Sample records for performance optimization study

  1. Positivity in healthcare: relation of optimism to performance.

    PubMed

    Luthans, Kyle W; Lebsack, Sandra A; Lebsack, Richard R

    2008-01-01

    The purpose of this paper is to explore the linkage between nurses' levels of optimism and performance outcomes. The study sample consisted of 78 nurses in all areas of a large healthcare facility (hospital) in the Midwestern United States. The participants completed surveys to determine their current state of optimism. Supervisory performance appraisal data were gathered in order to measure performance outcomes. Spearman correlations and a one-way ANOVA were used to analyze the data. The results indicated a highly significant positive relationship between the nurses' measured state of optimism and their supervisors' ratings of their commitment to the mission of the hospital, a measure of contribution to increasing customer satisfaction, and an overall measure of work performance. This was an exploratory study. Larger sample sizes and longitudinal data would be beneficial because it is probable that state optimism levels will vary and that it might be more accurate to measure state optimism at several points over time in order to better predict performance outcomes. Finally, the study design does not imply causation. Suggestions for effectively developing and managing nurses' optimism to positively impact their performance are provided. To date, there has been very little empirical evidence assessing the impact that positive psychological capacities such as optimism of key healthcare professionals may have on performance. This paper was designed to help begin to fill this void by examining the relationship between nurses' self-reported optimism and their supervisors' evaluations of their performance.

  2. The impact of chief executive officer optimism on hospital strategic decision making.

    PubMed

    Langabeer, James R; Yao, Emery

    2012-01-01

    Previous strategic decision making research has focused mostly on the analytical positioning approach, which broadly emphasizes an alignment between rationality and the external environment. In this study, we propose that hospital chief executive optimism (or the general tendency to expect positive future outcomes) will moderate the relationship between comprehensively rational decision-making process and organizational performance. The purpose of this study was to explore the impact that dispositional optimism has on the well-established relationship between rational decision-making processes and organizational performance. Specifically, we hypothesized that optimism will moderate the relationship between the level of rationality and the organization's performance. We further suggest that this relationship will be more negative for those with high, as opposed to low, optimism. We surveyed 168 hospital CEOs and used moderated hierarchical regression methods to statically test our hypothesis. On the basis of a survey study of 168 hospital CEOs, we found evidence of a complex interplay of optimism in the rationality-organizational performance relationship. More specifically, we found that the two-way interactions between optimism and rational decision making were negatively associated with performance and that where optimism was the highest, the rationality-performance relationship was the most negative. Executive optimism was positively associated with organizational performance. We also found that greater perceived environmental turbulence, when interacting with optimism, did not have a significant interaction effect on the rationality-performance relationship. These findings suggest potential for broader participation in strategic processes and the use of organizational development techniques that assess executive disposition and traits for recruitment processes, because CEO optimism influences hospital-level processes. Research implications include incorporating greater use of behavior and cognition constructs to better depict decision-making processes in complex organizations like hospitals.

  3. Case study on impact performance optimization of hydraulic breakers.

    PubMed

    Noh, Dae-Kyung; Kang, Young-Ky; Cho, Jae-Sang; Jang, Joo-Sup

    2016-01-01

    In order to expand the range of activities of an excavator, attachments, such as hydraulic breakers have been developed to be applied to buckets. However, it is very difficult to predict the dynamic behavior of hydraulic impact devices such as breakers because of high non-linearity. Thus, the purpose of this study is to optimize the impact performance of hydraulic breakers. The ultimate goal of the optimization is to increase the impact energy and impact frequency and to reduce the pressure pulsation of the supply and return lines. The optimization results indicated that the four parameters used to optimize the impact performance of the breaker showed considerable improvement over the results reported in the literature. A test was also conducted and the results were compared with those obtained through optimization in order to verify the optimization results. The comparison showed an average relative error of 8.24 %, which seems to be in good agreement. The results of this study can be used to optimize the impact performance of hydraulic impact devices such as breakers, thus facilitating its application to excavators and increasing the range of activities of an excavator.

  4. Selection of optimal sensors for predicting performance of polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Jackson, Lisa

    2016-10-01

    In this paper, sensor selection algorithms are investigated based on a sensitivity analysis, and the capability of optimal sensors in predicting PEM fuel cell performance is also studied using test data. The fuel cell model is developed for generating the sensitivity matrix relating sensor measurements and fuel cell health parameters. From the sensitivity matrix, two sensor selection approaches, including the largest gap method, and exhaustive brute force searching technique, are applied to find the optimal sensors providing reliable predictions. Based on the results, a sensor selection approach considering both sensor sensitivity and noise resistance is proposed to find the optimal sensor set with minimum size. Furthermore, the performance of the optimal sensor set is studied to predict fuel cell performance using test data from a PEM fuel cell system. Results demonstrate that with optimal sensors, the performance of PEM fuel cell can be predicted with good quality.

  5. Thermofluid Analysis of Magnetocaloric Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Gluesenkamp, Kyle R; Vineyard, Edward Allan

    While there have been extensive studies on thermofluid characteristics of different magnetocaloric refrigeration systems, a conclusive optimization study using non-dimensional parameters which can be applied to a generic system has not been reported yet. In this study, a numerical model has been developed for optimization of active magnetic refrigerator (AMR). This model is computationally efficient and robust, making it appropriate for running the thousands of simulations required for parametric study and optimization. The governing equations have been non-dimensionalized and numerically solved using finite difference method. A parametric study on a wide range of non-dimensional numbers has been performed. While themore » goal of AMR systems is to improve the performance of competitive parameters including COP, cooling capacity and temperature span, new parameters called AMR performance index-1 have been introduced in order to perform multi objective optimization and simultaneously exploit all these parameters. The multi-objective optimization is carried out for a wide range of the non-dimensional parameters. The results of this study will provide general guidelines for designing high performance AMR systems.« less

  6. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Irwin, S. H.; NELSON; Roleyni, G.

    1977-01-01

    Optimal design studies of MLS angle-receivers and a theoretical design-study of MLS DME-receivers are reported. The angle-receiver results include an integration of the scan data processor and tracking filter components of the optimal receiver into a unified structure. An extensive simulation study comparing the performance of the optimal and threshold receivers in a wide variety of representative dynamical interference environments was made. The optimal receiver was generally superior. A simulation of the performance of the threshold and delay-and-compare receivers in various signal environments was performed. An analysis of combined errors due to lateral reflections from vertical structures with small differential path delays, specular ground reflections with neglible differential path delays, and thermal noise in the receivers is provided.

  7. The Relationship between Optimism and Engagement: The Impact on Student Performance

    ERIC Educational Resources Information Center

    Medlin, Bobby; Faulk, Larry

    2011-01-01

    The concepts of optimism and employee engagement as mechanisms to improving individual performance have been discussed in the management literature. Though studies concerning optimism in the workplace are relatively limited, evidence certainly exists that links the concept to improvement in individual academic and workplace performance.…

  8. Business owners' optimism and business performance after a natural disaster.

    PubMed

    Bronson, James W; Faircloth, James B; Valentine, Sean R

    2006-12-01

    Previous work indicates that individuals' optimism is related to superior performance in adverse situations. This study examined correlations after flooding for measures of business recovery but found only weak support (very small common variance) for business owners' optimism scores and sales recovery. Using traditional measures of recovery, in this study was little empirical evidence that optimism would be of value in identifying businesses at risk after a natural disaster.

  9. Concurrently examining unrealistic absolute and comparative optimism: Temporal shifts, individual-difference and event-specific correlates, and behavioural outcomes.

    PubMed

    Ruthig, Joelle C; Gamblin, Bradlee W; Jones, Kelly; Vanderzanden, Karen; Kehn, Andre

    2017-02-01

    Researchers have spent considerable effort examining unrealistic absolute optimism and unrealistic comparative optimism, yet there is a lack of research exploring them concurrently. This longitudinal study repeatedly assessed unrealistic absolute and comparative optimism within a performance context over several months to identify the degree to which they shift as a function of proximity to performance and performance feedback, their associations with global individual difference and event-specific factors, and their link to subsequent behavioural outcomes. Results showed similar shifts in unrealistic absolute and comparative optimism based on proximity to performance and performance feedback. Moreover, increases in both types of unrealistic optimism were associated with better subsequent performance beyond the effect of prior performance. However, several differences were found between the two forms of unrealistic optimism in their associations with global individual difference factors and event-specific factors, highlighting the distinctiveness of the two constructs. © 2016 The British Psychological Society.

  10. Increasing Optimism Protects Against Pain-Induced Impairment in Task-Shifting Performance.

    PubMed

    Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L

    2017-04-01

    Persistent pain can lead to difficulties in executive task performance. Three core executive functions that are often postulated are inhibition, updating, and shifting. Optimism, the tendency to expect that good things happen in the future, has been shown to protect against pain-induced performance deterioration in executive function updating. This study tested whether this protective effect of a temporary optimistic state by means of a writing and visualization exercise extended to executive function shifting. A 2 (optimism: optimism vs no optimism) × 2 (pain: pain vs no pain) mixed factorial design was conducted. Participants (N = 61) completed a shifting task once with and once without concurrent painful heat stimulation after an optimism or neutral manipulation. Results showed that shifting performance was impaired when experimental heat pain was applied during task execution, and that optimism counteracted pain-induced deterioration in task-shifting performance. Experimentally-induced heat pain impairs shifting task performance and manipulated optimism or induced optimism counteracted this pain-induced performance deterioration. Identifying psychological factors that may diminish the negative effect of persistent pain on the ability to function in daily life is imperative. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Optimization of wastewater treatment plant operation for greenhouse gas mitigation.

    PubMed

    Kim, Dongwook; Bowen, James D; Ozelkan, Ertunga C

    2015-11-01

    This study deals with the determination of optimal operation of a wastewater treatment system for minimizing greenhouse gas emissions, operating costs, and pollution loads in the effluent. To do this, an integrated performance index that includes three objectives was established to assess system performance. The ASMN_G model was used to perform system optimization aimed at determining a set of operational parameters that can satisfy three different objectives. The complex nonlinear optimization problem was simulated using the Nelder-Mead Simplex optimization algorithm. A sensitivity analysis was performed to identify influential operational parameters on system performance. The results obtained from the optimization simulations for six scenarios demonstrated that there are apparent trade-offs among the three conflicting objectives. The best optimized system simultaneously reduced greenhouse gas emissions by 31%, reduced operating cost by 11%, and improved effluent quality by 2% compared to the base case operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nursing performance under high workload: a diary study on the moderating role of selection, optimization and compensation strategies.

    PubMed

    Baethge, Anja; Müller, Andreas; Rigotti, Thomas

    2016-03-01

    The aim of this study was to investigate whether selective optimization with compensation constitutes an individualized action strategy for nurses wanting to maintain job performance under high workload. High workload is a major threat to healthcare quality and performance. Selective optimization with compensation is considered to enhance the efficient use of intra-individual resources and, therefore, is expected to act as a buffer against the negative effects of high workload. The study applied a diary design. Over five consecutive workday shifts, self-report data on workload was collected at three randomized occasions during each shift. Self-reported job performance was assessed in the evening. Self-reported selective optimization with compensation was assessed prior to the diary reporting. Data were collected in 2010. Overall, 136 nurses from 10 German hospitals participated. Selective optimization with compensation was assessed with a nine-item scale that was specifically developed for nursing. The NASA-TLX scale indicating the pace of task accomplishment was used to measure workload. Job performance was assessed with one item each concerning performance quality and forgetting of intentions. There was a weaker negative association between workload and both indicators of job performance in nurses with a high level of selective optimization with compensation, compared with nurses with a low level. Considering the separate strategies, selection and compensation turned out to be effective. The use of selective optimization with compensation is conducive to nurses' job performance under high workload levels. This finding is in line with calls to empower nurses' individual decision-making. © 2015 John Wiley & Sons Ltd.

  13. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    NASA Astrophysics Data System (ADS)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  14. The effects of experimental pain and induced optimism on working memory task performance.

    PubMed

    Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L

    2016-07-01

    Pain can interrupt and deteriorate executive task performance. We have previously shown that experimentally induced optimism can diminish the deteriorating effect of cold pressor pain on a subsequent working memory task (i.e., operation span task). In two successive experiments we sought further evidence for the protective role of optimism on pain-induced working memory impairments. We used another working memory task (i.e., 2-back task) that was performed either after or during pain induction. Study 1 employed a 2 (optimism vs. no-optimism)×2 (pain vs. no-pain)×2 (pre-score vs. post-score) mixed factorial design. In half of the participants optimism was induced by the Best Possible Self (BPS) manipulation, which required them to write and visualize about a life in the future where everything turned out for the best. In the control condition, participants wrote and visualized a typical day in their life (TD). Next, participants completed either the cold pressor task (CPT) or a warm water control task (WWCT). Before (baseline) and after the CPT or WWCT participants working memory performance was measured with the 2-back task. The 2-back task measures the ability to monitor and update working memory representation by asking participants to indicate whether the current stimulus corresponds to the stimulus that was presented 2 stimuli ago. Study 2 had a 2 (optimism vs. no-optimism)×2 (pain vs. no-pain) mixed factorial design. After receiving the BPS or control manipulation, participants completed the 2-back task twice: once with painful heat stimulation, and once without any stimulation (counter-balanced order). Continuous heat stimulation was used with temperatures oscillating around 1°C above and 1°C below the individual pain threshold. In study 1, the results did not show an effect of cold pressor pain on subsequent 2-back task performance. Results of study 2 indicated that heat pain impaired concurrent 2-back task performance. However, no evidence was found that optimism protected against this pain-induced performance deterioration. Experimentally induced pain impairs concurrent but not subsequent working memory task performance. Manipulated optimism did not counteract pain-induced deterioration of 2-back performance. It is important to explore factors that may diminish the negative impact of pain on the ability to function in daily life, as pain itself often cannot be remediated. We are planning to conduct future studies that should shed further light on the conditions, contexts and executive operations for which optimism can act as a protective factor. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. Emotional Intelligence and Emotions Associated with Optimal and Dysfunctional Athletic Performance

    PubMed Central

    Lane, Andrew M.; Devonport, Tracey J.; Soos, Istvan; Karsai, Istvan; Leibinger, Eva; Hamar, Pal

    2010-01-01

    This study investigated relationships between self-report measures of emotional intelligence and memories of pre-competitive emotions before optimal and dysfunctional athletic performance. Participant-athletes (n = 284) completed a self-report measure of emotional intelligence and two measures of pre-competitive emotions; a) emotions experienced before an optimal performance, and b) emotions experienced before a dysfunctional performance. Consistent with theoretical predictions, repeated MANOVA results demonstrated pleasant emotions associated with optimal performance and unpleasant emotions associated with dysfunctional performance. Emotional intelligence correlated with pleasant emotions in both performances with individuals reporting low scores on the self-report emotional intelligence scale appearing to experience intense unpleasant emotions before dysfunctional performance. We suggest that future research should investigate relationships between emotional intelligence and emotion-regulation strategies used by athletes. Key points Athletes reporting high scores of self-report emotional intelligence tend to experience pleasant emotions. Optimal performance is associated with pleasant emotions and dysfunctional performance is associated with unpleasant emotions. Emotional intelligence might help athletes recognize which emotional states help performance. PMID:24149631

  16. Emotional intelligence and emotions associated with optimal and dysfunctional athletic performance.

    PubMed

    Lane, Andrew M; Devonport, Tracey J; Soos, Istvan; Karsai, Istvan; Leibinger, Eva; Hamar, Pal

    2010-01-01

    This study investigated relationships between self-report measures of emotional intelligence and memories of pre-competitive emotions before optimal and dysfunctional athletic performance. Participant-athletes (n = 284) completed a self-report measure of emotional intelligence and two measures of pre-competitive emotions; a) emotions experienced before an optimal performance, and b) emotions experienced before a dysfunctional performance. Consistent with theoretical predictions, repeated MANOVA results demonstrated pleasant emotions associated with optimal performance and unpleasant emotions associated with dysfunctional performance. Emotional intelligence correlated with pleasant emotions in both performances with individuals reporting low scores on the self-report emotional intelligence scale appearing to experience intense unpleasant emotions before dysfunctional performance. We suggest that future research should investigate relationships between emotional intelligence and emotion-regulation strategies used by athletes. Key pointsAthletes reporting high scores of self-report emotional intelligence tend to experience pleasant emotions.Optimal performance is associated with pleasant emotions and dysfunctional performance is associated with unpleasant emotions.Emotional intelligence might help athletes recognize which emotional states help performance.

  17. Increase of Gas-Turbine Plant Efficiency by Optimizing Operation of Compressors

    NASA Astrophysics Data System (ADS)

    Matveev, V.; Goriachkin, E.; Volkov, A.

    2018-01-01

    The article presents optimization method for improving of the working process of axial compressors of gas turbine engines. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.

  18. Optimizing Irregular Applications for Energy and Performance on the Tilera Many-core Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavarría-Miranda, Daniel; Panyala, Ajay R.; Halappanavar, Mahantesh

    Optimizing applications simultaneously for energy and performance is a complex problem. High performance, parallel, irregular applications are notoriously hard to optimize due to their data-dependent memory accesses, lack of structured locality and complex data structures and code patterns. Irregular kernels are growing in importance in applications such as machine learning, graph analytics and combinatorial scientific computing. Performance- and energy-efficient implementation of these kernels on modern, energy efficient, multicore and many-core platforms is therefore an important and challenging problem. We present results from optimizing two irregular applications { the Louvain method for community detection (Grappolo), and high-performance conjugate gradient (HPCCG) {more » on the Tilera many-core system. We have significantly extended MIT's OpenTuner auto-tuning framework to conduct a detailed study of platform-independent and platform-specific optimizations to improve performance as well as reduce total energy consumption. We explore the optimization design space along three dimensions: memory layout schemes, compiler-based code transformations, and optimization of parallel loop schedules. Using auto-tuning, we demonstrate whole node energy savings of up to 41% relative to a baseline instantiation, and up to 31% relative to manually optimized variants.« less

  19. Improving of the working process of axial compressors of gas turbine engines by using an optimization method

    NASA Astrophysics Data System (ADS)

    Marchukov, E.; Egorov, I.; Popov, G.; Baturin, O.; Goriachkin, E.; Novikova, Y.; Kolmakova, D.

    2017-08-01

    The article presents one optimization method for improving of the working process of an axial compressor of gas turbine engine. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. Optimization was performed by changing the form of the middle line in the three sections of each blade and shifts of three sections of the guide vanes in the circumferential and axial directions. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.

  20. Taguchi optimization of bismuth-telluride based thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Anant Kishore, Ravi; Kumar, Prashant; Sanghadasa, Mohan; Priya, Shashank

    2017-07-01

    In the last few decades, considerable effort has been made to enhance the figure-of-merit (ZT) of thermoelectric (TE) materials. However, the performance of commercial TE devices still remains low due to the fact that the module figure-of-merit not only depends on the material ZT, but also on the operating conditions and configuration of TE modules. This study takes into account comprehensive set of parameters to conduct the numerical performance analysis of the thermoelectric cooler (TEC) using a Taguchi optimization method. The Taguchi method is a statistical tool that predicts the optimal performance with a far less number of experimental runs than the conventional experimental techniques. Taguchi results are also compared with the optimized parameters obtained by a full factorial optimization method, which reveals that the Taguchi method provides optimum or near-optimum TEC configuration using only 25 experiments against 3125 experiments needed by the conventional optimization method. This study also shows that the environmental factors such as ambient temperature and cooling coefficient do not significantly affect the optimum geometry and optimum operating temperature of TECs. The optimum TEC configuration for simultaneous optimization of cooling capacity and coefficient of performance is also provided.

  1. Using a shock control bump to improve the performance of an axial compressor blade section

    NASA Astrophysics Data System (ADS)

    Mazaheri, K.; Khatibirad, S.

    2017-03-01

    Here, we use numerical analysis to study the effects of a shock control bump (SCB) on the performance of a transonic axial compressor blade section and to optimize its shape and location to improve the compressor performance. A section of the NASA rotor 67 blade is used for this study. Two Bézier curves, each consisting of seven control points, are used to model the suction and pressure surfaces of the blade section. The SCB is modeled with the Hicks-Henne function and, using five design parameters, is added to the suction side. The total pressure loss through a cascade of blade sections is selected as the cost function. A continuous adjoint optimization method is used along with a RANS solver to find a new blade section shape. A grid independence study is performed, and all optimization and flow solver algorithms are validated. Two single-point optimizations are performed in the design condition and in an off-design condition. It is shown that both optimized shapes have overall better performance for both on-design and off-design conditions. An analysis is given regarding how the SCB has changed the wave structure between blade sections resulting in a more favorable flow pattern.

  2. Design and optimization of a self-deploying PV tent array

    NASA Astrophysics Data System (ADS)

    Colozza, Anthony J.

    A study was performed to design a self-deploying tent shaped PV (photovoltaic) array and optimize the design for maximum specific power. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces it would be subjected to. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both Lunar and Martian environmental conditions. The performance specifications for the array at both locations and with various PV blankets were determined.

  3. The effect of code expanding optimizations on instruction cache design

    NASA Technical Reports Server (NTRS)

    Chen, William Y.; Chang, Pohua P.; Conte, Thomas M.; Hwu, Wen-Mei W.

    1991-01-01

    It is shown that code expanding optimizations have strong and non-intuitive implications on instruction cache design. Three types of code expanding optimizations are studied: instruction placement, function inline expansion, and superscalar optimizations. Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion improves the performance for small cache sizes, but degrades the performance of medium caches. Superscalar optimizations increases the cache size required for a given miss ratio. On the other hand, they also increase the sequentiality of instruction access so that a simple load-forward scheme effectively cancels the negative effects. Overall, it is shown that with load forwarding, the three types of code expanding optimizations jointly improve the performance of small caches and have little effect on large caches.

  4. Multidisciplinary design optimization of the belt drive system considering both structure and vibration characteristics based on improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Yongliang; Song, Xueguan; Sun, Wei; Wang, Xiaobang

    2018-05-01

    The dynamic performance of a belt drive system is composed of many factors, such as the efficiency, the vibration, and the optimal parameters. The conventional design only considers the basic performance of the belt drive system, while ignoring its overall performance. To address all these challenges, the study on vibration characteristics and optimization strategies could be a feasible way. This paper proposes a new optimization strategy and takes a belt drive design optimization as a case study based on the multidisciplinary design optimization (MDO). The MDO of the belt drive system is established and the corresponding sub-systems are analyzed. The multidisciplinary optimization is performed by using an improved genetic algorithm. Based on the optimal results obtained from the MDO, the three-dimension (3D) model of the belt drive system is established for dynamics simulation by virtual prototyping. From the comparison of the results with respect to different velocities and loads, the MDO method can effectively reduce the transverse vibration amplitude. The law of the vibration displacement, the vibration frequency, and the influence of velocities on the transverse vibrations has been obtained. Results show that the MDO method is of great help to obtain the optimal structural parameters. Furthermore, the kinematics principle of the belt drive has been obtained. The belt drive design case indicates that the proposed method in this paper can also be used to solve other engineering optimization problems efficiently.

  5. A study of the optimal transition temperatue of PCM (Phase Change Material) wallboard for solar energy storage

    NASA Astrophysics Data System (ADS)

    Drake, J. B.

    1987-09-01

    The performance of wallboard impregnated with phase change material (PCM) is considered. An ideal setting is assumed and several measures of performance discussed. With a definition of optimal performance given, the performance with respect to variation of transition temperature is studied. Results are based on computer simulations of PCM wallboard with a standard stud wall construction. The diurnal heat capacity was found to be to be overly sensitive to numerical errors for use in PCM applications. The other measures of performance, diurnal effectiveness, net collected to storage ratio, and absolute discharge flux, all indicate similar trends. It is shown that the optimal transition temperature of the PCM is strongly influenced by the amount of solar flux absorbed.

  6. Post Pareto optimization-A case

    NASA Astrophysics Data System (ADS)

    Popov, Stoyan; Baeva, Silvia; Marinova, Daniela

    2017-12-01

    Simulation performance may be evaluated according to multiple quality measures that are in competition and their simultaneous consideration poses a conflict. In the current study we propose a practical framework for investigating such simulation performance criteria, exploring the inherent conflicts amongst them and identifying the best available tradeoffs, based upon multi-objective Pareto optimization. This approach necessitates the rigorous derivation of performance criteria to serve as objective functions and undergo vector optimization. We demonstrate the effectiveness of our proposed approach by applying it with multiple stochastic quality measures. We formulate performance criteria of this use-case, pose an optimization problem, and solve it by means of a simulation-based Pareto approach. Upon attainment of the underlying Pareto Frontier, we analyze it and prescribe preference-dependent configurations for the optimal simulation training.

  7. An optimal design of wind turbine and ship structure based on neuro-response surface method

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Chul; Shin, Sung-Chul; Kim, Soo-Young

    2015-07-01

    The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

  8. Risk modelling in portfolio optimization

    NASA Astrophysics Data System (ADS)

    Lam, W. H.; Jaaman, Saiful Hafizah Hj.; Isa, Zaidi

    2013-09-01

    Risk management is very important in portfolio optimization. The mean-variance model has been used in portfolio optimization to minimize the investment risk. The objective of the mean-variance model is to minimize the portfolio risk and achieve the target rate of return. Variance is used as risk measure in the mean-variance model. The purpose of this study is to compare the portfolio composition as well as performance between the optimal portfolio of mean-variance model and equally weighted portfolio. Equally weighted portfolio means the proportions that are invested in each asset are equal. The results show that the portfolio composition of the mean-variance optimal portfolio and equally weighted portfolio are different. Besides that, the mean-variance optimal portfolio gives better performance because it gives higher performance ratio than the equally weighted portfolio.

  9. Geometric optimization of thermal systems

    NASA Astrophysics Data System (ADS)

    Alebrahim, Asad Mansour

    2000-10-01

    The work in chapter 1 extends to three dimensions and to convective heat transfer the constructal method of minimizing the thermal resistance between a volume and one point. In the first part, the heat flow mechanism is conduction, and the heat generating volume is occupied by low conductivity material (k 0) and high conductivity inserts (kp) that are shaped as constant-thickness disks mounted on a common stem of kp material. In the second part the interstitial spaces once occupied by k0 material are bathed by forced convection. The internal and external geometric aspect ratios of the elemental volume and the first assembly are optimized numerically subject to volume constraints. Chapter 2 presents the constrained thermodynamic optimization of a cross-flow heat exchanger with ram air on the cold side, which is used in the environmental control systems of aircraft. Optimized geometric features such as the ratio of channel spacings and flow lengths are reported. It is found that the optimized features are relatively insensitive to changes in other physical parameters of the installation and relatively insensitive to the additional irreversibility due to discharging the ram-air stream into the atmosphere, emphasizing the robustness of the thermodynamic optimum. In chapter 3 the problem of maximizing exergy extraction from a hot stream by distributing streams over a heat transfer surface is studied. In the first part, the cold stream is compressed in an isothermal compressor, expanded in an adiabatic turbine, and discharged into the ambient. In the second part, the cold stream is compressed in an adiabatic compressor. Both designs are optimized with respect to the capacity-rate imbalance of the counter-flow and the pressure ratio maintained by the compressor. This study shows the tradeoff between simplicity and increased performance, and outlines the path for further conceptual work on the extraction of exergy from a hot stream that is being cooled gradually. The aim of chapter 4 was to optimize the performance of a boot-strap air cycle of an environmental control system (ECS) for aircraft. New in the present study was that the optimization refers to the performance of the entire ECS system, not to the performance of an individual component. Also, there were two heat exchangers, not one, and their relative positions and sizes were not specified in advance. This study showed that geometric optimization can be identified when the optimization procedure refers to the performance of the entire ECS system, not to the performance of an individual component. This optimized features were robust relative to some physical parameters. This robustness may be used to simplify future optimization of similar systems.

  10. Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Catlin, Glenn; Advani, Suresh G.; Prasad, Ajay K.

    The design of the flow channels in PEM fuel cells directly impacts the transport of reactant gases to the electrodes and affects cell performance. This paper presents results from a study to optimize the geometry of the flow channels in a PEM fuel cell. The optimization process implements a genetic algorithm to rapidly converge on the channel geometry that provides the highest net power output from the cell. In addition, this work implements a method for the automatic generation of parameterized channel domains that are evaluated for performance using a commercial computational fluid dynamics package from ANSYS. The software package includes GAMBIT as the solid modeling and meshing software, the solver FLUENT, and a PEMFC Add-on Module capable of modeling the relevant physical and electrochemical mechanisms that describe PEM fuel cell operation. The result of the optimization process is a set of optimal channel geometry values for the single-serpentine channel configuration. The performance of the optimal geometry is contrasted with a sub-optimal one by comparing contour plots of current density, oxygen and hydrogen concentration. In addition, the role of convective bypass in bringing fresh reactant to the catalyst layer is examined in detail. The convergence to the optimal geometry is confirmed by a bracketing study which compares the performance of the best individual to those of its neighbors with adjacent parameter values.

  11. Jig-Shape Optimization of a Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2018-01-01

    A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on in-house object-oriented optimization tool.

  12. Human Performance on Hard Non-Euclidean Graph Problems: Vertex Cover

    ERIC Educational Resources Information Center

    Carruthers, Sarah; Masson, Michael E. J.; Stege, Ulrike

    2012-01-01

    Recent studies on a computationally hard visual optimization problem, the Traveling Salesperson Problem (TSP), indicate that humans are capable of finding close to optimal solutions in near-linear time. The current study is a preliminary step in investigating human performance on another hard problem, the Minimum Vertex Cover Problem, in which…

  13. Affordable Design: A Methodolgy to Implement Process-Based Manufacturing Cost into the Traditional Performance-Focused Multidisciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.

    2000-01-01

    The primary objective of this paper is to demonstrate the use of process-based manufacturing and assembly cost models in a traditional performance-focused multidisciplinary design and optimization process. The use of automated cost-performance analysis is an enabling technology that could bring realistic processbased manufacturing and assembly cost into multidisciplinary design and optimization. In this paper, we present a new methodology for incorporating process costing into a standard multidisciplinary design optimization process. Material, manufacturing processes, and assembly processes costs then could be used as the objective function for the optimization method. A case study involving forty-six different configurations of a simple wing is presented, indicating that a design based on performance criteria alone may not necessarily be the most affordable as far as manufacturing and assembly cost is concerned.

  14. Optomechanical study and optimization of cantilever plate dynamics

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1995-06-01

    Optimum dynamic characteristics of an aluminum cantilever plate containing holes of different sizes and located at arbitrary positions on the plate are studied computationally and experimentally. The objective function of this optimization is the minimization/maximization of the natural frequencies of the plate in terms of such design variable s as the sizes and locations of the holes. The optimization process is performed using the finite element method and mathematical programming techniques in order to obtain the natural frequencies and the optimum conditions of the plate, respectively. The modal behavior of the resultant optimal plate layout is studied experimentally through the use of holographic interferometry techniques. Comparisons of the computational and experimental results show that good agreement between theory and test is obtained. The comparisons also show that the combined, or hybrid use of experimental and computational techniques complement each other and prove to be a very efficient tool for performing optimization studies of mechanical components.

  15. Optimization of vibratory energy harvesters with stochastic parametric uncertainty: a new perspective

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-04-01

    Vibration energy harvesting has been shown as a promising power source for many small-scale applications mainly because of the considerable reduction in the energy consumption of the electronics and scalability issues of the conventional batteries. However, energy harvesters may not be as robust as the conventional batteries and their performance could drastically deteriorate in the presence of uncertainty in their parameters. Hence, study of uncertainty propagation and optimization under uncertainty is essential for proper and robust performance of harvesters in practice. While all studies have focused on expectation optimization, we propose a new and more practical optimization perspective; optimization for the worst-case (minimum) power. We formulate the problem in a generic fashion and as a simple example apply it to a linear piezoelectric energy harvester. We study the effect of parametric uncertainty in its natural frequency, load resistance, and electromechanical coupling coefficient on its worst-case power and then optimize for it under different confidence levels. The results show that there is a significant improvement in the worst-case power of thus designed harvester compared to that of a naively-optimized (deterministically-optimized) harvester.

  16. Behavioural and psychophysiological correlates of athletic performance: a test of the multi-action plan model.

    PubMed

    Bertollo, Maurizio; Bortoli, Laura; Gramaccioni, Gianfranco; Hanin, Yuri; Comani, Silvia; Robazza, Claudio

    2013-06-01

    The main purposes of the present study were to substantiate the existence of the four types of performance categories (i.e., optimal-automatic, optimal-controlled, suboptimal-controlled, and suboptimal-automatic) as hypothesised in the multi-action plan (MAP) model, and to investigate whether some specific affective, behavioural, psychophysiological, and postural trends may typify each type of performance. A 20-year-old athlete of the Italian shooting team, and a 46-year-old athlete of the Italian dart-throwing team participated in the study. Athletes were asked to identify the core components of the action and then to execute a large number of shots/flights. A 2 × 2 (optimal/suboptimal × automated/controlled) within subjects multivariate analysis of variance was performed to test the differences among the four types of performance. Findings provided preliminary evidence of psychophysiological and postural differences among four performance categories as conceptualized within the MAP model. Monitoring the entire spectrum of psychophysiological and behavioural features related to the different types of performance is important to develop and implement biofeedback and neurofeedback techniques aimed at helping athletes to identify individual zones of optimal functioning and to enhance their performance.

  17. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    PubMed

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  18. Aerodynamic design optimization of a fuel efficient high-performance, single-engine, business airplane

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1980-01-01

    A design study has been conducted to optimize a single-engine airplane for a high-performance cruise mission. The mission analyzed included a cruise speed of about 300 knots, a cruise range of about 1300 nautical miles, and a six-passenger payload (5340 N (1200 lb)). The purpose of the study is to investigate the combinations of wing design, engine, and operating altitude required for the mission. The results show that these mission performance characteristics can be achieved with fuel efficiencies competitive with present-day high-performance, single- and twin-engine, business airplanes. It is noted that relaxation of the present Federal Aviation Regulation, Part 23, stall-speed requirement for single-engine airplanes facilitates the optimization of the airplane for fuel efficiency.

  19. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II

    NASA Astrophysics Data System (ADS)

    Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar

    2014-03-01

    The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

  20. Use of constrained optimization in the conceptual design of a medium-range subsonic transport

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1980-01-01

    Constrained parameter optimization was used to perform the optimal conceptual design of a medium range transport configuration. The impact of choosing a given performance index was studied, and the required income for a 15 percent return on investment was proposed as a figure of merit. A number of design constants and constraint functions were systematically varied to document the sensitivities of the optimal design to a variety of economic and technological assumptions. A comparison was made for each of the parameter variations between the baseline configuration and the optimally redesigned configuration.

  1. Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques.

    PubMed

    Kishore, Ravi Anant; Sanghadasa, Mohan; Priya, Shashank

    2017-12-01

    Recent studies have demonstrated that segmented thermoelectric generators (TEGs) can operate over large thermal gradient and thus provide better performance (reported efficiency up to 11%) as compared to traditional TEGs, comprising of single thermoelectric (TE) material. However, segmented TEGs are still in early stages of development due to the inherent complexity in their design optimization and manufacturability. In this study, we demonstrate physics based numerical techniques along with Analysis of variance (ANOVA) and Taguchi optimization method for optimizing the performance of segmented TEGs. We have considered comprehensive set of design parameters, such as geometrical dimensions of p-n legs, height of segmentation, hot-side temperature, and load resistance, in order to optimize output power and efficiency of segmented TEGs. Using the state-of-the-art TE material properties and appropriate statistical tools, we provide near-optimum TEG configuration with only 25 experiments as compared to 3125 experiments needed by the conventional optimization methods. The effect of environmental factors on the optimization of segmented TEGs is also studied. Taguchi results are validated against the results obtained using traditional full factorial optimization technique and a TEG configuration for simultaneous optimization of power and efficiency is obtained.

  2. Neuroimaging markers associated with maintenance of optimal memory performance in late-life.

    PubMed

    Dekhtyar, Maria; Papp, Kathryn V; Buckley, Rachel; Jacobs, Heidi I L; Schultz, Aaron P; Johnson, Keith A; Sperling, Reisa A; Rentz, Dorene M

    2017-06-01

    Age-related memory decline has been well-documented; however, some individuals reach their 8th-10th decade while maintaining strong memory performance. To determine which demographic and biomarker factors differentiated top memory performers (aged 75+, top 20% for memory) from their peers and whether top memory performance was maintained over 3 years. Clinically normal adults (n=125, CDR=0; age: 79.5±3.57 years) from the Harvard Aging Brain Study underwent cognitive testing and neuroimaging (amyloid PET, MRI) at baseline and 3-year follow-up. Participants were grouped into Optimal (n=25) vs. Typical (n=100) performers using performance on 3 challenging memory measures. Non-parametric tests were used to compare groups. There were no differences in age, sex, or education between Optimal vs. Typical performers. The Optimal group performed better in Processing Speed (p=0.016) and Executive Functioning (p<0.001). Optimal performers had larger hippocampal volumes at baseline compared with Typical Performers (p=0.027) but no differences in amyloid burden (p=0.442). Twenty-three of the 25 Optimal performers had longitudinal data and16 maintained top memory performance while 7 declined. Non-Maintainers additionally declined in Executive Functioning but not Processing Speed. Longitudinally, there were no hippocampal volume differences between Maintainers and Non-Maintainers, however Non-Maintainers exhibited higher amyloid burden at baseline in contrast with Maintainers (p=0.008). Excellent memory performance in late life does not guarantee protection against cognitive decline. Those who maintain an optimal memory into the 8th and 9th decades may have lower levels of AD pathology. Copyright © 2017. Published by Elsevier Ltd.

  3. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    PubMed

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.

  4. Optimizing fusion PIC code performance at scale on Cori Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, T. S.; Deslippe, J.

    In this paper we present the results of optimizing the performance of the gyrokinetic full-f fusion PIC code XGC1 on the Cori Phase Two Knights Landing system. The code has undergone substantial development to enable the use of vector instructions in its most expensive kernels within the NERSC Exascale Science Applications Program. We study the single-node performance of the code on an absolute scale using the roofline methodology to guide optimization efforts. We have obtained 2x speedups in single node performance due to enabling vectorization and performing memory layout optimizations. On multiple nodes, the code is shown to scale wellmore » up to 4000 nodes, near half the size of the machine. We discuss some communication bottlenecks that were identified and resolved during the work.« less

  5. Performance of discrete heat engines and heat pumps in finite time

    PubMed

    Feldmann; Kosloff

    2000-05-01

    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.

  6. A study of the optimal transition temperature of PCM (phase change material) wallboard for solar energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J.B.

    1987-09-01

    In this report, we consider the performance of wallboard impregnated with phase change material. An ideal setting is assumed and several measures of performance discussed. With a definition of optimal performance given, the performance with respect to variation of transition temperature is studied. Results are based on computer simulations of PCM wallboard with a standard stud wall construction. We find the diurnal heat capacity to be overly sensitive to numerical errors for use in PCM applications. The other measures of performance, diurnal effectiveness, net collected to storage ratio, and absolute discharge flux, all indicate similar trends. It is shown thatmore » the optimal transition temperature of the PCM is strongly influenced by amount of solar flux absorbed by the PCM. 6 refs., 5 figs., 5 tabs.« less

  7. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    PubMed Central

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  8. Determining the optimal number of Kanban in multi-products supply chain system

    NASA Astrophysics Data System (ADS)

    Widyadana, G. A.; Wee, H. M.; Chang, Jer-Yuan

    2010-02-01

    Kanban, a key element of just-in-time system, is a re-order card or signboard giving instruction or triggering the pull system to manufacture or supply a component based on actual usage of material. There are two types of Kanban: production Kanban and withdrawal Kanban. This study uses optimal and meta-heuristic methods to determine the Kanban quantity and withdrawal lot sizes in a supply chain system. Although the mix integer programming method gives an optimal solution, it is not time efficient. For this reason, the meta-heuristic methods are suggested. In this study, a genetic algorithm (GA) and a hybrid of genetic algorithm and simulated annealing (GASA) are used. The study compares the performance of GA and GASA with that of the optimal method using MIP. The given problems show that both GA and GASA result in a near optimal solution, and they outdo the optimal method in term of run time. In addition, the GASA heuristic method gives a better performance than the GA heuristic method.

  9. The Topology Optimization Design Research for Aluminum Inner Panel of Automobile Engine Hood

    NASA Astrophysics Data System (ADS)

    Li, Minhao; Hu, Dongqing; Liu, Xiangzheng; Yuan, Huanquan

    2017-11-01

    This article discusses the topology optimization methods for automobile engine hood design. The aluminum inner panel of engine hood and mucilage glue regions are set as design areas, and the static performances of engine hood included modal frequency, lateral stiffness, torsional stiffness and indentation stiffness are set as the optimization objectives. The topology optimization results about different objective functions are contrasted for analysis. And based on the reasonable topology optimization result, a suited automobile engine hood designs are raised to further study. Finally, an automobile engine hood that good at all of static performances is designed, and a favorable topology optimization method is put forward for discussion.

  10. Performance characteristics of long-track speed skaters: a literature review.

    PubMed

    Konings, Marco J; Elferink-Gemser, Marije T; Stoter, Inge K; van der Meer, Dirk; Otten, Egbert; Hettinga, Florentina J

    2015-04-01

    Speed skating is an intriguing sport to study from different perspectives due to the peculiar way of motion and the multiple determinants for performance. This review aimed to identify what is known on (long-track) speed skating, and which individual characteristics determine speed skating performance. A total of 49 studies were included. Based on a multidimensional performance model, person-related performance characteristics were categorized in anthropometrical, technical, physiological, tactical, and psychological characteristics. Literature was found on anthropometry, technique, physiology, and tactics. However, psychological studies were clearly under-represented. In particular, the role of self-regulation might deserve more attention to further understand mechanisms relevant for optimal performance and for instance pacing. Another remarkable finding was that the technically/biomechanically favourable crouched skating technique (i.e. small knee and trunk angle) leads to a physiological disadvantage: a smaller knee angle may increase the deoxygenation of the working muscles. This is an important underlying aspect for the pacing tactics in speed skating. Elite speed skaters need to find the optimal balance between obtaining a fast start and preventing negative technical adaptations later on in the race by distributing their available energy over the race in an optimal way. More research is required to gain more insight into how this impacts on the processes of fatigue and coordination during speed skating races. This can lead to a better understanding on how elite speed skaters can maintain the optimal technical characteristics throughout the entire race, and how they can adapt their pacing to optimize all identified aspects that determine performance.

  11. Joint Optimization of Receiver Placement and Illuminator Selection for a Multiband Passive Radar Network.

    PubMed

    Xie, Rui; Wan, Xianrong; Hong, Sheng; Yi, Jianxin

    2017-06-14

    The performance of a passive radar network can be greatly improved by an optimal radar network structure. Generally, radar network structure optimization consists of two aspects, namely the placement of receivers in suitable places and selection of appropriate illuminators. The present study investigates issues concerning the joint optimization of receiver placement and illuminator selection for a passive radar network. Firstly, the required radar cross section (RCS) for target detection is chosen as the performance metric, and the joint optimization model boils down to the partition p -center problem (PPCP). The PPCP is then solved by a proposed bisection algorithm. The key of the bisection algorithm lies in solving the partition set covering problem (PSCP), which can be solved by a hybrid algorithm developed by coupling the convex optimization with the greedy dropping algorithm. In the end, the performance of the proposed algorithm is validated via numerical simulations.

  12. Seeding the initial population with feasible solutions in metaheuristic optimization of steel trusses

    NASA Astrophysics Data System (ADS)

    Kazemzadeh Azad, Saeid

    2018-01-01

    In spite of considerable research work on the development of efficient algorithms for discrete sizing optimization of steel truss structures, only a few studies have addressed non-algorithmic issues affecting the general performance of algorithms. For instance, an important question is whether starting the design optimization from a feasible solution is fruitful or not. This study is an attempt to investigate the effect of seeding the initial population with feasible solutions on the general performance of metaheuristic techniques. To this end, the sensitivity of recently proposed metaheuristic algorithms to the feasibility of initial candidate designs is evaluated through practical discrete sizing of real-size steel truss structures. The numerical experiments indicate that seeding the initial population with feasible solutions can improve the computational efficiency of metaheuristic structural optimization algorithms, especially in the early stages of the optimization. This paves the way for efficient metaheuristic optimization of large-scale structural systems.

  13. Multi-probe-based resonance-frequency electrical impedance spectroscopy for detection of suspicious breast lesions: improving performance using partial ROC optimization

    NASA Astrophysics Data System (ADS)

    Lederman, Dror; Zheng, Bin; Wang, Xingwei; Wang, Xiao Hui; Gur, David

    2011-03-01

    We have developed a multi-probe resonance-frequency electrical impedance spectroscope (REIS) system to detect breast abnormalities. Based on assessing asymmetry in REIS signals acquired between left and right breasts, we developed several machine learning classifiers to classify younger women (i.e., under 50YO) into two groups of having high and low risk for developing breast cancer. In this study, we investigated a new method to optimize performance based on the area under a selected partial receiver operating characteristic (ROC) curve when optimizing an artificial neural network (ANN), and tested whether it could improve classification performance. From an ongoing prospective study, we selected a dataset of 174 cases for whom we have both REIS signals and diagnostic status verification. The dataset includes 66 "positive" cases recommended for biopsy due to detection of highly suspicious breast lesions and 108 "negative" cases determined by imaging based examinations. A set of REIS-based feature differences, extracted from the two breasts using a mirror-matched approach, was computed and constituted an initial feature pool. Using a leave-one-case-out cross-validation method, we applied a genetic algorithm (GA) to train the ANN with an optimal subset of features. Two optimization criteria were separately used in GA optimization, namely the area under the entire ROC curve (AUC) and the partial area under the ROC curve, up to a predetermined threshold (i.e., 90% specificity). The results showed that although the ANN optimized using the entire AUC yielded higher overall performance (AUC = 0.83 versus 0.76), the ANN optimized using the partial ROC area criterion achieved substantially higher operational performance (i.e., increasing sensitivity level from 28% to 48% at 95% specificity and/ or from 48% to 58% at 90% specificity).

  14. Crossover versus mutation: a comparative analysis of the evolutionary strategy of genetic algorithms applied to combinatorial optimization problems.

    PubMed

    Osaba, E; Carballedo, R; Diaz, F; Onieva, E; de la Iglesia, I; Perallos, A

    2014-01-01

    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.

  15. Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    PubMed Central

    Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.

    2014-01-01

    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731

  16. Nozzle design study for a quasi-axisymmetric scramjet-powered vehicle at Mach 7.9 flight conditions

    NASA Astrophysics Data System (ADS)

    Tanimizu, Katsuyoshi; Mee, David J.; Stalker, Raymond J.; Jacobs, Peter A.

    2013-09-01

    A nozzle shape optimization study for a quasi-axisymmetric scramjet has been performed for a Mach 7.9 operating condition with hydrogen fuel, aiming at the application of a hypersonic airbreathing vehicle. In this study, the nozzle geometry which is parameterized by a set of design variables, is optimized for the single objective of maximum net thrust using an in-house CFD solver for inviscid flowfields with a simple force prediction methodology. The combustion is modelled using a simple chemical reaction code. The effects of the nozzle design on the overall vehicle performance are discussed. For the present geometry, net thrust is achieved for the optimized vehicle design. The results of the nozzle-optimization study show that performance is limited by the nozzle area ratio that can be incorporated into the vehicle without leading to too large a base diameter of the vehicle and increasing the external drag of the vehicle. This study indicates that it is very difficult to achieve positive thrust at Mach 7.9 using the basic geometry investigated.

  17. Topology Optimization using the Level Set and eXtended Finite Element Methods: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Villanueva Perez, Carlos Hernan

    Computational design optimization provides designers with automated techniques to develop novel and non-intuitive optimal designs. Topology optimization is a design optimization technique that allows for the evolution of a broad variety of geometries in the optimization process. Traditional density-based topology optimization methods often lack a sufficient resolution of the geometry and physical response, which prevents direct use of the optimized design in manufacturing and the accurate modeling of the physical response of boundary conditions. The goal of this thesis is to introduce a unified topology optimization framework that uses the Level Set Method (LSM) to describe the design geometry and the eXtended Finite Element Method (XFEM) to solve the governing equations and measure the performance of the design. The methodology is presented as an alternative to density-based optimization approaches, and is able to accommodate a broad range of engineering design problems. The framework presents state-of-the-art methods for immersed boundary techniques to stabilize the systems of equations and enforce the boundary conditions, and is studied with applications in 2D and 3D linear elastic structures, incompressible flow, and energy and species transport problems to test the robustness and the characteristics of the method. A comparison of the framework against density-based topology optimization approaches is studied with regards to convergence, performance, and the capability to manufacture the designs. Furthermore, the ability to control the shape of the design to operate within manufacturing constraints is developed and studied. The analysis capability of the framework is validated quantitatively through comparison against previous benchmark studies, and qualitatively through its application to topology optimization problems. The design optimization problems converge to intuitive designs and resembled well the results from previous 2D or density-based studies.

  18. The Effects of Creatine Supplementation on Explosive Performance and Optimal Individual Postactivation Potentiation Time.

    PubMed

    Wang, Chia-Chi; Yang, Ming-Ta; Lu, Kang-Hao; Chan, Kuei-Hui

    2016-03-04

    Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP) is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM) strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05). The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05). There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance.

  19. The Effects of Creatine Supplementation on Explosive Performance and Optimal Individual Postactivation Potentiation Time

    PubMed Central

    Wang, Chia-Chi; Yang, Ming-Ta; Lu, Kang-Hao; Chan, Kuei-Hui

    2016-01-01

    Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP) is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM) strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05). The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05). There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance. PMID:26959056

  20. Optimization of PET instrumentation for brain activation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlbom, M.; Cherry, S.R.; Hoffman, E.J.

    By performing cerebral blood flow studies with positron emission tomography (PET), and comparing blood flow images of different states of activation, functional mapping of the brain is possible. The ability of current commercial instruments to perform such studies is investigated in this work, based on a comparison of noise equivalent count (NEC) rates. Differences in the NEC performance of the different scanners in conjunction with scanner design parameters, provide insights into the importance of block design (size, dead time, crystal thickness) and overall scanner design (sensitivity and scatter fraction) for optimizing data from activation studies. The newer scanners with removablemore » septa, operating with 3-D acquisition, have much higher sensitivity, but require new methodology for optimized operation. Only by administering multiple low doses (fractionation) of the flow tracer can the high sensitivity be utilized.« less

  1. Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect

    NASA Astrophysics Data System (ADS)

    Bi, Yuehong; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2018-06-01

    Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic optimization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD optimization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influencing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.

  2. Optimizing Excited-State Electronic-Structure Codes for Intel Knights Landing: A Case Study on the BerkeleyGW Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek

    2016-10-06

    We profile and optimize calculations performed with the BerkeleyGW code on the Xeon-Phi architecture. BerkeleyGW depends both on hand-tuned critical kernels as well as on BLAS and FFT libraries. We describe the optimization process and performance improvements achieved. We discuss a layered parallelization strategy to take advantage of vector, thread and node-level parallelism. We discuss locality changes (including the consequence of the lack of L3 cache) and effective use of the on-package high-bandwidth memory. We show preliminary results on Knights-Landing including a roofline study of code performance before and after a number of optimizations. We find that the GW methodmore » is particularly well-suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-wave components, band-pairs, and frequencies.« less

  3. Parametric study of a canard-configured transport using conceptual design optimization

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1985-01-01

    Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.

  4. Evolutionary optimization methods for accelerator design

    NASA Astrophysics Data System (ADS)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.

  5. Multi-Objective Aerodynamic Optimization of the Streamlined Shape of High-Speed Trains Based on the Kriging Model.

    PubMed

    Xu, Gang; Liang, Xifeng; Yao, Shuanbao; Chen, Dawei; Li, Zhiwei

    2017-01-01

    Minimizing the aerodynamic drag and the lift of the train coach remains a key issue for high-speed trains. With the development of computing technology and computational fluid dynamics (CFD) in the engineering field, CFD has been successfully applied to the design process of high-speed trains. However, developing a new streamlined shape for high-speed trains with excellent aerodynamic performance requires huge computational costs. Furthermore, relationships between multiple design variables and the aerodynamic loads are seldom obtained. In the present study, the Kriging surrogate model is used to perform a multi-objective optimization of the streamlined shape of high-speed trains, where the drag and the lift of the train coach are the optimization objectives. To improve the prediction accuracy of the Kriging model, the cross-validation method is used to construct the optimal Kriging model. The optimization results show that the two objectives are efficiently optimized, indicating that the optimization strategy used in the present study can greatly improve the optimization efficiency and meet the engineering requirements.

  6. Performance Analysis of a Semiactive Suspension System with Particle Swarm Optimization and Fuzzy Logic Control

    PubMed Central

    Qazi, Abroon Jamal; de Silva, Clarence W.

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868

  7. Exploring performance and energy tradeoffs for irregular applications: A case study on the Tilera many-core architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panyala, Ajay; Chavarría-Miranda, Daniel; Manzano, Joseph B.

    High performance, parallel applications with irregular data accesses are becoming a critical workload class for modern systems. In particular, the execution of such workloads on emerging many-core systems is expected to be a significant component of applications in data mining, machine learning, scientific computing and graph analytics. However, power and energy constraints limit the capabilities of individual cores, memory hierarchy and on-chip interconnect of such systems, thus leading to architectural and software trade-os that must be understood in the context of the intended application’s behavior. Irregular applications are notoriously hard to optimize given their data-dependent access patterns, lack of structuredmore » locality and complex data structures and code patterns. We have ported two irregular applications, graph community detection using the Louvain method (Grappolo) and high-performance conjugate gradient (HPCCG), to the Tilera many-core system and have conducted a detailed study of platform-independent and platform-specific optimizations that improve their performance as well as reduce their overall energy consumption. To conduct this study, we employ an auto-tuning based approach that explores the optimization design space along three dimensions - memory layout schemes, GCC compiler flag choices and OpenMP loop scheduling options. We leverage MIT’s OpenTuner auto-tuning framework to explore and recommend energy optimal choices for different combinations of parameters. We then conduct an in-depth architectural characterization to understand the memory behavior of the selected workloads. Finally, we perform a correlation study to demonstrate the interplay between the hardware behavior and application characteristics. Using auto-tuning, we demonstrate whole-node energy savings and performance improvements of up to 49:6% and 60% relative to a baseline instantiation, and up to 31% and 45:4% relative to manually optimized variants.« less

  8. Does unbelted safety requirement affect protection for belted occupants?

    PubMed

    Hu, Jingwen; Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A C; Narayanaswamy, Prabha; Reed, Matthew P; Andreen, Margaret; Neal, Mark; Lin, Chin-Hsu

    2017-05-29

    Federal regulations in the United States require vehicles to meet occupant performance requirements with unbelted test dummies. Removing the test requirements with unbelted occupants might encourage the deployment of seat belt interlocks and allow restraint optimization to focus on belted occupants. The objective of this study is to compare the performance of restraint systems optimized for belted-only occupants with those optimized for both belted and unbelted occupants using computer simulations and field crash data analyses. In this study, 2 validated finite element (FE) vehicle/occupant models (a midsize sedan and a midsize SUV) were selected. Restraint design optimizations under standardized crash conditions (U.S.-NCAP and FMVSS 208) with and without unbelted requirements were conducted using Hybrid III (HIII) small female and midsize male anthropomorphic test devices (ATDs) in both vehicles on both driver and right front passenger positions. A total of 10 to 12 design parameters were varied in each optimization using a combination of response surface method (RSM) and genetic algorithm. To evaluate the field performance of restraints optimized with and without unbelted requirements, 55 frontal crash conditions covering a greater variety of crash types than those in the standardized crashes were selected. A total of 1,760 FE simulations were conducted for the field performance evaluation. Frontal crashes in the NASS-CDS database from 2002 to 2012 were used to develop injury risk curves and to provide the baseline performance of current restraint system and estimate the injury risk change by removing the unbelted requirement. Unbelted requirements do not affect the optimal seat belt and airbag design parameters in 3 out of 4 vehicle/occupant position conditions, except for the SUV passenger side. Overall, compared to the optimal designs with unbelted requirements, optimal designs without unbelted requirements generated the same or lower total injury risks for belted occupants depending on statistical methods used for the analysis, but they could also increase the total injury risks for unbelted occupants. This study demonstrated potential for reducing injury risks to belted occupants if the unbelted requirements are eliminated. Further investigations are necessary to confirm these findings.

  9. Decoupled CFD-based optimization of efficiency and cavitation performance of a double-suction pump

    NASA Astrophysics Data System (ADS)

    Škerlavaj, A.; Morgut, M.; Jošt, D.; Nobile, E.

    2017-04-01

    In this study the impeller geometry of a double-suction pump ensuring the best performances in terms of hydraulic efficiency and reluctance of cavitation is determined using an optimization strategy, which was driven by means of the modeFRONTIER optimization platform. The different impeller shapes (designs) are modified according to the optimization parameters and tested with a computational fluid dynamics (CFD) software, namely ANSYS CFX. The simulations are performed using a decoupled approach, where only the impeller domain region is numerically investigated for computational convenience. The flow losses in the volute are estimated on the base of the velocity distribution at the impeller outlet. The best designs are then validated considering the computationally more expensive full geometry CFD model. The overall results show that the proposed approach is suitable for quick impeller shape optimization.

  10. Construction Performance Optimization toward Green Building Premium Cost Based on Greenship Rating Tools Assessment with Value Engineering Method

    NASA Astrophysics Data System (ADS)

    Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Riswanto; Budiman, Rachmat

    2017-07-01

    Green building concept becomes important in current building life cycle to mitigate environment issues. The purpose of this paper is to optimize building construction performance towards green building premium cost, achieving green building rating tools with optimizing life cycle cost. Therefore, this study helps building stakeholder determining building fixture to achieve green building certification target. Empirically the paper collects data of green building in the Indonesian construction industry such as green building fixture, initial cost, operational and maintenance cost, and certification score achievement. After that, using value engineering method optimized green building fixture based on building function and cost aspects. Findings indicate that construction performance optimization affected green building achievement with increasing energy and water efficiency factors and life cycle cost effectively especially chosen green building fixture.

  11. Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets

    NASA Technical Reports Server (NTRS)

    Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.

    2017-01-01

    In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.

  12. The impact of crosstalk on three-dimensional laparoscopic performance and workload.

    PubMed

    Sakata, Shinichiro; Grove, Philip M; Watson, Marcus O; Stevenson, Andrew R L

    2017-10-01

    This is the first study to explore the effects of crosstalk from 3D laparoscopic displays on technical performance and workload. We studied crosstalk at magnitudes that may have been tolerated during laparoscopic surgery. Participants were 36 voluntary doctors. To minimize floor effects, participants completed their surgery rotations, and a laparoscopic suturing course for surgical trainees. We used a counterbalanced, within-subjects design in which participants were randomly assigned to complete laparoscopic tasks in one of six unique testing sequences. In a simulation laboratory, participants were randomly assigned to complete laparoscopic 'navigation in space' and suturing tasks in three viewing conditions: 2D, 3D without ghosting and 3D with ghosting. Participants calibrated their exposure to crosstalk as the maximum level of ghosting that they could tolerate without discomfort. The Randot® Stereotest was used to verify stereoacuity. The study performance metric was time to completion. The NASA TLX was used to measure workload. Normal threshold stereoacuity (40-20 second of arc) was verified in all participants. Comparing optimal 3D with 2D viewing conditions, mean performance times were 2.8 and 1.6 times faster in laparoscopic navigation in space and suturing tasks respectively (p< .001). Comparing optimal 3D with suboptimal 3D viewing conditions, mean performance times were 2.9 times faster in both tasks (p< .001). Mean workload in 2D was 1.5 and 1.3 times greater than in optimal 3D viewing, for navigation in space and suturing tasks respectively (p< .001). Mean workload associated with suboptimal 3D was 1.3 times greater than optimal 3D in both laparoscopic tasks (p< .001). There was no significant relationship between the magnitude of ghosting score, laparoscopic performance and workload. Our findings highlight the advantages of 3D displays when used optimally, and their shortcomings when used sub-optimally, on both laparoscopic performance and workload.

  13. Impact of In-Service Training and Staff Development on Workers' Job Performance and Optimal Productivity in Public Secondary Schools in Osun State, Nigeria

    ERIC Educational Resources Information Center

    Fejoh, Johnson; Faniran, Victoria Loveth

    2016-01-01

    This study investigated the impact of in-service training and staff development on workers' job performance and optimal productivity in public secondary schools in Osun State, Nigeria. The study used the ex-post-facto research design. Three research questions and three hypotheses were generated and tested using questionnaire items adapted from…

  14. Optimization of structures on the basis of fracture mechanics and reliability criteria

    NASA Technical Reports Server (NTRS)

    Heer, E.; Yang, J. N.

    1973-01-01

    Systematic summary of factors which are involved in optimization of given structural configuration is part of report resulting from study of analysis of objective function. Predicted reliability of performance of finished structure is sharply dependent upon results of coupon tests. Optimization analysis developed by study also involves expected cost of proof testing.

  15. Performance Analysis of the Automotive TEG with Respect to the Geometry of the Modules

    NASA Astrophysics Data System (ADS)

    Yu, C. G.; Zheng, S. J.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.

    2017-05-01

    Recently there has been increasing interest in applying thermoelectric technology to recover waste heat in automotive exhaust gas. Due to the limited space in the vehicle, it's meaningful to improve the TEG (thermoelectric generator) performance by optimizing the module geometry. This paper analyzes the performance of bismuth telluride modules for two criteria (power density and power output per area), and researches the relationship between the performance and the geometry of the modules. A geometry factor is defined for the thermoelectric element to describe the module geometry, and a mathematical model is set up to study the effects of the module geometry on its performance. It has been found out that the optimal geometry factors for maximum output power, power density and power output per unit area are different, and the value of the optimal geometry factors will be affected by the volume of the thermoelectric material and the thermal input. The results can be referred to as the basis for optimizing the performance of the thermoelectric modules.

  16. Morphing Wings: A Study Using High-Fidelity Aerodynamic Shape Optimization

    NASA Astrophysics Data System (ADS)

    Curiale, Nathanael J.

    With the aviation industry under pressure to reduce fuel consumption, morphing wings have the capacity to improve aircraft performance, thereby making a significant contribution to reversing climate change. Through high-fidelity aerodynamic shape optimization, various forms of morphing wings are assessed for a hypothetical regional-class aircraft. The framework used solves the Reynolds-averaged Navier-Stokes equations and utilizes a gradient-based optimization algorithm. Baseline geometries are developed through multipoint optimization, where the average drag coefficient is minimized over a range of flight conditions with additional dive constraints. Morphing optimizations are then performed, beginning with these baseline shapes. Five distinct types of morphing are investigated and compared. Overall, a theoretical fully adaptable wing produces roughly a 2% improvement in average performance, whereas trailing-edge morphing with a 27-point multipoint baseline results in just over a 1% improvement in average performance. Trailing-edge morphing proves to be more beneficial than leading-edge morphing, upper-surface morphing, and a conventional flap.

  17. An approach for aerodynamic optimization of transonic fan blades

    NASA Astrophysics Data System (ADS)

    Khelghatibana, Maryam

    Aerodynamic design optimization of transonic fan blades is a highly challenging problem due to the complexity of flow field inside the fan, the conflicting design requirements and the high-dimensional design space. In order to address all these challenges, an aerodynamic design optimization method is developed in this study. This method automates the design process by integrating a geometrical parameterization method, a CFD solver and numerical optimization methods that can be applied to both single and multi-point optimization design problems. A multi-level blade parameterization is employed to modify the blade geometry. Numerical analyses are performed by solving 3D RANS equations combined with SST turbulence model. Genetic algorithms and hybrid optimization methods are applied to solve the optimization problem. In order to verify the effectiveness and feasibility of the optimization method, a singlepoint optimization problem aiming to maximize design efficiency is formulated and applied to redesign a test case. However, transonic fan blade design is inherently a multi-faceted problem that deals with several objectives such as efficiency, stall margin, and choke margin. The proposed multi-point optimization method in the current study is formulated as a bi-objective problem to maximize design and near-stall efficiencies while maintaining the required design pressure ratio. Enhancing these objectives significantly deteriorate the choke margin, specifically at high rotational speeds. Therefore, another constraint is embedded in the optimization problem in order to prevent the reduction of choke margin at high speeds. Since capturing stall inception is numerically very expensive, stall margin has not been considered as an objective in the problem statement. However, improving near-stall efficiency results in a better performance at stall condition, which could enhance the stall margin. An investigation is therefore performed on the Pareto-optimal solutions to demonstrate the relation between near-stall efficiency and stall margin. The proposed method is applied to redesign NASA rotor 67 for single and multiple operating conditions. The single-point design optimization showed +0.28 points improvement of isentropic efficiency at design point, while the design pressure ratio and mass flow are, respectively, within 0.12% and 0.11% of the reference blade. Two cases of multi-point optimization are performed: First, the proposed multi-point optimization problem is relaxed by removing the choke margin constraint in order to demonstrate the relation between near-stall efficiency and stall margin. An investigation on the Pareto-optimal solutions of this optimization shows that the stall margin has been increased with improving near-stall efficiency. The second multi-point optimization case is performed with considering all the objectives and constraints. One selected optimized design on the Pareto front presents +0.41, +0.56 and +0.9 points improvement in near-peak efficiency, near-stall efficiency and stall margin, respectively. The design pressure ratio and mass flow are, respectively, within 0.3% and 0.26% of the reference blade. Moreover the optimized design maintains the required choking margin. Detailed aerodynamic analyses are performed to investigate the effect of shape optimization on shock occurrence, secondary flows, tip leakage and shock/tip-leakage interactions in both single and multi-point optimizations.

  18. The Improvement of Particle Swarm Optimization: a Case Study of Optimal Operation in Goupitan Reservoir

    NASA Astrophysics Data System (ADS)

    Li, Haichen; Qin, Tao; Wang, Weiping; Lei, Xiaohui; Wu, Wenhui

    2018-02-01

    Due to the weakness in holding diversity and reaching global optimum, the standard particle swarm optimization has not performed well in reservoir optimal operation. To solve this problem, this paper introduces downhill simplex method to work together with the standard particle swarm optimization. The application of this approach in Goupitan reservoir optimal operation proves that the improved method had better accuracy and higher reliability with small investment.

  19. Perceptual learning through optimization of attentional weighting: human versus optimal Bayesian learner

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Abbey, Craig K.; Pham, Binh T.; Shimozaki, Steven S.

    2004-01-01

    Human performance in visual detection, discrimination, identification, and search tasks typically improves with practice. Psychophysical studies suggest that perceptual learning is mediated by an enhancement in the coding of the signal, and physiological studies suggest that it might be related to the plasticity in the weighting or selection of sensory units coding task relevant information (learning through attention optimization). We propose an experimental paradigm (optimal perceptual learning paradigm) to systematically study the dynamics of perceptual learning in humans by allowing comparisons to that of an optimal Bayesian algorithm and a number of suboptimal learning models. We measured improvement in human localization (eight-alternative forced-choice with feedback) performance of a target randomly sampled from four elongated Gaussian targets with different orientations and polarities and kept as a target for a block of four trials. The results suggest that the human perceptual learning can occur within a lapse of four trials (<1 min) but that human learning is slower and incomplete with respect to the optimal algorithm (23.3% reduction in human efficiency from the 1st-to-4th learning trials). The greatest improvement in human performance, occurring from the 1st-to-2nd learning trial, was also present in the optimal observer, and, thus reflects a property inherent to the visual task and not a property particular to the human perceptual learning mechanism. One notable source of human inefficiency is that, unlike the ideal observer, human learning relies more heavily on previous decisions than on the provided feedback, resulting in no human learning on trials following a previous incorrect localization decision. Finally, the proposed theory and paradigm provide a flexible framework for future studies to evaluate the optimality of human learning of other visual cues and/or sensory modalities.

  20. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Yan, Zhimiao

    2017-03-01

    The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.

  1. An improved marriage in honey bees optimization algorithm for single objective unconstrained optimization.

    PubMed

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.

  2. A study of viscous interaction effects on hypersonic waveriders. Ph.D. Thesis, Dec. 1991

    NASA Technical Reports Server (NTRS)

    Chang, Jinhwa

    1992-01-01

    The effects of viscous interaction in the analysis and design of improved classes of viscous optimized hypersonic waveriders is examined. The Corda computer program is used to generate viscous optimized hypersonic waveriders from conical flow fields without viscous interaction. Each waverider is optimized for maximum L/D, and comparison studies are made between cases with and without viscous interaction. The results show that aerodynamic performance of the viscous interaction waveriders are reduced due mainly to a large increase in skin-friction drag associated with the viscous interaction phenomena that grows with increasing Mach number and altitude, but some of this performance loss can be recouped by including viscous interactions within the optimization procedure. When the waverider is optimized for viscous interaction, the shape can change dramatically. A significant result of the present work delineates on a velocity-altitude map the region where viscous interaction effects are significant for modern hypersonic waveriders by performing parametric runs to produce L/D, C sub L, and C sub D contour plots for Mach numbers from 6 to 30 at altitudes from 30 to 80 km.

  3. An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization.

    PubMed

    Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing

    2015-01-01

    An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.

  4. A systematic optimization for graphene-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Deuk Lee, Sung; Lee, Han Sung; Kim, Jin Young; Jeong, Jaesik; Kahng, Yung Ho

    2017-08-01

    Increasing the energy-storage density for supercapacitors is critical for their applications. Many researchers have attempted to identify optimal candidate component materials to achieve this goal, but investigations into systematically optimizing their mixing rate for maximizing the performance of each candidate material have been insufficient, which hinders the progress in their technology. In this study, we employ a statistically systematic method to determine the optimum mixing ratio of three components that constitute graphene-based supercapacitor electrodes: reduced graphene oxide (rGO), acetylene black (AB), and polyvinylidene fluoride (PVDF). By using the extreme-vertices design, the optimized proportion is determined to be (rGO: AB: PVDF  =  0.95: 0.00: 0.05). The corresponding energy-storage density increases by a factor of 2 compared with that of non-optimized electrodes. Electrochemical and microscopic analyses are performed to determine the reason for the performance improvements.

  5. Performance optimization of an MHD generator with physical constraints

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Seikel, G. R.; Smith, J. M.

    1979-01-01

    A technique has been described which optimizes the power out of a Faraday MHD generator operating under a prescribed set of electrical and magnetic constraints. The method does not rely on complicated numerical optimization techniques. Instead the magnetic field and the electrical loading are adjusted at each streamwise location such that the resultant generator design operates at the most limiting of the cited stress levels. The simplicity of the procedure makes it ideal for optimizing generator designs for system analysis studies of power plants. The resultant locally optimum channel designs are, however, not necessarily the global optimum designs. The results of generator performance calculations are presented for an approximately 2000 MWe size plant. The difference between the maximum power generator design and the optimal design which maximizes net MHD power are described. The sensitivity of the generator performance to the various operational parameters are also presented.

  6. Reliable Thermoelectric Module Design under Opposing Requirements from Structural and Thermoelectric Considerations

    NASA Astrophysics Data System (ADS)

    Karri, Naveen K.; Mo, Changki

    2018-06-01

    Structural reliability of thermoelectric generation (TEG) systems still remains an issue, especially for applications such as large-scale industrial or automobile exhaust heat recovery, in which TEG systems are subject to dynamic loads and thermal cycling. Traditional thermoelectric (TE) system design and optimization techniques, focused on performance alone, could result in designs that may fail during operation as the geometric requirements for optimal performance (especially the power) are often in conflict with the requirements for mechanical reliability. This study focused on reducing the thermomechanical stresses in a TEG system without compromising the optimized system performance. Finite element simulations were carried out to study the effect of TE element (leg) geometry such as leg length and cross-sectional shape under constrained material volume requirements. Results indicated that the element length has a major influence on the element stresses whereas regular cross-sectional shapes have minor influence. The impact of TE element stresses on the mechanical reliability is evaluated using brittle material failure theory based on Weibull analysis. An alternate couple configuration that relies on the industry practice of redundant element design is investigated. Results showed that the alternate configuration considerably reduced the TE element and metallization stresses, thereby enhancing the structural reliability, with little trade-off in the optimized performance. The proposed alternate configuration could serve as a potential design modification for improving the reliability of systems optimized for thermoelectric performance.

  7. Testing the Limits of Optimizing Dual-Task Performance in Younger and Older Adults

    PubMed Central

    Strobach, Tilo; Frensch, Peter; Müller, Herrmann Josef; Schubert, Torsten

    2012-01-01

    Impaired dual-task performance in younger and older adults can be improved with practice. Optimal conditions even allow for a (near) elimination of this impairment in younger adults. However, it is unknown whether such (near) elimination is the limit of performance improvements in older adults. The present study tests this limit in older adults under conditions of (a) a high amount of dual-task training and (b) training with simplified component tasks in dual-task situations. The data showed that a high amount of dual-task training in older adults provided no evidence for an improvement of dual-task performance to the optimal dual-task performance level achieved by younger adults. However, training with simplified component tasks in dual-task situations exclusively in older adults provided a similar level of optimal dual-task performance in both age groups. Therefore through applying a testing the limits approach, we demonstrated that older adults improved dual-task performance to the same level as younger adults at the end of training under very specific conditions. PMID:22408613

  8. Optimization of medical imaging display systems: using the channelized Hotelling observer for detecting lung nodules: experimental study

    NASA Astrophysics Data System (ADS)

    Platisa, Ljiljana; Vansteenkiste, Ewout; Goossens, Bart; Marchessoux, Cédric; Kimpe, Tom; Philips, Wilfried

    2009-02-01

    Medical-imaging systems are designed to aid medical specialists in a specific task. Therefore, the physical parameters of a system need to optimize the task performance of a human observer. This requires measurements of human performance in a given task during the system optimization. Typically, psychophysical studies are conducted for this purpose. Numerical observer models have been successfully used to predict human performance in several detection tasks. Especially, the task of signal detection using a channelized Hotelling observer (CHO) in simulated images has been widely explored. However, there are few studies done for clinically acquired images that also contain anatomic noise. In this paper, we investigate the performance of a CHO in the task of detecting lung nodules in real radiographic images of the chest. To evaluate variability introduced by the limited available data, we employ a commonly used study of a multi-reader multi-case (MRMC) scenario. It accounts for both case and reader variability. Finally, we use the "oneshot" methods to estimate the MRMC variance of the area under the ROC curve (AUC). The obtained AUC compares well to those reported for human observer study on a similar data set. Furthermore, the "one-shot" analysis implies a fairly consistent performance of the CHO with the variance of AUC below 0.002. This indicates promising potential for numerical observers in optimization of medical imaging displays and encourages further investigation on the subject.

  9. Statistically designed nonionic surfactant vesicles for dermal delivery of itraconazole: characterization and in vivo evaluation using a standardized Tinea pedis infection model.

    PubMed

    Kumar, Neeraj; Goindi, Shishu

    2014-09-10

    The study aims to statistically develop a hydrogel of itraconazole loaded nonionic surfactant vesicles (NSVs) for circumventing the shortcomings and adverse effects of currently used therapies. Influential factors were screened using first-order Taguchi design, thereafter, optimization was performed via D-optimal design involving screened factors (surfactant type, content and molar ratio of cholesterol: surfactant). Response variables investigated were percent drug entrapment, vesicle size, drug skin retention and permeation in 6h. Suspensions of NSVs were gelled to improve topical applicability. Characterization of formulations was performed using vesicle shape, size, surface charge, texture analysis and rheology behavior. Ex vivo studies in rat skin depicted that optimized formulation augmented drug skin retention and permeation in 6h than conventional cream and oily solution of itraconazole. Standardized Tinea pedis model in Wistar rats exhibited in vivo antifungal efficacy of optimized formulation, observed in terms of physical manifestations, fungal-burden score and histopathological profiles. Also, a unique investigation involving studying local oxidative stress of infected paw skins as an indicator of fungal infection was performed. Rapid alleviation of infection in animals treated with optimized hydrogel was observed in comparison to commonly prescribed therapies. Therefore, the optimized NSVs may be a promising and efficient alternative to available antifungal therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Portfolio Optimization of Nanomaterial Use in Clean Energy Technologies.

    PubMed

    Moore, Elizabeth A; Babbitt, Callie W; Gaustad, Gabrielle; Moore, Sean T

    2018-04-03

    While engineered nanomaterials (ENMs) are increasingly incorporated in diverse applications, risks of ENM adoption remain difficult to predict and mitigate proactively. Current decision-making tools do not adequately account for ENM uncertainties including varying functional forms, unique environmental behavior, economic costs, unknown supply and demand, and upstream emissions. The complexity of the ENM system necessitates a novel approach: in this study, the adaptation of an investment portfolio optimization model is demonstrated for optimization of ENM use in renewable energy technologies. Where a traditional investment portfolio optimization model maximizes return on investment through optimal selection of stock, ENM portfolio optimization maximizes the performance of energy technology systems by optimizing selective use of ENMs. Cumulative impacts of multiple ENM material portfolios are evaluated in two case studies: organic photovoltaic cells (OPVs) for renewable energy and lithium-ion batteries (LIBs) for electric vehicles. Results indicate ENM adoption is dependent on overall performance and variance of the material, resource use, environmental impact, and economic trade-offs. From a sustainability perspective, improved clean energy applications can help extend product lifespans, reduce fossil energy consumption, and substitute ENMs for scarce incumbent materials.

  11. Development and testing of the cancer multidisciplinary team meeting observational tool (MDT-MOT)

    PubMed Central

    Harris, Jenny; Taylor, Cath; Sevdalis, Nick; Jalil, Rozh; Green, James S.A.

    2016-01-01

    Abstract Objective To develop a tool for independent observational assessment of cancer multidisciplinary team meetings (MDMs), and test criterion validity, inter-rater reliability/agreement and describe performance. Design Clinicians and experts in teamwork used a mixed-methods approach to develop and refine the tool. Study 1 observers rated pre-determined optimal/sub-optimal MDM film excerpts and Study 2 observers independently rated video-recordings of 10 MDMs. Setting Study 2 included 10 cancer MDMs in England. Participants Testing was undertaken by 13 health service staff and a clinical and non-clinical observer. Intervention None. Main Outcome Measures Tool development, validity, reliability/agreement and variability in MDT performance. Results Study 1: Observers were able to discriminate between optimal and sub-optimal MDM performance (P ≤ 0.05). Study 2: Inter-rater reliability was good for 3/10 domains. Percentage of absolute agreement was high (≥80%) for 4/10 domains and percentage agreement within 1 point was high for 9/10 domains. Four MDTs performed well (scored 3+ in at least 8/10 domains), 5 MDTs performed well in 6–7 domains and 1 MDT performed well in only 4 domains. Leadership and chairing of the meeting, the organization and administration of the meeting, and clinical decision-making processes all varied significantly between MDMs (P ≤ 0.01). Conclusions MDT-MOT demonstrated good criterion validity. Agreement between clinical and non-clinical observers (within one point on the scale) was high but this was inconsistent with reliability coefficients and warrants further investigation. If further validated MDT-MOT might provide a useful mechanism for the routine assessment of MDMs by the local workforce to drive improvements in MDT performance. PMID:27084499

  12. Development and testing of the cancer multidisciplinary team meeting observational tool (MDT-MOT).

    PubMed

    Harris, Jenny; Taylor, Cath; Sevdalis, Nick; Jalil, Rozh; Green, James S A

    2016-06-01

    To develop a tool for independent observational assessment of cancer multidisciplinary team meetings (MDMs), and test criterion validity, inter-rater reliability/agreement and describe performance. Clinicians and experts in teamwork used a mixed-methods approach to develop and refine the tool. Study 1 observers rated pre-determined optimal/sub-optimal MDM film excerpts and Study 2 observers independently rated video-recordings of 10 MDMs. Study 2 included 10 cancer MDMs in England. Testing was undertaken by 13 health service staff and a clinical and non-clinical observer. None. Tool development, validity, reliability/agreement and variability in MDT performance. Study 1: Observers were able to discriminate between optimal and sub-optimal MDM performance (P ≤ 0.05). Study 2: Inter-rater reliability was good for 3/10 domains. Percentage of absolute agreement was high (≥80%) for 4/10 domains and percentage agreement within 1 point was high for 9/10 domains. Four MDTs performed well (scored 3+ in at least 8/10 domains), 5 MDTs performed well in 6-7 domains and 1 MDT performed well in only 4 domains. Leadership and chairing of the meeting, the organization and administration of the meeting, and clinical decision-making processes all varied significantly between MDMs (P ≤ 0.01). MDT-MOT demonstrated good criterion validity. Agreement between clinical and non-clinical observers (within one point on the scale) was high but this was inconsistent with reliability coefficients and warrants further investigation. If further validated MDT-MOT might provide a useful mechanism for the routine assessment of MDMs by the local workforce to drive improvements in MDT performance. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  13. A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.

    2000-01-01

    Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.

  14. Optimization of an Active Twist Rotor Blade Planform for Improved Active Response and Forward Flight Performance

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K; Wilbur, Matthew L.

    2014-01-01

    A study was conducted to identify the optimum blade tip planform for a model-scale active twist rotor. The analysis identified blade tip design traits which simultaneously reduce rotor power of an unactuated rotor while leveraging aeromechanical couplings to tailor the active response of the blade. Optimizing the blade tip planform for minimum rotor power in forward flight provided a 5 percent improvement in performance compared to a rectangular blade tip, but reduced the vibration control authority of active twist actuation by 75 percent. Optimizing for maximum blade twist response increased the vibration control authority by 50 percent compared to the rectangular blade tip, with little effect on performance. Combined response and power optimization resulted in a blade tip design which provided similar vibration control authority to the rectangular blade tip, but with a 3.4 percent improvement in rotor performance in forward flight.

  15. Optimization and performance improvement of an electromagnetic-type energy harvester with consideration of human walking vibration

    NASA Astrophysics Data System (ADS)

    Seo, Jongho; Kim, Jin-Su; Jeong, Un-Chang; Kim, Yong-Dae; Kim, Young-Cheol; Lee, Hanmin; Oh, Jae-Eung

    2016-02-01

    In this study, we derived an equation of motion for an electromechanical system in view of the components and working mechanism of an electromagnetic-type energy harvester (ETEH). An electromechanical transduction factor (ETF) was calculated using a finite-element analysis (FEA) based on Maxwell's theory. The experimental ETF of the ETEH measured by means of sine wave excitation was compared with and FEA data. Design parameters for the stationary part of the energy harvester were optimized in terms of the power performance by using a response surface method (RSM). With optimized design parameters, the ETEH showed an improvement in performance. We experimented with the optimized ETEH (OETEH) with respect to changes in the external excitation frequency and the load resistance by taking human body vibration in to account. The OETEH achieved a performance improvement of about 30% compared to the initial model.

  16. Using Biomechanical Optimization To Interpret Dancers’ Pose Selection For A Partnered Spin

    DTIC Science & Technology

    2009-05-06

    optimized performance of a straight arm backward longswing on the still rings in mens artistic gymnastics . Because gymnasts lose points for excessive swing at...an actual performance and used that as the basis for their search. Yeadon determined that with timing within 15ms, gymnasts can minimize their excess...are moving in an optimal way. 2.5 Body Modeling 2.5.1 Building the Body In his study involving gymnasts on the rings, Yeadon developed a body model com

  17. Stochastic seismic response of building with super-elastic damper

    NASA Astrophysics Data System (ADS)

    Gur, Sourav; Mishra, Sudib Kumar; Roy, Koushik

    2016-05-01

    Hysteretic yield dampers are widely employed for seismic vibration control of buildings. An improved version of such damper has been proposed recently by exploiting the superelastic force-deformation characteristics of the Shape-Memory-Alloy (SMA). Although a number of studies have illustrated the performance of such damper, precise estimate of the optimal parameters and performances, along with the comparison with the conventional yield damper is lacking. Presently, the optimal parameters for the superelastic damper are proposed by conducting systematic design optimization, in which, the stochastic response serves as the objective function, evaluated through nonlinear random vibration analysis. These optimal parameters can be employed to establish an initial design for the SMA-damper. Further, a comparison among the optimal responses is also presented in order to assess the improvement that can be achieved by the superelastic damper over the yield damper. The consistency of the improvements is also checked by considering the anticipated variation in the system parameters as well as seismic loading condition. In spite of the improved performance of super-elastic damper, the available variant of SMA(s) is quite expensive to limit their applicability. However, recently developed ferrous SMA are expected to offer even superior performance along with improved cost effectiveness, that can be studied through a life cycle cost analysis in future work.

  18. MHD performance calculations with oxygen enrichment

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Staiger, P. J.; Seikel, G. R.

    1979-01-01

    The impact of oxygen enrichment of the combustion air on the generator and overall plant performance was studied for the ECAS-scale MHD/steam plants. A channel optimization technique is described and the results of generator performance calculations using this technique are presented. Performance maps were generated to assess the impact of various generator parameters. Directly and separately preheated plant performance with varying O2 enrichment was calculated. The optimal level of enrichment was a function of plant type and preheat temperature. The sensitivity of overall plant performance to critical channel assumptions and oxygen plant performance characteristics was also examined.

  19. Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms.

    PubMed

    Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali

    2018-05-11

    The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Optimal interpolation and the Kalman filter. [for analysis of numerical weather predictions

    NASA Technical Reports Server (NTRS)

    Cohn, S.; Isaacson, E.; Ghil, M.

    1981-01-01

    The estimation theory of stochastic-dynamic systems is described and used in a numerical study of optimal interpolation. The general form of data assimilation methods is reviewed. The Kalman-Bucy, KB filter, and optimal interpolation (OI) filters are examined for effectiveness in performance as gain matrices using a one-dimensional form of the shallow-water equations. Control runs in the numerical analyses were performed for a ten-day forecast in concert with the OI method. The effects of optimality, initialization, and assimilation were studied. It was found that correct initialization is necessary in order to localize errors, especially near boundary points. Also, the use of small forecast error growth rates over data-sparse areas was determined to offset inaccurate modeling of correlation functions near boundaries.

  1. Transferability of optimally-selected climate models in the quantification of climate change impacts on hydrology

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe

    2016-11-01

    Given the ever increasing number of climate change simulations being carried out, it has become impractical to use all of them to cover the uncertainty of climate change impacts. Various methods have been proposed to optimally select subsets of a large ensemble of climate simulations for impact studies. However, the behaviour of optimally-selected subsets of climate simulations for climate change impacts is unknown, since the transfer process from climate projections to the impact study world is usually highly non-linear. Consequently, this study investigates the transferability of optimally-selected subsets of climate simulations in the case of hydrological impacts. Two different methods were used for the optimal selection of subsets of climate scenarios, and both were found to be capable of adequately representing the spread of selected climate model variables contained in the original large ensemble. However, in both cases, the optimal subsets had limited transferability to hydrological impacts. To capture a similar variability in the impact model world, many more simulations have to be used than those that are needed to simply cover variability from the climate model variables' perspective. Overall, both optimal subset selection methods were better than random selection when small subsets were selected from a large ensemble for impact studies. However, as the number of selected simulations increased, random selection often performed better than the two optimal methods. To ensure adequate uncertainty coverage, the results of this study imply that selecting as many climate change simulations as possible is the best avenue. Where this was not possible, the two optimal methods were found to perform adequately.

  2. Faculty Sense of Academic Optimism and Its Relationship to Students' Achievement in Well Performing High Schools

    ERIC Educational Resources Information Center

    Cromartie, Michael Tyrone

    2013-01-01

    The aim of this study was to determine the organizational characteristics and behaviors that contribute to sustaining a culture of academic optimism as a mechanism of student achievement. While there is a developing research base identifying both the individual elements of academic optimism as well as the academic optimism construct itself as…

  3. Optimizing the Compressive Strength of Strain-Hardenable Stretch-Formed Microtruss Architectures

    NASA Astrophysics Data System (ADS)

    Yu, Bosco; Abu Samk, Khaled; Hibbard, Glenn D.

    2015-05-01

    The mechanical performance of stretch-formed microtrusses is determined by both the internal strut architecture and the accumulated plastic strain during fabrication. The current study addresses the question of optimization, by taking into consideration the interdependency between fabrication path, material properties and architecture. Low carbon steel (AISI1006) and aluminum (AA3003) material systems were investigated experimentally, with good agreement between measured values and the analytical model. The compressive performance of the microtrusses was then optimized on a minimum weight basis under design constraints such as fixed starting sheet thickness and final microtruss height by satisfying the Karush-Kuhn-Tucker condition. The optimization results were summarized as carpet plots in order to meaningfully visualize the interdependency between architecture, microstructural state, and mechanical performance, enabling material and processing path selection.

  4. An optimized proportional-derivative controller for the human upper extremity with gravity.

    PubMed

    Jagodnik, Kathleen M; Blana, Dimitra; van den Bogert, Antonie J; Kirsch, Robert F

    2015-10-15

    When Functional Electrical Stimulation (FES) is used to restore movement in subjects with spinal cord injury (SCI), muscle stimulation patterns should be selected to generate accurate and efficient movements. Ideally, the controller for such a neuroprosthesis will have the simplest architecture possible, to facilitate translation into a clinical setting. In this study, we used the simulated annealing algorithm to optimize two proportional-derivative (PD) feedback controller gain sets for a 3-dimensional arm model that includes musculoskeletal dynamics and has 5 degrees of freedom and 22 muscles, performing goal-oriented reaching movements. Controller gains were optimized by minimizing a weighted sum of position errors, orientation errors, and muscle activations. After optimization, gain performance was evaluated on the basis of accuracy and efficiency of reaching movements, along with three other benchmark gain sets not optimized for our system, on a large set of dynamic reaching movements for which the controllers had not been optimized, to test ability to generalize. Robustness in the presence of weakened muscles was also tested. The two optimized gain sets were found to have very similar performance to each other on all metrics, and to exhibit significantly better accuracy, compared with the three standard gain sets. All gain sets investigated used physiologically acceptable amounts of muscular activation. It was concluded that optimization can yield significant improvements in controller performance while still maintaining muscular efficiency, and that optimization should be considered as a strategy for future neuroprosthesis controller design. Published by Elsevier Ltd.

  5. Improving the Hydrodynamic Performance of Diffuser Vanes via Shape Optimization

    NASA Technical Reports Server (NTRS)

    Goel, Tushar; Dorney, Daniel J.; Haftka, Raphael T.; Shyy, Wei

    2007-01-01

    The performance of a diffuser in a pump stage depends on its configuration and placement within the stage. The influence of vane shape on the hydrodynamic performance of a diffuser has been studied. The goal of this effort has been to improve the performance of a pump stage by optimizing the shape of the diffuser vanes. The shape of the vanes was defined using Bezier curves and circular arcs. Surrogate model based tools were used to identify regions of the vane that have a strong influence on its performance. Optimization of the vane shape, in the absence of manufacturing, and stress constraints, led to a nearly nine percent reduction in the total pressure losses compared to the baseline design by reducing the extent of the base separation.

  6. A parametric sensitivity study for single-stage-to-orbit hypersonic vehicles using trajectory optimization

    NASA Astrophysics Data System (ADS)

    Lovell, T. Alan; Schmidt, D. K.

    1994-03-01

    The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.

  7. A parametric sensitivity study for single-stage-to-orbit hypersonic vehicles using trajectory optimization

    NASA Technical Reports Server (NTRS)

    Lovell, T. Alan; Schmidt, D. K.

    1994-01-01

    The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.

  8. Multi-objective optimization for generating a weighted multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Lee, H.

    2017-12-01

    Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.

  9. A Robust Statistics Approach to Minimum Variance Portfolio Optimization

    NASA Astrophysics Data System (ADS)

    Yang, Liusha; Couillet, Romain; McKay, Matthew R.

    2015-12-01

    We study the design of portfolios under a minimum risk criterion. The performance of the optimized portfolio relies on the accuracy of the estimated covariance matrix of the portfolio asset returns. For large portfolios, the number of available market returns is often of similar order to the number of assets, so that the sample covariance matrix performs poorly as a covariance estimator. Additionally, financial market data often contain outliers which, if not correctly handled, may further corrupt the covariance estimation. We address these shortcomings by studying the performance of a hybrid covariance matrix estimator based on Tyler's robust M-estimator and on Ledoit-Wolf's shrinkage estimator while assuming samples with heavy-tailed distribution. Employing recent results from random matrix theory, we develop a consistent estimator of (a scaled version of) the realized portfolio risk, which is minimized by optimizing online the shrinkage intensity. Our portfolio optimization method is shown via simulations to outperform existing methods both for synthetic and real market data.

  10. Supersonic civil airplane study and design: Performance and sonic boom

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1995-01-01

    Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.

  11. Conceptual Comparison of Population Based Metaheuristics for Engineering Problems

    PubMed Central

    Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes. PMID:25874265

  12. Conceptual comparison of population based metaheuristics for engineering problems.

    PubMed

    Adekanmbi, Oluwole; Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.

  13. Constrained Multiobjective Biogeography Optimization Algorithm

    PubMed Central

    Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping

    2014-01-01

    Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591

  14. Intracavity adaptive optics. 1: Astigmatism correction performance.

    PubMed

    Spinhirne, J M; Anafi, D; Freeman, R H; Garcia, H R

    1981-03-15

    A detailed experimental study has been conducted on adaptive optical control methodologies inside a laser resonator. A comparison is presented of several optimization techniques using a multidither zonal coherent optical adaptive technique system within a laser resonator for the correction of astigmatism. A dramatic performance difference is observed when optimizing on beam quality compared with optimizing on power-in-the-bucket. Experimental data are also presented on proper selection criteria for dither frequencies when controlling phase front errors. The effects of hardware limitations and design considerations on the performance of the system are presented, and general conclusions and physical interpretations on the results are made when possible.

  15. An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization

    PubMed Central

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416

  16. Optimizing Eating Performance for Older Adults With Dementia Living in Long-term Care: A Systematic Review.

    PubMed

    Liu, Wen; Galik, Elizabeth; Boltz, Marie; Nahm, Eun-Shim; Resnick, Barbara

    2015-08-01

    Review of research to date has been focusing on maintaining weight and nutrition with little attention on optimizing eating performance. To evaluate the effectiveness of interventions on eating performance for older adults with dementia in long-term care (LTC). A systematic review was performed. Five databases including Pubmed, Medline (OVID), EBM Reviews (OVID), PsychINFO (OVID), and CINAHL (EBSCOHost) were searched between January 1980 and June 2014. Keywords included dementia, Alzheimer, feed(ing), eat(ing), mealtime(s), oral intake, autonomy, and intervention. Intervention studies that optimize eating performance and evaluate change of self-feeding or eating performance among older adults (≥65 years) with dementia in LTC were eligible. Studies were screened by title and abstract, and full texts were reviewed for eligibility. Eligible studies were classified by intervention type. Study quality was accessed using the Quality Assessment Tool for Quantitative Studies, and level of evidence using the 2011 Oxford Centre for Evidence-Based Medicine (OCEBM) Levels of Evidence. Eleven intervention studies (five randomized controlled trials [RCTs]) were identified, and classified into four types: training program, mealtime assistance, environmental modification, and multicomponent intervention. The quality of the 11 studies was generally moderate (four studies were rated as strong, four moderate, and three weak in quality), with the main threats as weak designs, lack of blinding and control for confounders, and inadequate psychometric evidence for measures. Training programs targeting older adults (Montessori methods and spaced retrieval) demonstrated good evidence in decreasing feeding difficulty. Mealtime assistance offered by nursing staff (e.g., verbal prompts and cues, positive reinforcement, appropriate praise and encouragement) also showed effectiveness in improving eating performance. This review provided preliminary support for using training and mealtime assistance to optimize eating performance for older adults with dementia in LTC. Future effectiveness studies may focus on training nursing caregivers as interventionists, lengthening intervention duration, and including residents with varying levels of cognitive impairment in diverse cultures. The effectiveness of training combined with mealtime assistance may also be tested to achieve better resident outcomes in eating performance. © 2015 Sigma Theta Tau International.

  17. Optimizing immobilized enzyme performance in cell-free environments to produce liquid fuels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sanat

    The overall goal of this project was to optimize enzyme performance for the production of bio-diesel fuel. Enzyme immobilization has attracted much attention as a means to increase productivity. Mesorporous silica materials have been known to be best suited for immobilizing enzymes. A major challenge is to ensure that the enzymatic activity is retained after immobilization. Two major factors which drive enzymatic deactivation are protein-surface and inter-protein interactions. Previously, we studied protein stability inside pores and how to optimize protein-surface interactions to minimize protein denaturation. In this work we studied eh effect of surface curvature and chemistry on inter-protein interactions.more » Our goal was to find suitable immobilization supports which minimize these inter-protein interactions. Our studies carried out in the frame work of Hydrophobic-Polar (HP) model showed that enzymes immobilized inside hydrophobic pores of optimal sizes are best suited to minimize these inter-protein interactions. Besides, this study is also of biological importance to understand the role of chaperonins in protein disaggregation. Both of these aspects profited immensely with collaborations with our experimental colleague, Prof. Georges Belfort (RPI), who performed the experimental analog of our theoretical works.« less

  18. Addressing forecast uncertainty impact on CSP annual performance

    NASA Astrophysics Data System (ADS)

    Ferretti, Fabio; Hogendijk, Christopher; Aga, Vipluv; Ehrsam, Andreas

    2017-06-01

    This work analyzes the impact of weather forecast uncertainty on the annual performance of a Concentrated Solar Power (CSP) plant. Forecast time series has been produced by a commercial forecast provider using the technique of hindcasting for the full year 2011 in hourly resolution for Ouarzazate, Morocco. Impact of forecast uncertainty has been measured on three case studies, representing typical tariff schemes observed in recent CSP projects plus a spot market price scenario. The analysis has been carried out using an annual performance model and a standard dispatch optimization algorithm based on dynamic programming. The dispatch optimizer has been demonstrated to be a key requisite to maximize the annual revenues depending on the price scenario, harvesting the maximum potential out of the CSP plant. Forecasting uncertainty affects the revenue enhancement outcome of a dispatch optimizer depending on the error level and the price function. Results show that forecasting accuracy of direct solar irradiance (DNI) is important to make best use of an optimized dispatch but also that a higher number of calculation updates can partially compensate this uncertainty. Improvement in revenues can be significant depending on the price profile and the optimal operation strategy. Pathways to achieve better performance are presented by having more updates both by repeatedly generating new optimized trajectories but also more often updating weather forecasts. This study shows the importance of working on DNI weather forecasting for revenue enhancement as well as selecting weather services that can provide multiple updates a day and probabilistic forecast information.

  19. The Vigilance Decrement in Executive Function Is Attenuated When Individual Chronotypes Perform at Their Optimal Time of Day

    PubMed Central

    Lara, Tania; Madrid, Juan Antonio; Correa, Ángel

    2014-01-01

    Time of day modulates our cognitive functions, especially those related to executive control, such as the ability to inhibit inappropriate responses. However, the impact of individual differences in time of day preferences (i.e. morning vs. evening chronotype) had not been considered by most studies. It was also unclear whether the vigilance decrement (impaired performance with time on task) depends on both time of day and chronotype. In this study, morning-type and evening-type participants performed a task measuring vigilance and response inhibition (the Sustained Attention to Response Task, SART) in morning and evening sessions. The results showed that the vigilance decrement in inhibitory performance was accentuated at non-optimal as compared to optimal times of day. In the morning-type group, inhibition performance decreased linearly with time on task only in the evening session, whereas in the morning session it remained more accurate and stable over time. In contrast, inhibition performance in the evening-type group showed a linear vigilance decrement in the morning session, whereas in the evening session the vigilance decrement was attenuated, following a quadratic trend. Our findings imply that the negative effects of time on task in executive control can be prevented by scheduling cognitive tasks at the optimal time of day according to specific circadian profiles of individuals. Therefore, time of day and chronotype influences should be considered in research and clinical studies as well as real-word situations demanding executive control for response inhibition. PMID:24586404

  20. Optimal platform design using non-dominated sorting genetic algorithm II and technique for order of preference by similarity to ideal solution; application to automotive suspension system

    NASA Astrophysics Data System (ADS)

    Shojaeefard, Mohammad Hassan; Khalkhali, Abolfazl; Faghihian, Hamed; Dahmardeh, Masoud

    2018-03-01

    Unlike conventional approaches where optimization is performed on a unique component of a specific product, optimum design of a set of components for employing in a product family can cause significant reduction in costs. Increasing commonality and performance of the product platform simultaneously is a multi-objective optimization problem (MOP). Several optimization methods are reported to solve these MOPs. However, what is less discussed is how to find the trade-off points among the obtained non-dominated optimum points. This article investigates the optimal design of a product family using non-dominated sorting genetic algorithm II (NSGA-II) and proposes the employment of technique for order of preference by similarity to ideal solution (TOPSIS) method to find the trade-off points among the obtained non-dominated results while compromising all objective functions together. A case study for a family of suspension systems is presented, considering performance and commonality. The results indicate the effectiveness of the proposed method to obtain the trade-off points with the best possible performance while maximizing the common parts.

  1. Application of dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations- A case study

    NASA Astrophysics Data System (ADS)

    Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT

    2018-02-01

    Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).

  2. Time domain topology optimization of 3D nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Elesin, Y.; Lazarov, B. S.; Jensen, J. S.; Sigmund, O.

    2014-02-01

    We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire-based waveguide. The obtained results are compared to simplified 2D studies and we demonstrate that 3D topology optimization may lead to significant performance improvements.

  3. Performance Trades Study for Robust Airfoil Shape Optimization

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon

    2003-01-01

    From time to time, existing aircraft need to be redesigned for new missions with modified operating conditions such as required lift or cruise speed. This research is motivated by the needs of conceptual and preliminary design teams for smooth airfoil shapes that are similar to the baseline design but have improved drag performance over a range of flight conditions. The proposed modified profile optimization method (MPOM) modifies a large number of design variables to search for nonintuitive performance improvements, while avoiding off-design performance degradation. Given a good initial design, the MPOM generates fairly smooth airfoils that are better than the baseline without making drastic shape changes. Moreover, the MPOM allows users to gain valuable information by exploring performance trades over various design conditions. Four simulation cases of airfoil optimization in transonic viscous ow are included to demonstrate the usefulness of the MPOM as a performance trades study tool. Simulation results are obtained by solving fully turbulent Navier-Stokes equations and the corresponding discrete adjoint equations using an unstructured grid computational fluid dynamics code FUN2D.

  4. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jun; Zhang, Jiangjiang; Li, Weixuan

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees ofmore » freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.« less

  5. Reliability-based structural optimization: A proposed analytical-experimental study

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Nikolaidis, Efstratios

    1993-01-01

    An analytical and experimental study for assessing the potential of reliability-based structural optimization is proposed and described. In the study, competing designs obtained by deterministic and reliability-based optimization are compared. The experimental portion of the study is practical because the structure selected is a modular, actively and passively controlled truss that consists of many identical members, and because the competing designs are compared in terms of their dynamic performance and are not destroyed if failure occurs. The analytical portion of this study is illustrated on a 10-bar truss example. In the illustrative example, it is shown that reliability-based optimization can yield a design that is superior to an alternative design obtained by deterministic optimization. These analytical results provide motivation for the proposed study, which is underway.

  6. Integrating operation design into infrastructure planning to foster robustness of planned water systems

    NASA Astrophysics Data System (ADS)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over the past years, many studies have looked at the planning and management of water infrastructure systems as two separate problems, where the dynamic component (i.e., operations) is considered only after the static problem (i.e., planning) has been resolved. Most recent works have started to investigate planning and management as two strictly interconnected faces of the same problem, where the former is solved jointly with the latter in an integrated framework. This brings advantages to multi-purpose water reservoir systems, where several optimal operating strategies exist and similar system designs might perform differently on the long term depending on the considered short-term operating tradeoff. An operationally robust design will be therefore one performing well across multiple feasible tradeoff operating policies. This work aims at studying the interaction between short-term operating strategies and their impacts on long-term structural decisions, when long-lived infrastructures with complex ecological impacts and multi-sectoral demands to satisfy (i.e., reservoirs) are considered. A parametric reinforcement learning approach is adopted for nesting optimization and control yielding to both optimal reservoir design and optimal operational policies for water reservoir systems. The method is demonstrated on a synthetic reservoir that must be designed and operated for ensuring reliable water supply to downstream users. At first, the optimal design capacity derived is compared with the 'no-fail storage' computed through Rippl, a capacity design function that returns the minimum storage needed to satisfy specified water demands without allowing supply shortfall. Then, the optimal reservoir volume is used to simulate the simplified case study under other operating objectives than water supply, in order to assess whether and how the system performance changes. The more robust the infrastructural design, the smaller the difference between the performances of different operating strategies.

  7. Performance index and meta-optimization of a direct search optimization method

    NASA Astrophysics Data System (ADS)

    Krus, P.; Ölvander, J.

    2013-10-01

    Design optimization is becoming an increasingly important tool for design, often using simulation as part of the evaluation of the objective function. A measure of the efficiency of an optimization algorithm is of great importance when comparing methods. The main contribution of this article is the introduction of a singular performance criterion, the entropy rate index based on Shannon's information theory, taking both reliability and rate of convergence into account. It can also be used to characterize the difficulty of different optimization problems. Such a performance criterion can also be used for optimization of the optimization algorithms itself. In this article the Complex-RF optimization method is described and its performance evaluated and optimized using the established performance criterion. Finally, in order to be able to predict the resources needed for optimization an objective function temperament factor is defined that indicates the degree of difficulty of the objective function.

  8. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.

  9. Impact of Chaos Functions on Modern Swarm Optimizers.

    PubMed

    Emary, E; Zawbaa, Hossam M

    2016-01-01

    Exploration and exploitation are two essential components for any optimization algorithm. Much exploration leads to oscillation and premature convergence while too much exploitation slows down the optimization algorithm and the optimizer may be stuck in local minima. Therefore, balancing the rates of exploration and exploitation at the optimization lifetime is a challenge. This study evaluates the impact of using chaos-based control of exploration/exploitation rates against using the systematic native control. Three modern algorithms were used in the study namely grey wolf optimizer (GWO), antlion optimizer (ALO) and moth-flame optimizer (MFO) in the domain of machine learning for feature selection. Results on a set of standard machine learning data using a set of assessment indicators prove advance in optimization algorithm performance when using variational repeated periods of declined exploration rates over using systematically decreased exploration rates.

  10. Orbit Transfer Vehicle Engine Study. Phase A, extension 1: Advanced expander cycle engine optimization

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1979-01-01

    The performance optimization of expander cycle engines at vacuum thrust levels of 10K, 15K, and 20K lb is discussed. The optimization is conducted for a maximum engine length with an extendible nozzle in the retracted position of 60 inches and an engine mixture ratio of 6.0:1. The thrust chamber geometry and cycle analyses are documented. In addition, the sensitivity of a recommended baseline expander cycle to component performance variations is determined and chilldown/start propellant consumptions are estimated.

  11. More Optimism About Future Events with Relative Left Hemisphere Activation.

    ERIC Educational Resources Information Center

    Drake, Roger A.

    Unrealistic personal optimism is the perception that undesirable events are less likely and desirable events are more likely to happen to oneself than they are to happen to other similar people. Three experiments were performed to study the relationships among personal optimism, perceived control, and selective activation of the cerebral…

  12. Exquisite Moments: Achieving Optimal Flow in Three Activity-Based Groups Regardless of Early-Childhood Adversity

    ERIC Educational Resources Information Center

    Thomson, Paula; Jaque, S. Victoria

    2016-01-01

    Flow experiences (also known as optimal performance) occur when people engage in activities they enjoy. The authors discuss such events in their study that examined a number of healthy, active individuals (performing artists, athletes, and others engaged in a range of recreational activities) and divided these into three groups based on adverse…

  13. Automated Sensitivity Analysis of Interplanetary Trajectories for Optimal Mission Design

    NASA Technical Reports Server (NTRS)

    Knittel, Jeremy; Hughes, Kyle; Englander, Jacob; Sarli, Bruno

    2017-01-01

    This work describes a suite of Python tools known as the Python EMTG Automated Trade Study Application (PEATSA). PEATSA was written to automate the operation of trajectory optimization software, simplify the process of performing sensitivity analysis, and was ultimately found to out-perform a human trajectory designer in unexpected ways. These benefits will be discussed and demonstrated on sample mission designs.

  14. Diagnostic performance and optimal cut-off scores of the Massachusetts youth screening instrument-second version in a sample of Swiss youths in welfare and juvenile justice institutions.

    PubMed

    Dölitzsch, Claudia; Leenarts, Laura E W; Schmeck, Klaus; Fegert, Jorg M; Grisso, Thomas; Schmid, Marc

    2017-02-08

    There is a growing consensus about the importance of mental health screening of youths in welfare and juvenile justice institutions. The Massachusetts Youth Screening Instrument-second version (MAYSI-2) was specifically designed, normed and validated to assist juvenile justice facilities in the United States of America (USA), in identifying youths with potential emotional or behavioral problems. However, it is not known if the USA norm-based cut-off scores can be used in Switzerland. Therefore, the primary purpose of the current study was to estimate the diagnostic performance and optimal cut-off scores of the MAYSI-2 in a sample of Swiss youths in welfare and juvenile justice institutions. As the sample was drawn from the French-, German- and Italian-speaking parts of Switzerland, the three languages were represented in the total sample of the current study and consequently we could estimate the diagnostic performance and the optimal cut-off scores of the MAYSI-2 for the language regions separately. The other main purpose of the current study was to identify potential gender differences in the diagnostic performance and optimal cut-off scores. Participants were 297 boys and 149 girls (mean age = 16.2, SD = 2.5) recruited from 64 youth welfare and juvenile justice institutions (drawn from the French-, German- and Italian-speaking parts of Switzerland). The MAYSI-2 was used to screen for mental health or behavioral problems that could require further evaluation. Psychiatric classification was based on the Schedule for Affective Disorders and Schizophrenia for School-Age Children, Present and Lifetime version (K-SADS-PL). The MAYSI-2 scores were submitted into Receiver-Operating Characteristic (ROC) analyses to estimate the diagnostic performance and optimal 'caution' cut-off scores of the MAYSI-2. The ROC analyses revealed that nearly all homotypic mappings of MAYSI-2 scales onto (cluster of) psychiatric disorders revealed above chance level accuracy. The optimal 'caution' cut-off scores derived from the ROC curve for predicting (cluster of) psychiatric disorders were, for several MAYSI-2 scales, comparable to the USA norm-based 'caution' cut-off scores. For some MAYSI-2 scales, however, higher optimal 'caution' cut-off scores were found. With adjusted optimal 'caution' cut-off scores, the MAYSI-2 screens potential emotional or behavioral problems well in a sample of Swiss youths in welfare and juvenile justice institutions. However, as for choosing the optimal 'caution' cut off score for the MAYSI-2, both language as well as gender seems to be of importance. The results of this study point to a compelling need to test the diagnostic performance and optimal 'caution' cut-off scores of the MAYSI-2 more elaborately in larger differentiated language samples in Europe.

  15. Optimized data fusion for K-means Laplacian clustering

    PubMed Central

    Yu, Shi; Liu, Xinhai; Tranchevent, Léon-Charles; Glänzel, Wolfgang; Suykens, Johan A. K.; De Moor, Bart; Moreau, Yves

    2011-01-01

    Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix. Availability: The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html. Contact: shiyu@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20980271

  16. Optimization of entry-vehicle shapes during conceptual design

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Mooij, E.

    2014-01-01

    During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.

  17. Human performance on visually presented Traveling Salesman problems.

    PubMed

    Vickers, D; Butavicius, M; Lee, M; Medvedev, A

    2001-01-01

    Little research has been carried out on human performance in optimization problems, such as the Traveling Salesman problem (TSP). Studies by Polivanova (1974, Voprosy Psikhologii, 4, 41-51) and by MacGregor and Ormerod (1996, Perception & Psychophysics, 58, 527-539) suggest that: (1) the complexity of solutions to visually presented TSPs depends on the number of points on the convex hull; and (2) the perception of optimal structure is an innate tendency of the visual system, not subject to individual differences. Results are reported from two experiments. In the first, measures of the total length and completion speed of pathways, and a measure of path uncertainty were compared with optimal solutions produced by an elastic net algorithm and by several heuristic methods. Performance was also compared under instructions to draw the shortest or the most attractive pathway. In the second, various measures of performance were compared with scores on Raven's advanced progressive matrices (APM). The number of points on the convex hull did not determine the relative optimality of solutions, although both this factor and the total number of points influenced solution speed and path uncertainty. Subjects' solutions showed appreciable individual differences, which had a strong correlation with APM scores. The relation between perceptual organization and the process of solving visually presented TSPs is briefly discussed, as is the potential of optimization for providing a conceptual framework for the study of intelligence.

  18. Swarm size and iteration number effects to the performance of PSO algorithm in RFID tag coverage optimization

    NASA Astrophysics Data System (ADS)

    Prathabrao, M.; Nawawi, Azli; Sidek, Noor Azizah

    2017-04-01

    Radio Frequency Identification (RFID) system has multiple benefits which can improve the operational efficiency of the organization. The advantages are the ability to record data systematically and quickly, reducing human errors and system errors, update the database automatically and efficiently. It is often more readers (reader) is needed for the installation purposes in RFID system. Thus, it makes the system more complex. As a result, RFID network planning process is needed to ensure the RFID system works perfectly. The planning process is also considered as an optimization process and power adjustment because the coordinates of each RFID reader to be determined. Therefore, algorithms inspired by the environment (Algorithm Inspired by Nature) is often used. In the study, PSO algorithm is used because it has few number of parameters, the simulation time is fast, easy to use and also very practical. However, PSO parameters must be adjusted correctly, for robust and efficient usage of PSO. Failure to do so may result in disruption of performance and results of PSO optimization of the system will be less good. To ensure the efficiency of PSO, this study will examine the effects of two parameters on the performance of PSO Algorithm in RFID tag coverage optimization. The parameters to be studied are the swarm size and iteration number. In addition to that, the study will also recommend the most optimal adjustment for both parameters that is, 200 for the no. iterations and 800 for the no. of swarms. Finally, the results of this study will enable PSO to operate more efficiently in order to optimize RFID network planning system.

  19. Multidisciplinary design optimization of aircraft wing structures with aeroelastic and aeroservoelastic constraints

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Young

    Design procedures for aircraft wing structures with control surfaces are presented using multidisciplinary design optimization. Several disciplines such as stress analysis, structural vibration, aerodynamics, and controls are considered simultaneously and combined for design optimization. Vibration data and aerodynamic data including those in the transonic regime are calculated by existing codes. Flutter analyses are performed using those data. A flutter suppression method is studied using control laws in the closed-loop flutter equation. For the design optimization, optimization techniques such as approximation, design variable linking, temporary constraint deletion, and optimality criteria are used. Sensitivity derivatives of stresses and displacements for static loads, natural frequency, flutter characteristics, and control characteristics with respect to design variables are calculated for an approximate optimization. The objective function is the structural weight. The design variables are the section properties of the structural elements and the control gain factors. Existing multidisciplinary optimization codes (ASTROS* and MSC/NASTRAN) are used to perform single and multiple constraint optimizations of fully built up finite element wing structures. Three benchmark wing models are developed and/or modified for this purpose. The models are tested extensively.

  20. C-learning: A new classification framework to estimate optimal dynamic treatment regimes.

    PubMed

    Zhang, Baqun; Zhang, Min

    2017-12-11

    A dynamic treatment regime is a sequence of decision rules, each corresponding to a decision point, that determine that next treatment based on each individual's own available characteristics and treatment history up to that point. We show that identifying the optimal dynamic treatment regime can be recast as a sequential optimization problem and propose a direct sequential optimization method to estimate the optimal treatment regimes. In particular, at each decision point, the optimization is equivalent to sequentially minimizing a weighted expected misclassification error. Based on this classification perspective, we propose a powerful and flexible C-learning algorithm to learn the optimal dynamic treatment regimes backward sequentially from the last stage until the first stage. C-learning is a direct optimization method that directly targets optimizing decision rules by exploiting powerful optimization/classification techniques and it allows incorporation of patient's characteristics and treatment history to improve performance, hence enjoying advantages of both the traditional outcome regression-based methods (Q- and A-learning) and the more recent direct optimization methods. The superior performance and flexibility of the proposed methods are illustrated through extensive simulation studies. © 2017, The International Biometric Society.

  1. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  2. Performance Optimizing Multi-Objective Adaptive Control with Time-Varying Model Reference Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2017-01-01

    This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.

  3. Development of high-performance blended cements

    NASA Astrophysics Data System (ADS)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  4. Optimization design of turbo-expander gas bearing for a 500W helium refrigerator

    NASA Astrophysics Data System (ADS)

    Li, S. S.; Fu, B.; Y Zhang, Q.

    2017-12-01

    Turbo-expander is the core machinery of the helium refrigerator. Bearing as the supporting element is the core technology to impact the design of turbo-expander. The perfect design and performance study for the gas bearing are essential to ensure the stability of turbo-expander. In this paper, numerical simulation is used to analyze the performance of gas bearing for a 500W helium refrigerator turbine, and the optimization design of the gas bearing has been completed. And the results of the gas bearing optimization have a guiding role in the processing technology. Finally, the turbine experiments verify that the gas bearing has good performance, and ensure the stable operation of the turbine.

  5. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 2: Analytic manual

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows subproblems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  6. Analysis of static and dynamic characteristic of spindle system and its structure optimization in camshaft grinding machine

    NASA Astrophysics Data System (ADS)

    Feng, Jianjun; Li, Chengzhe; Wu, Zhi

    2017-08-01

    As an important part of the valve opening and closing controller in engine, camshaft has high machining accuracy requirement in designing. Taking the high-speed camshaft grinder spindle system as the research object and the spindle system performance as the optimizing target, this paper firstly uses Solidworks to establish the three-dimensional finite element model (FEM) of spindle system, then conducts static analysis and the modal analysis by applying the established FEM in ANSYS Workbench, and finally uses the design optimization function of the ANSYS Workbench to optimize the structure parameter in the spindle system. The study results prove that the design of the spindle system fully meets the production requirements, and the performance of the optimized spindle system is promoted. Besides, this paper provides an analysis and optimization method for other grinder spindle systems.

  7. Performance optimization and validation of ADM1 simulations under anaerobic thermophilic conditions.

    PubMed

    Atallah, Nabil M; El-Fadel, Mutasem; Ghanimeh, Sophia; Saikaly, Pascal; Abou-Najm, Majdi

    2014-12-01

    In this study, two experimental sets of data each involving two thermophilic anaerobic digesters treating food waste, were simulated using the Anaerobic Digestion Model No. 1 (ADM1). A sensitivity analysis was conducted, using both data sets of one digester, for parameter optimization based on five measured performance indicators: methane generation, pH, acetate, total COD, ammonia, and an equally weighted combination of the five indicators. The simulation results revealed that while optimization with respect to methane alone, a commonly adopted approach, succeeded in simulating methane experimental results, it predicted other intermediary outputs less accurately. On the other hand, the multi-objective optimization has the advantage of providing better results than methane optimization despite not capturing the intermediary output. The results from the parameter optimization were validated upon their independent application on the data sets of the second digester. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.

    PubMed

    Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric

    2018-03-01

    Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.

  9. Training Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of a Grid-Connected Converter.

    PubMed

    Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo

    2015-09-01

    This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.

  10. Optimal Control of Evolution Mixed Variational Inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx

    2013-12-15

    Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.

  11. Conceptual design optimization study

    NASA Technical Reports Server (NTRS)

    Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.

    1990-01-01

    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.

  12. Filling the glass: Effects of a positive psychology intervention on executive task performance in chronic pain patients.

    PubMed

    Boselie, J J L M; Vancleef, L M G; Peters, M L

    2018-03-24

    Chronic pain is associated with emotional problems as well as difficulties in cognitive functioning. Prior experimental studies have shown that optimism, the tendency to expect that good things happen in the future, and positive emotions can counteract pain-induced task performance deficits in healthy participants. More specifically, induced optimism was found to buffer against the negative effects of experimental pain on executive functioning. This clinical experiment examined whether this beneficial effect can be extended to a chronic pain population. Patients (N = 122) were randomized to a positive psychology Internet-based intervention (PPI; n = 74) or a waiting list control condition (WLC; n = 48). The PPI consisted of positive psychology exercises that particularly target optimism, positive emotions and self-compassion. Results demonstrated that patients in the PPI condition scored higher on happiness, optimism, positive future expectancies, positive affect, self-compassion and ability to live a desired life despite pain, and scored lower on pain catastrophizing, depression and anxiety compared to patients in the WLC condition. However, executive task performance did not improve following completion of the PPI, compared to the WLC condition. Despite the lack of evidence that positive emotions and optimism can improve executive task performance in chronic pain patients, this study did convincingly demonstrate that it is possible to increase positive emotions and optimism in chronic pain patients with an online positive psychology intervention. It is imperative to further explore amendable psychological factors that may reduce the negative impact of pain on executive functioning. We demonstrated that an Internet-based positive psychology intervention strengthens optimism and positive emotions in chronic pain patients. These emotional improvements are not associated with improved executive task performance. As pain itself often cannot be relieved, it is imperative to have techniques to reduce the burden of living with chronic pain. © 2018 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation -EFIC®.

  13. A study of data representation in Hadoop to optimize data storage and search performance for the ATLAS EventIndex

    NASA Astrophysics Data System (ADS)

    Baranowski, Z.; Canali, L.; Toebbicke, R.; Hrivnac, J.; Barberis, D.

    2017-10-01

    This paper reports on the activities aimed at improving the architecture and performance of the ATLAS EventIndex implementation in Hadoop. The EventIndex contains tens of billions of event records, each of which consists of ∼100 bytes, all having the same probability to be searched or counted. Data formats represent one important area for optimizing the performance and storage footprint of applications based on Hadoop. This work reports on the production usage and on tests using several data formats including Map Files, Apache Parquet, Avro, and various compression algorithms. The query engine plays also a critical role in the architecture. We report also on the use of HBase for the EventIndex, focussing on the optimizations performed in production and on the scalability tests. Additional engines that have been tested include Cloudera Impala, in particular for its SQL interface, and the optimizations for data warehouse workloads and reports.

  14. Performance Optimization Control of ECH using Fuzzy Inference Application

    NASA Astrophysics Data System (ADS)

    Dubey, Abhay Kumar

    Electro-chemical honing (ECH) is a hybrid electrolytic precision micro-finishing technology that, by combining physico-chemical actions of electro-chemical machining and conventional honing processes, provides the controlled functional surfaces-generation and fast material removal capabilities in a single operation. Process multi-performance optimization has become vital for utilizing full potential of manufacturing processes to meet the challenging requirements being placed on the surface quality, size, tolerances and production rate of engineering components in this globally competitive scenario. This paper presents an strategy that integrates the Taguchi matrix experimental design, analysis of variances and fuzzy inference system (FIS) to formulate a robust practical multi-performance optimization methodology for complex manufacturing processes like ECH, which involve several control variables. Two methodologies one using a genetic algorithm tuning of FIS (GA-tuned FIS) and another using an adaptive network based fuzzy inference system (ANFIS) have been evaluated for a multi-performance optimization case study of ECH. The actual experimental results confirm their potential for a wide range of machining conditions employed in ECH.

  15. Profile shape optimization in multi-jet impingement cooling of dimpled topologies for local heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Negi, Deepchand Singh; Pattamatta, Arvind

    2015-04-01

    The present study deals with shape optimization of dimples on the target surface in multi-jet impingement heat transfer. Bezier polynomial formulation is incorporated to generate profile shapes for the dimple profile generation and a multi-objective optimization is performed. The optimized dimple shape exhibits higher local Nusselt number values compared to the reference hemispherical dimpled plate optimized shape which can be used to alleviate local temperature hot spots on target surface.

  16. "METHOD": A tool for mechanical, electrical, thermal, and optical characterization of single lens module design

    NASA Astrophysics Data System (ADS)

    Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu

    2015-09-01

    The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.

  17. Optimization of bump and blowing to control the flow through a transonic compressor blade cascade

    NASA Astrophysics Data System (ADS)

    Mazaheri, K.; Khatibirad, S.

    2018-03-01

    Shock control bump (SCB) and blowing are two flow control methods, used here to improve the aerodynamic performance of transonic compressors. Both methods are applied to a NASA rotor 67 blade section and are optimized to minimize the total pressure loss. A continuous adjoint algorithm is used for multi-point optimization of a SCB to improve the aerodynamic performance of the rotor blade section, for a range of operational conditions around its design point. A multi-point and two single-point optimizations are performed in the design and off-design conditions. It is shown that the single-point optimized shapes have the best performance for their respective operating conditions, but the multi-point one has an overall better performance over the whole operating range. An analysis is given regarding how similarly both single- and multi-point optimized SCBs change the wave structure between blade sections resulting in a more favorable flow pattern. Interactions of the SCB with the boundary layer and the wave structure, and its effects on the separation regions are also studied. We have also introduced the concept of blowing for control of shock wave and boundary-layer interaction. A geometrical model is introduced, and the geometrical and physical parameters of blowing are optimized at the design point. The performance improvements of blowing are compared with the SCB. The physical interactions of SCB with the boundary layer and the shock wave are analyzed. The effects of SCB on the wave structure in the flow domain outside the boundary-layer region are investigated. It is shown that the effects of the blowing mechanism are very similar to the SCB.

  18. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  19. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE PAGES

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    2016-07-26

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  20. How work-self conflict/facilitation influences exhaustion and task performance: A three-wave study on the role of personal resources.

    PubMed

    Demerouti, Evangelia; Sanz-Vergel, Ana Isabel; Petrou, Paraskevas; van den Heuvel, Machteld

    2016-10-01

    Although work and family are undoubtedly important life domains, individuals are also active in other life roles which are also important to them (like pursuing personal interests). Building on identity theory and the resource perspective on work-home interface, we examined whether there is an indirect effect of work-self conflict/facilitation on exhaustion and task performance over time through personal resources (i.e., self-efficacy and optimism). The sample was composed of 368 Dutch police officers. Results of the 3-wave longitudinal study confirmed that work-self conflict was related to lower levels of self-efficacy, whereas work-self facilitation was related to improved optimism over time. In turn, self-efficacy was related to higher task performance, whereas optimism was related to diminished levels of exhaustion over time. Further analysis supported the negative, indirect effect of work-self facilitation on exhaustion through optimism over time, and only a few reversed causal effects emerged. The study contributes to the literature on interrole management by showing the role of personal resources in the process of conflict or facilitation over time. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Modified Shuffled Frog Leaping Optimization Algorithm Based Distributed Generation Rescheduling for Loss Minimization

    NASA Astrophysics Data System (ADS)

    Arya, L. D.; Koshti, Atul

    2018-05-01

    This paper investigates the Distributed Generation (DG) capacity optimization at location based on the incremental voltage sensitivity criteria for sub-transmission network. The Modified Shuffled Frog Leaping optimization Algorithm (MSFLA) has been used to optimize the DG capacity. Induction generator model of DG (wind based generating units) has been considered for study. Standard test system IEEE-30 bus has been considered for the above study. The obtained results are also validated by shuffled frog leaping algorithm and modified version of bare bones particle swarm optimization (BBExp). The performance of MSFLA has been found more efficient than the other two algorithms for real power loss minimization problem.

  2. Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Wang, Kexin; Xu, Zuhua; Shao, Zhijiang; Song, Zhengyu; Biegler, Lorenz T.

    2018-05-01

    This study presents a trajectory optimization framework for lunar rover performing vertical takeoff vertical landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a "bang-bang" profile considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian profile is designed to address the difficulty in locating the breakpoints in the thrust profile. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.

  3. Caffeine dosing strategies to optimize alertness during sleep loss.

    PubMed

    Vital-Lopez, Francisco G; Ramakrishnan, Sridhar; Doty, Tracy J; Balkin, Thomas J; Reifman, Jaques

    2018-05-28

    Sleep loss, which affects about one-third of the US population, can severely impair physical and neurobehavioural performance. Although caffeine, the most widely used stimulant in the world, can mitigate these effects, currently there are no tools to guide the timing and amount of caffeine consumption to optimize its benefits. In this work, we provide an optimization algorithm, suited for mobile computing platforms, to determine when and how much caffeine to consume, so as to safely maximize neurobehavioural performance at the desired time of the day, under any sleep-loss condition. The algorithm is based on our previously validated Unified Model of Performance, which predicts the effect of caffeine consumption on a psychomotor vigilance task. We assessed the algorithm by comparing the caffeine-dosing strategies (timing and amount) it identified with the dosing strategies used in four experimental studies, involving total and partial sleep loss. Through computer simulations, we showed that the algorithm yielded caffeine-dosing strategies that enhanced performance of the predicted psychomotor vigilance task by up to 64% while using the same total amount of caffeine as in the original studies. In addition, the algorithm identified strategies that resulted in equivalent performance to that in the experimental studies while reducing caffeine consumption by up to 65%. Our work provides the first quantitative caffeine optimization tool for designing effective strategies to maximize neurobehavioural performance and to avoid excessive caffeine consumption during any arbitrary sleep-loss condition. © 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  4. Influence of infectious disease seasonality on the performance of the outbreak detection algorithm in the China Infectious Disease Automated-alert and Response System

    PubMed Central

    Wang, Ruiping; Jiang, Yonggen; Guo, Xiaoqin; Wu, Yiling; Zhao, Genming

    2017-01-01

    Objective The Chinese Center for Disease Control and Prevention developed the China Infectious Disease Automated-alert and Response System (CIDARS) in 2008. The CIDARS can detect outbreak signals in a timely manner but generates many false-positive signals, especially for diseases with seasonality. We assessed the influence of seasonality on infectious disease outbreak detection performance. Methods Chickenpox surveillance data in Songjiang District, Shanghai were used. The optimized early alert thresholds for chickenpox were selected according to three algorithm evaluation indexes: sensitivity (Se), false alarm rate (FAR), and time to detection (TTD). Performance of selected proper thresholds was assessed by data external to the study period. Results The optimized early alert threshold for chickenpox during the epidemic season was the percentile P65, which demonstrated an Se of 93.33%, FAR of 0%, and TTD of 0 days. The optimized early alert threshold in the nonepidemic season was P50, demonstrating an Se of 100%, FAR of 18.94%, and TTD was 2.5 days. The performance evaluation demonstrated that the use of an optimized threshold adjusted for seasonality could reduce the FAR and shorten the TTD. Conclusions Selection of optimized early alert thresholds based on local infectious disease seasonality could improve the performance of the CIDARS. PMID:28728470

  5. Influence of infectious disease seasonality on the performance of the outbreak detection algorithm in the China Infectious Disease Automated-alert and Response System.

    PubMed

    Wang, Ruiping; Jiang, Yonggen; Guo, Xiaoqin; Wu, Yiling; Zhao, Genming

    2018-01-01

    Objective The Chinese Center for Disease Control and Prevention developed the China Infectious Disease Automated-alert and Response System (CIDARS) in 2008. The CIDARS can detect outbreak signals in a timely manner but generates many false-positive signals, especially for diseases with seasonality. We assessed the influence of seasonality on infectious disease outbreak detection performance. Methods Chickenpox surveillance data in Songjiang District, Shanghai were used. The optimized early alert thresholds for chickenpox were selected according to three algorithm evaluation indexes: sensitivity (Se), false alarm rate (FAR), and time to detection (TTD). Performance of selected proper thresholds was assessed by data external to the study period. Results The optimized early alert threshold for chickenpox during the epidemic season was the percentile P65, which demonstrated an Se of 93.33%, FAR of 0%, and TTD of 0 days. The optimized early alert threshold in the nonepidemic season was P50, demonstrating an Se of 100%, FAR of 18.94%, and TTD was 2.5 days. The performance evaluation demonstrated that the use of an optimized threshold adjusted for seasonality could reduce the FAR and shorten the TTD. Conclusions Selection of optimized early alert thresholds based on local infectious disease seasonality could improve the performance of the CIDARS.

  6. Protein nutrition and exercise survival kit for critically ill.

    PubMed

    Weijs, Peter J M

    2017-08-01

    Protein delivery as well as exercise of critically ill in clinical practice is still a highly debated issue. Here we discuss only the most recent updates in the literature concerning protein nutrition and exercise of the critically ill. By lack of randomized controlled trial (RCTs) in protein nutrition we discuss four post-hoc analyses of nutrition studies and one experimental study in mice. Studies mainly confirm some insights that protein and energy effects are separate and that the trajectory of the patient in the ICU might change these effects. Exercise has been studied much more extensively with RCTs in the last year, although also here the differences between patient groups and timing of intervention might play their roles. Overall the effects of protein nutrition and exercise appear to be beneficial. However, studies into the differential effects of protein nutrition and/or exercise, and optimization of their combined use, have not been performed yet and are on the research agenda. Optimal protein nutrition, optimal exercise intervention as well as the optimal combination of nutrition, and exercise may help to improve long-term physical performance outcome in the critically ill patients.

  7. Grey Relational Analysis Coupled with Principal Component Analysis for Optimization of Stereolithography Process to Enhance Part Quality

    NASA Astrophysics Data System (ADS)

    Raju, B. S.; Sekhar, U. Chandra; Drakshayani, D. N.

    2017-08-01

    The paper investigates optimization of stereolithography process for SL5530 epoxy resin material to enhance part quality. The major characteristics indexed for performance selected to evaluate the processes are tensile strength, Flexural strength, Impact strength and Density analysis and corresponding process parameters are Layer thickness, Orientation and Hatch spacing. In this study, the process is intrinsically with multiple parameters tuning so that grey relational analysis which uses grey relational grade as performance index is specially adopted to determine the optimal combination of process parameters. Moreover, the principal component analysis is applied to evaluate the weighting values corresponding to various performance characteristics so that their relative importance can be properly and objectively desired. The results of confirmation experiments reveal that grey relational analysis coupled with principal component analysis can effectively acquire the optimal combination of process parameters. Hence, this confirm that the proposed approach in this study can be an useful tool to improve the process parameters in stereolithography process, which is very useful information for machine designers as well as RP machine users.

  8. Design and Analysis of Optimization Algorithms to Minimize Cryptographic Processing in BGP Security Protocols.

    PubMed

    Sriram, Vinay K; Montgomery, Doug

    2017-07-01

    The Internet is subject to attacks due to vulnerabilities in its routing protocols. One proposed approach to attain greater security is to cryptographically protect network reachability announcements exchanged between Border Gateway Protocol (BGP) routers. This study proposes and evaluates the performance and efficiency of various optimization algorithms for validation of digitally signed BGP updates. In particular, this investigation focuses on the BGPSEC (BGP with SECurity extensions) protocol, currently under consideration for standardization in the Internet Engineering Task Force. We analyze three basic BGPSEC update processing algorithms: Unoptimized, Cache Common Segments (CCS) optimization, and Best Path Only (BPO) optimization. We further propose and study cache management schemes to be used in conjunction with the CCS and BPO algorithms. The performance metrics used in the analyses are: (1) routing table convergence time after BGPSEC peering reset or router reboot events and (2) peak-second signature verification workload. Both analytical modeling and detailed trace-driven simulation were performed. Results show that the BPO algorithm is 330% to 628% faster than the unoptimized algorithm for routing table convergence in a typical Internet core-facing provider edge router.

  9. Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator

    NASA Astrophysics Data System (ADS)

    Cao, Wanjun; Li, Yangxing; Fitch, Brian; Shih, Jonathan; Doung, Tien; Zheng, Jim

    2014-12-01

    The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP®) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC.

  10. Optical Quality and Threshold Target Identification and Military Target Task Performance after Advanced Keratorefractive Surgery

    DTIC Science & Technology

    2013-05-01

    and Sensors Directorate. • Study participants and physicians select treatment: PRK or LASIK . WFG vs . WFO treatment modality is randomized. The...to undergo wavefront-guided (WFG) photorefractive keratectomy ( PRK ), WFG laser in situ keratomileusis ( LASIK ), wavefront optimized (WFO) PRK or WFO...TERMS Military, Refractive Surgery, PRK , LASIK , Night Vision, Wavefront Optimized, Wavefront Guided, Visual Performance, Quality of Vision, Outcomes

  11. Robust stochastic optimization for reservoir operation

    NASA Astrophysics Data System (ADS)

    Pan, Limeng; Housh, Mashor; Liu, Pan; Cai, Ximing; Chen, Xin

    2015-01-01

    Optimal reservoir operation under uncertainty is a challenging engineering problem. Application of classic stochastic optimization methods to large-scale problems is limited due to computational difficulty. Moreover, classic stochastic methods assume that the estimated distribution function or the sample inflow data accurately represents the true probability distribution, which may be invalid and the performance of the algorithms may be undermined. In this study, we introduce a robust optimization (RO) approach, Iterative Linear Decision Rule (ILDR), so as to provide a tractable approximation for a multiperiod hydropower generation problem. The proposed approach extends the existing LDR method by accommodating nonlinear objective functions. It also provides users with the flexibility of choosing the accuracy of ILDR approximations by assigning a desired number of piecewise linear segments to each uncertainty. The performance of the ILDR is compared with benchmark policies including the sampling stochastic dynamic programming (SSDP) policy derived from historical data. The ILDR solves both the single and multireservoir systems efficiently. The single reservoir case study results show that the RO method is as good as SSDP when implemented on the original historical inflows and it outperforms SSDP policy when tested on generated inflows with the same mean and covariance matrix as those in history. For the multireservoir case study, which considers water supply in addition to power generation, numerical results show that the proposed approach performs as well as in the single reservoir case study in terms of optimal value and distributional robustness.

  12. Experimental and Numerical Optimization of a High-Lift System to Improve Low-Speed Performance, Stability, and Control of an Arrow-Wing Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Glaab, Louis J.

    1999-01-01

    An investigation was performed to evaluate leading-and trailing-edge flap deflections for optimal aerodynamic performance of a High-Speed Civil Transport concept during takeoff and approach-to-landing conditions. The configuration used for this study was designed by the Douglas Aircraft Company during the 1970's. A 0.1-scale model of this configuration was tested in the Langley 30- by 60-Foot Tunnel with both the original leading-edge flap system and a new leading-edge flap system, which was designed with modem computational flow analysis and optimization tools. Leading-and trailing-edge flap deflections were generated for the original and modified leading-edge flap systems with the computational flow analysis and optimization tools. Although wind tunnel data indicated improvements in aerodynamic performance for the analytically derived flap deflections for both leading-edge flap systems, perturbations of the analytically derived leading-edge flap deflections yielded significant additional improvements in aerodynamic performance. In addition to the aerodynamic performance optimization testing, stability and control data were also obtained. An evaluation of the crosswind landing capability of the aircraft configuration revealed that insufficient lateral control existed as a result of high levels of lateral stability. Deflection of the leading-and trailing-edge flaps improved the crosswind landing capability of the vehicle considerably; however, additional improvements are required.

  13. General purpose graphic processing unit implementation of adaptive pulse compression algorithms

    NASA Astrophysics Data System (ADS)

    Cai, Jingxiao; Zhang, Yan

    2017-07-01

    This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.

  14. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-01-07

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  15. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-04-03

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  16. Analysis of the faster-than-Nyquist optimal linear multicarrier system

    NASA Astrophysics Data System (ADS)

    Marquet, Alexandre; Siclet, Cyrille; Roque, Damien

    2017-02-01

    Faster-than-Nyquist signalization enables a better spectral efficiency at the expense of an increased computational complexity. Regarding multicarrier communications, previous work mainly relied on the study of non-linear systems exploiting coding and/or equalization techniques, with no particular optimization of the linear part of the system. In this article, we analyze the performance of the optimal linear multicarrier system when used together with non-linear receiving structures (iterative decoding and direct feedback equalization), or in a standalone fashion. We also investigate the limits of the normality assumption of the interference, used for implementing such non-linear systems. The use of this optimal linear system leads to a closed-form expression of the bit-error probability that can be used to predict the performance and help the design of coded systems. Our work also highlights the great performance/complexity trade-off offered by decision feedback equalization in a faster-than-Nyquist context. xml:lang="fr"

  17. Dynamic characteristics of stay cables with inerter dampers

    NASA Astrophysics Data System (ADS)

    Shi, Xiang; Zhu, Songye

    2018-06-01

    This study systematically investigates the dynamic characteristics of a stay cable with an inerter damper installed close to one end of a cable. The interest in applying inerter dampers to stay cables is partially inspired by the superior damping performance of negative stiffness dampers in the same application. A comprehensive parametric study on two major parameters, namely, inertance and damping coefficients, are conducted using analytical and numerical approaches. An inerter damper can be optimized for one vibration mode of a stay cable by generating identical wave numbers in two adjacent modes. An optimal design approach is proposed for inerter dampers installed on stay cables. The corresponding optimal inertance and damping coefficients are summarized for different damper locations and interested modes. Inerter dampers can offer better damping performance than conventional viscous dampers for the target mode of a stay cable that requires optimization. However, additional damping ratios in other vibration modes through inerter damper are relatively limited.

  18. The effect of statistical noise on IMRT plan quality and convergence for MC-based and MC-correction-based optimized treatment plans.

    PubMed

    Siebers, Jeffrey V

    2008-04-04

    Monte Carlo (MC) is rarely used for IMRT plan optimization outside of research centres due to the extensive computational resources or long computation times required to complete the process. Time can be reduced by degrading the statistical precision of the MC dose calculation used within the optimization loop. However, this eventually introduces optimization convergence errors (OCEs). This study determines the statistical noise levels tolerated during MC-IMRT optimization under the condition that the optimized plan has OCEs <100 cGy (1.5% of the prescription dose) for MC-optimized IMRT treatment plans.Seven-field prostate IMRT treatment plans for 10 prostate patients are used in this study. Pre-optimization is performed for deliverable beams with a pencil-beam (PB) dose algorithm. Further deliverable-based optimization proceeds using: (1) MC-based optimization, where dose is recomputed with MC after each intensity update or (2) a once-corrected (OC) MC-hybrid optimization, where a MC dose computation defines beam-by-beam dose correction matrices that are used during a PB-based optimization. Optimizations are performed with nominal per beam MC statistical precisions of 2, 5, 8, 10, 15, and 20%. Following optimizer convergence, beams are re-computed with MC using 2% per beam nominal statistical precision and the 2 PTV and 10 OAR dose indices used in the optimization objective function are tallied. For both the MC-optimization and OC-optimization methods, statistical equivalence tests found that OCEs are less than 1.5% of the prescription dose for plans optimized with nominal statistical uncertainties of up to 10% per beam. The achieved statistical uncertainty in the patient for the 10% per beam simulations from the combination of the 7 beams is ~3% with respect to maximum dose for voxels with D>0.5D(max). The MC dose computation time for the OC-optimization is only 6.2 minutes on a single 3 Ghz processor with results clinically equivalent to high precision MC computations.

  19. Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-05-01

    One of the major challenges in civil, mechanical, and aerospace engineering is to develop vibration suppression systems with high efficiency and low cost. Recent studies have shown that high damping performance at broadband frequencies can be achieved by incorporating periodic inserts with tunable dynamic properties as internal resonators in structural systems. Structures featuring these kinds of inserts are referred to as metamaterials inspired structures or metastructures. Chiral lattice inserts exhibit unique characteristics such as frequency bandgaps which can be tuned by varying the parameters that define the lattice topology. Recent analytical and experimental investigations have shown that broadband vibration attenuation can be achieved by including chiral lattices as internal resonators in beam-like structures. However, these studies have suggested that the performance of chiral lattice inserts can be maximized by utilizing an efficient optimization technique to obtain the optimal topology of the inserted lattice. In this study, an automated optimization procedure based on a genetic algorithm is applied to obtain the optimal set of parameters that will result in chiral lattice inserts tuned properly to reduce the global vibration levels of a finite-sized beam. Genetic algorithms are considered in this study due to their capability of dealing with complex and insufficiently understood optimization problems. In the optimization process, the basic parameters that govern the geometry of periodic chiral lattices including the number of circular nodes, the thickness of the ligaments, and the characteristic angle are considered. Additionally, a new set of parameters is introduced to enable the optimization process to explore non-periodic chiral designs. Numerical simulations are carried out to demonstrate the efficiency of the optimization process.

  20. Optimality study of a gust alleviation system for light wing-loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Komoda, M.

    1976-01-01

    An analytical study was made of an optimal gust alleviation system that employs a vertical gust sensor mounted forward of an aircraft's center of gravity. Frequency domain optimization techniques were employed to synthesize the optimal filters that process the corrective signals to the flaps and elevator actuators. Special attention was given to evaluating the effectiveness of lead time, that is, the time by which relative wind sensor information should lead the actual encounter of the gust. The resulting filter is expressed as an implicit function of the prescribed control cost. A numerical example for a light wing loading STOL aircraft is included in which the optimal trade-off between performance and control cost is systematically studied.

  1. Influence of architecture and material properties on vanadium redox flow battery performance

    NASA Astrophysics Data System (ADS)

    Houser, Jacob; Clement, Jason; Pezeshki, Alan; Mench, Matthew M.

    2016-01-01

    This publication reports a design optimization study of all-vanadium redox flow batteries (VRBs), including performance testing, distributed current measurements, and flow visualization. Additionally, a computational flow simulation is used to support the conclusions made from the experimental results. This study demonstrates that optimal flow field design is not simply related to the best architecture, but is instead a more complex interplay between architecture, electrode properties, electrolyte properties, and operating conditions which combine to affect electrode convective transport. For example, an interdigitated design outperforms a serpentine design at low flow rates and with a thin electrode, accessing up to an additional 30% of discharge capacity; but a serpentine design can match the available discharge capacity of the interdigitated design by increasing the flow rate or the electrode thickness due to differing responses between the two flow fields. The results of this study should be useful to design engineers seeking to optimize VRB systems through enhanced performance and reduced pressure drop.

  2. Performance Optimizing Adaptive Control with Time-Varying Reference Model Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hashemi, Kelley E.

    2017-01-01

    This paper presents a new adaptive control approach that involves a performance optimization objective. The control synthesis involves the design of a performance optimizing adaptive controller from a subset of control inputs. The resulting effect of the performance optimizing adaptive controller is to modify the initial reference model into a time-varying reference model which satisfies the performance optimization requirement obtained from an optimal control problem. The time-varying reference model modification is accomplished by the real-time solutions of the time-varying Riccati and Sylvester equations coupled with the least-squares parameter estimation of the sensitivities of the performance metric. The effectiveness of the proposed method is demonstrated by an application of maneuver load alleviation control for a flexible aircraft.

  3. Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2006-01-01

    This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.

  4. New approaches to optimization in aerospace conceptual design

    NASA Technical Reports Server (NTRS)

    Gage, Peter J.

    1995-01-01

    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.

  5. Evaluation and optimization of microbial DNA extraction from fecal samples of wild Antarctic bird species

    PubMed Central

    Eriksson, Per; Mourkas, Evangelos; González-Acuna, Daniel; Olsen, Björn; Ellström, Patrik

    2017-01-01

    ABSTRACT Introduction: Advances in the development of nucleic acid-based methods have dramatically facilitated studies of host–microbial interactions. Fecal DNA analysis can provide information about the host’s microbiota and gastrointestinal pathogen burden. Numerous studies have been conducted in mammals, yet birds are less well studied. Avian fecal DNA extraction has proved challenging, partly due to the mixture of fecal and urinary excretions and the deficiency of optimized protocols. This study presents an evaluation of the performance in avian fecal DNA extraction of six commercial kits from different bird species, focusing on penguins. Material and methods: Six DNA extraction kits were first tested according to the manufacturers’ instructions using mallard feces. The kit giving the highest DNA yield was selected for further optimization and evaluation using Antarctic bird feces. Results: Penguin feces constitute a challenging sample type: most of the DNA extraction kits failed to yield acceptable amounts of DNA. The QIAamp cador Pathogen kit (Qiagen) performed the best in the initial investigation. Further optimization of the protocol resulted in good yields of high-quality DNA from seven bird species of different avian orders. Conclusion: This study presents an optimized approach to DNA extraction from challenging avian fecal samples. PMID:29152162

  6. Study optimizes gas lift in Gulf of Suez field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Waly, A.A.; Darwish, T.A.; Osman Salama, A.

    1996-06-24

    A study using PVT data combined with fluid and multiphase flow correlations optimized gas lift in the Ramadan field, Nubia C, oil wells, in the Gulf of Suez. Selection of appropriate correlations followed by multiphase flow calculations at various points of injection (POI) were the first steps in the study. After determining the POI for each well from actual pressure and temperature surveys, the study constructed lift gas performance curves for each well. Actual and optimum operating conditions were compared to determine the optimal gas lift. The study indicated a net 2,115 bo/d could be gained from implementing its recommendations.more » The actual net oil gained as a result of this optimization and injected gas reallocation was 2,024 bo/d. The paper discusses the Ramadan field, fluid properties, multiphase flow, production optimization, and results.« less

  7. Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Yan, Zhimiao; Lei, Hong

    2017-07-01

    Galloping-based piezoelectric energy harvesters scavenge small-scale wind energy and convert it into electrical energy. For piezoelectric energy harvesting with the same vibrational source (galloping) but different (alternating-current (AC) and direct-current (DC)) interfaces, general analytical solutions of the electromechanical coupled distributed parameter model are proposed. Galloping is theoretically proven to appear when the linear aerodynamic negative damping overcomes the electrical damping and mechanical damping. The harvested power is demonstrated as being done by the electrical damping force. Via tuning the load resistance to its optimal value for optimal or maximal electrical damping, the harvested power of the given structure with the AC/DC interface is maximized. The optimal load resistances and the corresponding performances of such two systems are compared. The optimal electrical damping are the same but with different optimal load resistances for the systems with the AC and DC interfaces. At small wind speeds where the optimal electrical damping can be realized by only tuning the load resistance, the performances of such two energy harvesting systems, including the minimal onset speeds to galloping, maximal harvested powers and corresponding tip displacements are almost the same. Smaller maximal electrical damping with larger optimal load resistance is found for the harvester with the DC interface when compared to those for the harvester with the AC interface. At large wind speeds when the maximal electrical damping rather than the optimal electrical damping can be reached by tuning the load resistance alone, the harvester with the AC interface circuit is recommended for a higher maximal harvested power with a smaller tip displacement. This study provides a method using the general electrical damping to connect and compare the performances of piezoelectric energy harvesters with same excitation source but different interfaces.

  8. Processing time tolerance-based ACO algorithm for solving job-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Luo, Yabo; Waden, Yongo P.

    2017-06-01

    Ordinarily, Job Shop Scheduling Problem (JSSP) is known as NP-hard problem which has uncertainty and complexity that cannot be handled by a linear method. Thus, currently studies on JSSP are concentrated mainly on applying different methods of improving the heuristics for optimizing the JSSP. However, there still exist many problems for efficient optimization in the JSSP, namely, low efficiency and poor reliability, which can easily trap the optimization process of JSSP into local optima. Therefore, to solve this problem, a study on Ant Colony Optimization (ACO) algorithm combined with constraint handling tactics is carried out in this paper. Further, the problem is subdivided into three parts: (1) Analysis of processing time tolerance-based constraint features in the JSSP which is performed by the constraint satisfying model; (2) Satisfying the constraints by considering the consistency technology and the constraint spreading algorithm in order to improve the performance of ACO algorithm. Hence, the JSSP model based on the improved ACO algorithm is constructed; (3) The effectiveness of the proposed method based on reliability and efficiency is shown through comparative experiments which are performed on benchmark problems. Consequently, the results obtained by the proposed method are better, and the applied technique can be used in optimizing JSSP.

  9. Optimization and performance of bifacial solar modules: A global perspective

    DOE PAGES

    Sun, Xingshu; Khan, Mohammad Ryyan; Deline, Chris; ...

    2018-02-06

    With the rapidly growing interest in bifacial photovoltaics (PV), a worldwide map of their potential performance can help assess and accelerate the global deployment of this emerging technology. However, the existing literature only highlights optimized bifacial PV for a few geographic locations or develops worldwide performance maps for very specific configurations, such as the vertical installation. It is still difficult to translate these location- and configuration-specific conclusions to a general optimized performance of this technology. In this paper, we present a global study and optimization of bifacial solar modules using a rigorous and comprehensive modeling framework. Our results demonstrate thatmore » with a low albedo of 0.25, the bifacial gain of ground-mounted bifacial modules is less than 10% worldwide. However, increasing the albedo to 0.5 and elevating modules 1 m above the ground can boost the bifacial gain to 30%. Moreover, we derive a set of empirical design rules, which optimize bifacial solar modules across the world and provide the groundwork for rapid assessment of the location-specific performance. We find that ground-mounted, vertical, east-west-facing bifacial modules will outperform their south-north-facing, optimally tilted counterparts by up to 15% below the latitude of 30 degrees, for an albedo of 0.5. The relative energy output is reversed in latitudes above 30 degrees. A detailed and systematic comparison with data from Asia, Africa, Europe, and North America validates the model presented in this paper.« less

  10. Optimization and performance of bifacial solar modules: A global perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Khan, Mohammad Ryyan; Deline, Chris

    With the rapidly growing interest in bifacial photovoltaics (PV), a worldwide map of their potential performance can help assess and accelerate the global deployment of this emerging technology. However, the existing literature only highlights optimized bifacial PV for a few geographic locations or develops worldwide performance maps for very specific configurations, such as the vertical installation. It is still difficult to translate these location- and configuration-specific conclusions to a general optimized performance of this technology. In this paper, we present a global study and optimization of bifacial solar modules using a rigorous and comprehensive modeling framework. Our results demonstrate thatmore » with a low albedo of 0.25, the bifacial gain of ground-mounted bifacial modules is less than 10% worldwide. However, increasing the albedo to 0.5 and elevating modules 1 m above the ground can boost the bifacial gain to 30%. Moreover, we derive a set of empirical design rules, which optimize bifacial solar modules across the world and provide the groundwork for rapid assessment of the location-specific performance. We find that ground-mounted, vertical, east-west-facing bifacial modules will outperform their south-north-facing, optimally tilted counterparts by up to 15% below the latitude of 30 degrees, for an albedo of 0.5. The relative energy output is reversed in latitudes above 30 degrees. A detailed and systematic comparison with data from Asia, Africa, Europe, and North America validates the model presented in this paper.« less

  11. Spiking neuron network Helmholtz machine.

    PubMed

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

  12. Spiking neuron network Helmholtz machine

    PubMed Central

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule. PMID:25954191

  13. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization.

    PubMed

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-03-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

  14. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization

    PubMed Central

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-01-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm. PMID:28257060

  15. Multidisciplinary design optimization of vehicle instrument panel based on multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Wu, Guangqiang

    2013-03-01

    Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.

  16. With a little help from my assistant: buffering the negative effects of emotional dissonance on dentist performance.

    PubMed

    Rodríguez-Sánchez, Alma M; Hakanen, Jari J; Perhoniemi, Riku; Salanova, Marisa

    2013-10-01

    In this study, we hypothesized that dentist' interpersonal resources (good cooperation with one's assistant) together with their personal resources (optimism) buffer the negative effects of emotional dissonance (a demand that occurs when there is a difference between felt and displayed emotions) on job performance (in-role and extra-role performance) over time. We carried out Hierarchical Regression Modeling on a sample of 1954 Finnish dentists who participated in a two-wave 4-year longitudinal study. Results showed that good cooperation with dental assistants buffered the negative effects of emotional dissonance on both in-role and extra-role performance among the dentists in the long term. However, unexpectedly, dentists' high optimism did not buffer their in-role nor extra-role performance over time under conditions of experiencing high emotional dissonance. We conclude that interpersonal job resources such as good cooperation with one's colleagues may buffer the negative effect of emotional dissonance on dentists' job performance even in the long term, whereas the role of personal resources (e.g., optimism) may be less important for maintaining high job performance under conditions of emotional dissonance. The study novelties include the test of the negative effects of emotional dissonance on long-term performance in dentistry and the identification of the job rather than personal resources as the buffers against the negative effects of emotional dissonance on long-term performance. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Intelligent ensemble T-S fuzzy neural networks with RCDPSO_DM optimization for effective handling of complex clinical pathway variances.

    PubMed

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang

    2013-07-01

    Takagi-Sugeno (T-S) fuzzy neural networks (FNNs) can be used to handle complex, fuzzy, uncertain clinical pathway (CP) variances. However, there are many drawbacks, such as slow training rate, propensity to become trapped in a local minimum and poor ability to perform a global search. In order to improve overall performance of variance handling by T-S FNNs, a new CP variance handling method is proposed in this study. It is based on random cooperative decomposing particle swarm optimization with double mutation mechanism (RCDPSO_DM) for T-S FNNs. Moreover, the proposed integrated learning algorithm, combining the RCDPSO_DM algorithm with a Kalman filtering algorithm, is applied to optimize antecedent and consequent parameters of constructed T-S FNNs. Then, a multi-swarm cooperative immigrating particle swarm algorithm ensemble method is used for intelligent ensemble T-S FNNs with RCDPSO_DM optimization to further improve stability and accuracy of CP variance handling. Finally, two case studies on liver and kidney poisoning variances in osteosarcoma preoperative chemotherapy are used to validate the proposed method. The result demonstrates that intelligent ensemble T-S FNNs based on the RCDPSO_DM achieves superior performances, in terms of stability, efficiency, precision and generalizability, over PSO ensemble of all T-S FNNs with RCDPSO_DM optimization, single T-S FNNs with RCDPSO_DM optimization, standard T-S FNNs, standard Mamdani FNNs and T-S FNNs based on other algorithms (cooperative particle swarm optimization and particle swarm optimization) for CP variance handling. Therefore, it makes CP variance handling more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Illumination system development using design and analysis of computer experiments

    NASA Astrophysics Data System (ADS)

    Keresztes, Janos C.; De Ketelaere, Bart; Audenaert, Jan; Koshel, R. J.; Saeys, Wouter

    2015-09-01

    Computer assisted optimal illumination design is crucial when developing cost-effective machine vision systems. Standard local optimization methods, such as downhill simplex optimization (DHSO), often result in an optimal solution that is influenced by the starting point by converging to a local minimum, especially when dealing with high dimensional illumination designs or nonlinear merit spaces. This work presents a novel nonlinear optimization approach, based on design and analysis of computer experiments (DACE). The methodology is first illustrated with a 2D case study of four light sources symmetrically positioned along a fixed arc in order to obtain optimal irradiance uniformity on a flat Lambertian reflecting target at the arc center. The first step consists of choosing angular positions with no overlap between sources using a fast, flexible space filling design. Ray-tracing simulations are then performed at the design points and a merit function is used for each configuration to quantify the homogeneity of the irradiance at the target. The obtained homogeneities at the design points are further used as input to a Gaussian Process (GP), which develops a preliminary distribution for the expected merit space. Global optimization is then performed on the GP more likely providing optimal parameters. Next, the light positioning case study is further investigated by varying the radius of the arc, and by adding two spots symmetrically positioned along an arc diametrically opposed to the first one. The added value of using DACE with regard to the performance in convergence is 6 times faster than the standard simplex method for equal uniformity of 97%. The obtained results were successfully validated experimentally using a short-wavelength infrared (SWIR) hyperspectral imager monitoring a Spectralon panel illuminated by tungsten halogen sources with 10% of relative error.

  19. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  20. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction

    PubMed Central

    Li, Zukui; Floudas, Christodoulos A.

    2012-01-01

    Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868

  1. Optimal design of a piezoelectric transducer for exciting guided wave ultrasound in rails

    NASA Astrophysics Data System (ADS)

    Ramatlo, Dineo A.; Wilke, Daniel N.; Loveday, Philip W.

    2017-02-01

    An existing Ultrasonic Broken Rail Detection System installed in South Africa on a heavy duty railway line is currently being upgraded to include defect detection and location. To accomplish this, an ultrasonic piezoelectric transducer to strongly excite a guided wave mode with energy concentrated in the web (web mode) of a rail is required. A previous study demonstrated that the recently developed SAFE-3D (Semi-Analytical Finite Element - 3 Dimensional) method can effectively predict the guided waves excited by a resonant piezoelectric transducer. In this study, the SAFE-3D model is used in the design optimization of a rail web transducer. A bound-constrained optimization problem was formulated to maximize the energy transmitted by the transducer in the web mode when driven by a pre-defined excitation signal. Dimensions of the transducer components were selected as the three design variables. A Latin hypercube sampled design of experiments that required a total of 500 SAFE-3D analyses in the design space was employed in a response surface-based optimization approach. The Nelder-Mead optimization algorithm was then used to find an optimal transducer design on the constructed response surface. The radial basis function response surface was first verified by comparing a number of predicted responses against the computed SAFE-3D responses. The performance of the optimal transducer predicted by the optimization algorithm on the response surface was also verified to be sufficiently accurate using SAFE-3D. The computational advantages of SAFE-3D in optimal transducer design are noteworthy as more than 500 analyses were performed. The optimal design was then manufactured and experimental measurements were used to validate the predicted performance. The adopted design method has demonstrated the capability to automate the design of transducers for a particular rail cross-section and frequency range.

  2. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    NASA Astrophysics Data System (ADS)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this study, it is recommended that air carriers increase focus on defining policies like load scheduling, CG management, reduction in zero fuel weight, inclusion of performance measurement systems, and adapting to the regulations to best optimize the spirit of the requirement.. As well, air carriers should create a larger drive to implement the FAA's NextGen system and move the industry into the future.

  3. Reliability based design optimization: Formulations and methodologies

    NASA Astrophysics Data System (ADS)

    Agarwal, Harish

    Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed. A trust region managed sequential approximate optimization methodology is employed for this purpose. Results from numerical test studies indicate that the methodology can be used for performing design optimization under severe uncertainty.

  4. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Hajela, Prabhat

    1990-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  5. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, L.; Hajela, P.

    1992-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  6. Experiences in autotuning matrix multiplication for energy minimization on GPUs

    DOE PAGES

    Anzt, Hartwig; Haugen, Blake; Kurzak, Jakub; ...

    2015-05-20

    In this study, we report extensive results and analysis of autotuning the computationally intensive graphics processing units kernel for dense matrix–matrix multiplication in double precision. In contrast to traditional autotuning and/or optimization for runtime performance only, we also take the energy efficiency into account. For kernels achieving equal performance, we show significant differences in their energy balance. We also identify the memory throughput as the most influential metric that trades off performance and energy efficiency. Finally, as a result, the performance optimal case ends up not being the most efficient kernel in overall resource use.

  7. Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells

    NASA Astrophysics Data System (ADS)

    Hu, K. M.; Li, Hua

    2018-07-01

    A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.

  8. Optimal design of a hybrid MR brake for haptic wrist application

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc Hung; Nguyen, Phuong Bac; Choi, Seung-Bok

    2011-03-01

    In this work, a new configuration of a magnetorheological (MR) brake is proposed and an optimal design of the proposed MR brake for haptic wrist application is performed considering the required braking torque, the zero-field friction torque, the size and mass of the brake. The proposed MR brake configuration is a combination of disc-type and drum-type which is referred as a hybrid configuration in this study. After the MR brake with the hybrid configuration is proposed, braking torque of the brake is analyzed based on Bingham rheological model of the MR fluid. The zero-field friction torque of the MR brake is also obtained. An optimization procedure based on finite element analysis integrated with an optimization tool is developed for the MR brake. The purpose of the optimal design is to find the optimal geometric dimensions of the MR brake structure that can produce the required braking torque and minimize the uncontrollable torque (passive torque) of the haptic wrist. Based on developed optimization procedure, optimal solution of the proposed MR brake is achieved. The proposed optimized hybrid brake is then compared with conventional types of MR brake and discussions on working performance of the proposed MR brake are described.

  9. Optimal control model predictions of system performance and attention allocation and their experimental validation in a display design study

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Govindaraj, T.

    1980-01-01

    The influence of different types of predictor displays in a longitudinal vertical takeoff and landing (VTOL) hover task is analyzed in a theoretical study. Several cases with differing amounts of predictive and rate information are compared. The optimal control model of the human operator is used to estimate human and system performance in terms of root-mean-square (rms) values and to compute optimized attention allocation. The only part of the model which is varied to predict these data is the observation matrix. Typical cases are selected for a subsequent experimental validation. The rms values as well as eye-movement data are recorded. The results agree favorably with those of the theoretical study in terms of relative differences. Better matching is achieved by revised model input data.

  10. Optimization of seismic isolation systems via harmony search

    NASA Astrophysics Data System (ADS)

    Melih Nigdeli, Sinan; Bekdaş, Gebrail; Alhan, Cenk

    2014-11-01

    In this article, the optimization of isolation system parameters via the harmony search (HS) optimization method is proposed for seismically isolated buildings subjected to both near-fault and far-fault earthquakes. To obtain optimum values of isolation system parameters, an optimization program was developed in Matlab/Simulink employing the HS algorithm. The objective was to obtain a set of isolation system parameters within a defined range that minimizes the acceleration response of a seismically isolated structure subjected to various earthquakes without exceeding a peak isolation system displacement limit. Several cases were investigated for different isolation system damping ratios and peak displacement limitations of seismic isolation devices. Time history analyses were repeated for the neighbouring parameters of optimum values and the results proved that the parameters determined via HS were true optima. The performance of the optimum isolation system was tested under a second set of earthquakes that was different from the first set used in the optimization process. The proposed optimization approach is applicable to linear isolation systems. Isolation systems composed of isolation elements that are inherently nonlinear are the subject of a future study. Investigation of the optimum isolation system parameters has been considered in parametric studies. However, obtaining the best performance of a seismic isolation system requires a true optimization by taking the possibility of both near-fault and far-fault earthquakes into account. HS optimization is proposed here as a viable solution to this problem.

  11. (Too) optimistic about optimism: the belief that optimism improves performance.

    PubMed

    Tenney, Elizabeth R; Logg, Jennifer M; Moore, Don A

    2015-03-01

    A series of experiments investigated why people value optimism and whether they are right to do so. In Experiments 1A and 1B, participants prescribed more optimism for someone implementing decisions than for someone deliberating, indicating that people prescribe optimism selectively, when it can affect performance. Furthermore, participants believed optimism improved outcomes when a person's actions had considerable, rather than little, influence over the outcome (Experiment 2). Experiments 3 and 4 tested the accuracy of this belief; optimism improved persistence, but it did not improve performance as much as participants expected. Experiments 5A and 5B found that participants overestimated the relationship between optimism and performance even when their focus was not on optimism exclusively. In summary, people prescribe optimism when they believe it has the opportunity to improve the chance of success-unfortunately, people may be overly optimistic about just how much optimism can do. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  12. High-Fidelity Aerostructural Design Optimization of Transport Aircraft with Continuous Morphing Trailing Edge Technology

    NASA Astrophysics Data System (ADS)

    Burdette, David A., Jr.

    Adaptive morphing trailing edge technology offers the potential to decrease the fuel burn of transonic commercial transport aircraft by allowing wings to dynamically adjust to changing flight conditions. Current configurations allow flap and aileron droop; however, this approach provides limited degrees of freedom and increased drag produced by gaps in the wing's surface. Leading members in the aeronautics community including NASA, AFRL, Boeing, and a number of academic institutions have extensively researched morphing technology for its potential to improve aircraft efficiency. With modern computational tools it is possible to accurately and efficiently model aircraft configurations in order to quantify the efficiency improvements offered by mor- phing technology. Coupled high-fidelity aerodynamic and structural solvers provide the capability to model and thoroughly understand the nuanced trade-offs involved in aircraft design. This capability is important for a detailed study of the capabilities of morphing trailing edge technology. Gradient-based multidisciplinary design opti- mization provides the ability to efficiently traverse design spaces and optimize the trade-offs associated with the design. This thesis presents a number of optimization studies comparing optimized config- urations with and without morphing trailing edge devices. The baseline configuration used throughout this work is the NASA Common Research Model. The first opti- mization comparison considers the optimal fuel burn predicted by the Breguet range equation at a single cruise point. This initial singlepoint optimization comparison demonstrated a limited fuel burn savings of less than 1%. Given the effectiveness of the passive aeroelastic tailoring in the optimized non-morphing wing, the singlepoint optimization offered limited potential for morphing technology to provide any bene- fit. To provide a more appropriate comparison, a number of multipoint optimizations were performed. With a 3-point stencil, the morphing wing burned 2.53% less fuel than its optimized non-morphing counterpart. Expanding further to a 7-point stencil, the morphing wing used 5.04% less fuel. Additional studies demonstrate that the size of the morphing device can be reduced without sizable performance reductions, and that as aircraft wings' aspect ratios increase, the effectiveness of morphing trailing edge devices increases. The final set of studies in this thesis consider mission analy- sis, including climb, multi-altitude cruise, and descent. These mission analyses were performed with a number of surrogate models, trained with O(100) optimizations. These optimizations demonstrated fuel burn reductions as large as 5% at off-design conditions. The fuel burn predicted by the mission analysis was up to 2.7% lower for the morphing wing compared to the conventional configuration.

  13. Optimal design of a shear magnetorheological damper for turning vibration suppression

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhang, Y. L.

    2013-09-01

    The intelligent material, so-called magnetorheological (MR) fluid, is utilized to control turning vibration. According to the structure of a common lathe CA6140, a shear MR damper is conceived by designing its structure and magnetic circuit. The vibration suppression effect of the damper is proved with dynamic analysis and simulation. Further, the magnetic circuit of the damper is optimized with the ANSYS parametric design language (APDL). In the optimization course, the area of the magnetic circuit and the damping force are considered. After optimization, the damper’s structure and its efficiency of electrical energy consumption are improved. Additionally, a comparative study on damping forces acquired from the initial and optimal design is conducted. A prototype of the developed MR damper is fabricated and magnetic tests are performed to measure the magnetic flux intensities and the residual magnetism in four damping gaps. Then, the testing results are compared with the simulated results. Finally, the suppressing vibration experimental system is set up and cylindrical turning experiments are performed to investigate the working performance of the MR damper.

  14. Identification of Swallowing Tasks from a Modified Barium Swallow Study That Optimize the Detection of Physiological Impairment

    ERIC Educational Resources Information Center

    Hazelwood, R. Jordan; Armeson, Kent E.; Hill, Elizabeth G.; Bonilha, Heather Shaw; Martin-Harris, Bonnie

    2017-01-01

    Purpose: The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. Method: This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived…

  15. Economic Evaluation of Dual-Level-Residence Solar-Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    105-page report is one in a series of economic evaluations of different solar-energy installations. Using study results, an optimal collector area is chosen that minimizes life-cycle costs. From this optimal size thermal and economic performance is evaluated.

  16. Integrated modeling environment for systems-level performance analysis of the Next-Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Mosier, Gary E.; Femiano, Michael; Ha, Kong; Bely, Pierre Y.; Burg, Richard; Redding, David C.; Kissil, Andrew; Rakoczy, John; Craig, Larry

    1998-08-01

    All current concepts for the NGST are innovative designs which present unique systems-level challenges. The goals are to outperform existing observatories at a fraction of the current price/performance ratio. Standard practices for developing systems error budgets, such as the 'root-sum-of- squares' error tree, are insufficient for designs of this complexity. Simulation and optimization are the tools needed for this project; in particular tools that integrate controls, optics, thermal and structural analysis, and design optimization. This paper describes such an environment which allows sub-system performance specifications to be analyzed parametrically, and includes optimizing metrics that capture the science requirements. The resulting systems-level design trades are greatly facilitated, and significant cost savings can be realized. This modeling environment, built around a tightly integrated combination of commercial off-the-shelf and in-house- developed codes, provides the foundation for linear and non- linear analysis on both the time and frequency-domains, statistical analysis, and design optimization. It features an interactive user interface and integrated graphics that allow highly-effective, real-time work to be done by multidisciplinary design teams. For the NGST, it has been applied to issues such as pointing control, dynamic isolation of spacecraft disturbances, wavefront sensing and control, on-orbit thermal stability of the optics, and development of systems-level error budgets. In this paper, results are presented from parametric trade studies that assess requirements for pointing control, structural dynamics, reaction wheel dynamic disturbances, and vibration isolation. These studies attempt to define requirements bounds such that the resulting design is optimized at the systems level, without attempting to optimize each subsystem individually. The performance metrics are defined in terms of image quality, specifically centroiding error and RMS wavefront error, which directly links to science requirements.

  17. Design, Modeling and Performance Optimization of a Novel Rotary Piezoelectric Motor

    NASA Technical Reports Server (NTRS)

    Duong, Khanh A.; Garcia, Ephrahim

    1997-01-01

    This work has demonstrated a proof of concept for a torsional inchworm type motor. The prototype motor has shown that piezoelectric stack actuators can be used for rotary inchworm motor. The discrete linear motion of piezoelectric stacks can be converted into rotary stepping motion. The stacks with its high force and displacement output are suitable actuators for use in piezoelectric motor. The designed motor is capable of delivering high torque and speed. Critical issues involving the design and operation of piezoelectric motors were studied. The tolerance between the contact shoes and the rotor has proved to be very critical to the performance of the motor. Based on the prototype motor, a waveform optimization scheme was proposed and implemented to improve the performance of the motor. The motor was successfully modeled in MATLAB. The model closely represents the behavior of the prototype motor. Using the motor model, the input waveforms were successfully optimized to improve the performance of the motor in term of speed, torque, power and precision. These optimized waveforms drastically improve the speed of the motor at different frequencies and loading conditions experimentally. The optimized waveforms also increase the level of precision of the motor. The use of the optimized waveform is a break-away from the traditional use of sinusoidal and square waves as the driving signals. This waveform optimization scheme can be applied to any inchworm motors to improve their performance. The prototype motor in this dissertation as a proof of concept was designed to be robust and large. Future motor can be designed much smaller and more efficient with lessons learned from the prototype motor.

  18. A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2001-01-01

    It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and economical way of exploring the concept of Robust inlet design, where the mission variables are brought directly into the inlet design process and insensitivity or robustness to the mission variables becomes a design objective.

  19. PFIM 4.0, an extended R program for design evaluation and optimization in nonlinear mixed-effect models.

    PubMed

    Dumont, Cyrielle; Lestini, Giulia; Le Nagard, Hervé; Mentré, France; Comets, Emmanuelle; Nguyen, Thu Thuy; Group, For The Pfim

    2018-03-01

    Nonlinear mixed-effect models (NLMEMs) are increasingly used for the analysis of longitudinal studies during drug development. When designing these studies, the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. The function PFIM is the first tool for design evaluation and optimization that has been developed in R. In this article, we present an extended version, PFIM 4.0, which includes several new features. Compared with version 3.0, PFIM 4.0 includes a more complete pharmacokinetic/pharmacodynamic library of models and accommodates models including additional random effects for inter-occasion variability as well as discrete covariates. A new input method has been added to specify user-defined models through an R function. Optimization can be performed assuming some fixed parameters or some fixed sampling times. New outputs have been added regarding the FIM such as eigenvalues, conditional numbers, and the option of saving the matrix obtained after evaluation or optimization. Previously obtained results, which are summarized in a FIM, can be taken into account in evaluation or optimization of one-group protocols. This feature enables the use of PFIM for adaptive designs. The Bayesian individual FIM has been implemented, taking into account a priori distribution of random effects. Designs for maximum a posteriori Bayesian estimation of individual parameters can now be evaluated or optimized and the predicted shrinkage is also reported. It is also possible to visualize the graphs of the model and the sensitivity functions without performing evaluation or optimization. The usefulness of these approaches and the simplicity of use of PFIM 4.0 are illustrated by two examples: (i) an example of designing a population pharmacokinetic study accounting for previous results, which highlights the advantage of adaptive designs; (ii) an example of Bayesian individual design optimization for a pharmacodynamic study, showing that the Bayesian individual FIM can be a useful tool in therapeutic drug monitoring, allowing efficient prediction of estimation precision and shrinkage for individual parameters. PFIM 4.0 is a useful tool for design evaluation and optimization of longitudinal studies in pharmacometrics and is freely available at http://www.pfim.biostat.fr. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Setup optimization toward accurate ageing studies of gas filled detectors

    NASA Astrophysics Data System (ADS)

    Abuhoza, A.; Schmidt, H. R.; Biswas, S.; Frankenfeld, U.; Hehner, J.; Schmidt, C. J.

    2013-08-01

    An infrastructure has been set up at the GSI detector laboratory to study the influence of construction materials on the ageing properties of gas filled detectors, such as multi-wire proportional chamber (MWPC), gas electron multiplier (GEM). Optimization of an ageing setup was performed by observing the variation of the normalized gain obtained using two identical MWPCs. An accuracy in the relative gain measurement below 1% has been achieved by monitoring environmental conditions and by systematic improvements of the measuring equipment. Ageing test of fiberglass G11 has been performed.

  1. Optimization of dilute sulfuric acid pretreatment to maximize combined sugar yield from sugarcane bagasse for ethanol production.

    PubMed

    Benjamin, Y; Cheng, H; Görgens, J F

    2014-01-01

    Increasing fermentable sugar yields per gram of biomass depends strongly on optimal selection of varieties and optimization of pretreatment conditions. In this study, dilute acid pretreatment of bagasse from six varieties of sugarcane was investigated in connection with enzymatic hydrolysis for maximum combined sugar yield (CSY). The CSY from the varieties were also compared with the results from industrial bagasse. The results revealed considerable differences in CSY between the varieties. Up to 22.7 % differences in CSY at the optimal conditions was observed. The combined sugar yield difference between the best performing variety and the industrial bagasse was 34.1 %. High ratio of carbohydrates to lignin and low ash content favored the release of sugar from the substrates. At mild pretreatment conditions, the differences in bioconversion efficiency between varieties were greater than at severe condition. This observation suggests that under less severe conditions the glucose recovery was largely determined by chemical composition of biomass. The results from this study support the possibility of increasing sugar yields or improving the conversion efficiency when pretreatment optimization is performed on varieties with improved properties.

  2. Trade Studies for a Manned High-Power Nuclear Electric Propulsion Vehicle

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael; Hull, Patrick V.; Irwin, Ryan W.; TInker, Michael L.; Patton, Bruce W.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate vehicles must be identified through trade studies for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combines analysis codes for NEP subsystems with genetic algorithm-based optimization. Trade studies for a NEP reference mission to the asteroids were conducted to identify important trends, and to determine the effects of various technologies and subsystems on vehicle performance. It was found that the electric thruster type and thruster performance have a major impact on the achievable system performance, and that significant effort in thruster research and development is merited.

  3. The optimization of concrete mixtures for use in highway applications

    NASA Astrophysics Data System (ADS)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content. Conducted research enabled further reduction of cement contents to 250 kg/m3 (420 lb/yd3) as required for the design of sustainable concrete pavements. This research demonstrated that aggregate packing can be used in multiple ways as a tool to optimize the aggregates assemblies and achieve the optimal particle size distribution of aggregate blends. The SCMs, and air-entraining admixtures were selected to comply with existing WisDOT performance requirements and chemical admixtures were selected using the separate optimization study excluded from this thesis. The performance of different concrete mixtures was evaluated for fresh properties, strength development, and compressive and flexural strength ranging from 1 to 360 days. The methods and tools discussed in this research are applicable, but not limited to concrete pavement applications. The current concrete proportioning standards such as ACI 211 or current WisDOT roadway standard specifications (Part 5: Structures, Section 501: Concrete) for concrete have limited or no recommendations, methods or guidelines on aggregate optimization, the use of ternary aggregate blends (e.g., such as those used in asphalt industry), the optimization of SCMs (e.g., class F and C fly ash, slag, metakaolin, silica fume), modern superplasticizers (such as polycarboxylate ether, PCE) and air-entraining admixtures. This research has demonstrated that the optimization of concrete mixture proportions can be achieved by the use and proper selection of optimal aggregate blends and result in 12% to 35% reduction of cement content and also more than 50% enhancement of performance. To prove the proposed concrete proportioning method the following steps were performed: • The experimental aggregate packing was investigated using northern and southern source of aggregates from Wisconsin; • The theoretical aggregate packing models were utilized and results were compared with experiments; • Multiple aggregate optimization methods (e.g., optimal grading, coarseness chart) were studied and compared to aggregate packing results and performance of experimented concrete mixtures; • Optimal aggregate blends were selected and used for concrete mixtures; • The optimal dosage of admixtures were selected for three types of plasticizing and superplasticizing admixtures based on a separately conducted study; • The SCM dosages were selected based on current WisDOT specifications; • The optimal air-entraining admixture dosage was investigated based on performance of preliminary concrete mixtures; • Finally, optimal concrete mixtures were tested for fresh properties, compressive strength development, modulus of rupture, at early ages (1day) and ultimate ages (360 days). • Durability performance indicators for optimal concrete mixtures were also tested for resistance of concrete to rapid chloride permeability (RCP) at 30 days and 90 days and resistance to rapid freezing and thawing at 56 days.

  4. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III

    1979-01-01

    The angle tracking problems in microwave landing system receivers along with a receiver design capable of optimal performance in the multipath environments found in air terminal areas were studied. Included were various theoretical and evaluative studies like: (1) signal model development; (2) derivation of optimal receiver structures; and (3) development and use of computer simulations for receiver algorithm evaluation. The development of an experimental receiver for flight testing is presented. An overview of the work and summary of principal results and conclusions are reported.

  5. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.

    PubMed

    Thompson-Bean, E; Das, R; McDaid, A

    2016-10-31

    We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.

  6. Interplanetary program to optimize simulated trajectories (IPOST). Volume 4: Sample cases

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Simulated Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization are performed using the Standard NPSOL algorithm. The IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  7. Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.

    PubMed

    Cheng, Xianfu; Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  8. Queue and stack sorting algorithm optimization and performance analysis

    NASA Astrophysics Data System (ADS)

    Qian, Mingzhu; Wang, Xiaobao

    2018-04-01

    Sorting algorithm is one of the basic operation of a variety of software development, in data structures course specializes in all kinds of sort algorithm. The performance of the sorting algorithm is directly related to the efficiency of the software. A lot of excellent scientific research queue is constantly optimizing algorithm, algorithm efficiency better as far as possible, the author here further research queue combined with stacks of sorting algorithms, the algorithm is mainly used for alternating operation queue and stack storage properties, Thus avoiding the need for a large number of exchange or mobile operations in the traditional sort. Before the existing basis to continue research, improvement and optimization, the focus on the optimization of the time complexity of the proposed optimization and improvement, The experimental results show that the improved effectively, at the same time and the time complexity and space complexity of the algorithm, the stability study corresponding research. The improvement and optimization algorithm, improves the practicability.

  9. Topology optimization in acoustics and elasto-acoustics via a level-set method

    NASA Astrophysics Data System (ADS)

    Desai, J.; Faure, A.; Michailidis, G.; Parry, G.; Estevez, R.

    2018-04-01

    Optimizing the shape and topology (S&T) of structures to improve their acoustic performance is quite challenging. The exact position of the structural boundary is usually of critical importance, which dictates the use of geometric methods for topology optimization instead of standard density approaches. The goal of the present work is to investigate different possibilities for handling topology optimization problems in acoustics and elasto-acoustics via a level-set method. From a theoretical point of view, we detail two equivalent ways to perform the derivation of surface-dependent terms and propose a smoothing technique for treating problems of boundary conditions optimization. In the numerical part, we examine the importance of the surface-dependent term in the shape derivative, neglected in previous studies found in the literature, on the optimal designs. Moreover, we test different mesh adaptation choices, as well as technical details related to the implicit surface definition in the level-set approach. We present results in two and three-space dimensions.

  10. Mission and system optimization of nuclear electric propulsion vehicles for lunar and Mars missions

    NASA Technical Reports Server (NTRS)

    Gilland, James H.

    1991-01-01

    The detailed mission and system optimization of low thrust electric propulsion missions is a complex, iterative process involving interaction between orbital mechanics and system performance. Through the use of appropriate approximations, initial system optimization and analysis can be performed for a range of missions. The intent of these calculations is to provide system and mission designers with simple methods to assess system design without requiring access or detailed knowledge of numerical calculus of variations optimizations codes and methods. Approximations for the mission/system optimization of Earth orbital transfer and Mars mission have been derived. Analyses include the variation of thruster efficiency with specific impulse. Optimum specific impulse, payload fraction, and power/payload ratios are calculated. The accuracy of these methods is tested and found to be reasonable for initial scoping studies. Results of optimization for Space Exploration Initiative lunar cargo and Mars missions are presented for a range of power system and thruster options.

  11. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    PubMed

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  12. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    IPOST is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence fo trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the coat function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  13. Shape Optimization and Modular Discretization for the Development of a Morphing Wingtip

    NASA Astrophysics Data System (ADS)

    Morley, Joshua

    Better knowledge in the areas of aerodynamics and optimization has allowed designers to develop efficient wingtip structures in recent years. However, the requirements faced by wingtip devices can be considerably different amongst an aircraft's flight regimes. Traditional static wingtip devices are then a compromise between conflicting requirements, resulting in less than optimal performance within each regime. Alternatively, a morphing wingtip can reconfigure leading to improved performance over a range of dissimilar flight conditions. Developed within this thesis, is a modular morphing wingtip concept that centers on the use of variable geometry truss mechanisms to permit morphing. A conceptual design framework is established to aid in the development of the concept. The framework uses a metaheuristic optimization procedure to determine optimal continuous wingtip configurations. The configurations are then discretized for the modular concept. The functionality of the framework is demonstrated through a design study on a hypothetical wing/winglet within the thesis.

  14. The Development and Use of a Flight Optimization System Model of a C-130E Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Desch, Jeremy D.

    1995-01-01

    The Systems Analysis Branch at NASA Langley Research Center conducts a variety of aircraft design and analyses studies. These studies include the prediction of characteristics of a particular conceptual design, analyses of designs that already exist, and assessments of the impact of technology on current and future aircraft. The FLight OPtimization System (FLOPS) is a tool used for aircraft systems analysis and design. A baseline input model of a Lockheed C-130E was generated for the Flight Optimization System. This FLOPS model can be used to conduct design-trade studies and technology impact assessments. The input model was generated using standard input data such as basic geometries and mission specifications. All of the other data needed to determine the airplane performance is computed internally by FLOPS. The model was then calibrated to reproduce the actual airplane performance from flight test data. This allows a systems analyzer to change a specific item of geometry or mission definition in the FLOPS input file and evaluate the resulting change in performance from the output file. The baseline model of the C-130E was used to analyze the effects of implementing upper wing surface blowing on the airplane. This involved removing the turboprop engines that were on the C-130E and replacing them with turbofan engines. An investigation of the improvements in airplane performance with the new engines could be conducted within the Flight Optimization System. Although a thorough analysis was not completed, the impact of this change on basic mission performance was investigated.

  15. Performance enhancement of Pt/TiO2/Si UV-photodetector by optimizing light trapping capability and interdigitated electrodes geometry

    NASA Astrophysics Data System (ADS)

    Bencherif, H.; Djeffal, F.; Ferhati, H.

    2016-09-01

    This paper presents a hybrid approach based on an analytical and metaheuristic investigation to study the impact of the interdigitated electrodes engineering on both speed and optical performance of an Interdigitated Metal-Semiconductor-Metal Ultraviolet Photodetector (IMSM-UV-PD). In this context, analytical models regarding the speed and optical performance have been developed and validated by experimental results, where a good agreement has been recorded. Moreover, the developed analytical models have been used as objective functions to determine the optimized design parameters, including the interdigit configuration effect, via a Multi-Objective Genetic Algorithm (MOGA). The ultimate goal of the proposed hybrid approach is to identify the optimal design parameters associated with the maximum of electrical and optical device performance. The optimized IMSM-PD not only reveals superior performance in terms of photocurrent and response time, but also illustrates higher optical reliability against the optical losses due to the active area shadowing effects. The advantages offered by the proposed design methodology suggest the possibility to overcome the most challenging problem with the communication speed and power requirements of the UV optical interconnect: high derived current and commutation speed in the UV receiver.

  16. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms.

    PubMed

    Gobin, Oliver C; Schüth, Ferdi

    2008-01-01

    Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.

  17. Comparison of global optimization approaches for robust calibration of hydrologic model parameters

    NASA Astrophysics Data System (ADS)

    Jung, I. W.

    2015-12-01

    Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  18. Design and Manufacturing of Composite Tower Structure for Wind Turbine Equipment

    NASA Astrophysics Data System (ADS)

    Park, Hyunbum

    2018-02-01

    This study proposes the composite tower design process for large wind turbine equipment. In this work, structural design of tower and analysis using finite element method was performed. After structural design, prototype blade manufacturing and test was performed. The used material is a glass fiber and epoxy resin composite. And also, sand was used in the middle part. The optimized structural design and analysis was performed. The parameter for optimized structural design is weight reduction and safety of structure. Finally, structure of tower will be confirmed by structural test.

  19. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    NASA Astrophysics Data System (ADS)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  20. Optimal performance of single-column chromatography and simulated moving bed processes for the separation of optical isomers

    NASA Astrophysics Data System (ADS)

    Medi, Bijan; Kazi, Monzure-Khoda; Amanullah, Mohammad

    2013-06-01

    Chromatography has been established as the method of choice for the separation and purification of optically pure drugs which has a market size of about 250 billion USD. Single column chromatography (SCC) is commonly used in the development and testing phase of drug development while multi-column Simulated Moving Bed (SMB) chromatography is more suitable for large scale production due to its continuous nature. In this study, optimal performance of SCC and SMB processes for the separation of optical isomers under linear and overloaded separation conditions has been investigated. The performance indicators, namely productivity and desorbent requirement have been compared under geometric similarity for the separation of a mixture of guaifenesin, and Tröger's base enantiomers. SCC process has been analyzed under equilibrium assumption i.e., assuming infinite column efficiency, and zero dispersion, and its optimal performance parameters are compared with the optimal prediction of an SMB process by triangle theory. Simulation results obtained using actual experimental data indicate that SCC may compete with SMB in terms of productivity depending on the molecules to be separated. Besides, insights into the process performances in terms of degree of freedom and relationship between the optimal operating point and solubility limit of the optical isomers have been ascertained. This investigation enables appropriate selection of single or multi-column chromatographic processes based on column packing properties and isotherm parameters.

  1. Design conceptuel d'un avion blended wing body de 200 passagers

    NASA Astrophysics Data System (ADS)

    Ammar, Sami

    The Blended Wing Body is built based on the flying wing concept and performance improvements compared to conventional aircraft. Contrariwise, most studies have focused on large aircraft and it is not sure whether the gains are the same for smaller aircraft. The main of objective is to perform the conceptual design of a BWB of 200 passengers and compare the performance obtained with a conventional aircraft equivalent in terms of payload and range. The design of the Blended Wing Body was carried out under the CEASIOM environment. This platform design suitable for conventional aircraft design has been modified and additional tools have been integrated in order to achieve the aerodynamic analysis, performance and stability of the aircraft fuselage built. A plane model is obtained in the geometric module AcBuilder CEASIOM from the design variables of a wing. Estimates of mass are made from semi- empirical formulas adapted to the geometry of the BWB and calculations centering and inertia are possible through BWB model developed in CATIA. Low fidelity methods, such as TORNADO and semi- empirical formulas are used to analyze the aerodynamic performance and stability of the aircraft. The aerodynamic results are validated using a high-fidelity analysis using FLUENT CFD software. An optimization process is implemented in order to obtain improved while maintaining a feasible design performance. It is an optimization of the plan form of the aircraft fuselage integrated with a number of passengers and equivalent to that of a A320.Les performance wing aircraft merged optimized maximum range are compared to A320 also optimized. Significant gains were observed. An analysis of the dynamics of longitudinal and lateral flight is carried out on the aircraft optimized BWB finesse and mass. This study identified the stable and unstable modes of the aircraft. Thus, this analysis has highlighted the stability problems associated with the oscillation of incidence and the Dutch roll for the absence of stabilizers.

  2. Optimized bio-inspired stiffening design for an engine nacelle.

    PubMed

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-11-04

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint.

  3. Fuel consumption optimization for smart hybrid electric vehicle during a car-following process

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Xiangyu; Song, Jian

    2017-03-01

    Hybrid electric vehicles (HEVs) provide large potential to save energy and reduce emission, and smart vehicles bring out great convenience and safety for drivers. By combining these two technologies, vehicles may achieve excellent performances in terms of dynamic, economy, environmental friendliness, safety, and comfort. Hence, a smart hybrid electric vehicle (s-HEV) is selected as a platform in this paper to study a car-following process with optimizing the fuel consumption. The whole process is a multi-objective optimal problem, whose optimal solution is not just adding an energy management strategy (EMS) to an adaptive cruise control (ACC), but a deep fusion of these two methods. The problem has more restricted conditions, optimal objectives, and system states, which may result in larger computing burden. Therefore, a novel fuel consumption optimization algorithm based on model predictive control (MPC) is proposed and some search skills are adopted in receding horizon optimization to reduce computing burden. Simulations are carried out and the results indicate that the fuel consumption of proposed method is lower than that of the ACC+EMS method on the condition of ensuring car-following performances.

  4. Robustness analysis of superpixel algorithms to image blur, additive Gaussian noise, and impulse noise

    NASA Astrophysics Data System (ADS)

    Brekhna, Brekhna; Mahmood, Arif; Zhou, Yuanfeng; Zhang, Caiming

    2017-11-01

    Superpixels have gradually become popular in computer vision and image processing applications. However, no comprehensive study has been performed to evaluate the robustness of superpixel algorithms in regard to common forms of noise in natural images. We evaluated the robustness of 11 recently proposed algorithms to different types of noise. The images were corrupted with various degrees of Gaussian blur, additive white Gaussian noise, and impulse noise that either made the object boundaries weak or added extra information to it. We performed a robustness analysis of simple linear iterative clustering (SLIC), Voronoi Cells (VCells), flooding-based superpixel generation (FCCS), bilateral geodesic distance (Bilateral-G), superpixel via geodesic distance (SSS-G), manifold SLIC (M-SLIC), Turbopixels, superpixels extracted via energy-driven sampling (SEEDS), lazy random walk (LRW), real-time superpixel segmentation by DBSCAN clustering, and video supervoxels using partially absorbing random walks (PARW) algorithms. The evaluation process was carried out both qualitatively and quantitatively. For quantitative performance comparison, we used achievable segmentation accuracy (ASA), compactness, under-segmentation error (USE), and boundary recall (BR) on the Berkeley image database. The results demonstrated that all algorithms suffered performance degradation due to noise. For Gaussian blur, Bilateral-G exhibited optimal results for ASA and USE measures, SLIC yielded optimal compactness, whereas FCCS and DBSCAN remained optimal for BR. For the case of additive Gaussian and impulse noises, FCCS exhibited optimal results for ASA, USE, and BR, whereas Bilateral-G remained a close competitor in ASA and USE for Gaussian noise only. Additionally, Turbopixel demonstrated optimal performance for compactness for both types of noise. Thus, no single algorithm was able to yield optimal results for all three types of noise across all performance measures. Conclusively, to solve real-world problems effectively, more robust superpixel algorithms must be developed.

  5. Self-adaptive multimethod optimization applied to a tailored heating forging process

    NASA Astrophysics Data System (ADS)

    Baldan, M.; Steinberg, T.; Baake, E.

    2018-05-01

    The presented paper describes an innovative self-adaptive multi-objective optimization code. Investigation goals concern proving the superiority of this code compared to NGSA-II and applying it to an inductor’s design case study addressed to a “tailored” heating forging application. The choice of the frequency and the heating time are followed by the determination of the turns number and their positions. Finally, a straightforward optimization is performed in order to minimize energy consumption using “optimal control”.

  6. Roofline Analysis in the Intel® Advisor to Deliver Optimized Performance for applications on Intel® Xeon Phi™ Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, Tuomas S.; Lobet, Mathieu; Deslippe, Jack

    In this session we show, in two case studies, how the roofline feature of Intel Advisor has been utilized to optimize the performance of kernels of the XGC1 and PICSAR codes in preparation for Intel Knights Landing architecture. The impact of the implemented optimizations and the benefits of using the automatic roofline feature of Intel Advisor to study performance of large applications will be presented. This demonstrates an effective optimization strategy that has enabled these science applications to achieve up to 4.6 times speed-up and prepare for future exascale architectures. # Goal/Relevance of Session The roofline model [1,2] is amore » powerful tool for analyzing the performance of applications with respect to the theoretical peak achievable on a given computer architecture. It allows one to graphically represent the performance of an application in terms of operational intensity, i.e. the ratio of flops performed and bytes moved from memory in order to guide optimization efforts. Given the scale and complexity of modern science applications, it can often be a tedious task for the user to perform the analysis on the level of functions or loops to identify where performance gains can be made. With new Intel tools, it is now possible to automate this task, as well as base the estimates of peak performance on measurements rather than vendor specifications. The goal of this session is to demonstrate how the roofline feature of Intel Advisor can be used to balance memory vs. computation related optimization efforts and effectively identify performance bottlenecks. A series of typical optimization techniques: cache blocking, structure refactoring, data alignment, and vectorization illustrated by the kernel cases will be addressed. # Description of the codes ## XGC1 The XGC1 code [3] is a magnetic fusion Particle-In-Cell code that uses an unstructured mesh for its Poisson solver that allows it to accurately resolve the edge plasma of a magnetic fusion device. After recent optimizations to its collision kernel [4], most of the computing time is spent in the electron push (pushe) kernel, where these optimization efforts have been focused. The kernel code scaled well with MPI+OpenMP but had almost no automatic compiler vectorization, in part due to indirect memory addresses and in part due to low trip counts of low-level loops that would be candidates for vectorization. Particle blocking and sorting have been implemented to increase trip counts of low-level loops and improve memory locality, and OpenMP directives have been added to vectorize compute-intensive loops that were identified by Advisor. The optimizations have improved the performance of the pushe kernel 2x on Haswell processors and 1.7x on KNL. The KNL node-for-node performance has been brought to within 30% of a NERSC Cori phase I Haswell node and we expect to bridge this gap by reducing the memory footprint of compute intensive routines to improve cache reuse. ## PICSAR is a Fortran/Python high-performance Particle-In-Cell library targeting at MIC architectures first designed to be coupled with the PIC code WARP for the simulation of laser-matter interaction and particle accelerators. PICSAR also contains a FORTRAN stand-alone kernel for performance studies and benchmarks. A MPI domain decomposition is used between NUMA domains and a tile decomposition (cache-blocking) handled by OpenMP has been added for shared-memory parallelism and better cache management. The so-called current deposition and field gathering steps that compose the PIC time loop constitute major hotspots that have been rewritten to enable more efficient vectorization. Particle communications between tiles and MPI domain has been merged and parallelized. All considered, these improvements provide speedups of 3.1 for order 1 and 4.6 for order 3 interpolation shape factors on KNL configured in SNC4 quadrant flat mode. Performance is similar between a node of cori phase 1 and KNL at order 1 and better on KNL by a factor 1.6 at order 3 with the considered test case (homogeneous thermal plasma).« less

  7. Jig-Shape Optimization of a Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2018-01-01

    A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least-squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on an in-house object-oriented optimization tool. During the numerical optimization procedure, a design jig-shape is determined by the baseline jig-shape and basis functions. A total of 12 symmetric mode shapes of the cruise-weight configuration, rigid pitch shape, rigid left and right stabilator rotation shapes, and a residual shape are selected as sixteen basis functions. After three optimization runs, the trim shape error distribution is improved, and the maximum trim shape error of 0.9844 inches of the starting configuration becomes 0.00367 inch by the end of the third optimization run.

  8. Optimization Method of a Low Cost, High Performance Ceramic Proppant by Orthogonal Experimental Design

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Tian, Y. M.; Wang, K. Y.; Li, G.; Zou, X. W.; Chai, Y. S.

    2017-09-01

    This study focused on optimization method of a ceramic proppant material with both low cost and high performance that met the requirements of Chinese Petroleum and Gas Industry Standard (SY/T 5108-2006). The orthogonal experimental design of L9(34) was employed to study the significance sequence of three factors, including weight ratio of white clay to bauxite, dolomite content and sintering temperature. For the crush resistance, both the range analysis and variance analysis reflected the optimally experimental condition was weight ratio of white clay to bauxite=3/7, dolomite content=3 wt.%, temperature=1350°C. For the bulk density, the most important factor was the sintering temperature, followed by the dolomite content, and then the ratio of white clay to bauxite.

  9. Warehouse stocking optimization based on dynamic ant colony genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaoxu

    2018-04-01

    In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.

  10. Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization.

    PubMed

    Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee

    2014-10-01

    Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature.

  11. Measuring Human Performance on Clustering Problems: Some Potential Objective Criteria and Experimental Research Opportunities

    ERIC Educational Resources Information Center

    Brusco, Michael J.

    2007-01-01

    The study of human performance on discrete optimization problems has a considerable history that spans various disciplines. The two most widely studied problems are the Euclidean traveling salesperson problem and the quadratic assignment problem. The purpose of this paper is to outline a program of study for the measurement of human performance on…

  12. Optimal diabatic dynamics of Majorana-based quantum gates

    NASA Astrophysics Data System (ADS)

    Rahmani, Armin; Seradjeh, Babak; Franz, Marcel

    2017-08-01

    In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.

  13. Planar junctionless phototransistor: A potential high-performance and low-cost device for optical-communications

    NASA Astrophysics Data System (ADS)

    Ferhati, H.; Djeffal, F.

    2017-12-01

    In this paper, a new junctionless optical controlled field effect transistor (JL-OCFET) and its comprehensive theoretical model is proposed to achieve high optical performance and low cost fabrication process. Exhaustive study of the device characteristics and comparison between the proposed junctionless design and the conventional inversion mode structure (IM-OCFET) for similar dimensions are performed. Our investigation reveals that the proposed design exhibits an outstanding capability to be an alternative to the IM-OCFET due to the high performance and the weak signal detection benefit offered by this design. Moreover, the developed analytical expressions are exploited to formulate the objective functions to optimize the device performance using Genetic Algorithms (GAs) approach. The optimized JL-OCFET not only demonstrates good performance in terms of derived drain current and responsivity, but also exhibits superior signal to noise ratio, low power consumption, high-sensitivity, high ION/IOFF ratio and high-detectivity as compared to the conventional IM-OCFET counterpart. These characteristics make the optimized JL-OCFET potentially suitable for developing low cost and ultrasensitive photodetectors for high-performance and low cost inter-chips data communication applications.

  14. Control-enhanced multiparameter quantum estimation

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Yuan, Haidong

    2017-10-01

    Most studies in multiparameter estimation assume the dynamics is fixed and focus on identifying the optimal probe state and the optimal measurements. In practice, however, controls are usually available to alter the dynamics, which provides another degree of freedom. In this paper we employ optimal control methods, particularly the gradient ascent pulse engineering (GRAPE), to design optimal controls for the improvement of the precision limit in multiparameter estimation. We show that the controlled schemes are not only capable to provide a higher precision limit, but also have a higher stability to the inaccuracy of the time point performing the measurements. This high time stability will benefit the practical metrology, where it is hard to perform the measurement at a very accurate time point due to the response time of the measurement apparatus.

  15. Optimal control of multiplicative control systems arising from cancer therapy

    NASA Technical Reports Server (NTRS)

    Bahrami, K.; Kim, M.

    1975-01-01

    This study deals with ways of curtailing the rapid growth of cancer cell populations. The performance functional that measures the size of the population at the terminal time as well as the control effort is devised. With use of the discrete maximum principle, the Hamiltonian for this problem is determined and the condition for optimal solutions are developed. The optimal strategy is shown to be a bang-bang control. It is shown that the optimal control for this problem must be on the vertices of an N-dimensional cube contained in the N-dimensional Euclidean space. An algorithm for obtaining a local minimum of the performance function in an orderly fashion is developed. Application of the algorithm to the design of antitumor drug and X-irradiation schedule is discussed.

  16. Study of the fractional order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm.

    PubMed

    Zheng, Weijia; Pi, Youguo

    2016-07-01

    A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Optimal power and efficiency of quantum Stirling heat engines

    NASA Astrophysics Data System (ADS)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  18. Optimal design of high-speed loading spindle based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  19. Study on key technologies of optimization of big data for thermal power plant performance

    NASA Astrophysics Data System (ADS)

    Mao, Mingyang; Xiao, Hong

    2018-06-01

    Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.

  20. Optimization for energy efficiency of underground building envelope thermal performance in different climate zones of China

    NASA Astrophysics Data System (ADS)

    Shi, Luyang; Liu, Jing; Zhang, Huibo

    2017-11-01

    The object of this article is to investigate the influence of thermal performance of envelopes in shallow-buried buildings on energy consumption for different climate zones of China. For the purpose of this study, an effective building energy simulation tool (DeST) developed by Tsinghua University was chosen to model the heat transfer in underground buildings. Based on the simulative results, energy consumption for heating and cooling for the whole year was obtained. The results showed that the relationship between energy consumption and U-value of envelopes for underground buildings is different compared with above-ground buildings: improving thermal performance of exterior walls cannot reduce energy consumption, on the contrary, may result in more energy cost. Besides, it is can be derived that optimized U-values of underground building envelopes vary with climate zones of China in this study. For severe cold climate zone, the optimized U-value of underground building envelopes is 0.8W/(m2·K); for cold climate zone, the optimized U-value is 1.5W/(m2·K); for warm climate zone, the U-value is 2.0W/(m2·K).

  1. A study of the use of linear programming techniques to improve the performance in design optimization problems

    NASA Technical Reports Server (NTRS)

    Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.

  2. Impact of MBE deposition conditions on InAs/GaInSb superlattices for very long wavelength infrared detection

    NASA Astrophysics Data System (ADS)

    Brown, G. J.; Haugan, H. J.; Mahalingam, K.; Grazulis, L.; Elhamri, S.

    2015-01-01

    The objective of this work is to establish molecular beam epitaxy (MBE) growth processes that can produce high quality InAs/GaInSb superlattice (SL) materials specifically tailored for very long wavelength infrared (VLWIR) detection. To accomplish this goal, several series of MBE growth optimization studies, using a SL structure of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, were performed to refine the MBE growth process and optimize growth parameters. Experimental results demonstrated that our "slow" MBE growth process can consistently produce an energy gap near 50 meV. This is an important factor in narrow band gap SLs. However, there are other growth factors that also impact the electrical and optical properties of the SL materials. The SL layers are particularly sensitive to the anion incorporation condition formed during the surface reconstruction process. Since antisite defects are potentially responsible for the inherent residual carrier concentrations and short carrier lifetimes, the optimization of anion incorporation conditions, by manipulating anion fluxes, anion species, and deposition temperature, was systematically studied. Optimization results are reported in the context of comparative studies on the influence of the growth temperature on the crystal structural quality and surface roughness performed under a designed set of deposition conditions. The optimized SL samples produced an overall strong photoresponse signal with a relatively sharp band edge that is essential for developing VLWIR detectors. A quantitative analysis of the lattice strain, performed at the atomic scale by aberration corrected transmission electron microscopy, provided valuable information about the strain distribution at the GaInSb-on-InAs interface and in the InAs layers, which was important for optimizing the anion conditions.

  3. Thermal-Structural Optimization of Integrated Cryogenic Propellant Tank Concepts for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Waters, W. Allen; Singer, Thomas N.; Haftka, Raphael T.

    2004-01-01

    A next generation reusable launch vehicle (RLV) will require thermally efficient and light-weight cryogenic propellant tank structures. Since these tanks will be weight-critical, analytical tools must be developed to aid in sizing the thickness of insulation layers and structural geometry for optimal performance. Finite element method (FEM) models of the tank and insulation layers were created to analyze the thermal performance of the cryogenic insulation layer and thermal protection system (TPS) of the tanks. The thermal conditions of ground-hold and re-entry/soak-through for a typical RLV mission were used in the thermal sizing study. A general-purpose nonlinear FEM analysis code, capable of using temperature and pressure dependent material properties, was used as the thermal analysis code. Mechanical loads from ground handling and proof-pressure testing were used to size the structural geometry of an aluminum cryogenic tank wall. Nonlinear deterministic optimization and reliability optimization techniques were the analytical tools used to size the geometry of the isogrid stiffeners and thickness of the skin. The results from the sizing study indicate that a commercial FEM code can be used for thermal analyses to size the insulation thicknesses where the temperature and pressure were varied. The results from the structural sizing study show that using combined deterministic and reliability optimization techniques can obtain alternate and lighter designs than the designs obtained from deterministic optimization methods alone.

  4. A new chaotic multi-verse optimization algorithm for solving engineering optimization problems

    NASA Astrophysics Data System (ADS)

    Sayed, Gehad Ismail; Darwish, Ashraf; Hassanien, Aboul Ella

    2018-03-01

    Multi-verse optimization algorithm (MVO) is one of the recent meta-heuristic optimization algorithms. The main inspiration of this algorithm came from multi-verse theory in physics. However, MVO like most optimization algorithms suffers from low convergence rate and entrapment in local optima. In this paper, a new chaotic multi-verse optimization algorithm (CMVO) is proposed to overcome these problems. The proposed CMVO is applied on 13 benchmark functions and 7 well-known design problems in the engineering and mechanical field; namely, three-bar trust, speed reduce design, pressure vessel problem, spring design, welded beam, rolling element-bearing and multiple disc clutch brake. In the current study, a modified feasible-based mechanism is employed to handle constraints. In this mechanism, four rules were used to handle the specific constraint problem through maintaining a balance between feasible and infeasible solutions. Moreover, 10 well-known chaotic maps are used to improve the performance of MVO. The experimental results showed that CMVO outperforms other meta-heuristic optimization algorithms on most of the optimization problems. Also, the results reveal that sine chaotic map is the most appropriate map to significantly boost MVO's performance.

  5. Unrealistic optimism in advice taking: A computational account.

    PubMed

    Leong, Yuan Chang; Zaki, Jamil

    2018-02-01

    Expert advisors often make surprisingly inaccurate predictions about the future, yet people heed their suggestions nonetheless. Here we provide a novel, computational account of this unrealistic optimism in advice taking. Across 3 studies, participants observed as advisors predicted the performance of a stock. Advisors varied in their accuracy, performing reliably above, at, or below chance. Despite repeated feedback, participants exhibited inflated perceptions of advisors' accuracy, and reliably "bet" on advisors' predictions more than their performance warranted. Participants' decisions tightly tracked a computational model that makes 2 assumptions: (a) people hold optimistic initial expectations about advisors, and (b) people preferentially incorporate information that adheres to their expectations when learning about advisors. Consistent with model predictions, explicitly manipulating participants' initial expectations altered their optimism bias and subsequent advice-taking. With well-calibrated initial expectations, participants no longer exhibited an optimism bias. We then explored crowdsourced ratings as a strategy to curb unrealistic optimism in advisors. Star ratings for each advisor were collected from an initial group of participants, which were then shown to a second group of participants. Instead of calibrating expectations, these ratings propagated and exaggerated the unrealistic optimism. Our results provide a computational account of the cognitive processes underlying inflated perceptions of expertise, and explore the boundary conditions under which they occur. We discuss the adaptive value of this optimism bias, and how our account can be extended to explain unrealistic optimism in other domains. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Performance Trend of Different Algorithms for Structural Design Optimization

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Nonlinear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Center, a project was initiated to assess performance of different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with the sequential unconstrained minimizations technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  7. Box-Behnken statistical design to optimize thermal performance of energy storage systems

    NASA Astrophysics Data System (ADS)

    Jalalian, Iman Joz; Mohammadiun, Mohammad; Moqadam, Hamid Hashemi; Mohammadiun, Hamid

    2018-05-01

    Latent heat thermal storage (LHTS) is a technology that can help to reduce energy consumption for cooling applications, where the cold is stored in phase change materials (PCMs). In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing RT25 as phase change material (PCM). Process optimization of the experimental conditions (inlet air temperature and velocity and number of slabs) was carried out by means of Box-Behnken design (BBD) of Response surface methodology (RSM). Two parameters (cooling time and COP value) were chosen to be the responses. Both of the responses were significantly influenced by combined effect of inlet air temperature with velocity and number of slabs. Simultaneous optimization was performed on the basis of the desirability function to determine the optimal conditions for the cooling time and COP value. Maximum cooling time (186 min) and COP value (6.04) were found at optimum process conditions i.e. inlet temperature of (32.5), air velocity of (1.98) and slab number of (7).

  8. Using optimal control methods with constraints to generate singlet states in NMR

    NASA Astrophysics Data System (ADS)

    Rodin, Bogdan A.; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Yamamoto, Satoru; Sato, Kazunobu; Takui, Takeji

    2018-06-01

    A method is proposed for optimizing the performance of the APSOC (Adiabatic-Passage Spin Order Conversion) technique, which can be exploited in NMR experiments with singlet spin states. In this technique magnetization-to-singlet conversion (and singlet-to-magnetization conversion) is performed by using adiabatically ramped RF-fields. Optimization utilizes the GRAPE (Gradient Ascent Pulse Engineering) approach, in which for a fixed search area we assume monotonicity to the envelope of the RF-field. Such an approach allows one to achieve much better performance for APSOC; consequently, the efficiency of magnetization-to-singlet conversion is greatly improved as compared to simple model RF-ramps, e.g., linear ramps. We also demonstrate that the optimization method is reasonably robust to possible inaccuracies in determining NMR parameters of the spin system under study and also in setting the RF-field parameters. The present approach can be exploited in other NMR and EPR applications using adiabatic switching of spin Hamiltonians.

  9. A new logistic dynamic particle swarm optimization algorithm based on random topology.

    PubMed

    Ni, Qingjian; Deng, Jianming

    2013-01-01

    Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  10. A survey of compiler optimization techniques

    NASA Technical Reports Server (NTRS)

    Schneck, P. B.

    1972-01-01

    Major optimization techniques of compilers are described and grouped into three categories: machine dependent, architecture dependent, and architecture independent. Machine-dependent optimizations tend to be local and are performed upon short spans of generated code by using particular properties of an instruction set to reduce the time or space required by a program. Architecture-dependent optimizations are global and are performed while generating code. These optimizations consider the structure of a computer, but not its detailed instruction set. Architecture independent optimizations are also global but are based on analysis of the program flow graph and the dependencies among statements of source program. A conceptual review of a universal optimizer that performs architecture-independent optimizations at source-code level is also presented.

  11. Rethinking key–value store for parallel I/O optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kougkas, Anthony; Eslami, Hassan; Sun, Xian-He

    2015-01-26

    Key-value stores are being widely used as the storage system for large-scale internet services and cloud storage systems. However, they are rarely used in HPC systems, where parallel file systems are the dominant storage solution. In this study, we examine the architecture differences and performance characteristics of parallel file systems and key-value stores. We propose using key-value stores to optimize overall Input/Output (I/O) performance, especially for workloads that parallel file systems cannot handle well, such as the cases with intense data synchronization or heavy metadata operations. We conducted experiments with several synthetic benchmarks, an I/O benchmark, and a real application.more » We modeled the performance of these two systems using collected data from our experiments, and we provide a predictive method to identify which system offers better I/O performance given a specific workload. The results show that we can optimize the I/O performance in HPC systems by utilizing key-value stores.« less

  12. Development of biopolymers based interpenetrating polymeric network of capecitabine: A drug delivery vehicle to extend the release of the model drug.

    PubMed

    Upadhyay, Mansi; Adena, Sandeep Kumar Reddy; Vardhan, Harsh; Yadav, Sarita K; Mishra, Brahmeshwar

    2018-04-27

    The research aims the development and optimization of capecitabine loaded interpenetrating polymeric network by ionotropic gelation method using polymers locust bean gum and sodium alginate by QbD approach. FMEA was performed to recognize the risks influencing CQAs. BBD was applied to study the effect of factors (polymer ratio, amount of cross-linker and curing time) on responses (particle size, % drug entrapment and % drug release). Polynomial equations and 3-D graphs were plotted to relate between factors and responses. The results of the optimized batch viz. particle size (457.92 ± 1.6 μm), % drug entrapment (74.11 ± 3.1%) and % drug release (90.23 ± 2.1%) were close to the predicted values generated by Minitab® 17. Characterization techniques SEM, EDX, FTIR, DSC and XRD were also performed for the optimized batch. To study the water transport inside IPN microbeads, swelling study was done. In vitro drug release of optimized batch showed controlled drug release for 12 h. Pharmacokinetic study carried out following oral administration in Albino Wistar rats exhibited that optimized microbeads had better PK parameters than free drug. In vitro cytotoxicity against HT-29 cells revealed significant reduction of the cell growth when treated with optimized formulation indicating IPN microbeads as effective dosage form for treating colon cancer. Copyright © 2018. Published by Elsevier B.V.

  13. Improving the performance of surgery-based clinical pathways: a simulation-optimization approach.

    PubMed

    Ozcan, Yasar A; Tànfani, Elena; Testi, Angela

    2017-03-01

    This paper aims to improve the performance of clinical processes using clinical pathways (CPs). The specific goal of this research is to develop a decision support tool, based on a simulation-optimization approach, which identify the proper adjustment and alignment of resources to achieve better performance for both the patients and the health-care facility. When multiple perspectives are present in a decision problem, critical issues arise and often require the balancing of goals. In our approach, meeting patients' clinical needs in a timely manner, and to avoid worsening of clinical conditions, we assess the level of appropriate resources. The simulation-optimization model seeks and evaluates alternative resource configurations aimed at balancing the two main objectives-meeting patient needs and optimal utilization of beds and operating rooms.Using primary data collected at a Department of Surgery of a public hospital located in Genoa, Italy. The simulation-optimization modelling approach in this study has been applied to evaluate the thyroid surgical treatment together with the other surgery-based CPs. The low rate of bed utilization and the long elective waiting lists of the specialty under study indicates that the wards were oversized while the operating room capacity was the bottleneck of the system. The model enables hospital managers determine which objective has to be given priority, as well as the corresponding opportunity costs.

  14. Evaluation and optimization of the conditions for an improved ferulic acid intercalation into a synthetic lamellar anionic clay.

    PubMed

    Schoubben, Aurélie; Blasi, Paolo; Giovagnoli, Stefano; Nocchetti, Morena; Ricci, Maurizio; Perioli, Luana; Rossi, Carlo

    2006-03-01

    The aim of the study is to optimize the intercalation conditions of ferulic acid (FERH), an antioxidant compound, into Mg-Al-hydrotalcite for a safe skin photoprotection. The intercalation products were prepared incubating hydrotalcite (HTlc) in aqueous solutions of FERH sodium salt at different temperatures over 4 and 8 days. Quantitative determination of intercalated FERH was performed by thermogravimetric analysis and morphology by scanning electron microscopy (SEM). FERH stability study was carried out at different pHs and temperatures. FERH was analyzed by reversed phase-high-performance liquid chromatography. Response surface methods (RSMs) were used to assess optimal intercalation conditions and FERH stability. In all intercalation products, FERH content was found to be about 48% w/w except when the intercalation process was carried out at 52 degrees C for 8 days and at 60 degrees C for both 4 and 8 days, which resulted to be 40.39, 39.99, and 34.99%, respectively. The RSM designs showed that intercalation improvement can be achieved by working at pH 6, at temperatures below 40 degrees C, and over 4 days of incubation. The optimal conditions for a proper FERH intercalation were assessed. The development of a new optimized protocol may improve HTlc-FER complex performances and safety by augmenting dosage and reducing the presence of harmful reactive species in the final formulation.

  15. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  16. Differences in attentional strategies by novice and experienced operating theatre scrub nurses.

    PubMed

    Koh, Ranieri Y I; Park, Taezoon; Wickens, Christopher D; Ong, Lay Teng; Chia, Soon Noi

    2011-09-01

    This study investigated the effect of nursing experience on attention allocation and task performance during surgery. The prevention of cases of retained foreign bodies after surgery typically depends on scrub nurses, who are responsible for performing multiple tasks that impose heavy demands on the nurses' cognitive resources. However, the relationship between the level of experiences and attention allocation strategies has not been extensively studied. Eye movement data were collected from 10 novice and 10 experienced scrub nurses in the operating theater for caesarean section surgeries. Visual scanning data, analyzed by dividing the workstation into four main areas and the surgery into four stages, were compared to the optimum expected value estimated by SEEV (Salience, Effort, Expectancy, and Value) model. Both experienced and novice nurses showed significant correlations to the optimal percentage dwell time values, and significant differences were found in attention allocation optimality between experienced and novice nurses, with experienced nurses adhering significantly more to the optimal in the stages of high workload. Experienced nurses spent less time on the final count and encountered fewer interruptions during the count than novices indicating better performance in task management, whereas novice nurses switched attention between areas of interest more than experienced nurses. The results provide empirical evidence of a relationship between the application of optimal visual attention management strategies and performance, opening up possibilities to the development of visual attention and interruption training for better performance. (c) 2011 APA, all rights reserved.

  17. Application of multi-objective nonlinear optimization technique for coordinated ramp-metering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haj Salem, Habib; Farhi, Nadir; Lebacque, Jean Patrick, E-mail: abib.haj-salem@ifsttar.fr, E-mail: nadir.frahi@ifsttar.fr, E-mail: jean-patrick.lebacque@ifsttar.fr

    2015-03-10

    This paper aims at developing a multi-objective nonlinear optimization algorithm applied to coordinated motorway ramp metering. The multi-objective function includes two components: traffic and safety. Off-line simulation studies were performed on A4 France Motorway including 4 on-ramps.

  18. Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study.

    PubMed

    Telfer, S; Woodburn, J; Collier, A; Cavanagh, P R

    2017-07-26

    Integration of objective biomechanical measures of foot function into the design process for insoles has been shown to provide enhanced plantar tissue protection for individuals at-risk of plantar ulceration. The use of virtual simulations utilizing numerical modeling techniques offers a potential approach to further optimize these devices. In a patient population at-risk of foot ulceration, we aimed to compare the pressure offloading performance of insoles that were optimized via numerical simulation techniques against shape-based devices. Twenty participants with diabetes and at-risk feet were enrolled in this study. Three pairs of personalized insoles: one based on shape data and subsequently manufactured via direct milling; and two were based on a design derived from shape, pressure, and ultrasound data which underwent a finite element analysis-based virtual optimization procedure. For the latter set of insole designs, one pair was manufactured via direct milling, and a second pair was manufactured through 3D printing. The offloading performance of the insoles was analyzed for forefoot regions identified as having elevated plantar pressures. In 88% of the regions of interest, the use of virtually optimized insoles resulted in lower peak plantar pressures compared to the shape-based devices. Overall, the virtually optimized insoles significantly reduced peak pressures by a mean of 41.3kPa (p<0.001, 95% CI [31.1, 51.5]) for milled and 40.5kPa (p<0.001, 95% CI [26.4, 54.5]) for printed devices compared to shape-based insoles. The integration of virtual optimization into the insole design process resulted in improved offloading performance compared to standard, shape-based devices. ISRCTN19805071, www.ISRCTN.org. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The objective of the contract is to consolidate the advances made during the previous contract in the conversion of syngas to motor fuels using Molecular Sieve-containing catalysts and to demonstrate the practical utility and economic value of the new catalyst/process systems with appropriate laboratory runs. Work on the program is divided into the following six tasks: (1) preparation of a detailed work plan covering the entire performance of the contract; (2) techno-economic studies that will supplement those that are presently being carried out by MITRE; (3) optimization of the most promising catalysts developed under prior contract; (4) optimization of themore » UCC catalyst system in a manner that will give it the longest possible service life; (5) optimization of a UCC process/catalyst system based upon a tubular reactor with a recycle loop containing the most promising catalyst developed under Tasks 3 and 4 studies; and (6) economic evaluation of the optimal performance found under Task 5 for the UCC process/catalyst system. Progress reports are presented for Tasks 1, 3, 4, and 5.« less

  20. Comparison of optimization strategy and similarity metric in atlas-to-subject registration using statistical deformation model

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Murphy, R. J.; Grupp, R. B.; Sato, Y.; Taylor, R. H.; Armand, M.

    2015-03-01

    A robust atlas-to-subject registration using a statistical deformation model (SDM) is presented. The SDM uses statistics of voxel-wise displacement learned from pre-computed deformation vectors of a training dataset. This allows an atlas instance to be directly translated into an intensity volume and compared with a patient's intensity volume. Rigid and nonrigid transformation parameters were simultaneously optimized via the Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES), with image similarity used as the objective function. The algorithm was tested on CT volumes of the pelvis from 55 female subjects. A performance comparison of the CMA-ES and Nelder-Mead downhill simplex optimization algorithms with the mutual information and normalized cross correlation similarity metrics was conducted. Simulation studies using synthetic subjects were performed, as well as leave-one-out cross validation studies. Both studies suggested that mutual information and CMA-ES achieved the best performance. The leave-one-out test demonstrated 4.13 mm error with respect to the true displacement field, and 26,102 function evaluations in 180 seconds, on average.

  1. Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology.

    PubMed

    Venkata Mohan, S; Chandrasekhara Rao, N; Krishna Prasad, K; Murali Krishna, P; Sreenivas Rao, R; Sarma, P N

    2005-06-20

    The Taguchi robust experimental design (DOE) methodology has been applied on a dynamic anaerobic process treating complex wastewater by an anaerobic sequencing batch biofilm reactor (AnSBBR). For optimizing the process as well as to evaluate the influence of different factors on the process, the uncontrollable (noise) factors have been considered. The Taguchi methodology adopting dynamic approach is the first of its kind for studying anaerobic process evaluation and process optimization. The designed experimental methodology consisted of four phases--planning, conducting, analysis, and validation connected sequence-wise to achieve the overall optimization. In the experimental design, five controllable factors, i.e., organic loading rate (OLR), inlet pH, biodegradability (BOD/COD ratio), temperature, and sulfate concentration, along with the two uncontrollable (noise) factors, volatile fatty acids (VFA) and alkalinity at two levels were considered for optimization of the anae robic system. Thirty-two anaerobic experiments were conducted with a different combination of factors and the results obtained in terms of substrate degradation rates were processed in Qualitek-4 software to study the main effect of individual factors, interaction between the individual factors, and signal-to-noise (S/N) ratio analysis. Attempts were also made to achieve optimum conditions. Studies on the influence of individual factors on process performance revealed the intensive effect of OLR. In multiple factor interaction studies, biodegradability with other factors, such as temperature, pH, and sulfate have shown maximum influence over the process performance. The optimum conditions for the efficient performance of the anaerobic system in treating complex wastewater by considering dynamic (noise) factors obtained are higher organic loading rate of 3.5 Kg COD/m3 day, neutral pH with high biodegradability (BOD/COD ratio of 0.5), along with mesophilic temperature range (40 degrees C), and low sulfate concentration (700 mg/L). The optimization resulted in enhanced anaerobic performance (56.7%) from a substrate degradation rate (SDR) of 1.99 to 3.13 Kg COD/m3 day. Considering the obtained optimum factors, further validation experiments were carried out, which showed enhanced process performance (3.04 Kg COD/m3-day from 1.99 Kg COD/m3 day) accounting for 52.13% improvement with the optimized process conditions. The proposed method facilitated a systematic mathematical approach to understand the complex multi-species manifested anaerobic process treating complex chemical wastewater by considering the uncontrollable factors. Copyright (c) 2005 Wiley Periodicals, Inc.

  2. Optimization of subsurface flow and associated treatment processes.

    DOT National Transportation Integrated Search

    2006-02-01

    The objective of this study was to examine the use and performance of synthetic media (growth substrate) in a rock filter waste treatment system located at the Grand Prairie Rest Area. Specifically, this study examined the performance of the syntheti...

  3. Design Studies and Optimization of High-Field Nb$$_3$$Sn Dipole Magnets for a Future Very High Energy PP Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashikhin, V. V.; Novitski, I.; Zlobin, A. V.

    2017-05-01

    High filed accelerator magnets with operating fields of 15-16 T based on themore » $$Nb_3Sn$$ superconductor are being considered for the LHC energy upgrade or a future Very High Energy pp Collider. Magnet design studies are being conducted in the U.S., Europe and Asia to explore the limits of the $$Nb_3Sn$$ accelerator magnet technology while optimizing the magnet design and performance parame-ters, and reducing magnet cost. The first results of these studies performed at Fermilab in the framework of the US-MDP are reported in this paper.« less

  4. Performance and Feasibility Analysis of a Wind Turbine Power System for Use on Mars

    NASA Technical Reports Server (NTRS)

    Lichter, Matthew D.; Viterna, Larry

    1999-01-01

    A wind turbine power system for future missions to the Martian surface was studied for performance and feasibility. A C++ program was developed from existing FORTRAN code to analyze the power capabilities of wind turbines under different environments and design philosophies. Power output, efficiency, torque, thrust, and other performance criteria could be computed given design geometries, atmospheric conditions, and airfoil behavior. After reviewing performance of such a wind turbine, a conceptual system design was modeled to evaluate feasibility. More analysis code was developed to study and optimize the overall structural design. Findings of this preliminary study show that turbine power output on Mars could be as high as several hundred kilowatts. The optimized conceptual design examined here would have a power output of 104 kW, total mass of 1910 kg, and specific power of 54.6 W/kg.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebenga, J. H.; Atzema, E. H.; Boogaard, A. H. van den

    Robust design of forming processes using numerical simulations is gaining attention throughout the industry. In this work, it is demonstrated how robust optimization can assist in further stretching the limits of metal forming processes. A deterministic and a robust optimization study are performed, considering a stretch-drawing process of a hemispherical cup product. For the robust optimization study, both the effect of material and process scatter are taken into account. For quantifying the material scatter, samples of 41 coils of a drawing quality forming steel have been collected. The stochastic material behavior is obtained by a hybrid approach, combining mechanical testingmore » and texture analysis, and efficiently implemented in a metamodel based optimization strategy. The deterministic and robust optimization results are subsequently presented and compared, demonstrating an increased process robustness and decreased number of product rejects by application of the robust optimization approach.« less

  6. Dynamic remapping of parallel computations with varying resource demands

    NASA Technical Reports Server (NTRS)

    Nicol, D. M.; Saltz, J. H.

    1986-01-01

    A large class of computational problems is characterized by frequent synchronization, and computational requirements which change as a function of time. When such a problem must be solved on a message passing multiprocessor machine, the combination of these characteristics lead to system performance which decreases in time. Performance can be improved with periodic redistribution of computational load; however, redistribution can exact a sometimes large delay cost. We study the issue of deciding when to invoke a global load remapping mechanism. Such a decision policy must effectively weigh the costs of remapping against the performance benefits. We treat this problem by constructing two analytic models which exhibit stochastically decreasing performance. One model is quite tractable; we are able to describe the optimal remapping algorithm, and the optimal decision policy governing when to invoke that algorithm. However, computational complexity prohibits the use of the optimal remapping decision policy. We then study the performance of a general remapping policy on both analytic models. This policy attempts to minimize a statistic W(n) which measures the system degradation (including the cost of remapping) per computation step over a period of n steps. We show that as a function of time, the expected value of W(n) has at most one minimum, and that when this minimum exists it defines the optimal fixed-interval remapping policy. Our decision policy appeals to this result by remapping when it estimates that W(n) is minimized. Our performance data suggests that this policy effectively finds the natural frequency of remapping. We also use the analytic models to express the relationship between performance and remapping cost, number of processors, and the computation's stochastic activity.

  7. Optimizing lighting, thermal performance, and energy production of building facades by using automated blinds and PV cells

    NASA Astrophysics Data System (ADS)

    Alzoubi, Hussain Hendi

    Energy consumption in buildings has recently become a major concern for environmental designers. Within this field, daylighting and solar energy design are attractive strategies for saving energy. This study seeks the integrity and the optimality of building envelopes' performance. It focuses on the transparent parts of building facades, specifically, the windows and their shading devices. It suggests a new automated method of utilizing solar energy while keeping optimal solutions for indoor daylighting. The method utilizes a statistical approach to produce mathematical equations based on physical experimentation. A full-scale mock-up representing an actual office was built. Heat gain and lighting levels were measured empirically and correlated with blind angles. Computational methods were used to estimate the power production from photovoltaic cells. Mathematical formulas were derived from the results of the experiments; these formulas were utilized to construct curves as well as mathematical equations for the purpose of optimization. The mathematical equations resulting from the optimization process were coded using Java programming language to enable future users to deal with generic locations of buildings with a broader context of various climatic conditions. For the purpose of optimization by automation under different climatic conditions, a blind control system was developed based on the findings of this study. This system calibrates the blind angles instantaneously based upon the sun position, the indoor daylight, and the power production from the photovoltaic cells. The functions of this system guarantee full control of the projected solar energy on buildings' facades for indoor lighting and heat gain. In winter, the system automatically blows heat into the space, whereas it expels heat from the space during the summer season. The study showed that the optimality of building facades' performance is achievable for integrated thermal, energy, and lighting models in buildings. There are blind angles that produce maximum energy from the photovoltaic cells while keeping indoor light within the acceptable limits that prevent undesired heat gain in summer.

  8. Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk

    NASA Astrophysics Data System (ADS)

    Long, C. C.; Marsden, A. L.; Bazilevs, Y.

    2014-10-01

    In this paper we perform shape optimization of a pediatric pulsatile ventricular assist device (PVAD). The device simulation is carried out using fluid-structure interaction (FSI) modeling techniques within a computational framework that combines FEM for fluid mechanics and isogeometric analysis for structural mechanics modeling. The PVAD FSI simulations are performed under realistic conditions (i.e., flow speeds, pressure levels, boundary conditions, etc.), and account for the interaction of air, blood, and a thin structural membrane separating the two fluid subdomains. The shape optimization study is designed to reduce thrombotic risk, a major clinical problem in PVADs. Thrombotic risk is quantified in terms of particle residence time in the device blood chamber. Methods to compute particle residence time in the context of moving spatial domains are presented in a companion paper published in the same issue (Comput Mech, doi: 10.1007/s00466-013-0931-y, 2013). The surrogate management framework, a derivative-free pattern search optimization method that relies on surrogates for increased efficiency, is employed in this work. For the optimization study shown here, particle residence time is used to define a suitable cost or objective function, while four adjustable design optimization parameters are used to define the device geometry. The FSI-based optimization framework is implemented in a parallel computing environment, and deployed with minimal user intervention. Using five SEARCH/ POLL steps the optimization scheme identifies a PVAD design with significantly better throughput efficiency than the original device.

  9. Simple Example of Backtest Overfitting (SEBO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    In the field of mathematical finance, a "backtest" is the usage of historical market data to assess the performance of a proposed trading strategy. It is a relatively simple matter for a present-day computer system to explore thousands, millions or even billions of variations of a proposed strategy, and pick the best performing variant as the "optimal" strategy "in sample" (i.e., on the input dataset). Unfortunately, such an "optimal" strategy often performs very poorly "out of sample" (i.e. on another dataset), because the parameters of the invest strategy have been oversit to the in-sample data, a situation known as "backtestmore » overfitting". While the mathematics of backtest overfitting has been examined in several recent theoretical studies, here we pursue a more tangible analysis of this problem, in the form of an online simulator tool. Given a input random walk time series, the tool develops an "optimal" variant of a simple strategy by exhaustively exploring all integer parameter values among a handful of parameters. That "optimal" strategy is overfit, since by definition a random walk is unpredictable. Then the tool tests the resulting "optimal" strategy on a second random walk time series. In most runs using our online tool, the "optimal" strategy derived from the first time series performs poorly on the second time series, demonstrating how hard it is not to overfit a backtest. We offer this online tool, "Simple Example of Backtest Overfitting (SEBO)", to facilitate further research in this area.« less

  10. High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.

  11. Modeling of pulsed propellant reorientation

    NASA Technical Reports Server (NTRS)

    Patag, A. E.; Hochstein, J. I.; Chato, D. J.

    1989-01-01

    Optimization of the propellant reorientation process can provide increased payload capability and extend the service life of spacecraft. The use of pulsed propellant reorientation to optimize the reorientation process is proposed. The ECLIPSE code was validated for modeling the reorientation process and is used to study pulsed reorientation in small-scale and full-scale propellant tanks. A dimensional analysis of the process is performed and the resulting dimensionless groups are used to present and correlate the computational predictions for reorientation performance.

  12. Use of nonlinear programming to optimize performance response to energy density in broiler feed formulation.

    PubMed

    Guevara, V R

    2004-02-01

    A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.

  13. Integrated design of the CSI evolutionary structure: A verification of the design methodology

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, S. M.; Elliott, Kenny B.; Walz, J. E.

    1993-01-01

    One of the main objectives of the Controls-Structures Interaction (CSI) program is to develop and evaluate integrated controls-structures design methodology for flexible space structures. Thus far, integrated design methodologies for a class of flexible spacecraft, which require fine attitude pointing and vibration suppression with no payload articulation, have been extensively investigated. Various integrated design optimization approaches, such as single-objective optimization, and multi-objective optimization, have been implemented with an array of different objectives and constraints involving performance and cost measures such as total mass, actuator mass, steady-state pointing performance, transient performance, control power, and many more. These studies have been performed using an integrated design software tool (CSI-DESIGN CODE) which is under development by the CSI-ADM team at the NASA Langley Research Center. To date, all of these studies, irrespective of the type of integrated optimization posed or objectives and constraints used, have indicated that integrated controls-structures design results in an overall spacecraft design which is considerably superior to designs obtained through a conventional sequential approach. Consequently, it is believed that validation of some of these results through fabrication and testing of a structure which is designed through an integrated design approach is warranted. The objective of this paper is to present and discuss the efforts that have been taken thus far for the validation of the integrated design methodology.

  14. Intelligent Optimization of Modulation Indexes in Unified Tracking and Communication System

    NASA Astrophysics Data System (ADS)

    Yang, Wei-wei; Cong, Bo; Huang, Qiong; Zhu, Li-wei

    2016-02-01

    In the unified tracking and communication system, the ranging signal and the telemetry, communication signals are used in the same channel. In the link budget, it is necessary to allocate the power reasonably, so as to ensure the performance of system and reduce the cost. In this paper, the nonlinear optimization problem is studied using intelligent optimization method. Simulation analysis results show that the proposed method is effective.

  15. Multiobjective hyper heuristic scheme for system design and optimization

    NASA Astrophysics Data System (ADS)

    Rafique, Amer Farhan

    2012-11-01

    As system design is becoming more and more multifaceted, integrated, and complex, the traditional single objective optimization trends of optimal design are becoming less and less efficient and effective. Single objective optimization methods present a unique optimal solution whereas multiobjective methods present pareto front. The foremost intent is to predict a reasonable distributed pareto-optimal solution set independent of the problem instance through multiobjective scheme. Other objective of application of intended approach is to improve the worthiness of outputs of the complex engineering system design process at the conceptual design phase. The process is automated in order to provide the system designer with the leverage of the possibility of studying and analyzing a large multiple of possible solutions in a short time. This article presents Multiobjective Hyper Heuristic Optimization Scheme based on low level meta-heuristics developed for the application in engineering system design. Herein, we present a stochastic function to manage meta-heuristics (low-level) to augment surety of global optimum solution. Generic Algorithm, Simulated Annealing and Swarm Intelligence are used as low-level meta-heuristics in this study. Performance of the proposed scheme is investigated through a comprehensive empirical analysis yielding acceptable results. One of the primary motives for performing multiobjective optimization is that the current engineering systems require simultaneous optimization of conflicting and multiple. Random decision making makes the implementation of this scheme attractive and easy. Injecting feasible solutions significantly alters the search direction and also adds diversity of population resulting in accomplishment of pre-defined goals set in the proposed scheme.

  16. Counteracting Obstacles with Optimistic Predictions

    ERIC Educational Resources Information Center

    Zhang, Ying; Fishbach, Ayelet

    2010-01-01

    This research tested for counteractive optimism: a self-control strategy of generating optimistic predictions of future goal attainment in order to overcome anticipated obstacles in goal pursuit. In support of the counteractive optimism model, participants in 5 studies predicted better performance, more time invested in goal activities, and lower…

  17. Optimal symmetric flight studies

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.

    1985-01-01

    Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.

  18. Emotions and Golf Performance

    ERIC Educational Resources Information Center

    Cohen, Alexander B.; Tenenbaum, Gershon; English, R. William

    2006-01-01

    A multiple case study investigation is reported in which emotions and performance were assessed within the probabilistic individual zone of optimal functioning (IZOF) model (Kamata, Tenenbaum, & Hanin, 2002) to develop idiosyncratic emotion-performance profiles. These profiles were incorporated into a psychological skills training (PST)…

  19. A novel channel selection method for optimal classification in different motor imagery BCI paradigms.

    PubMed

    Shan, Haijun; Xu, Haojie; Zhu, Shanan; He, Bin

    2015-10-21

    For sensorimotor rhythms based brain-computer interface (BCI) systems, classification of different motor imageries (MIs) remains a crucial problem. An important aspect is how many scalp electrodes (channels) should be used in order to reach optimal performance classifying motor imaginations. While the previous researches on channel selection mainly focus on MI tasks paradigms without feedback, the present work aims to investigate the optimal channel selection in MI tasks paradigms with real-time feedback (two-class control and four-class control paradigms). In the present study, three datasets respectively recorded from MI tasks experiment, two-class control and four-class control experiments were analyzed offline. Multiple frequency-spatial synthesized features were comprehensively extracted from every channel, and a new enhanced method IterRelCen was proposed to perform channel selection. IterRelCen was constructed based on Relief algorithm, but was enhanced from two aspects: change of target sample selection strategy and adoption of the idea of iterative computation, and thus performed more robust in feature selection. Finally, a multiclass support vector machine was applied as the classifier. The least number of channels that yield the best classification accuracy were considered as the optimal channels. One-way ANOVA was employed to test the significance of performance improvement among using optimal channels, all the channels and three typical MI channels (C3, C4, Cz). The results show that the proposed method outperformed other channel selection methods by achieving average classification accuracies of 85.2, 94.1, and 83.2 % for the three datasets, respectively. Moreover, the channel selection results reveal that the average numbers of optimal channels were significantly different among the three MI paradigms. It is demonstrated that IterRelCen has a strong ability for feature selection. In addition, the results have shown that the numbers of optimal channels in the three different motor imagery BCI paradigms are distinct. From a MI task paradigm, to a two-class control paradigm, and to a four-class control paradigm, the number of required channels for optimizing the classification accuracy increased. These findings may provide useful information to optimize EEG based BCI systems, and further improve the performance of noninvasive BCI.

  20. On the Optimization of Aerospace Plane Ascent Trajectory

    NASA Astrophysics Data System (ADS)

    Al-Garni, Ahmed; Kassem, Ayman Hamdy

    A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.

  1. Elite-adapted wheelchair sports performance: a systematic review.

    PubMed

    Perret, Claudio

    2017-01-01

    Elite-adapted sports performance has considerably improved over the last decades and winning or losing races at Paralympic Games is often a matter of a split second. In other words, every single detail counts, which underlines the necessity of optimizing training interventions and equipment for athletes in order to achieve top-class performance. However, to date, studies which include Paralympic elite athletes are scarce. A comprehensive literature search was performed to identify potential strategies and interventions in order to optimize elite-adapted wheelchair sports performance, whereas the focus lay on respiratory muscle training (RMT), cooling (CI) and nutritional interventions (NI) as well as on individual equipment adaptations (IEA). The total number of studies identified for the final analysis was six for RMT, two for CI, three for NI and seven for IEA, respectively. Results point predominantly towards performance enhancing benefits for CI and IEA, whereas NI and RMT provided inhomogenous findings. In comparison to the able-bodied population, research in the field of Paralympic elite sport is scarce. CI and IEA seem to have significant performance enhancing benefits, whereas NI and RMT revealed controversial findings. However, due to the limited number of elite athletes with a spinal cord injury available to participate in scientific studies, general conclusions are difficult to make at this stage and in daily practice recommendations are still given mainly on an individual basis or based on personal experiences of coaches, athletes and scientists. Implications for Rehabilitaton Based on the knowledge gained in elite sports, wheelchair equipment could be optimized also for daily use. Elite sports performance could inspire wheelchair users to achieve their personal fitness goals.

  2. Direct adaptive performance optimization of subsonic transports: A periodic perturbation technique

    NASA Technical Reports Server (NTRS)

    Espana, Martin D.; Gilyard, Glenn

    1995-01-01

    Aircraft performance can be optimized at the flight condition by using available redundancy among actuators. Effective use of this potential allows improved performance beyond limits imposed by design compromises. Optimization based on nominal models does not result in the best performance of the actual aircraft at the actual flight condition. An adaptive algorithm for optimizing performance parameters, such as speed or fuel flow, in flight based exclusively on flight data is proposed. The algorithm is inherently insensitive to model inaccuracies and measurement noise and biases and can optimize several decision variables at the same time. An adaptive constraint controller integrated into the algorithm regulates the optimization constraints, such as altitude or speed, without requiring and prior knowledge of the autopilot design. The algorithm has a modular structure which allows easy incorporation (or removal) of optimization constraints or decision variables to the optimization problem. An important part of the contribution is the development of analytical tools enabling convergence analysis of the algorithm and the establishment of simple design rules. The fuel-flow minimization and velocity maximization modes of the algorithm are demonstrated on the NASA Dryden B-720 nonlinear flight simulator for the single- and multi-effector optimization cases.

  3. Effects of different re-warm up activities in football players' performance.

    PubMed

    Abade, Eduardo; Sampaio, Jaime; Gonçalves, Bruno; Baptista, Jorge; Alves, Alberto; Viana, João

    2017-01-01

    Warm up routines are commonly used to optimize football performance and prevent injuries. Yet, official pre-match protocols may require players to passively rest for approximately 10 to 15 minutes between the warm up and the beginning of the match. Therefore, the aim of this study was to explore the effect of different re-warm up activities on the physical performance of football players. Twenty-Two Portuguese elite under-19 football players participated in the study conducted during the competitive season. Different re-warm up protocols were performed 6 minutes after the same standardized warm up in 4 consecutive days in a crossover controlled approach: without, eccentric, plyometric and repeated changes of direction. Vertical jump and Sprint performances were tested immediately after warm up and 12 minutes after warm up. Results showed that repeated changes of direction and plyometrics presented beneficial effects to jump and sprint. Different practical implications may be taken from the eccentric protocol since a vertical jump impairment was observed, suggesting a possibly harmful effect. The absence of re-warm up activities may be detrimental to players' physical performance. However, the inclusion of re-warm up prior to match is a complex issue, since the manipulation of volume, intensity and recovery may positively or negatively affect the subsequent performance. In fact, this exploratory study shows that eccentric exercise may be harmful for physical performance when performed prior a football match. However, plyometric and repeated changes of direction exercises seem to be simple, quick and efficient activities to attenuate losses in vertical jump and sprint capacity after warm up. Coaches should aim to develop individual optimal exercise modes in order to optimize physical performance after re warm activities.

  4. In-flight performance optimization for rotorcraft with redundant controls

    NASA Astrophysics Data System (ADS)

    Ozdemir, Gurbuz Taha

    A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to establish a schedule. The method has been expanded to search a two-dimensional control space. Simulation results demonstrate the ability to maximize range by optimizing stabilator deflection and an airspeed set point. Another set of results minimize power required in high speed flight by optimizing collective pitch and stabilator deflection. Results show that the control laws effectively hold the flight condition while the FTO method is effective at improving performance. Optimizations show there can be issues when the control laws regulating altitude push the collective control towards it limits. So a modification was made to the control law to regulate airspeed and altitude using propeller pitch and angle of attack while the collective is held fixed or used as an optimization variable. A dynamic trim limit avoidance algorithm is applied to avoid control saturation in other axes during optimization maneuvers. Range and power optimization FTO simulations are compared with comprehensive sweeps of trim solutions and FTO optimization shown to be effective and reliable in reaching an optimal when optimizing up to two redundant controls. Use of redundant controls is shown to be beneficial for improving performance. The search method takes almost 25 minutes of simulated flight for optimization to be complete. The optimization maneuver itself can sometimes drive the power required to high values, so a power limit is imposed to restrict the search to avoid conditions where power is more than5% higher than that of the initial trim state. With this modification, the time the optimization maneuver takes to complete is reduced down to 21 minutes without any significant change in the optimal power value.

  5. Performance Optimization of Alternative Lower Global Warming Potential Refrigerants in Mini-Split Room Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar; Shrestha, Som S

    Oak Ridge National laboratory (ORNL) recently conducted extensive laboratory, drop-in investigations for lower Global Warming Potential (GWP) refrigerants to replace R-22 and R-410A. ORNL studied propane, DR-3, ARM-20B, N-20B and R-444B as lower GWP refrigerant replacement for R-22 in a mini-split room air conditioner (RAC) originally designed for R-22; and, R-32, DR-55, ARM-71A, and L41-2, in a mini-split RAC designed for R-410A. We obtained laboratory testing results with very good energy balance and nominal measurement uncertainty. Drop-in studies are not enough to judge the overall performance of the alternative refrigerants since their thermodynamic and transport properties might favor different heatmore » exchanger configurations, e.g. cross-flow, counter flow, etc. This study compares optimized performances of individual refrigerants using a physics-based system model tools. The DOE/ORNL Heat Pump Design Model (HPDM) was used to model the mini-split RACs by inputting detailed heat exchangers geometries, compressor displacement and efficiencies as well as other relevant system components. The RAC models were calibrated against the lab data for each individual refrigerant. The calibrated models were then used to conduct a design optimization for the cooling performance by varying the compressor displacement to match the required capacity, and changing the number of circuits, refrigerant flow direction, tube diameters, air flow rates in the condenser and evaporator at 100% and 50% cooling capacities. This paper compares the optimized performance results for all alternative refrigerants and highlights best candidates for R-22 and R-410A replacement.« less

  6. Rat Bone Marrow-Derived Schwann-Like Cells Differentiated by the Optimal Inducers Combination on Microfluidic Chip and Their Functional Performance

    PubMed Central

    Lv, Decheng

    2012-01-01

    Numerous researches demonstrated the possibility of derivation of Schwann-like (SC-like) cells in vitro from bone marrow stromal cells (BMSCs). However, the concentration of the induce factors were different in those studies, especially for the critical factors forskolin (FSK) and β-heregulin (HRG). Here, we used a new and useful method to build an integrated microfluidic chip for rapid analyses of the optimal combination between the induce factors FSK and HRG. The microfluidic device was mainly composed of an upstream concentration gradient generator (CGG) and a downstream cell culture module. Rat BMSCs were cultured in the cell chambers for 11 days at the different concentrations of induce factors generated by CGG. The result of immunofluorescence staining on-chip showed that the group of 4.00 µM FSK and 250.00 ng/ml HRG presented an optimal effect to promote the derivation of SC-like cells. Moreover, the optimal SC-like cells obtained on-chip were further tested using DRG co-culture and ELISA to detect their functional performance. Our findings demonstrate that SC-like cells could be obtained with high efficiency and functional performance in the optimal inducers combination. PMID:22880114

  7. Rat bone marrow-derived Schwann-like cells differentiated by the optimal inducers combination on microfluidic chip and their functional performance.

    PubMed

    Tian, Xiliang; Wang, Shouyu; Zhang, Zhen; Lv, Decheng

    2012-01-01

    Numerous researches demonstrated the possibility of derivation of Schwann-like (SC-like) cells in vitro from bone marrow stromal cells (BMSCs). However, the concentration of the induce factors were different in those studies, especially for the critical factors forskolin (FSK) and β-heregulin (HRG). Here, we used a new and useful method to build an integrated microfluidic chip for rapid analyses of the optimal combination between the induce factors FSK and HRG. The microfluidic device was mainly composed of an upstream concentration gradient generator (CGG) and a downstream cell culture module. Rat BMSCs were cultured in the cell chambers for 11 days at the different concentrations of induce factors generated by CGG. The result of immunofluorescence staining on-chip showed that the group of 4.00 µM FSK and 250.00 ng/ml HRG presented an optimal effect to promote the derivation of SC-like cells. Moreover, the optimal SC-like cells obtained on-chip were further tested using DRG co-culture and ELISA to detect their functional performance. Our findings demonstrate that SC-like cells could be obtained with high efficiency and functional performance in the optimal inducers combination.

  8. Unraveling Quantum Annealers using Classical Hardness

    PubMed Central

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  9. Optimum Design of High-Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; McCarthy, Thomas Robert

    1993-01-01

    An integrated multidisciplinary optimization procedure is developed for application to rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics, aeroelasticity, and structures are coupled within a closed-loop optimization process. The procedure developed is applied to address two different problems. The first problem considers the optimization of a helicopter rotor blade and the second problem addresses the optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the objective is to reduce the critical vibratory shear forces and moments at the blade root, without degrading rotor aerodynamic performance and aeroelastic stability. In the case of the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic performance in hover. The problems studied involve multiple design objectives; therefore, the optimization problems are formulated using multiobjective design procedures. A comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic and aeroelastic stability analyses and an algorithm developed specifically for these purposes is used for the structural analysis. A nonlinear programming technique coupled with an approximate analysis procedure is used to perform the optimization. The optimum blade designs obtained in each case are compared to corresponding reference designs.

  10. Optimization of Biosorptive Removal of Dye from Aqueous System by Cone Shell of Calabrian Pine

    PubMed Central

    Deniz, Fatih

    2014-01-01

    The biosorption performance of raw cone shell of Calabrian pine for C.I. Basic Red 46 as a model azo dye from aqueous system was optimized using Taguchi experimental design methodology. L9 (33) orthogonal array was used to optimize the dye biosorption by the pine cone shell. The selected factors and their levels were biosorbent particle size, dye concentration, and contact time. The predicted dye biosorption capacity for the pine cone shell from Taguchi design was obtained as 71.770 mg g−1 under optimized biosorption conditions. This experimental design provided reasonable predictive performance of dye biosorption by the biosorbent (R 2: 0.9961). Langmuir model fitted better to the biosorption equilibrium data than Freundlich model. This displayed the monolayer coverage of dye molecules on the biosorbent surface. Dubinin-Radushkevich model and the standard Gibbs free energy change proposed physical biosorption for predominant mechanism. The logistic function presented the best fit to the data of biosorption kinetics. The kinetic parameters reflecting biosorption performance were also evaluated. The optimization study revealed that the pine cone shell can be an effective and economically feasible biosorbent for the removal of dye. PMID:25405213

  11. The optimal location of piezoelectric actuators and sensors for vibration control of plates

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ramesh; Narayanan, S.

    2007-12-01

    This paper considers the optimal placement of collocated piezoelectric actuator-sensor pairs on a thin plate using a model-based linear quadratic regulator (LQR) controller. LQR performance is taken as objective for finding the optimal location of sensor-actuator pairs. The problem is formulated using the finite element method (FEM) as multi-input-multi-output (MIMO) model control. The discrete optimal sensor and actuator location problem is formulated in the framework of a zero-one optimization problem. A genetic algorithm (GA) is used to solve the zero-one optimization problem. Different classical control strategies like direct proportional feedback, constant-gain negative velocity feedback and the LQR optimal control scheme are applied to study the control effectiveness.

  12. Development of an LSI maximum-likelihood convolutional decoder for advanced forward error correction capability on the NASA 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    Clark, R. T.; Mccallister, R. D.

    1982-01-01

    The particular coding option identified as providing the best level of coding gain performance in an LSI-efficient implementation was the optimal constraint length five, rate one-half convolutional code. To determine the specific set of design parameters which optimally matches this decoder to the LSI constraints, a breadboard MCD (maximum-likelihood convolutional decoder) was fabricated and used to generate detailed performance trade-off data. The extensive performance testing data gathered during this design tradeoff study are summarized, and the functional and physical MCD chip characteristics are presented.

  13. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.

  14. Model-Based Design of Tree WSNs for Decentralized Detection.

    PubMed

    Tantawy, Ashraf; Koutsoukos, Xenofon; Biswas, Gautam

    2015-08-20

    The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches.

  15. Optimal Design of a Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, Hosung

    2017-04-01

    In the present work, the optimum design of thermoelectric car seat climate control (CSCC) is studied analytically in an attempt to achieve high system efficiency. Optimal design of a thermoelectric device (element length, cross-section area and number of thermocouples) is carried out using our newly developed optimization method based on the ideal thermoelectric equations and dimensional analysis to improve the performance of the thermoelectric device in terms of the heating/cooling power and the coefficient of performance (COP). Then, a new innovative system design is introduced which also includes the optimum input current for the initial (transient) startup warming and cooling before the car heating ventilation and air conditioner (HVAC) is active in the cabin. The air-to-air heat exchanger's configuration was taken into account to investigate the optimal design of the CSCC.

  16. Study on the effect of the runner design parameters on 50 MW Francis hydro turbine model performance

    NASA Astrophysics Data System (ADS)

    Shrestha, Ujjwal; Chen, Zhenmu; Choi, Young-Do

    2018-06-01

    Francis hydro turbine is the dominant turbine in the hydropower generation. Francis turbine has been installed at most 60% of the hydropower in the world at present. Although the basic design for the Francis turbine has various method regarding the specific speed. The runner meridional shape varies with different specific speed. Despite having, the basic design but there is still some room for the optimization. In this study 50 MW, Francis hydro turbine with specific speed 323 m-kW was designed and considered for the optimization. The various parameter as runner meridional shape (curve profile of hub, shroud, leading edge and trailing edge), blade angle and its distribution, blade thickness, runner inlet width that has been considered for the optimization of the runner for enhancement of the performance.

  17. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  18. Using particle swarm optimization to enhance PI controller performances for active and reactive power control in wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Taleb, M.; Cherkaoui, M.; Hbib, M.

    2018-05-01

    Recently, renewable energy sources are impacting seriously power quality of the grids in term of frequency and voltage stability, due to their intermittence and less forecasting accuracy. Among these sources, wind energy conversion systems (WECS) received a great interest and especially the configuration with Doubly Fed Induction Generator. However, WECS strongly nonlinear, are making their control not easy by classical approaches such as a PI. In this paper, we continue deepen study of PI controller used in active and reactive power control of this kind of WECS. Particle Swarm Optimization (PSO) is suggested to improve its dynamic performances and its robustness against parameters variations. This work highlights the performances of PSO optimized PI control against classical PI tuned with poles compensation strategy. Simulations are carried out on MATLAB-SIMULINK software.

  19. Optimal Operation of a Thermal Energy Storage Tank Using Linear Optimization

    NASA Astrophysics Data System (ADS)

    Civit Sabate, Carles

    In this thesis, an optimization procedure for minimizing the operating costs of a Thermal Energy Storage (TES) tank is presented. The facility in which the optimization is based is the combined cooling, heating, and power (CCHP) plant at the University of California, Irvine. TES tanks provide the ability of decoupling the demand of chilled water from its generation, over the course of a day, from the refrigeration and air-conditioning plants. They can be used to perform demand-side management, and optimization techniques can help to approach their optimal use. The proposed optimization approach provides a fast and reliable methodology of finding the optimal use of the TES tank to reduce energy costs and provides a tool for future implementation of optimal control laws on the system. Advantages of the proposed methodology are studied using simulation with historical data.

  20. Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction

    PubMed Central

    Lancaster, Jenessa; Lorenz, Romy; Leech, Rob; Cole, James H.

    2018-01-01

    Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years) we trained support vector machines to (i) distinguish between young (<22 years) and old (>50 years) brains (classification) and (ii) predict chronological age (regression). We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years). Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm). For predicting chronological age, a mean absolute error (MAE) of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm). This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian optimization framework to the new dataset, out-performing the parameters optimized for the initial training dataset. Our study outlines the proof-of-principle that neuroimaging models for brain-age prediction can use Bayesian optimization to derive case-specific pre-processing parameters. Our results suggest that different pre-processing parameters are selected when optimization is conducted in specific contexts. This potentially motivates use of optimization techniques at many different points during the experimental process, which may improve statistical sensitivity and reduce opportunities for experimenter-led bias. PMID:29483870

  1. Developing a Shuffled Complex-Self Adaptive Hybrid Evolution (SC-SAHEL) Framework for Water Resources Management and Water-Energy System Optimization

    NASA Astrophysics Data System (ADS)

    Rahnamay Naeini, M.; Sadegh, M.; AghaKouchak, A.; Hsu, K. L.; Sorooshian, S.; Yang, T.

    2017-12-01

    Meta-Heuristic optimization algorithms have gained a great deal of attention in a wide variety of fields. Simplicity and flexibility of these algorithms, along with their robustness, make them attractive tools for solving optimization problems. Different optimization methods, however, hold algorithm-specific strengths and limitations. Performance of each individual algorithm obeys the "No-Free-Lunch" theorem, which means a single algorithm cannot consistently outperform all possible optimization problems over a variety of problems. From users' perspective, it is a tedious process to compare, validate, and select the best-performing algorithm for a specific problem or a set of test cases. In this study, we introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme, and allows users to select the most suitable algorithm tailored to the problem at hand. The concept of SC-SAHEL is to execute different EAs as separate parallel search cores, and let all participating EAs to compete during the course of the search. The newly developed SC-SAHEL algorithm is designed to automatically select, the best performing algorithm for the given optimization problem. This algorithm is rigorously effective in finding the global optimum for several strenuous benchmark test functions, and computationally efficient as compared to individual EAs. We benchmark the proposed SC-SAHEL algorithm over 29 conceptual test functions, and two real-world case studies - one hydropower reservoir model and one hydrological model (SAC-SMA). Results show that the proposed framework outperforms individual EAs in an absolute majority of the test problems, and can provide competitive results to the fittest EA algorithm with more comprehensive information during the search. The proposed framework is also flexible for merging additional EAs, boundary-handling techniques, and sampling schemes, and has good potential to be used in Water-Energy system optimal operation and management.

  2. Sensitivity analysis of multi-objective optimization of CPG parameters for quadruped robot locomotion

    NASA Astrophysics Data System (ADS)

    Oliveira, Miguel; Santos, Cristina P.; Costa, Lino

    2012-09-01

    In this paper, a study based on sensitivity analysis is performed for a gait multi-objective optimization system that combines bio-inspired Central Patterns Generators (CPGs) and a multi-objective evolutionary algorithm based on NSGA-II. In this system, CPGs are modeled as autonomous differential equations, that generate the necessary limb movement to perform the required walking gait. In order to optimize the walking gait, a multi-objective problem with three conflicting objectives is formulated: maximization of the velocity, the wide stability margin and the behavioral diversity. The experimental results highlight the effectiveness of this multi-objective approach and the importance of the objectives to find different walking gait solutions for the quadruped robot.

  3. The Relationship between Distributed Leadership and Teachers' Academic Optimism

    ERIC Educational Resources Information Center

    Mascall, Blair; Leithwood, Kenneth; Straus, Tiiu; Sacks, Robin

    2008-01-01

    Purpose: The goal of this study was to examine the relationship between four patterns of distributed leadership and a modified version of a variable Hoy et al. have labeled "teachers' academic optimism." The distributed leadership patterns reflect the extent to which the performance of leadership functions is consciously aligned across…

  4. Mycorrhizal symbiosis produces changes in specific flavonoids in leaves of pepper plant (Capsicum annum L.)

    USDA-ARS?s Scientific Manuscript database

    In this study, experiments were performed to investigate if mycorrhizal plants grown under optimal growth conditions would improve crop quality compared to the non-mycorrhizal control. The results clearly showed that while mycorrhizal plants grown under an optimal nutrient supply did not increase t...

  5. OPTIMIZATION METHODOLOGY FOR LAND USE PATTERNS-EVALUATION BASED ON MULTISCALE HABITAT PATTERN COMPARISON. (R827169)

    EPA Science Inventory

    In this paper, the methodological concept of landscape optimization presented by Seppelt and Voinov [Ecol. Model. 151 (2/3) (2002) 125] is analyzed. Two aspects are chosen for detailed study. First, we generalize the performance criterion to assess a vector of ecosystem functi...

  6. Finding the Optimal Guidance for Enhancing Anchored Instruction

    ERIC Educational Resources Information Center

    Zydney, Janet Mannheimer; Bathke, Arne; Hasselbring, Ted S.

    2014-01-01

    This study investigated the effect of different methods of guidance with anchored instruction on students' mathematical problem-solving performance. The purpose of this research was to iteratively design a learning environment to find the optimal level of guidance. Two iterations of the software were compared. The first iteration used explicit…

  7. DAKOTA Design Analysis Kit for Optimization and Terascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.

    2010-02-24

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less

  8. Fusion of Optimized Indicators from Advanced Driver Assistance Systems (ADAS) for Driver Drowsiness Detection

    PubMed Central

    Daza, Iván G.; Bergasa, Luis M.; Bronte, Sebastián; Yebes, J. Javier; Almazán, Javier; Arroyo, Roberto

    2014-01-01

    This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study. PMID:24412904

  9. The Development of Lightweight Commercial Vehicle Wheels Using Microalloying Steel

    NASA Astrophysics Data System (ADS)

    Lu, Hongzhou; Zhang, Lilong; Wang, Jiegong; Xuan, Zhaozhi; Liu, Xiandong; Guo, Aimin; Wang, Wenjun; Lu, Guimin

    Lightweight wheels can reduce weight about 100kg for commercial vehicles, and it can save energy and reduce emission, what's more, it can enhance the profits for logistics companies. The development of lightweight commercial vehicle wheels is achieved by the development of new steel for rim, the process optimization of flash butt welding, and structure optimization by finite element methods. Niobium micro-alloying technology can improve hole expansion rate, weldability and fatigue performance of wheel steel, and based on Niobium micro-alloying technology, a special wheel steel has been studied whose microstructure are Ferrite and Bainite, with high formability and high fatigue performance, and stable mechanical properties. The content of Nb in this new steel is 0.025% and the hole expansion rate is ≥ 100%. At the same time, welding parameters including electric upsetting time, upset allowance, upsetting pressure and flash allowance are optimized, and by CAE analysis, an optimized structure has been attained. As a results, the weight of 22.5in×8.25in wheel is up to 31.5kg, which is most lightweight comparing the same size wheels. And its functions including bending fatigue performance and radial fatigue performance meet the application requirements of truck makers and logistics companies.

  10. Modeling and optimization of an enhanced battery thermal management system in electric vehicles

    NASA Astrophysics Data System (ADS)

    Li, Mao; Liu, Yuanzhi; Wang, Xiaobang; Zhang, Jie

    2018-06-01

    This paper models and optimizes an air-based battery thermal management system (BTMS) in a battery module with 36 battery lithium-ion cells. A design of experiments is performed to study the effects of three key parameters (i.e., mass flow rate of cooling air, heat flux from the battery cell to the cooling air, and passage spacing size) on the battery thermal performance. Three metrics are used to evaluate the BTMS thermal performance, including (i) the maximum temperature in the battery module, (ii) the temperature uniformity in the battery module, and (iii) the pressure drop. It is found that (i) increasing the total mass flow rate may result in a more non-uniform distribution of the passage mass flow rate among passages, and (ii) a large passage spacing size may worsen the temperature uniformity on the battery walls. Optimization is also performed to optimize the passage spacing size. Results show that the maximum temperature difference of the cooling air in passages is reduced from 23.9 to 2.1 K by 91.2%, and the maximum temperature difference among the battery cells is reduced from 25.7 to 6.4 K by 75.1%.

  11. Relationship of quadriceps muscle power and optimal shortening velocity with angiotensin-converting enzyme activity in older women.

    PubMed

    Kostka, Joanna; Sikora, Joanna; Kostka, Tomasz

    2017-01-01

    The goal of this study was to assess whether angiotensin-converting enzyme (ACE) activity is related to muscle function (strength, power and velocity), as well as to assess if ACE inhibitors (ACEIs) and other angiotensin system blocking medications (ASBMs) influence muscle performance in elderly women. Ninety-five community-dwelling elderly women took part in this study. Anthropometric data, blood ACE activity analysis, maximum power (P max ) and optimal shortening velocity (υ opt ) of the knee extensor muscles, handgrip strength, physical activity (PA) and functional performance were measured. Women taking ACEI were on average almost 2 years older than the women who did not take ACEI. They took more medicines and were also characterized by significantly lower level of ACE, but they did not differ in terms of PA level, results of functional performance and parameters characterizing muscle functions. No correlations of ACE activity with P max and handgrip strength, as well as with PA or functional performance were found. Higher ACE activity was connected with lower υ opt for women who did not take any ASBMs (rho =-0.37; p =0.01). Serum ACE activity was not associated with muscle strength, power and functional performance in both ASBM users and nonusers, but was associated with optimal shortening velocity of quadriceps muscles in older women. Further prospective studies are needed to assess if ACEIs or other ASBMs may slow down the decline in muscle function and performance.

  12. A Computational/Experimental Study of Two Optimized Supersonic Transport Designs and the Reference H Baseline

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Baker, Timothy J.; Hicks, Raymond M.; Reuther, James J.

    1999-01-01

    Two supersonic transport configurations designed by use of non-linear aerodynamic optimization methods are compared with a linearly designed baseline configuration. One optimized configuration, designated Ames 7-04, was designed at NASA Ames Research Center using an Euler flow solver, and the other, designated Boeing W27, was designed at Boeing using a full-potential method. The two optimized configurations and the baseline were tested in the NASA Langley Unitary Plan Supersonic Wind Tunnel to evaluate the non-linear design optimization methodologies. In addition, the experimental results are compared with computational predictions for each of the three configurations from the Enter flow solver, AIRPLANE. The computational and experimental results both indicate moderate to substantial performance gains for the optimized configurations over the baseline configuration. The computed performance changes with and without diverters and nacelles were in excellent agreement with experiment for all three models. Comparisons of the computational and experimental cruise drag increments for the optimized configurations relative to the baseline show excellent agreement for the model designed by the Euler method, but poorer comparisons were found for the configuration designed by the full-potential code.

  13. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.; Dunn, D.

    1992-01-01

    The topics covered include the following: (1) performance analysis of the Gregorian tri-reflector; (2) design and performance of the type 6 reflector antenna; (3) a new spherical main reflector system design; (4) optimization of reflector configurations using physical optics; (5) radiometric array design; and (7) beam efficiency studies.

  14. Parametric Study of Biconic Re-Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Steele, Bryan; Banks, Daniel W.; Whitmore, Stephen A.

    2007-01-01

    An optimization based on hypersonic aerodynamic performance and volumetric efficiency was accomplished for a range of biconic configurations. Both axisymmetric and quasi-axisymmetric geometries (bent and flattened) were analyzed. The aerodynamic optimization wag based on hypersonic simple Incidence angle analysis tools. The range of configurations included those suitable for r lunar return trajectory with a lifting aerocapture at Earth and an overall volume that could support a nominal crew. The results yielded five configurations that had acceptable aerodynamic performance and met overall geometry and size limitations

  15. [Optimization of the parameters of microcirculatory structural adaptation model based on improved quantum-behaved particle swarm optimization algorithm].

    PubMed

    Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping

    2017-08-01

    The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.

  16. Piezoresistive Cantilever Performance—Part II: Optimization

    PubMed Central

    Park, Sung-Jin; Doll, Joseph C.; Rastegar, Ali J.; Pruitt, Beth L.

    2010-01-01

    Piezoresistive silicon cantilevers fabricated by ion implantation are frequently used for force, displacement, and chemical sensors due to their low cost and electronic readout. However, the design of piezoresistive cantilevers is not a straightforward problem due to coupling between the design parameters, constraints, process conditions, and performance. We systematically analyzed the effect of design and process parameters on force resolution and then developed an optimization approach to improve force resolution while satisfying various design constraints using simulation results. The combined simulation and optimization approach is extensible to other doping methods beyond ion implantation in principle. The optimization results were validated by fabricating cantilevers with the optimized conditions and characterizing their performance. The measurement results demonstrate that the analytical model accurately predicts force and displacement resolution, and sensitivity and noise tradeoff in optimal cantilever performance. We also performed a comparison between our optimization technique and existing models and demonstrated eight times improvement in force resolution over simplified models. PMID:20333323

  17. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks.

    PubMed

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-04-19

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.

  18. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks

    PubMed Central

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-01-01

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs). However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%. PMID:28422062

  19. Design of a correlated validated CFD and genetic algorithm model for optimized sensors placement for indoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    Mousavi, Monireh Sadat; Ashrafi, Khosro; Motlagh, Majid Shafie Pour; Niksokhan, Mohhamad Hosein; Vosoughifar, HamidReza

    2018-02-01

    In this study, coupled method for simulation of flow pattern based on computational methods for fluid dynamics with optimization technique using genetic algorithms is presented to determine the optimal location and number of sensors in an enclosed residential complex parking in Tehran. The main objective of this research is costs reduction and maximum coverage with regard to distribution of existing concentrations in different scenarios. In this study, considering all the different scenarios for simulation of pollution distribution using CFD simulations has been challenging due to extent of parking and number of cars available. To solve this problem, some scenarios have been selected based on random method. Then, maximum concentrations of scenarios are chosen for performing optimization. CFD simulation outputs are inserted as input in the optimization model using genetic algorithm. The obtained results stated optimal number and location of sensors.

  20. Optimization of freeform lightpipes for light-emitting-diode projectors.

    PubMed

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.

  1. Optimization of freeform lightpipes for light-emitting-diode projectors

    NASA Astrophysics Data System (ADS)

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.

  2. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    NASA Astrophysics Data System (ADS)

    Quick, J.; Dykes, K.; Graf, P.; Zahle, F.

    2016-09-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  3. Design-Optimization Of Cylindrical, Layered Composite Structures Using Efficient Laminate Parameterization

    NASA Astrophysics Data System (ADS)

    Monicke, A.; Katajisto, H.; Leroy, M.; Petermann, N.; Kere, P.; Perillo, M.

    2012-07-01

    For many years, layered composites have proven essential for the successful design of high-performance space structures, such as launchers or satellites. A generic cylindrical composite structure for a launcher application was optimized with respect to objectives and constraints typical for space applications. The studies included the structural stability, laminate load response and failure analyses. Several types of cylinders (with and without stiffeners) were considered and optimized using different lay-up parameterizations. Results for the best designs are presented and discussed. The simulation tools, ESAComp [1] and modeFRONTIER [2], employed in the optimization loop are elucidated and their value for the optimization process is explained.

  4. Decolorization of Acid Orange 7 by an electric field-assisted modified orifice plate hydrodynamic cavitation system: Optimization of operational parameters.

    PubMed

    Jung, Kyung-Won; Park, Dae-Seon; Hwang, Min-Jin; Ahn, Kyu-Hong

    2015-09-01

    In this study, the decolorization of Acid Orange 7 (AO-7) with intensified performance was obtained using hydrodynamic cavitation (HC) combined with an electric field (graphite electrodes). As a preliminary step, various HC systems were compared in terms of decolorization, and, among them, the electric field-assisted modified orifice plate HC (EFM-HC) system exhibited perfect decolorization performance within 40 min of reaction time. Interestingly, when H2O2 was injected into the EFM-HC system as an additional oxidant, the reactor performance gradually decreased as the dosing ratio increased; thus, the remaining experiments were performed without H2O2. Subsequently, an optimization process was conducted using response surface methodology with a Box-Behnken design. The inlet pressure, initial pH, applied voltage, and reaction time were chosen as operational key factors, while decolorization was selected as the response variable. The overall performance revealed that the selected parameters were either slightly interdependent, or had significant interactive effects on the decolorization. In the verification test, complete decolorization was observed under statistically optimized conditions. This study suggests that EFM-HC is a useful method for pretreatment of dye wastewater with positive economic and commercial benefits. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space

    NASA Astrophysics Data System (ADS)

    Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.

    2014-11-01

    NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.

  6. Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter

    NASA Technical Reports Server (NTRS)

    Russell, Carl; Johnson, Wayne

    2012-01-01

    A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.

  7. A Complete Procedure for Predicting and Improving the Performance of HAWT's

    NASA Astrophysics Data System (ADS)

    Al-Abadi, Ali; Ertunç, Özgür; Sittig, Florian; Delgado, Antonio

    2014-06-01

    A complete procedure for predicting and improving the performance of the horizontal axis wind turbine (HAWT) has been developed. The first process is predicting the power extracted by the turbine and the derived rotor torque, which should be identical to that of the drive unit. The BEM method and a developed post-stall treatment for resolving stall-regulated HAWT is incorporated in the prediction. For that, a modified stall-regulated prediction model, which can predict the HAWT performance over the operating range of oncoming wind velocity, is derived from existing models. The model involves radius and chord, which has made it more general in applications for predicting the performance of different scales and rotor shapes of HAWTs. The second process is modifying the rotor shape by an optimization process, which can be applied to any existing HAWT, to improve its performance. A gradient- based optimization is used for adjusting the chord and twist angle distribution of the rotor blade to increase the extraction of the power while keeping the drive torque constant, thus the same drive unit can be kept. The final process is testing the modified turbine to predict its enhanced performance. The procedure is applied to NREL phase-VI 10kW as a baseline turbine. The study has proven the applicability of the developed model in predicting the performance of the baseline as well as the optimized turbine. In addition, the optimization method has shown that the power coefficient can be increased while keeping same design rotational speed.

  8. A PERFECT MATCH CONDITION FOR POINT-SET MATCHING PROBLEMS USING THE OPTIMAL MASS TRANSPORT APPROACH

    PubMed Central

    CHEN, PENGWEN; LIN, CHING-LONG; CHERN, I-LIANG

    2013-01-01

    We study the performance of optimal mass transport-based methods applied to point-set matching problems. The present study, which is based on the L2 mass transport cost, states that perfect matches always occur when the product of the point-set cardinality and the norm of the curl of the non-rigid deformation field does not exceed some constant. This analytic result is justified by a numerical study of matching two sets of pulmonary vascular tree branch points whose displacement is caused by the lung volume changes in the same human subject. The nearly perfect match performance verifies the effectiveness of this mass transport-based approach. PMID:23687536

  9. Sootblowing optimization for improved boiler performance

    DOEpatents

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  10. Sootblowing optimization for improved boiler performance

    DOEpatents

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  11. Performance Enhancing Diets and the PRISE Protocol to Optimize Athletic Performance

    PubMed Central

    Arciero, Paul J.; Ward, Emery

    2015-01-01

    The training regimens of modern-day athletes have evolved from the sole emphasis on a single fitness component (e.g., endurance athlete or resistance/strength athlete) to an integrative, multimode approach encompassing all four of the major fitness components: resistance (R), interval sprints (I), stretching (S), and endurance (E) training. Athletes rarely, if ever, focus their training on only one mode of exercise but instead routinely engage in a multimode training program. In addition, timed-daily protein (P) intake has become a hallmark for all athletes. Recent studies, including from our laboratory, have validated the effectiveness of this multimode paradigm (RISE) and protein-feeding regimen, which we have collectively termed PRISE. Unfortunately, sports nutrition recommendations and guidelines have lagged behind the PRISE integrative nutrition and training model and therefore limit an athletes' ability to succeed. Thus, it is the purpose of this review to provide a clearly defined roadmap linking specific performance enhancing diets (PEDs) with each PRISE component to facilitate optimal nourishment and ultimately optimal athletic performance. PMID:25949823

  12. Analyse et design aerodynamique haute-fidelite de l'integration moteur sur un avion BWB

    NASA Astrophysics Data System (ADS)

    Mirzaei Amirabad, Mojtaba

    BWB (Blended Wing Body) is an innovative type of aircraft based on the flying wing concept. In this configuration, the wing and the fuselage are blended together smoothly. BWB offers economical and environmental advantages by reducing fuel consumption through improving aerodynamic performance. In this project, the goal is to improve the aerodynamic performance by optimizing the main body of BWB that comes from conceptual design. The high fidelity methods applied in this project have been less frequently addressed in the literature. This research develops an automatic optimization procedure in order to reduce the drag force on the main body. The optimization is carried out in two main stages: before and after engine installation. Our objective is to minimize the drag by taking into account several constraints in high fidelity optimization. The commercial software, Isight is chosen as an optimizer in which MATLAB software is called to start the optimization process. Geometry is generated using ANSYS-DesignModeler, unstructured mesh is created by ANSYS-Mesh and CFD calculations are done with the help of ANSYS-Fluent. All of these software are coupled together in ANSYS-Workbench environment which is called by MATLAB. The high fidelity methods are used during optimization by solving Navier-Stokes equations. For verifying the results, a finer structured mesh is created by ICEM software to be used in each stage of optimization. The first stage includes a 3D optimization on the surface of the main body, before adding the engine. The optimized case is then used as an input for the second stage in which the nacelle is added. It could be concluded that this study leads us to obtain appropriate reduction in drag coefficient for BWB without nacelle. In the second stage (adding the nacelle) a drag minimization is also achieved by performing a local optimization. Furthermore, the flow separation, created in the main body-nacelle zone, is reduced.

  13. All-in-one model for designing optimal water distribution pipe networks

    NASA Astrophysics Data System (ADS)

    Aklog, Dagnachew; Hosoi, Yoshihiko

    2017-05-01

    This paper discusses the development of an easy-to-use, all-in-one model for designing optimal water distribution networks. The model combines different optimization techniques into a single package in which a user can easily choose what optimizer to use and compare the results of different optimizers to gain confidence in the performances of the models. At present, three optimization techniques are included in the model: linear programming (LP), genetic algorithm (GA) and a heuristic one-by-one reduction method (OBORM) that was previously developed by the authors. The optimizers were tested on a number of benchmark problems and performed very well in terms of finding optimal or near-optimal solutions with a reasonable computation effort. The results indicate that the model effectively addresses the issues of complexity and limited performance trust associated with previous models and can thus be used for practical purposes.

  14. Burnout and job performance: the moderating role of selection, optimization, and compensation strategies.

    PubMed

    Demerouti, Evangelia; Bakker, Arnold B; Leiter, Michael

    2014-01-01

    The present study aims to explain why research thus far has found only low to moderate associations between burnout and performance. We argue that employees use adaptive strategies that help them to maintain their performance (i.e., task performance, adaptivity to change) at acceptable levels despite experiencing burnout (i.e., exhaustion, disengagement). We focus on the strategies included in the selective optimization with compensation model. Using a sample of 294 employees and their supervisors, we found that compensation is the most successful strategy in buffering the negative associations of disengagement with supervisor-rated task performance and both disengagement and exhaustion with supervisor-rated adaptivity to change. In contrast, selection exacerbates the negative relationship of exhaustion with supervisor-rated adaptivity to change. In total, 42% of the hypothesized interactions proved to be significant. Our study uncovers successful and unsuccessful strategies that people use to deal with their burnout symptoms in order to achieve satisfactory job performance. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Development of Multiobjective Optimization Techniques for Sonic Boom Minimization

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.

    1996-01-01

    A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.

  16. On the use of controls for subsonic transport performance improvement: Overview and future directions

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn; Espana, Martin

    1994-01-01

    Increasing competition among airline manufacturers and operators has highlighted the issue of aircraft efficiency. Fewer aircraft orders have led to an all-out efficiency improvement effort among the manufacturers to maintain if not increase their share of the shrinking number of aircraft sales. Aircraft efficiency is important in airline profitability and is key if fuel prices increase from their current low. In a continuing effort to improve aircraft efficiency and develop an optimal performance technology base, NASA Dryden Flight Research Center developed and flight tested an adaptive performance seeking control system to optimize the quasi-steady-state performance of the F-15 aircraft. The demonstrated technology is equally applicable to transport aircraft although with less improvement. NASA Dryden, in transitioning this technology to transport aircraft, is specifically exploring the feasibility of applying adaptive optimal control techniques to performance optimization of redundant control effectors. A simulation evaluation of a preliminary control law optimizes wing-aileron camber for minimum net aircraft drag. Two submodes are evaluated: one to minimize fuel and the other to maximize velocity. This paper covers the status of performance optimization of the current fleet of subsonic transports. Available integrated controls technologies are reviewed to define approaches using active controls. A candidate control law for adaptive performance optimization is presented along with examples of algorithm operation.

  17. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine

    PubMed Central

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir

    2017-01-01

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080

  18. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine.

    PubMed

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2017-04-19

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.

  19. Optimizing cost-efficiency in mean exposure assessment - cost functions reconsidered

    PubMed Central

    2011-01-01

    Background Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Methods Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Results Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods. For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. Conclusions The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios. PMID:21600023

  20. Optimizing cost-efficiency in mean exposure assessment--cost functions reconsidered.

    PubMed

    Mathiassen, Svend Erik; Bolin, Kristian

    2011-05-21

    Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods.For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios.

  1. The km 3 Mediterranean neutrino observatory - the NEMO.RD project

    NASA Astrophysics Data System (ADS)

    De Marzo, C. N.

    2001-05-01

    The NEMO.RD Project is a feasibility study of a km 3 underwater telescope for high energy astrophysical neutrinos to be located in the Mediterranean Sea. Results on various issues of this project are presented on: i) Monte Carlo simulation study of the capabilities of various arrays of phototubes in order to determine the detector geometry that can optimize performance and cost; ii) oceanographic survey of various sites in search of the optimal one; iii) feasibility study of mechanics, deployment, connections and maintenance of such a detector. Parameters of a site near Capo Passero, Sicily, where depth, transparency and other water parameters seem optimal are shown.

  2. Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights

    NASA Astrophysics Data System (ADS)

    Aydogdu, Ibrahim

    2017-03-01

    In this article, a new version of a biogeography-based optimization algorithm with Levy flight distribution (LFBBO) is introduced and used for the optimum design of reinforced concrete cantilever retaining walls under seismic loading. The cost of the wall is taken as an objective function, which is minimized under the constraints implemented by the American Concrete Institute (ACI 318-05) design code and geometric limitations. The influence of peak ground acceleration (PGA) on optimal cost is also investigated. The solution of the problem is attained by the LFBBO algorithm, which is developed by adding Levy flight distribution to the mutation part of the biogeography-based optimization (BBO) algorithm. Five design examples, of which two are used in literature studies, are optimized in the study. The results are compared to test the performance of the LFBBO and BBO algorithms, to determine the influence of the seismic load and PGA on the optimal cost of the wall.

  3. Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code

    NASA Astrophysics Data System (ADS)

    Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.

    2014-10-01

    Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.

  4. Utilization of Renewable Energy to Meet New National Challenges in Energy and Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momoh, James A.

    The project aims to design a microgrid system to promote utilization of renewable energy resources such as wind and solar to address the national challenges in energy and climate change. Different optimization techniques and simulation software are used to study the performance of the renewable energy system under study. A series of research works performed under the grant Department of Energy (DOE) is presented. This grant opportunity affords Howard faculty, students, graduates, undergraduates, K-12, postdocs and visiting scholars to benefit state of the art research work. The research work has led to improve or advance understanding of new hardware technologies,more » software development and engineering optimization methods necessary and sufficient for handling probabilistic models and real-time computation and functions necessary for development of microgrid system. Consistent with State of Project Objective Howard University has partitioned the task into the following integrated activities: 1. Stochastic Model for RER and Load • Development of modeling Renewable Energy Resources (RER) and load which is used to perform distribution power flow study which leads to publication in refereed journals and conferences. The work was also published at the IEEE conference. 2. Stochastic optimization for voltage/Var • The development of voltage VAr optimization based on a review of existing knowledge in optimization led to the use of stochastic program and evolution of programming optimization method for V/VAr optimization. Papers were presented at the North America Power Systems Conference and the IEEE PES general meeting. 3. Modeling RER and Storage • Extending the concept of optimization method an RER with storage, such as the development of microgrid V/VAr and storage is performed. Several papers were published at the North America Power Systems Conference and the IEEE PES general meeting. 4. Power Game • Development of power game experiment using Labvolt to allow for hands on understanding of design and development of microgrid functions is performed. Publication were done by students at the end of their summer program. 5. Designing Microgrid Testbed • Example microgrid test bed is developed. In addition, function of the test bed are developed. The papers were presented at the North America Power Systems Conference and the IEEE general meeting. 6. Outreach Program • From the outreach program, topics from the project have been included in the revision of courses at Howard University, new book called Energy Processing and Smartgrid has being developed. • Hosted masters students from University of Denver to complete their projects with us. • Hosted high school students for early exposure for careers in STEM • Representations made in IEEE conferences to share the lessons learned in the use of micro grid to expose students to STEM education and research.« less

  5. An analysis of the impact of cabin floor angle restrictions on L/D for a typical supersonic transport

    NASA Technical Reports Server (NTRS)

    Radkey, R. L.

    1974-01-01

    High floor angles at cruise have been identified as a significant problem facing airline and public acceptance of a supersonic transport. In order to explore the relationship between cruise performances and floor angle, four related wing-fuselage design and integration studies have been conducted. The studies were: (1) a fuselage camber study in which perturbations in the fuselage camber distribution were examined with a baseline wing, (2) a wing optimization study in which wings were optimized for minimum drag at C sub L's less than the design C sub L. These wings were optimized as wing planform camber surfaces alone and evaluated with a baseline fuselage, (3) a second wing optimization study in which wings were optimized for minimum drag at C sub L's less than the design C sub L but for this study the wings were optimized in the presence of the baseline fuselage, and (4) a third wing optimization study in which wings were optimized for minmum drag subject to C sub M constraints designed to produce more positive C sub MO's, thereby reducing trim drag. The studies indicated that it was not possible to both improve the aircraft cruise L/D and substantially reduce the cruise floor angle. The studies did indicate that the cruise floor angle could be reduced by reducing the fuselage incidence relative to the wing, but the reduction in floor angle was accompanied by a substantial reduction in L/D.

  6. CFD-Based Design Optimization Tool Developed for Subsonic Inlet

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the optimum design satisfied the upper limits at takeoff and rolling takeoff while retaining the desirable cruise performance. Further studies are being conducted to include static and cross-wind operating conditions in the design optimization procedure. This work was carried out in collaboration with Dr. E.S. Reddy of NYMA, Inc.

  7. An expert system for integrated structural analysis and design optimization for aerospace structures

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and design optimization tasks in the integrated aerospace structural design process. These expert systems were developed to work in conjunction with procedural finite element structural analysis and design optimization modules (developed in-house at SAT, Inc.). The complete software, AutoDesign, so developed, can be used for integrated 'intelligent' structural analysis and design optimization. The software was beta-tested at a variety of companies, used by a range of engineers with different levels of background and expertise. Based on the feedback obtained by such users, conclusions were developed and are provided.

  8. An expert system for integrated structural analysis and design optimization for aerospace structures

    NASA Astrophysics Data System (ADS)

    1992-04-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and design optimization tasks in the integrated aerospace structural design process. These expert systems were developed to work in conjunction with procedural finite element structural analysis and design optimization modules (developed in-house at SAT, Inc.). The complete software, AutoDesign, so developed, can be used for integrated 'intelligent' structural analysis and design optimization. The software was beta-tested at a variety of companies, used by a range of engineers with different levels of background and expertise. Based on the feedback obtained by such users, conclusions were developed and are provided.

  9. Estimation of muscle response using three-dimensional musculoskeletal models before impact situation: a simulation study.

    PubMed

    Bae, Tae Soo; Loan, Peter; Choi, Kuiwon; Hong, Daehie; Mun, Mu Seong

    2010-12-01

    When car crash experiments are performed using cadavers or dummies, the active muscles' reaction on crash situations cannot be observed. The aim of this study is to estimate muscles' response of the major muscle groups using three-dimensional musculoskeletal model by dynamic simulations of low-speed sled-impact. The three-dimensional musculoskeletal models of eight subjects were developed, including 241 degrees of freedom and 86 muscles. The muscle parameters considering limb lengths and the force-generating properties of the muscles were redefined by optimization to fit for each subject. Kinematic data and external forces measured by motion tracking system and dynamometer were then input as boundary conditions. Through a least-squares optimization algorithm, active muscles' responses were calculated during inverse dynamic analysis tracking the motion of each subject. Electromyography for major muscles at elbow, knee, and ankle joints was measured to validate each model. For low-speed sled-impact crash, experiment and simulation with optimized and unoptimized muscle parameters were performed at 9.4 m/h and 10 m/h and muscle activities were compared among them. The muscle activities with optimized parameters were closer to experimental measurements than the results without optimization. In addition, the extensor muscle activities at knee, ankle, and elbow joint were found considerably at impact time, unlike previous studies using cadaver or dummies. This study demonstrated the need to optimize the muscle parameters to predict impact situation correctly in computational studies using musculoskeletal models. And to improve accuracy of analysis for car crash injury using humanlike dummies, muscle reflex function, major extensor muscles' response at elbow, knee, and ankle joints, should be considered.

  10. Parameter identification and optimization of slide guide joint of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Sun, B. B.

    2017-11-01

    The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.

  11. Optimal block cosine transform image coding for noisy channels

    NASA Technical Reports Server (NTRS)

    Vaishampayan, V.; Farvardin, N.

    1986-01-01

    The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.

  12. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw.

    PubMed

    Wang, Xiaojiao; Yang, Gaihe; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui

    2012-09-01

    This study investigated the possibilities of improving methane yield from anaerobic digestion of multi-component substrates, using a mixture of dairy manure (DM), chicken manure (CM) and wheat straw (WS), based on optimized feeding composition and the C/N ratio. Co-digestion of DM, CM and WS performed better in methane potential than individual digestion. A larger synergetic effect in co-digestion of DM, CM and WS was found than in mixtures of single manures with WS. As the C/N ratio increased, methane potential initially increased and then declined. C/N ratios of 25:1 and 30:1 had better digestion performance with stable pH and low concentrations of total ammonium nitrogen and free NH(3). Maximum methane potential was achieved with DM/CM of 40.3:59.7 and a C/N ratio of 27.2:1 after optimization using response surface methodology. The results suggested that better performance of anaerobic co-digestion can be fulfilled by optimizing feeding composition and the C/N ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Optimal control of a hybrid rhythmic-discrete task: the bouncing ball revisited.

    PubMed

    Ronsse, Renaud; Wei, Kunlin; Sternad, Dagmar

    2010-05-01

    Rhythmically bouncing a ball with a racket is a hybrid task that combines continuous rhythmic actuation of the racket with the control of discrete impact events between racket and ball. This study presents experimental data and a two-layered modeling framework that explicitly addresses the hybrid nature of control: a first discrete layer calculates the state to reach at impact and the second continuous layer smoothly drives the racket to this desired state, based on optimality principles. The testbed for this hybrid model is task performance at a range of increasingly slower tempos. When slowing the rhythm of the bouncing actions, the continuous cycles become separated into a sequence of discrete movements interspersed by dwell times and directed to achieve the desired impact. Analyses of human performance show increasing variability of performance measures with slower tempi, associated with a change in racket trajectories from approximately sinusoidal to less symmetrical velocity profiles. Matching results of model simulations give support to a hybrid control model based on optimality, and therefore suggest that optimality principles are applicable to the sensorimotor control of complex movements such as ball bouncing.

  14. Multicompare tests of the performance of different metaheuristics in EEG dipole source localization.

    PubMed

    Escalona-Vargas, Diana Irazú; Lopez-Arevalo, Ivan; Gutiérrez, David

    2014-01-01

    We study the use of nonparametric multicompare statistical tests on the performance of simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), when used for electroencephalographic (EEG) source localization. Such task can be posed as an optimization problem for which the referred metaheuristic methods are well suited. Hence, we evaluate the localization's performance in terms of metaheuristics' operational parameters and for a fixed number of evaluations of the objective function. In this way, we are able to link the efficiency of the metaheuristics with a common measure of computational cost. Our results did not show significant differences in the metaheuristics' performance for the case of single source localization. In case of localizing two correlated sources, we found that PSO (ring and tree topologies) and DE performed the worst, then they should not be considered in large-scale EEG source localization problems. Overall, the multicompare tests allowed to demonstrate the little effect that the selection of a particular metaheuristic and the variations in their operational parameters have in this optimization problem.

  15. Constrained optimization via simulation models for new product innovation

    NASA Astrophysics Data System (ADS)

    Pujowidianto, Nugroho A.

    2017-11-01

    We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.

  16. Model-Based Design of Tree WSNs for Decentralized Detection †

    PubMed Central

    Tantawy, Ashraf; Koutsoukos, Xenofon; Biswas, Gautam

    2015-01-01

    The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches. PMID:26307989

  17. Investigating the optimal passive and active vibration controls of adjacent buildings based on performance indices using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Hadi, Muhammad N. S.; Uz, Mehmet E.

    2015-02-01

    This study proposes the optimal passive and active damper parameters for achieving the best results in seismic response mitigation of coupled buildings connected to each other by dampers. The optimization to minimize the H2 and H∞ norms in the performance indices is carried out by genetic algorithms (GAs). The final passive and active damper parameters are checked for adjacent buildings connected to each other under El Centro NS 1940 and Kobe NS 1995 excitations. Using real coded GA in H∞ norm, the optimal controller gain is obtained by different combinations of the measurement as the feedback for designing the control force between the buildings. The proposed method is more effective than other metaheuristic methods and more feasible, although the control force increased. The results in the active control system show that the response of adjacent buildings is reduced in an efficient manner.

  18. Design Methods and Optimization for Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2005-01-01

    This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.

  19. Technology forecasting for space communication. Task one report: Cost and weight tradeoff studies for EOS and TDRS

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Weight and cost optimized EOS communication links are determined for 2.25, 7.25, 14.5, 21, and 60 GHz systems and for a 10.6 micron homodyne detection laser system. EOS to ground links are examined for 556, 834, and 1112 km EOS orbits, with ground terminals at the Network Test and Tracking Facility and at Goldstone. Optimized 21 GHz and 10.6 micron links are also examined. For the EOS to Tracking and Data Relay Satellite to ground link, signal-to-noise ratios of the uplink and downlink are also optimized for minimum overall cost or spaceborne weight. Finally, the optimized 21 GHz EOS to ground link is determined for various precipitation rates. All system performance parameters and mission dependent constraints are presented, as are the system cost and weight functional dependencies. The features and capabilities of the computer program to perform the foregoing analyses are described.

  20. A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.; Gordon, S. V.

    1976-01-01

    A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.

  1. An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Sruthi Raju

    The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.

  2. Design optimization of a high specific speed Francis turbine runner

    NASA Astrophysics Data System (ADS)

    Enomoto, Y.; Kurosawa, S.; Kawajiri, H.

    2012-11-01

    Francis turbine is used in many hydroelectric power stations. This paper presents the development of hydraulic performance in a high specific speed Francis turbine runner. In order to achieve the improvements of turbine efficiency throughout a wide operating range, a new runner design method which combines the latest Computational Fluid Dynamics (CFD) and a multi objective optimization method with an existing design system was applied in this study. The validity of the new design system was evaluated by model performance tests. As the results, it was confirmed that the optimized runner presented higher efficiency compared with an originally designed runner. Besides optimization of runner, instability vibration which occurred at high part load operating condition was investigated by model test and gas-liquid two-phase flow analysis. As the results, it was confirmed that the instability vibration was caused by oval cross section whirl which was caused by recirculation flow near runner cone wall.

  3. Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation

    NASA Astrophysics Data System (ADS)

    Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah

    2018-04-01

    The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.

  4. When more of the same is better

    NASA Astrophysics Data System (ADS)

    Fontanari, José F.

    2016-01-01

    Problem solving (e.g., drug design, traffic engineering, software development) by task forces represents a substantial portion of the economy of developed countries. Here we use an agent-based model of cooperative problem-solving systems to study the influence of diversity on the performance of a task force. We assume that agents cooperate by exchanging information on their partial success and use that information to imitate the more successful agent in the system —the model. The agents differ only in their propensities to copy the model. We find that, for easy tasks, the optimal organization is a homogeneous system composed of agents with the highest possible copy propensities. For difficult tasks, we find that diversity can prevent the system from being trapped in sub-optimal solutions. However, when the system size is adjusted to maximize the performance the homogeneous systems outperform the heterogeneous systems, i.e., for optimal performance, sameness should be preferred to diversity.

  5. Development of coin-type cell and engineering of its compartments for rechargeable seawater batteries

    NASA Astrophysics Data System (ADS)

    Han, Jinhyup; Hwang, Soo Min; Go, Wooseok; Senthilkumar, S. T.; Jeon, Donghoon; Kim, Youngsik

    2018-01-01

    Cell design and optimization of the components, including active materials and passive components, play an important role in constructing robust, high-performance rechargeable batteries. Seawater batteries, which utilize earth-abundant and natural seawater as the active material in an open-structured cathode, require a new platform for building and testing the cells other than typical Li-ion coin-type or pouch-type cells. Herein, we present new findings based on our optimized cell. Engineering the cathode components-improving the wettability of cathode current collector and seawater catholyte flow-improves the battery performance (voltage efficiency). Optimizing the cell component and design is the key to identifying the electrochemical processes and reactions of active materials. Hence, the outcome of this research can provide a systematic study of potentially active materials used in seawater batteries and their effectiveness on the electrochemical performance.

  6. On the Effectiveness of Nature-Inspired Metaheuristic Algorithms for Performing Phase Equilibrium Thermodynamic Calculations

    PubMed Central

    Fateen, Seif-Eddeen K.; Bonilla-Petriciolet, Adrian

    2014-01-01

    The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design. PMID:24967430

  7. On the effectiveness of nature-inspired metaheuristic algorithms for performing phase equilibrium thermodynamic calculations.

    PubMed

    Fateen, Seif-Eddeen K; Bonilla-Petriciolet, Adrian

    2014-01-01

    The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.

  8. Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis.

    PubMed

    Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B; Szukala, Richard; Johnson, Michael E; Hevener, Kirk E

    2013-09-12

    A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses, and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, druglike, and ADMET filters were applied to the reported hits to assess the quality of compounds reported, and a careful analysis of a subset of the studies that presented hit optimization was performed. These data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, definition of hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria.

  9. Space Transfer Vehicle Concepts and Requirements Study. Volume 2, Book 2: System and Program Requirements Trade Studies

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    During the 90-day study, support was provided to NASA in defining a point-of-departure space transfer vehicle (STV). The resulting STV concept was performance optimized with a two-stage LTV/LEV configuration. Appendix A reports on the effort during this period of the study. From the end of the 90-day study until the March Interim Review, effort was placed on optimizing the two-stage vehicle approach identified in the 90-day effort. After the March Interim Review, the effort was expanded to perform a full architectural trade study with the intent of developing a decision database to support STV system decisions in response to changing SEI infrastructure concepts. Several of the architecture trade studies were combined in a System Architecture Trade Study. In addition to this trade, system optimization/definition trades and analyses were completed and some special topics were addressed. Program- and system-level trade study and analyses methodologies and results are presented in this section. Trades and analyses covered in this section are: (1) a system architecture trade study; (2) evolution; (3) safety and abort considerations; (4) STV as a launch vehicle upper stage; and (5) optimum crew and cargo split.

  10. A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

  11. Design definition study of NASA/Navy lift/cruise fan V/STOL aircraft. Volume 1: Summary report of Navy multimission aircraft

    NASA Technical Reports Server (NTRS)

    Cavage, R. L.

    1975-01-01

    Results are presented of a study of lift-cruise fan V/STOL aircraft for the 1980-1985 time period. Technical and operating characteristics and technology requirements for the ultimate development of this type aircraft are identified. Aircraft individually optimized to perform the antisubmarine warfare, carrier onboard delivery, combat search and rescue, and surveillance and surface attack missions are considered along with a multi-purpose aircraft concept capable of performing all five missions at minimum total program cost. It is shown that lighter and smaller aircraft could be obtained by optimizing the design and fan selection for specific missions.

  12. Performance comparison of extracellular spike sorting algorithms for single-channel recordings.

    PubMed

    Wild, Jiri; Prekopcsak, Zoltan; Sieger, Tomas; Novak, Daniel; Jech, Robert

    2012-01-30

    Proper classification of action potentials from extracellular recordings is essential for making an accurate study of neuronal behavior. Many spike sorting algorithms have been presented in the technical literature. However, no comparative analysis has hitherto been performed. In our study, three widely-used publicly-available spike sorting algorithms (WaveClus, KlustaKwik, OSort) were compared with regard to their parameter settings. The algorithms were evaluated using 112 artificial signals (publicly available online) with 2-9 different neurons and varying noise levels between 0.00 and 0.60. An optimization technique based on Adjusted Mutual Information was employed to find near-optimal parameter settings for a given artificial signal and algorithm. All three algorithms performed significantly better (p<0.01) with optimized parameters than with the default ones. WaveClus was the most accurate spike sorting algorithm, receiving the best evaluation score for 60% of all signals. OSort operated at almost five times the speed of the other algorithms. In terms of accuracy, OSort performed significantly less well (p<0.01) than WaveClus for signals with a noise level in the range 0.15-0.30. KlustaKwik achieved similar scores to WaveClus for signals with low noise level 0.00-0.15 and was worse otherwise. In conclusion, none of the three compared algorithms was optimal in general. The accuracy of the algorithms depended on proper choice of the algorithm parameters and also on specific properties of the examined signal. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Thermodynamic optimization of mixed refrigerant Joule- Thomson systems constrained by heat transfer considerations

    NASA Astrophysics Data System (ADS)

    Hinze, J. F.; Klein, S. A.; Nellis, G. F.

    2015-12-01

    Mixed refrigerant (MR) working fluids can significantly increase the cooling capacity of a Joule-Thomson (JT) cycle. The optimization of MRJT systems has been the subject of substantial research. However, most optimization techniques do not model the recuperator in sufficient detail. For example, the recuperator is usually assumed to have a heat transfer coefficient that does not vary with the mixture. Ongoing work at the University of Wisconsin-Madison has shown that the heat transfer coefficients for two-phase flow are approximately three times greater than for a single phase mixture when the mixture quality is between 15% and 85%. As a result, a system that optimizes a MR without also requiring that the flow be in this quality range may require an extremely large recuperator or not achieve the performance predicted by the model. To ensure optimal performance of the JT cycle, the MR should be selected such that it is entirely two-phase within the recuperator. To determine the optimal MR composition, a parametric study was conducted assuming a thermodynamically ideal cycle. The results of the parametric study are graphically presented on a contour plot in the parameter space consisting of the extremes of the qualities that exist within the recuperator. The contours show constant values of the normalized refrigeration power. This ‘map’ shows the effect of MR composition on the cycle performance and it can be used to select the MR that provides a high cooling load while also constraining the recuperator to be two phase. The predicted best MR composition can be used as a starting point for experimentally determining the best MR.

  14. A SYSTEMATIC REVIEW OF THE EXERCISES THAT PRODUCE OPTIMAL MUSCLE RATIOS OF THE SCAPULAR STABILIZERS IN NORMAL SHOULDERS

    PubMed Central

    Schory, Abbey; Bidinger, Erik; Wolf, Joshua

    2016-01-01

    ABSTRACT Purpose The purpose of this systematic review was to determine the exercises that optimize muscle ratios of the periscapular musculature for scapular stability and isolated strengthening. Methods A systematic search was performed in PubMed, CINAHL, SPORTDiscus, Scopus, and Discovery Layer. Studies were included if they examined the muscle activation of the upper trapezius compared to the middle trapezius, lower trapezius, or serratus anterior using EMG during open chain exercises. The participants were required to have healthy, nonpathological shoulders. Information obtained included maximal voluntary isometric contraction (MVIC) values, ratios, standard deviations, exercises, and exercise descriptions. The outcome of interest was determining exercises that create optimal muscle activation ratios between the scapular stabilizers. Results Fifteen observational studies met the inclusion criteria for the systematic review. Exercises with optimal ratios were eccentric exercises in the frontal and sagittal planes, especially flexion between 180 ° and 60 °. External rotation exercises with the elbow flexed to 90 ° also had optimal ratios for activating the middle trapezius in prone and side-lying positions. Exercises with optimal ratios for the lower trapezius were prone flexion, high scapular retraction, and prone external rotation with the shoulder abducted to 90 ° and elbow flexed. Exercises with optimal ratios for the serratus anterior were the diagonal exercises and scapular protraction. Conclusion This review has identified optimal positions and exercises for periscapular stability exercises. Standing exercises tend to activate the upper trapezius at a higher ratio, especially during the 60-120 ° range. The upper trapezius was the least active, while performing exercises in prone, side-lying, and supine positions. More studies need to be conducted to examine these exercises in greater detail and confirm their consistency in producing the optimal ratios determined in this review. Level of evidence 1a PMID:27274418

  15. Turbine Performance Optimization Task Status

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.; Turner, James E. (Technical Monitor)

    2001-01-01

    Capability to optimize for turbine performance and accurately predict unsteady loads will allow for increased reliability, Isp, and thrust-to-weight. The development of a fast, accurate aerodynamic design, analysis, and optimization system is required.

  16. Shuttle cryogenic supply system optimization study. Volume 6: Appendixes

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The optimization of the cryogenic supply system for space shuttles is discussed. The subjects considered are: (1) auxiliary power unit parametric data, (2) propellant acquisition, (3) thermal protection and thermodynamic properties, (4) instrumentation and controls, and (5) initial component redundancy evaluations. Diagrams of the systems are provided. Graphs of the performance capabilities are included.

  17. An optimized implementation of a fault-tolerant clock synchronization circuit

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    1995-01-01

    A fault-tolerant clock synchronization circuit was designed and tested. A comparison to a previous design and the procedure followed to achieve the current optimization are included. The report also includes a description of the system and the results of tests performed to study the synchronization and fault-tolerant characteristics of the implementation.

  18. Impact of a Flexible Evaluation System on Effort and Timing of Study

    ERIC Educational Resources Information Center

    Pacharn, Parunchana; Bay, Darlene; Felton, Sandra

    2012-01-01

    This paper examines results of a flexible grading system that allows each student to influence the weight allocated to each performance measure. We construct a stylized model to determine students' optimal responses. Our analytical model predicts different optimal strategies for students with varying academic abilities: a frontloading strategy for…

  19. Development of GEM detector for plasma diagnostics application: simulations addressing optimization of its performance

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Czarski, T.; Linczuk, P.; Wojeński, A.; Krawczyk, R. D.

    2017-12-01

    The advanced Soft X-ray (SXR) diagnostics setup devoted to studies of the SXR plasma emissivity is at the moment a highly relevant and important for ITER/DEMO application. Especially focusing on the energy range of tungsten emission lines, as plasma contamination by W and its transport in the plasma must be understood and monitored for W plasma-facing material. The Gas Electron Multiplier, with a spatial and energy-resolved photon detecting chamber, based SXR radiation detection system under development by our group may become such a diagnostic setup considering and solving many physical, technical and technological aspects. This work presents the results of simulations aimed to optimize a design of the detector's internal chamber and its performance. The study of the effect of electrodes alignment allowed choosing the gap distances which maximizes electron transmission and choosing the optimal magnitudes of the applied electric fields. Finally, the optimal readout structure design was identified suitable to collect a total formed charge effectively, basing on the range of the simulated electron cloud at the readout plane which was in the order of ~ 2 mm.

  20. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    NASA Astrophysics Data System (ADS)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  1. Optimization of Systems with Uncertainty: Initial Developments for Performance, Robustness and Reliability Based Designs

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This paper presents a study on the optimization of systems with structured uncertainties, whose inputs and outputs can be exhaustively described in the probabilistic sense. By propagating the uncertainty from the input to the output in the space of the probability density functions and the moments, optimization problems that pursue performance, robustness and reliability based designs are studied. Be specifying the desired outputs in terms of desired probability density functions and then in terms of meaningful probabilistic indices, we settle a computationally viable framework for solving practical optimization problems. Applications to static optimization and stability control are used to illustrate the relevance of incorporating uncertainty in the early stages of the design. Several examples that admit a full probabilistic description of the output in terms of the design variables and the uncertain inputs are used to elucidate the main features of the generic problem and its solution. Extensions to problems that do not admit closed form solutions are also evaluated. Concrete evidence of the importance of using a consistent probabilistic formulation of the optimization problem and a meaningful probabilistic description of its solution is provided in the examples. In the stability control problem the analysis shows that standard deterministic approaches lead to designs with high probability of running into instability. The implementation of such designs can indeed have catastrophic consequences.

  2. Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted

    DTIC Science & Technology

    2016-09-16

    distribution. Simulation results, using both an optimized coil and a conventional coil, are generated using the finite element method (FEM) model...optimized coil and a conventional coil, are generated using the finite element method (FEM) model. The signal magnitude for an optimized coil is seen to be...optimized coil. 4. Model Based Performance Analysis A 3D finite element model (FEM) is used to analyze the performance of the optimized coil and

  3. Studies in integrated line-and packet-switched computer communication systems

    NASA Astrophysics Data System (ADS)

    Maglaris, B. S.

    1980-06-01

    The problem of efficiently allocating the bandwidth of a trunk to both types of traffic is handled for various system and traffic models. A performance analysis is carried out both for variable and fixed frame schemes. It is shown that variable frame schemes, adjusting the frame length according to the traffic variations, offer better trunk utilization at the cost of the additional hardware and software complexity needed because of the lack of synchronization. An optimization study on the fixed frame schemes follows. The problem of dynamically allocating the fixed frame to both types of traffic is formulated as a Markovian Decision process. It is shown that the movable boundary scheme, suggested for commercial implementations of integrated multiplexors, offers optimal or near optimal performance and simplicity of implementation. Finally, the behavior of the movable boundary integrated scheme is studied for tandem link connections. Under the assumptions made for the line-switched traffic, the forward allocation technique is found to offer the best alternative among different path set-up strategies.

  4. Design optimization for active twist rotor blades

    NASA Astrophysics Data System (ADS)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to explore the nonlinear design space of complex planform. Especially for this case, detailed design is carried out to make the actual blade manufacturable. The proposed optimization framework is shown to be an effective tool to design high authority active twist blades to reduce vibration in future helicopter rotor blades.

  5. Performance optimization of the power user electric energy data acquire system based on MOEA/D evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Ding, Zhongan; Gao, Chen; Yan, Shengteng; Yang, Canrong

    2017-10-01

    The power user electric energy data acquire system (PUEEDAS) is an important part of smart grid. This paper builds a multi-objective optimization model for the performance of the PUEEADS from the point of view of the combination of the comprehensive benefits and cost. Meanwhile, the Chebyshev decomposition approach is used to decompose the multi-objective optimization problem. We design a MOEA/D evolutionary algorithm to solve the problem. By analyzing the Pareto optimal solution set of multi-objective optimization problem and comparing it with the monitoring value to grasp the direction of optimizing the performance of the PUEEDAS. Finally, an example is designed for specific analysis.

  6. Optimizing Surveillance Performance of Alpha-Fetoprotein by Selection of Proper Target Population in Chronic Hepatitis B

    PubMed Central

    Chung, Jung Wha; Kim, Beom Hee; Lee, Chung Seop; Kim, Gi Hyun; Sohn, Hyung Rae; Min, Bo Young; Song, Joon Chang; Park, Hyun Kyung; Jang, Eun Sun; Yoon, Hyuk; Kim, Jaihwan; Shin, Cheol Min; Park, Young Soo; Hwang, Jin-Hyeok; Jeong, Sook-Hyang; Kim, Nayoung; Lee, Dong Ho; Lee, Jaebong; Ahn, Soyeon

    2016-01-01

    Although alpha-fetoprotein (AFP) is the most widely used biomarker in hepatocellular carcinoma (HCC) surveillance, disease activity may also increase AFP levels in chronic hepatitis B (CHB). Since nucleos(t)ide analog (NA) therapy may reduce not only HBV viral loads and transaminase levels but also the falsely elevated AFP levels in CHB, we tried to determine whether exposure to NA therapy influences AFP performance and whether selective application can optimize the performance of AFP testing in CHB during HCC surveillance. A retrospective cohort of 6,453 CHB patients who received HCC surveillance was constructed from the electronic clinical data warehouse. Covariates of AFP elevation were determined from 53,137 AFP measurements, and covariate-specific receiver operating characteristics regression analysis revealed that albumin levels and exposure to NA therapy were independent determinants of AFP performance. C statistics were largest in patients with albumin levels ≥ 3.7 g/dL who were followed without NA therapy during study period, whereas AFP performance was poorest when tested in patients with NA therapy during study and albumin levels were < 3.7 g/dL (difference in C statics = 0.35, p < 0.0001). Contrary to expectation, CHB patients with current or recent exposure to NA therapy showed poorer performance of AFP during HCC surveillance. Combination of concomitant albumin levels and status of NA therapy can identify subgroup of CHB patients who will show optimized AFP performance. PMID:27997559

  7. Cost-effectiveness of angiographic imaging in isolated perimesencephalic subarachnoid hemorrhage.

    PubMed

    Kalra, Vivek B; Wu, Xiao; Forman, Howard P; Malhotra, Ajay

    2014-12-01

    The purpose of this study is to perform a comprehensive cost-effectiveness analysis of all possible permutations of computed tomographic angiography (CTA) and digital subtraction angiography imaging strategies for both initial diagnosis and follow-up imaging in patients with perimesencephalic subarachnoid hemorrhage on noncontrast CT. Each possible imaging strategy was evaluated in a decision tree created with TreeAge Pro Suite 2014, with parameters derived from a meta-analysis of 40 studies and literature values. Base case and sensitivity analyses were performed to assess the cost-effectiveness of each strategy. A Monte Carlo simulation was conducted with distributional variables to evaluate the robustness of the optimal strategy. The base case scenario showed performing initial CTA with no follow-up angiographic studies in patients with perimesencephalic subarachnoid hemorrhage to be the most cost-effective strategy ($5422/quality adjusted life year). Using a willingness-to-pay threshold of $50 000/quality adjusted life year, the most cost-effective strategy based on net monetary benefit is CTA with no follow-up when the sensitivity of initial CTA is >97.9%, and CTA with CTA follow-up otherwise. The Monte Carlo simulation reported CTA with no follow-up to be the optimal strategy at willingness-to-pay of $50 000 in 99.99% of the iterations. Digital subtraction angiography, whether at initial diagnosis or as part of follow-up imaging, is never the optimal strategy in our model. CTA without follow-up imaging is the optimal strategy for evaluation of patients with perimesencephalic subarachnoid hemorrhage when modern CT scanners and a strict definition of perimesencephalic subarachnoid hemorrhage are used. Digital subtraction angiography and follow-up imaging are not optimal as they carry complications and associated costs. © 2014 American Heart Association, Inc.

  8. Parameterized LMI Based Diagonal Dominance Compensator Study for Polynomial Linear Parameter Varying System

    NASA Astrophysics Data System (ADS)

    Han, Xiaobao; Li, Huacong; Jia, Qiusheng

    2017-12-01

    For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.

  9. Design of static synchronous series compensator based damping controller employing invasive weed optimization algorithm.

    PubMed

    Ahmed, Ashik; Al-Amin, Rasheduzzaman; Amin, Ruhul

    2014-01-01

    This paper proposes designing of Static Synchronous Series Compensator (SSSC) based damping controller to enhance the stability of a Single Machine Infinite Bus (SMIB) system by means of Invasive Weed Optimization (IWO) technique. Conventional PI controller is used as the SSSC damping controller which takes rotor speed deviation as the input. The damping controller parameters are tuned based on time integral of absolute error based cost function using IWO. Performance of IWO based controller is compared to that of Particle Swarm Optimization (PSO) based controller. Time domain based simulation results are presented and performance of the controllers under different loading conditions and fault scenarios is studied in order to illustrate the effectiveness of the IWO based design approach.

  10. Optimization of chiral structures for microscale propulsion.

    PubMed

    Keaveny, Eric E; Walker, Shawn W; Shelley, Michael J

    2013-02-13

    Recent advances in micro- and nanoscale fabrication techniques allow for the construction of rigid, helically shaped microswimmers that can be actuated using applied magnetic fields. These swimmers represent the first steps toward the development of microrobots for targeted drug delivery and minimally invasive surgical procedures. To assess the performance of these devices and improve on their design, we perform shape optimization computations to determine swimmer geometries that maximize speed in the direction of a given applied magnetic torque. We directly assess aspects of swimmer shapes that have been developed in previous experimental studies, including helical propellers with elongated cross sections and attached payloads. From these optimizations, we identify key improvements to existing designs that result in swimming speeds that are 70-470% of their original values.

  11. Optimal design application on the advanced aeroelastic rotor blade

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Jones, R.

    1985-01-01

    The vibration and performance optimization procedure using regression analysis was successfully applied to an advanced aeroelastic blade design study. The major advantage of this regression technique is that multiple optimizations can be performed to evaluate the effects of various objective functions and constraint functions. The data bases obtained from the rotorcraft flight simulation program C81 and Myklestad mode shape program are analytically determined as a function of each design variable. This approach has been verified for various blade radial ballast weight locations and blade planforms. This method can also be utilized to ascertain the effect of a particular cost function which is composed of several objective functions with different weighting factors for various mission requirements without any additional effort.

  12. Optimal modified tracking performance for MIMO networked control systems with communication constraints.

    PubMed

    Wu, Jie; Zhou, Zhu-Jun; Zhan, Xi-Sheng; Yan, Huai-Cheng; Ge, Ming-Feng

    2017-05-01

    This paper investigates the optimal modified tracking performance of multi-input multi-output (MIMO) networked control systems (NCSs) with packet dropouts and bandwidth constraints. Some explicit expressions are obtained by using co-prime factorization and the spectral decomposition technique. The obtained results show that the optimal modified tracking performance is related to the intrinsic properties of a given plant such as non-minimum phase (NMP) zeros, unstable poles, and their directions. Furthermore, the modified factor, packet dropouts probability and bandwidth also impact the optimal modified tracking performance of the NCSs. The optimal modified tracking performance with channel input power constraint is obtained by searching through all stabilizing two-parameter compensator. Finally, some typical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Optimal two-phase sampling design for comparing accuracies of two binary classification rules.

    PubMed

    Xu, Huiping; Hui, Siu L; Grannis, Shaun

    2014-02-10

    In this paper, we consider the design for comparing the performance of two binary classification rules, for example, two record linkage algorithms or two screening tests. Statistical methods are well developed for comparing these accuracy measures when the gold standard is available for every unit in the sample, or in a two-phase study when the gold standard is ascertained only in the second phase in a subsample using a fixed sampling scheme. However, these methods do not attempt to optimize the sampling scheme to minimize the variance of the estimators of interest. In comparing the performance of two classification rules, the parameters of primary interest are the difference in sensitivities, specificities, and positive predictive values. We derived the analytic variance formulas for these parameter estimates and used them to obtain the optimal sampling design. The efficiency of the optimal sampling design is evaluated through an empirical investigation that compares the optimal sampling with simple random sampling and with proportional allocation. Results of the empirical study show that the optimal sampling design is similar for estimating the difference in sensitivities and in specificities, and both achieve a substantial amount of variance reduction with an over-sample of subjects with discordant results and under-sample of subjects with concordant results. A heuristic rule is recommended when there is no prior knowledge of individual sensitivities and specificities, or the prevalence of the true positive findings in the study population. The optimal sampling is applied to a real-world example in record linkage to evaluate the difference in classification accuracy of two matching algorithms. Copyright © 2013 John Wiley & Sons, Ltd.

  14. The Influences of Lamination Angles on the Interior Noise Levels of an Aircraft

    NASA Technical Reports Server (NTRS)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    The feasibility of reducing the interior noise levels of an aircraft passenger cabin through optimization of the composite lay up of the fuselage is investigated. MSC/NASTRAN, a commercially available finite element code, is used to perform the dynamic analysis and subsequent optimization of the fuselage. The numerical calculation of sensitivity of acoustic pressure to lamination angle is verified using a simple thin, cylindrical shell with point force excitations as noise sources. The thin shell used represents a geometry similar to the fuselage and analytic solutions are available for the cylindrical thin shell equations of motion. Optimization of lamination angle for the reduction of interior noise is performed using a finite element model of an actual aircraft fuselage. The aircraft modeled for this study is the Beech Starship. Point forces simulate the structure borne noise produced by the engines and are applied to the fuselage at the wing mounting locations. These forces are the noise source for the optimization problem. The acoustic pressure response is reduced at a number of points in the fuselage and over a number of frequencies. The objective function is minimized with the constraint that it be larger than the maximum sound pressure level at the response points in the passenger cabin for all excitation frequencies in the range of interest. Results from the study of the fuselage model indicate that a reduction in interior noise levels is possible over a finite frequency range through optimal configuration of the lamination angles in the fuselage. Noise reductions of roughly 4 dB were attained. For frequencies outside the optimization range, the acoustic pressure response may increase after optimization. The effects of changing lamination angle on the overall structural integrity of the airframe are not considered in this study.

  15. Restructuring the HMLA to Optimize Support to the MAGTF

    DTIC Science & Technology

    2012-04-25

    REPORT  DATE  (DD-­‐MM-­‐YYYY)   05-01-2012 2.  REPORT  TYPE   Master of Military Studies Research Paper 3.  DATES  COVERED...research, special, group study , etc. 3.  DATES  COVERED. Indicate the time during which the work was performed and the report was written...Development Command Quantico, Virginia 22134-5068 MASTER OF MILITARY STUDIES TITLE: RESTRUCTURING THE HMLA TO OPTIMIZE SUPPORT TO THE MAGTF

  16. A study of optimization techniques in HDR brachytherapy for the prostate

    NASA Astrophysics Data System (ADS)

    Pokharel, Ghana Shyam

    Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives. Based on our study, DVH based objective function performed better than traditional variance based objective function in creating a clinically acceptable plan when executed under identical conditions. Thirdly, we studied the multiobjective optimization strategy using both DVH and variance based objective functions. The optimization strategy was to create several Pareto optimal solutions by scanning the clinically relevant part of the Pareto front. This strategy was adopted to decouple optimization from decision such that user could select final solution from the pool of alternative solutions based on his/her clinical goals. The overall quality of treatment plan improved using this approach compared to traditional class solution approach. In fact, the final optimized plan selected using decision engine with DVH based objective was comparable to typical clinical plan created by an experienced physicist. Next, we studied the hybrid technique comprising both stochastic and deterministic algorithm to optimize both dwell positions and dwell times. The simulated annealing algorithm was used to find optimal catheter distribution and the DVH based algorithm was used to optimize 3D dose distribution for given catheter distribution. This unique treatment planning and optimization tool was capable of producing clinically acceptable highly reproducible treatment plans in clinically reasonable time. As this algorithm was able to create clinically acceptable plans within clinically reasonable time automatically, it is really appealing for real time procedures. Next, we studied the feasibility of multiobjective optimization using evolutionary algorithm for real time HDR brachytherapy for the prostate. The algorithm with properly tuned algorithm specific parameters was able to create clinically acceptable plans within clinically reasonable time. However, the algorithm was let to run just for limited number of generations not considered optimal, in general, for such algorithms. This was done to keep time window desirable for real time procedures. Therefore, it requires further study with improved conditions to realize the full potential of the algorithm.

  17. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    NASA Astrophysics Data System (ADS)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  18. Optimal Battery Sizing in Photovoltaic Based Distributed Generation Using Enhanced Opposition-Based Firefly Algorithm for Voltage Rise Mitigation

    PubMed Central

    Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul

    2014-01-01

    This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem. PMID:25054184

  19. Optimal battery sizing in photovoltaic based distributed generation using enhanced opposition-based firefly algorithm for voltage rise mitigation.

    PubMed

    Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul

    2014-01-01

    This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.

  20. Improved motor performance in patients with acute stroke using the optimal individual attentional strategy

    PubMed Central

    Sakurada, Takeshi; Nakajima, Takeshi; Morita, Mitsuya; Hirai, Masahiro; Watanabe, Eiju

    2017-01-01

    It is believed that motor performance improves when individuals direct attention to movement outcome (external focus, EF) rather than to body movement itself (internal focus, IF). However, our previous study found that an optimal individual attentional strategy depended on motor imagery ability. We explored whether the individual motor imagery ability in stroke patients also affected the optimal attentional strategy for motor control. Individual motor imagery ability was determined as either kinesthetic- or visual-dominant by a questionnaire in 28 patients and 28 healthy-controls. Participants then performed a visuomotor task that required tracing a trajectory under three attentional conditions: no instruction (NI), attention to hand movement (IF), or attention to cursor movement (EF). Movement error in the stroke group strongly depended on individual modality dominance of motor imagery. Patients with kinesthetic dominance showed higher motor accuracy under the IF condition but with concomitantly lower velocity. Alternatively, patients with visual dominance showed improvements in both speed and accuracy under the EF condition. These results suggest that the optimal attentional strategy for improving motor accuracy in stroke rehabilitation differs according to the individual dominance of motor imagery. Our findings may contribute to the development of tailor-made pre-assessment and rehabilitation programs optimized for individual cognitive abilities. PMID:28094320

  1. Optimization of a reversible hood for protecting a pedestrian's head during car collisions.

    PubMed

    Huang, Sunan; Yang, Jikuang

    2010-07-01

    This study evaluated and optimized the performance of a reversible hood (RH) for the prevention of the head injuries of an adult pedestrian from car collisions. The FE model of a production car front was introduced and validated. The baseline RH was developed from the original hood in the validated car front model. In order to evaluate the protective performance of the baseline RH, the FE models of an adult headform and a 50th percentile human head were used in parallel to impact the baseline RH. Based on the evaluation, the response surface method was applied to optimize the RH in terms of the material stiffness, lifting speed, and lifted height. Finally, the headform model and the human head model were again used to evaluate the protective performance of the optimized RH. It was found that the lifted baseline RH can obviously reduce the impact responses of the headform model and the human head model by comparing with the retracted and lifting baseline RH. When the optimized RH was lifted, the HIC values of the headform model and the human head model were further reduced to much lower than 1000. The risk of pedestrian head injuries can be prevented as required by EEVC WG17. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Performance evaluation of multi-stratum resources optimization with network functions virtualization for cloud-based radio over optical fiber networks.

    PubMed

    Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young

    2016-04-18

    Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.

  3. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.

    PubMed

    Hartenfeller, Markus; Proschak, Ewgenij; Schüller, Andreas; Schneider, Gisbert

    2008-07-01

    We present a fast stochastic optimization algorithm for fragment-based molecular de novo design (COLIBREE, Combinatorial Library Breeding). The search strategy is based on a discrete version of particle swarm optimization. Molecules are represented by a scaffold, which remains constant during optimization, and variable linkers and side chains. Different linkers represent virtual chemical reactions. Side-chain building blocks were obtained from pseudo-retrosynthetic dissection of large compound databases. Here, ligand-based design was performed using chemically advanced template search (CATS) topological pharmacophore similarity to reference ligands as fitness function. A weighting scheme was included for particle swarm optimization-based molecular design, which permits the use of many reference ligands and allows for positive and negative design to be performed simultaneously. In a case study, the approach was applied to the de novo design of potential peroxisome proliferator-activated receptor subtype-selective agonists. The results demonstrate the ability of the technique to cope with large combinatorial chemistry spaces and its applicability to focused library design. The technique was able to perform exploitation of a known scheme and at the same time explorative search for novel ligands within the framework of a given molecular core structure. It thereby represents a practical solution for compound screening in the early hit and lead finding phase of a drug discovery project.

  4. Optimization of Perfect Absorbers with Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Li Voti, Roberto

    2018-02-01

    We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.

  5. Case study: Optimizing fault model input parameters using bio-inspired algorithms

    NASA Astrophysics Data System (ADS)

    Plucar, Jan; Grunt, Onřej; Zelinka, Ivan

    2017-07-01

    We present a case study that demonstrates a bio-inspired approach in the process of finding optimal parameters for GSM fault model. This model is constructed using Petri Nets approach it represents dynamic model of GSM network environment in the suburban areas of Ostrava city (Czech Republic). We have been faced with a task of finding optimal parameters for an application that requires high amount of data transfers between the application itself and secure servers located in datacenter. In order to find the optimal set of parameters we employ bio-inspired algorithms such as Differential Evolution (DE) or Self Organizing Migrating Algorithm (SOMA). In this paper we present use of these algorithms, compare results and judge their performance in fault probability mitigation.

  6. Design optimization of hydraulic turbine draft tube based on CFD and DOE method

    NASA Astrophysics Data System (ADS)

    Nam, Mun chol; Dechun, Ba; Xiangji, Yue; Mingri, Jin

    2018-03-01

    In order to improve performance of the hydraulic turbine draft tube in its design process, the optimization for draft tube is performed based on multi-disciplinary collaborative design optimization platform by combining the computation fluid dynamic (CFD) and the design of experiment (DOE) in this paper. The geometrical design variables are considered as the median section in the draft tube and the cross section in its exit diffuser and objective function is to maximize the pressure recovery factor (Cp). Sample matrixes required for the shape optimization of the draft tube are generated by optimal Latin hypercube (OLH) method of the DOE technique and their performances are evaluated through computational fluid dynamic (CFD) numerical simulation. Subsequently the main effect analysis and the sensitivity analysis of the geometrical parameters of the draft tube are accomplished. Then, the design optimization of the geometrical design variables is determined using the response surface method. The optimization result of the draft tube shows a marked performance improvement over the original.

  7. Improving scanner wafer alignment performance by target optimization

    NASA Astrophysics Data System (ADS)

    Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich

    2016-03-01

    In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.

  8. Comparative Evaluation of Different Optimization Algorithms for Structural Design Applications

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  9. Parameter study and optimization for piezoelectric energy harvester for TPMS considering speed variation

    NASA Astrophysics Data System (ADS)

    Toghi Eshghi, Amin; Lee, Soobum; Lee, Hanmin; Kim, Young-Cheol

    2016-04-01

    In this paper, we perform design parameter study and design optimization for a piezoelectric energy harvester considering vehicle speed variation. Initially, a FEM model using ANSYS is developed to appraise the performance of a piezoelectric harvester in a rotating tire. The energy harvester proposed here uses the vertical deformation at contact patch area from the car weight and centrifugal acceleration. This harvester is composed of a beam which is clamped at both ends and a piezoelectric material is attached on the top of that. The piezoelectric material possesses the 31 mode of transduction in which the direction of applied field is perpendicular to that of the electric field. To optimize the harvester performance, we would change the geometrical parameters of the harvester to obtain the maximum power. One of the main challenges in the design process is obtaining the required power while considering the constraints for harvester weight and volume. These two concerns are addressed in this paper. Since the final goal of this study is the development of an energy harvester with a wireless sensor system installed in a real car, the real time data for varied velocity of a vehicle are taken into account for power measurements. This study concludes that the proposed design is applicable to wireless tire sensor systems.

  10. Optimized PID control of depth of hypnosis in anesthesia.

    PubMed

    Padula, Fabrizio; Ionescu, Clara; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio; Vivacqua, Giulio

    2017-06-01

    This paper addresses the use of proportional-integral-derivative controllers for regulating the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. In fact, introducing an automatic control system might provide significant benefits for the patient in reducing the risk for under- and over-dosing. In this study, the controller parameters are obtained through genetic algorithms by solving a min-max optimization problem. A set of 12 patient models representative of a large population variance is used to test controller robustness. The worst-case performance in the considered population is minimized considering two different scenarios: the induction case and the maintenance case. Our results indicate that including a gain scheduling strategy enables optimal performance for induction and maintenance phases, separately. Using a single tuning to address both tasks may results in a loss of performance up to 102% in the induction phase and up to 31% in the maintenance phase. Further on, it is shown that a suitably designed low-pass filter on the controller output can handle the trade-off between the performance and the noise effect in the control variable. Optimally tuned PID controllers provide a fast induction time with an acceptable overshoot and a satisfactory disturbance rejection performance during maintenance. These features make them a very good tool for comparison when other control algorithms are developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Robust optimization of a tandem grating solar thermal absorber

    NASA Astrophysics Data System (ADS)

    Choi, Jongin; Kim, Mingeon; Kang, Kyeonghwan; Lee, Ikjin; Lee, Bong Jae

    2018-04-01

    Ideal solar thermal absorbers need to have a high value of the spectral absorptance in the broad solar spectrum to utilize the solar radiation effectively. Majority of recent studies about solar thermal absorbers focus on achieving nearly perfect absorption using nanostructures, whose characteristic dimension is smaller than the wavelength of sunlight. However, precise fabrication of such nanostructures is not easy in reality; that is, unavoidable errors always occur to some extent in the dimension of fabricated nanostructures, causing an undesirable deviation of the absorption performance between the designed structure and the actually fabricated one. In order to minimize the variation in the solar absorptance due to the fabrication error, the robust optimization can be performed during the design process. However, the optimization of solar thermal absorber considering all design variables often requires tremendous computational costs to find an optimum combination of design variables with the robustness as well as the high performance. To achieve this goal, we apply the robust optimization using the Kriging method and the genetic algorithm for designing a tandem grating solar absorber. By constructing a surrogate model through the Kriging method, computational cost can be substantially reduced because exact calculation of the performance for every combination of variables is not necessary. Using the surrogate model and the genetic algorithm, we successfully design an effective solar thermal absorber exhibiting a low-level of performance degradation due to the fabrication uncertainty of design variables.

  12. SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).

    PubMed

    Muhammad, W; Lee, S; Hussain, A

    2012-06-01

    The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.

  13. Propeller performance analysis and multidisciplinary optimization using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Burger, Christoph

    A propeller performance analysis program has been developed and integrated into a Genetic Algorithm for design optimization. The design tool will produce optimal propeller geometries for a given goal, which includes performance and/or acoustic signature. A vortex lattice model is used for the propeller performance analysis and a subsonic compact source model is used for the acoustic signature determination. Compressibility effects are taken into account with the implementation of Prandtl-Glauert domain stretching. Viscous effects are considered with a simple Reynolds number based model to account for the effects of viscosity in the spanwise direction. An empirical flow separation model developed from experimental lift and drag coefficient data of a NACA 0012 airfoil is included. The propeller geometry is generated using a recently introduced Class/Shape function methodology to allow for efficient use of a wide design space. Optimizing the angle of attack, the chord, the sweep and the local airfoil sections, produced blades with favorable tradeoffs between single and multiple point optimizations of propeller performance and acoustic noise signatures. Optimizations using a binary encoded IMPROVE(c) Genetic Algorithm (GA) and a real encoded GA were obtained after optimization runs with some premature convergence. The newly developed real encoded GA was used to obtain the majority of the results which produced generally better convergence characteristics when compared to the binary encoded GA. The optimization trade-offs show that single point optimized propellers have favorable performance, but circulation distributions were less smooth when compared to dual point or multiobjective optimizations. Some of the single point optimizations generated propellers with proplets which show a loading shift to the blade tip region. When noise is included into the objective functions some propellers indicate a circulation shift to the inboard sections of the propeller as well as a reduction in propeller diameter. In addition the propeller number was increased in some optimizations to reduce the acoustic blade signature.

  14. Robust and fast nonlinear optimization of diffusion MRI microstructure models.

    PubMed

    Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A

    2017-07-15

    Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of run time, fit, accuracy and precision. Parameter initialization approaches were found to be relevant especially for more complex models, such as those involving several fiber orientations per voxel. For these, a fitting cascade initializing or fixing parameter values in a later optimization step from simpler models in an earlier optimization step further improved run time, fit, accuracy and precision compared to a single step fit. This establishes and makes available standards by which robust fit and accuracy can be achieved in shorter run times. This is especially relevant for the use of diffusion microstructure modeling in large group or population studies and in combining microstructure parameter maps with tractography results. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, J.; Dykes, K.; Graf, P.

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. Lastly, if there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtainedmore » with increasing risk aversion on the part of the designer.« less

  16. Optimization under Uncertainty of Site-Specific Turbine Configurations: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Dykes, Katherine; Graf, Peter

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained withmore » increasing risk aversion on the part of the designer.« less

  17. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    DOE PAGES

    Quick, J.; Dykes, K.; Graf, P.; ...

    2016-10-03

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. Lastly, if there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtainedmore » with increasing risk aversion on the part of the designer.« less

  18. Impacts of Intelligent Automated Quality Control on a Small Animal APD-Based Digital PET Scanner

    NASA Astrophysics Data System (ADS)

    Charest, Jonathan; Beaudoin, Jean-François; Bergeron, Mélanie; Cadorette, Jules; Arpin, Louis; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2016-10-01

    Stable system performance is mandatory to warrant the accuracy and reliability of biological results relying on small animal positron emission tomography (PET) imaging studies. This simple requirement sets the ground for imposing routine quality control (QC) procedures to keep PET scanners at a reliable optimal performance level. However, such procedures can become burdensome to implement for scanner operators, especially taking into account the increasing number of data acquisition channels in newer generation PET scanners. In systems using pixel detectors to achieve enhanced spatial resolution and contrast-to-noise ratio (CNR), the QC workload rapidly increases to unmanageable levels due to the number of independent channels involved. An artificial intelligence based QC system, referred to as Scanner Intelligent Diagnosis for Optimal Performance (SIDOP), was proposed to help reducing the QC workload by performing automatic channel fault detection and diagnosis. SIDOP consists of four high-level modules that employ machine learning methods to perform their tasks: Parameter Extraction, Channel Fault Detection, Fault Prioritization, and Fault Diagnosis. Ultimately, SIDOP submits a prioritized faulty channel list to the operator and proposes actions to correct them. To validate that SIDOP can perform QC procedures adequately, it was deployed on a LabPET™ scanner and multiple performance metrics were extracted. After multiple corrections on sub-optimal scanner settings, a 8.5% (with a 95% confidence interval (CI) of [7.6, 9.3]) improvement in the CNR, a 17.0% (CI: [15.3, 18.7]) decrease of the uniformity percentage standard deviation, and a 6.8% gain in global sensitivity were observed. These results confirm that SIDOP can indeed be of assistance in performing QC procedures and restore performance to optimal figures.

  19. Data Transfer Advisor with Transport Profiling Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Liu, Qiang; Yun, Daqing

    The network infrastructures have been rapidly upgraded in many high-performance networks (HPNs). However, such infrastructure investment has not led to corresponding performance improvement in big data transfer, especially at the application layer, largely due to the complexity of optimizing transport control on end hosts. We design and implement ProbData, a PRofiling Optimization Based DAta Transfer Advisor, to help users determine the most effective data transfer method with the most appropriate control parameter values to achieve the best data transfer performance. ProbData employs a profiling optimization based approach to exploit the optimal operational zone of various data transfer methods in supportmore » of big data transfer in extreme scale scientific applications. We present a theoretical framework of the optimized profiling approach employed in ProbData as wellas its detailed design and implementation. The advising procedure and performance benefits of ProbData are illustrated and evaluated by proof-of-concept experiments in real-life networks.« less

  20. Influence of signal processing strategy in auditory abilities.

    PubMed

    Melo, Tatiana Mendes de; Bevilacqua, Maria Cecília; Costa, Orozimbo Alves; Moret, Adriane Lima Mortari

    2013-01-01

    The signal processing strategy is a parameter that may influence the auditory performance of cochlear implant and is important to optimize this parameter to provide better speech perception, especially in difficult listening situations. To evaluate the individual's auditory performance using two different signal processing strategy. Prospective study with 11 prelingually deafened children with open-set speech recognition. A within-subjects design was used to compare performance with standard HiRes and HiRes 120 in three different moments. During test sessions, subject's performance was evaluated by warble-tone sound-field thresholds, speech perception evaluation, in quiet and in noise. In the silence, children S1, S4, S5, S7 showed better performance with the HiRes 120 strategy and children S2, S9, S11 showed better performance with the HiRes strategy. In the noise was also observed that some children performed better using the HiRes 120 strategy and other with HiRes. Not all children presented the same pattern of response to the different strategies used in this study, which reinforces the need to look at optimizing cochlear implant clinical programming.

  1. Optimal teaching strategy in periodic impulsive knowledge dissemination system.

    PubMed

    Liu, Dan-Qing; Wu, Zhen-Qiang; Wang, Yu-Xin; Guo, Qiang; Liu, Jian-Guo

    2017-01-01

    Accurately describing the knowledge dissemination process is significant to enhance the performance of personalized education. In this study, considering the effect of periodic teaching activities on the learning process, we propose a periodic impulsive knowledge dissemination system to regenerate the knowledge dissemination process. Meanwhile, we put forward learning effectiveness which is an outcome of a trade-off between the benefits and costs raised by knowledge dissemination as objective function. Further, we investigate the optimal teaching strategy which can maximize learning effectiveness, to obtain the optimal effect of knowledge dissemination affected by the teaching activities. We solve this dynamic optimization problem by optimal control theory and get the optimization system. At last we numerically solve this system in several practical examples to make the conclusions intuitive and specific. The optimal teaching strategy proposed in this paper can be applied widely in the optimization problem of personal education and beneficial for enhancing the effect of knowledge dissemination.

  2. Optimal teaching strategy in periodic impulsive knowledge dissemination system

    PubMed Central

    Liu, Dan-Qing; Wu, Zhen-Qiang; Wang, Yu-Xin; Guo, Qiang

    2017-01-01

    Accurately describing the knowledge dissemination process is significant to enhance the performance of personalized education. In this study, considering the effect of periodic teaching activities on the learning process, we propose a periodic impulsive knowledge dissemination system to regenerate the knowledge dissemination process. Meanwhile, we put forward learning effectiveness which is an outcome of a trade-off between the benefits and costs raised by knowledge dissemination as objective function. Further, we investigate the optimal teaching strategy which can maximize learning effectiveness, to obtain the optimal effect of knowledge dissemination affected by the teaching activities. We solve this dynamic optimization problem by optimal control theory and get the optimization system. At last we numerically solve this system in several practical examples to make the conclusions intuitive and specific. The optimal teaching strategy proposed in this paper can be applied widely in the optimization problem of personal education and beneficial for enhancing the effect of knowledge dissemination. PMID:28665961

  3. Optimal Appearance Model for Visual Tracking

    PubMed Central

    Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao

    2016-01-01

    Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models. PMID:26789639

  4. Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer

    NASA Astrophysics Data System (ADS)

    Winkel, D.; Bol, G. H.; van Asselen, B.; Hes, J.; Scholten, V.; Kerkmeijer, L. G. W.; Raaymakers, B. W.

    2016-12-01

    To develop an automated radiotherapy treatment planning and optimization workflow to efficiently create patient specifically optimized clinical grade treatment plans for prostate cancer and to implement it in clinical practice. A two-phased planning and optimization workflow was developed to automatically generate 77Gy 5-field simultaneously integrated boost intensity modulated radiation therapy (SIB-IMRT) plans for prostate cancer treatment. A retrospective planning study (n  =  100) was performed in which automatically and manually generated treatment plans were compared. A clinical pilot (n  =  21) was performed to investigate the usability of our method. Operator time for the planning process was reduced to  <5 min. The retrospective planning study showed that 98 plans met all clinical constraints. Significant improvements were made in the volume receiving 72Gy (V72Gy) for the bladder and rectum and the mean dose of the bladder and the body. A reduced plan variance was observed. During the clinical pilot 20 automatically generated plans met all constraints and 17 plans were selected for treatment. The automated radiotherapy treatment planning and optimization workflow is capable of efficiently generating patient specifically optimized and improved clinical grade plans. It has now been adopted as the current standard workflow in our clinic to generate treatment plans for prostate cancer.

  5. Improved understanding of the searching behavior of ant colony optimization algorithms applied to the water distribution design problem

    NASA Astrophysics Data System (ADS)

    Zecchin, A. C.; Simpson, A. R.; Maier, H. R.; Marchi, A.; Nixon, J. B.

    2012-09-01

    Evolutionary algorithms (EAs) have been applied successfully to many water resource problems, such as system design, management decision formulation, and model calibration. The performance of an EA with respect to a particular problem type is dependent on how effectively its internal operators balance the exploitation/exploration trade-off to iteratively find solutions of an increasing quality. For a given problem, different algorithms are observed to produce a variety of different final performances, but there have been surprisingly few investigations into characterizing how the different internal mechanisms alter the algorithm's searching behavior, in both the objective and decision space, to arrive at this final performance. This paper presents metrics for analyzing the searching behavior of ant colony optimization algorithms, a particular type of EA, for the optimal water distribution system design problem, which is a classical NP-hard problem in civil engineering. Using the proposed metrics, behavior is characterized in terms of three different attributes: (1) the effectiveness of the search in improving its solution quality and entering into optimal or near-optimal regions of the search space, (2) the extent to which the algorithm explores as it converges to solutions, and (3) the searching behavior with respect to the feasible and infeasible regions. A range of case studies is considered, where a number of ant colony optimization variants are applied to a selection of water distribution system optimization problems. The results demonstrate the utility of the proposed metrics to give greater insight into how the internal operators affect each algorithm's searching behavior.

  6. Optimizing Aesthetic Outcomes in Delayed Breast Reconstruction

    PubMed Central

    2017-01-01

    Background: The need to restore both the missing breast volume and breast surface area makes achieving excellent aesthetic outcomes in delayed breast reconstruction especially challenging. Autologous breast reconstruction can be used to achieve both goals. The aim of this study was to identify surgical maneuvers that can optimize aesthetic outcomes in delayed breast reconstruction. Methods: This is a retrospective review of operative and clinical records of all patients who underwent unilateral or bilateral delayed breast reconstruction with autologous tissue between April 2014 and January 2017. Three groups of delayed breast reconstruction patients were identified based on patient characteristics. Results: A total of 26 flaps were successfully performed in 17 patients. Key surgical maneuvers for achieving aesthetically optimal results were identified. A statistically significant difference for volume requirements was identified in cases where a delayed breast reconstruction and a contralateral immediate breast reconstruction were performed simultaneously. Conclusions: Optimal aesthetic results can be achieved with: (1) restoration of breast skin envelope with tissue expansion when possible, (2) optimal positioning of a small skin paddle to be later incorporated entirely into a nipple areola reconstruction when adequate breast skin surface area is present, (3) limiting the reconstructed breast mound to 2 skin tones when large area skin resurfacing is required, (4) increasing breast volume by deepithelializing, not discarding, the inferior mastectomy flap skin, (5) eccentric division of abdominal flaps when an immediate and delayed bilateral breast reconstructions are performed simultaneously; and (6) performing second-stage breast reconstruction revisions and fat grafting. PMID:28894666

  7. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.

    PubMed

    Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O

    2016-03-01

    An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.

  8. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III

    1976-01-01

    The design of a microwave landing system (MLS) aircraft receiver, capable of optimal performance in multipath environments found in air terminal areas, is reported. Special attention was given to the angle tracking problem of the receiver and includes tracking system design considerations, study and application of locally optimum estimation involving multipath adaptive reception and then envelope processing, and microcomputer system design. Results show processing is competitive in this application with i-f signal processing performance-wise and is much more simple and cheaper. A summary of the signal model is given.

  9. Boom Minimization Framework for Supersonic Aircraft Using CFD Analysis

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Rallabhandi, Sriram K.

    2010-01-01

    A new framework is presented for shape optimization using analytical shape functions and high-fidelity computational fluid dynamics (CFD) via Cart3D. The focus of the paper is the system-level integration of several key enabling analysis tools and automation methods to perform shape optimization and reduce sonic boom footprint. A boom mitigation case study subject to performance, stability and geometrical requirements is presented to demonstrate a subset of the capabilities of the framework. Lastly, a design space exploration is carried out to assess the key parameters and constraints driving the design.

  10. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.

    PubMed

    Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  11. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    PubMed Central

    Deb, Suash; Yang, Xin-She

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  12. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling

    NASA Astrophysics Data System (ADS)

    Lian, Qingwang; Zhou, Gang; Liu, Jiatu; Wu, Chen; Wei, Weifeng; Chen, Libao; Li, Chengchao

    2017-10-01

    Here, we report a new enhanced extrinsic pseudocapacitve Li-ion storage mechanism via lithiation-induced structural optimization strategy. The flower-like C@SnS and bulk SnS exhibit initial capacity decay and subsequent increase of capacity on cycling. After a long-term lithiation/delithiation process, flower-like C@SnS and bulk SnS exhibit improved rate performance and reversible capacity in comparison with those of initial state. Moreover, a high capacity of 530 mAh g-1 is still remained even after 1550 cycles at a high current density of 5.0 A g-1 for flower-like C@SnS after pre-lithiation of 350 cycles. According to the comprehensive analysis of structural evolution and electrochemical performance, it demonstrates that SnS electrodes experience crystal size reduction and further amorphization on cycling, which enhances the reversibility of conversion reaction for SnS, leading to increasing capacity. On the other hand, surface-dominated extrinsic pseudocapacitive contribution results in enhanced rate performance because electrodes expose a large fraction of Li+ sites on surface or near-surface region with structural optimization on cycling. This study reveals that extrinsic pseudocapacitance of SnS can be stimulated via lithiation-induced structural optimization, which gives rise to high-rate and long-lived performances.

  13. Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods

    NASA Technical Reports Server (NTRS)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa W.; Dorney, Daniel J.

    2001-01-01

    Turbine performance directly affects engine specific impulse, thrust-to-weight ratio, and cost in a rocket propulsion system. A global optimization framework combining the radial basis neural network (RBNN) and the polynomial-based response surface method (RSM) is constructed for shape optimization of a supersonic turbine. Based on the optimized preliminary design, shape optimization is performed for the first vane and blade of a 2-stage supersonic turbine, involving O(10) design variables. The design of experiment approach is adopted to reduce the data size needed by the optimization task. It is demonstrated that a major merit of the global optimization approach is that it enables one to adaptively revise the design space to perform multiple optimization cycles. This benefit is realized when an optimal design approaches the boundary of a pre-defined design space. Furthermore, by inspecting the influence of each design variable, one can also gain insight into the existence of multiple design choices and select the optimum design based on other factors such as stress and materials considerations.

  14. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization

    PubMed Central

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods. PMID:28222194

  15. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization.

    PubMed

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.

  16. Solving the optimal attention allocation problem in manual control

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.

    1976-01-01

    Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.

  17. Numerical and experimental analysis of a ducted propeller designed by a fully automated optimization process under open water condition

    NASA Astrophysics Data System (ADS)

    Yu, Long; Druckenbrod, Markus; Greve, Martin; Wang, Ke-qi; Abdel-Maksoud, Moustafa

    2015-10-01

    A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.

  18. Optimization of thermal protection systems for the space vehicle. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of the computational techniques for the design optimization of thermal protection systems for the space shuttle vehicle are discussed. The resulting computer program was then used to perform initial optimization and sensitivity studies on a typical thermal protection system (TPS) to demonstrate its application to the space shuttle TPS design. The program was developed in FORTRAN IV for CDC 6400 computer, but it was subsequently converted to the FORTRAN V language to be used on the Univac 1108.

  19. Evaluating and optimizing the NERSC workload on Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, T; Cook, B; Deslippe, J

    2017-01-30

    NERSC has partnered with 20 representative application teams to evaluate performance on the Xeon-Phi Knights Landing architecture and develop an application-optimization strategy for the greater NERSC workload on the recently installed Cori system. In this article, we present early case studies and summarized results from a subset of the 20 applications highlighting the impact of important architecture differences between the Xeon-Phi and traditional Xeon processors. We summarize the status of the applications and describe the greater optimization strategy that has formed.

  20. Evaluating and Optimizing the NERSC Workload on Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Taylor; Cook, Brandon; Doerfler, Douglas

    2016-01-01

    NERSC has partnered with 20 representative application teams to evaluate performance on the Xeon-Phi Knights Landing architecture and develop an application-optimization strategy for the greater NERSC workload on the recently installed Cori system. In this article, we present early case studies and summarized results from a subset of the 20 applications highlighting the impact of important architecture differences between the Xeon-Phi and traditional Xeon processors. We summarize the status of the applications and describe the greater optimization strategy that has formed.

  1. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    NASA Astrophysics Data System (ADS)

    Gabor, Oliviu Sugar

    To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators, the spanwise number of actuation stations as well as the displacement limits were established. The performance improvements obtained and the limitations of the morphing wing concept were studied. To verify the optimization results, high-fidelity Computational Fluid Dynamics simulations were also performed, giving very accurate indications of the obtained gains. For the morphing model based on an aircraft wing tip, the skin shapes were optimized in order to control laminar flow on the upper surface. An automated structured mesh generation procedure was developed and implemented. To accurately capture the shape of the skin, a precision scanning procedure was done and its results were included in the numerical model. High-fidelity simulations were performed to determine the upper surface transition region and the numerical results were validated using experimental wind tunnel data.

  2. Unmet Expectations: Why Is There Such a Difference between Student Expectations and Classroom Performance?

    ERIC Educational Resources Information Center

    Stinson, Terrye A.; Zhao, Xiaofeng

    2008-01-01

    Past studies indicate that students are frequently poor judges of their likely academic performance in the classroom. The difficulty a student faces in accurately predicting performance on a classroom exam may be due to unrealistic optimism or may be due to an inability to self-evaluate academic performance, but the resulting disconnect between…

  3. A Neuroscience Approach to Optimizing Brain Resources for Human Performance in Extreme Environments

    PubMed Central

    Paulus, Martin P.; Potterat, Eric G.; Taylor, Marcus K.; Van Orden, Karl F.; Bauman, James; Momen, Nausheen; Padilla, Genieleah A.; Swain, Judith L.

    2009-01-01

    Extreme environments requiring optimal cognitive and behavioral performance occur in a wide variety of situations ranging from complex combat operations to elite athletic competitions. Although a large literature characterizes psychological and other aspects of individual differences in performances in extreme environments, virtually nothing is known about the underlying neural basis for these differences. This review summarizes the cognitive, emotional, and behavioral consequences of exposure to extreme environments, discusses predictors of performance, and builds a case for the use of neuroscience approaches to quantify and understand optimal cognitive and behavioral performance. Extreme environments are defined as an external context that exposes individuals to demanding psychological and/or physical conditions, and which may have profound effects on cognitive and behavioral performance. Examples of these types of environments include combat situations, Olympic-level competition, and expeditions in extreme cold, at high altitudes, or in space. Optimal performance is defined as the degree to which individuals achieve a desired outcome when completing goal-oriented tasks. It is hypothesized that individual variability with respect to optimal performance in extreme environments depends on a well “contextualized” internal body state that is associated with an appropriate potential to act. This hypothesis can be translated into an experimental approach that may be useful for quantifying the degree to which individuals are particularly suited to performing optimally in demanding environments. PMID:19447132

  4. SoMIR framework for designing high-NDBP photonic crystal waveguides.

    PubMed

    Mirjalili, Seyed Mohammad

    2014-06-20

    This work proposes a modularized framework for designing the structure of photonic crystal waveguides (PCWs) and reducing human involvement during the design process. The proposed framework consists of three main modules: parameters module, constraints module, and optimizer module. The first module is responsible for defining the structural parameters of a given PCW. The second module defines various limitations in order to achieve desirable optimum designs. The third module is the optimizer, in which a numerical optimization method is employed to perform optimization. As case studies, two new structures called Ellipse PCW (EPCW) and Hypoellipse PCW (HPCW) with different shape of holes in each row are proposed and optimized by the framework. The calculation results show that the proposed framework is able to successfully optimize the structures of the new EPCW and HPCW. In addition, the results demonstrate the applicability of the proposed framework for optimizing different PCWs. The results of the comparative study show that the optimized EPCW and HPCW provide 18% and 9% significant improvements in normalized delay-bandwidth product (NDBP), respectively, compared to the ring-shape-hole PCW, which has the highest NDBP in the literature. Finally, the simulations of pulse propagation confirm the manufacturing feasibility of both optimized structures.

  5. Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping

    PubMed Central

    Jiménez-Reyes, Pedro; Samozino, Pierre; Brughelli, Matt; Morin, Jean-Benoît

    2017-01-01

    Ballistic performances are determined by both the maximal lower limb power output (Pmax) and their individual force-velocity (F-v) mechanical profile, especially the F-v imbalance (FVimb): difference between the athlete's actual and optimal profile. An optimized training should aim to increase Pmax and/or reduce FVimb. The aim of this study was to test whether an individualized training program based on the individual F-v profile would decrease subjects' individual FVimb and in turn improve vertical jump performance. FVimb was used as the reference to assign participants to different training intervention groups. Eighty four subjects were assigned to three groups: an “optimized” group divided into velocity-deficit, force-deficit, and well-balanced sub-groups based on subjects' FVimb, a “non-optimized” group for which the training program was not specifically based on FVimb and a control group. All subjects underwent a 9-week specific resistance training program. The programs were designed to reduce FVimb for the optimized groups (with specific programs for sub-groups based on individual FVimb values), while the non-optimized group followed a classical program exactly similar for all subjects. All subjects in the three optimized training sub-groups (velocity-deficit, force-deficit, and well-balanced) increased their jumping performance (12.7 ± 5.7% ES = 0.93 ± 0.09, 14.2 ± 7.3% ES = 1.00 ± 0.17, and 7.2 ± 4.5% ES = 0.70 ± 0.36, respectively) with jump height improvement for all subjects, whereas the results were much more variable and unclear in the non-optimized group. This greater change in jump height was associated with a markedly reduced FVimb for both force-deficit (57.9 ± 34.7% decrease in FVimb) and velocity-deficit (20.1 ± 4.3%) subjects, and unclear or small changes in Pmax (−0.40 ± 8.4% and +10.5 ± 5.2%, respectively). An individualized training program specifically based on FVimb (gap between the actual and optimal F-v profiles of each individual) was more efficient at improving jumping performance (i.e., unloaded squat jump height) than a traditional resistance training common to all subjects regardless of their FVimb. Although improving both FVimb and Pmax has to be considered to improve ballistic performance, the present results showed that reducing FVimb without even increasing Pmax lead to clearly beneficial jump performance changes. Thus, FVimb could be considered as a potentially useful variable for prescribing optimal resistance training to improve ballistic performance. PMID:28119624

  6. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.0 theory manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.« less

  7. Study on Pyroelectric Harvesters with Various Geometry

    PubMed Central

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2015-01-01

    Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate) cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance. PMID:26270666

  8. Performance-limiting factors for x-ray free electron laser oscillator as a highly coherent, high spectral purity x-ray source

    NASA Astrophysics Data System (ADS)

    Park, Gunn Tae

    X-ray Free Electron Laser (XFEL) is a light source for coherent X-ray using the radiation from relativistic electrons and interaction between the two. In particular, XFEL oscillator(XFELO) uses optical cavity to repeatedly bring back the radiation to electron beam for the interaction. Its optimal performance, maximum single pass gain and minimum round trip loss, critically depends on cavity optics. In ideal case, the optimal performance would be achieved by the periodic radiation mode maximally overlapping with electron beam while the radiation mode is impinging on curved mirror that gives the radiation the focusing, below critical angle and angular divergence being kept small enough at each crystal for Bragg scattering, which is used for near-normal reflection. In reality, there exist various performance degrading factors in the cavity such as heat load on the crystal surface, misalignments of crystals and mirrors and mirror surface errors. In this thesis, we study via both analytic computation and numerical simulation the optimal design and performance of XFELO cavity in the presence of these factors. In optimal design, we implement asymmetric crystals into cavity to enhance the performance. In general, it has undesirable effect of pulse dilation. We present the configuration that avoids pulse length dilation. Then the effects of misalignments, focal length errors and mirror surface errors are to be evaluated and their tolerances are estimated. In particular, the simulation demonstrates that the effect of mirror surface errors on gain and round trip loss is well-within desired performance of XFELO.

  9. Multi-objective optimization design and experimental investigation of centrifugal fan performance

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Songling; Hu, Chenxing; Zhang, Qian

    2013-11-01

    Current studies of fan performance optimization mainly focus on two aspects: one is to improve the blade profile, and another is only to consider the influence of single impeller structural parameter on fan performance. However, there are few studies on the comprehensive effect of the key parameters such as blade number, exit stagger angle of blade and the impeller outlet width on the fan performance. The G4-73 backward centrifugal fan widely used in power plants is selected as the research object. Based on orthogonal design and BP neural network, a model for predicting the centrifugal fan performance parameters is established, and the maximum relative errors of the total pressure and efficiency are 0.974% and 0.333%, respectively. Multi-objective optimization of total pressure and efficiency of the fan is conducted with genetic algorithm, and the optimum combination of impeller structural parameters is proposed. The optimized parameters of blade number, exit stagger angle of blade and the impeller outlet width are seperately 14, 43.9°, and 21 cm. The experiments on centrifugal fan performance and noise are conducted before and after the installation of the new impeller. The experimental results show that with the new impeller, the total pressure of fan increases significantly in total range of the flow rate, and the fan efficiency is improved when the relative flow is above 75%, also the high efficiency area is broadened. Additionally, in 65% -100% relative flow, the fan noise is reduced. Under the design operating condition, total pressure and efficiency of the fan are improved by 6.91% and 0.5%, respectively. This research sheds light on the considering of comprehensive effect of impeller structrual parameters on fan performance, and a new impeller can be designed to satisfy the engineering demand such as energy-saving, noise reduction or solving air pressure insufficiency for power plants.

  10. Screening for increased cardiometabolic risk in primary care: a systematic review

    PubMed Central

    den Engelsen, Corine; Koekkoek, Paula S; Godefrooij, Merijn B; Spigt, Mark G; Rutten, Guy E

    2014-01-01

    Background Many programmes to detect and prevent cardiovascular disease (CVD) have been performed, but the optimal strategy is not yet clear. Aim To present a systematic review of cardiometabolic screening programmes performed among apparently healthy people (not yet known to have CVD, diabetes, or cardiometabolic risk factors) and mixed populations (apparently healthy people and people diagnosed with risk factor or disease) to define the optimal screening strategy. Design and setting Systematic review of studies performed in primary care in Western countries. Method MEDLINE, Embase, and CINAHL databases were searched for studies screening for increased cardiometabolic risk. Exclusion criteria were studies designed to assess prevalence of risk factors without follow-up or treatment; without involving a GP; when fewer than two risk factors were considered as the primary outcome; and studies constrained to ethnic minorities. Results The search strategy yielded 11 445 hits; 26 met the inclusion criteria. Five studies (1995–2012) were conducted in apparently healthy populations: three used a stepwise method. Response rates varied from 24% to 79%. Twenty-one studies (1967–2012) were performed in mixed populations; one used a stepwise method. Response rates varied from 50% to 75%. Prevalence rates could not be compared because of heterogeneity of used thresholds and eligible populations. Observed time trends were a shift from mixed to apparently healthy populations, increasing use of risk scores, and increasing use of stepwise screening methods. Conclusion The optimal screening strategy in primary care is likely stepwise, in apparently healthy people, with the use of risk scores. Increasing public awareness and actively involving GPs might facilitate screening efficiency and uptake. PMID:25267047

  11. Sequence Based Prediction of Antioxidant Proteins Using a Classifier Selection Strategy

    PubMed Central

    Zhang, Lina; Zhang, Chengjin; Gao, Rui; Yang, Runtao; Song, Qing

    2016-01-01

    Antioxidant proteins perform significant functions in maintaining oxidation/antioxidation balance and have potential therapies for some diseases. Accurate identification of antioxidant proteins could contribute to revealing physiological processes of oxidation/antioxidation balance and developing novel antioxidation-based drugs. In this study, an ensemble method is presented to predict antioxidant proteins with hybrid features, incorporating SSI (Secondary Structure Information), PSSM (Position Specific Scoring Matrix), RSA (Relative Solvent Accessibility), and CTD (Composition, Transition, Distribution). The prediction results of the ensemble predictor are determined by an average of prediction results of multiple base classifiers. Based on a classifier selection strategy, we obtain an optimal ensemble classifier composed of RF (Random Forest), SMO (Sequential Minimal Optimization), NNA (Nearest Neighbor Algorithm), and J48 with an accuracy of 0.925. A Relief combined with IFS (Incremental Feature Selection) method is adopted to obtain optimal features from hybrid features. With the optimal features, the ensemble method achieves improved performance with a sensitivity of 0.95, a specificity of 0.93, an accuracy of 0.94, and an MCC (Matthew’s Correlation Coefficient) of 0.880, far better than the existing method. To evaluate the prediction performance objectively, the proposed method is compared with existing methods on the same independent testing dataset. Encouragingly, our method performs better than previous studies. In addition, our method achieves more balanced performance with a sensitivity of 0.878 and a specificity of 0.860. These results suggest that the proposed ensemble method can be a potential candidate for antioxidant protein prediction. For public access, we develop a user-friendly web server for antioxidant protein identification that is freely accessible at http://antioxidant.weka.cc. PMID:27662651

  12. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors

    NASA Astrophysics Data System (ADS)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George

    2017-03-01

    Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  13. Performance Optimization of Marine Science and Numerical Modeling on HPC Cluster

    PubMed Central

    Yang, Dongdong; Yang, Hailong; Wang, Luming; Zhou, Yucong; Zhang, Zhiyuan; Wang, Rui; Liu, Yi

    2017-01-01

    Marine science and numerical modeling (MASNUM) is widely used in forecasting ocean wave movement, through simulating the variation tendency of the ocean wave. Although efforts have been devoted to improve the performance of MASNUM from various aspects by existing work, there is still large space unexplored for further performance improvement. In this paper, we aim at improving the performance of propagation solver and data access during the simulation, in addition to the efficiency of output I/O and load balance. Our optimizations include several effective techniques such as the algorithm redesign, load distribution optimization, parallel I/O and data access optimization. The experimental results demonstrate that our approach achieves higher performance compared to the state-of-the-art work, about 3.5x speedup without degrading the prediction accuracy. In addition, the parameter sensitivity analysis shows our optimizations are effective under various topography resolutions and output frequencies. PMID:28045972

  14. Grid-Optimization Program for Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  15. Optimum Edging and Trimming of Hardwood Lumber

    Treesearch

    Carmen Regalado; D. Earl Kline; Philip A. Araman

    1992-01-01

    Before the adoption of an automated system for optimizing edging and trimming in hardwood mills, the performance of present manual systems must be evaluated to provide a basis for comparison. a study was made in which lumber values recovered in actual hardwood operations were compared to the output of a computer-based procedure for edging and trimming optimization. The...

  16. Narrative Performance of Optimal Outcome Children and Adolescents with a History of an Autism Spectrum Disorder (ASD)

    ERIC Educational Resources Information Center

    Suh, Joyce; Eigsti, Inge-Marie; Naigles, Letitia; Barton, Marianne; Kelley, Elizabeth; Fein, Deborah

    2014-01-01

    Autism Spectrum Disorders (ASDs) have traditionally been considered a lifelong condition; however, a subset of people makes such significant improvements that they no longer meet diagnostic criteria for an ASD. The current study examines whether these "optimal outcome" (OO) children and adolescents continue to have subtle pragmatic…

  17. The WOMEN study: what is the optimal method for ischemia evaluation in women? A multi-center, prospective, randomized study to establish the optimal method for detection of coronary artery disease (CAD) risk in women at an intermediate-high pretest likelihood of CAD: study design.

    PubMed

    Mieres, Jennifer H; Shaw, Leslee J; Hendel, Robert C; Heller, Gary V

    2009-01-01

    Coronary artery disease remains the leading cause of morbidity and mortality in women. The optimal non-invasive test for evaluation of ischemic heart disease in women is unknown. Although current guidelines support the choice of the exercise tolerance test (ETT) as a first line test for women with a normal baseline ECG and adequate exercise capabilities, supportive data for this recommendation are controversial. The what is the optimal method for ischemia evaluation in women? (WOMEN) study was designed to determine the optimal non-invasive strategy for CAD risk detection of intermediate and high risk women presenting with chest pain or equivalent symptoms suggestive of ischemic heart disease. The study will prospectively compare the 2-year event rates in women capable of performing exercise treadmill testing or Tc-99 m tetrofosmin SPECT myocardial perfusion imaging (MPI). The study will enroll women presenting for the evaluation of chest pain or anginal equivalent symptoms who are capable of performing >5 METs of exercise while at intermediate-high pretest risk for ischemic heart disease who will be randomized to either ETT testing alone or with Tc-99 m tetrofosmin SPECT MPI. The null hypothesis for this project is that the exercise ECG has the same negative predictive value for risk detection as gated myocardial perfusion SPECT in women. The primary aim is to compare 2-year cardiac event rates in women randomized to SPECT MPI to those randomized to ETT. The WOMEN study seeks to provide objective information for guidelines for the evaluation of symptomatic women with an intermediate-high likelihood for CAD.

  18. Electrodeposition of actinide compounds from an aqueous ammonium acetate matrix. Experimental development and optimization

    DOE PAGES

    Boll, Rose Ann; Matos, Milan; Torrico, Matthew N.

    2015-03-27

    Electrodeposition is a technique that is routinely employed in nuclear research for the preparation of thin solid films of actinide materials which can be used in accelerator beam bombardments, irradiation studies, or as radioactive sources. The present study investigates the deposition of both lanthanides and actinides from an aqueous ammonium acetate electrolyte matrix. Electrodepositions were performed primarily on stainless steel disks; with yield analysis evaluated using -spectroscopy. Experimental parameters were studied and modified in order to optimize the uniformity and adherence of the deposition while maximizing the yield. The initial development utilized samarium as the plating material, with and withoutmore » a radioactive tracer. As a result, surface characterization studies were performed by scanning electron microscopy, electron microprobe analysis, radiographic imaging, and x-ray diffraction.« less

  19. Controlled laboratory testing of arthroscopic shaver systems: do blades, contact pressure, and speed influence their performance?

    PubMed

    Wieser, Karl; Erschbamer, Matthias; Neuhofer, Stefan; Ek, Eugene T; Gerber, Christian; Meyer, Dominik C

    2012-10-01

    The purposes of this study were (1) to establish a reproducible, standardized testing protocol to evaluate the performance of different shaver systems and blades in a controlled, laboratory setting, and (2) to determine the optimal use of different blades with respect to the influence of contact pressure and speed of blade rotation. A holding device was developed for reproducible testing of soft-tissue (tendon and meniscal) resection performance in a submerged environment, after loading of the shaver with interchangeable weights. The Karl Storz Powershaver S2 (Karl Storz, Tuttlingen, Germany), the Stryker Power Shaver System (Stryker, Kalamazoo, MI), and the Dyonics Power Shaver System (Smith & Nephew, Andover, MA) were tested, with different 5.5-mm shaver blades and varied contact pressure and rotation speed. For quality testing, serrated shaver blades were evaluated at 40× image magnification. Overall, more than 150 test cycles were performed. No significant differences could be detected between comparable blade types from different manufacturers. Shavers with a serrated inner blade and smooth outer blade performed significantly better than the standard smooth resectors (P < .001). Teeth on the outer layer of the blade did not lead to any further improvement of resection (P = .482). Optimal contact pressure ranged between 6 and 8 N, and optimal speed was found to be 2,000 to 2,500 rpm. Minimal blunting of the shaver blades occurred after soft-tissue resection; however, with bone resection, progressive blunting of the shaver blades was observed. Arthroscopic shavers can be tested in a controlled setting. The performance of the tested shaver types appears to be fairly independent of the manufacturer. For tendon resection, a smooth outer blade and serrated inner blade were optimal. This is one of the first established independent and quantitative assessments of arthroscopic shaver systems and blades. We believe that this study will assist the surgeon in choosing the optimal tool for the desired effect. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  20. Optimizing physical energy functions for protein folding.

    PubMed

    Fujitsuka, Yoshimi; Takada, Shoji; Luthey-Schulten, Zaida A; Wolynes, Peter G

    2004-01-01

    We optimize a physical energy function for proteins with the use of the available structural database and perform three benchmark tests of the performance: (1) recognition of native structures in the background of predefined decoy sets of Levitt, (2) de novo structure prediction using fragment assembly sampling, and (3) molecular dynamics simulations. The energy parameter optimization is based on the energy landscape theory and uses a Monte Carlo search to find a set of parameters that seeks the largest ratio deltaE(s)/DeltaE for all proteins in a training set simultaneously. Here, deltaE(s) is the stability gap between the native and the average in the denatured states and DeltaE is the energy fluctuation among these states. Some of the energy parameters optimized are found to show significant correlation with experimentally observed quantities: (1) In the recognition test, the optimized function assigns the lowest energy to either the native or a near-native structure among many decoy structures for all the proteins studied. (2) Structure prediction with the fragment assembly sampling gives structure models with root mean square deviation less than 6 A in one of the top five cluster centers for five of six proteins studied. (3) Structure prediction using molecular dynamics simulation gives poorer performance, implying the importance of having a more precise description of local structures. The physical energy function solely inferred from a structural database neither utilizes sequence information from the family of the target nor the outcome of the secondary structure prediction but can produce the correct native fold for many small proteins. Copyright 2003 Wiley-Liss, Inc.

  1. Performance Comparison of Optimized Designs of Francis Turbines Exposed to Sediment Erosion in various Operating Conditions

    NASA Astrophysics Data System (ADS)

    Shrestha, K. P.; Chitrakar, S.; Thapa, B.; Dahlhaug, O. G.

    2018-06-01

    Erosion on hydro turbine mostly depends on impingement velocity, angle of impact, concentration, shape, size and distribution of erodent particle and substrate material. In the case of Francis turbines, the sediment particles tend to erode more in the off-designed conditions than at the best efficiency point. Previous studies focused on the optimized runner blade design to reduce erosion at the designed flow. However, the effect of the change in the design on other operating conditions was not studied. This paper demonstrates the performance of optimized Francis turbine exposed to sediment erosion in various operating conditions. Comparative study has been carryout among the five different shapes of runner, different set of guide vane and stay vane angles. The effect of erosion is studied in terms of average erosion density rate on optimized design Francis runner with Lagrangian particle tracking method in CFD analysis. The numerical sensitivity of the results are investigated by comparing two turbulence models. Numerical results are validated from the velocity measurements carried out in the actual turbine. Results show that runner blades are susceptible to more erosion at part load conditions compared to BEP, whereas for the case of guide vanes, more erosion occurs at full load conditions. Out of the five shapes compared, Shape 5 provides an optimum combination of efficiency and erosion on the studied operating conditions.

  2. Academic consortium for the evaluation of computer-aided diagnosis (CADx) in mammography

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Freedman, Matthew T.; Wu, Chris Y.; Lo, Shih-Chung B.; Floyd, Carey E., Jr.; Lo, Joseph Y.; Chan, Heang-Ping; Helvie, Mark A.; Petrick, Nicholas; Sahiner, Berkman; Wei, Datong; Chakraborty, Dev P.; Clarke, Laurence P.; Kallergi, Maria; Clark, Bob; Kim, Yongmin

    1995-04-01

    Computer aided diagnosis (CADx) is a promising technology for the detection of breast cancer in screening mammography. A number of different approaches have been developed for CADx research that have achieved significant levels of performance. Research teams now recognize the need for a careful and detailed evaluation study of approaches to accelerate the development of CADx, to make CADx more clinically relevant and to optimize the CADx algorithms based on unbiased evaluations. The results of such a comparative study may provide each of the participating teams with new insights into the optimization of their individual CADx algorithms. This consortium of experienced CADx researchers is working as a group to compare results of the algorithms and to optimize the performance of CADx algorithms by learning from each other. Each institution will be contributing an equal number of cases that will be collected under a standard protocol for case selection, truth determination, and data acquisition to establish a common and unbiased database for the evaluation study. An evaluation procedure for the comparison studies are being developed to analyze the results of individual algorithms for each of the test cases in the common database. Optimization of individual CADx algorithms can be made based on the comparison studies. The consortium effort is expected to accelerate the eventual clinical implementation of CADx algorithms at participating institutions.

  3. Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models

    NASA Astrophysics Data System (ADS)

    Rothenberger, Michael J.

    This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input-output measurements, and is the approach used in this dissertation. Research in the literature studies optimal current input shaping for high-order electrochemical battery models and focuses on offline laboratory cycling. While this body of research highlights improvements in identifiability through optimal input shaping, each optimal input is a function of nominal parameters, which creates a tautology. The parameter values must be known a priori to determine the optimal input for maximizing estimation speed and accuracy. The system identification literature presents multiple studies containing methods that avoid the challenges of this tautology, but these methods are absent from the battery parameter estimation domain. The gaps in the above literature are addressed in this dissertation through the following five novel and unique contributions. First, this dissertation optimizes the parameter identifiability of a thermal battery model, which Sergio Mendoza experimentally validates through a close collaboration with this dissertation's author. Second, this dissertation extends input-shaping optimization to a linear and nonlinear equivalent-circuit battery model and illustrates the substantial improvements in Fisher identifiability for a periodic optimal signal when compared against automotive benchmark cycles. Third, this dissertation presents an experimental validation study of the simulation work in the previous contribution. The estimation study shows that the automotive benchmark cycles either converge slower than the optimized cycle, or not at all for certain parameters. Fourth, this dissertation examines how automotive battery packs with additional power electronic components that dynamically route current to individual cells/modules can be used for parameter identifiability optimization. While the user and vehicle supervisory controller dictate the current demand for these packs, the optimized internal allocation of current still improves identifiability. Finally, this dissertation presents a robust Bayesian sequential input shaping optimization study to maximize the conditional Fisher information of the battery model parameters without prior knowledge of the nominal parameter set. This iterative algorithm only requires knowledge of the prior parameter distributions to converge to the optimal input trajectory.

  4. Analysis of parameter estimation and optimization application of ant colony algorithm in vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun

    2018-03-01

    Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.

  5. Optimal wide-area monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices.

    PubMed

    Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G

    2008-01-01

    Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system.

  6. Optimal Quantum Spatial Search on Random Temporal Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  7. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

    PubMed

    Deb, Kalyanmoy; Sinha, Ankur

    2010-01-01

    Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

  8. Two-Dimensional High-Lift Aerodynamic Optimization Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Greenman, Roxana M.

    1998-01-01

    The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. The 'pressure difference rule,' which states that the maximum lift condition corresponds to a certain pressure difference between the peak suction pressure and the pressure at the trailing edge of the element, was applied and verified with experimental observations for this configuration. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural nets were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 44% compared with traditional gradient-based optimization procedures for multiple optimization runs.

  9. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  10. Structural Mass Saving Potential of a 5-MW Direct-Drive Generator Designed for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Fingersh, Lee J; Dykes, Katherine L

    As wind turbine blade diameters and tower height increase to capture more energy in the wind, higher structural loads results in more structural support material increasing the cost of scaling. Weight reductions in the generator transfer to overall cost savings of the system. Additive manufacturing facilitates a design-for-functionality approach, thereby removing traditional manufacturing constraints and labor costs. The most feasible additive manufacturing technology identified for large, direct-drive generators in this study is powder-binder jetting of a sand cast mold. A parametric finite element analysis optimization study is performed, optimizing for mass and deformation. Also, topology optimization is employed for eachmore » parameter-optimized design.The optimized U-beam spoked web design results in a 24 percent reduction in structural mass of the rotor and 60 percent reduction in radial deflection.« less

  11. Enhanced index tracking modelling in portfolio optimization

    NASA Astrophysics Data System (ADS)

    Lam, W. S.; Hj. Jaaman, Saiful Hafizah; Ismail, Hamizun bin

    2013-09-01

    Enhanced index tracking is a popular form of passive fund management in stock market. It is a dual-objective optimization problem, a trade-off between maximizing the mean return and minimizing the risk. Enhanced index tracking aims to generate excess return over the return achieved by the index without purchasing all of the stocks that make up the index by establishing an optimal portfolio. The objective of this study is to determine the optimal portfolio composition and performance by using weighted model in enhanced index tracking. Weighted model focuses on the trade-off between the excess return and the risk. The results of this study show that the optimal portfolio for the weighted model is able to outperform the Malaysia market index which is Kuala Lumpur Composite Index because of higher mean return and lower risk without purchasing all the stocks in the market index.

  12. Novel optimization technique of isolated microgrid with hydrogen energy storage.

    PubMed

    Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.

  13. Novel optimization technique of isolated microgrid with hydrogen energy storage

    PubMed Central

    Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433

  14. A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Ortiz, Francisco

    2004-01-01

    COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.

  15. Periodic Application of Stochastic Cost Optimization Methodology to Achieve Remediation Objectives with Minimized Life Cycle Cost

    NASA Astrophysics Data System (ADS)

    Kim, U.; Parker, J.

    2016-12-01

    Many dense non-aqueous phase liquid (DNAPL) contaminated sites in the U.S. are reported as "remediation in progress" (RIP). However, the cost to complete (CTC) remediation at these sites is highly uncertain and in many cases, the current remediation plan may need to be modified or replaced to achieve remediation objectives. This study evaluates the effectiveness of iterative stochastic cost optimization that incorporates new field data for periodic parameter recalibration to incrementally reduce prediction uncertainty and implement remediation design modifications as needed to minimize the life cycle cost (i.e., CTC). This systematic approach, using the Stochastic Cost Optimization Toolkit (SCOToolkit), enables early identification and correction of problems to stay on track for completion while minimizing the expected (i.e., probability-weighted average) CTC. This study considers a hypothetical site involving multiple DNAPL sources in an unconfined aquifer using thermal treatment for source reduction and electron donor injection for dissolved plume control. The initial design is based on stochastic optimization using model parameters and their joint uncertainty based on calibration to site characterization data. The model is periodically recalibrated using new monitoring data and performance data for the operating remediation systems. Projected future performance using the current remediation plan is assessed and reoptimization of operational variables for the current system or consideration of alternative designs are considered depending on the assessment results. We compare remediation duration and cost for the stepwise re-optimization approach with single stage optimization as well as with a non-optimized design based on typical engineering practice.

  16. Two-phase strategy of controlling motor coordination determined by task performance optimality.

    PubMed

    Shimansky, Yury P; Rand, Miya K

    2013-02-01

    A quantitative model of optimal coordination between hand transport and grip aperture has been derived in our previous studies of reach-to-grasp movements without utilizing explicit knowledge of the optimality criterion or motor plant dynamics. The model's utility for experimental data analysis has been demonstrated. Here we show how to generalize this model for a broad class of reaching-type, goal-directed movements. The model allows for measuring the variability of motor coordination and studying its dependence on movement phase. The experimentally found characteristics of that dependence imply that execution noise is low and does not affect motor coordination significantly. From those characteristics it is inferred that the cost of neural computations required for information acquisition and processing is included in the criterion of task performance optimality as a function of precision demand for state estimation and decision making. The precision demand is an additional optimized control variable that regulates the amount of neurocomputational resources activated dynamically. It is shown that an optimal control strategy in this case comprises two different phases. During the initial phase, the cost of neural computations is significantly reduced at the expense of reducing the demand for their precision, which results in speed-accuracy tradeoff violation and significant inter-trial variability of motor coordination. During the final phase, neural computations and thus motor coordination are considerably more precise to reduce the cost of errors in making a contact with the target object. The generality of the optimal coordination model and the two-phase control strategy is illustrated on several diverse examples.

  17. Formal optimization of hovering performance using free wake lifting surface theory

    NASA Technical Reports Server (NTRS)

    Chung, S. Y.

    1986-01-01

    Free wake techniques for performance prediction and optimization of hovering rotor are discussed. The influence functions due to vortex ring, vortex cylinder, and source or vortex sheets are presented. The vortex core sizes of rotor wake vortices are calculated and their importance is discussed. Lifting body theory for finite thickness body is developed for pressure calculation, and hence performance prediction of hovering rotors. Numerical optimization technique based on free wake lifting line theory is presented and discussed. It is demonstrated that formal optimization can be used with the implicit and nonlinear objective or cost function such as the performance of hovering rotors as used in this report.

  18. Optimization Design of Bipolar Plate Flow Field in PEM Stack

    NASA Astrophysics Data System (ADS)

    Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong

    2017-12-01

    A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.

  19. An effective and optimal quality control approach for green energy manufacturing using design of experiments framework and evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Saavedra, Juan Alejandro

    Quality Control (QC) and Quality Assurance (QA) strategies vary significantly across industries in the manufacturing sector depending on the product being built. Such strategies range from simple statistical analysis and process controls, decision-making process of reworking, repairing, or scraping defective product. This study proposes an optimal QC methodology in order to include rework stations during the manufacturing process by identifying the amount and location of these workstations. The factors that are considered to optimize these stations are cost, cycle time, reworkability and rework benefit. The goal is to minimize the cost and cycle time of the process, but increase the reworkability and rework benefit. The specific objectives of this study are: (1) to propose a cost estimation model that includes energy consumption, and (2) to propose an optimal QC methodology to identify quantity and location of rework workstations. The cost estimation model includes energy consumption as part of the product direct cost. The cost estimation model developed allows the user to calculate product direct cost as the quality sigma level of the process changes. This provides a benefit because a complete cost estimation calculation does not need to be performed every time the processes yield changes. This cost estimation model is then used for the QC strategy optimization process. In order to propose a methodology that provides an optimal QC strategy, the possible factors that affect QC were evaluated. A screening Design of Experiments (DOE) was performed on seven initial factors and identified 3 significant factors. It reflected that one response variable was not required for the optimization process. A full factorial DOE was estimated in order to verify the significant factors obtained previously. The QC strategy optimization is performed through a Genetic Algorithm (GA) which allows the evaluation of several solutions in order to obtain feasible optimal solutions. The GA evaluates possible solutions based on cost, cycle time, reworkability and rework benefit. Finally it provides several possible solutions because this is a multi-objective optimization problem. The solutions are presented as chromosomes that clearly state the amount and location of the rework stations. The user analyzes these solutions in order to select one by deciding which of the four factors considered is most important depending on the product being manufactured or the company's objective. The major contribution of this study is to provide the user with a methodology used to identify an effective and optimal QC strategy that incorporates the number and location of rework substations in order to minimize direct product cost, and cycle time, and maximize reworkability, and rework benefit.

  20. Performance evaluation of a health insurance in Nigeria using optimal resource use: health care providers perspectives

    PubMed Central

    2014-01-01

    Background Performance measures are often neglected during the transition period of national health insurance scheme implementation in many low and middle income countries. These measurements evaluate the extent to which various aspects of the schemes meet their key objectives. This study assesses the implementation of a health insurance scheme using optimal resource use domains and examines possible factors that influence each domain, according to providers’ perspectives. Methods A retrospective, cross-sectional survey was done between August and December 2010 in Kaduna state, and 466 health care provider personnel were interviewed. Optimal-resource-use was defined in four domains: provider payment mechanism (capitation and fee-for-service payment methods), benefit package, administrative efficiency, and active monitoring mechanism. Logistic regression analysis was used to identify provider factors that may influence each domain. Results In the provider payment mechanism domain, capitation payment method (95%) performed better than fee-for-service payment method (62%). Benefit package domain performed strongly (97%), while active monitoring mechanism performed weakly (37%). In the administrative efficiency domain, both promptness of referral system (80%) and prompt arrival of funds (93%) performed well. At the individual level, providers with fewer enrolees encountered difficulties with reimbursement. Other factors significantly influenced each of the optimal-resource-use domains. Conclusions Fee-for-service payment method and claims review, in the provider payment and active monitoring mechanisms, respectively, performed weakly according to the providers’ (at individual-level) perspectives. A short-fall on the supply-side of health insurance could lead to a direct or indirect adverse effect on the demand-side of the scheme. Capitation payment per enrolees should be revised to conform to economic circumstances. Performance indicators and providers’ characteristics and experiences associated with resource use can assist policy makers to monitor and evaluate health insurance implementation. PMID:24628889

Top