-free for the better quality of life. However, these devices are resource constrained in terms of memory and processing capability. Memory constraint allows these devices to store a limited number of patterns and processing constraint provides delayed response. It is a challenging task to design a robust classification system under above constraints with high accuracy. In this Letter, to resolve this problem, a novel architecture for weightless neural networks (WNNs) has been proposed. It uses variable sized random access memories to optimise the memory usage and a modified binary TRIE data structure for reducing the test time. In addition, a bio-inspired-based genetic algorithm has been employed to improve the accuracy. The proposed architecture is experimented on various disease datasets using its software and hardware realisations. The experimental results prove that the proposed architecture achieves better performance in terms of accuracy, memory saving and test time as compared to standard WNNs. It also outperforms in terms of accuracy as compared to conventional neural network-based classifiers. The proposed architecture is a powerful part of most of the low-power wearable devices for the solution of memory, accuracy and time issues. PMID:28868148
A performance study of unmanned aerial vehicle-based sensor networks under cyber attack
NASA Astrophysics Data System (ADS)
Puchaty, Ethan M.
In UAV-based sensor networks, an emerging area of interest is the performance of these networks under cyber attack. This study seeks to evaluate the performance trade-offs from a System-of-Systems (SoS) perspective between various UAV communications architecture options in the context two missions: tracking ballistic missiles and tracking insurgents. An agent-based discrete event simulation is used to model a sensor communication network consisting of UAVs, military communications satellites, ground relay stations, and a mission control center. Network susceptibility to cyber attack is modeled with probabilistic failures and induced data variability, with performance metrics focusing on information availability, latency, and trustworthiness. Results demonstrated that using UAVs as routers increased network availability with a minimal latency penalty and communications satellite networks were best for long distance operations. Redundancy in the number of links between communication nodes helped mitigate cyber-caused link failures and add robustness in cases of induced data variability by an adversary. However, when failures were not independent, redundancy and UAV routing were detrimental in some cases to network performance. Sensitivity studies indicated that long cyber-caused downtimes and increasing failure dependencies resulted in build-ups of failures and caused significant degradations in network performance.
The NASA Space Communications Data Networking Architecture
NASA Technical Reports Server (NTRS)
Israel, David J.; Hooke, Adrian J.; Freeman, Kenneth; Rush, John J.
2006-01-01
The NASA Space Communications Architecture Working Group (SCAWG) has recently been developing an integrated agency-wide space communications architecture in order to provide the necessary communication and navigation capabilities to support NASA's new Exploration and Science Programs. A critical element of the space communications architecture is the end-to-end Data Networking Architecture, which must provide a wide range of services required for missions ranging from planetary rovers to human spaceflight, and from sub-orbital space to deep space. Requirements for a higher degree of user autonomy and interoperability between a variety of elements must be accommodated within an architecture that necessarily features minimum operational complexity. The architecture must also be scalable and evolvable to meet mission needs for the next 25 years. This paper will describe the recommended NASA Data Networking Architecture, present some of the rationale for the recommendations, and will illustrate an application of the architecture to example NASA missions.
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Shalkhauser, Mary JO; Bobinsky, Eric A.; Soni, Nitin J.; Quintana, Jorge A.; Kim, Heechul; Wager, Paul; Vanderaar, Mark
1993-01-01
A major goal of the Digital Systems Technology Branch at the NASA Lewis Research Center is to identify and develop critical digital components and technologies that either enable new commercial missions or significantly enhance the performance, cost efficiency, and/or reliability of existing and planned space communications systems. NASA envisions a need for low-data-rate, interactive, direct-to-the-user communications services for data, voice, facsimile, and video conferencing. The network would provide enhanced very-small-aperture terminal (VSAT) communications services and be capable of handling data rates of 64 kbps through 2.048 Mbps in 64-kbps increments. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints. The focus of current space segment developments is a flexible, high-throughput, fault-tolerant onboard information-switching processor (ISP) for a geostationary satellite communications network. The Digital Systems Technology Branch is investigating both circuit and packet architectures for the ISP. Destination-directed, packet-switched architectures for geostationary communications satellites are addressed.
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.
Khan, Murad; Silva, Bhagya Nathali; Han, Kijun
2017-02-09
The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.
Sparse matrix-vector multiplication on network-on-chip
NASA Astrophysics Data System (ADS)
Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.
2010-12-01
In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems
Khan, Murad; Silva, Bhagya Nathali; Han, Kijun
2017-01-01
The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances. PMID:28208787
UAV Cooperation Architectures for Persistent Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, R S; Kent, C A; Jones, E D
2003-03-20
With the number of small, inexpensive Unmanned Air Vehicles (UAVs) increasing, it is feasible to build multi-UAV sensing networks. In particular, by using UAVs in conjunction with unattended ground sensors, a degree of persistent sensing can be achieved. With proper UAV cooperation algorithms, sensing is maintained even though exceptional events, e.g., the loss of a UAV, have occurred. In this paper a cooperation technique that allows multiple UAVs to perform coordinated, persistent sensing with unattended ground sensors over a wide area is described. The technique automatically adapts the UAV paths so that on the average, the amount of time thatmore » any sensor has to wait for a UAV revisit is minimized. We also describe the Simulation, Tactical Operations and Mission Planning (STOMP) software architecture. This architecture is designed to help simulate and operate distributed sensor networks where multiple UAVs are used to collect data.« less
On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed
1996-01-01
A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.
Sensing and Measurement Architecture for Grid Modernization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taft, Jeffrey D.; De Martini, Paul
2016-02-01
This paper addresses architecture for grid sensor networks, with primary emphasis on distribution grids. It describes a forward-looking view of sensor network architecture for advanced distribution grids, and discusses key regulatory, financial, and planning issues.
Advanced algorithms for distributed fusion
NASA Astrophysics Data System (ADS)
Gelfand, A.; Smith, C.; Colony, M.; Bowman, C.; Pei, R.; Huynh, T.; Brown, C.
2008-03-01
The US Military has been undergoing a radical transition from a traditional "platform-centric" force to one capable of performing in a "Network-Centric" environment. This transformation will place all of the data needed to efficiently meet tactical and strategic goals at the warfighter's fingertips. With access to this information, the challenge of fusing data from across the batttlespace into an operational picture for real-time Situational Awareness emerges. In such an environment, centralized fusion approaches will have limited application due to the constraints of real-time communications networks and computational resources. To overcome these limitations, we are developing a formalized architecture for fusion and track adjudication that allows the distribution of fusion processes over a dynamically created and managed information network. This network will support the incorporation and utilization of low level tracking information within the Army Distributed Common Ground System (DCGS-A) or Future Combat System (FCS). The framework is based on Bowman's Dual Node Network (DNN) architecture that utilizes a distributed network of interlaced fusion and track adjudication nodes to build and maintain a globally consistent picture across all assets.
DReAM: Demand Response Architecture for Multi-level District Heating and Cooling Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Saptarshi; Chandan, Vikas; Arya, Vijay
In this paper, we exploit the inherent hierarchy of heat exchangers in District Heating and Cooling (DHC) networks and propose DReAM, a novel Demand Response (DR) architecture for Multi-level DHC networks. DReAM serves to economize system operation while still respecting comfort requirements of individual consumers. Contrary to many present day DR schemes that work on a consumer level granularity, DReAM works at a level of hierarchy above buildings, i.e. substations that supply heat to a group of buildings. This improves the overall DR scalability and reduce the computational complexity. In the first step of the proposed approach, mathematical models ofmore » individual substations and their downstream networks are abstracted into appropriately constructed low-complexity structural forms. In the second step, this abstracted information is employed by the utility to perform DR optimization that determines the optimal heat inflow to individual substations rather than buildings, in order to achieve the targeted objectives across the network. We validate the proposed DReAM framework through experimental results under different scenarios on a test network.« less
Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.
Prakash, R; Balaji Ganesh, A; Sivabalan, Somu
2017-05-01
The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-19
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-01
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616
Complex network view of evolving manifolds
NASA Astrophysics Data System (ADS)
da Silva, Diamantino C.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.
2018-03-01
We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h -holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.
Architectures and protocols for an integrated satellite-terrestrial mobile system
NASA Technical Reports Server (NTRS)
Delre, E.; Dellipriscoli, F.; Iannucci, P.; Menolascino, R.; Settimo, F.
1993-01-01
This paper aims to depict some basic concepts related to the definition of an integrated system for mobile communications, consisting of a satellite network and a terrestrial cellular network. In particular three aspects are discussed: (1) architecture definition for the satellite network; (2) assignment strategy of the satellite channels; and (3) definition of 'internetworking procedures' between cellular and satellite network, according to the selected architecture and the satellite channel assignment strategy.
Collaborative Working Architecture for IoT-Based Applications.
Mora, Higinio; Signes-Pont, María Teresa; Gil, David; Johnsson, Magnus
2018-05-23
The new sensing applications need enhanced computing capabilities to handle the requirements of complex and huge data processing. The Internet of Things (IoT) concept brings processing and communication features to devices. In addition, the Cloud Computing paradigm provides resources and infrastructures for performing the computations and outsourcing the work from the IoT devices. This scenario opens new opportunities for designing advanced IoT-based applications, however, there is still much research to be done to properly gear all the systems for working together. This work proposes a collaborative model and an architecture to take advantage of the available computing resources. The resulting architecture involves a novel network design with different levels which combines sensing and processing capabilities based on the Mobile Cloud Computing (MCC) paradigm. An experiment is included to demonstrate that this approach can be used in diverse real applications. The results show the flexibility of the architecture to perform complex computational tasks of advanced applications.
A Highly Flexible and Efficient Passive Optical Network Employing Dynamic Wavelength Allocation
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Yamamoto, Shu; Kazovsky, Leonid G.
2005-01-01
A novel and high-performance passive optical network (PON), the SUCCESS-DWA PON, employs dynamic wavelength allocation to provide bandwidth sharing across multiple physical PONs. In the downstream, tunable lasers, an arrayed waveguide grating, and coarse/fine filtering combine to create a flexible new optical access solution. In the upstream, several distributed and centralized schemes are proposed and investigated. The network performance is compared to conventional TDM-PONs under different traffic models, including the self-similar traffic model and the transaction-oriented model. Broadcast support and deployment issues are addressed. The network's excellent scalability can bridge the gap between conventional TDM-PONs and WDM-PONs. The powerful architecture is a promising candidate for next generation optical access networks.
Virtual Network Embedding via Monte Carlo Tree Search.
Haeri, Soroush; Trajkovic, Ljiljana
2018-02-01
Network virtualization helps overcome shortcomings of the current Internet architecture. The virtualized network architecture enables coexistence of multiple virtual networks (VNs) on an existing physical infrastructure. VN embedding (VNE) problem, which deals with the embedding of VN components onto a physical network, is known to be -hard. In this paper, we propose two VNE algorithms: MaVEn-M and MaVEn-S. MaVEn-M employs the multicommodity flow algorithm for virtual link mapping while MaVEn-S uses the shortest-path algorithm. They formalize the virtual node mapping problem by using the Markov decision process (MDP) framework and devise action policies (node mappings) for the proposed MDP using the Monte Carlo tree search algorithm. Service providers may adjust the execution time of the MaVEn algorithms based on the traffic load of VN requests. The objective of the algorithms is to maximize the profit of infrastructure providers. We develop a discrete event VNE simulator to implement and evaluate performance of MaVEn-M, MaVEn-S, and several recently proposed VNE algorithms. We introduce profitability as a new performance metric that captures both acceptance and revenue to cost ratios. Simulation results show that the proposed algorithms find more profitable solutions than the existing algorithms. Given additional computation time, they further improve embedding solutions.
Planning in subsumption architectures
NASA Technical Reports Server (NTRS)
Chalfant, Eugene C.
1994-01-01
A subsumption planner using a parallel distributed computational paradigm based on the subsumption architecture for control of real-world capable robots is described. Virtual sensor state space is used as a planning tool to visualize the robot's anticipated effect on its environment. Decision sequences are generated based on the environmental situation expected at the time the robot must commit to a decision. Between decision points, the robot performs in a preprogrammed manner. A rudimentary, domain-specific partial world model contains enough information to extrapolate the end results of the rote behavior between decision points. A collective network of predictors operates in parallel with the reactive network forming a recurrrent network which generates plans as a hierarchy. Details of a plan segment are generated only when its execution is imminent. The use of the subsumption planner is demonstrated by a simple maze navigation problem.
The high speed interconnect system architecture and operation
NASA Astrophysics Data System (ADS)
Anderson, Steven C.
The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.
Real-Time and Secure Wireless Health Monitoring
Dağtaş, S.; Pekhteryev, G.; Şahinoğlu, Z.; Çam, H.; Challa, N.
2008-01-01
We present a framework for a wireless health monitoring system using wireless networks such as ZigBee. Vital signals are collected and processed using a 3-tiered architecture. The first stage is the mobile device carried on the body that runs a number of wired and wireless probes. This device is also designed to perform some basic processing such as the heart rate and fatal failure detection. At the second stage, further processing is performed by a local server using the raw data transmitted by the mobile device continuously. The raw data is also stored at this server. The processed data as well as the analysis results are then transmitted to the service provider center for diagnostic reviews as well as storage. The main advantages of the proposed framework are (1) the ability to detect signals wirelessly within a body sensor network (BSN), (2) low-power and reliable data transmission through ZigBee network nodes, (3) secure transmission of medical data over BSN, (4) efficient channel allocation for medical data transmission over wireless networks, and (5) optimized analysis of data using an adaptive architecture that maximizes the utility of processing and computational capacity at each platform. PMID:18497866
NASA Astrophysics Data System (ADS)
Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi
2006-12-01
In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.
Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.
Muddle, Joanna; Kirton, Stewart B; Parisini, Irene; Muddle, Andrew; Murnane, Darragh; Ali, Jogoth; Brown, Marc; Page, Clive; Forbes, Ben
2017-01-01
Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r 2 values ranged between 0.46 and 0.90 and the secondary OA increased the r 2 values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r 2 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Space Communications Capability Roadmap Interim Review
NASA Technical Reports Server (NTRS)
Spearing, Robert; Regan, Michael
2005-01-01
Contents include the following: Identify the need for a robust communications and navigation architecture for the success of exploration and science missions. Describe an approach for specifying architecture alternatives and analyzing them. Establish a top level architecture based on a network of networks. Identify key enabling technologies. Synthesize capability, architecture and technology into an initial capability roadmap.
A shared synapse architecture for efficient FPGA implementation of autoencoders.
Suzuki, Akihiro; Morie, Takashi; Tamukoh, Hakaru
2018-01-01
This paper proposes a shared synapse architecture for autoencoders (AEs), and implements an AE with the proposed architecture as a digital circuit on a field-programmable gate array (FPGA). In the proposed architecture, the values of the synapse weights are shared between the synapses of an input and a hidden layer, and between the synapses of a hidden and an output layer. This architecture utilizes less of the limited resources of an FPGA than an architecture which does not share the synapse weights, and reduces the amount of synapse modules used by half. For the proposed circuit to be implemented into various types of AEs, it utilizes three kinds of parameters; one to change the number of layers' units, one to change the bit width of an internal value, and a learning rate. By altering a network configuration using these parameters, the proposed architecture can be used to construct a stacked AE. The proposed circuits are logically synthesized, and the number of their resources is determined. Our experimental results show that single and stacked AE circuits utilizing the proposed shared synapse architecture operate as regular AEs and as regular stacked AEs. The scalability of the proposed circuit and the relationship between the bit widths and the learning results are also determined. The clock cycles of the proposed circuits are formulated, and this formula is used to estimate the theoretical performance of the circuit when the circuit is used to construct arbitrary networks.
A shared synapse architecture for efficient FPGA implementation of autoencoders
Morie, Takashi; Tamukoh, Hakaru
2018-01-01
This paper proposes a shared synapse architecture for autoencoders (AEs), and implements an AE with the proposed architecture as a digital circuit on a field-programmable gate array (FPGA). In the proposed architecture, the values of the synapse weights are shared between the synapses of an input and a hidden layer, and between the synapses of a hidden and an output layer. This architecture utilizes less of the limited resources of an FPGA than an architecture which does not share the synapse weights, and reduces the amount of synapse modules used by half. For the proposed circuit to be implemented into various types of AEs, it utilizes three kinds of parameters; one to change the number of layers’ units, one to change the bit width of an internal value, and a learning rate. By altering a network configuration using these parameters, the proposed architecture can be used to construct a stacked AE. The proposed circuits are logically synthesized, and the number of their resources is determined. Our experimental results show that single and stacked AE circuits utilizing the proposed shared synapse architecture operate as regular AEs and as regular stacked AEs. The scalability of the proposed circuit and the relationship between the bit widths and the learning results are also determined. The clock cycles of the proposed circuits are formulated, and this formula is used to estimate the theoretical performance of the circuit when the circuit is used to construct arbitrary networks. PMID:29543909
Hardware implementation of CMAC neural network with reduced storage requirement.
Ker, J S; Kuo, Y H; Wen, R C; Liu, B D
1997-01-01
The cerebellar model articulation controller (CMAC) neural network has the advantages of fast convergence speed and low computation complexity. However, it suffers from a low storage space utilization rate on weight memory. In this paper, we propose a direct weight address mapping approach, which can reduce the required weight memory size with a utilization rate near 100%. Based on such an address mapping approach, we developed a pipeline architecture to efficiently perform the addressing operations. The proposed direct weight address mapping approach also speeds up the computation for the generation of weight addresses. Besides, a CMAC hardware prototype used for color calibration has been implemented to confirm the proposed approach and architecture.
Programmable bandwidth management in software-defined EPON architecture
NASA Astrophysics Data System (ADS)
Li, Chengjun; Guo, Wei; Wang, Wei; Hu, Weisheng; Xia, Ming
2016-07-01
This paper proposes a software-defined EPON architecture which replaces the hardware-implemented DBA module with reprogrammable DBA module. The DBA module allows pluggable bandwidth allocation algorithms among multiple ONUs adaptive to traffic profiles and network states. We also introduce a bandwidth management scheme executed at the controller to manage the customized DBA algorithms for all date queues of ONUs. Our performance investigation verifies the effectiveness of this new EPON architecture, and numerical results show that software-defined EPONs can achieve less traffic delay and provide better support to service differentiation in comparison with traditional EPONs.
Mapping Flows onto Networks to Optimize Organizational Processes
2005-01-01
And G . Porter, “Assessments of Simulated Performance of Alternative Architectures for Command and Control: The Role of Coordination”, Proceedings of...the 1999 Command & Control Research & Technology Symposium, NWC, Newport, RI, June 1999, pp. 123-143. [Iverson95] M. Iverson, F. Ozguner, G . Follen...Technology Symposium, NPS, Monterrey, CA, June, 2002. [Wu88] Min-You Wu, D. Gajski . “A Programming Aid for Hypercube Architectures.” The Journal of Supercomputing, 2(1988), pp. 349-372.
An operating system for future aerospace vehicle computer systems
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.
1984-01-01
The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.
NASA Technical Reports Server (NTRS)
Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.
1988-01-01
The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.
Hybrid network defense model based on fuzzy evaluation.
Cho, Ying-Chiang; Pan, Jen-Yi
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.
NASA Astrophysics Data System (ADS)
Sana, Ajaz; Saddawi, Samir; Moghaddassi, Jalil; Hussain, Shahab; Zaidi, Syed R.
2010-01-01
In this research paper we propose a novel Passive Optical Network (PON) based Mobile Worldwide Interoperability for Microwave Access (WiMAX) access network architecture to provide high capacity and performance multimedia services to mobile WiMAX users. Passive Optical Networks (PON) networks do not require powered equipment; hence they cost lower and need less network management. WiMAX technology emerges as a viable candidate for the last mile solution. In the conventional WiMAX access networks, the base stations and Multiple Input Multiple Output (MIMO) antennas are connected by point to point lines. Ideally in theory, the Maximum WiMAX bandwidth is assumed to be 70 Mbit/s over 31 miles. In reality, WiMAX can only provide one or the other as when operating over maximum range, bit error rate increases and therefore it is required to use lower bit rate. Lowering the range allows a device to operate at higher bit rates. Our focus in this research paper is to increase both range and bit rate by utilizing distributed cluster of MIMO antennas connected to WiMAX base stations with PON based topologies. A novel quality of service (QoS) algorithm is also proposed to provide admission control and scheduling to serve classified traffic. The proposed architecture presents flexible and scalable system design with different performance requirements and complexity.
Antanasijević, Davor; Pocajt, Viktor; Povrenović, Dragan; Perić-Grujić, Aleksandra; Ristić, Mirjana
2013-12-01
The aims of this study are to create an artificial neural network (ANN) model using non-specific water quality parameters and to examine the accuracy of three different ANN architectures: General Regression Neural Network (GRNN), Backpropagation Neural Network (BPNN) and Recurrent Neural Network (RNN), for prediction of dissolved oxygen (DO) concentration in the Danube River. The neural network model has been developed using measured data collected from the Bezdan monitoring station on the Danube River. The input variables used for the ANN model are water flow, temperature, pH and electrical conductivity. The model was trained and validated using available data from 2004 to 2008 and tested using the data from 2009. The order of performance for the created architectures based on their comparison with the test data is RNN > GRNN > BPNN. The ANN results are compared with multiple linear regression (MLR) model using multiple statistical indicators. The comparison of the RNN model with the MLR model indicates that the RNN model performs much better, since all predictions of the RNN model for the test data were within the error of less than ± 10 %. In case of the MLR, only 55 % of predictions were within the error of less than ± 10 %. The developed RNN model can be used as a tool for the prediction of DO in river waters.
NASA Astrophysics Data System (ADS)
Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian
2018-05-01
Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.
Strategy for Developing Expert-System-Based Internet Protocols (TCP/IP)
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1997-01-01
The Satellite Networks and Architectures Branch of NASA's Lewis Research is addressing the issue of seamless interoperability of satellite networks with terrestrial networks. One of the major issues is improving reliable transmission protocols such as TCP over long latency and error-prone links. Many tuning parameters are available to enhance the performance of TCP including segment size, timers and window sizes. There are also numerous congestion avoidance algorithms such as slow start, selective retransmission and selective acknowledgment that are utilized to improve performance. This paper provides a strategy to characterize the performance of TCP relative to various parameter settings in a variety of network environments (i.e. LAN, WAN, wireless, satellite, and IP over ATM). This information can then be utilized to develop expert-system-based Internet protocols.
Research on performance of three-layer MG-OXC system based on MLAG and OCDM
NASA Astrophysics Data System (ADS)
Wang, Yubao; Ren, Yanfei; Meng, Ying; Bai, Jian
2017-10-01
At present, as traffic volume which optical transport networks convey and species of traffic grooming methods increase rapidly, optical switching techniques are faced with a series of issues, such as more requests for the number of wavelengths and complicated structure management and implementation. This work introduces optical code switching based on wavelength switching, constructs the three layers multi-granularity optical cross connection (MG-OXC) system on the basis of optical code division multiplexing (OCDM) and presents a new traffic grooming algorithm. The proposed architecture can improve the flexibility of traffic grooming, reduce the amount of used wavelengths and save the number of consumed ports, hence, it can simplify routing device and enhance the performance of the system significantly. Through analyzing the network model of switching structure on multicast layered auxiliary graph (MLAG) and the establishment of traffic grooming links, and the simulation of blocking probability and throughput, this paper shows the excellent performance of this mentioned architecture.
On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution
NASA Technical Reports Server (NTRS)
Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard
2000-01-01
Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.
Catic, Aida; Gurbeta, Lejla; Kurtovic-Kozaric, Amina; Mehmedbasic, Senad; Badnjevic, Almir
2018-02-13
The usage of Artificial Neural Networks (ANNs) for genome-enabled classifications and establishing genome-phenotype correlations have been investigated more extensively over the past few years. The reason for this is that ANNs are good approximates of complex functions, so classification can be performed without the need for explicitly defined input-output model. This engineering tool can be applied for optimization of existing methods for disease/syndrome classification. Cytogenetic and molecular analyses are the most frequent tests used in prenatal diagnostic for the early detection of Turner, Klinefelter, Patau, Edwards and Down syndrome. These procedures can be lengthy, repetitive; and often employ invasive techniques so a robust automated method for classifying and reporting prenatal diagnostics would greatly help the clinicians with their routine work. The database consisted of data collected from 2500 pregnant woman that came to the Institute of Gynecology, Infertility and Perinatology "Mehmedbasic" for routine antenatal care between January 2000 and December 2016. During first trimester all women were subject to screening test where values of maternal serum pregnancy-associated plasma protein A (PAPP-A) and free beta human chorionic gonadotropin (β-hCG) were measured. Also, fetal nuchal translucency thickness and the presence or absence of the nasal bone was observed using ultrasound. The architectures of linear feedforward and feedback neural networks were investigated for various training data distributions and number of neurons in hidden layer. Feedback neural network architecture out performed feedforward neural network architecture in predictive ability for all five aneuploidy prenatal syndrome classes. Feedforward neural network with 15 neurons in hidden layer achieved classification sensitivity of 92.00%. Classification sensitivity of feedback (Elman's) neural network was 99.00%. Average accuracy of feedforward neural network was 89.6% and for feedback was 98.8%. The results presented in this paper prove that an expert diagnostic system based on neural networks can be efficiently used for classification of five aneuploidy syndromes, covered with this study, based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics. Developed Expert System proved to be simple, robust, and powerful in properly classifying prenatal aneuploidy syndromes.
Optical interconnection networks for high-performance computing systems
NASA Astrophysics Data System (ADS)
Biberman, Aleksandr; Bergman, Keren
2012-04-01
Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
...) Not to exceed 3000 positions that require unique cyber security skills and knowledge to perform cyber..., distributed control systems security, cyber incident response, cyber exercise facilitation and management, cyber vulnerability detection and assessment, network and systems engineering, enterprise architecture...
Performance Evaluation of Communication Software Systems for Distributed Computing
NASA Technical Reports Server (NTRS)
Fatoohi, Rod
1996-01-01
In recent years there has been an increasing interest in object-oriented distributed computing since it is better quipped to deal with complex systems while providing extensibility, maintainability, and reusability. At the same time, several new high-speed network technologies have emerged for local and wide area networks. However, the performance of networking software is not improving as fast as the networking hardware and the workstation microprocessors. This paper gives an overview and evaluates the performance of the Common Object Request Broker Architecture (CORBA) standard in a distributed computing environment at NASA Ames Research Center. The environment consists of two testbeds of SGI workstations connected by four networks: Ethernet, FDDI, HiPPI, and ATM. The performance results for three communication software systems are presented, analyzed and compared. These systems are: BSD socket programming interface, IONA's Orbix, an implementation of the CORBA specification, and the PVM message passing library. The results show that high-level communication interfaces, such as CORBA and PVM, can achieve reasonable performance under certain conditions.
Identifying and tracking attacks on networks: C3I displays and related technologies
NASA Astrophysics Data System (ADS)
Manes, Gavin W.; Dawkins, J.; Shenoi, Sujeet; Hale, John C.
2003-09-01
Converged network security is extremely challenging for several reasons; expanded system and technology perimeters, unexpected feature interaction, and complex interfaces all conspire to provide hackers with greater opportunities for compromising large networks. Preventive security services and architectures are essential, but in and of themselves do not eliminate all threat of compromise. Attack management systems mitigate this residual risk by facilitating incident detection, analysis and response. There are a wealth of attack detection and response tools for IP networks, but a dearth of such tools for wireless and public telephone networks. Moreover, methodologies and formalisms have yet to be identified that can yield a common model for vulnerabilities and attacks in converged networks. A comprehensive attack management system must coordinate detection tools for converged networks, derive fully-integrated attack and network models, perform vulnerability and multi-stage attack analysis, support large-scale attack visualization, and orchestrate strategic responses to cyber attacks that cross network boundaries. We present an architecture that embodies these principles for attack management. The attack management system described engages a suite of detection tools for various networking domains, feeding real-time attack data to a comprehensive modeling, analysis and visualization subsystem. The resulting early warning system not only provides network administrators with a heads-up cockpit display of their entire network, it also supports guided response and predictive capabilities for multi-stage attacks in converged networks.
NASA Technical Reports Server (NTRS)
Kiang, Richard K.
1992-01-01
Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.
On-board processing satellite network architecture and control study
NASA Technical Reports Server (NTRS)
Campanella, S. Joseph; Pontano, Benjamin A.; Chalmers, Harvey
1987-01-01
The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented.
NASA Astrophysics Data System (ADS)
Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko
This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.
Kim, Jihun; Kim, Jonghong; Jang, Gil-Jin; Lee, Minho
2017-03-01
Deep learning has received significant attention recently as a promising solution to many problems in the area of artificial intelligence. Among several deep learning architectures, convolutional neural networks (CNNs) demonstrate superior performance when compared to other machine learning methods in the applications of object detection and recognition. We use a CNN for image enhancement and the detection of driving lanes on motorways. In general, the process of lane detection consists of edge extraction and line detection. A CNN can be used to enhance the input images before lane detection by excluding noise and obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning time while producing accurate results with minimal training data. A conventional ELM can be applied to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and effectively learn network weights while maintaining performance. Experimental results confirm that the proposed method is effective in reducing learning time and improving performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enabling Tussle-Agile Inter-networking Architectures by Underlay Virtualisation
NASA Astrophysics Data System (ADS)
Dianati, Mehrdad; Tafazolli, Rahim; Moessner, Klaus
In this paper, we propose an underlay inter-network virtualisation framework in order to enable tussle-agile flexible networking over the existing inter-network infrastructures. The functionalities that inter-networking elements (transit nodes, access networks, etc.) need to support in order to enable virtualisation are discussed. We propose the base architectures of each the abstract elements to support the required inter-network virtualisation functionalities.
Advanced information processing system: Input/output network management software
NASA Technical Reports Server (NTRS)
Nagle, Gail; Alger, Linda; Kemp, Alexander
1988-01-01
The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.
On-board processing satellite network architectures for broadband ISDN
NASA Technical Reports Server (NTRS)
Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye
1992-01-01
Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.
Zou, Lei; Lai, Yanqing; Hu, Hongxing; Wang, Mengran; Zhang, Kai; Zhang, Peng; Fang, Jing; Li, Jie
2017-10-12
A facile and scalable method is realized for the in situ synthesis of N/S co-doped 3 D porous carbon nanosheet networks (NSPCNNs) as anode materials for sodium-ion batteries. During the synthesis, NaCl is used as a template to prepare porous carbon nanosheet networks. In the resultant architecture, the unique 3 D porous architecture ensures a large specific surface area and fast diffusion paths of both electrons and ions. In addition, the import of N/S produces abundant defects, increased interlayer spacings, more active sites, and high electronic conductivity. The obtained products deliver a high specific capacity and excellent long-term cycling performance, specifically, a capacity of 336.2 mA h g -1 at 0.05 A g -1 , remaining as large as 214.9 mA h g -1 after 2000 charge/discharge cycles at 0.5 A g -1 . This material has great prospects for future applications of scalable, low-cost, and environmentally friendly sodium-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Call for Papers: Photonics in Switching
NASA Astrophysics Data System (ADS)
Wosinska, Lena; Glick, Madeleine
2006-04-01
2009-05-27
technology network architecture to connect various DHS elements and promote information sharing.17 • Establish a DHS State, Local, and Regional...A Strategic Plan; training, and the implementation of a comprehensive information systems architecture .65 As part of its integration...information technology network architecture was submitted to Congress last year. See DHS I&A, Homeland Security Information Technology Network
Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.
Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra
2011-12-12
This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America
An Evaluation of Architectural Platforms for Parallel Navier-Stokes Computations
NASA Technical Reports Server (NTRS)
Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.
1996-01-01
We study the computational, communication, and scalability characteristics of a computational fluid dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory multiprocessors with different topologies - the IBM SP and the Cray T3D. We investigate the impact of various networks connecting the cluster of workstations on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.
Parallelizing Navier-Stokes Computations on a Variety of Architectural Platforms
NASA Technical Reports Server (NTRS)
Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.
1997-01-01
We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.
NASA Astrophysics Data System (ADS)
Alimi, Isiaka A.; Monteiro, Paulo P.; Teixeira, António L.
2017-11-01
The key paths toward the fifth generation (5G) network requirements are towards centralized processing and small-cell densification systems that are implemented on the cloud computing-based radio access networks (CC-RANs). The increasing recognitions of the CC-RANs can be attributed to their valuable features regarding system performance optimization and cost-effectiveness. Nevertheless, realization of the stringent requirements of the fronthaul that connects the network elements is highly demanding. In this paper, considering the small-cell network architectures, we present multiuser mixed radio-frequency/free-space optical (RF/FSO) relay networks as feasible technologies for the alleviation of the stringent requirements in the CC-RANs. In this study, we use the end-to-end (e2e) outage probability, average symbol error probability (ASEP), and ergodic channel capacity as the performance metrics in our analysis. Simulation results show the suitability of deployment of mixed RF/FSO schemes in the real-life scenarios.
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli
2016-01-01
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.
Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli
2016-01-01
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.
Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei
2016-01-01
We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.
Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei
2016-01-01
We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074
MOBS - A modular on-board switching system
NASA Astrophysics Data System (ADS)
Berner, W.; Grassmann, W.; Piontek, M.
The authors describe a multibeam satellite system that is designed for business services and for communications at a high bit rate. The repeater is regenerative with a modular onboard switching system. It acts not only as baseband switch but also as the central node of the network, performing network control and protocol evaluation. The hardware is based on a modular bus/memory architecture with associated processors.
Evolution of a designless nanoparticle network into reconfigurable Boolean logic
NASA Astrophysics Data System (ADS)
Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.
2015-12-01
Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.
Echo State Networks for data-driven downhole pressure estimation in gas-lift oil wells.
Antonelo, Eric A; Camponogara, Eduardo; Foss, Bjarne
2017-01-01
Process measurements are of vital importance for monitoring and control of industrial plants. When we consider offshore oil production platforms, wells that require gas-lift technology to yield oil production from low pressure oil reservoirs can become unstable under some conditions. This undesirable phenomenon is usually called slugging flow, and can be identified by an oscillatory behavior of the downhole pressure measurement. Given the importance of this measurement and the unreliability of the related sensor, this work aims at designing data-driven soft-sensors for downhole pressure estimation in two contexts: one for speeding up first-principle model simulation of a vertical riser model; and another for estimating the downhole pressure using real-world data from an oil well from Petrobras based only on topside platform measurements. Both tasks are tackled by employing Echo State Networks (ESN) as an efficient technique for training Recurrent Neural Networks. We show that a single ESN is capable of robustly modeling both the slugging flow behavior and a steady state based only on a square wave input signal representing the production choke opening in the vertical riser. Besides, we compare the performance of a standard network to the performance of a multiple timescale hierarchical architecture in the second task and show that the latter architecture performs better in modeling both large irregular transients and more commonly occurring small oscillations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Shelton, Robert O.
1991-01-01
Introduced here is a novel technique which adds the dimension of time to the well known back propagation neural network algorithm. Cited here are several reasons why the inclusion of automated spatial and temporal associations are crucial to effective systems modeling. An overview of other works which also model spatiotemporal dynamics is furnished. A detailed description is given of the processes necessary to implement the space-time network algorithm. Several demonstrations that illustrate the capabilities and performance of this new architecture are given.
Stable architectures for deep neural networks
NASA Astrophysics Data System (ADS)
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
A neural network architecture for implementation of expert systems for real time monitoring
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.
1991-01-01
Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.
A comparison of neural network architectures for the prediction of MRR in EDM
NASA Astrophysics Data System (ADS)
Jena, A. R.; Das, Raja
2017-11-01
The aim of the research work is to predict the material removal rate of a work-piece in electrical discharge machining (EDM). Here, an effort has been made to predict the material removal rate through back-propagation neural network (BPN) and radial basis function neural network (RBFN) for a work-piece of AISI D2 steel. The input parameters for the architecture are discharge-current (Ip), pulse-duration (Ton), and duty-cycle (τ) taken for consideration to obtained the output for material removal rate of the work-piece. In the architecture, it has been observed that radial basis function neural network is comparatively faster than back-propagation neural network but logically back-propagation neural network results more real value. Therefore BPN may consider as a better process in this architecture for consistent prediction to save time and money for conducting experiments.
Livermore Big Artificial Neural Network Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essen, Brian Van; Jacobs, Sam; Kim, Hyojin
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
NASA Technical Reports Server (NTRS)
Hastrup, Rolf; Weinberg, Aaron; Mcomber, Robert
1991-01-01
Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.
NASA Astrophysics Data System (ADS)
Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert
1991-09-01
Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.
From photons to big-data applications: terminating terabits
2016-01-01
Computer architectures have entered a watershed as the quantity of network data generated by user applications exceeds the data-processing capacity of any individual computer end-system. It will become impossible to scale existing computer systems while a gap grows between the quantity of networked data and the capacity for per system data processing. Despite this, the growth in demand in both task variety and task complexity continues unabated. Networked computer systems provide a fertile environment in which new applications develop. As networked computer systems become akin to infrastructure, any limitation upon the growth in capacity and capabilities becomes an important constraint of concern to all computer users. Considering a networked computer system capable of processing terabits per second, as a benchmark for scalability, we critique the state of the art in commodity computing, and propose a wholesale reconsideration in the design of computer architectures and their attendant ecosystem. Our proposal seeks to reduce costs, save power and increase performance in a multi-scale approach that has potential application from nanoscale to data-centre-scale computers. PMID:26809573
Traffic engineering and regenerator placement in GMPLS networks with restoration
NASA Astrophysics Data System (ADS)
Yetginer, Emre; Karasan, Ezhan
2002-07-01
In this paper we study regenerator placement and traffic engineering of restorable paths in Generalized Multipro-tocol Label Switching (GMPLS) networks. Regenerators are necessary in optical networks due to transmission impairments. We study a network architecture where there are regenerators at selected nodes and we propose two heuristic algorithms for the regenerator placement problem. Performances of these algorithms in terms of required number of regenerators and computational complexity are evaluated. In this network architecture with sparse regeneration, offline computation of working and restoration paths is studied with bandwidth reservation and path rerouting as the restoration scheme. We study two approaches for selecting working and restoration paths from a set of candidate paths and formulate each method as an Integer Linear Programming (ILP) prob-lem. Traffic uncertainty model is developed in order to compare these methods based on their robustness with respect to changing traffic patterns. Traffic engineering methods are compared based on number of additional demands due to traffic uncertainty that can be carried. Regenerator placement algorithms are also evaluated from a traffic engineering point of view.
Agerskov, Claus
2016-04-01
A neural network model is presented of novelty detection in the CA1 subdomain of the hippocampal formation from the perspective of information flow. This computational model is restricted on several levels by both anatomical information about hippocampal circuitry and behavioral data from studies done in rats. Several studies report that the CA1 area broadcasts a generalized novelty signal in response to changes in the environment. Using the neural engineering framework developed by Eliasmith et al., a spiking neural network architecture is created that is able to compare high-dimensional vectors, symbolizing semantic information, according to the semantic pointer hypothesis. This model then computes the similarity between the vectors, as both direct inputs and a recalled memory from a long-term memory network by performing the dot-product operation in a novelty neural network architecture. The developed CA1 model agrees with available neuroanatomical data, as well as the presented behavioral data, and so it is a biologically realistic model of novelty detection in the hippocampus, which can provide a feasible explanation for experimentally observed dynamics.
From photons to big-data applications: terminating terabits.
Zilberman, Noa; Moore, Andrew W; Crowcroft, Jon A
2016-03-06
Computer architectures have entered a watershed as the quantity of network data generated by user applications exceeds the data-processing capacity of any individual computer end-system. It will become impossible to scale existing computer systems while a gap grows between the quantity of networked data and the capacity for per system data processing. Despite this, the growth in demand in both task variety and task complexity continues unabated. Networked computer systems provide a fertile environment in which new applications develop. As networked computer systems become akin to infrastructure, any limitation upon the growth in capacity and capabilities becomes an important constraint of concern to all computer users. Considering a networked computer system capable of processing terabits per second, as a benchmark for scalability, we critique the state of the art in commodity computing, and propose a wholesale reconsideration in the design of computer architectures and their attendant ecosystem. Our proposal seeks to reduce costs, save power and increase performance in a multi-scale approach that has potential application from nanoscale to data-centre-scale computers. © 2016 The Authors.
Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H
2003-01-01
Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935
ERIC Educational Resources Information Center
McNeal, McKenzie, III.
2012-01-01
Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…
Security Shift in Future Network Architectures
2010-11-01
RTO-MP-IST-091 2 - 1 Security Shift in Future Network Architectures Tim Hartog, M.Sc Information Security Dept. TNO Information and...current practice military communication infrastructures are deployed as stand-alone networked information systems. Network -Enabled Capabilities (NEC) and...information architects and security specialists about the separation of network and information security, the consequences of this shift and our view
Regular Topologies for Gigabit Wide-Area Networks. Volume 1
NASA Technical Reports Server (NTRS)
Shacham, Nachum; Denny, Barbara A.; Lee, Diane S.; Khan, Irfan H.; Lee, Danny Y. C.; McKenney, Paul
1994-01-01
In general terms, this project aimed at the analysis and design of techniques for very high-speed networking. The formal objectives of the project were to: (1) Identify switch and network technologies for wide-area networks that interconnect a large number of users and can provide individual data paths at gigabit/s rates; (2) Quantitatively evaluate and compare existing and proposed architectures and protocols, identify their strength and growth potentials, and ascertain the compatibility of competing technologies; and (3) Propose new approaches to existing architectures and protocols, and identify opportunities for research to overcome deficiencies and enhance performance. The project was organized into two parts: 1. The design, analysis, and specification of techniques and protocols for very-high-speed network environments. In this part, SRI has focused on several key high-speed networking areas, including Forward Error Control (FEC) for high-speed networks in which data distortion is the result of packet loss, and the distribution of broadband, real-time traffic in multiple user sessions. 2. Congestion Avoidance Testbed Experiment (CATE). This part of the project was done within the framework of the DARTnet experimental T1 national network. The aim of the work was to advance the state of the art in benchmarking DARTnet's performance and traffic control by developing support tools for network experimentation, by designing benchmarks that allow various algorithms to be meaningfully compared, and by investigating new queueing techniques that better satisfy the needs of best-effort and reserved-resource traffic. This document is the final technical report describing the results obtained by SRI under this project. The report consists of three volumes: Volume 1 contains a technical description of the network techniques developed by SRI in the areas of FEC and multicast of real-time traffic. Volume 2 describes the work performed under CATE. Volume 3 contains the source code of all software developed under CATE.
Simulator design for advanced ISDN satellite design and experiments
NASA Technical Reports Server (NTRS)
Pepin, Gerald R.
1992-01-01
This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1992-01-01
The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.
Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks
NASA Astrophysics Data System (ADS)
Roth, Holger; Oda, Masahiro; Shimizu, Natsuki; Oda, Hirohisa; Hayashi, Yuichiro; Kitasaka, Takayuki; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku
2018-03-01
Pancreas segmentation in computed tomography imaging has been historically difficult for automated methods because of the large shape and size variations between patients. In this work, we describe a custom-build 3D fully convolutional network (FCN) that can process a 3D image including the whole pancreas and produce an automatic segmentation. We investigate two variations of the 3D FCN architecture; one with concatenation and one with summation skip connections to the decoder part of the network. We evaluate our methods on a dataset from a clinical trial with gastric cancer patients, including 147 contrast enhanced abdominal CT scans acquired in the portal venous phase. Using the summation architecture, we achieve an average Dice score of 89.7 +/- 3.8 (range [79.8, 94.8])% in testing, achieving the new state-of-the-art performance in pancreas segmentation on this dataset.
Analysis of NASA communications (Nascom) II network protocols and performance
NASA Technical Reports Server (NTRS)
Omidyar, Guy C.; Butler, Thomas E.
1991-01-01
The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate is to undertake a major initiative to develop the Nascom II (NII) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System, and other projects. NII is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The authors describe various baseline protocol architectures based on current and evolving technologies. They address the internetworking issues suggested for reliable transfer of data over heterogeneous segments. They also describe the NII architecture, topology, system components, and services. A comparative evaluation of the current and evolving technologies was made, and suggestions for further study are described. It is shown that the direction of the NII configuration and the subsystem component design will clearly depend on the advances made in the area of broadband integrated services.
Network Configuration Analysis for Formation Flying Satellites
NASA Technical Reports Server (NTRS)
Knoblock, Eric J.; Wallett, Thomas M.; Konangi, Vijay K.; Bhasin, Kul B.
2001-01-01
The performance of two networks to support autonomous multi-spacecraft formation flying systems is presented. Both systems are comprised of a ten-satellite formation, with one of the satellites designated as the central or 'mother ship.' All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/EP over ATM protocol architecture within the formation, and the second system uses the IEEE 802.11 protocol architecture within the formation. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IP queuing delay, IP queue size and IP processing delay at the mother ship as well as end-to-end delay for both systems. In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Supriya; Shankar, Mallikarjun
Critical Infrastructure systems(CIs) such as energy, water, transportation and communication are highly interconnected and mutually dependent in complex ways. Robust modeling of CIs interconnections is crucial to identify vulnerabilities in the CIs. We present here a national-scale Infrastructure Vulnerability Analysis System (IVAS) vision leveraging Se- mantic Big Data (SBD) tools, Big Data, and Geographical Information Systems (GIS) tools. We survey existing ap- proaches on vulnerability analysis of critical infrastructures and discuss relevant systems and tools aligned with our vi- sion. Next, we present a generic system architecture and discuss challenges including: (1) Constructing and manag- ing a CI network-of-networks graph,more » (2) Performing analytic operations at scale, and (3) Interactive visualization of ana- lytic output to generate meaningful insights. We argue that this architecture acts as a baseline to realize a national-scale network based vulnerability analysis system.« less
A resource management architecture based on complex network theory in cloud computing federation
NASA Astrophysics Data System (ADS)
Zhang, Zehua; Zhang, Xuejie
2011-10-01
Cloud Computing Federation is a main trend of Cloud Computing. Resource Management has significant effect on the design, realization, and efficiency of Cloud Computing Federation. Cloud Computing Federation has the typical characteristic of the Complex System, therefore, we propose a resource management architecture based on complex network theory for Cloud Computing Federation (abbreviated as RMABC) in this paper, with the detailed design of the resource discovery and resource announcement mechanisms. Compare with the existing resource management mechanisms in distributed computing systems, a Task Manager in RMABC can use the historical information and current state data get from other Task Managers for the evolution of the complex network which is composed of Task Managers, thus has the advantages in resource discovery speed, fault tolerance and adaptive ability. The result of the model experiment confirmed the advantage of RMABC in resource discovery performance.
Fluid intelligence and brain functional organization in aging yoga and meditation practitioners
Gard, Tim; Taquet, Maxime; Dixit, Rohan; Hölzel, Britta K.; de Montjoye, Yves-Alexandre; Brach, Narayan; Salat, David H.; Dickerson, Bradford C.; Gray, Jeremy R.; Lazar, Sara W.
2014-01-01
Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state brain functional network architecture using graph theory, in middle-aged yoga and meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga practitioners and meditators combined than in controls. Resting state functional networks of yoga practitioners and meditators combined were more integrated and more resilient to damage than those of controls. Furthermore, mindfulness was positively correlated with fluid intelligence, resilience, and global network efficiency. These findings reveal the possibility to increase resilience and to slow the decline of fluid intelligence and brain functional architecture and suggest that mindfulness plays a mechanistic role in this preservation. PMID:24795629
Security Aspects of an Enterprise-Wide Network Architecture.
ERIC Educational Resources Information Center
Loew, Robert; Stengel, Ingo; Bleimann, Udo; McDonald, Aidan
1999-01-01
Presents an overview of two projects that concern local area networks and the common point between networks as they relate to network security. Discusses security architectures based on firewall components, packet filters, application gateways, security-management components, an intranet solution, user registration by Web form, and requests for…
77 FR 60680 - Development of the Nationwide Interoperable Public Safety Broadband Network
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... public comment on the conceptual network architecture presentation made at the FirstNet Board of... business plan considerations. NTIA also seeks comment on the general concept of how to develop applications... network based on a single, nationwide network architecture called for under the Middle Class Tax Relief...
Efficient Online Learning Algorithms Based on LSTM Neural Networks.
Ergen, Tolga; Kozat, Suleyman Serdar
2017-09-13
We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.
Hybrid Network Defense Model Based on Fuzzy Evaluation
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture. PMID:24574870
Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calyam, Prasad
2014-09-15
The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federationmore » policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.« less
2010-03-19
network architecture to connect various DHS elements and promote information sharing.17 • Establish a DHS State, Local, and Regional Fusion Center...of reports; the I&A Strategic Plan; training, and the implementation of a comprehensive information systems architecture .73 As part of its...comprehensive information technology network architecture was submitted to Congress last year. See DHS I&A, Homeland Security Information Technology Network
NASA Astrophysics Data System (ADS)
Cao, Xiaojun; Anand, Vishal; Qiao, Chunming
2006-12-01
Optical networks using wavelength-division multiplexing (WDM) are the foremost solution to the ever-increasing traffic in the Internet backbone. Rapid advances in WDM technology will enable each fiber to carry hundreds or even a thousand wavelengths (using dense-WDM, or DWDM, and ultra-DWDM) of traffic. This, coupled with worldwide fiber deployment, will bring about a tremendous increase in the size of the optical cross-connects, i.e., the number of ports of the wavelength switching elements. Waveband switching (WBS), wherein wavelengths are grouped into bands and switched as a single entity, can reduce the cost and control complexity of switching nodes by minimizing the port count. This paper presents a detailed study on recent advances and open research issues in WBS networks. In this study, we investigate in detail the architecture for various WBS cross-connects and compare them in terms of the number of ports and complexity and also in terms of how flexible they are in adjusting to dynamic traffic. We outline various techniques for grouping wavelengths into bands for the purpose of WBS and show how traditional wavelength routing is different from waveband routing and why techniques developed for wavelength-routed networks (WRNs) cannot be simply applied to WBS networks. We also outline how traffic grooming of subwavelength traffic can be done in WBS networks. In part II of this study [Cao , submitted to J. Opt. Netw.], we study the effect of wavelength conversion on the performance of WBS networks with reconfigurable MG-OXCs. We present an algorithm for waveband grouping in wavelength-convertible networks and evaluate its performance. We also investigate issues related to survivability in WBS networks and show how waveband and wavelength conversion can be used to recover from failures in WBS networks.
NASA Astrophysics Data System (ADS)
Papers are presented on ISDN, mobile radio systems and techniques for digital connectivity, centralized and distributed algorithms in computer networks, communications networks, quality assurance and impact on cost, adaptive filters in communications, the spread spectrum, signal processing, video communication techniques, and digital satellite services. Topics discussed include performance evaluation issues for integrated protocols, packet network operations, the computer network theory and multiple-access, microwave single sideband systems, switching architectures, fiber optic systems, wireless local communications, modulation, coding, and synchronization, remote switching, software quality, transmission, and expert systems in network operations. Consideration is given to wide area networks, image and speech processing, office communications application protocols, multimedia systems, customer-controlled network operations, digital radio systems, channel modeling and signal processing in digital communications, earth station/on-board modems, computer communications system performance evaluation, source encoding, compression, and quantization, and adaptive communications systems.
PathCase-SB architecture and database design
2011-01-01
Background Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Description PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. Conclusions PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world. PMID:22070889
Modular architectures for quantum networks
NASA Astrophysics Data System (ADS)
Pirker, A.; Wallnöfer, J.; Dür, W.
2018-05-01
We consider the problem of generating multipartite entangled states in a quantum network upon request. We follow a top-down approach, where the required entanglement is initially present in the network in form of network states shared between network devices, and then manipulated in such a way that the desired target state is generated. This minimizes generation times, and allows for network structures that are in principle independent of physical links. We present a modular and flexible architecture, where a multi-layer network consists of devices of varying complexity, including quantum network routers, switches and clients, that share certain resource states. We concentrate on the generation of graph states among clients, which are resources for numerous distributed quantum tasks. We assume minimal functionality for clients, i.e. they do not participate in the complex and distributed generation process of the target state. We present architectures based on shared multipartite entangled Greenberger–Horne–Zeilinger states of different size, and fully connected decorated graph states, respectively. We compare the features of these architectures to an approach that is based on bipartite entanglement, and identify advantages of the multipartite approach in terms of memory requirements and complexity of state manipulation. The architectures can handle parallel requests, and are designed in such a way that the network state can be dynamically extended if new clients or devices join the network. For generation or dynamical extension of the network states, we propose a quantum network configuration protocol, where entanglement purification is used to establish high fidelity states. The latter also allows one to show that the entanglement generated among clients is private, i.e. the network is secure.
NASA Technical Reports Server (NTRS)
Younes, Badri A.; Schier, James S.
2010-01-01
The SCaN Program has defined an integrated network architecture that fully meets the Administrator s mandate to the Program, and will result in a NASA infrastructure capable of providing the needed and enabling communications services to future space missions. The integrated network architecture will increase SCaN operational efficiency and interoperability through standardization, commonality and technology infusion. It will enable NASA missions requiring advanced communication and tracking capabilities such as: a. Optical communication b. Antenna arraying c. Lunar and Mars Relays d. Integrated network management (service management and network control) and integrated service execution e. Enhanced tracking for navigation f. Space internetworking with DTN and IP g. End-to-end security h. Enhanced security services Moreover, the SCaN Program has created an Integrated Network Roadmap that depicts an orchestrated and coherent evolution path toward the target architecture, encompassing all aspects that concern network assets (i.e., operations and maintenance, sustaining engineering, upgrade efforts, and major development). This roadmap identifies major NASA ADPs, and shows dependencies and drivers among the various planned undertakings and timelines. The roadmap is scalable to accommodate timely adjustments in response to Agency needs, goals, objectives and funding. Future challenges to implementing this architecture include balancing user mission needs, technology development, and the availability of funding within NASA s priorities. Strategies for addressing these challenges are to: define a flexible architecture, update the architecture periodically, use ADPs to evaluate options and determine when to make decisions, and to engage the stakeholders in these evaluations. In addition, the SCaN Program will evaluate and respond to mission need dates for technical and operational capabilities to be provided by the SCaN integrated network. In that regard, the architecture defined in this ADD is scalable to accommodate programmatic and technical changes.
Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh
2014-03-01
As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.
Modelling and temporal performances evaluation of networked control systems using (max, +) algebra
NASA Astrophysics Data System (ADS)
Ammour, R.; Amari, S.
2015-01-01
In this paper, we address the problem of temporal performances evaluation of producer/consumer networked control systems. The aim is to develop a formal method for evaluating the response time of this type of control systems. Our approach consists on modelling, using Petri nets classes, the behaviour of the whole architecture including the switches that support multicast communications used by this protocol. (max, +) algebra formalism is then exploited to obtain analytical formulas of the response time and the maximal and minimal bounds. The main novelty is that our approach takes into account all delays experienced at the different stages of networked automation systems. Finally, we show how to apply the obtained results through an example of networked control system.
Satellite ATM Networks: Architectures and Guidelines Developed
NASA Technical Reports Server (NTRS)
vonDeak, Thomas C.; Yegendu, Ferit
1999-01-01
An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as opposed to implementing those functions at the Earth station components.
NASA Astrophysics Data System (ADS)
Kondo, Shuhei; Shibata, Tadashi; Ohmi, Tadahiro
1995-02-01
We have investigated the learning performance of the hardware backpropagation (HBP) algorithm, a hardware-oriented learning algorithm developed for the self-learning architecture of neural networks constructed using neuron MOS (metal-oxide-semiconductor) transistors. The solution to finding a mirror symmetry axis in a 4×4 binary pixel array was tested by computer simulation based on the HBP algorithm. Despite the inherent restrictions imposed on the hardware-learning algorithm, HBP exhibits equivalent learning performance to that of the original backpropagation (BP) algorithm when all the pertinent parameters are optimized. Very importantly, we have found that HBP has a superior generalization capability over BP; namely, HBP exhibits higher performance in solving problems that the network has not yet learnt.
Flexible architecture of data acquisition firmware based on multi-behaviors finite state machine
NASA Astrophysics Data System (ADS)
Arpaia, Pasquale; Cimmino, Pasquale
2016-11-01
A flexible firmware architecture for different kinds of data acquisition systems, ranging from high-precision bench instruments to low-cost wireless transducers networks, is presented. The key component is a multi-behaviors finite state machine, easily configurable to both low- and high-performance requirements, to diverse operating systems, as well as to on-line and batch measurement algorithms. The proposed solution was validated experimentally on three case studies with data acquisition architectures: (i) concentrated, in a high-precision instrument for magnetic measurements at CERN, (ii) decentralized, for telemedicine remote monitoring of patients at home, and (iii) distributed, for remote monitoring of building's energy loss.
Proceedings of the Second Software Architecture Technology User Network (SATURN) Workshop
2006-08-01
Proceedings of the Second Software Architecture Technology User Network (SATURN) Workshop Robert L. Nord August 2006 TECHNICAL REPORT CMU...SEI-2006-TR-010 ESC-TR-2006-010 Software Architecture Technology Initiative Unlimited distribution subject to the copyright. This report was...Participants 3 3 Presentations 5 3.1 SATURN Opening Presentation: Future Directions of the Software Architecture Technology Initiative 5 3.2 Keynote
Manned/Unmanned Common Architecture Program (MCAP) net centric flight tests
NASA Astrophysics Data System (ADS)
Johnson, Dale
2009-04-01
Properly architected avionics systems can reduce the costs of periodic functional improvements, maintenance, and obsolescence. With this in mind, the U.S. Army Aviation Applied Technology Directorate (AATD) initiated the Manned/Unmanned Common Architecture Program (MCAP) in 2003 to develop an affordable, high-performance embedded mission processing architecture for potential application to multiple aviation platforms. MCAP analyzed Army helicopter and unmanned air vehicle (UAV) missions, identified supporting subsystems, surveyed advanced hardware and software technologies, and defined computational infrastructure technical requirements. The project selected a set of modular open systems standards and market-driven commercial-off-theshelf (COTS) electronics and software, and, developed experimental mission processors, network architectures, and software infrastructures supporting the integration of new capabilities, interoperability, and life cycle cost reductions. MCAP integrated the new mission processing architecture into an AH-64D Apache Longbow and participated in Future Combat Systems (FCS) network-centric operations field experiments in 2006 and 2007 at White Sands Missile Range (WSMR), New Mexico and at the Nevada Test and Training Range (NTTR) in 2008. The MCAP Apache also participated in PM C4ISR On-the-Move (OTM) Capstone Experiments 2007 (E07) and 2008 (E08) at Ft. Dix, NJ and conducted Mesa, Arizona local area flight tests in December 2005, February 2006, and June 2008.
NASA Technical Reports Server (NTRS)
Israel, David J.
2005-01-01
The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.
Improved Air Combat Awareness; with AESA and Next-Generation Signal Processing
2002-09-01
competence network Building techniques Software development environment Communication Computer architecture Modeling Real-time programming Radar...memory access, skewed load and store, 3.2 GB/s BW • Performance: 400 MFLOPS Runtime environment Custom runtime routines Driver routines Hardware
NASA Astrophysics Data System (ADS)
Charania, A.
2002-01-01
The envisioned future may include continuous operating outposts and networks on other worlds supporting human and robotic exploration. Given this possibility, a feasibility analysis is performed of a communications architecture based upon reflection of ion trails from meteors in planetary atmospheres. Meteor Burst (MB) communication systems use meteoritic impacts on planetary atmospheres as two-way, short burst communication nodes. MB systems consist of semi-continuous, low bandwidth networks. These systems possess both long distance capability (hundred of kilometers) and have lower susceptibility to atmospheric perturbations. Every day millions of meteors come into Earth's upper atmosphere with enough energy to ionize gas molecules suitably to reflect radio waves and facilitate communications beyond line of site. The ionized trail occurs at altitudes of 100 km with lengths reaching 30 km. The trial sustains itself long enough to support typical network distances of 1800 km. The initial step to use meteors in this fashion includes detection of a usable ionic trail. A probe signal is sent from one station to another in the network. If there is a meteor trail present, the probe signal is reflected to a receiving station. When another station receives the probe signal, it sends an acknowledgement to the originating station to proceed with transfer on that trail in a high-speed digital data burst. This probe-main signal handshaking occurs each time a burst of data is sent and can occur several times over the course of just one useable meteor trail. Given the need for non-data sending probe signals and error correcting bits; typical transmission data rates vary from a few kilobits per second to over 100 kilobits per second. On Earth, MB links open up hundreds of time per hour depending upon daily and seasonal variations. Meteor bursts were first noticed in detail in the 1930s. With the capabilities of modern computer processing, MB systems have become both technically feasible and commercially viable for selected applications on Earth. Terrestrial applications currently include weather monitoring, river monitoring, transport tracking, emergency detection, two-way messaging, and vehicle performance monitoring. Translation of such a system beyond Earth requires an atmosphere; therefore Martian analogues of such a system are presented. Such systems could support planetary mobility (for humans and robots), weather stations, and emergency communications while minimizing the need for massive orbital telecommunication constellations. For this investigation, a conceptual Meteor Burst (MB) communication architecture is developed to assess potential viability in supporting planetary exploration missions on Mars. Current terrestrial systems are extrapolated to generate candidate network architectures for selected science applications. Technology road mapping activities are also performed on these architectures.
Re-engineering Nascom's network management architecture
NASA Technical Reports Server (NTRS)
Drake, Brian C.; Messent, David
1994-01-01
The development of Nascom systems for ground communications began in 1958 with Project Vanguard. The low-speed systems (rates less than 9.6 Kbs) were developed following existing standards; but, there were no comparable standards for high-speed systems. As a result, these systems were developed using custom protocols and custom hardware. Technology has made enormous strides since the ground support systems were implemented. Standards for computer equipment, software, and high-speed communications exist and the performance of current workstations exceeds that of the mainframes used in the development of the ground systems. Nascom is in the process of upgrading its ground support systems and providing additional services. The Message Switching System (MSS), Communications Address Processor (CAP), and Multiplexer/Demultiplexer (MDM) Automated Control System (MACS) are all examples of Nascom systems developed using standards such as, X-windows, Motif, and Simple Network Management Protocol (SNMP). Also, the Earth Observing System (EOS) Communications (Ecom) project is stressing standards as an integral part of its network. The move towards standards has produced a reduction in development, maintenance, and interoperability costs, while providing operational quality improvement. The Facility and Resource Manager (FARM) project has been established to integrate the Nascom networks and systems into a common network management architecture. The maximization of standards and implementation of computer automation in the architecture will lead to continued cost reductions and increased operational efficiency. The first step has been to derive overall Nascom requirements and identify the functionality common to all the current management systems. The identification of these common functions will enable the reuse of processes in the management architecture and promote increased use of automation throughout the Nascom network. The MSS, CAP, MACS, and Ecom projects have indicated the potential value of commercial-off-the-shelf (COTS) and standards through reduced cost and high quality. The FARM will allow the application of the lessons learned from these projects to all future Nascom systems.
Avionics System Architecture for NASA Orion Vehicle
NASA Technical Reports Server (NTRS)
Baggerman, Clint
2010-01-01
This viewgraph presentation reviews the Orion Crew Exploration Vehicle avionics architecture. The contents include: 1) What is Orion?; 2) Orion Concept of Operations; 3) Orion Subsystems; 4) Orion Avionics Architecture; 5) Orion Avionics-Network; 6) Orion Network Unification; 7) Orion Avionics-Integrity; 8) Orion Avionics-Partitioning; and 9) Orion Avionics-Redundancy.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... airplane. This airplane will have novel or unusual design features associated with the architecture and... incorporate the following novel or unusual design features: Digital systems architecture composed of several connected networks. The proposed architecture and network configuration may be used for, or interfaced with...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...
SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.
Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima
2016-03-01
A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.
Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture
Knight, James C.; Furber, Steve B.
2016-01-01
While the adult human brain has approximately 8.8 × 1010 neurons, this number is dwarfed by its 1 × 1015 synapses. From the point of view of neuromorphic engineering and neural simulation in general this makes the simulation of these synapses a particularly complex problem. SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Current solutions for simulating spiking neural networks on SpiNNaker are heavily inspired by work on distributed high-performance computing. However, while SpiNNaker shares many characteristics with such distributed systems, its component nodes have much more limited resources and, as the system lacks global synchronization, the computation performed on each node must complete within a fixed time step. We first analyze the performance of the current SpiNNaker neural simulation software and identify several problems that occur when it is used to simulate networks of the type often used to model the cortex which contain large numbers of sparsely connected synapses. We then present a new, more flexible approach for mapping the simulation of such networks to SpiNNaker which solves many of these problems. Finally we analyze the performance of our new approach using both benchmarks, designed to represent cortical connectivity, and larger, functional cortical models. In a benchmark network where neurons receive input from 8000 STDP synapses, our new approach allows 4× more neurons to be simulated on each SpiNNaker core than has been previously possible. We also demonstrate that the largest plastic neural network previously simulated on neuromorphic hardware can be run in real time using our new approach: double the speed that was previously achieved. Additionally this network contains two types of plastic synapse which previously had to be trained separately but, using our new approach, can be trained simultaneously. PMID:27683540
Kentzoglanakis, Kyriakos; Poole, Matthew
2012-01-01
In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.
NASA Integrated Network Monitor and Control Software Architecture
NASA Technical Reports Server (NTRS)
Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick
2012-01-01
The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.
Stringer, Clive; Beeknoo, Neeraj
2017-01-01
The topology of the patient flow network in a hospital is complex, comprising hundreds of overlapping patient journeys, and is a determinant of operational efficiency. To understand the network architecture of patient flow, we performed a data-driven network analysis of patient flow through two acute hospital sites of King’s College Hospital NHS Foundation Trust. Administration databases were queried for all intra-hospital patient transfers in an 18-month period and modelled as a dynamic weighted directed graph. A ‘core’ subnetwork containing only 13–17% of all edges channelled 83–90% of the patient flow, while an ‘ephemeral’ network constituted the remainder. Unsupervised cluster analysis and differential network analysis identified sub-networks where traffic is most associated with A&E performance. Increased flow to clinical decision units was associated with the best A&E performance in both sites. The component analysis also detected a weekend effect on patient transfers which was not associated with performance. We have performed the first data-driven hypothesis-free analysis of patient flow which can enhance understanding of whole healthcare systems. Such analysis can drive transformation in healthcare as it has in industries such as manufacturing. PMID:28968472
Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
Gokmen, Tayfun; Onen, Murat; Haensch, Wilfried
2017-01-01
In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional neural networks (CNNs). We show how to map the convolutional layers to fully connected RPU arrays such that the parallelism of the hardware can be fully utilized in all three cycles of the backpropagation algorithm. We find that the noise and bound limitations imposed by the analog nature of the computations performed on the arrays significantly affect the training accuracy of the CNNs. Noise and bound management techniques are presented that mitigate these problems without introducing any additional complexity in the analog circuits and that can be addressed by the digital circuits. In addition, we discuss digitally programmable update management and device variability reduction techniques that can be used selectively for some of the layers in a CNN. We show that a combination of all those techniques enables a successful application of the RPU concept for training CNNs. The techniques discussed here are more general and can be applied beyond CNN architectures and therefore enables applicability of the RPU approach to a large class of neural network architectures. PMID:29066942
Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices.
Gokmen, Tayfun; Onen, Murat; Haensch, Wilfried
2017-01-01
In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional neural networks (CNNs). We show how to map the convolutional layers to fully connected RPU arrays such that the parallelism of the hardware can be fully utilized in all three cycles of the backpropagation algorithm. We find that the noise and bound limitations imposed by the analog nature of the computations performed on the arrays significantly affect the training accuracy of the CNNs. Noise and bound management techniques are presented that mitigate these problems without introducing any additional complexity in the analog circuits and that can be addressed by the digital circuits. In addition, we discuss digitally programmable update management and device variability reduction techniques that can be used selectively for some of the layers in a CNN. We show that a combination of all those techniques enables a successful application of the RPU concept for training CNNs. The techniques discussed here are more general and can be applied beyond CNN architectures and therefore enables applicability of the RPU approach to a large class of neural network architectures.
Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD).
Cao, Yuan; Zhao, Yongli; Colman-Meixner, Carlos; Yu, Xiaosong; Zhang, Jie
2017-10-30
Software-defined optical networking (SDON) will become the next generation optical network architecture. However, the optical layer and control layer of SDON are vulnerable to cyberattacks. While, data encryption is an effective method to minimize the negative effects of cyberattacks, secure key interchange is its major challenge which can be addressed by the quantum key distribution (QKD) technique. Hence, in this paper we discuss the integration of QKD with WDM optical networks to secure the SDON architecture by introducing a novel key on demand (KoD) scheme which is enabled by a novel routing, wavelength and key assignment (RWKA) algorithm. The QKD over SDON with KoD model follows two steps to provide security: i) quantum key pools (QKPs) construction for securing the control channels (CChs) and data channels (DChs); ii) the KoD scheme uses RWKA algorithm to allocate and update secret keys for different security requirements. To test our model, we define a security probability index which measures the security gain in CChs and DChs. Simulation results indicate that the security performance of CChs and DChs can be enhanced by provisioning sufficient secret keys in QKPs and performing key-updating considering potential cyberattacks. Also, KoD is beneficial to achieve a positive balance between security requirements and key resource usage.
A framework using cluster-based hybrid network architecture for collaborative virtual surgery.
Qin, Jing; Choi, Kup-Sze; Poon, Wai-Sang; Heng, Pheng-Ann
2009-12-01
Research on collaborative virtual environments (CVEs) opens the opportunity for simulating the cooperative work in surgical operations. It is however a challenging task to implement a high performance collaborative surgical simulation system because of the difficulty in maintaining state consistency with minimum network latencies, especially when sophisticated deformable models and haptics are involved. In this paper, an integrated framework using cluster-based hybrid network architecture is proposed to support collaborative virtual surgery. Multicast transmission is employed to transmit updated information among participants in order to reduce network latencies, while system consistency is maintained by an administrative server. Reliable multicast is implemented using distributed message acknowledgment based on cluster cooperation and sliding window technique. The robustness of the framework is guaranteed by the failure detection chain which enables smooth transition when participants join and leave the collaboration, including normal and involuntary leaving. Communication overhead is further reduced by implementing a number of management approaches such as computational policies and collaborative mechanisms. The feasibility of the proposed framework is demonstrated by successfully extending an existing standalone orthopedic surgery trainer into a collaborative simulation system. A series of experiments have been conducted to evaluate the system performance. The results demonstrate that the proposed framework is capable of supporting collaborative surgical simulation.
VMSoar: a cognitive agent for network security
NASA Astrophysics Data System (ADS)
Benjamin, David P.; Shankar-Iyer, Ranjita; Perumal, Archana
2005-03-01
VMSoar is a cognitive network security agent designed for both network configuration and long-term security management. It performs automatic vulnerability assessments by exploring a configuration"s weaknesses and also performs network intrusion detection. VMSoar is built on the Soar cognitive architecture, and benefits from the general cognitive abilities of Soar, including learning from experience, the ability to solve a wide range of complex problems, and use of natural language to interact with humans. The approach used by VMSoar is very different from that taken by other vulnerability assessment or intrusion detection systems. VMSoar performs vulnerability assessments by using VMWare to create a virtual copy of the target machine then attacking the simulated machine with a wide assortment of exploits. VMSoar uses this same ability to perform intrusion detection. When trying to understand a sequence of network packets, VMSoar uses VMWare to make a virtual copy of the local portion of the network and then attempts to generate the observed packets on the simulated network by performing various exploits. This approach is initially slow, but VMSoar"s learning ability significantly speeds up both vulnerability assessment and intrusion detection. This paper describes the design and implementation of VMSoar, and initial experiments with Windows NT and XP.
CHARACTERIZATION OF THE COMPLETE FIBER NETWORK TOPOLOGY OF PLANAR FIBROUS TISSUES AND SCAFFOLDS
D'Amore, Antonio; Stella, John A.; Wagner, William R.; Sacks, Michael S.
2010-01-01
Understanding how engineered tissue scaffold architecture affects cell morphology, metabolism, phenotypic expression, as well as predicting material mechanical behavior have recently received increased attention. In the present study, an image-based analysis approach that provides an automated tool to characterize engineered tissue fiber network topology is presented. Micro-architectural features that fully defined fiber network topology were detected and quantified, which include fiber orientation, connectivity, intersection spatial density, and diameter. Algorithm performance was tested using scanning electron microscopy (SEM) images of electrospun poly(ester urethane)urea (ES-PEUU) scaffolds. SEM images of rabbit mesenchymal stem cell (MSC) seeded collagen gel scaffolds and decellularized rat carotid arteries were also analyzed to further evaluate the ability of the algorithm to capture fiber network morphology regardless of scaffold type and the evaluated size scale. The image analysis procedure was validated qualitatively and quantitatively, comparing fiber network topology manually detected by human operators (n=5) with that automatically detected by the algorithm. Correlation values between manual detected and algorithm detected results for the fiber angle distribution and for the fiber connectivity distribution were 0.86 and 0.93 respectively. Algorithm detected fiber intersections and fiber diameter values were comparable (within the mean ± standard deviation) with those detected by human operators. This automated approach identifies and quantifies fiber network morphology as demonstrated for three relevant scaffold types and provides a means to: (1) guarantee objectivity, (2) significantly reduce analysis time, and (3) potentiate broader analysis of scaffold architecture effects on cell behavior and tissue development both in vitro and in vivo. PMID:20398930
An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks.
Chen, Huan-Yuan; Chen, Chih-Chang; Hwang, Wen-Jyi
2017-09-28
This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL) neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC) implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting.
An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks
Chen, Huan-Yuan; Chen, Chih-Chang
2017-01-01
This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL) neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC) implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting. PMID:28956859
A top-down manner-based DCNN architecture for semantic image segmentation.
Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin
2017-01-01
Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.
Architectural Implications for Spatial Object Association Algorithms*
Kumar, Vijay S.; Kurc, Tahsin; Saltz, Joel; Abdulla, Ghaleb; Kohn, Scott R.; Matarazzo, Celeste
2013-01-01
Spatial object association, also referred to as crossmatch of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server®, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation provides insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST). PMID:25692244
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Kenneth; Oxstrand, Johanna
The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore,more » a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal of the digital architecture project is to provide a long-term strategy to integrate plant systems, plant processes, and plant workers. This include technologies to improve nuclear worker efficiency and human performance; to offset a range of plant surveillance and testing activities with new on-line monitoring technologies; improve command, control, and collaboration in settings such as outage control centers and work execution centers; and finally to improve operator performance with new operator aid technologies for the control room. The requirements identified through the activities in the Digital Architecture project will be used to estimate the amount of traffic on the network and hence estimating the minimal bandwidth needed.« less
Actin assembly factors regulate the gelation kinetics and architecture of F-actin networks.
Falzone, Tobias T; Oakes, Patrick W; Sees, Jennifer; Kovar, David R; Gardel, Margaret L
2013-04-16
Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Actin Assembly Factors Regulate the Gelation Kinetics and Architecture of F-actin Networks
Falzone, Tobias T.; Oakes, Patrick W.; Sees, Jennifer; Kovar, David R.; Gardel, Margaret L.
2013-01-01
Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. PMID:23601318
MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
Mutasa, Simukayi; Chang, Peter D; Ruzal-Shapiro, Carrie; Ayyala, Rama
2018-02-05
Bone age assessment (BAA) is a commonly performed diagnostic study in pediatric radiology to assess skeletal maturity. The most commonly utilized method for assessment of BAA is the Greulich and Pyle method (Pediatr Radiol 46.9:1269-1274, 2016; Arch Dis Child 81.2:172-173, 1999) atlas. The evaluation of BAA can be a tedious and time-consuming process for the radiologist. As such, several computer-assisted detection/diagnosis (CAD) methods have been proposed for automation of BAA. Classical CAD tools have traditionally relied on hard-coded algorithmic features for BAA which suffer from a variety of drawbacks. Recently, the advent and proliferation of convolutional neural networks (CNNs) has shown promise in a variety of medical imaging applications. There have been at least two published applications of using deep learning for evaluation of bone age (Med Image Anal 36:41-51, 2017; JDI 1-5, 2017). However, current implementations are limited by a combination of both architecture design and relatively small datasets. The purpose of this study is to demonstrate the benefits of a customized neural network algorithm carefully calibrated to the evaluation of bone age utilizing a relatively large institutional dataset. In doing so, this study will aim to show that advanced architectures can be successfully trained from scratch in the medical imaging domain and can generate results that outperform any existing proposed algorithm. The training data consisted of 10,289 images of different skeletal age examinations, 8909 from the hospital Picture Archiving and Communication System at our institution and 1383 from the public Digital Hand Atlas Database. The data was separated into four cohorts, one each for male and female children above the age of 8, and one each for male and female children below the age of 10. The testing set consisted of 20 radiographs of each 1-year-age cohort from 0 to 1 years to 14-15+ years, half male and half female. The testing set included left-hand radiographs done for bone age assessment, trauma evaluation without significant findings, and skeletal surveys. A 14 hidden layer-customized neural network was designed for this study. The network included several state of the art techniques including residual-style connections, inception layers, and spatial transformer layers. Data augmentation was applied to the network inputs to prevent overfitting. A linear regression output was utilized. Mean square error was used as the network loss function and mean absolute error (MAE) was utilized as the primary performance metric. MAE accuracies on the validation and test sets for young females were 0.654 and 0.561 respectively. For older females, validation and test accuracies were 0.662 and 0.497 respectively. For young males, validation and test accuracies were 0.649 and 0.585 respectively. Finally, for older males, validation and test set accuracies were 0.581 and 0.501 respectively. The female cohorts were trained for 900 epochs each and the male cohorts were trained for 600 epochs. An eightfold cross-validation set was employed for hyperparameter tuning. Test error was obtained after training on a full data set with the selected hyperparameters. Using our proposed customized neural network architecture on our large available data, we achieved an aggregate validation and test set mean absolute errors of 0.637 and 0.536 respectively. To date, this is the best published performance on utilizing deep learning for bone age assessment. Our results support our initial hypothesis that customized, purpose-built neural networks provide improved performance over networks derived from pre-trained imaging data sets. We build on that initial work by showing that the addition of state-of-the-art techniques such as residual connections and inception architecture further improves prediction accuracy. This is important because the current assumption for use of residual and/or inception architectures is that a large pre-trained network is required for successful implementation given the relatively small datasets in medical imaging. Instead we show that a small, customized architecture incorporating advanced CNN strategies can indeed be trained from scratch, yielding significant improvements in algorithm accuracy. It should be noted that for all four cohorts, testing error outperformed validation error. One reason for this is that our ground truth for our test set was obtained by averaging two pediatric radiologist reads compared to our training data for which only a single read was used. This suggests that despite relatively noisy training data, the algorithm could successfully model the variation between observers and generate estimates that are close to the expected ground truth.
NASA Technical Reports Server (NTRS)
Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel, Chitra
2016-01-01
National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA).A Study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper will present details of the simulation and analysis that include CubeSat swarm, daughter shipmother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRS Multiple Access (MA) array vs Single Access mode, notional transceiverantenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter mother CubeSat constellation inter-satellite crosslink. Results of Space Science X-band 10 MHz maximum achievable data rate study will be summarized. Assessment of Technology Readiness Level (TRL) of current CubeSat communication technologies capabilities will be presented. Compatibility test of the CubeSat transceiver through NEN and Space Network (SN) will be discussed. Based on the analyses, signal trade studies and technology assessments, the functional design and performance requirements as well as operation concepts for future CubeSat end-to-end communications will be derived.
The Science DMZ: A Network Design Pattern for Data-Intensive Science
Dart, Eli; Rotman, Lauren; Tierney, Brian; ...
2014-01-01
The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less
Multi-Spacecraft Autonomous Positioning System
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2015-01-01
As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.
Amozegar, M; Khorasani, K
2016-04-01
In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mathematical defense method of networked servers with controlled remote backups
NASA Astrophysics Data System (ADS)
Kim, Song-Kyoo
2006-05-01
The networked server defense model is focused on reliability and availability in security respects. The (remote) backup servers are hooked up by VPN (Virtual Private Network) with high-speed optical network and replace broken main severs immediately. The networked server can be represent as "machines" and then the system deals with main unreliable, spare, and auxiliary spare machine. During vacation periods, when the system performs a mandatory routine maintenance, auxiliary machines are being used for back-ups; the information on the system is naturally delayed. Analog of the N-policy to restrict the usage of auxiliary machines to some reasonable quantity. The results are demonstrated in the network architecture by using the stochastic optimization techniques.
Unified web-based network management based on distributed object orientated software agents
NASA Astrophysics Data System (ADS)
Djalalian, Amir; Mukhtar, Rami; Zukerman, Moshe
2002-09-01
This paper presents an architecture that provides a unified web interface to managed network devices that support CORBA, OSI or Internet-based network management protocols. A client gains access to managed devices through a web browser, which is used to issue management operations and receive event notifications. The proposed architecture is compatible with both the OSI Management reference Model and CORBA. The steps required for designing the building blocks of such architecture are identified.
Modeling a Wireless Network for International Space Station
NASA Technical Reports Server (NTRS)
Alena, Richard; Yaprak, Ece; Lamouri, Saad
2000-01-01
This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.
Planning Multitechnology Access Networks with Performance Constraints
NASA Astrophysics Data System (ADS)
Chamberland, Steven
Considering the number of access network technologies and the investment needed for the “last mile” of a solution, in today’s highly competitive markets, planning tools are crucial for the service providers to optimize the network costs and accelerate the planning process. In this paper, we propose to tackle the problem of planning access networks composed of four technologies/architectures: the digital subscriber line (xDSL) technologies deployed directly from the central office (CO), the fiber-to-the-node (FTTN), the fiber-to-the-micro-node (FTTn) and the fiber-to-the-premises (FTTP). A mathematical programming model is proposed for this planning problem that is solved using a commercial implementation of the branch-and-bound algorithm. Next, a detailed access network planning example is presented followed by a systematic set of experiments designed to assess the performance of the proposed approach.
ERIC Educational Resources Information Center
Treurniet, William
A study applied artificial neural networks, trained with the back-propagation learning algorithm, to modelling phonemes extracted from the DARPA TIMIT multi-speaker, continuous speech data base. A number of proposed network architectures were applied to the phoneme classification task, ranging from the simple feedforward multilayer network to more…
Wireless Sensor Networks Approach
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2003-01-01
This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.
A Decentralized VPN Service over Generalized Mobile Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Fujita, Sho; Shima, Keiichi; Uo, Yojiro; Esaki, Hiroshi
We present a decentralized VPN service that can be built over generalized mobile ad-hoc networks (Generalized MANETs), in which topologies can be represented as a time-varying directed multigraph. We address wireless ad-hoc networks and overlay ad-hoc networks as instances of Generalized MANETs. We first propose an architecture to operate on various kinds of networks through a single set of operations. Then, we design and implement a decentralized VPN service on the proposed architecture. Through the development and operation of a prototype system we implemented, we found that the proposed architecture makes the VPN service applicable to each instance of Generalized MANETs, and that the VPN service makes it possible for unmodified applications to operate on the networks.
NASA Astrophysics Data System (ADS)
Cummins, Kenneth L.; Honma, Noriyasu; Pifer, Alburt E.; Rogers, Tim; Tatsumi, Masataka
The demand for both data quality and the range of Cloud-to-Ground (CG) lightning parameters is highest for forensic applications within the electric utility industry. For years, the research and operational communities within this industry in Japan have pointed out a limitation of these LLS networks in the detection and location of damaging (high-current and/or large charge transfer) lightning flashes during the winter months (so-called “Winter Lightning”). Most of these flashes appear to be upward-connecting discharges, frequently referred to as “Ground-to-Cloud” (GC) flashes. The basic architecture and design of Vaisala’s new LS700x lightning sensor was developed in-part to improve detection of these unusual and complex flashes. This paper presents our progress-to-date on this effort. We include a review of the winter lightning detection problem, an overview of the LS700x architecture, a discussion of how this architecture was exploited to evaluate and improve performance for winter lightning, and a presentation of results-to-date on performance improvement. A comparison of GC detection performance between Tohoku’s operational 9-sensor IMPACT (ALDF 141-T) LLS and its 6-sensor LS700x research network indicates roughly a factor-of-two improvement for this class of discharges, with an overall detection of 23/24 (96%) of GC flashes.
Sun, Yuwen; Cheng, Allen C
2012-07-01
Artificial neural networks (ANNs) are a promising machine learning technique in classifying non-linear electrocardiogram (ECG) signals and recognizing abnormal patterns suggesting risks of cardiovascular diseases (CVDs). In this paper, we propose a new reusable neuron architecture (RNA) enabling a performance-efficient and cost-effective silicon implementation for ANN. The RNA architecture consists of a single layer of physical RNA neurons, each of which is designed to use minimal hardware resource (e.g., a single 2-input multiplier-accumulator is used to compute the dot product of two vectors). By carefully applying the principal of time sharing, RNA can multiplexs this single layer of physical neurons to efficiently execute both feed-forward and back-propagation computations of an ANN while conserving the area and reducing the power dissipation of the silicon. A three-layer 51-30-12 ANN is implemented in RNA to perform the ECG classification for CVD detection. This RNA hardware also allows on-chip automatic training update. A quantitative design space exploration in area, power dissipation, and execution speed between RNA and three other implementations representative of different reusable hardware strategies is presented and discussed. Compared with an equivalent software implementation in C executed on an embedded microprocessor, the RNA ASIC achieves three orders of magnitude improvements in both the execution speed and the energy efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evaluating deep learning architectures for Speech Emotion Recognition.
Fayek, Haytham M; Lech, Margaret; Cavedon, Lawrence
2017-08-01
Speech Emotion Recognition (SER) can be regarded as a static or dynamic classification problem, which makes SER an excellent test bed for investigating and comparing various deep learning architectures. We describe a frame-based formulation to SER that relies on minimal speech processing and end-to-end deep learning to model intra-utterance dynamics. We use the proposed SER system to empirically explore feed-forward and recurrent neural network architectures and their variants. Experiments conducted illuminate the advantages and limitations of these architectures in paralinguistic speech recognition and emotion recognition in particular. As a result of our exploration, we report state-of-the-art results on the IEMOCAP database for speaker-independent SER and present quantitative and qualitative assessments of the models' performances. Copyright © 2017 Elsevier Ltd. All rights reserved.
A neural network with modular hierarchical learning
NASA Technical Reports Server (NTRS)
Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)
1994-01-01
This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.
An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.
Hoseini, Farnaz; Shahbahrami, Asadollah; Bayat, Peyman
2018-02-27
Image segmentation is one of the most common steps in digital image processing, classifying a digital image into different segments. The main goal of this paper is to segment brain tumors in magnetic resonance images (MRI) using deep learning. Tumors having different shapes, sizes, brightness and textures can appear anywhere in the brain. These complexities are the reasons to choose a high-capacity Deep Convolutional Neural Network (DCNN) containing more than one layer. The proposed DCNN contains two parts: architecture and learning algorithms. The architecture and the learning algorithms are used to design a network model and to optimize parameters for the network training phase, respectively. The architecture contains five convolutional layers, all using 3 × 3 kernels, and one fully connected layer. Due to the advantage of using small kernels with fold, it allows making the effect of larger kernels with smaller number of parameters and fewer computations. Using the Dice Similarity Coefficient metric, we report accuracy results on the BRATS 2016, brain tumor segmentation challenge dataset, for the complete, core, and enhancing regions as 0.90, 0.85, and 0.84 respectively. The learning algorithm includes the task-level parallelism. All the pixels of an MR image are classified using a patch-based approach for segmentation. We attain a good performance and the experimental results show that the proposed DCNN increases the segmentation accuracy compared to previous techniques.
Sengupta, Abhronil; Shim, Yong; Roy, Kaushik
2016-12-01
Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by ∼ 100× in comparison to a corresponding digital/analog CMOS neuron implementation.
GBU-X bounding requirements for highly flexible munitions
NASA Astrophysics Data System (ADS)
Bagby, Patrick T.; Shaver, Jonathan; White, Reed; Cafarelli, Sergio; Hébert, Anthony J.
2017-04-01
This paper will present the results of an investigation into requirements for existing software and hardware solutions for open digital communication architectures that support weapon subsystem integration. The underlying requirements of such a communication architecture would be to achieve the lowest latency possible at a reasonable cost point with respect to the mission objective of the weapon. The determination of the latency requirements of the open architecture software and hardware were derived through the use of control system and stability margins analyses. Studies were performed on the throughput and latency of different existing communication transport methods. The two architectures that were tested in this study include Data Distribution Service (DDS) and Modular Open Network Architecture (MONARCH). This paper defines what levels of latency can be achieved with current technology and how this capability may translate to future weapons. The requirements moving forward within communications solutions are discussed.
An event-based architecture for solving constraint satisfaction problems
Mostafa, Hesham; Müller, Lorenz K.; Indiveri, Giacomo
2015-01-01
Constraint satisfaction problems are ubiquitous in many domains. They are typically solved using conventional digital computing architectures that do not reflect the distributed nature of many of these problems, and are thus ill-suited for solving them. Here we present a parallel analogue/digital hardware architecture specifically designed to solve such problems. We cast constraint satisfaction problems as networks of stereotyped nodes that communicate using digital pulses, or events. Each node contains an oscillator implemented using analogue circuits. The non-repeating phase relations among the oscillators drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on random SAT problems under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed. PMID:26642827
Spreng, R Nathan; Stevens, W Dale; Viviano, Joseph D; Schacter, Daniel L
2016-09-01
Anticorrelation between the default and dorsal attention networks is a central feature of human functional brain organization. Hallmarks of aging include impaired default network modulation and declining medial temporal lobe (MTL) function. However, it remains unclear if this anticorrelation is preserved into older adulthood during task performance, or how this is related to the intrinsic architecture of the brain. We hypothesized that older adults would show reduced within- and increased between-network functional connectivity (FC) across the default and dorsal attention networks. To test this hypothesis, we examined the effects of aging on task-related and intrinsic FC using functional magnetic resonance imaging during an autobiographical planning task known to engage the default network and during rest, respectively, with young (n = 72) and older (n = 79) participants. The task-related FC analysis revealed reduced anticorrelation with aging. At rest, there was a robust double dissociation, with older adults showing a pattern of reduced within-network FC, but increased between-network FC, across both networks, relative to young adults. Moreover, older adults showed reduced intrinsic resting-state FC of the MTL with both networks suggesting a fractionation of the MTL memory system in healthy aging. These findings demonstrate age-related dedifferentiation among these competitive large-scale networks during both task and rest, consistent with the idea that age-related changes are associated with a breakdown in the intrinsic functional architecture within and among large-scale brain networks. Copyright © 2016 Elsevier Inc. All rights reserved.
Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.
Aftab, Muhammad Saleheen; Shafiq, Muhammad
2015-11-01
This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku
2016-01-01
In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source’s radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119
Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku
2016-02-26
In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.
NASA Astrophysics Data System (ADS)
Garg, Amit Kumar; Madavi, Amresh Ashok; Janyani, Vijay
2017-02-01
A flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network architecture that allows dual rate signals to be sent at 1 and 10 Gbps to each optical networking unit depending upon the traffic load is proposed. The proposed design allows dynamic wavelength allocation with pay-as-you-grow deployment capability. This architecture is capable of providing up to 40 Gbps of equal data rates to all optical distribution networks (ODNs) and up to 70 Gbps of a asymmetrical data rate to the specific ODN. The proposed design handles broadcasting capability with simultaneous point-to-point transmission, which further reduces energy consumption. In this architecture, each module sends a wavelength to each ODN, thus making the architecture fully flexible; this flexibility allows network providers to use only required OLT components and switch off others. The design is also reliable to any module or TRx failure and provides services without any service disruption. Dynamic wavelength allocation and pay-as-you-grow deployment support network extensibility and bandwidth scalability to handle future generation access networks.
High speed all optical networks
NASA Technical Reports Server (NTRS)
Chlamtac, Imrich; Ganz, Aura
1990-01-01
An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.
Optical burst switching based satellite backbone network
NASA Astrophysics Data System (ADS)
Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian
2018-02-01
We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.
Data center networks and network architecture
NASA Astrophysics Data System (ADS)
Esaki, Hiroshi
2014-02-01
This paper discusses and proposes the architectural framework, which is for data center networks. The data center networks require new technical challenges, and it would be good opportunity to change the functions, which are not need in current and future networks. Based on the observation and consideration on data center networks, this paper proposes; (i) Broadcast-free layer 2 network (i.e., emulation of broadcast at the end-node), (ii) Full-mesh point-to-point pipes, and (iii) IRIDES (Invitation Routing aDvertisement for path Engineering System).
The effects of working memory training on functional brain network efficiency.
Langer, Nicolas; von Bastian, Claudia C; Wirz, Helen; Oberauer, Klaus; Jäncke, Lutz
2013-10-01
The human brain is a highly interconnected network. Recent studies have shown that the functional and anatomical features of this network are organized in an efficient small-world manner that confers high efficiency of information processing at relatively low connection cost. However, it has been unclear how the architecture of functional brain networks is related to performance in working memory (WM) tasks and if these networks can be modified by WM training. Therefore, we conducted a double-blind training study enrolling 66 young adults. Half of the subjects practiced three WM tasks and were compared to an active control group practicing three tasks with low WM demand. High-density resting-state electroencephalography (EEG) was recorded before and after training to analyze graph-theoretical functional network characteristics at an intracortical level. WM performance was uniquely correlated with power in the theta frequency, and theta power was increased by WM training. Moreover, the better a person's WM performance, the more their network exhibited small-world topology. WM training shifted network characteristics in the direction of high performers, showing increased small-worldness within a distributed fronto-parietal network. Taken together, this is the first longitudinal study that provides evidence for the plasticity of the functional brain network underlying WM. Copyright © 2013 Elsevier Ltd. All rights reserved.
Analysis of performance improvements for host and GPU interface of the APENet+ 3D Torus network
NASA Astrophysics Data System (ADS)
Ammendola A, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Paolucci, P. S.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.
2014-06-01
APEnet+ is an INFN (Italian Institute for Nuclear Physics) project aiming to develop a custom 3-Dimensional torus interconnect network optimized for hybrid clusters CPU-GPU dedicated to High Performance scientific Computing. The APEnet+ interconnect fabric is built on a FPGA-based PCI-express board with 6 bi-directional off-board links showing 34 Gbps of raw bandwidth per direction, and leverages upon peer-to-peer capabilities of Fermi and Kepler-class NVIDIA GPUs to obtain real zero-copy, GPU-to-GPU low latency transfers. The minimization of APEnet+ transfer latency is achieved through the adoption of RDMA protocol implemented in FPGA with specialized hardware blocks tightly coupled with embedded microprocessor. This architecture provides a high performance low latency offload engine for both trasmit and receive side of data transactions: preliminary results are encouraging, showing 50% of bandwidth increase for large packet size transfers. In this paper we describe the APEnet+ architecture, detailing the hardware implementation and discuss the impact of such RDMA specialized hardware on host interface latency and bandwidth.
Modeling of a 3DTV service in the software-defined networking architecture
NASA Astrophysics Data System (ADS)
Wilczewski, Grzegorz
2014-11-01
In this article a newly developed concept towards modeling of a multimedia service offering stereoscopic motion imagery is presented. Proposed model is based on the approach of utilization of Software-defined Networking or Software Defined Networks architecture (SDN). The definition of 3D television service spanning SDN concept is identified, exposing basic characteristic of a 3DTV service in a modern networking organization layout. Furthermore, exemplary functionalities of the proposed 3DTV model are depicted. It is indicated that modeling of a 3DTV service in the Software-defined Networking architecture leads to multiplicity of improvements, especially towards flexibility of a service supporting heterogeneity of end user devices.
Kuzmina, Margarita; Manykin, Eduard; Surina, Irina
2004-01-01
An oscillatory network of columnar architecture located in 3D spatial lattice was recently designed by the authors as oscillatory model of the brain visual cortex. Single network oscillator is a relaxational neural oscillator with internal dynamics tunable by visual image characteristics - local brightness and elementary bar orientation. It is able to demonstrate either activity state (stable undamped oscillations) or "silence" (quickly damped oscillations). Self-organized nonlocal dynamical connections of oscillators depend on oscillator activity levels and orientations of cortical receptive fields. Network performance consists in transfer into a state of clusterized synchronization. At current stage grey-level image segmentation tasks are carried out by 2D oscillatory network, obtained as a limit version of the source model. Due to supplemented network coupling strength control the 2D reduced network provides synchronization-based image segmentation. New results on segmentation of brightness and texture images presented in the paper demonstrate accurate network performance and informative visualization of segmentation results, inherent in the model.
Ensuring Data Storage Security in Tree cast Routing Architecture for Sensor Networks
NASA Astrophysics Data System (ADS)
Kumar, K. E. Naresh; Sagar, U. Vidya; Waheed, Mohd. Abdul
2010-10-01
In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In contrast to traditional solutions, where the IT services are under proper physical, logical and personnel controls, this routing architecture moves the application software and databases to the large data centers, where the management of the data and services may not be fully trustworthy. This unique attribute, however, poses many new security challenges which have not been well understood. In this paper, we focus on data storage security, which has always been an important aspect of quality of service. To ensure the correctness of users' data in this architecture, we propose an effective and flexible distributed scheme with two salient features, opposing to its predecessors. By utilizing the homomorphic token with distributed verification of erasure-coded data, our scheme achieves the integration of storage correctness insurance and data error localization, i.e., the identification of misbehaving server(s). Unlike most prior works, the new scheme further supports secure and efficient dynamic operations on data blocks, including: data update, delete and append. Extensive security and performance analysis shows that the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server colluding attacks.
On-board processing architectures for satellite B-ISDN services
NASA Technical Reports Server (NTRS)
Inukai, Thomas; Shyy, Dong-Jye; Faris, Faris
1991-01-01
Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.
Applying Web-Based Tools for Research, Engineering, and Operations
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2011-01-01
Personnel in the NASA Glenn Research Center Network and Architectures branch have performed a variety of research related to space-based sensor webs, network centric operations, security and delay tolerant networking (DTN). Quality documentation and communications, real-time monitoring and information dissemination are critical in order to perform quality research while maintaining low cost and utilizing multiple remote systems. This has been accomplished using a variety of Internet technologies often operating simultaneously. This paper describes important features of various technologies and provides a number of real-world examples of how combining Internet technologies can enable a virtual team to act efficiently as one unit to perform advanced research in operational systems. Finally, real and potential abuses of power and manipulation of information and information access is addressed.