Sample records for performance technology development

  1. Cost, Time, and Risk Assessment of Different Wave Energy Converter Technology Development Trajectories: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Jochem W; Laird, Daniel; Costello, Ronan

    This paper presents a comparative assessment of three fundamentally different wave energy converter technology development trajectories. The three technology development trajectories are expressed and visualised as a function of technology readiness levels and technology performance levels. The assessment shows that development trajectories that initially prioritize technology readiness over technology performance are likely to require twice the development time, consume a threefold of the development cost, and are prone to a risk of technical or commercial failure of one order of magnitude higher than those development trajectories that initially prioritize technology performance over technology readiness.

  2. Structured Innovation of High-Performance Wave Energy Converter Technology: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Jochem W.; Laird, Daniel

    Wave energy converter (WEC) technology development has not yet delivered the desired commercial maturity nor, and more importantly, the techno-economic performance. The reasons for this have been recognized and fundamental requirements for successful WEC technology development have been identified. This paper describes a multi-year project pursued in collaboration by the National Renewable Energy Laboratory and Sandia National Laboratories to innovate and develop new WEC technology. It specifies the project strategy, shows how this differs from the state-of-the-art approach and presents some early project results. Based on the specification of fundamental functional requirements of WEC technology, structured innovation and systemic problemmore » solving methodologies are applied to invent and identify new WEC technology concepts. Using Technology Performance Levels (TPL) as an assessment metric of the techno-economic performance potential, high performance technology concepts are identified and selected for further development. System performance is numerically modelled and optimized and key performance aspects are empirically validated. The project deliverables are WEC technology specifications of high techno-economic performance technologies of TPL 7 or higher at TRL 3 with some key technology challenges investigated at higher TRL. These wave energy converter technology specifications will be made available to industry for further, full development and commercialisation (TRL 4 - TRL 9).« less

  3. Way Forward for High Performance Payload Processing Development

    NASA Astrophysics Data System (ADS)

    Notebaert, Olivier; Franklin, John; Lefftz, Vincent; Moreno, Jose; Patte, Mathieu; Syed, Mohsin; Wagner, Arnaud

    2012-08-01

    Payload processing is facing technological challenges due to the large increase of performance requirements of future scientific, observation and telecom missions as well as the future instruments technologies capturing much larger amount of data. For several years, with the perspective of higher performance together with the planned obsolescence of solutions covering the current needs, ESA and the European space industry has been developing several technology solutions. Silicon technologies, radiation mitigation techniques and innovative functional architectures are developed with the goal of designing future space qualified processing devices with a much higher level of performance than today. The fast growing commercial market application have developed very attractive technologies but which are not fully suitable with respect to their tolerance to space environment. Without the financial capacity to explore and develop all possible technology paths, a specific and global approach is required to cover the future mission needs and their necessary performance targets with effectiveness.The next sections describe main issues and priorities and provides further detailed relevant for this approach covering the high performance processing technology.

  4. Performance Evaluation Methods for Assistive Robotic Technology

    NASA Astrophysics Data System (ADS)

    Tsui, Katherine M.; Feil-Seifer, David J.; Matarić, Maja J.; Yanco, Holly A.

    Robots have been developed for several assistive technology domains, including intervention for Autism Spectrum Disorders, eldercare, and post-stroke rehabilitation. Assistive robots have also been used to promote independent living through the use of devices such as intelligent wheelchairs, assistive robotic arms, and external limb prostheses. Work in the broad field of assistive robotic technology can be divided into two major research phases: technology development, in which new devices, software, and interfaces are created; and clinical, in which assistive technology is applied to a given end-user population. Moving from technology development towards clinical applications is a significant challenge. Developing performance metrics for assistive robots poses a related set of challenges. In this paper, we survey several areas of assistive robotic technology in order to derive and demonstrate domain-specific means for evaluating the performance of such systems. We also present two case studies of applied performance measures and a discussion regarding the ubiquity of functional performance measures across the sampled domains. Finally, we present guidelines for incorporating human performance metrics into end-user evaluations of assistive robotic technologies.

  5. Technology Performance Level Assessment Methodology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Bull, Diana L; Malins, Robert Joseph

    The technology performance level (TPL) assessments can be applied at all technology development stages and associated technology readiness levels (TRLs). Even, and particularly, at low TRLs the TPL assessment is very effective as it, holistically, considers a wide range of WEC attributes that determine the techno-economic performance potential of the WEC farm when fully developed for commercial operation. The TPL assessment also highlights potential showstoppers at the earliest possible stage of the WEC technology development. Hence, the TPL assessment identifies the technology independent “performance requirements.” In order to achieve a successful solution, the entirety of the performance requirements within themore » TPL must be considered because, in the end, all the stakeholder needs must be achieved. The basis for performing a TPL assessment comes from the information provided in a dedicated format, the Technical Submission Form (TSF). The TSF requests information from the WEC developer that is required to answer the questions posed in the TPL assessment document.« less

  6. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among die scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 2/Part 2 publication covers the tools and methods development session.

  7. Brainwave Monitoring Software Improves Distracted Minds

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Neurofeedback technology developed at Langley Research Center to monitor pilot awareness inspired Peter Freer to develop software for improving student performance. His company, Fletcher, North Carolina-based Unique Logic and Technology Inc., has gone on to develop technology for improving workplace and sports performance, monitoring drowsiness, and encouraging relaxation.

  8. Technology in Paralympic sport: performance enhancement or essential for performance?

    PubMed

    Burkett, Brendan

    2010-02-01

    People with disabilities often depend on assistive devices to enable activities of daily living as well as to compete in sport. Technological developments in sport can be controversial. To review, identify and describe current technological developments in assistive devices used in the summer Paralympic Games; and to prepare for the London 2012 Games, the future challenges and the role of technology are debated. A systematic review of the peer-reviewed literature and personal observations of technological developments at the Athens (2004) and Beijing (2008) Paralympic Games was conducted. Standard assistive devices can inhibit the Paralympians' abilities to perform the strenuous activities of their sports. Although many Paralympic sports only require technology similar to their Olympic counterparts, several unique technological modifications have been made in prosthetic and wheelchair devices. Technology is essential for the Paralympic athlete, and the potential technological advantage for a Paralympian, when competing against an Olympian, is unclear. Technology must match the individual requirements of the athlete with the sport in order for Paralympians to safely maximise their performance. Within the 'performance enhancement or essential for performance?' debate, any potential increase in mechanical performance from an assistive device must be considered holistically with the compensatory consequences the disability creates. To avoid potential technology controversies at the 2012 London Olympic and Paralympic Games, the role of technology in sport must be clarified.

  9. Embedded Multiprocessor Technology for VHSIC Insertion

    NASA Technical Reports Server (NTRS)

    Hayes, Paul J.

    1990-01-01

    Viewgraphs on embedded multiprocessor technology for VHSIC insertion are presented. The objective was to develop multiprocessor system technology providing user-selectable fault tolerance, increased throughput, and ease of application representation for concurrent operation. The approach was to develop graph management mapping theory for proper performance, model multiprocessor performance, and demonstrate performance in selected hardware systems.

  10. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.

  11. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  12. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  13. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  14. Mobile Router Technology Development

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.; Shell, Dan; Leung, Kent

    2002-01-01

    Cisco Systems and NASA have been performing joint research on mobile routing technology under a NASA Space Act Agreement. Cisco developed mobile router technology and provided that technology to NASA for applications to aeronautic and space-based missions. NASA has performed stringent performance testing of the mobile router, including the interaction of routing and transport-level protocols. This paper describes mobile routing, the mobile router, and some key configuration parameters. In addition, the paper describes the mobile routing test network and test results documenting the performance of transport protocols in dynamic routing environments.

  15. Instructional Effects of a Performance Support System Designed to Guide Preservice Teachers in Developing Technology Integration Strategies

    ERIC Educational Resources Information Center

    Kalota, Faisal; Hung, Wei-Chen

    2013-01-01

    The purpose of this formative evaluation was to investigate the experiences of preservice teachers utilizing performance support system (PSS) technology to develop knowledge related to classroom technology integration. A PSS provides end users just-in-time support to perform various tasks. Because teachers have time constraints, a PSS can be used…

  16. A Conceptual Methodology for Assessing Acquisition Requirements Robustness against Technology Uncertainties

    NASA Astrophysics Data System (ADS)

    Chou, Shuo-Ju

    2011-12-01

    In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.

  17. Universal Sensor and Actuator Requirements. Chapter 5

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Taylor; Webster, John; Garg, Sanjay

    2009-01-01

    The previous chapters have focused on the requirements for sensors and actuators for "More Intelligent Gas Turbine Engines" from the perspective of performance and operating environment. Even if a technology is available, which meets these performance requirements, there are still various hurdles to be overcome for the technology to transition into a real engine. Such requirements relate to TRL (Technology Readiness Level), durability, reliability, volume, weight, cost, etc. This chapter provides an overview of such universal requirements which any sensor or actuator technology will have to meet before it can be implemented on a product. The objective here is to help educate the researchers or technology developers on the extensive process that the technology has to go through beyond just meeting performance requirements. The hope is that such knowledge will help the technology developers as well as decision makers to prevent wasteful investment in developing solutions to performance requirements, which have no potential to meet the "universal" requirements. These "universal" requirements can be divided into 2 broad areas: 1) Technology value proposition; and 2) Technology maturation. These requirements are briefly discussed in the following.

  18. 77 FR 33254 - Expediting Transition of Government Performed and Sponsored Aeronautics Research and Development

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Expediting Transition of Government Performed and Sponsored Aeronautics Research and Development AGENCY: National Science and Technology Council, Office of Science and Technology Policy. ACTION: Notice of request for public comment. SUMMARY: The National Science...

  19. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  20. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  1. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  2. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  3. Space Station Engineering and Technology Development. Proceedings of the Panel on Program Performance and Onboard Mission Control

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.

  4. Summary of Research Report Cooperative Agreement

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Several areas of work related to commercialization of technology developed at NASA Ames Research Center (ARC) are discussed in this report. The areas are: (1) perform a feasibility study to develop a software commercialization center is at ARC; (2) perform preliminary work for formation of joint development of sensor technology for telemedicine applications; (3) development of a discovery interview process and staff training to assist the commercialization of technology developed at Ames, specifically aimed at working with researchers; (4) develop partners to further develop and commercialize image compression technology developed at AMES; (5) assist efforts to commercialize a software technology which imparts the ability to establish relevance-based retrieval in the handling of large repositories of information; (6) explore the development of cryocooler technology using pulse tube refrigeration; (7) assess interest in commercialization of a new method of measuring skin friction drag on wind tunnel models using liquid crystal material; (8) attempt to incorporate emerging technologies in the infrastructure of natural hazards mitigation; and (9) forming a nonprofit organization, "The Bootstrap Alliance", whose mission is to promote the use of digital technologies for collaborative problem solving. The results of these initiatives are discussed.

  5. A Tale of Two Technologies.

    ERIC Educational Resources Information Center

    Tosti, Donald T.; Jackson, Stephanie F.

    2001-01-01

    Discusses information technology and human performance technology (HPT) and considers the potential of performance technology to improve business results. Topics include the strategic value of HPT in organizational governance, developing leadership capability, team building, fostering collaboration, and corporate culture change; and the need to…

  6. Theory Development and Convergence of Human Resource Fields: Implications for Human Performance Technology

    ERIC Educational Resources Information Center

    Cho, Yonjoo; Yoon, Seung Won

    2010-01-01

    This study examines major theory developments in human resource (HR) fields and discusses implications for human performance technology (HPT). Differentiated HR fields are converging to improve organizational performance through knowledge-based innovations. Ruona and Gibson (2004) made a similar observation and analyzed the historical evolution…

  7. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  8. High-Performance, Space-Storable, Bi-Propellant Program Status

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2002-01-01

    Bipropellant propulsion systems currently represent the largest bus subsystem for many missions. These missions range from low Earth orbit satellite to geosynchronous communications and planetary exploration. The payoff of high performance bipropellant systems is illustrated by the fact that Aerojet Redmond has qualified a commercial NTO/MMH engine based on the high Isp technology recently delivered by this program. They are now qualifying a NTO/hydrazine version of this engine. The advanced rhenium thrust chambers recently provided by this program have raised the performance of earth storable propellants from 315 sec to 328 sec of specific impulse. The recently introduced rhenium technology is the first new technology introduced to satellite propulsion in 30 years. Typically, the lead time required to develop and qualify new chemical thruster technology is not compatible with program development schedules. These technology development programs must be supported by a long term, Base R&T Program, if the technology s to be matured. This technology program then addresses the need for high performance, storable, on-board chemical propulsion for planetary rendezvous and descent/ascent. The primary NASA customer for this technology is Space Science, which identifies this need for such programs as Mars Surface Return, Titan Explorer, Neptune Orbiter, and Europa Lander. High performance (390 sec) chemical propulsion is estimated to add 105% payload to the Mars Sample Return mission or alternatively reduce the launch mass by 33%. In many cases, the use of existing (flight heritage) propellant technology is accommodated by reducing mission objectives and/or increasing enroute travel times sacrificing the science value per unit cost of the program. Therefore, a high performance storable thruster utilizing fluorinated oxidizers with hydrazine is being developed.

  9. 48 CFR 1334.201-70 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... information technology development in which the development/modernization/enhancement costs are anticipated to equal or exceed $25 million over the life of the acquisition. The Chief Information Officer may require... the Department's Information Technology Investment Performance Measurement and Performance Reporting...

  10. 48 CFR 1334.201-70 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... information technology development in which the development/modernization/enhancement costs are anticipated to equal or exceed $25 million over the life of the acquisition. The Chief Information Officer may require... the Department's Information Technology Investment Performance Measurement and Performance Reporting...

  11. 48 CFR 1334.201-70 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... information technology development in which the development/modernization/enhancement costs are anticipated to equal or exceed $25 million over the life of the acquisition. The Chief Information Officer may require... the Department's Information Technology Investment Performance Measurement and Performance Reporting...

  12. 48 CFR 1334.201-70 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... information technology development in which the development/modernization/enhancement costs are anticipated to equal or exceed $25 million over the life of the acquisition. The Chief Information Officer may require... the Department's Information Technology Investment Performance Measurement and Performance Reporting...

  13. Development, evaluation and application of performance-based brake testing technologies field test : executive summary

    DOT National Transportation Integrated Search

    1999-09-01

    This report presents the results of the field test portion of the Development, Evaluation, and Application of Performance-Based Brake Testing Technologies sponsored by the Federal Highway Administrations (FHWA) Office of Motor Carriers.

  14. NEXT Ion Propulsion System Development Status and Capabilities

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to provide future NASA science missions with enhanced mission performance benefit at a low total development cost. The objective of the NEXT project is to advance next generation ion propulsion technology by producing engineering model system components, validating these through qualification-level and integrated system testing, and ensuring preparedness for transitioning to flight system development. As NASA s Evolutionary Xenon Thruster technology program completes advanced development activities, it is advantageous to review the existing technology capabilities of the system under development. This paper describes the NEXT ion propulsion system development status, characteristics and performance. A review of mission analyses results conducted to date using the NEXT system is also provided.

  15. Teaching Machines, Programming, Computers, and Instructional Technology: The Roots of Performance Technology.

    ERIC Educational Resources Information Center

    Deutsch, William

    1992-01-01

    Reviews the history of the development of the field of performance technology. Highlights include early teaching machines, instructional technology, learning theory, programed instruction, the systems approach, needs assessment, branching versus linear program formats, programing languages, and computer-assisted instruction. (LRW)

  16. Life support technology investment strategies for flight programs: An application of decision analysis

    NASA Technical Reports Server (NTRS)

    Schlater, Nelson J.; Simonds, Charles H.; Ballin, Mark G.

    1993-01-01

    Applied research and technology development (R&TD) is often characterized by uncertainty, risk, and significant delays before tangible returns are obtained. Given the increased awareness of limitations in resources, effective R&TD today needs a method for up-front assessment of competing technologies to help guide technology investment decisions. Such an assessment approach must account for uncertainties in system performance parameters, mission requirements and architectures, and internal and external events influencing a development program. The methodology known as decision analysis has the potential to address these issues. It was evaluated by performing a case study assessment of alternative carbon dioxide removal technologies for NASA's proposed First Lunar Outpost program. An approach was developed that accounts for the uncertainties in each technology's cost and performance parameters as well as programmatic uncertainties such as mission architecture. Life cycle cost savings relative to a baseline, adjusted for the cost of money, was used as a figure of merit to evaluate each of the alternative carbon dioxide removal technology candidates. The methodology was found to provide a consistent decision-making strategy for development of new life support technology. The case study results provided insight that was not possible from more traditional analysis approaches.

  17. Integration of Mobile AR Technology in Performance Assessment

    ERIC Educational Resources Information Center

    Kuo-Hung, Chao; Kuo-En, Chang; Chung-Hsien, Lan; Kinshuk; Yao-Ting, Sung

    2016-01-01

    This study was aimed at exploring how to use augmented reality (AR) technology to enhance the effect of performance assessment (PA). A mobile AR performance assessment system (MARPAS) was developed by integrating AR technology to reduce the limitations in observation and assessment during PA. This system includes three modules: Authentication, AR…

  18. GREENHOUSE GAS (GHG) MITIGATION AND MONITORING TECHNOLOGY PERFORMANCE: ACTIVITIES OF THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...

  19. In-Suit Doppler Technology Assessment

    NASA Technical Reports Server (NTRS)

    Schulze, Arthur E.; Greene, Ernest R.; Nadeau, John J.

    1991-01-01

    The objective of this program was to perform a technology assessment survey of non-invasive air embolism detection utilizing Doppler ultrasound methodologies. The primary application of this technology will be a continuous monitor for astronauts while performing extravehicular activities (EVA's). The technology assessment was to include: (1) development of a full understanding of all relevant background research; and (2) a survey of the medical ultrasound marketplace for expertise, information, and technical capability relevant to this development. Upon completion of the assessment, LSR was to provide an overview of technological approaches and R&D/manufacturing organizations.

  20. Development and Validation of the Student Tool for Technology Literacy (ST[superscript 2]L)

    ERIC Educational Resources Information Center

    Hohlfeld, Tina N.; Ritzhaupt, Albert D.; Barron, Ann E.

    2010-01-01

    This article provides an overview of the development and validation of the Student Tool for Technology Literacy (ST[superscript 2]L). Developing valid and reliable objective performance measures for monitoring technology literacy is important to all organizations charged with equipping students with the technology skills needed to successfully…

  1. Performance evaluation of candidate space suit elements for the next generation orbital EMU

    NASA Technical Reports Server (NTRS)

    West, Philip R.; Trausch, Stephanie V.

    1992-01-01

    The AX-5 all metallic, multibearing technologies developed at the Ames Research Center and the Mk III fabric and metallic technologies developed at the Johnson Space Center were evaluated using the current Space Shuttle space suit technologies as a baseline. Manned evaluations were performed in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft. Joint torque, range, cycle life, and environmental protection characteristics were analyzed during unmanned tests. Both numerical results and test subject comments on performance are presented.

  2. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  3. Improving NASA's technology for space science

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The continued advance of the nation's space program is directly dependent upon the development and use of new technology. Technology is the foundation for every aspect of space missions and ground operations. The improvements in technology that will enable future advances are not only in device and system performance, but also in permitting missions to be carried out more rapidly and at lower cost. Although more can be done with current technology, NASA's recent call for new and innovative approaches should not be answered by employing only today's technologies; new technologies with revolutionary potential should be sought. The study reported here was performed to identify means to enhance the development of technologies for the space sciences and applications.

  4. NIST biometric evaluations and developments

    NASA Astrophysics Data System (ADS)

    Garris, Michael D.; Wilson, Charles L.

    2005-05-01

    This paper presents an R&D framework used by the National Institute of Standards and Technology (NIST) for biometric technology testing and evaluation. The focus of this paper is on fingerprint-based verification and identification. Since 9-11 the NIST Image Group has been mandated by Congress to run a program for biometric technology assessment and biometric systems certification. Four essential areas of activity are discussed: 1) developing test datasets, 2) conducting performance assessment; 3) technology development; and 4) standards participation. A description of activities and accomplishments are provided for each of these areas. In the process, methods of performance testing are described and results from specific biometric technology evaluations are presented. This framework is anticipated to have broad applicability to other technology and application domains.

  5. Development of Key Performance Indicators for the Engineering Technology Education Programs in Taiwan

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng; Lai, Chun-Chin

    2004-01-01

    In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…

  6. Performance Testing in Electronic Technology. Final Report.

    ERIC Educational Resources Information Center

    Williamson, Bert; Pedersen, Joe F.

    This set of 21 performance tests in electronics technology was developed on the basis of a review of commercial and noncommercial instructional materials dealing with electronics technology. The tests, which were reviewed by a group of community college instructors and an advisory committee for electronics technology, address the following…

  7. Load Disaggregation Technologies: Real World and Laboratory Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Sullivan, Greg P.; Petersen, Joseph M.

    Low cost interval metering and communication technology improvements over the past ten years have enabled the maturity of load disaggregation (or non-intrusive load monitoring) technologies to better estimate and report energy consumption of individual end-use loads. With the appropriate performance characteristics, these technologies have the potential to enable many utility and customer facing applications such as billing transparency, itemized demand and energy consumption, appliance diagnostics, commissioning, energy efficiency savings verification, load shape research, and demand response measurement. However, there has been much skepticism concerning the ability of load disaggregation products to accurately identify and estimate energy consumption of end-uses; whichmore » has hindered wide-spread market adoption. A contributing factor is that common test methods and metrics are not available to evaluate performance without having to perform large scale field demonstrations and pilots, which can be costly when developing such products. Without common and cost-effective methods of evaluation, more developed disaggregation technologies will continue to be slow to market and potential users will remain uncertain about their capabilities. This paper reviews recent field studies and laboratory tests of disaggregation technologies. Several factors are identified that are important to consider in test protocols, so that the results reflect real world performance. Potential metrics are examined to highlight their effectiveness in quantifying disaggregation performance. This analysis is then used to suggest performance metrics that are meaningful and of value to potential users and that will enable researchers/developers to identify beneficial ways to improve their technologies.« less

  8. Technology Alignment and Portfolio Prioritization (TAPP)

    NASA Technical Reports Server (NTRS)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    Technology Alignment and Portfolio Prioritization (TAPP) is a method being developed by the Advanced Concepts Office, at NASA Marshall Space Flight Center. The TAPP method expands on current technology assessment methods by incorporating the technological structure underlying technology development, e.g., organizational structures and resources, institutional policy and strategy, and the factors that motivate technological change. This paper discusses the methods ACO is currently developing to better perform technology assessments while taking into consideration Strategic Alignment, Technology Forecasting, and Long Term Planning.

  9. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Inhouse magnetoplasmadynamic (MPD) thruster technology is discussed. The study focussed on steady state thrusters at powers of less than 1 MW. Performance measurement and diagnostics technologies were developed for high power thrusters. Also developed was a MPD computer code. The stated goals of the program are to establish: performance and life limitation; influence of applied fields; propellant effects; and scaling laws. The presentation is mostly through graphs and charts.

  10. ACTS Operational Performance Review: September 1995

    NASA Technical Reports Server (NTRS)

    Krawczyk, Richard J.

    1996-01-01

    The Advanced Communications Technology Satellite (ACTS) utilized a proven spacecraft bus with a payload that qualified new technologies to provide a wide range of on-orbit demonstrations. A comprehensive development, qualification and ground test program was implemented to reduce technology risks. Since launch in September, 1993, and insertion into its geostationary slot ACTS has accumulated over 16,000 hours of successful operation. This paper briefly reviews the technology development background then provides a summary of the operational performance observed for the spacecraft bus and communication payload subsystems and units.

  11. The Integrated Mission Design Center (IMDC) at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Karpati, Gabriel; Martin, John; Steiner, Mark; Reinhardt, K.

    2002-01-01

    NASA Goddard has used its Integrated Mission Design Center (IMDC) to perform more than 150 mission concept studies. The IMDC performs rapid development of high-level, end-to-end mission concepts, typically in just 4 days. The approach to the studies varies, depending on whether the proposed mission is near-future using existing technology, mid-future using new technology being actively developed, or far-future using technology which may not yet be clearly defined. The emphasis and level of detail developed during any particular study depends on which timeframe (near-, mid-, or far-future) is involved and the specific needs of the study client. The most effective mission studies are those where mission capabilities required and emerging technology developments can synergistically work together; thus both enhancing mission capabilities and providing impetus for ongoing technology development.

  12. Advanced Technology Composite Fuselage-Structural Performance

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.

    1997-01-01

    Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.

  13. Decision Gate Process for Assessment of a Technology Development Portfolio

    NASA Technical Reports Server (NTRS)

    Kohli, Rajiv; Fishman, Julianna; Hyatt, Mark

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to TRL 6 development level) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, which will reduce life cycle cost and risk, and will increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product is either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  14. Development of Fully-Integrated Micromagnetic Actuator Technologies

    DTIC Science & Technology

    2015-07-13

    nonexistent because of certain design and fabrication challenges— primarily the inability to integrate high-performance, permanent - magnet ( magnetically ... efficiency necessary for certain applications. To enable the development of high-performance magnetic actuator technologies, the original research plan...developed permanent - magnet materials in more complex microfabrication process flows Objective 2: Design, model, and optimize a novel multi- magnet

  15. Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education

    ERIC Educational Resources Information Center

    Chien, Yu-Hung

    2017-01-01

    This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…

  16. Products from NASA's In-Space Propulsion Technology Program Applicable to Low-Cost Planetary Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Vento, Daniel; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle M.

    2011-01-01

    Since September 2001 NASA s In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Also under development are several technologies for low cost sample return missions. These include a low cost Hall effect thruster (HIVHAC) which will be completed in 2011, light weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA s future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.

  17. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  18. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2012-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.

  19. Lithium-Ion Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.

    1999-01-01

    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.

  20. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  1. High performance real-time flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  2. Status of Technology Development to enable Large Stable UVOIR Space Telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; MSFC AMTD Team

    2017-01-01

    NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.

  3. Electronics Technology. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Campbell, Guy

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 20 terminal objectives for a basic electronics technology course. The materials were developed for a two-semester course (2 hours daily) designed to include instruction in basic electricity and electronic fundamentals, and to develop skills and…

  4. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.

  5. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  6. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  7. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  8. Human Performance Technology and HRD

    ERIC Educational Resources Information Center

    Carliner, Saul

    2014-01-01

    Performance--the achievement of results--is central to definitions of HRD. Performance Technology (HPT) refers to a systematic methodology for developing performance in individuals and organizations. Through a systematic process, HPT explores issues at the organizational, unit, and individual level, and with skills and knowledge, resources, and…

  9. Knowledge-Based Parallel Performance Technology for Scientific Application Competitiveness Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D; Shende, Sameer

    The primary goal of the University of Oregon's DOE "œcompetitiveness" project was to create performance technology that embodies and supports knowledge of performance data, analysis, and diagnosis in parallel performance problem solving. The target of our development activities was the TAU Performance System and the technology accomplishments reported in this and prior reports have all been incorporated in the TAU open software distribution. In addition, the project has been committed to maintaining strong interactions with the DOE SciDAC Performance Engineering Research Institute (PERI) and Center for Technology for Advanced Scientific Component Software (TASCS). This collaboration has proved valuable for translationmore » of our knowledge-based performance techniques to parallel application development and performance engineering practice. Our outreach has also extended to the DOE Advanced CompuTational Software (ACTS) collection and project. Throughout the project we have participated in the PERI and TASCS meetings, as well as the ACTS annual workshops.« less

  10. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  11. Methodology for conceptual remote sensing spacecraft technology: insertion analysis balancing performance, cost, and risk

    NASA Astrophysics Data System (ADS)

    Bearden, David A.; Duclos, Donald P.; Barrera, Mark J.; Mosher, Todd J.; Lao, Norman Y.

    1997-12-01

    Emerging technologies and micro-instrumentation are changing the way remote sensing spacecraft missions are developed and implemented. Government agencies responsible for procuring space systems are increasingly requesting analyses to estimate cost, performance and design impacts of advanced technology insertion for both state-of-the-art systems as well as systems to be built 5 to 10 years in the future. Numerous spacecraft technology development programs are being sponsored by Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) agencies with the goal of enhancing spacecraft performance, reducing mass, and reducing cost. However, it is often the case that technology studies, in the interest of maximizing subsystem-level performance and/or mass reduction, do not anticipate synergistic system-level effects. Furthermore, even though technical risks are often identified as one of the largest cost drivers for space systems, many cost/design processes and models ignore effects of cost risk in the interest of quick estimates. To address these issues, the Aerospace Corporation developed a concept analysis methodology and associated software tools. These tools, collectively referred to as the concept analysis and design evaluation toolkit (CADET), facilitate system architecture studies and space system conceptual designs focusing on design heritage, technology selection, and associated effects on cost, risk and performance at the system and subsystem level. CADET allows: (1) quick response to technical design and cost questions; (2) assessment of the cost and performance impacts of existing and new designs/technologies; and (3) estimation of cost uncertainties and risks. These capabilities aid mission designers in determining the configuration of remote sensing missions that meet essential requirements in a cost- effective manner. This paper discuses the development of CADET modules and their application to several remote sensing satellite mission concepts.

  12. Decision Gate Process for Assessment of a NASA Technology Development Portfolio

    NASA Technical Reports Server (NTRS)

    Kohli, Rajiv; Fishman, Julianna L.; Hyatt, Mark J.

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to Technology Readiness Level (TRL) 6) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, to reduce life cycle cost and risk, and to increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product was either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  13. High performance dielectric materials development

    NASA Technical Reports Server (NTRS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-01-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  14. The Impact of Project Role on Perceptions of Risk and Performance in Information Technology Software Development: A Comparative Analysis

    ERIC Educational Resources Information Center

    Okongo, James

    2014-01-01

    The failure rate of information technology (IT) development projects is a significant concern for today's organizations. Perceptions of IT project risk and project performance have been identified as important factors by scholars studying the topic, and Wallace, Keil, and Rai (2004a) developed a survey instrument to measure how dimensions of…

  15. High performance dielectric materials development

    NASA Astrophysics Data System (ADS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-09-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  16. PERFORMANCE VERIFICATION TESTING OF SOURCE WATER PROTECTION TECHNOLOGIES UNDER EPA'S ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM

    EPA Science Inventory

    This paper presents a brief overview of EPA's ETV program established in 1995 to overcome the numerous impediments to commercialization experienced by developers of innovative environmental technologies. Among those most frequently mentioned is the lack of credible performance da...

  17. Development of Plant Control Diagnosis Technology and Increasing Its Applications

    NASA Astrophysics Data System (ADS)

    Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru

    A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.

  18. Performance assessment of small-package-class nonintrusive inspection systems

    NASA Astrophysics Data System (ADS)

    Spradling, Michael L.; Hyatt, Roger

    1997-02-01

    The DoD Counterdrug Technology Development Program has addressed the development and demonstration of technology to enhance nonintrusive inspection of small packages such as passenger baggage, commercially delivered parcels, and breakbulk cargo items. Within the past year they have supported several small package-class nonintrusive inspection system performance assessment activities. All performance assessment programs involved the use of a red/blue team concept and were conducted in accordance with approved assessment protocols. This paper presents a discussion related to the systematic performance assessment of small package-class nonintrusive inspection technologies, including transmission, backscatter and computed tomography x-ray imaging, and protocol-related considerations for the assessment of these systems.

  19. Study on development system of increasing gearbox for high-performance wind-power generator

    NASA Astrophysics Data System (ADS)

    Xu, Hongbin; Yan, Kejun; Zhao, Junyu

    2005-12-01

    Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.

  20. Life support technology investment strategies for flight programs: An application of decision analysis

    NASA Technical Reports Server (NTRS)

    Schlater, Nelson J.; Simonds, Charles H.; Ballin, Mark G.

    1993-01-01

    Applied research and technology development (R&TD) is often characterized by uncertainty, risk, and significant delays before tangible returns are obtained. Given the increased awareness of limitations in resources, effective R&TD today needs a method for up-front assessment of competing technologies to help guide technology investment decisions. Such an assessment approach must account for uncertainties in system performance parameters, mission requirements and architectures, and internal and external events influencing a development program. The methodology known as decision analysis has the potential to address these issues. It was evaluated by performing a case study assessment of alternative carbon dioxide removal technologies for NASA"s proposed First Lunar Outpost program. An approach was developed that accounts for the uncertainties in each technology's cost and performance parameters as well as programmatic uncertainties such as mission architecture. Life cycle cost savings relative to a baseline, adjusted for the cost of money, was used as a figure of merit to evaluate each of the alternative carbon dioxide removal technology candidates. The methodology was found to provide a consistent decision-making strategy for the develpoment of new life support technology. The case study results provided insight that was not possible from more traditional analysis approaches.

  1. Projecting technology change to improve space technology planning and systems management

    NASA Astrophysics Data System (ADS)

    Walk, Steven Robert

    2011-04-01

    Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.

  2. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick; Proctor, Margaret; Delgado, Irebert; Finkbeiner, Josh; DeMange, Jeff; Daniels, Christopher C.; Taylor, Shawn; Oswald, Jay

    2006-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage through applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. NASA Glenn is developing seal technology and providing technical consultation for the Agency s key aero- and space technology development programs.

  3. FLPP NGL Structural Subsystems Activity

    NASA Astrophysics Data System (ADS)

    Jaredson, D.; Ramusat, G.; Appel, S.; Cardone, T.; Persson, J.; Baiocco, P.; Lavelle, F.; Bouilly, Th.

    2012-07-01

    The ESA Future Launchers Preparatory Programme (FLPP) is the basis for new paradigms, investigating the key elements, logic and roadmaps to prepare the development of the safe, reliable and low cost next European Launch Vehicle (LV) for access to space (dubbed NGL - Next Generation LV), with an initial operational capability mid-next decade. In addition to carry cargo to conventional GTO or SSO, the European NGL has to be flexible enough to cope with new pioneering institutional missions as well as the evolving commercial payloads market. This achievement is broached studying three main areas relevant to ELVs: System concepts, Propulsion and Core Technology During the preliminary design activity, a number of design alternatives concerning NGL main structural subsystems have been investigated. Technology is one of the ways to meet the NGL challenges to either improve the performances or to reduce the cost or both. The relevant requirements allow to steer a ‘top-down’ approach for their conception and to propose the most effective technologies. Furthermore, all these technology developments represent a significant ‘bottom-up’ approach investment and concern a large range of activities. The structural subsystems portfolio of the FLPP ‘Core Technology’ activity encompasses major cutting-edge challenges for maturation of the various subsystems leading to reduce overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic propellants, significantly reducing fabrication and operations cost, etc. to derive performing upper and booster stages. Application of concurrent engineering methods will allow developments of performing technology demonstrators in terms of need, demonstration objective, size and cost yielding to safe, low-risk technical approaches for a future development. Potential ability of these advanced structural LV technologies to satisfy the system requirements of the NGL and their current and targeted technology readiness (i.e. TRL 6 by 2016) are being assessed to check whether a future flawless development could be performed within a given budget and schedule. The paper outlines the various technology developments for the pressurised and unpressurised structure subsystems and describes the implementation methodology, some of the current technology works performed and achieved accomplishments up to now. This is in strong connection with the “system” activity dealing with the same matter [1].

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; RECHARGEABLE ALKALINE HOUSEHOLD BATTERY SYSTEM; RAYOVAC CORPORATION, RENEWAL

    EPA Science Inventory

    The EPA's ETV Program, in partnership with recognized testing organizations, objectively and systematically documents the performance of commercial ready technologies. Together, with the full participation of the technology developer, develop plans, conduct tests, collect and ana...

  5. CFD in the context of IHPTET: The Integrated High Performance Turbine Technology Program

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hudson, Dale A.

    1989-01-01

    The Integrated High Performance Turbine Engine Technology (IHPTET) Program is an integrated DOD/NASA technology program designed to double the performance capability of today's most advanced military turbine engines as we enter the twenty-first century. Computational Fluid Dynamics (CFD) is expected to play an important role in the design/analysis of specific configurations within this complex machine. In order to do this, a plan is being developed to ensure the timely impact of CFD on IHPTET. The developing philosphy of CFD in the context of IHPTET is discussed. The key elements in the developing plan and specific examples of state-of-the-art CFD efforts which are IHPTET turbine engine relevant are discussed.

  6. Evaluation of Knowledge Development in a Healthcare Setting

    NASA Astrophysics Data System (ADS)

    Schaffer, Scott P.

    Healthcare organizations worldwide have recently increased efforts to improve performance, quality, and knowledge transfer using information and communication technologies. Evaluation of the effectiveness and quality of such efforts is challenging. A macro and micro-level system evaluation conducted with a 14000 member US hospital administrative services organization examined the appropriateness of a blended face-to-face and technology-enabled performance improvement and knowledge development system. Furthermore, a successful team or microsystem in a high performing hospital was studied in-depth. Several types of data methods including interview, observation, and questionnaire were used to address evaluation questions within a knowledge development framework created for the study. Results of this preliminary study focus on how this organization attempted to organize clinical improvement efforts around quality and performance improvement processes supported by networked technologies.

  7. Sensor Technologies on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  8. Poster session in instructional technology course

    NASA Astrophysics Data System (ADS)

    Diniaty, Artina; Fauzi'ah, Lina; Wulan Febriana, Beta; Arlianty, Widinda Normalia

    2017-12-01

    Instructional technology course must be studied by students in order to 1) understand the role of technology in learning, 2) capable of analyzing advantages and disadvantages of using technology in teaching, 3) capable of performing technology in teaching. A poster session in instructional technology course was performed to 1) enhance students' interest in this course and develop students' creativity. The step of this research includes: planning, implementation, and evaluation. The result showed that students' responses towards poster session in instructional technology course were good.

  9. Survey of Constellation-Era LOX/Methane Development Activities and Future Development Needs

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Stiegemeier, Benjamin; Greene, Sandra Elam; Hurlbert, Eric A.

    2017-01-01

    NASA formed the Constellation Program in 2005 to achieve the objectives of maintaining American presence in low-Earth orbit, returning to the moon for purposes of establishing an outpost, and laying the foundation to explore Mars and beyond in the first half of the 21st century. The Exploration Technology Development Program (ETDP) was formulated to address the technology needs to address Constellation architecture decisions. The Propellants and Cryogenic Advanced Development (PCAD) project was tasked with risk mitigation of specific propulsion related technologies to support ETDP. Propulsion systems were identified as critical technologies owing to the high gear-ratio of lunar Mars landers Cryogenic propellants offer performance advantage over storables (NTOMMH) Mass savings translate to greater payload capacity In-situ production of propellant an attractive feature; methane and oxygen identified as possible Martian in-situ propellants New technologies were required to meet more difficult missions High performance LOX/LH2 deep throttle descent engines High performance LOX/LCH4 ascent main and reaction control system (RCS) engines The PCAD project sought to provide those technologies through Reliable ignition pulse RCS Fast start High efficiency engines Stable deep throttling.

  10. An examination of OLED display application to military equipment

    NASA Astrophysics Data System (ADS)

    Thomas, J.; Lorimer, S.

    2010-04-01

    OLED display technology has developed sufficiently to support small format commercial applications such as cell-phone main display functions. Revenues seem sufficient to finance both performance improvements and to develop new applications. The situation signifies the possibility that OLED technology is on the threshold of credibility for military applications. This paper will examine both performance and some possible applications for the military ground mobile environment, identifying the advantages and disadvantages of this promising new technology.

  11. Electrification Futures Study Technology Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadun, Paige; McMillan, Colin; Steinberg, Daniel

    This data supplements the "Electrification Futures Study: End-Use Electric Technology Cost and Performance Projections through 2050" report. The data included here consist of the cost and performance estimates for electric end-use technologies developed for the three sensitivity cases in the Electrification Futures Study: Slow Advancement, Moderate Advancement, and Rapid Advancement.

  12. Performance evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Tummillo, A. F.; Kulaga, J. E.; Webster, C. E.; Gillie, K. R.; Hogrefe, R. L.

    1990-01-01

    At the Argonne Analysis and Diagnostic Laboratory, advanced battery technology evaluations are performed under simulated electric vehicle operating conditions. During 1989 and the first quarter of 1990, single cell and multicell modules from seven developers were examined for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers with an interim measure of the progress being made in battery R&D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R&D. This paper summarizes the performance and life characterizations of two single cells and seven 3- to 960-cell modules that encompass six technologies (Na/S, Ni/Fe, Ni/Cd, Ni-metal hydride, lead-acid, and Zn/Br).

  13. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  14. Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Auslender, Aaron H.; Guy, R. Wayne; McClinton, Charles R.; Welch, Sharon S.

    2002-01-01

    Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.

  15. Energy Storage: Batteries and Fuel Cells for Exploration

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  16. A novel technology coupling extraction and foam fractionation for separating the total saponins from Achyranthes bidentata.

    PubMed

    Ding, Linlin; Wang, Yanji; Wu, Zhaoliang; Liu, Wei; Li, Rui; Wang, Yanyan

    2016-10-02

    A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography-mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.

  17. Quiet, Efficient Fans for Spaceflight: An Overview of NASA's Technology Development Plan

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2010-01-01

    A Technology Development Plan to improve the aerodynamic and acoustic performance of spaceflight fans has been submitted to NASA s Exploration Technology Development Program. The plan describes a research program intended to make broader use of the technology developed at NASA Glenn to increase the efficiency and reduce the noise of aircraft engine fans. The goal is to develop a set of well-characterized government-owned fans nominally suited for spacecraft ventilation and cooling systems. NASA s Exploration Life Support community will identify design point conditions for the fans in this study. Computational Fluid Dynamics codes will be used in the design and analysis process. The fans will be built and used in a series of tests. Data from aerodynamic and acoustic performance tests will be used to validate performance predictions. These performance maps will also be entered into a database to help spaceflight fan system developers make informed design choices. Velocity measurements downstream of fan rotor blades and stator vanes will also be collected and used for code validation. Details of the fan design, analysis, and testing will be publicly reported. With access to fan geometry and test data, the small fan industry can independently evaluate design and analysis methods and work towards improvement.

  18. Intensification of the Students' Self-Development Process When Performing Design and Settlement Works on the "Machine Parts" Course

    ERIC Educational Resources Information Center

    Timerbaev, Rais Mingalievich; Muhutdinov, Rafis Habreevich; Danilov, Valeriy Fedorovich

    2015-01-01

    The article addresses issues related to the methodology of intensifying self-development process when performing design and settlement works on the "Machine Parts" course for the students studying in such areas of training as "Technology" and "Vocational Education" with the use of computer technologies. At the same…

  19. CFD in the context of IHPTET - The Integrated High Performance Turbine Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hudson, Dale A.

    1989-01-01

    The Integrated High Performance Turbine Engine Technology (IHPTET) Program is an integrated DOD/NASA technology program designed to double the performance capability of today's most advanced military turbine engines as we enter the twenty-first century. Computational Fluid Dynamics (CFD) is expected to play an important role in the design/analysis of specific configurations within this complex machine. In order to do this, a plan is being developed to ensure the timely impact of CFD on IHPTET. The developing philosophy of CFD in the context of IHPTET is discussed. The key elements in the developing plan and specific examples of state-of-the-art CFD efforts which are IHPTET turbine engine relevant are discussed.

  20. Propulsion Risk Reduction Activities for Non-Toxic Cryogenic Propulsion

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth

    2010-01-01

    The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for non-toxic or "green" propellants. The PCAD project focuses on the development of non-toxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of non-toxic propellants for space missions. Implementation of non-toxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that non-toxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.

  1. Propulsion Risk Reduction Activities for Nontoxic Cryogenic Propulsion

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth L.

    2010-01-01

    The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for nontoxic or "green" propellants. The PCAD project focuses on the development of nontoxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of nontoxic propellants for space missions. Implementation of nontoxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that nontoxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.

  2. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    PubMed

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  3. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  4. Environmentally Responsible Aviation (ERA) Project - N+2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report

    NASA Technical Reports Server (NTRS)

    Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping

    2011-01-01

    NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.

  5. Development and applications of 3-dimensional integration nanotechnologies.

    PubMed

    Kim, Areum; Choi, Eunmi; Son, Hyungbin; Pyo, Sung Gyu

    2014-02-01

    Unlike conventional two-dimensional (2D) planar structures, signal or power is supplied through through-silicon via (TSV) in three-dimensional (3D) integration technology to replace wires for binding the chip/wafer. TSVs have becomes an essential technology, as they satisfy Moore's law. This 3D integration technology enables system and sensor functions at a nanoscale via the implementation of a highly integrated nano-semiconductor as well as the fabrication of a single chip with multiple functions. Thus, this technology is considered to be a new area of development for the systemization of the nano-bio area. In this review paper, the basic technology required for such 3D integration is described and methods to measure the bonding strength in order to measure the void occurring during bonding are introduced. Currently, CMOS image sensors and memory chips associated with nanotechnology are being realized on the basis of 3D integration technology. In this paper, we intend to describe the applications of high-performance nano-biosensor technology currently under development and the direction of development of a high performance lab-on-a-chip (LOC).

  6. Further applications for mosaic pixel FPA technology

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.

    2011-06-01

    In previous papers to this SPIE forum the development of novel technology for next generation PIR security sensors has been described. This technology combines the mosaic pixel FPA concept with low cost optics and purpose-designed readout electronics to provide a higher performance and affordable alternative to current PIR sensor technology, including an imaging capability. Progressive development has resulted in increased performance and transition from conventional microbolometer fabrication to manufacture on 8 or 12 inch CMOS/MEMS fabrication lines. A number of spin-off applications have been identified. In this paper two specific applications are highlighted: high performance imaging IRFPA design and forest fire detection. The former involves optional design for small pixel high performance imaging. The latter involves cheap expendable sensors which can detect approaching fire fronts and send alarms with positional data via mobile phone or satellite link. We also introduce to this SPIE forum the application of microbolometer IR sensor technology to IoT, the Internet of Things.

  7. Environmental Technology Verification: Pesticide Spray Drift Reduction Technologies for Row and Field Crops

    EPA Pesticide Factsheets

    The Environmental Technology Verification Program, established by the EPA, is designed to accelerate the development and commercialization of new or improved technologies through third-party verification and reporting of performance.

  8. CoMET: Cost and Mass Evaluation Tool for Spacecraft and Mission Design

    NASA Technical Reports Server (NTRS)

    Bieber, Ben S.

    2005-01-01

    New technology in space exploration is often developed without a complete knowledge of its impact. While the immediate benefits of a new technology are obvious, it is harder to understand its indirect consequences, which ripple through the entire system. COMET is a technology evaluation tool designed to illuminate how specific technology choices affect a mission at each system level. COMET uses simplified models for mass, power, and cost to analyze performance parameters of technologies of interest. The sensitivity analysis that CoMET provides shows whether developing a certain technology will greatly benefit the project or not. CoMET is an ongoing project approaching a web-based implementation phase. This year, development focused on the models for planetary daughter craft, such as atmospheric probes, blimps and balloons, and landers. These models are developed through research into historical data, well established rules of thumb, and engineering judgment of experts at JPL. The model is validated by corroboration with JpL advanced mission studies. Other enhancements to COMET include adding launch vehicle analysis and integrating an updated cost model. When completed, COMET will allow technological development to be focused on areas that will most drastically improve spacecraft performance.

  9. An Assessment of NASA Aeropropulsion Technologies: A System Study

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.

    2007-01-01

    Aviation industry s robust growth rate has given rise to growing concerns about the contribution that aviation emissions will make to local air quality and global climate change. Over the last several years, NASA has been engaged in the development of aeropropulsion technologies with specific objectives to reduce aircraft emissions. A system analysis was performed to evaluate the potential impact of these propulsion technologies on aircraft CO2 (directly proportional to fuel burn) and NOx reductions. A large subsonic aircraft, with two 396-kN thrust (85,000-pound) engines was chosen for the study. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of these technologies. The results show that NASA s aeropropulsion technologies have the potential to significantly reduce the CO2 and NO(x) emissions. The results are used to support informed decision-making on the development of aeropropulsion technology portfolio for CO2 and NO(x) reductions.

  10. Critical soft landing technology issues for future US space missions

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Johnson, D. W.; Mcbride, D. D.

    1992-01-01

    A programmatic need for research and development to support parachute-based landing systems has not existed since the end of the Apollo missions in the mid-1970s. Now, a number of planned space programs require advanced landing capabilities for which the experience and technology base does not currently exist. New requirements for landing on land with controllable, gliding decelerators and for more effective impact attenuation devices justify a renewal of the landing technology development effort that existed during the Mercury, Gemini, and Apollo programs. A study was performed to evaluate the current and projected national capability in landing systems and to identify critical deficiencies in the technology base required to support the Assured Crew Return Vehicle and the Two-Way Manned Transportation System. A technology development program covering eight landing system performance issues is recommended.

  11. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of Prioritization by Similarity to Ideal Solution (TOPSIS), and other multi­-criteria decision-making methods. These methods can be labor-intensive, often contain cognitive or parochial bias, and do not consider the competing prioritization between mission architectures. Strategic Decision-Making (SDM) processes cannot be properly understood unless the context of the technology is understood. This makes assessing technological change particularly challenging due to the relationships "between incumbent technology and the incumbent (innovation) system in relation to the emerging technology and the emerging innovation system." The central idea in technology dynamics is to consider all activities that contribute to the development, diffusion, and use of innovations as system functions. Bergek defines system functions within a TIS to address what is actually happening and has a direct influence on the ultimate performance of the system and technology development. ACO uses similar metrics and is expanding these metrics to account for the structure and context of the technology. At NASA technology and strategy is strongly interrelated. NASA's Strategic Space Technology Investment Plan (SSTIP) prioritizes those technologies essential to the pursuit of NASA's missions and national interests. The SSTIP is strongly coupled with NASA's Technology Roadmaps to provide investment guidance during the next four years, within a twenty-year horizon. This paper discusses the methods ACO is currently developing to better perform technology assessments while taking into consideration Strategic Alignment, Technology Forecasting, and Long Term Planning.

  12. Progress on field study with precision mobile drip irrigation technologly

    USDA-ARS?s Scientific Manuscript database

    Precision mobile drip irrigation (PMDI) is a technology that was developed in the 1970s that converts drop hoses on moving irrigation systems to dripline. Although this technology was developed more than 40 years ago, it was not widely implemented and few studies reported on its performance. Recentl...

  13. In-Field Performance Testing of Stormwater Treatment Devices

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program was created by EPA’s Office of Research and Development to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The program’s goal ...

  14. Technology for the future - Long range planning for space technology development

    NASA Technical Reports Server (NTRS)

    Collier, Lisa D.; Breckenridge, Roger A.; Llewellyn, Charles P.

    1992-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) has begun the definition of an Integrated Technology Plan for the civilian space program which guides long-term technology development for space platforms, in light of continuing marker research and other planning data. OAST has conferred particular responsibility for future candidate space mission evaluations and platform performance requirement projections to NASA-Langley. An implementation plan is devised which is amenable to periodic space-platform technology updates.

  15. Definition of technology development missions for early space station satellite servicing, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  16. ETV PILOT FOR SOURCE WATER PROTECTION TECHNOLOGY VERIFICATION

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program, a five-year pilot, provides technology purchasers, permitters and developers with objective, quality assured performance data on new and/or improved technologies. EPA has partnered with the National Sanitation Foundation (...

  17. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  18. Wave Rotor Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1998-01-01

    Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.

  19. Development of high-performance printed organic field-effect transistors and integrated circuits.

    PubMed

    Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young

    2015-10-28

    Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.

  20. Maturing Technologies for Stirling Space Power Generation

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  1. Foster Wheeler's Solutions for Large Scale CFB Boiler Technology: Features and Operational Performance of Łagisza 460 MWe CFB Boiler

    NASA Astrophysics Data System (ADS)

    Hotta, Arto

    During recent years, once-through supercritical (OTSC) CFB technology has been developed, enabling the CFB technology to proceed to medium-scale (500 MWe) utility projects such as Łagisza Power Plant in Poland owned by Poludniowy Koncern Energetyczny SA. (PKE), with net efficiency nearly 44%. Łagisza power plant is currently under commissioning and has reached full load operation in March 2009. The initial operation shows very good performance and confirms, that the CFB process has no problems with the scaling up to this size. Also the once-through steam cycle utilizing Siemens' vertical tube Benson technology has performed as predicted in the CFB process. Foster Wheeler has developed the CFB design further up to 800 MWe with net efficiency of ≥45%.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Carmack; L. Braase; F. Goldner

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performancemore » under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.« less

  3. Development of nanostructured antireflection coatings for infrared technologies and applications

    NASA Astrophysics Data System (ADS)

    Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.

    2017-09-01

    Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.

  4. Overview of CMC Development Activities in NASA's Ultra-Efficient Engine Technology (UEET) Program

    NASA Technical Reports Server (NTRS)

    Brewer, Dave

    2001-01-01

    The primary objective of the UEET (Ultra-Efficient Engine Technology) Program is to address two of the most critical propulsion issues: performance/efficiency and reduced emissions. High performance, low emissions engine systems will lead to significant improvement in local air quality, minimum impact on ozone depletion and level to an overall reduction in aviation contribution to global warming. The Materials and Structures for High Performance project will develop and demonstrate advanced high temperature materials to enable high-performance, high efficiency, and environmentally compatible propulsion systems.

  5. High-performance silicon photonics technology for telecommunications applications.

    PubMed

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi

    2014-04-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.

  6. High-performance silicon photonics technology for telecommunications applications

    PubMed Central

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi

    2014-01-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge–based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge–based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications. PMID:27877659

  7. High-performance silicon photonics technology for telecommunications applications

    NASA Astrophysics Data System (ADS)

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi

    2014-04-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.

  8. Thin film resonator technology.

    PubMed

    Lakin, Kenneth M

    2005-05-01

    Advances in wireless systems have placed increased demands on high performance frequency control devices for operation into the microwave range. With spectrum crowding, high bandwidth requirements, miniaturization, and low cost requirements as a background, the thin film resonator technology has evolved into the mainstream of applications. This technology has been under development for over 40 years in one form or another, but it required significant advances in integrated circuit processing to reach microwave frequencies and practical manufacturing for high-volume applications. This paper will survey the development of the thin film resonator technology and describe the core elements that give rise to resonators and filters for today's high performance wireless applications.

  9. Technology Assessment Need: Review on Attractiveness and Competitiveness

    NASA Astrophysics Data System (ADS)

    Salwa Sait, Siti; Merlinda Muharam, Farrah; Chin, Thoo Ai; Sulaiman, Zuraidah

    2017-06-01

    Technology assessment is crucial in managing technology for the purpose of technology exploitation. With business environment continuously changing, firms have to address this issue critically as technology is considered one of the important elements to evaluate performance and gain competitive advantage. Missteps in deciding the best technology to be developed, employed or maintained would cost the firm overall value. To fulfil the need of finding the appropriate scale to assess suitable technology, this paper summarizes that technology assessment (TA) should cover two main aspects, namely technology attractiveness and competitiveness. These components are seen capable to link the scale suggested towards evaluation of financial and non-financial performance towards competitive advantage.

  10. Abstract - Cooperative Research and Development Agreement between Ames National Laboratory and National Energy Technology Laboratory AGMT-0609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryden, Mark; Tucker, David A.

    The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.

  11. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  12. Developing Advanced Human Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

  13. Developing Advanced Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

  14. Status of molten carbonate fuel cell technology development

    NASA Astrophysics Data System (ADS)

    Parsons, E. L., Jr.; Williams, M. C.; George, T. J.

    The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.

  15. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  16. An overview of in-flight plume diagnostics for rocket engines

    NASA Technical Reports Server (NTRS)

    Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.

    1992-01-01

    An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.

  17. Technological Development of High-Performance MALDI Mass Spectrometry Imaging for the Study of Metabolic Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feenstra, Adam D.

    This thesis represents efforts made in technological developments for the study of metabolic biology in plants, specifically maize, using matrix-assisted laser desorption/ ionization-mass spectrometry imaging.

  18. Concept-Guided Development of Technology in "Traditional" and "Innovative" Schools: Quantitative and Qualitative Differences in Technology Integration

    ERIC Educational Resources Information Center

    de Koster, Sandra; Volman, Monique; Kuiper, Els

    2017-01-01

    The integration of technology into the classroom remains a challenge for those involved. A concept-guided approach to the development of technology has been suggested as a way of meeting this challenge. This multiple case study was performed in the context of a project in which five elementary schools in The Netherlands with a school concept that…

  19. Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray

    NASA Technical Reports Server (NTRS)

    Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.

    2010-01-01

    A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.

  20. Research and development of ultrasonic tomography technology for three-dimensional imaging of internal rail flaws : modeling and simulation.

    DOT National Transportation Integrated Search

    2013-04-01

    This report covers the work performed under the FRA High-Speed BAA 20102011 program to demonstrate the technology of ultrasonic tomography for 3-D imaging of internal rail flaws. There is a need to develop new technologies that are able to quantif...

  1. Developing Pre-Service Teachers' Capacity in Teaching Science with Technology through Microteaching Lesson Study Approach

    ERIC Educational Resources Information Center

    Zhou, George; Xu, Judy; Martinovic, Dragana

    2017-01-01

    In order to effectively use technology in teaching, teacher candidates need to develop technology related pedagogical content knowledge through being engaged in a process of discussion, modeling, practice, and reflection. Based on the examination of teacher candidates' lesson plan assignments, observations of their microteaching performance, and…

  2. Millimeter wave satellite concepts, volume 1

    NASA Technical Reports Server (NTRS)

    Hilsen, N. B.; Holland, L. D.; Thomas, R. E.; Wallace, R. W.; Gallagher, J. G.

    1977-01-01

    The identification of technologies necessary for development of millimeter spectrum communication satellites was examined from a system point of view. Development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and testing of this methodology with selected user applications and services were the goals of the program. The entire communications network, both ground and space subsystems was studied. Cost, weight, and performance models for the subsystems, conceptual design for point-to-point and broadcast communications satellites, and analytic relationships between subsystem parameters and an overall link performance are discussed along with baseline conceptual systems, sensitivity studies, model adjustment analyses, identification of critical technologies and their risks, and brief research and development program scenarios for the technologies judged to be moderate or extensive risks. Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, was accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications.

  3. Performance Technology--Not a One-Size-Fits-All Profession

    ERIC Educational Resources Information Center

    Dierkes, Sunda V.

    2012-01-01

    The current debate over whether to choose just one universal human performance technology (HPT) model, in particular Langdon's language of work (LOW) model, promises a shared understanding among HPT professionals, credibility for the HPT profession, and a return on investment of time and effort in developing performance models over more than 70…

  4. Connecting Music Education and Virtual Performance Practices from YouTube

    ERIC Educational Resources Information Center

    Cayari, Christopher

    2018-01-01

    The Internet has inspired musicians to explore technologies to produce recorded music performances. Social media sites like YouTube provide spaces for musicians to share their works, and the advances of technologies that afford venues and opportunities for performers to share their crafts. As amateur Internet musicians develop practices to create…

  5. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2011-01-01

    The now-cancelled Constellation Program included the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, were planned to be manned space vehicles while the third element was much more diverse and included several sub-elements. Among other things, these sub-elements were Rovers and a Lunar Habitat. The planned missions involving these systems and vehicles included several risks and design challenges. Due to the unique thermal operating environment, many of these risks and challenges were associated with the vehicles thermal control system. NASA s Exploration Technology Development Program (ETDP) consisted of various technology development projects. The project chartered with mitigating the aforementioned thermal risks and design challenges was the Thermal Control System Development for Exploration Project. These risks and design challenges were being addressed through a rigorous technology development process that was planned to culminate with an integrated thermal control system test. Although the technologies being developed were originally aimed towards mitigating specific Constellation risks, the technology development process is being continued within a new program. This continued effort is justified by the fact that many of the technologies are generically applicable to future spacecraft thermal control systems. The current paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing a material compatibility assessment for a promising thermal control system working fluid. The to-date progress and lessons-learned from these development efforts will be discussed throughout the paper.

  6. Using Intelligent Simulation to Enhance Human Performance in Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    Johnson, William B.; Norton, Jeffrey E.

    1992-01-01

    Human factors research and development investigates the capabilities and limitations of the human within a system. Of the many variables affecting human performance in the aviation maintenance system, training is among the most important. The advent of advanced technology hardware and software has created intelligent training simulations. This paper describes one advanced technology training system under development for the Federal Aviation Administration.

  7. NASA Technology Investments in Electric Propulsion: New Directions in the New Millennium

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    2002-01-01

    The last decade was a period of unprecedented acceptance of NASA developed electric propulsion by the user community. The benefits of high performance electric propulsion systems are now widely recognized, and new technologies have been accepted across the commonly. NASA clearly recognizes the need for new, high performance, electric propulsion technologies for future solar system missions and is sponsoring aggressive efforts in this area. These efforts are mainly conducted under the Office of Aerospace Technology. Plans over the next six years include the development of next generation ion thrusters for end of decade missions. Additional efforts are planned for the development of very high power thrusters, including magnetoplasmadynamic, pulsed inductive, and VASIMR, and clusters of Hall thrusters. In addition to the in-house technology efforts, NASA continues to work closely with both supplier and user communities to maximize the acceptance of new technology in a timely and cost-effective manner. This paper provides an overview of NASA's activities in the area of electric propulsion with an emphasis on future program directions.

  8. Small Technology Business Incubation Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2007-12-31

    This report contains a summary of typical business incubation needs of small technology companies. This document will serve as a guide in the design and implementation of services offered by the National Security Technology Incubator (NSTI), an incubator program being designed and developed as part of the National Security Preparedness Project (NSPP), performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of the methodology used to perform the needs assessment and services proposed to meet the needs of client companies. The purpose of the NSPP is to promote national security technologiesmore » through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland.« less

  9. A Fast, Affordable, Science and Technology SATellite (FASTSAT) and the Small Satellite Market Development Environment

    NASA Technical Reports Server (NTRS)

    Boudreaux, Mark; Montgomery, Edward; Cacas, Joseph

    2008-01-01

    The National Aeronautics and Space Administr ation at Marshall Space Flight Center and the National Space Science and Technology Center in Huntsville Alabama USA, are jointly developing a new class of science and technology mission small satellites. The Fast, Affordable, Science and Technology SATell ite (FASTSAT) was designed and developed using a new collaborative and best practices approach. The FASTSAT development, along with the new class of low cost vehicles currently being developed, would allow performance of 30 kg payload mass missions for a cost of less than 10 million US dollars.

  10. Test Analysis Guidelines

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.

    2007-01-01

    Development of analysis guidelines for Exploration Life Support (ELS) technology tests was completed. The guidelines were developed based on analysis experiences gained from supporting Environmental Control and Life Support System (ECLSS) technology development in air revitalization systems and water recovery systems. Analyses are vital during all three phases of the ELS technology test: pre-test, during test and post test. Pre-test analyses of a test system help define hardware components, predict system and component performances, required test duration, sampling frequencies of operation parameters, etc. Analyses conducted during tests could verify the consistency of all the measurements and the performance of the test system. Post test analyses are an essential part of the test task. Results of post test analyses are an important factor in judging whether the technology development is a successful one. In addition, development of a rigorous model for a test system is an important objective of any new technology development. Test data analyses, especially post test data analyses, serve to verify the model. Test analyses have supported development of many ECLSS technologies. Some test analysis tasks in ECLSS technology development are listed in the Appendix. To have effective analysis support for ECLSS technology tests, analysis guidelines would be a useful tool. These test guidelines were developed based on experiences gained through previous analysis support of various ECLSS technology tests. A comment on analysis from an experienced NASA ECLSS manager (1) follows: "Bad analysis was one that bent the test to prove that the analysis was right to begin with. Good analysis was one that directed where the testing should go and also bridged the gap between the reality of the test facility and what was expected on orbit."

  11. Data-Base Software For Tracking Technological Developments

    NASA Technical Reports Server (NTRS)

    Aliberti, James A.; Wright, Simon; Monteith, Steve K.

    1996-01-01

    Technology Tracking System (TechTracS) computer program developed for use in storing and retrieving information on technology and related patent information developed under auspices of NASA Headquarters and NASA's field centers. Contents of data base include multiple scanned still images and quick-time movies as well as text. TechTracS includes word-processing, report-editing, chart-and-graph-editing, and search-editing subprograms. Extensive keyword searching capabilities enable rapid location of technologies, innovators, and companies. System performs routine functions automatically and serves multiple users.

  12. A risk based approach for SSTO/TSTO comparisons

    NASA Astrophysics Data System (ADS)

    Greenberg, Joel S.

    1996-03-01

    An approach has been developed for performing early comparisons of transportation architectures explicitly taking into account quantitative measures of uncertainty and resulting risk. Risk considerations are necessary since the transportation systems are likely to have significantly different levels of risk, both because of differing degrees of freedom in achieving desired performance levels and their different states of development and utilization. The approach considers the uncertainty of achievement of technology goals, effect that the achieved technology level will have on transportation system performance and the relationship between system performance/capability and the ability to accommodate variations in payload mass. The consequences of system performance are developed in terms of nonrecurring, recurring, and the present value of transportation system life cycle costs.

  13. An Approach for Performance Based Glove Mobility Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; Benson, Elizabeth; England, Scott

    2016-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for exploration missions. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Space Technology Mission Directorate's Game-Changing Development Program provided start-up funding for the High Performance EVA Glove (HPEG) Element as part of the Next Generation Life Support (NGLS) Project in the fall of 2013. The overarching goal of the HPEG Element is to develop a robust glove design that increases human performance during EVA and creates pathway for implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability in on-pristine environments, and decreasing the potential of gloves to cause injury during use. The HPEG Element focused initial efforts on developing quantifiable and repeatable methodologies for assessing glove performance with respect to mobility, injury potential, thermal conductivity, and abrasion resistance. The team used these methodologies to establish requirements against which emerging technologies and glove designs can be assessed at both the component and assembly levels. The mobility performance testing methodology was an early focus for the HPEG team as it stems from collaborations between the SSA Development team and the JSC Anthropometry and Biomechanics Facility (ABF) that began investigating new methods for suited mobility and fit early in the Constellation Program. The combined HPEG and ABF team used lessons learned from the previous efforts as well as additional reviews of methodologies in physical and occupational therapy arenas to develop a protocol that assesses gloved range of motion, strength, dexterity, tactility, and fit in comparative quantitative terms and also provides qualitative insight to direct hardware design iterations. The protocol was evaluated using five experienced test subjects wearing the EMU pressurized to 4.3psid with three different glove configurations. The results of the testing are presented to illustrate where the protocol is and is not valid for benchmark comparisons. The process for requirements development based upon the results is also presented along with suggested performance values for the High Performance EVA Gloves currently in development.

  14. NASA photovoltaic research and technology

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    NASA photovoltaic R and D efforts address future Agency space mission needs through a comprehensive, integrated program. Activities range from fundamental studies of materials and devices to technology demonstrations of prototype hardware. The program aims to develop and apply an improved understanding of photovoltaic energy conversion devices and systems that will increase the performance, reduce the mass, and extend the lifetime of photovoltaic arrays for use in space. To that end, there are efforts aimed at improving cell efficiency, reducing the effects of space particulate radiation damage (primarily electrons and protons), developing ultralightweight cells, and developing advanced ray component technology for high efficiency concentrator arrays and high performance, ultralightweight arrays. Current goals that have been quantified for the program are to develop cell and array technology capable of achieving 300 watts/kg for future missions for which mass is a critical factor, or 300 watts/sq m for future missions for which array size is a major driver (i.e., Space Station). A third important goal is to develop cell and array technology which will survive the GEO space radiation environment for at least 10 years.

  15. NASA wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman

    1995-01-01

    An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

  16. The Cutting Edge of High-Temperature Composites

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.

  17. Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Jensen, David; Poll, Scott

    2009-01-01

    Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.

  18. The infrared imaging radiometer for PICASSO-CENA

    NASA Astrophysics Data System (ADS)

    Corlay, Gilles; Arnolfo, Marie-Christine; Bret-Dibat, Thierry; Lifferman, Anne; Pelon, Jacques

    2017-11-01

    Microbolometers are infrared detectors of an emerging technology mainly developed in US and few other countries for few years. The main targets of these developments are low performing and low cost military and civilian applications like survey cameras. Applications in space are now arising thanks to the design simplification and the associated cost reduction allowed by this new technology. Among the four instruments of the payload of PICASSO-CENA, the Imaging Infrared Radiometer (IIR) is based on the microbolometer technology. An infrared camera in development for the IASI instrument is the core of the IIR. The aim of the paper is to recall the PICASSO-CENA mission goal, to describe the IIR instrument architecture and highlight its main features and performances and to give the its development status.

  19. IMPROVING THE ENVIRONMENTAL PERFORMANCE OF CHEMICAL PROCESSES THROUGH THE USE OF INFORMATION TECHNOLOGY

    EPA Science Inventory

    Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...

  20. ACCF/AHA methodology for the development of quality measures for cardiovascular technology: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures.

    PubMed

    Bonow, Robert O; Douglas, Pamela S; Buxton, Alfred E; Cohen, David J; Curtis, Jeptha P; Delong, Elizabeth; Drozda, Joseph P; Ferguson, T Bruce; Heidenreich, Paul A; Hendel, Robert C; Masoudi, Frederick A; Peterson, Eric D; Taylor, Allen J

    2011-09-27

    Consistent with the growing national focus on healthcare quality, the American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA) have taken a leadership role over the past decade in developing measures of the quality of cardiovascular care by convening a joint ACCF/AHA Task Force on Performance Measures. The Task Force is charged with identifying the clinical topics appropriate for the development of performance measures and with assembling writing committees composed of clinical and methodological experts in collaboration with appropriate subspecialty societies. The Task Force has also created methodology documents that offer guidance in the development of process, outcome, composite, and efficiency measures. Cardiovascular performance measures using existing ACCF/AHA methodology are based on Class I or Class III guidelines recommendations, usually with Level A evidence. These performance measures, based on evidence-based ACCF/AHA guidelines, remain the most rigorous quality measures for both internal quality improvement and public reporting. However, many of the tools for diagnosis and treatment of cardiovascular disease involve advanced technologies, such as cardiac imaging, for which there are often no underlying guideline documents. Because these technologies affect the quality of cardiovascular care and also have the potential to contribute to cardiovascular health expenditures, there is a need for more critical assessment of the use of technology, including the development of quality and performance measures in areas in which guideline recommendations are absent. The evaluation of quality in the use of cardiovascular technologies requires consideration of multiple parameters that differ from other healthcare processes. The present document describes methodology for development of 2 new classes of quality measures in these situations, appropriate use measures and structure/safety measures. Appropriate use measures are based on specific indications, processes, or parameters of care for which high level of evidence data and Class I or Class III guideline recommendations may be lacking but are addressed in ACCF appropriate use criteria documents. Structure/safety measures represent measures developed to address structural aspects of the use of healthcare technology (e.g., laboratory accreditation, personnel training, and credentialing) or quality issues related to patient safety when there are neither guidelines recommendations nor appropriate use criteria. Although the strength of evidence for appropriate use measures and structure/safety measures may not be as strong as that for formal performance measures, they are quality measures that are otherwise rigorously developed, reviewed, tested, and approved in the same manner as ACCF/AHA performance measures. The ultimate goal of the present document is to provide direction in defining and measuring the appropriate use-avoiding not only underuse but also overuse and misuse-and proper application of cardiovascular technology and to describe how such appropriate use measures and structure/safety measures might be developed for the purposes of quality improvement and public reporting. It is anticipated that this effort will help focus the national dialogue on the use of cardiovascular technology and away from the current concerns about volume and cost alone to a more holistic emphasis on value.

  1. Feasibility of remotely manipulated welding in space: A step in the development of novel joining technologies

    NASA Technical Reports Server (NTRS)

    Masubuchi, K.; Agapakis, J. E.; Debiccari, A.; Vonalt, C.

    1985-01-01

    A six month research program entitled Feasibility of Remotely Manipulated Welding in Space - A Step in the Development of Novel Joining Technologies is performed at the Massachusetts Institute of Technology for the Office of Space Science and Applications, NASA, under Contract No. NASW-3740. The work is performed as a part of the Innovative Utilization of the Space Station Program. The final report from M.I.T. was issued in September 1983. This paper presents a summary of the work performed under this contract. The objective of this research program is to initiate research for the development of packaged, remotely controlled welding systems for space construction and repair. The research effort includes the following tasks: (1) identification of probable joining tasks in space; (2) identification of required levels of automation in space welding tasks; (3) development of novel space welding concepts; (4) development of recommended future studies; and (5) preparation of the final report.

  2. A methodology for spacecraft technology insertion analysis balancing benefit, cost, and risk

    NASA Astrophysics Data System (ADS)

    Bearden, David Allen

    Emerging technologies are changing the way space missions are developed and implemented. Technology development programs are proceeding with the goal of enhancing spacecraft performance and reducing mass and cost. However, it is often the case that technology insertion assessment activities, in the interest of maximizing performance and/or mass reduction, do not consider synergistic system-level effects. Furthermore, even though technical risks are often identified as a large cost and schedule driver, many design processes ignore effects of cost and schedule uncertainty. This research is based on the hypothesis that technology selection is a problem of balancing interrelated (and potentially competing) objectives. Current spacecraft technology selection approaches are summarized, and a Methodology for Evaluating and Ranking Insertion of Technology (MERIT) that expands on these practices to attack otherwise unsolved problems is demonstrated. MERIT combines the modern techniques of technology maturity measures, parametric models, genetic algorithms, and risk assessment (cost and schedule) in a unique manner to resolve very difficult issues including: user-generated uncertainty, relationships between cost/schedule and complexity, and technology "portfolio" management. While the methodology is sufficiently generic that it may in theory be applied to a number of technology insertion problems, this research focuses on application to the specific case of small (<500 kg) satellite design. Small satellite missions are of particular interest because they are often developed under rigid programmatic (cost and schedule) constraints and are motivated to introduce advanced technologies into the design. MERIT is demonstrated for programs procured under varying conditions and constraints such as stringent performance goals, not-to-exceed costs, or hard schedule requirements. MERIT'S contributions to the engineering community are its: unique coupling of the aspects of performance, cost, and schedule; assessment of system level impacts of technology insertion; procedures for estimating uncertainties (risks) associated with advanced technology; and application of heuristics to facilitate informed system-level technology utilization decisions earlier in the conceptual design phase. MERIT extends the state of the art in technology insertion assessment selection practice and, if adopted, may aid designers in determining the configuration of complex systems that meet essential requirements in a timely, cost-effective manner.

  3. Satellite voice broadcast. Volume 2: System study

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.; Farrell, C. E.

    1985-01-01

    The Technical Volume of the Satellite Broadcast System Study is presented. Designs are synthesized for direct sound broadcast satellite systems for HF-, VHF-, L-, and Ku-bands. Methods are developed and used to predict satellite weight, volume, and RF performance for the various concepts considered. Cost and schedule risk assessments are performed to predict time and cost required to implement selected concepts. Technology assessments and tradeoffs are made to identify critical enabling technologies that require development to bring technical risk to acceptable levels for full scale development.

  4. Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.

  5. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  6. Composite Development and Applications for RLV Tankage

    NASA Technical Reports Server (NTRS)

    Wright, Richard J.; Achary, David C.; McBain, Michael C.

    2003-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 28%-41% reduction in weight that composite materials can provide over current aluminum technology. The development of composite cryogenic tanks, feedlines, and unpressurized structures are key enabling technologies for performance and cost enhancements for Reusable Launch Vehicles (RLVs). The technology development of composite tanks has provided direct and applicable data for feedlines, unpressurized structures, material compatibility, and cryogenic fluid containment for highly loaded complex structures and interfaces. All three types of structure have similar material systems, processing parameters, scaling issues, analysis methodologies, NDE development, damage tolerance, and repair scenarios. Composite cryogenic tankage is the most complex of the 3 areas and provides the largest breakthrough in technology. A building block approach has been employed to bring this family of difficult technologies to maturity. This approach has built up composite materials, processes, design, analysis and test methods technology through a series of composite test programs beginning with the NASP program to meet aggressive performance goals for reusable launch vehicles. In this paper, the development and application of advanced composites for RLV use is described.

  7. Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Technology (ISPT) Program. One of the main focus areas of ISPT is aeroassist technologies through the Aerocapture Technology (AT) Activity. Within the ISPT, the current aeroassist technology development focus is aerocapture. Aerocapture relies on the exchange of momentum with an atmosphere to achieve thrust, in this case a decelerating thrust leading to orbit capture. Without aerocapture, a substantial propulsion system would be needed on the spacecraft to perform the same reduction of velocity. This could cause reductions in the science payload delivered to the destination, increases in the size of the launch vehicle (to carry the additional fuel required for planetary capture) or could simply make the mission impossible due to additional propulsion requirements. The AT is advancing each technology needed for the successful implementation of aerocapture in future missions. The technology development focuses on both rigid aeroshell systems as well as the development of inflatable aerocapture systems, advanced aeroshell performance sensors, lightweight structure and higher temperature adhesives. Inflatable systems such as tethered trailing ballutes ('balloon parachutes'), clamped ballutes, and inflatable aeroshells are also under development. Aerocapture-specific computational tools required to support future aerocapture missions are also an integral part of the ATP. Tools include: engineering reference atmosphere models, guidance and navigation, aerothermodynamic modeling, radiation modeling and flight simulation. Systems analysis plays a key role in the AT development process. The NASA in-house aerocapture systems analysis team has been taken with multiple systems definition and concept studies to complement the technology development tasks. The team derives science requirements, develops guidance and navigation algorithms, as well as engineering reference atmosphere models and aeroheating specifications. The study team also creates designs for the overall mission spacecraft. Presentation slides are provided to further describe the aerocapture project.

  8. 46 CFR 197.202 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... development purposes by educational institutions; (2) Performed solely for research and development for the advancement of diving equipment and technology; or (3) Performed solely for search and rescue or related...

  9. Influences of Government Championship on the Technology Innovation Process at the Project-level

    NASA Astrophysics Data System (ADS)

    Yue, Xin

    Government support is a popular instrument to foster technology innovation. It can take various forms such as financial aid, tax credits, and technological assistance. Along with the firm characteristics, strategic behavior of the project team, characteristics of the technology and the market, and the regulatory environment, government support influences firms' research and development (R&D) motivations, decision making process, and hence technology development performance. How government support influences the performance in different industries is an important policy and research question. There are many studies on the effectiveness and impacts of government support, mostly at program-level or industry-level. Government Championship is a form of government support distinct from direct financial or technological assistance. Championship includes expressing confidence in the innovation, encouraging others to support the innovation, and persisting under adversity. Championship has been studied as a critical inside factor for innovation success, particularly at project-level. Usually a champion emerged within the organization responsible for the innovation project. However, with the intention to encourage technology development, governments can also play a championship role. Government championship, besides government financial and technological assistance (hereafter "government F&T"), could be one major category of government support to facilitate high-technology innovation. However, there are few studies focusing on the effectiveness of government championship, and how it influences the innovation process. This thesis addresses this question through two studies on high-technology development projects. The first study has tested the effectiveness of government championship on the performance of 431 government sponsored technology innovation projects. Government championship and government F&T, as well as project team strategic behavior, are hypothesized to influence the technology innovation performance. The team strategy has two dimensions in this model: pro-activeness and defensiveness, which indicate the emphasis of the team on exploiting new opportunities, and enhancing the current methods, respectively. A survey was administered to the project managers of li-ion battery projects in the United States. After data was collected, factor analysis and regression were used to test hypotheses. The results suggest that both government championship and government F&T are positive factors in technology innovation performance, while strategic behaviors are positive and more significant. The results also suggest a strong correlation between government support (both championship and F&T assistance) and the R&D team strategy, which means government intervention and team strategic behavior could affect each other. To understand how the government champions and the project team impact each other during the project, the second study employed a single in-depth case study, investigating the Shenhua Direct-Coal-Liquefaction (DCL) Project. A variety of government championship behaviors have been identified, and their situation and impacts on the project performance and outcome were analyzed. This case is a good start to accumulate information and observations for a better understanding of the influences of government championship in technology innovation. These two studies will help increase understanding of how government championship behaviors influence the process, the project performance, and the outcome of technology innovation, particularly in high-technology industries.

  10. An Approach for Performance Based Glove Mobility Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; Benson, Elizabeth; England, Scott

    2015-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for exploration missions. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Space Technology Mission Directorate's Game-Changing Development Program provided start-up funding for the High Performance EVA Glove (HPEG) Element as part of the Next Generation Life Support (NGLS) Project in the fall of 2013. The overarching goal of the HPEG Element is to develop a robust glove design that increases human performance during EVA and creates pathway for implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability in on-pristine environments, and decreasing the potential of gloves to cause injury during use. The HPEG Element focused initial efforts on developing quantifiable and repeatable methodologies for assessing glove performance with respect to mobility, injury potential, thermal conductivity, and abrasion resistance. The team used these methodologies to establish requirements against which emerging technologies and glove designs can be assessed at both the component and assembly levels. The mobility performance testing methodology was an early focus for the HPEG team as it stems from collaborations between the SSA Development team and the JSC Anthropometry and Biomechanics Facility (ABF) that began investigating new methods for suited mobility and fit early in the Constellation Program. The combined HPEG and ABF team used lessons learned from the previous efforts as well as additional reviews of methodologies in physical and occupational therapy arenas to develop a protocol that assesses gloved range of motion, strength, dexterity, tactility, and fit in comparative quantitative terms and also provides qualitative insight to direct hardware design iterations. The protocol was evaluated using five experienced test subjects wearing the EMU pressurized to 4.3psid with three different glove configurations. The results of the testing are presented to illustrate where the protocol is and is not valid for benchmark comparisons. The process for requirements development based upon the results is also presented along with suggested performance values for the High Performance EVA Gloves to be procured in fiscal year 2015.

  11. AMBIENT AMMONIA MONITORING TECHNOLOGIES

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program develops testing protocols and verifies the performance of innovative technologies that have the potential to improve the protection of human health and the environment. This abstract and poster describe the process by whic...

  12. Space Station Engineering and Technology Development. Proceedings of the Panel on Solar Thermodynamics Research and Technology Development, July 31, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.

  13. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Proctor, Margaret; Delgado, Irebert; Finkbeiner,Joshua; deGroh, Henry; Ritzert, Frank; Daniels, Christopher; DeMange, Jeff; Taylor, Shawn; hide

    2009-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage by applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. Advanced docking system seals need to be very robust resisting space environmental effects while exhibiting very low leakage and low compression and adhesion forces. NASA Glenn is developing seal technology and providing technical consultation for the Agencys key aero- and space technology development programs.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS--DONALDSON COMPANY, INC., TETRATEC #6255 FILTRATION MEDIA

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program, established by the U.S. EPA, is designed to accelerate the development and commercialization of new or improved technologies through third-party verification and reporting of performance. The Air Pollution Control Technolog...

  15. ENVIRONMENTAL TECHNOLOGY REPORT - LEAD DUST WIPE MEASUREMENT TECHNOLOGY MONITORING TECHNOLOGIES INTERNATIONAL, PDV 5000 TRACE ELEMENT ANALYZER

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  16. The Influence of Interactive Multimedia Technology to Enhance Achievement Students on Practice Skills in Mechanical Technology

    NASA Astrophysics Data System (ADS)

    Made Rajendra, I.; Made Sudana, I.

    2018-01-01

    Interactive multimedia technology empowers the educational process by means of increased interaction between teachers and the students. The utilization of technology in the instructional media development has an important role in the increase of the quality of teaching and learning achievements of students. The application of multimedia technology in the instructional media development is able to integrate aspects of knowledge and skills. The success of multimedia technology has revolutionized teaching and learning methods. The design of the study was quasi-experimental with pre and post. The instrument used is the form of questionnaires and tests This study reports research findings indicated that there is a significance difference between the mean performances of students in the experimental group than those students in the control group. The students in the experimental group performed better in mechanical technology practice and in retention test than those in the control group. The study recommended that multimedia instructional tool is an effective tool to enhance achievement students on practice skills in mechanical Technology.

  17. Development of Composite Technologies for the European Next Generation Launcher

    NASA Astrophysics Data System (ADS)

    Fatemi, Javad; van der Bas, Finn

    2014-06-01

    In the frame of the European Space Agency's Future Launchers Preparatory Programme (FLPP), in conjunction with national Research and Technology programs, Dutch Space has undertaken the development of composite technologies for application in the Europe's next generation launcher, Ariane 6. The efforts have focused on development of a Carbon Fibre Reinforced Plastic (CFRP) Engine Thrust Frame (ETF) for the upper-stage of Ariane6 launcher. These new technologies are expected to improve performance and to lower cost of development and exploitation of the launcher. Although the first targeted application is the thrust frame, the developed technologies are set to be generic in the sense that they can be applied to other structures of the launcher, e.g. inter-stage structures.This paper addresses the design, analysis, manufacturing and testing activities related to the composite technology developments.

  18. Modern technologies and business performance in creative industries: a framework of analysis

    NASA Astrophysics Data System (ADS)

    Bujor, A.; Avsilcai, S.

    2016-08-01

    The creative economy is, at the moment, one of the most dynamic sectors of the world economy and international trade generating jobs, revenues, export earnings while promoting social inclusion and human development (United Nations Conference on Trade and Development). It is also a set of knowledge-based activities that make intensive use of creative talent incorporating techniques or technologies bringing added value to intellectual capital. The heart of the creative economy are the creative industries, those industries which have their origin in individual creativity, skill, talent and which demonstrates to have the potential for wealth and job creation "through the generation and exploitation of intellectual property" (Department of Culture, Media and Sport, UK, 2001). The aim of this paper is twofold: to explore and to analyze the role and the contribution of technology, particularly of the new technologies, on the economic and social performance of the Creative Industries at European Union level. The foreseen output is a model for analyzing the impact of technology on business performance level of Creative Industries.

  19. Teaching Technology: From Knowing to Feeling Enhancing Emotional and Content Acquisition Performance through Gardner's Multiple Intelligences Theory in Technology and Design Lessons

    ERIC Educational Resources Information Center

    Sanchez-Martin, Jesus; Alvarez-Gragera, Garcia J.; Davila-Acedo, Maria Antonia; Mellado, Vicente

    2017-01-01

    Gardner's Multiple Intelligences Theory (MIT) can be a cognitive and emotional improvement if is taken into account in the standard development of the Technology lessons. This work presents a preliminary evaluation of the performance enhancement in two concomitant aspects: contents acquisition and emotional yield. The study was made on up to 150…

  20. A Survey of Titan Balloon Concepts and Technology Status

    NASA Technical Reports Server (NTRS)

    Hall, Jeffery L.

    2011-01-01

    This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.

  1. SAM Technical Review Committee Final Report: Summary and Key Recommendations from the Onsite TRC Meeting Held April 22-23, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, S.; Janzou, S.

    2013-08-01

    The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).

  2. Verification Testing of Air Pollution Control Technology Quality Management Plan Revision 2.3

    EPA Pesticide Factsheets

    The Air Pollution Control Technology Verification Center was established in 1995 as part of the EPA’s Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technologies’ performance.

  3. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM FOR MONITORING AND CHARACTERIZATION

    EPA Science Inventory

    The Environmental Technology Verification Program is a service of the Environmental Protection Agency designed to accelerate the development and commercialization of improved environmental technology through third party verification and reporting of performance. The goal of ETV i...

  5. Verifax: Biometric instruments measuring neuromuscular disorders/performance impairments

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Shrairman, Ruth; Landau, Alexander

    1998-01-01

    VeriFax, founded in 1990 by Dr. Ruth Shrairman and Mr. Alex Landau, began operations with the aim of developing a biometric tool for the verification of signatures from a distance. In the course of developing this VeriFax Autograph technology, two other related applications for the technologies under development at VeriFax became apparent. The first application was in the use of biometric measurements as clinical monitoring tools for physicians investigating neuromuscular diseases (embodied in VeriFax's Neuroskill technology). The second application was to evaluate persons with critical skills (e.g., airline pilots, bus drivers) for physical and mental performance impairments caused by stress, physiological disorders, alcohol, drug abuse, etc. (represented by VeriFax's Impairoscope prototype instrument). This last application raised the possibility of using a space-qualified Impairoscope variant to evaluate astronaut performance with respect to the impacts of stress, fatigue, excessive workload, build-up of toxic chemicals within the space habitat, etc. The three applications of VeriFax's patented technology are accomplished by application-specific modifications of the customized VeriFax software. Strong commercial market potentials exist for all three VeriFax technology applications, and market progress will be presented in more detail below.

  6. Technology Base Research Project for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  7. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  8. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; hide

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  9. SEDHI: development status of the Pléiades detection electronics

    NASA Astrophysics Data System (ADS)

    Dantes, Didier; Biffi, Jean-Marc; Neveu, Claude; Renard, Christophe

    2017-11-01

    In the framework of the Pléiades program, Alcatel Space is developping with CNES a new concept of Highly Integrated Detection Electronic Subsystem (SEDHI) which lead to very high gains in term of camera mass, volume and power consumption. This paper presents the design of this new concept and summarizes its main performances. The electrical, mechanical and thermal aspects of the SEDHI concept are described, including the basic technologies: panchromatic detector, multispectral detector, butting technology, ASIC for phase shift of detector clocks, ASIC for video processing, ASIC for phase trimming, hybrids, video modules... This concept and these technologies can be adapted to a large scale of missions and instruments. Design, performance and budgets of the subsystem are given for the Pléiades mission for which the SEDHI concept has been selected. The detailed performances of each critical component are provided, focusing on the most critical performances which have been obtained at this level of the Pléiades development.

  10. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  11. Development of airframe design technology for crashworthiness.

    NASA Technical Reports Server (NTRS)

    Kruszewski, E. T.; Thomson, R. G.

    1973-01-01

    This paper describes the NASA portion of a joint FAA-NASA General Aviation Crashworthiness Program leading to the development of improved crashworthiness design technology. The objectives of the program are to develop analytical technology for predicting crashworthiness of structures, provide design improvements, and perform full-scale crash tests. The analytical techniques which are being developed both in-house and under contract are described, and typical results from these analytical programs are shown. In addition, the full-scale testing facility and test program are discussed.

  12. Development of Inflatable Entry Systems Technologies

    NASA Technical Reports Server (NTRS)

    Player, Charles J.; Cheatwood, F. McNeil; Corliss, James

    2005-01-01

    Achieving the objectives of NASA s Vision for Space Exploration will require the development of new technologies, which will in turn require higher fidelity modeling and analysis techniques, and innovative testing capabilities. Development of entry systems technologies can be especially difficult due to the lack of facilities and resources available to test these new technologies in mission relevant environments. This paper discusses the technology development process to bring inflatable aeroshell technology from Technology Readiness Level 2 (TRL-2) to TRL-7. This paper focuses mainly on two projects: Inflatable Reentry Vehicle Experiment (IRVE), and Inflatable Aeroshell and Thermal Protection System Development (IATD). The objectives of IRVE are to conduct an inflatable aeroshell flight test that demonstrates exoatmospheric deployment and inflation, reentry survivability and stability, and predictable drag performance. IATD will continue the development of the technology by conducting exploration specific trade studies and feeding forward those results into three more flight tests. Through an examination of these projects, and other potential projects, this paper discusses some of the risks, issues, and unexpected benefits associated with the development of inflatable entry systems technology.

  13. [Diagnosis of the productive capacity of the IMSS regarding health technologies].

    PubMed

    Figueroa-Lara, Alejandro; López-Fernández, Fátima Itzel; López-Domínguez, Adriana; Fajardo-Dolci, German

    To quantify the production capacity and performance in research and technological developments of the Mexican Social Security Institute (IMSS). We identified and analyzed information of the legislation, human and financial resources, and infrastructure addressed for research and technological development of IMSS. We analyzed whether the information on the legal framework contained key features to boost research and technological development. Information on the human, financial, and infrastructure resources were obtained from official sources. The research productivity was identified by a bibliometric analysis in 2014; productivity in technological developments was identified by intellectual products. The legal framework of the IMSS has several areas for improvement to boost research and technological development, especially the guidelines for technology transfer. The IMSS has 438 researchers, 39 research units, and a budget of US$ 37.4 million for research and technological development. The rate of articles published per 10 researchers was 4.8; while rate patients was 1.8. The IMSS has a great potential to translate research into technological developments, it is only necessary to make some changes to the legal framework.

  14. Development of Medical Technology for Contingency Response to Marrow Toxic Agents

    DTIC Science & Technology

    2012-03-31

    Development of Medical Technology for Contingency Response to Marrow Toxic Agents - Final Performance/Technical Report for March 01, 2010 to February 28...Development of Medical Technology for Contingency Response To Marrow Toxic Agents FINAL REPORT March 1, 2010 – March 31, 2012 National...Buccal Swabs 38 IIB.1.5 Enhancing HLA Data for Selected Donors 43 IIB.1.6 Maintain a Quality Control Program 46 IIB.2.1 Collection of Primary Data

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - LEAD IN DUST WIPE MEASUREMENT TECHNOLOGY, KEYMASTER TECHNOLOGIES, X-RAY FLUORESCENCE INSTRUMENT PB-TEST

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  16. Electronic Performance Support Systems and Technological Literacy

    ERIC Educational Resources Information Center

    Maughan, George R.

    2005-01-01

    Electronic performance support systems (EPSS) can provide alternative learning opportunities to supplement traditional classroom or training strategies. Today's students may benefit from educational settings and strategies that they will use in the future. In using EPSS to nurture the development of technological literacy, workers and students can…

  17. The Long and Winding Path (from Instructional Design to Performance Technology).

    ERIC Educational Resources Information Center

    Carr, Clay; Totzke, Larry

    1995-01-01

    Presents a case study based on experiences at Amway Corporation that explains how the Human Resources Development Department progressed from providing training to providing a broader range of human performance technology interventions. Strategic planning is described, including identifying incentives and required competencies, providing for…

  18. LEDs: DOE Programs Add Credibility to a Developing Technology

    ERIC Educational Resources Information Center

    Conbere, Susan

    2009-01-01

    LED (light-emitting diode) technology is moving fast, and with justification, some facility managers have viewed it with a wary eye. Some LEDs on the market do not perform as promised, and the technology is changing rapidly. But new developments from the U.S. Department of Energy (DOE) now make it easier for facility managers to find LEDs that…

  19. Assessing Performance and Consequence Competence in a Technology-Based Professional Development for Agricultural Science Teachers: An Evaluation of the Lincoln Electric Welding Technology Workshop

    ERIC Educational Resources Information Center

    Saucier, P. Ryan; McKim, Billy R.; Muller, Joe E.; Kingman, Douglas M.

    2014-01-01

    Professional development education for teachers is essential to improving teacher retention, program relevance and effectiveness, and the preparation of fully qualified and highly motivated career and technology educators at all career stages (Doerfert, 2011; Lambeth, Elliot, & Joerger, 2008). Furthermore, it is necessary to link industry…

  20. Development of vehicle magnetic air conditioner (VMAC) technology. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, Karl A., Jr.; Pecharsky, V.K.; Jiles, David

    2001-08-28

    The objective of Phase I was to explore the feasibility of the development of a new solid state refrigeration technology - magnetic refrigeration - in order to reduce power consumption of a vehicle air conditioner by 30%. The feasibility study was performed at Iowa State University (ISU) together with Astronautics Corporation of America Technology Center (ACATC), Madison, WI, through a subcontract with ISU.

  1. Development of Innovative Nondestructive Evaluation Technologies for the Inspection of Cracking and Corrosion Under Coatings

    NASA Astrophysics Data System (ADS)

    Lipetzky, Kirsten G.; Novack, Michele R.; Perez, Ignacio; Davis, William R.

    2001-11-01

    Three different innovative nondestructive evaluation technologies were developed and evaluated for the ability to detect fatigue cracks and corrosion hidden under painted aluminum panels. The three technologies included real-time ultrasound imaging, thermal imaging, and near-field microwave imaging. With each of these nondestructive inspection methods, subtasks were performed in order to optimize each methodology.

  2. Enabling technologies for fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  3. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; hide

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  4. Fiber-based, trace-gas, laser transmitter technology development for space

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James

    2015-09-01

    NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  5. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  6. A life cycle assessment and economic analysis of the Scum-to-Biodiesel technology in wastewater treatment plants.

    PubMed

    Mu, Dongyan; Addy, Min; Anderson, Erik; Chen, Paul; Ruan, Roger

    2016-03-01

    This study used life cycle assessment and technical economic analysis tools in evaluating a novel Scum-to-Biodiesel technology and compares the technology with scum digestion and combustion processes. The key variables that control environmental and economic performance are identified and discussed. The results show that all impacts examined for the Scum-to-Biodiesel technology are below zero indicating significant environmental benefits could be drawn from it. Of the three technologies examined, the Scum-to-Biodiesel technology has the best environmental performance in fossil fuel depletion, GHG emissions, and eutrophication, whereas combustion has the best performance on acidification. Of all process inputs assessed, process heat, glycerol, and methanol uses had the highest impacts, much more than any other inputs considered. The Scum-to-Biodiesel technology also makes higher revenue than other technologies. The diesel price is a key variable for its economic performance. The research demonstrates the feasibility and benefits in developing Scum-to-Biodiesel technology in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Design and Validation of MAPS for Educators: A Performance Support System to Guide Media Selection for Lesson Design

    ERIC Educational Resources Information Center

    Hung, Wei-Chen; Kalota, Faisal

    2013-01-01

    The importance of adopting technology-supported performance systems for on-the-job learning and training is well-recognized in a networked economy. In this study, we present a performance support system (PSS) designed to support technology integration for lesson design. The goal is to support educators in the development of appropriate and…

  8. Key results of battery performance and life tests at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1991-12-01

    Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.

  9. Role of superconducting electronics in advancing science and technology (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Faris, S. M.

    1988-08-01

    The promises of the ultrahigh-performance properties of superconductivity and Josephson junction technologies have been known for quite some time. This presentation describes the first superconducting electronics and measurement system and its important role as a major tool to advance microwave and millimeter wave technologies. This breakthrough tool is a sampling oscilloscope with 5-ps rise time, 50-μV sensitivity, and a time domain reflectometer with 8-ps rise time. In order to achieve these performance goals, several technological hurdles had to be overcome including perfecting a manufacturing process for building Josephson junction IC chips, developing an innovative cooling technique, developing interfaces and interconnections with bandwidths in excess of 70 GHz, and developing the room-temperature hardware and software necessary to make the instruments convenient, easy to use, easy to learn, in addition to making available functions and features users have come to expect from sophisticated digital test instrumentation. These technological developments are stepping stones leading to the realization of more sophisticated and complex electronic systems satisfying the needs of scientists, technologists, and engineers. The unprecedented speed and sensitivity make it possible to attack new frontiers.

  10. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Messinger, Ross

    2008-01-01

    An assessment was performed to identify the applicability of composite material technologies to major structural elements of the NASA Constellation program. A qualitative technology assessment methodology was developed to document the relative benefit of 24 structural systems with respect to 33 major structural elements of Ares I, Orion, Ares V, and Altair. Technology maturity assessments and development plans were obtained from more than 30 Boeing subject matter experts for more than 100 technologies. These assessment results and technology plans were combined to generate a four-level hierarchy of recommendations. An overarching strategy is suggested, followed by a Constellation-wide development plan, three integrated technology demonstrations, and three focused projects for a task order follow-on.

  11. Develop nondestructive rapid pavement quality assurance/quality control evaluation test methods and supporting technology : project summary.

    DOT National Transportation Integrated Search

    2017-01-01

    The findings from the proof of concept with mechanics-based models for flexible base suggest additional validation work should be performed, draft construction specification frameworks should be developed, and work extending the technology to stabili...

  12. Competitiveness, Technology and Skills.

    ERIC Educational Resources Information Center

    Lall, Sanjaya

    This document examines competitiveness in the developing world. Chapters 1 through 3, which are largely conceptual, examine the following topics: the concept of competitiveness and why it is important; market-stimulating technology policies in developing countries, and the relationship between import liberalization and industrial performance.…

  13. Develop nondestructive rapid pavement quality Assurance/quality control evaluation test methods and supporting technology : project summary.

    DOT National Transportation Integrated Search

    2017-01-01

    The findings from the proof of concept with mechanics-based models for flexible base suggest additional validation work should be performed, draft construction specification frameworks should be developed, and work extending the technology to stabili...

  14. MCT (HgCdTe) IR detectors: latest developments in France

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Rubaldo, Laurent; Vaz, Cedric; Tribolet, Philippe; Baier, Nicolas; Destefanis, Gérard

    2010-10-01

    This paper presents an overview of the very recent developments of the MCT infrared detector technology developed by CEA-LETI and Sofradir in France. New applications require high sensitivity, higher operating temperature and dual band detectors. The standard n on p technology in production at Sofradir for 25 years is well mastered with an extremely robust and reliable process. Sofradir's interest in p on n technology opens the perspective of reducing dark current of diodes so detectors could operate in lower flux or higher operating temperature. In parallel, MCT Avalanche Photo Diodes (APD) have demonstrated ideal performances for low flux and high speed application like laser gated imaging during the last few years. This technology also opens new prospects on next generation of imaging detectors for compact, low flux and low power applications. Regarding 3rd Gen IR detectors, the development of dual-band infrared detectors has been the core of intense research and technological improvements for the last ten years. New TV (640 x 512 pixels) format MWIR/LWIR detectors on 20μm pixel pitch, made from Molecular Beam Epitaxy, has been developed with dedicated Read-Out Integrated Circuit (ROIC) for real simultaneous detection and maximum SNR. Technological and products achievements, as well as latest results and performances are presented outlining the availability of p/n, avalanche photodiodes and dual band technologies for new applications at system level.

  15. Fission Power System Technology for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  16. Innovative on-chip packaging applied to uncooled IRFPA

    NASA Astrophysics Data System (ADS)

    Dumont, Geoffroy; Arnaud, Agnès; Impérinetti, Pierre; Vialle, Claire; Rabaud, Wilfried; Goudon, Valérie; Yon, Jean-Jacques

    2008-04-01

    The Laboratoire Infrarouge (LIR) of the Laboratoire d'Electronique et de Technologie de l'Information (LETI) has been involved in the development of microbolometers for over fifteen years. Two generations of technology have been transferred to ULIS and LETI is still working to improve performances of low cost detectors. Simultaneously, packaging still represents a significant part of detectors price. Reducing production costs would contribute to keep on extending applications of uncooled IRFPA to high volume markets like automotive. Therefore LETI is developing an on-chip packaging technology dedicated to microbolometers. This paper presents an original microcap structure that enables the use of IR window materials as sealing layers to maintain the expected vacuum level. The modelling and integration of an IR window suitable for this structure is also presented. This monolithic packaging technology is performed in a standard collective way, in continuation of bolometers' technology. The CEA-LETI, MINATEC presents status of these developments concerning this innovating technology including optical simulations results and SEM views of technical realizations.

  17. Evaluation of warm mix asphalt technology in flexible pavements.

    DOT National Transportation Integrated Search

    2009-09-01

    The primary goal of this research project is to quantify the performance of field produced and placed mixtures that utilize WMA technology and develop a framework for design, construction, and implementation of this technology in Louisiana. This rese...

  18. Environmental Technology Verification Program Fact Sheet

    EPA Science Inventory

    This is a Fact Sheet for the ETV Program. The EPA Environmental Technology Verification Program (ETV) develops test protocols and verifies the performance of innovative technologies that have the potential to improve protection of human health and the environment. The program ...

  19. Accountability Effects of Integrating Technology in Evolving Professional Development Schools.

    ERIC Educational Resources Information Center

    Denton, Jon J.; Manus, Alice L.

    This analysis aimed at determining whether implemented technology systems and staff development with those systems at professional development schools have affected the academic performance of learners. Eight Texas elementary and secondary schools that in 1994-95 enrolled 5,337 students across 5 school districts comprised the sample for the study.…

  20. Students as Simulation Designers and Developers--Using Computer Simulations for Teaching Boundary Layer Processes.

    ERIC Educational Resources Information Center

    Johnson, Tristan E.; Clayson, Carol Anne

    As technology developments seek to improve learning, researchers, developers, and educators seek to understand how technological properties impact performance. This paper delineates how a traditional science course is enhanced through the use of simulation projects directed by the students themselves as a means to increase their level of knowledge…

  1. Slotted Waveguide Antenna Stiffened Structures (SWASS) Development for Commercial Off-the-Shelf (COTS) Radar (Briefing Charts)

    DTIC Science & Technology

    2016-10-01

    BRIEFING CHARTS) D. Zeppettella Structures Technology Branch Aerospace Vehicles Division Steve Bucca and Thomas Gage BerrieHill Research...R. WIPPERMAN, Chief Program Manager Structures Technology Branch Structures Technology Branch Aerospace Vehicles Division Aerospace Vehicles...Corporation) 5d. PROJECT NUMBER 4920 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q06A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

  2. Automotive Stirling Engine Development Project

    NASA Technical Reports Server (NTRS)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: MOBILE SOURCE RETROFIT AIR POLLUTION CONTROL DEVICES: CLEAN CLEAR FUEL TECHNOLOGIES, INC.’S, UNIVERSAL FUEL CELL

    EPA Science Inventory

    The U.S. EPA's Office of Research and Development operates the Environmental Technology Verification (ETV) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. Congress funds ETV in response to the belief ...

  4. Proton Exchange Membrane (PEM) Fuel Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Bradley, Karla

    2004-01-01

    This presentation will provide a summary of the PEM fuel cell development at the National Aeronautics and Space Administration, Johnson Space Center (NASA, JSC) in support of future space applications. Fuel cells have been used for space power generation due to their high energy storage density for multi-day missions. The Shuttle currently utilizes the alkaline fuel cell technology, which has highly safe and reliable performance. However, the alkaline technology has a limited life due to the corrosion inherent to the alkaline technology. PEM fuel cells are under development by industry for transportation, residential and commercial stationary power applications. NASA is trying to incorporate some of this stack technology development in the PEM fuel cells for space. NASA has some unique design and performance parameters which make developing a PEM fuel cell system more challenging. Space fuel cell applications utilize oxygen, rather than air, which yields better performance but increases the hazard level. To reduce the quantity of reactants that need to be flown in space, NASA also utilizes water separation and reactant recirculation. Due to the hazards of utilizing active components for recirculation and water separation, NASA is trying to develop passive recirculation and water separation methods. However, the ability to develop recirculation components and water separators that are gravity-independent and successfully operate over the full range of power levels is one of the greatest challenges to developing a safe and reliable PEM fuel cell system. PEM stack, accessory component, and system tests that have been performed for space power applications will be discussed.

  5. NREL Launches Electrification Futures Study Series | News | NREL

    Science.gov Websites

    Study Series First report includes foundational data on cost and performance of electric technologies Futures Study: End-Use Electric Technology Cost and Performance Projections through 2050. This report uses a combination of recently published literature and expert assessment to develop future cost and

  6. A Cross-Cultural Investigation of Human Performance Technology Interventions

    ERIC Educational Resources Information Center

    Vadivelu, Ramaswamy N.

    2010-01-01

    Human Performance Technology (HPT) is a field of practice that has evolved from advancements in organizational development, instructional design, strategic human resource management and cognitive psychology. As globalization and trends like outsourcing and off-shoring start to dominate the way organizations grow, HPT practitioners are managing the…

  7. Promoting High-Performance Computing and Communications. A CBO Study.

    ERIC Educational Resources Information Center

    Webre, Philip

    In 1991 the Federal Government initiated the multiagency High Performance Computing and Communications program (HPCC) to further the development of U.S. supercomputer technology and high-speed computer network technology. This overview by the Congressional Budget Office (CBO) concentrates on obstacles that might prevent the growth of the…

  8. High Performance Computing and Networking for Science--Background Paper.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    The Office of Technology Assessment is conducting an assessment of the effects of new information technologies--including high performance computing, data networking, and mass data archiving--on research and development. This paper offers a view of the issues and their implications for current discussions about Federal supercomputer initiatives…

  9. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amy, Fabrice; Hufton, Jeffrey; Bhadra, Shubhra

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined withmore » simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.« less

  10. Engaging with Faculty to Develop, Implement, and Pilot Electronic Performance Assessments of Student Teachers Using Mobile Devices

    ERIC Educational Resources Information Center

    Haughton, Noela A.; Keil, Virginia L.

    2009-01-01

    This article discusses the development and implementation of a technology-supported student teacher performance assessment that supports integration with a larger electronic assessment system. The authors spearheaded a multidisciplinary team to develop a comprehensive performance assessment based on the Pathwise framework. The team collaborated…

  11. Composite Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2017-01-01

    The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.

  12. ACCF/AHA methodology for the development of quality measures for cardiovascular technology: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures.

    PubMed

    Bonow, Robert O; Douglas, Pamela S; Buxton, Alfred E; Cohen, David J; Curtis, Jeptha P; Delong, Elizabeth; Drozda, Joseph P; Ferguson, T Bruce; Heidenreich, Paul A; Hendel, Robert C; Masoudi, Frederick A; Peterson, Eric D; Taylor, Allen J

    2011-09-27

    Consistent with the growing national focus on healthcare quality, the American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA) have taken a leadership role over the past decade in developing measures of the quality of cardiovascular care by convening a joint ACCF/AHA Task Force on Performance Measures. The Task Force is charged with identifying the clinical topics appropriate for the development of performance measures and with assembling writing committees composed of clinical and methodological experts in collaboration with appropriate subspecialty societies. The Task Force has also created methodology documents that offer guidance in the development of process, outcome, composite, and efficiency measures. Cardiovascular performance measures using existing ACCF/AHA methodology are based on Class I or Class III guidelines recommendations, usually with Level A evidence. These performance measures, based on evidence-based ACCF/AHA guidelines, remain the most rigorous quality measures for both internal quality improvement and public reporting. However, many of the tools for diagnosis and treatment of cardiovascular disease involve advanced technologies, such as cardiac imaging, for which there are often no underlying guideline documents. Because these technologies affect the quality of cardiovascular care and also have the potential to contribute to cardiovascular health expenditures, there is a need for more critical assessment of the use of technology, including the development of quality and performance measures in areas in which guideline recommendations are absent. The evaluation of quality in the use of cardiovascular technologies requires consideration of multiple parameters that differ from other healthcare processes. The present document describes methodology for development of 2 new classes of quality measures in these situations, appropriate use measures and structure/safety measures. Appropriate use measures are based on specific indications, processes, or parameters of care for which high level of evidence data and Class I or Class III guideline recommendations may be lacking but are addressed in ACCF appropriate use criteria documents. Structure/safety measures represent measures developed to address structural aspects of the use of healthcare technology (e.g., laboratory accreditation, personnel training, and credentialing) or quality issues related to patient safety when there are neither guidelines recommendations nor appropriate use criteria. Although the strength of evidence for appropriate use measures and structure/safety measures may not be as strong as that for formal performance measures, they are quality measures that are otherwise rigorously developed, reviewed, tested, and approved in the same manner as ACCF/AHA performance measures. The ultimate goal of the present document is to provide direction in defining and measuring the appropriate use-avoiding not only underuse but also overuse and misuse-and proper application of cardiovascular technology and to describe how such appropriate use measures and structure/safety measures might be developed for the purposes of quality improvement and public reporting. It is anticipated that this effort will help focus the national dialogue on the use of cardiovascular technology and away from the current concerns about volume and cost alone to a more holistic emphasis on value. Copyright © 2011 American College of Cardiology Foundation and the American Heart Association, Inc. Published by Elsevier Inc. All rights reserved.

  13. Hydrogen-bromine fuel cell advance component development

    NASA Technical Reports Server (NTRS)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  14. An end-to-end approach to developing biological and chemical detector requirements

    NASA Astrophysics Data System (ADS)

    Teclemariam, Nerayo P.; Purvis, Liston K.; Foltz, Greg W.; West, Todd; Edwards, Donna M.; Fruetel, Julia A.; Gleason, Nathaniel J.

    2009-05-01

    Effective defense against chemical and biological threats requires an "end-to-end" strategy that encompasses the entire problem space, from threat assessment and target hardening to response planning and recovery. A key element of the strategy is the definition of appropriate system requirements for surveillance and detection of threat agents. Our end-to-end approach to venue chem/bio defense is captured in the Facilities Weapons of Mass Destruction Decision Analysis Capability (FacDAC), an integrated system-of-systems toolset that can be used to generate requirements across all stages of detector development. For example, in the early stage of detector development the approach can be used to develop performance targets (e.g., sensitivity, selectivity, false positive rate) to provide guidance on what technologies to pursue. In the development phase, after a detector technology has been selected, the approach can aid in determining performance trade-offs and down-selection of competing technologies. During the application stage, the approach can be employed to design optimal defensive architectures that make the best use of available technology to maximize system performance. This presentation will discuss the end-to-end approach to defining detector requirements and demonstrate the capabilities of the FacDAC toolset using examples from a number of studies for the Department of Homeland Security.

  15. Dual Arm Work Package performance estimates and telerobot task network simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draper, J.V.; Blair, L.M.

    1997-02-01

    This paper describes the methodology and results of a network simulation study of the Dual Arm Work Package (DAWP), to be employed for dismantling the Argonne National Laboratory CP-5 reactor. The development of the simulation model was based upon the results of a task analysis for the same system. This study was performed by the Oak Ridge National Laboratory (ORNL), in the Robotics and Process Systems Division. Funding was provided the US Department of Energy`s Office of Technology Development, Robotics Technology Development Program (RTDP). The RTDP is developing methods of computer simulation to estimate telerobotic system performance. Data were collectedmore » to provide point estimates to be used in a task network simulation model. Three skilled operators performed six repetitions of a pipe cutting task representative of typical teleoperation cutting operations.« less

  16. Genetic enhancement in sport: just another form of doping?

    PubMed

    Mehlman, Maxwell J

    2012-12-01

    Patented genetic technologies such as the ACTN3 genetic test are adding a new dimension to the types of performance enhancement available to elite athletes. Organized sports organizations and governments are seeking to prevent athletes' use of biomedical enhancements. This paper discusses how these interdiction efforts will affect the use and availability of genetic technologies that can enhance athletic performance. The paper provides a working definition of enhancement, and in light of that definition and the concerns of the sports community, reviews genetic enhancement as a result of varied technologies, including, genetic testing to identify innate athletic ability, performance-enhancing drugs developed with genetic science and technology, pharmacogenetics, enhancement through reproductive technologies, somatic gene transfer, and germ line gene transfer.

  17. Environmental control technology (ECT) for geothermal processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, G.

    1982-01-01

    The objectives of the environmental control technology (ECT) program are to develop research priorities, research new and alternative technologies and to improve economics and performance of ECT systems. The Interagency Geothermal Coordinating Council, Environmental Control Panel developed priorities and obtained industry input during 1980. H/sub 2/S controls, injection monitoring, solid waste characterization and control and subsidence were reviewed as high priority while noise controls were considered low priority. Since geothermal technology is still developing there is a need to continue researching new and alternative ECT. Often ECT systems must be designed for site specific applications and need modification for usemore » of other sites. Most of the US geothermal experience is found at the Geysers, California where H/sub 2/S abatement is required. Various systems have been tested with mixed results. The bottom line is that the economics and performance of H/sub 2/S abatement systems are less than desirable.« less

  18. Inflatable Space Structures Technology Development for Large Radar Antennas

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith

    2004-01-01

    There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.

  19. Skylab medical technology utilization

    NASA Technical Reports Server (NTRS)

    Stonesifer, J. C.

    1974-01-01

    To perform the extensive medical experimentation on man in a long-term, zero-g environment, new medical measuring and monitoring equipment had to be developed, new techniques in training and operations were required, and new methods of collecting and analyzing the great amounts of medical data were developed. Examples of technology transfers to the public sector resulted from the development of new equipment, methods, techniques, and data. This paper describes several of the examples that stemmed directly from Skylab technology.

  20. Survey of key technologies on millimeter-wave CMOS integrated circuits

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Gao, Lei; Li, Lixiang; Cai, Shuo; Wang, Wei; Wang, Chunhua

    2018-05-01

    In order to provide guidance for the development of high performance millimeter-wave complementary metal oxide semiconductor (MMW-CMOS) integrated circuits (IC), this paper provides a survey of key technologies on MMW-CMOS IC. Technical background of MMW wireless communications is described. Then the recent development of the critical technologies of the MMW-CMOS IC are introduced in detail and compared. A summarization is given, and the development prospects on MMW-CMOS IC are also discussed.

  1. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  2. The Diffusion of IT in the Historical Context of Innovations from Developed Countries

    ERIC Educational Resources Information Center

    James, Jeffrey

    2013-01-01

    The well-known s-shaped diffusion of technology curve generally works well in developed countries. But how does it perform in the very different context of developing countries? Across a wide range of new technologies imported from the developed countries it works poorly. In most cases the penetration rate fails to reach 25% of the population. The…

  3. Low cost carbon fiber technology development for carbon fiber composite applications : phase 1.

    DOT National Transportation Integrated Search

    2008-01-01

    The main goals of this research program at UTSI were: 1) to produce low cost carbon fibers and 2) to develop specific carbonbased : material technologies to meet current and future high performance fiber-reinforced composite needs of FTA and other : ...

  4. Defense Science Board 2006 Summer Study on 21st Century Strategic Technology Vectors. Volume 4. Accelerating the Transition of Technologies into U.S. Capabilities

    DTIC Science & Technology

    2007-04-01

    perform more research on future defense technology, the DOD should invest in companies that are leaders in the development of innovative sources of next...well. In fact, the kit from one vender out-performed the standard up-armor kits being produced for the Army’s acquisition team. That Army company ...subsequently purchased the company that had built the improved performance kit. As part of the process to look at alternatives, the Army Material

  5. H.R. 656--The High Performance Computer Technology Act of 1991. Hearing before the Subcommittee on Science, and the Subcommittee on Technology and Competitiveness of the Committee on Science, Space, and Technology. U.S. House of Representatives, One Hundred Second Congess, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.

    This hearing focused on H. R. 656, companion bill of S. 272, which calls for high performance computing legislation. This is one of several initiatives to provide for a coordinated federal research program to ensure continued U.S. leadership in high performance computing. The bill authorizes the development of a National Research and Education…

  6. Mars Ascent Vehicle Gross Lift-off Mass Sensitivities for Robotic Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Dux, Ian J.; Huwaldt, Joseph A.; McKamey, R. Steve; Dankanich, John W.

    2011-01-01

    The Mars ascent vehicle is a critical element of the robotic Mars Sample Return (MSR) mission. The Mars ascent vehicle must be developed to survive a variety of conditions including the trans-Mars journey, descent through the Martian atmosphere and the harsh Martian surface environments while maintaining the ability to deliver its payload to a low Mars orbit. The primary technology challenge of developing the Mars ascent vehicle system is designing for all conditions while ensuring the mass limitations of the entry descent and landing system are not exceeded. The NASA In-Space Propulsion technology project has initiated the development of Mars ascent vehicle technologies with propulsion system performance and launch environments yet to be defined. To support the project s evaluation and development of various technology options the sensitivity of the Mars ascent vehicle gross lift-off mass to engine performance, inert mass, target orbits, and launch conditions has been completed with the results presented herein.

  7. A 1.3 giga pixels focal plane for GAIA

    NASA Astrophysics Data System (ADS)

    Laborie, Anouk; Pouny, Pierre; Vetel, Cyril; Collados, Emmanuel; Rougier, Gilles; Davancens, Robert; Zayer, Igor; Perryman, Michael; Pace, Oscar

    2004-06-01

    The astrometric mission GAIA is a cornerstone mission of the European Space Agency, due for launch in the 2010 time frame. Requiring extremely demanding performance GAIA calls for the development of an unprecedented large focal plane featuring innovative technologies. For securing the very challenging GAIA development, a significant number of technology activities have been initiated by ESA through a competitive selection process. In this context, an industrial consortium led by EADS-Astrium (France) with e2v technologies (UK) as major subcontractor was selected for the GAIA CCD and Focal Plane Technology Demonstrators programme, which is by far the most significant and the most critical GAIA pre-development for all aspects: science performance, development schedule and cost. This programme has started since August 2002 and will end early 2005 prior to commencement of the GAIA Phase B. While the GAIA payload will host three instruments and related focal planes, the major mission objectives are assigned to the Astrometric (ASTRO) Focal Plane, which is the subject of this presentation.

  8. Structural Optimisation Of Payload Fairings

    NASA Astrophysics Data System (ADS)

    Santschi, Y.; Eaton, N.; Verheyden, S.; Michaud, V.

    2012-07-01

    RUAG Space are developing materials and processing technologies for manufacture of the Next Generation Launcher (NGL) payload fairing, together with the Laboratory of Polymer and Composite Technology at the EPFL, in a project running under the ESA Future Launchers Preparatory Program (FLPP). In this paper the general aims and scope of the project are described, details of the results obtained shall be presented at a later stage. RUAG Space design, develop and manufacture fairings for the European launch vehicles Ariane 5 and VEGA using well proven composite materials and production methods which provide adequate cost/performance ratio for these applications. However, the NGL shall make full use of innovations in materials and process technologies to achieve a gain in performance at a much reduced overall manufacturing cost. NGL is scheduled to become operational in 2025, with actual development beginning in 2014. In this current project the basic technology is being developed and validated, in readiness for application in the NGL. For this new application, an entirely new approach to the fairing manufacture is evaluated.

  9. Next Generation Life Support: High Performance EVA Glove

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah K.

    2015-01-01

    The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.

  10. On the use of controls for subsonic transport performance improvement: Overview and future directions

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn; Espana, Martin

    1994-01-01

    Increasing competition among airline manufacturers and operators has highlighted the issue of aircraft efficiency. Fewer aircraft orders have led to an all-out efficiency improvement effort among the manufacturers to maintain if not increase their share of the shrinking number of aircraft sales. Aircraft efficiency is important in airline profitability and is key if fuel prices increase from their current low. In a continuing effort to improve aircraft efficiency and develop an optimal performance technology base, NASA Dryden Flight Research Center developed and flight tested an adaptive performance seeking control system to optimize the quasi-steady-state performance of the F-15 aircraft. The demonstrated technology is equally applicable to transport aircraft although with less improvement. NASA Dryden, in transitioning this technology to transport aircraft, is specifically exploring the feasibility of applying adaptive optimal control techniques to performance optimization of redundant control effectors. A simulation evaluation of a preliminary control law optimizes wing-aileron camber for minimum net aircraft drag. Two submodes are evaluated: one to minimize fuel and the other to maximize velocity. This paper covers the status of performance optimization of the current fleet of subsonic transports. Available integrated controls technologies are reviewed to define approaches using active controls. A candidate control law for adaptive performance optimization is presented along with examples of algorithm operation.

  11. Environmental Technology Verification (ETV) Quality Program (Poster)

    EPA Science Inventory

    This is a poster created for the ETV Quality Program. The EPA Environmental Technology Verification Program (ETV) develops test protocols and verifies the performance of innovative technologies that have the potential to improve protection of human health and the environment. The...

  12. VERIFICATION TESTING OF WET-WEATHER FLOW TECHNOLOGIES

    EPA Science Inventory

    As part of the USEPA's ETV Program, the Wet-Weather Flow (WWF) Technologies Pilot Program verifies the performance of commercial-ready technologies by generating quality-assured data using test protocols developed with broad-based stakeholder input. The availability of a credible...

  13. Multispectral Linear Array detector technology

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of detectors with the objective to provide two orders of magnitude improvement in detector dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-infrared sensor development, the shortwave infrared sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.

  14. Army Systems Engineering Career Development Model

    DTIC Science & Technology

    2014-01-30

    Army Systems Engineering Career Development Model Interim Technical Report SERC -2014-TR-042-1 January 30, 2014 Principal Investigators Dr. Val...Gavito, Stevens Institute of Technology Dr. Michael Pennotti, Stevens Institute of Technology Task Order 004, RT 104 Report No. SERC -2014-TR-042-1...Institute of Technology 8. PERFORMING ORGANIZATION REPORT NUMBER SERC -2014-TR-042-1 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) DASD

  15. Report of the sensor cooler technology panel

    NASA Technical Reports Server (NTRS)

    Ross, Ronald; Castles, S.; Gautier, N.; Kittel, P.; Ludwigsen, J.

    1991-01-01

    The Sensor Cooler Technology Panel identified three major areas in which technology development must be supported in order to meet the system performance requirements for the Astrotech 21 mission set science objectives. They are: long life vibration free refrigerators; mechanical refrigeration for 2 K to 5 K; and flight testing of emerging prototype refrigerators. A development strategy and schedule were recommended for each of the three areas.

  16. STARS: The Space Transportation Architecture Risk System

    NASA Technical Reports Server (NTRS)

    Greenberg, Joel S.

    1997-01-01

    Because of the need to perform comparisons between transportation systems that are likely to have significantly different levels of risk, both because of differing degrees of freedom in achieving desired performance levels and their different states of development and utilization, an approach has been developed for performing early comparisons of transportation architectures explicitly taking into account quantitative measures of uncertainty and resulting risk. The approach considers the uncertainty associated with the achievement of technology goals, the effect that the achieved level of technology will have on transportation system performance and the relationship between transportation system performance/capability and the ability to accommodate variations in payload mass. The consequences of system performance are developed in terms of expected values and associated standard deviations of nonrecurring, recurring and the present value of transportation system life cycle cost. Typical results are presented to illustrate the application of the methodology.

  17. Information Systems for NASA's Aeronautics and Space Enterprises

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1998-01-01

    The aerospace industry is being challenged to reduce costs and development time as well as utilize new technologies to improve product performance. Information technology (IT) is the key to providing revolutionary solutions to the challenges posed by the increasing complexity of NASA's aeronautics and space missions and the sophisticated nature of the systems that enable them. The NASA Ames vision is to develop technologies enabling the information age, expanding the frontiers of knowledge for aeronautics and space, improving America's competitive position, and inspiring future generations. Ames' missions to accomplish that vision include: 1) performing research to support the American aviation community through the unique integration of computation, experimentation, simulation and flight testing, 2) studying the health of our planet, understanding living systems in space and the origins of the universe, developing technologies for space flight, and 3) to research, develop and deliver information technologies and applications. Information technology may be defined as the use of advance computing systems to generate data, analyze data, transform data into knowledge and to use as an aid in the decision-making process. The knowledge from transformed data can be displayed in visual, virtual and multimedia environments. The decision-making process can be fully autonomous or aided by a cognitive processes, i.e., computational aids designed to leverage human capacities. IT Systems can learn as they go, developing the capability to make decisions or aid the decision making process on the basis of experiences gained using limited data inputs. In the future, information systems will be used to aid space mission synthesis, virtual aerospace system design, aid damaged aircraft during landing, perform robotic surgery, and monitor the health and status of spacecraft and planetary probes. NASA Ames through the Center of Excellence for Information Technology Office is leading the effort in pursuit of revolutionary, IT-based approaches to satisfying NASA's aeronautics and space requirements. The objective of the effort is to incorporate information technologies within each of the Agency's four Enterprises, i.e., Aeronautics and Space Transportation Technology, Earth, Science, Human Exploration and Development of Space and Space Sciences. The end results of these efforts for Enterprise programs and projects should be reduced cost, enhanced mission capability and expedited mission completion.

  18. Technical Leadership Development Program-Year 3

    DTIC Science & Technology

    2012-08-30

    Develop an understanding of why achieving technology-based competitive advantage can be part of firm’s business strategy.  Review the Porter Model ...NUMBER H98230-08-D-0171 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Gavito /Dr. Valentin 5d. PROJECT NUMBER RT 4-3 5e. TASK...NUMBER WHS TO009 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Stevens Institute of Technology 8. PERFORMING ORGANIZATION

  19. Space Station Freedom advanced photovoltaics and battery technology development planning

    NASA Technical Reports Server (NTRS)

    Brender, Karen D.; Cox, Spruce M.; Gates, Mark T.; Verzwyvelt, Scott A.

    1993-01-01

    Space Station Freedom (SSF) usable electrical power is planned to be built up incrementally during assembly phase to a peak of 75 kW end-of-life (EOL) shortly after Permanently Manned Capability (PMC) is achieved in 1999. This power will be provided by planar silicon (Si) arrays and nickel-hydrogen (NiH2) batteries. The need for power is expected to grow from 75 kW to as much as 150 kW EOL during the evolutionary phase of SSF, with initial increases beginning as early as 2002. Providing this additional power with current technology may not be as cost effective as using advanced technology arrays and batteries expected to develop prior to this evolutionary phase. A six-month study sponsored by NASA Langley Research Center and conducted by Boeing Defense and Space Group was initiated in Aug. 1991. The purpose of the study was to prepare technology development plans for cost effective advanced photovoltaic (PV) and battery technologies with application to SSF growth, SSF upgrade after its arrays and batteries reach the end of their design lives, and other low Earth orbit (LEO) platforms. Study scope was limited to information available in the literature, informal industry contacts, and key representatives from NASA and Boeing involved in PV and battery research and development. Ten battery and 32 PV technologies were examined and their performance estimated for SSF application. Promising technologies were identified based on performance and development risk. Rough order of magnitude cost estimates were prepared for development, fabrication, launch, and operation. Roadmaps were generated describing key issues and development paths for maturing these technologies with focus on SSF application.

  20. X-33/RLV Program Aerospike Engines

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.

  1. Factors affecting construction performance: exploratory factor analysis

    NASA Astrophysics Data System (ADS)

    Soewin, E.; Chinda, T.

    2018-04-01

    The present work attempts to develop a multidimensional performance evaluation framework for a construction company by considering all relevant measures of performance. Based on the previous studies, this study hypothesizes nine key factors, with a total of 57 associated items. The hypothesized factors, with their associated items, are then used to develop questionnaire survey to gather data. The exploratory factor analysis (EFA) was applied to the collected data which gave rise 10 factors with 57 items affecting construction performance. The findings further reveal that the items constituting ten key performance factors (KPIs) namely; 1) Time, 2) Cost, 3) Quality, 4) Safety & Health, 5) Internal Stakeholder, 6) External Stakeholder, 7) Client Satisfaction, 8) Financial Performance, 9) Environment, and 10) Information, Technology & Innovation. The analysis helps to develop multi-dimensional performance evaluation framework for an effective measurement of the construction performance. The 10 key performance factors can be broadly categorized into economic aspect, social aspect, environmental aspect, and technology aspects. It is important to understand a multi-dimension performance evaluation framework by including all key factors affecting the construction performance of a company, so that the management level can effectively plan to implement an effective performance development plan to match with the mission and vision of the company.

  2. Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank

    NASA Astrophysics Data System (ADS)

    Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.

    2012-12-01

    In the frame of the Future Launcher Preparatory Program (FLPP) investigating advancing technologies for the Next Generation of Launchers (NGL) a number of novel key technologies are presently under development for significantly improving vehicle performance in terms of payload capacity and mission versatility. As a respective ESA guided technology development program, Cryogenic Upper Stage Technologies (CUST) has been launched within FLPP that hosts among others the development of a common bulkhead to separate liquid hydrogen from the liquid oxygen compartment. In this context, MT Aerospace proposed an advanced sandwich design concept which is currently in the development phase reaching for TRL4 under MT Aerospace responsibility. Key components of this sandwich common bulkhead are a specific core material, situated in-between two thin aluminum face sheets, and an innovative thermal decoupling element at the equatorial region. The combination of these elements provides excellent thermal insulation capabilities and mechanical performance at a minimum weight, since mechanical and thermal functions are merged in the same component. This improvement is expressed by substantial performance figures of the proposed concept that include high resistance against reverse pressure, an optimized heat leak and minimized mass, involving the sandwich dome structure and the adjacent interface rings. The development of single sub-technologies, all contributing to maturate the sandwich common bulkhead towards the desired technology readiness level (TRL), is described in the context of the given design constraints as well as technical, functional and programmatic requirements, issued from the stage level. This includes the thermal and mechanical characterization of core materials, manufacturing issues as well as non-destructive testing and the thermal and structural analyses and dimensioning of the complete common bulkhead system. Dedicated TRL assessments in the Ariane 5 Mid-life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.

  3. GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, A.; Lowell, M.

    2012-05-01

    GSA's Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies.

  4. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  5. Performance and life evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis and Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies: (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R and D.

  6. FY2016 Ceramic Fuels Development Annual Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcclellan, Kenneth James

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts.more » Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.« less

  7. Hall Propulsion Technology Development, NASA Glenn Research Center: 50 kW Thruster Technology EXPRESS Ground/Space Correlation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Elliott, Fred

    2000-01-01

    It is the goal of this activity to develop 50 kW class Hall thruster technology in support of cost and time critical mission applications such as orbit insertion. NASA Marshall Space Flight Center is tasked to develop technologies that enable cost and travel time reduction of interorbital transportation. Therefore, a key challenge is development of moderate specific impulse (2000-3000 s), high thrust-to-power electric propulsion. NASA Glenn Research Center is responsible for development of a Hall propulsion system to meet these needs. First-phase, sub-scale Hall engine development completed. A 10 kW engine designed, fabricated, and tested. Performance demonstrated >2400 s, >500 mN thrust over 1000 hours of operation documented.

  8. Technology Development Benefits and the Economics Breakdown Structure

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.

    1998-01-01

    This paper describes the construction and application of the EBS (Economics Breakdown Structure) in evaluating technology investments across multiple systems and organizations, illustrated with examples in space transportation technology. The United States Government (USG) has a long history of investing in technology to enable its missions. Agencies such as the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) have evaluated their technology development programs primarily on their effects on mission performance and cost. More and more, though, USG agencies are being evaluated on their technology transfer to the commercial sector. In addition, an increasing number of USG missions are being accomplished by industry-led or joint efforts, where the USG provides technology and funding but tasks industry with development and operation of the mission systems.

  9. Performance Assessment of Baseline Cells for the High Efficiency Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Schneidegger, Brianne T.

    2012-01-01

    The Enabling Technology Development and Demonstration (ETDD) Program High Efficiency Space Power Systems (HESPS) Project, formerly the Exploration Technology Development Program (ETDP) Energy Storage Project is tasked with developing advanced lithium-ion cells for future NASA Exploration missions. Under this project, components under development via various in-house and contracted efforts are delivered to Saft America for scale-up and integration into cells. Progress toward meeting project goals will be measured by comparing the performance to these cells with cells of a similar format with Saft s state-of-the-art aerospace chemistry. This report discusses the results of testing performed on the first set of baseline cells delivered by Saft to the NASA Glenn Research Center. This build is a cylindrical "DD" geometry with a 10 Ah nameplate capacity. Testing is being performed to establish baseline cell performance at conditions relevant to ETDD HESPS Battery Key Performance Parameter (KPP) goals including various temperatures, rates, and cycle life conditions. Data obtained from these cells will serve as a performance baseline for future cell builds containing optimized ETDD HESPSdeveloped materials. A test plan for these cells was developed to measure cell performance against the high energy cell KPP goals. The goal for cell-level specific energy of the high energy technology is 180 Wh/kg at a C/10 discharge rate and 0 C. The cells should operate for at least 2000 cycles at 100 percent DOD with 80 percent capacity retention. Baseline DD cells delivered 152 Wh/kg at 20 C. This number decreased to 143.9 Wh/kg with a 0 C discharge. This report provides performance data and summarizes results of the testing performed on the DD cells.

  10. Development of modelling algorithm of technological systems by statistical tests

    NASA Astrophysics Data System (ADS)

    Shemshura, E. A.; Otrokov, A. V.; Chernyh, V. G.

    2018-03-01

    The paper tackles the problem of economic assessment of design efficiency regarding various technological systems at the stage of their operation. The modelling algorithm of a technological system was performed using statistical tests and with account of the reliability index allows estimating the level of machinery technical excellence and defining the efficiency of design reliability against its performance. Economic feasibility of its application shall be determined on the basis of service quality of a technological system with further forecasting of volumes and the range of spare parts supply.

  11. Wide Strip Casting Technology of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.

    Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.

  12. Recent developments in stereoscopic and holographic 3D display technologies

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri

    2014-06-01

    Currently, there is increasing interest in the development of high performance 3D display technologies to support a variety of applications including medical imaging, scientific visualization, gaming, education, entertainment, air traffic control and remote operations in 3D environments. In this paper we will review the attributes of the various 3D display technologies including stereoscopic and holographic 3D, human factors issues of stereoscopic 3D, the challenges in realizing Holographic 3D displays and the recent progress in these technologies.

  13. Introducing new technologies into Space Station subsystems

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Mollakarimi, Cindy L.

    1989-01-01

    A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

  14. National Space Transportation and Support Study/technology requirements and plans

    NASA Technical Reports Server (NTRS)

    Walberg, G. D.; Gasperich, F. J., Jr.; Scheyhing, E. R.

    1986-01-01

    This paper presents a generic technology plan which has been developed as part of the National Space Transportation and Support Study. This program, which addresses a wide variety of potentially high payoff technology areas, is structured to promote both enhanced vehicle performance and greatly improved operational efficiency and includes both evolutionary and breakthrough technologies. The plan is presented in terms of disciplinary plan elements, which were developed by joint NASA/USAF disciplinary working groups, and as a set of demonstration projects which serve as focal points for the overall plan and drive the development of the many interrelated disciplinary activities.

  15. Scout: An Impact Analysis Tool for Building Energy-Efficiency Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Chioke; Langevin, Jared; Roth, Amir

    Evaluating the national impacts of candidate U.S. building energy-efficiency technologies has historically been difficult for organizations with large energy efficiency portfolios. In particular, normalizing results from technology-specific impact studies is time-consuming when those studies do not use comparable assumptions about the underlying building stock. To equitably evaluate its technology research, development, and deployment portfolio, the U.S. Department of Energy's Building Technologies Office has developed Scout, a software tool that quantitatively assesses the energy and CO2 impacts of building energy-efficiency measures on the national building stock. Scout efficiency measures improve upon the unit performance and/or lifetime operational costs of an equipmentmore » stock baseline that is determined from the U.S. Energy Information Administration Annual Energy Outlook (AEO). Scout measures are characterized by a market entry and exit year, unit performance level, cost, and lifetime. To evaluate measures on a consistent basis, Scout uses EnergyPlus simulation on prototype building models to translate measure performance specifications to whole-building energy savings; these savings impacts are then extended to a national scale using floor area weighting factors. Scout represents evolution in the building stock over time using AEO projections for new construction, retrofit, and equipment replacements, and competes technologies within market segments under multiple adoption scenarios. Scout and its efficiency measures are open-source, as is the EnergyPlus whole building simulation framework that is used to evaluate measure performance. The program is currently under active development and will be formally released once an initial set of measures has been analyzed and reviewed.« less

  16. TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS & PERFORMANCE CRITERIA

    EPA Science Inventory

    There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...

  17. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...

  18. Student Facing Dashboards: One Size Fits All?

    ERIC Educational Resources Information Center

    Teasley, Stephanie D.

    2017-01-01

    This emerging technology report reviews a new development in educational technology, student-facing dashboards, which provide comparative performance feedback to students calculated by Learning Analytics-based algorithms on data generated from university students' use of educational technology. Instructor- and advisor-facing dashboards emerged as…

  19. Assessment and evaluation of technologies for environmental restoration. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzochukwu, G.A.

    1999-01-15

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be mademore » available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.« less

  20. Assessment and evaluation of technologies for environmental restoration. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzochukwu, G. A.

    2000-06-30

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be mademore » available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.« less

  1. Vibration isolation technology: An executive summary of systems development and demonstration

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  2. Vibration isolation technology - An executive summary of systems development and demonstration

    NASA Astrophysics Data System (ADS)

    Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  3. A decision support tool for synchronizing technology advances with strategic mission objectives

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Willoughby, John K.

    1992-01-01

    Successful accomplishment of the objectives of many long-range future missions in areas such as space systems, land-use planning, and natural resource management requires significant technology developments. This paper describes the development of a decision-support data-derived tool called MisTec for helping strategic planners to determine technology development alternatives and to synchronize the technology development schedules with the performance schedules of future long-term missions. Special attention is given to the operations, concept, design, and functional capabilities of the MisTec. The MisTec was initially designed for manned Mars mission, but can be adapted to support other high-technology long-range strategic planning situations, making it possible for a mission analyst, planner, or manager to describe a mission scenario, determine the technology alternatives for making the mission achievable, and to plan the R&D activity necessary to achieve the required technology advances.

  4. Overview of MEMS/NEMS technology development for space applications at NASA/JPL

    NASA Astrophysics Data System (ADS)

    George, Thomas

    2003-04-01

    This paper highlights the current technology development activities of the MEMS Technology Group at JPL. A diverse range of MEMS/NEMS technologies are under development, that are primarily applicable to NASA"s needs in the area of robotic planetary exploration. MEMS/NEMS technologies have obvious advantages for space applications, since they offer the promise of highly capable devices with ultra low mass, size and power consumption. However, the key challenge appears to be in finding efficient means to transition these technologies into "customer" applications. A brief description of this problem is presented along with the Group"s innovative approach to rapidly advance the maturity of technologies via insertion into space missions. Also described are some of the major capabilities of the MEMS Technology Group. A few important examples from among the broad classes of technologies being developed are discussed, these include the "Spider Web Bolometer", High-Performance Miniature Gyroscopes, an Electron Luminescence X-ray Spectrometer, a MEMS-based "Knudsen" Thermal Transpiration pump, MEMS Inchworm Actuators, and Nanowire-based Biological/Chemical Sensors.

  5. Heavy hydrocarbon main injector technology

    NASA Technical Reports Server (NTRS)

    Fisher, S. C.; Arbit, H. A.

    1988-01-01

    One of the key components of the Advanced Launch System (ALS) is a large liquid rocket, booster engine. To keep the overall vehicle size and cost down, this engine will probably use liquid oxygen (LOX) and a heavy hydrocarbon, such as RP-1, as propellants and operate at relatively high chamber pressures to increase overall performance. A technology program (Heavy Hydrocarbon Main Injector Technology) is being studied. The main objective of this effort is to develop a logic plan and supporting experimental data base to reduce the risk of developing a large scale (approximately 750,000 lb thrust), high performance main injector system. The overall approach and program plan, from initial analyses to large scale, two dimensional combustor design and test, and the current status of the program are discussed. Progress includes performance and stability analyses, cold flow tests of injector model, design and fabrication of subscale injectors and calorimeter combustors for performance, heat transfer, and dynamic stability tests, and preparation of hot fire test plans. Related, current, high pressure, LOX/RP-1 injector technology efforts are also briefly discussed.

  6. Standard Hardware Acquisition and Reliability Program's (SHARP's) efforts in incorporating fiber optic interconnects into standard electronic module (SEM) connectors

    NASA Astrophysics Data System (ADS)

    Riggs, William R.

    1994-05-01

    SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.

  7. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  8. An Approach for Performance Assessments of Extravehicular Activity Gloves

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; Benosn, Elizabeth

    2014-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of two sets of prototype EVA gloves developed ILC Dover and David Clark Company as compared to the Phase VI. Both companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design-to hand anthropometry completed range of motion, grip/pinch strength, dexterity, and fit evaluations for each glove design in pressurized conditions, with and without thermal micrometeoroid garments (TMG) installed. This paper provides a detailed description of hardware and test methodologies used and lessons learned.

  9. Research and technology goals and objectives for Integrated Vehicle Health Management (IVHM)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Integrated Vehicle Health Management (IVHM) is defined herein as the capability to efficiently perform checkout, testing, and monitoring of space transportation vehicles, subsystems, and components before, during, and after operational This includes the ability to perform timely status determination, diagnostics, and prognostics. IVHM must support fault-tolerant response including system/subsystem reconfiguration to prevent catastrophic failures; and IVHM must support the planning and scheduling of post-operational maintenance. The purpose of this document is to establish the rationale for IVHM and IVHM research and technology planning, and to develop technical goals and objectives. This document is prepared to provide a broad overview of IVHM for technology and advanced development activities and, more specifically, to provide a planning reference from an avionics viewpoint under the OAST Transportation Technology Program Strategic Plan.

  10. Technology for low-cost PIR security sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.

    2008-03-01

    Current passive infrared (PIR) security sensors employing pyroelectric detectors are simple, cheap and reliable, but have several deficiencies. These sensors, developed two decades ago, are essentially short-range moving-target hotspot detectors. They cannot detect slow temperature changes, and thus are unable to respond to radiation stimuli indicating potential danger such as overheating electrical appliances and developing fires. They have a poor optical resolution and limited ability to recognize detected targets. Modern uncooled thermal infrared technology has vastly superior performance but as yet is too costly to challenge the PIR security sensor market. In this paper microbolometer technology will be discussed which can provide enhanced performance at acceptable cost. In addition to security sensing the technology has numerous applications in the military, industrial and domestic markets where target range is short and low cost is paramount.

  11. DEMONSTRATION AND QUALITY ASSURANCE PROJECT ...

    EPA Pesticide Factsheets

    A demonstration of field portable/mobile technologies for measuring trace elements in soil and sediments was conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. The demonstration took place from January 24 to 28, 2005, at the Kennedy Athletic, Recreational and Social Park at Kennedy Space Center on Merritt Island, Florida. The purpose of the demonstration was to verify the performance of various instruments that employ X-ray fluorescence (XRF) measurement technologies for the determination of 13 toxic elements in a variety of soil and sediment samples. Instruments from the technology developers listed below were demonstrated. o Innov-X Systems, Inc.o NITON LLC (2 instruments ) o Oxford Instruments Portable Division (formerly Metorex, Inc.) .Oxford Instruments Analytical .Rigaku, Inc.o RONTEC USA Inc.o Xcalibur XRF Services Inc. (Division of Elvatech Ltd. ) This demonstration plan describes the procedures that will be used to verify the performance and cost of the XRF instruments provided by these technology developers. The plan incorporates the quality assurance and quality control elements needed to generate data of sufficient quality to perform this verification. A separate innovative technology verification report (ITVR) will be prepared for each instrument. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented perfor

  12. Digital Learning As Enhanced Learning Processing? Cognitive Evidence for New insight of Smart Learning.

    PubMed

    Di Giacomo, Dina; Ranieri, Jessica; Lacasa, Pilar

    2017-01-01

    Large use of technology improved quality of life across aging and favoring the development of digital skills. Digital skills can be considered an enhancing to human cognitive activities. New research trend is about the impact of the technology in the elaboration information processing of the children. We wanted to analyze the influence of technology in early age evaluating the impact on cognition. We investigated the performance of a sample composed of n. 191 children in school age distributed in two groups as users: high digital users and low digital users. We measured the verbal and visuoperceptual cognitive performance of children by n. 8 standardized psychological tests and ad hoc self-report questionnaire. Results have evidenced the influence of digital exposition on cognitive development: the cognitive performance is looked enhanced and better developed: high digital users performed better in naming, semantic, visual memory and logical reasoning tasks. Our finding confirms the data present in literature and suggests the strong impact of the technology using not only in the social, educational and quality of life of the people, but also it outlines the functionality and the effect of the digital exposition in early age; increased cognitive abilities of the children tailor digital skilled generation with enhanced cognitive processing toward to smart learning.

  13. Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Dougherty, Ryan; Manzella, David

    2005-01-01

    The proposed Prometheus 1 spacecraft would utilize nuclear electric propulsion to propel the spacecraft to its ultimate destination where it would perform its primary mission. As part of the Prometheus 1 Phase A studies, system models were developed for each of the spacecraft subsystems that were integrated into one overarching system model. The Electric Propulsion System (EPS) model was developed using data from the Prometheus 1 electric propulsion technology development efforts. This EPS model was then used to provide both performance and mass information to the Prometheus 1 system model for total system trades. Development of the EPS model is described, detailing both the performance calculations as well as its evolution over the course of Phase A through three technical baselines. Model outputs are also presented, detailing the performance of the model and its direct relationship to the Prometheus 1 technology development efforts. These EP system model outputs are also analyzed chronologically showing the response of the model development to the four technical baselines during Prometheus 1 Phase A.

  14. Laboratory evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Kulaga, J. E.; Hogrefe, R. L.; Tummilo, A. F.; Webster, C. E.

    1989-03-01

    During 1988, battery technology evaluations were performed for the Department of Energy and Electric Power Research Institute at the Argonne Analysis and Diagnostic Laboratory. Cells and multicell modules from four developers were examined to determine their performance and life characteristics for electric vehicle propulsion applications. The results provide an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R and D. This paper summarizes the performance and life characterizations of twelve single cells and six 3- to 24-cell modules that encompass four technologies (Na/S, Ni/Fe, lead-acid, and Fe/Air).

  15. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  16. Advanced Materials and Component Development for Lithium-Ion Cells for NASA Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2012-01-01

    Human missions to Near Earth Objects, such as asteroids, planets, moons, liberation points, and orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or extended capabilities than are possible with today s state-of-the-art aerospace batteries. The Enabling Technology Development and Demonstration Program, High Efficiency Space Power Systems Project battery development effort at the National Aeronautics and Space Administration (NASA) is continuing advanced lithium-ion cell development efforts begun under the Exploration Technology Development Program Energy Storage Project. Advanced, high-performing materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level in order to meet the performance goals for NASA s High Energy and Ultra High Energy cells. NASA s overall approach to advanced cell development and interim progress on materials performance for the High Energy and Ultra High Energy cells after approximately 1 year of development has been summarized in a previous paper. This paper will provide an update on these materials through the completion of 2 years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near term cell products will be discussed.

  17. Development of specification for the superpave simple performance tests (SPT).

    DOT National Transportation Integrated Search

    2009-05-16

    This report describes the development and establishment of a proposed Simple Performance : Test (SPT) specification in order to contribute to the asphalt materials technology in the state of : Michigan. The properties and characteristic of materials,...

  18. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  19. Systems Engineering Programmatic Estimation Using Technology Variance

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2000-01-01

    Unique and innovative system programmatic estimation is conducted using the variance of the packaged technologies. Covariance analysis is performed on the subsystems and components comprising the system of interest. Technological "return" and "variation" parameters are estimated. These parameters are combined with the model error to arrive at a measure of system development stability. The resulting estimates provide valuable information concerning the potential cost growth of the system under development.

  20. Performance of a low data rate speech codec for land-mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Gersho, Allen; Jedrey, Thomas C.

    1990-01-01

    In an effort to foster the development of new technologies for the emerging land mobile satellite communications services, JPL funded two development contracts in 1984: one to the Univ. of Calif., Santa Barbara and the other to the Georgia Inst. of Technology, to develop algorithms and real time hardware for near toll quality speech compression at 4800 bits per second. Both universities have developed and delivered speech codecs to JPL, and the UCSB codec was extensively tested by JPL in a variety of experimental setups. The basic UCSB speech codec algorithms and the test results of the various experiments performed with this codec are presented.

  1. Curriculum Development and Alignment in Radiologic Technology.

    ERIC Educational Resources Information Center

    Dowd, Steven B.

    Before developing a curriculum for radiologic technology, one must first attempt to define the term "curriculum." The term is not easy to define precisely, although it does imply the necessity of a master plan that outlines institutional philosophy and goals, course descriptions, description of competency-based evaluation, performance objectives,…

  2. Advanced Electricity. Microprocessors and Robotics. Curriculum Development. Bulletin 1803.

    ERIC Educational Resources Information Center

    Southeastern Louisiana Univ., Hammond.

    This model instructional unit was developed to aid industrial arts/technology education teachers in Louisiana to teach a course on microprocessors and robotics in grades 11 and 12. It provides guidance on model performance objectives, current technology content, sources, and supplemental materials. Following a course description, rationale, and…

  3. Professional Standards for Physical Education Teachers' Professional Development: Technologies for Performance?

    ERIC Educational Resources Information Center

    Macdonald, Doune; Mitchell, Jane; Mayer, Diane

    2006-01-01

    Background: The widespread and diverse models of professional standards for teaching raise questions with respect to the need to provide teachers with a pathway for continuing professional development balanced with the public nature of surveillance and accountability that may accompany standards. Ways of understanding technologies of power in…

  4. Behavioral Health and Performance (BHP) Work-Rest Cycles

    NASA Technical Reports Server (NTRS)

    Leveton, Lauren B.; Whitmire, Alexandra

    2011-01-01

    BHP Program Element Goal: Identify, characterize, and prevent or reduce behavioral health and performance risks associated with space travel, exploration and return to terrestrial life. BHP Requirements: a) Characterize and assess risks (e.g., likelihood and consequences). b) Develop tools and technologies to prevent, monitor, and treat adverse outcomes. c) Inform standards. d) Develop technologies to: 1) reduce risks and human systems resource requirements (e.g., crew time, mass, volume, power) and 2) ensure effective human-system integration across exploration mission.

  5. Tailored Systems Architecture for Design of Space Science and Technology Missions Using DoDAF V2.0

    DTIC Science & Technology

    2009-12-01

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Air Force Institute of Technology,2950 Hobson Way,WPAFB,OH,45433-7765 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...the focus on rapid development and transition, if a system architecture framework could be developed and used to increase visibility within the

  6. Tailored Systems Architecture for Design of Space Science and Technology Missions using DoDAF V2.0

    DTIC Science & Technology

    2009-12-01

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Air Force Institute of Technology,2950 Hobson Way,WPAFB,OH,45433-7765 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...the focus on rapid development and transition, if a system architecture framework could be developed and used to increase visibility within the

  7. Microrobotics for future gastrointestinal endoscopy.

    PubMed

    Menciassi, Arianna; Quirini, Marco; Dario, Paolo

    2007-01-01

    The impulse given by robotic technologies and imaging techniques to the development of a new way to conceive and perform surgery is clearly visible. Nowadays, minimally invasive surgical (MIS) procedures are often performed with the assistance of robots, such as the Da Vinci master-slave system, the AESOP robot with voice control, etc. In addition, mechatronic technologies are becoming the elective technologies for designing advanced hand-held surgical tools. The introduction of robotic technologies in endoscopy has been slower than in MIS, since the development of miniaturized robotic components for entering the small orifices of the human body is difficult. On the other hand, the large contribution that robotic technologies could bring to endoluminal techniques has been evident since the first development of instrumented catheters. In the 1990s, there was an increasing activity in the application of robotic technologies to improve endoscopic procedures in the gastrointestinal tract. The objective of robotic colonoscopy and gastroscopy was to obtain more effective diagnoses in terms of reduced pain for the patients, and to make uniform the diagnostic procedures, which too often depended on the manual abilities of the endoscopist. Currently, the availability of more reliable robotic technologies for miniaturization of size and integration of functions has allowed to conceive and develop robotic pills for the early screening of the digestive tract, with dramatic potential advantages for patients, endoscopists, and healthcare system.

  8. Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    1994-01-01

    Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.

  9. Advanced Technological Education Program: 1995 Awards and Activities.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    The Advanced Technological Education (ATE) program promotes exemplary improvement in advanced technological education at the national and regional level through support of curriculum development and program improvement at the undergraduate and secondary school levels, especially for technicians being educated for the high performance workplace of…

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: AISIN SEIKI 6.0 KW NATURAL-GAS-FIRED ENGINE COGENERATION UNIT

    EPA Science Inventory

    The U.S. EPA's Office of Research and Development operates the Environmental Technology Verification (ETV) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. Congress funds ETV in response to the belief ...

  11. TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS AND PERFORMANCE CRITERIA

    EPA Science Inventory

    There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...

  12. TESTING, PERFORMANCE VALIDATION AND QUALITY ASSURANCE/QUALITY CONTROL OF FIELD-PORTABLE INSTRUMENTATION

    EPA Science Inventory

    New technologies for field-portable monitoring instruments often have a long lead time in development and authorization. Some obstacles to the acceptance of these pilot technologies include concern about liabilities, reluctance to take risks on new technologies, and uncertainty a...

  13. Performance Evaluation of Innovative Water Main Rehabilitation Spray-on Lining Product in Somerville, NJ

    EPA Science Inventory

    Renewal technologies being used for the repair, replacement and/or rehabilitation of deteriorating water distribution systems are generally effective, but there is still considerable room for improvement of these existing technologies and for the development of new technologies. ...

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - LEAD IN DUST WIPE MEASUREMENT TECHNOLOGY, PALINTEST, SCANNING ANALYZER , SA-5000 SYSTEM

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  15. Advances in point-of-care technologies for molecular diagnostics.

    PubMed

    Zarei, Mohammad

    2017-12-15

    Advances in miniaturization, nanotechnology, and microfluidics, along with developments in cloud-connected point-of-care (POC) diagnostics technologies are pushing the frontiers of POC devices toward low-cost, user-friendly, and enhanced sensitivity molecular-level diagnostics. The combination of various bio-sensing platforms within smartphone-integrated electronic readers provides accurate on-site and on-time diagnostics based on various types of chemical and biological targets. Further, 3D printing technology shows a huge potential toward fabrication and improving the performance of POC devices. Integration of skin-like flexible sensors with wireless communication technology creates a unique opportunity for continuous, real-time monitoring of patients for both preventative healthcare and during disease outbreaks. Here, we review recent developments and advances in POC technologies and describe how these advances enhance the performance of POC platforms. Also, this review describes challenges, directions, and future trends on application of emerging technologies in POC diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Technical Submission Form: Technical Specification of a Wave Energy Farm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Nielsen, Kim; Kennedy, Ben

    The Wave - SPARC project developed the Technology Performance Level (TPL) assessment procedure based on a rigorous Systems Engineering exercise. The TPL assessment allows a whole system evaluation of Wave Energy Conversion Technology by measuring it against the requirements determined through the Systems Engineering exercise. The TPL assessment is intended to be useful in technology evaluation; in technology innovation; in allocation of public or priva te investment, and; in making equipment purchasing decisions. This Technical Submission Form (TSF) serves the purpose of collecting relevant and complete information, in a technology agnostic way, to allow TPL assessment s to be mademore » by third party assessor s. The intended usage of this document is that the organization or people that are performing the role of developers or promoters of a particular technology will use this form to provide the information necessary for the organization or people who are perf orming the assessor role to use the TPL assessment.« less

  17. Assessment, evaluation, and testing of technologies for environmental restoration, decontamination, and decommissioning and high level waste management. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzochukwu, G.A.

    1997-12-31

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration, decontamination and decommissioning, and high-level waste management objectives are being assessed and evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objectives of the environmental restoration, decontamination and decommissioning, and high-level waste management effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formattedmore » and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.« less

  18. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  19. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  20. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  1. Improving stability and curving passing performance for railway vehicles with a variable stiffness MRF rubber joint

    NASA Astrophysics Data System (ADS)

    Harris, B. J.; Sun, S. S.; Li, W. H.

    2017-03-01

    With the growing need for effective intercity transport, the need for more advanced rail vehicle technology has never been greater. The conflicting primary longitudinal suspension requirements of high speed stability and curving performance limit the development of rail vehicle technology. This paper presents a novel magnetorheological fluid based joint with variable stiffness characteristics for the purpose of overcoming this parameter conflict. Firstly, the joint design and working principle is developed. Following this, a prototype is tested by MTS to characterize its variable stiffness properties under a range of conditions. Lastly, the performance of the proposed MRF rubber joint with regard to improving train stability and curving performance is numerically evaluated.

  2. Space science/space station attached payload pointing accommodation study: Technology assessment white paper

    NASA Technical Reports Server (NTRS)

    Lin, Richard Y.; Mann, Kenneth E.; Laskin, Robert A.; Sirlin, Samuel W.

    1987-01-01

    Technology assessment is performed for pointing systems that accommodate payloads of large mass and large dimensions. Related technology areas are also examined. These related areas include active thermal lines or power cables across gimbals, new materials for increased passive damping, tethered pointing, and inertially reacting pointing systems. Conclusions, issues and concerns, and recommendations regarding the status and development of large pointing systems for space applications are made based on the performed assessments.

  3. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  4. Research and Development of Fully Automatic Alien Smoke Stack and Packaging System

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu

    2017-12-01

    The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.

  5. National Security Technology Incubator Evaluation Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report describes the process by which the National Security Technology Incubator (NSTI) will be evaluated. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of the components, steps, and measures of the proposed evaluation process. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages ofmore » early development. An effective evaluation process of the NSTI is an important step as it can provide qualitative and quantitative information on incubator performance over a given period. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The mission of the NSTI is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. To achieve success for both incubator businesses and the NSTI program, an evaluation process is essential to effectively measure results and implement corrective processes in the incubation design if needed. The evaluation process design will collect and analyze qualitative and quantitative data through performance evaluation system.« less

  6. Performance Testing of the Vapor Phase Catalytic Ammonia Removal Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Tleimat, Maher; Nalette, Tim; Quinn, Gregory

    2005-01-01

    This paper describes the results of performance testing of the Vapor Phase Catalytic Ammonia Removal (VPCAR) technology. The VPCAR technology is currently being developed by NASA as a Mars transit vehicle water recycling system. NASA has recently completed-a grant-to develop a next generation VPCAR system. This grant concluded with the shipment of the final deliverable to NASA on 8/31/03. This paper presents the results of mass, power, volume, and acoustic measurements for the delivered system. Product water purity analysis for a Mars transit mission and a simulated planetary base wastewater ersatz are also provided.

  7. Twelve tips to promote successful development of a learner performance dashboard within a medical education program.

    PubMed

    Boscardin, Christy; Fergus, Kirkpatrick B; Hellevig, Bonnie; Hauer, Karen E

    2017-11-09

    Easily accessible and interpretable performance data constitute critical feedback for learners that facilitate informed self-assessment and learning planning. To provide this feedback, there has been a proliferation of educational dashboards in recent years. An educational (learner) dashboard systematically delivers timely and continuous feedback on performance and can provide easily visualized and interpreted performance data. In this paper, we provide practical tips for developing a functional, user-friendly individual learner performance dashboard and literature review of dashboard development, assessment theory, and users' perspectives. Considering key design principles and maximizing current technological advances in data visualization techniques can increase dashboard utility and enhance the user experience. By bridging current technology with assessment strategies that support learning, educators can continue to improve the field of learning analytics and design of information management tools such as dashboards in support of improved learning outcomes.

  8. TECHNOLOGICAL INNOVATION IN NEUROSURGERY: A QUANTITATIVE STUDY

    PubMed Central

    Marcus, Hani J; Hughes-Hallett, Archie; Kwasnicki, Richard M; Darzi, Ara; Yang, Guang-Zhong; Nandi, Dipankar

    2015-01-01

    Object Technological innovation within healthcare may be defined as the introduction of a new technology that initiates a change in clinical practice. Neurosurgery is a particularly technologically intensive surgical discipline, and new technologies have preceded many of the major advances in operative neurosurgical technique. The aim of the present study was to quantitatively evaluate technological innovation in neurosurgery using patents and peer-reviewed publications as metrics of technology development and clinical translation respectively. Methods A patent database was searched between 1960 and 2010 using the search terms “neurosurgeon” OR “neurosurgical” OR “neurosurgery”. The top 50 performing patent codes were then grouped into technology clusters. Patent and publication growth curves were then generated for these technology clusters. A top performing technology cluster was then selected as an exemplar for more detailed analysis of individual patents. Results In all, 11,672 patents and 208,203 publications relating to neurosurgery were identified. The top performing technology clusters over the 50 years were: image guidance devices, clinical neurophysiology devices, neuromodulation devices, operating microscopes and endoscopes. Image guidance and neuromodulation devices demonstrated a highly correlated rapid rise in patents and publications, suggesting they are areas of technology expansion. In-depth analysis of neuromodulation patents revealed that the majority of high performing patents were related to Deep Brain Stimulation (DBS). Conclusions Patent and publication data may be used to quantitatively evaluate technological innovation in neurosurgery. PMID:25699414

  9. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, We use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  10. Space Station Engineering and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The evolving space station program will be examined through a series of more specific studies: maintainability; research and technology in space; solar thermodynamics research and technology; program performance; onboard command and control; and research and technology road maps. The purpose is to provide comments on approaches to long-term, reliable operation at low cost in terms of funds and crew time.

  11. GSFC Cutting Edge Avionics Technologies for Spacecraft

    NASA Technical Reports Server (NTRS)

    Luers, Philip J.; Culver, Harry L.; Plante, Jeannette

    1998-01-01

    With the launch of NASA's first fiber optic bus on SAMPEX in 1992, GSFC has ushered in an era of new technology development and insertion into flight programs. Predating such programs the Lewis and Clark missions and the New Millenium Program, GSFC has spearheaded the drive to use cutting edge technologies on spacecraft for three reasons: to enable next generation Space and Earth Science, to shorten spacecraft development schedules, and to reduce the cost of NASA missions. The technologies developed have addressed three focus areas: standard interface components, high performance processing, and high-density packaging techniques enabling lower cost systems. To realize the benefits of standard interface components GSFC has developed and utilized radiation hardened/tolerant devices such as PCI target ASICs, Parallel Fiber Optic Data Bus terminals, MIL-STD-1773 and AS1773 transceivers, and Essential Services Node. High performance processing has been the focus of the Mongoose I and Mongoose V rad-hard 32-bit processor programs as well as the SMEX-Lite Computation Hub. High-density packaging techniques have resulted in 3-D stack DRAM packages and Chip-On-Board processes. Lower cost systems have been demonstrated by judiciously using all of our technology developments to enable "plug and play" scalable architectures. The paper will present a survey of development and insertion experiences for the above technologies, as well as future plans to enable more "better, faster, cheaper" spacecraft. Details of ongoing GSFC programs such as Ultra-Low Power electronics, Rad-Hard FPGAs, PCI master ASICs, and Next Generation Mongoose processors.

  12. Space Storable Rocket Technology (SSRT) basic program

    NASA Technical Reports Server (NTRS)

    Chazen, M. L.; Mueller, T.; Casillas, A. R.; Huang, D.

    1992-01-01

    The Space Storable Rocket Technology Program (SSRT) was conducted to establish a technology for a new class of high performance and long life bipropellant engines using space storable propellants. The results are described. Task 1 evaluated several characteristics for a number of fuels to determine the best space storable fuel for use with LO2. The results indicated that LO2-N2H4 is the best propellant combination and provides the maximum mission/system capability maximum payload into GEO of satellites. Task 2 developed two models, performance and thermal. The performance model indicated the performance goal of specific impulse greater than or = 340 seconds (sigma = 204) could be achieved. The thermal model was developed and anchored to hot fire test data. Task 3 consisted of design, fabrication, and testing of a 200 lbf thrust test engine operating at a chamber pressure of 200 psia using LO2-N2H4. A total of 76 hot fire tests were conducted demonstrating performance greater than 340 (sigma = 204) which is a 25 second specific impulse improvement over the existing highest performance flight apogee type engines.

  13. Projection technologies for imaging sensor calibration, characterization, and HWIL testing at AEDC

    NASA Astrophysics Data System (ADS)

    Lowry, H. S.; Breeden, M. F.; Crider, D. H.; Steely, S. L.; Nicholson, R. A.; Labello, J. M.

    2010-04-01

    The characterization, calibration, and mission simulation testing of imaging sensors require continual involvement in the development and evaluation of radiometric projection technologies. Arnold Engineering Development Center (AEDC) uses these technologies to perform hardware-in-the-loop (HWIL) testing with high-fidelity complex scene projection technologies that involve sophisticated radiometric source calibration systems to validate sensor mission performance. Testing with the National Institute of Standards and Technology (NIST) Ballistic Missile Defense Organization (BMDO) transfer radiometer (BXR) and Missile Defense Agency (MDA) transfer radiometer (MDXR) offers improved radiometric and temporal fidelity in this cold-background environment. The development of hardware and test methodologies to accommodate wide field of view (WFOV), polarimetric, and multi/hyperspectral imaging systems is being pursued to support a variety of program needs such as space situational awareness (SSA). Test techniques for the acquisition of data needed for scene generation models (solar/lunar exclusion, radiation effects, etc.) are also needed and are being sought. The extension of HWIL testing to the 7V Chamber requires the upgrade of the current satellite emulation scene generation system. This paper provides an overview of pertinent technologies being investigated and implemented at AEDC.

  14. Characterization, monitoring, and sensor technology catalogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community.more » Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.« less

  15. Radiation Effects on Current Field Programmable Technologies

    NASA Technical Reports Server (NTRS)

    Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.

    1997-01-01

    Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.

  16. Planar Fully-Depleted-Silicon-On-Insulator technologies: Toward the 28 nm node and beyond

    NASA Astrophysics Data System (ADS)

    Doris, B.; DeSalvo, B.; Cheng, K.; Morin, P.; Vinet, M.

    2016-03-01

    This paper presents a comprehensive overview of the research done in the last decade on planar Fully-Depleted-Silicon-On-Insulator (FDSOI) technologies in the frame of the joint development program between IBM, ST Microelectronics and CEA-LETI. In particular, we review the technological developments ranging from substrate engineering to process modules that enable functionality and improve FDSOI performance over several generations. Various multi Vt integration schemes to maximize the benefits of the thin BOX FDSOI platform are discussed. Manufacturability as well as scalability concerns are highlighted and addressed. In addition, this work provides understanding of the performance/power trade-offs for FDSOI circuits and device variability. Finally, clear directions for future application-specific products are given, demonstrating that FDSOI is an attractive CMOS option for next generation high performance and low-power applications.

  17. Optical Measurements for Intelligent Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    2003-01-01

    There is growing interest in applying intelligent technologies to aerospace propulsion systems to reap expected benefits in cost, performance, and environmental compliance. Cost benefits span the engine life cycle from development, operations, and maintenance. Performance gains are anticipated in reduced fuel consumption, increased thrust-toweight ratios, and operability. Environmental benefits include generating fewer pollutants and less noise. Critical enabling technologies to realize these potential benefits include sensors, actuators, logic, electronics, materials, and structures. For propulsion applications, the challenge is to increase the robustness of these technologies so that they can withstand harsh temperatures, vibrations, and grime while providing extremely reliable performance. This paper addresses the role that optical metrology is playing in providing solutions to these challenges. Optics for ground-based testing (development cycle), flight sensing (operations), and inspection (maintenance) are described. Opportunities for future work are presented.

  18. On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry applications.

    PubMed

    Torres, César Iván

    2014-06-01

    The development of microbial electrochemistry research toward technological applications has increased significantly in the past years, leading to many process configurations. This short review focuses on the need to identify and characterize the fundamental phenomena that control the performance of microbial electrochemical cells (MXCs). Specifically, it discusses the importance of recent efforts to discover and characterize novel microorganisms for MXC applications, as well as recent developments to understand transport limitations in MXCs. As we increase our understanding of how MXCs operate, it is imperative to continue modeling efforts in order to effectively predict their performance, design efficient MXC technologies, and implement them commercially. Thus, the success of MXC technologies largely depends on the path of identifying, understanding, and predicting fundamental phenomena that determine MXC performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Development Status of High-Thrust Density Electrostatic Engines

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Haag, Thomas W.; Foster, John E.; Young, Jason A.; Crofton, Mark W.

    2017-01-01

    Ion thruster technology offers the highest performance and efficiency of any mature electric propulsion thruster. It has by far the highest demonstrated total impulse of any technology option, demonstrated at input power levels appropriate for primary propulsion. It has also been successfully implemented for primary propulsion in both geocentric and heliocentric environments, with excellent ground/in-space correlation of both its performance and life. Based on these attributes there is compelling reasoning to continue the development of this technology: it is a leading candidate for high power applications; and it provides risk reduction for as-yet unproven alternatives. As such it is important that the operational limitations of ion thruster technology be critically examined and in particular for its application to primary propulsion its capabilities relative to thrust the density and thrust-to-power ratio be understood. This publication briefly addresses some of the considerations relative to achieving high thrust density and maximizing thrust-to-power ratio with ion thruster technology, and discusses the status of development work in this area being executed under a collaborative effort among NASA Glenn Research Center, the Aerospace Corporation, and the University of Michigan.

  20. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basicmore » PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.« less

  1. The WCSAR telerobotics test bed

    NASA Technical Reports Server (NTRS)

    Duffie, N.; Zik, J.; Teeter, R.; Crabb, T.

    1988-01-01

    Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators.

  2. High-performance MCT and QWIP IR detectors at Sofradir

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Rubaldo, Laurent; Manissadjian, Alain; Billon-Lanfrey, David; Rothman, Johan; de Borniol, Eric; Destéfanis, Gérard; Costard, E.

    2012-11-01

    Cooled IR technologies are challenged for answering new system needs like compactness and reduction of cryo-power which is key feature for the SWaP (Size, Weight and Power) requirements. This paper describes the status of MCT IR technology in France at Leti and Sofradir. A focus will be made on hot detector technology for SWAP applications. Sofradir has improved its HgCdTe technology to open the way for High Operating Temperature systems that release the Stirling cooler engine power consumption. Solutions for high performance detectors such as dual bands, much smaller pixel pitch or megapixels will also be discussed. In the meantime, the development of avalanche photodiodes or TV format with digital interface is key to bringing customers cutting-edge functionalities. Since 1997, Sofradir has been working with Thales and Research Technologies (TRT) to develop and produce Quantum Well Infrared Photodetectors (QWIP) as a complementary offer with MCT, to provide large LW staring arrays. A dualband MW-LW QWIP detector (25μm pitch 384×288 IDDCA) is currently under development. We will present in this paper its latest results.

  3. Concept development of a Mach 3.0 high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Robins, A. Warner; Dollyhigh, Samuel M.; Beissner, Fred L., Jr.; Geiselhart, Karl; Martin, Glenn L.; Shields, E. W.; Swanson, E. E.; Coen, Peter G.; Morris, Shelby J., Jr.

    1988-01-01

    A baseline concept for a Mach 3.0 high-speed civil transport concept was developed as part of a national program with the goal that concepts and technologies be developed which will enable an effective long-range high-speed civil transport system. The Mach 3.0 concept reported represents an aggressive application of advanced technology to achieve the design goals. The level of technology is generally considered to be that which could have a demonstrated availability date of 1995 to 2000. The results indicate that aircraft are technically feasible that could carry 250 passengers at Mach 3.0 cruise for a 6500 nautical mile range at a size, weight and performance level that allows it to fit into the existing world airport structure. The details of the configuration development, aerodynamic design, propulsion system design and integration, mass properties, mission performance, and sizing are presented.

  4. History of Antenna Technology for Mobile Communications in Korea

    NASA Astrophysics Data System (ADS)

    Min, Kyeong-Sik; Park, Chul-Keun; Kang, Suk-Youb

    In this paper, we discuss the development of wireless and mobile communications in Korea, current technological trends, and the future outlook on technological developments. Since the introduction of the telegraph and the telephone in September 1885, Korea's wired and wireless communications industry has consistently developed for over 100 years. Since 1984, upon the provision of the mobile telecommunications service, the industry has seen drastic qualitative and quantitative growth in terms of both technical and economic aspects, which played a crucial role in the rapid growth of the digital industry in Korea. After the era of the analog cellular service based on the Advanced Mobile Phone System (AMPS), a precursor to the modern mobile service, Korea became the world's first country to commercialize Code Division Multiple Access (CDMA) in 1996 and succeeded in commercializing CDMA 2000 lx (IMT 2000) in 2001. With further developments in the mobile communication technology, the technology for antennas also saw drastic advancements. As the mobile antennas moved from the second to the third generation, they grew from external models to very small internal models. At the same time, they evolved into highly functional and high performance multiple band and wide band antennas. Furthermore, Korea was the first country to commercialize and offer the Wireless Broadband Internet (WiBro) service in 2006. By leading the wireless communications standardization and exerting remarkable efforts in research and development, Korea is consolidating its status as an Information Technology (IT) leader in the global market. The antenna's inherent importance will be further emphasized in the near future as it satisfies the performance and structural needs of portable terminals necessary for realizing the projected establishment of the ubiquitous world. It is thought that antenna technologies will not be limited to simple concepts as previously experienced but will utilize various kinds of materials that build the terminals' structure and framework. Moreover, studies will be performed with an emphasis on multiple band, multiple directivity, and ultra-wide band. Accordingly, antenna technologies to which new concepts are applied, such as SMART antenna and MIMO antenna technologies and meta-materials, will surely be effective alternatives.

  5. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, S.T.; Atwood, T.; Qiu Daxiong

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, andmore » the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.« less

  6. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moawad, Ayman; Kim, Namdoo; Shidore, Neeraj

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of themore » rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.« less

  7. 10 CFR 603.110 - Use of TIAs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... performers to develop and use new business practices and disseminate best practices throughout the technology... ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS General § 603.110 Use of TIAs. The ultimate goal for using a TIA is to broaden the technology base available to meet DOE mission...

  8. University-Industry Entrepreneurship: The Organization and Management of American University Technology Transfer Units.

    ERIC Educational Resources Information Center

    Dill, David D.

    1995-01-01

    A survey of 289 university technology transfer units investigated their organization, management, and perceived performance effectiveness. Unit types studied included licensing and patent offices, small business development centers, research and technology centers, business facility incubators, and entrepreneurial investment/endowment offices.…

  9. ANIMAL WASTE IMPACT ON SOURCE WATERSAIDED BY EPA/NSF ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) SOURCE WATER PROTECTION PILOT

    EPA Science Inventory

    The Environmental Technology Verification Program (ETV) was established in 1995 by the U.S. Environmental Protection Agency to encourage the development and commercialization of new environmental technologies through third part testing and reporting of performance data. By ensur...

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - LEAD IN DUST WIPE MEASUREMENT TECHNOLOGY, NITON CORPORATION, X-RAY FLURESCENCE SPECTRUM ANALYZER, XL-700

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  11. U.S. EPA Environmental Technology Verification Program, the Founder of the ETV Concept

    EPA Science Inventory

    The U.S. EPA Environmental Technology Verification (ETV) Program develops test protocols and verifies the performance of innovative technologies that have the potential to improve protection of human health and the environment. The program was created in 1995 to help accelerate t...

  12. The High-Performance Computing and Communications program, the national information infrastructure and health care.

    PubMed Central

    Lindberg, D A; Humphreys, B L

    1995-01-01

    The High-Performance Computing and Communications (HPCC) program is a multiagency federal effort to advance the state of computing and communications and to provide the technologic platform on which the National Information Infrastructure (NII) can be built. The HPCC program supports the development of high-speed computers, high-speed telecommunications, related software and algorithms, education and training, and information infrastructure technology and applications. The vision of the NII is to extend access to high-performance computing and communications to virtually every U.S. citizen so that the technology can be used to improve the civil infrastructure, lifelong learning, energy management, health care, etc. Development of the NII will require resolution of complex economic and social issues, including information privacy. Health-related applications supported under the HPCC program and NII initiatives include connection of health care institutions to the Internet; enhanced access to gene sequence data; the "Visible Human" Project; and test-bed projects in telemedicine, electronic patient records, shared informatics tool development, and image systems. PMID:7614116

  13. DE-FOA-EE0005502 Advanced Percussive Drilling Technology for Geothermal Exploration and Development Phase II Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiann-Cherng; Raymond, David W.; Prasad, Somuri V.

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.« less

  14. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiann; Raymond, David; Prasad, Somuri

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.« less

  15. Project Assessment Framework through Design (PAFTD) - A Project Assessment Framework in Support of Strategic Decision Making

    NASA Technical Reports Server (NTRS)

    Depenbrock, Brett T.; Balint, Tibor S.; Sheehy, Jeffrey A.

    2014-01-01

    Research and development organizations that push the innovation edge of technology frequently encounter challenges when attempting to identify an investment strategy and to accurately forecast the cost and schedule performance of selected projects. Fast moving and complex environments require managers to quickly analyze and diagnose the value of returns on investment versus allocated resources. Our Project Assessment Framework through Design (PAFTD) tool facilitates decision making for NASA senior leadership to enable more strategic and consistent technology development investment analysis, beginning at implementation and continuing through the project life cycle. The framework takes an integrated approach by leveraging design principles of useability, feasibility, and viability and aligns them with methods employed by NASA's Independent Program Assessment Office for project performance assessment. The need exists to periodically revisit the justification and prioritization of technology development investments as changes occur over project life cycles. The framework informs management rapidly and comprehensively about diagnosed internal and external root causes of project performance.

  16. Theoretical and practical considerations for teaching diagnostic electronic-nose technologies to clinical laboratory technicians

    Treesearch

    Alphus D. Wilson

    2012-01-01

    The rapid development of new electronic technologies and instruments, utilized to perform many current clinical operations in the biomedical field, is changing the way medical health care is delivered to patients. The majority of test results from laboratory analyses, performed with these analytical instruments often prior to clinical examinations, are frequently used...

  17. The U.S. Army in the 1970's: Developments in Training and Manpower Technologies. Professional Paper 77-01.

    ERIC Educational Resources Information Center

    Prophet, Wallace W.

    An examination of Army instructional research and training programs in three specific areas may suggest implications for civilian instruction: (1) Performance-based instructional systems, (2) education and training for lower aptitude personnel, and (3) uses of instructional technology. The performance-based instructional system is based on…

  18. Mathematics for the Workplace. Applications from Medical Laboratory Technology. A Teacher's Guide.

    ERIC Educational Resources Information Center

    Wallace, Johnny M.; Jones, Dallas

    This module presents a real-world context in which mathematics skills are used as part of a daily routine. The context is the medical laboratory technology field, and the module aims to help students develop the ability to use mathematics computations while performing tasks similar to those performed by a medical technologist. Materials in the…

  19. Process compressor technology. Volume 2: TI-59 manual for estimating centrifugal compressor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapina, R.P.

    1983-01-01

    This volume provides the performance-estimating procedures of Volume 1 in the from of calculator programs. Each chapter contains one program and is divided into five parts: the background (which develops the technology and equations); the program description; user instructions; sample problems; and the program listing. More than 25 programs are included.

  20. Technology developments integrating a space network communications testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.

  1. Biomimetics: determining engineering opportunities from nature

    NASA Astrophysics Data System (ADS)

    Fish, Frank E.

    2009-08-01

    The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. For biologists, an adaptationist program has allowed for the identification of novel features of organisms based on engineering principles; whereas for engineers, identification of such novel features is necessary to exploit them for biomimetic development. Adaptations (leading edge tubercles to passively modify flow and high efficiency oscillatory propulsive systems) from marine animals demonstrate potential utility in the development of biomimetic products. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.

  2. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateralmore » wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.« less

  3. Project Icarus: Nuclear Fusion Propulsion Concept Comparison

    NASA Astrophysics Data System (ADS)

    Stanic, M.

    Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.

  4. Reducing Risk in DoD Software-Intensive Systems Development

    DTIC Science & Technology

    2016-03-01

    intensive systems development risk. This research addresses the use of the Technical Readiness Assessment (TRA) using the nine-level software Technology...The software TRLs are ineffective in reducing technical risk for the software component development. • Without the software TRLs, there is no...effective method to perform software TRA or reduce the technical development risk. The software component will behave as a new, untried technology in nearly

  5. Integrating medical, assistive, and universal design products and technologies: Assistive Technology Service Method (ATSM).

    PubMed

    Elsaesser, Linda-Jeanne; Bauer, Stephen

    2012-07-01

    ISO26000 provides guidance on effective organizational performance that recognizes social responsibility (including rights of persons with disabilities (PWD)), engages stakeholders, and contributes to sustainable development [1]. Millennium Development Goals 2010 state: while progress has been made, insufficient dedication to sustainable development, and inequalities to the most vulnerable people require attention [2]. World Report on Disability 2011 recommendations includes improved data collection and removal of barriers to rehabilitation that empower PWD [3]. The Assistive Technology Service Method (ATSM), Assistive Technology Device Classification (ATDC) and Matching Person and Technology (MPT) provide an evidence-based, standardized, internationally comparable framework to improve rehabilitation interventions [4-6]. The ATSM and ATDC support universal design (UD) principles and provision of universal technology. The MPT assures interventions are effective and satisfactory to end-users [7]. The ICF conceptual framework and common language are used throughout [8]. Research findings on healthcare needs are translated. ATSM applications in support of these findings are presented. National initiatives demonstrate the need and value of the ATSM as an evidence-based, user-centric, interdisciplinary method to improve individual and organizational performance for rehabilitation [including AT] services. Two Disability & Rehabilitation: Assistive Technology articles demonstrate ATSM and ATDC use to strengthen rehabilitation services and integrate Universal Design principles for socially responsible behavior.

  6. Digital Actuator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ken Thomas; Ted Quinn; Jerry Mauck

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs duemore » to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.« less

  7. Latest improvements on long wave p on n HgCdTe technology at Sofradir

    NASA Astrophysics Data System (ADS)

    Rubaldo, Laurent; Taalat, Rachid; Berthoz, Jocelyn; Maillard, Magalie; Péré-Laperne, Nicolas; Brunner, Alexandre; Guinedor, Pierre; Dargent, L.; Manissadjian, A.; Reibel, Y.; Kerlain, A.

    2017-02-01

    SOFRADIR is the worldwide leader on the cooled IR detector market for high-performance space, military and security applications thanks to a well mastered Mercury Cadmium Telluride (MCT) technology, and recently thanks to the acquisition of III-V technology: InSb, InGaAs, and QWIP quantum detectors. As a result, strong and continuous development efforts are deployed to deliver cutting edge products with improved performances in terms of spatial and thermal resolution, dark current, quantum efficiency, low excess noise and high operability. The actual trend in quantum IR detector development is the design of very small pixel, with the higher achievable operating temperature whatever the spectral band. Moreover maintaining the detector operability and image quality at higher temperature moreover for long wavelength is a major issue. This paper presents the recent developments achieved at Sofradir to meet this challenge for LW band MCT extrinsic p on n technology with a cut-off wavelength of 9.3μm at 90K. State of the art performances will be presented in terms of dark current, operability and NETD temperature dependency, quantum efficiency, MTF, and RFPN (Residual Fixed Pattern Noise) stability up to 100K.

  8. Advanced IGCC/Hydrogen Gas Turbine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, William; Hughes, Michael; Berry, Jonathan

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CCmore » efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first stage hot gas path components, and systems analyses to determine benefits of all previously mentioned technologies to a gas turbine system in an IGCC configuration. This project built on existing gas turbine technology and product developments, and developed and validated the necessary turbine related technologies and sub-systems needed to meet the DOE turbine program goals. The scope of the program did not cover the design and validation of a full-scale prototype machine with the technology advances from this program incorporated. In summary, the DOE goals were met with this program. While the commercial landscape has not resulted in a demand for IGCC gas turbines many of the technologies that were developed over the course of the program are benefiting the US by being applied to new higher efficiency natural gas fueled gas turbines.« less

  9. Ion Thruster Development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Sarver-Verhey, Timothy R.

    1992-01-01

    Recent ion propulsion technology efforts at NASA's Lewis Research Center including development of kW-class xenon ion thrusters, high power xenon and krypton ion thrusters, and power processors are reviewed. Thruster physical characteristics, performance data, life projections, and power processor component technology are summarized. The ion propulsion technology program is structured to address a broad set of mission applications from satellite stationkeeping and repositioning to primary propulsion using solar or nuclear power systems.

  10. Aerosciences, Aero-Propulsion and Flight Mechanics Technology Development for NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.

    2003-01-01

    The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.

  11. The NASA L3 Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2016-01-01

    The Astrophysics Implementation Plan calls for a minority role in L3, planned for launch in 2034. L3 The third large mission in ESAs Cosmic Visions 2015-2025 Programme NASA and ESA have been discussing a collaboration for 2 years Gravitational Observatory Advisory Team (GOAT) ESA study evaluating and recommend scientific performance tradeoffs, detection technologies, technology development activities, data analysis capabilities, schedule and cost US representatives: Guido Mueller, Mark Kasevich, Bill Klipstein, RTS Started in October 2014, concluding with a final report in late Marchor early April 2016. ESA solicited interest from ESA Member States in November 2015 NASA is continuing technology development support. ESA is restarting technology development activities.

  12. Development of an Ultraflex-Based Thin Film Solar Array for Space Applications

    NASA Technical Reports Server (NTRS)

    White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.

    2003-01-01

    As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.

  13. Multiobjective optimization of hybrid regenerative life support technologies. Topic D: Technology Assessment

    NASA Technical Reports Server (NTRS)

    Manousiouthakis, Vasilios

    1995-01-01

    We developed simple mathematical models for many of the technologies constituting the water reclamation system in a space station. These models were employed for subsystem optimization and for the evaluation of the performance of individual water reclamation technologies, by quantifying their operational 'cost' as a linear function of weight, volume, and power consumption. Then we performed preliminary investigations on the performance improvements attainable by simple hybrid systems involving parallel combinations of technologies. We are developing a software tool for synthesizing a hybrid water recovery system (WRS) for long term space missions. As conceptual framework, we are employing the state space approach. Given a number of available technologies and the mission specifications, the state space approach would help design flowsheets featuring optimal process configurations, including those that feature stream connections in parallel, series, or recycles. We visualize this software tool to function as follows: given the mission duration, the crew size, water quality specifications, and the cost coefficients, the software will synthesize a water recovery system for the space station. It should require minimal user intervention. The following tasks need to be solved for achieving this goal: (1) formulate a problem statement that will be used to evaluate the advantages of a hybrid WRS over a single technology WBS; (2) model several WRS technologies that can be employed in the space station; (3) propose a recycling network design methodology (since the WRS synthesis task is a recycling network design problem, it is essential to employ a systematic method in synthesizing this network); (4) develop a software implementation for this design methodology, design a hybrid system using this software, and compare the resulting WRS with a base-case WRS; and (5) create a user-friendly interface for this software tool.

  14. Methodology for estimating helicopter performance and weights using limited data

    NASA Technical Reports Server (NTRS)

    Baserga, Claudio; Ingalls, Charles; Lee, Henry; Peyran, Richard

    1990-01-01

    Methodology is developed and described for estimating the flight performance and weights of a helicopter for which limited data are available. The methodology is based on assumptions which couple knowledge of the technology of the helicopter under study with detailed data from well documented helicopters thought to be of similar technology. The approach, analysis assumptions, technology modeling, and the use of reference helicopter data are discussed. Application of the methodology is illustrated with an investigation of the Agusta A129 Mangusta.

  15. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Callahan, Lisa Wood; Curran, Francis M.

    1996-01-01

    Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.

  16. Technology assessment and requirements analysis: a process to facilitate decision making in picture archiving and communications system implementation.

    PubMed

    Radvany, M G; Chacko, A K; Richardson, R R; Grazdan, G W

    1999-05-01

    In a time of decreasing resources, managers need a tool to manage their resources effectively, support clinical requirements, and replace aging equipment in order to ensure adequate clinical care. To do this successfully, one must be able to perform technology assessment and capital equipment asset management. The lack of a commercial system that adequately performed technology needs assessment and addressed the unique needs of the military led to the development of an in-house Technology Assessment and Requirements Analysis (TARA) program. The TARA is a tool that provides an unbiased review of clinical operations and the resulting capital equipment requirements for military hospitals. The TARA report allows for the development of acquisition strategies for new equipment, enhances personnel management, and improves and streamlines clinical operations and processes.

  17. Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, D.W.

    1995-01-01

    The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studiedmore » under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.« less

  18. Technology, the Columbus Effect, and the Third Revolution in Learning.

    ERIC Educational Resources Information Center

    Fletcher, J. D.

    This work was performed under a task entitled "Development and Assessment of ADL Prototypes." This task is intended to promote collaboration by the Services and by other government and academic partners in developing technology-based instruction. It is an essential component of the Advanced Distributed Learning (ADL) initiative being undertaken by…

  19. History and Development of Instructional Technology and Media in Social Work Education

    ERIC Educational Resources Information Center

    Shorkey, Clayton T.; Uebel, Michael

    2014-01-01

    Since the mid-20th century, instructional technologies and educational media in social work education have undergone significant development with the goals of improving learning and performance and enhancing access. This growth has been marked by technical advances in hardware and by innovations in media, or so-called soft formats. Current…

  20. The Utility of Using Immersive Virtual Environments for the Assessment of Science Inquiry Learning

    ERIC Educational Resources Information Center

    Code, Jillianne; Clarke-Midura, Jody; Zap, Nick; Dede, Chris

    2013-01-01

    Determining the effectiveness of any educational technology depends upon teachers' and learners' perception of the functional utility of that tool for teaching, learning, and assessment. The Virtual Performance project at Harvard University is developing and studying the feasibility of using immersive technology to develop performance…

  1. Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.

    2002-01-01

    Ohio State University developed a new spectrally filtered light-scattering apparatus based on a diode laser injected-locked titanium: sapphire laser and rubidium vapor filter at 780.2 nm. When the device was combined with a stimulated Brillouin scattering phase conjugate mirror, the realizable peak attenuation of elastic scattering interferences exceeded 105. The potential of the system was demonstrated by performing Thomson scattering measurements. Under USAF-NASA funding, West Virginia University developed a Doppler global velocimetry system using inexpensive 8-bit charged coupled device cameras and digitizers and a CW argon ion laser. It has demonstrated a precision of +/- 2.5 m/sec in a swirling jet flow. Low-noise silicon-micromachined microphones developed and incorporated in a novel two-tier, hybrid packaging scheme at the University of Florida used printed circuit board technology to realize a MEMS-based directional acoustic array. The array demonstrated excellent performance relative to conventional sensor technologies and provides scaling technologies that can reduce cost and increase speed and mobility.

  2. Technology as Mediation Tool for Improving Teaching Profession in Higher Education Practices

    ERIC Educational Resources Information Center

    Altinay-Gazi, Zehra; Altinay-Aksal, Fahriye

    2017-01-01

    Technology became a mediation tool for forming information and developing skills is teacher education programs of higher education institutions because technological tools can be used for self-reflection of prospective teachers' teaching performances. Practical implementation of teacher education programmes is a part of quality indicator in higher…

  3. Structures performance, benefit, cost-study

    NASA Technical Reports Server (NTRS)

    Woike, O. G.; Salemme, C.; Stearns, E.; Oritz, P.; Roberts, M. L.; Baughman, J. L.; Johnston, R. P.; Demel, H. F.; Stabrylla, R. G.; Coffinberry, G. A.

    1981-01-01

    New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies.

  4. Current Challenges in Integrating Educational Technology into Elementary and Middle School Mathematics Education

    ERIC Educational Resources Information Center

    Okita, Sandra Y.; Jamalian, Azadeh

    2011-01-01

    Developing curriculum and instruction for mathematics education and designing technologically enhanced learning environments are often pursued separately, but may need to be addressed together to effectively link the strengths of technology to performance in mathematics and conceptual understanding. This paper addresses current challenges with…

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - LEAD IN DUST WIPE MEASUREMENT TECHNOLOGY, NITON CORPORATION, X-RAY FLUORESCENCE SPECTRUM ANALYSER, XL-300 SERIES

    EPA Science Inventory

    ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative

  6. Evaluation of solar electric propulsion technologies for discovery class missions

    NASA Technical Reports Server (NTRS)

    Oh, David Y.

    2005-01-01

    A detailed study examines the potential benefits that advanced electric propulsion (EP) technologies offer to the cost-capped missions in NASA's Discovery program. The study looks at potential cost and performance benefits provided by three EP technologies that are currently in development: NASA's Evolutionary Xenon Thruster (NEXT), an Enhanced NSTAR system, and a Low Power Hall effect thruster. These systems are analyzed on three straw man Discovery class missions and their performance is compared to a state of the art system using the NSTAR ion thruster. An electric propulsion subsystem cost model is used to conduct a cost-benefit analysis for each option. The results show that each proposed technology offers a different degree of performance and/or cost benefit for Discovery class missions.

  7. Development of PEM fuel cell technology at international fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  8. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  9. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and sandwich process development.

  10. High performance computing and communications: Advancing the frontiers of information technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental inmore » the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.« less

  11. Vibro-acoustic Imaging at the Breazeale Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James Arthur; Jewell, James Keith; Lee, James Edwin

    2016-09-01

    The INL is developing Vibro-acoustic imaging technology to characterize microstructure in fuels and materials in spent fuel pools and within reactor vessels. A vibro-acoustic development laboratory has been established at the INL. The progress in developing the vibro-acoustic technology at the INL is the focus of this report. A successful technology demonstration was performed in a working TRIGA research reactor. Vibro-acoustic imaging was performed in the reactor pool of the Breazeale reactor in late September of 2015. A confocal transducer driven at a nominal 3 MHz was used to collect the 60 kHz differential beat frequency induced in a spentmore » TRIGA fuel rod and empty gamma tube located in the main reactor water pool. Data was collected and analyzed with the INLDAS data acquisition software using a short time Fourier transform.« less

  12. Structures Technology for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Venneri, Samuel L.; Paul, Donald B.; Hopkins, Mark A.

    2000-01-01

    An overview of structures technology for future aerospace systems is given. Discussion focuses on developments in component technologies that will improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs. The component technologies described are smart materials and structures, multifunctional materials and structures, affordable composite structures, extreme environment structures, flexible load bearing structures, and computational methods and simulation-based design. The trends in each of the component technologies are discussed and the applicability of these technologies to future aerospace vehicles is described.

  13. Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamer, John; Scott, David

    In this project, OLEDWorks developed and demonstrated the innovative high-performance deposition technology required to deliver dramatic reductions in the cost of manufacturing OLED lighting in production equipment. The current high manufacturing cost of OLED lighting is the most urgent barrier to its market acceptance. The new deposition technology delivers solutions to the two largest parts of the manufacturing cost problem – the expense per area of good product for organic materials and for the capital cost and depreciation of the equipment. Organic materials cost is the largest expense item in the bill of materials and is predicted to remain somore » through 2020. The high-performance deposition technology developed in this project, also known as the next generation source (NGS), increases material usage efficiency from 25% found in current Gen2 deposition technology to 60%. This improvement alone results in a reduction of approximately 25 USD/m 2 of good product in organic materials costs, independent of production volumes. Additionally, this innovative deposition technology reduces the total depreciation cost from the estimated value of approximately 780 USD/m 2 of good product for state-of-the-art G2 lines (at capacity, 5-year straight line depreciation) to 170 USD/m 2 of good product from the OLEDWorks production line.« less

  14. Structures and materials technology needs for communications and remote sensing spacecraft

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Jensen, G. A.; Hoskins, J. W.

    1995-01-01

    This report documents trade studies conducted from the perspective of a small spacecraft developer to determine and quantify the structures and structural materials technology development needs for future commercial and NASA small spacecraft to be launched in the period 1999 to 2005. Emphasis is placed on small satellites weighing less than 1800 pounds for two focus low-Earth orbit missions: commercial communications and remote sensing. The focus missions are characterized in terms of orbit, spacecraft size, performance, and design drivers. Small spacecraft program personnel were interviewed to determine their technology needs, and the results are summarized. A systems-analysis approach for quantifying the benefits of inserting advanced state-of-the-art technologies into a current reference, state-of-the-practice small spacecraft design is developed and presented. This approach is employed in a set of abbreviated trade studies to quantify the payoffs of using a subset of 11 advanced technologies selected from the interview results The 11 technology development opportunities are then ranked based on their relative payoff. Based on the strong potential for significant benefits, recommendations are made to pursue development of 8 and the 11 technologies. Other important technology development areas identified are recommended for further study.

  15. Nursing students' attitudes towards information and communication technology: an exploratory and confirmatory factor analytic approach.

    PubMed

    Lee, Jung Jae; Clarke, Charlotte L

    2015-05-01

    The aim of this study was to develop and psychometrically test a shortened version of the Information Technology Attitude Scales for Health, in the investigation of nursing students with clinical placement experiences. Nurses and nursing students need to develop high levels of competency in information and communication technology. However, they encounter statistically significant barriers in the use of the technology. Although some instruments have been developed to measure factors that influence nurses' attitudes towards technology, the validity is questionable and few studies have been developed to test the attitudes of nursing students, in particular. A cross-sectional survey design was performed. The Information Technology Attitude Scales for Health was used to collect data from October 2012-December 2012. A panel of experts reviewed the content of the instrument and a pilot study was conducted. Following this, a total of 508 nursing students, who were engaged in clinical placements, were recruited from six universities in South Korea. Exploratory and confirmatory factor analyses were performed and reliability and construct validity were assessed. The resulting instrument consisted of 19 items across four factors. Reliability of the four factors was acceptable and the validity was supported. The instrument was shown to be both valid and reliable for measuring nursing students' attitudes towards technology, thus aiding in the current understandings of this aspect. Through these measurements and understandings, nursing educators and students are able to be more reflexive of their attitudes and can thus seek to develop them positively. © 2015 John Wiley & Sons Ltd.

  16. Lithium-Air Cell Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.

    2014-01-01

    Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.

  17. Improving Fatigue Performance of AHSS Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Yu, Xinghua; Erdman, III, Donald L.

    Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage ofmore » the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.« less

  18. Vibration isolation technology - An executive summary of systems development and demonstration. [for proposed microgravity experiments aboard STS and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  19. Human Health Countermeasures (HHC) Element Management Plan: Human Research Program. Revision B

    NASA Technical Reports Server (NTRS)

    Norsk, Peter; Baumann, David

    2012-01-01

    NASA s Human Research Program (HRP) is an applied research and technology program within the Human Exploration and Operations Mission Directorate (HEOMD) that addresses human health and performance risk mitigation strategies in support of exploration missions. The HRP research and technology development is focused on the highest priority risks to crew health and safety with the goal of ensuring mission success and maintaining long-term crew health. Crew health and performance standards, defined by the NASA Chief Health and Medical Officer (CHMO), set the acceptable risk level for exploration missions. The HRP conducts research to inform these standards as well as provide deliverables, such as countermeasures, that ensure standards can be met to maximize human performance and mission success. The Human Health Countermeasures (HHC) Element was formed as part of the HRP to develop a scientifically-based, integrated approach to understanding and mitigating the health risks associated with human spaceflight. These health risks have been organized into four research portfolios that group similar or related risks. A fifth portfolio exists for managing technology developments and infrastructure projects. The HHC Element portfolios consist of: a) Vision and Cardiovascular; b) Exercise and Performance; c) Multisystem; d) Bone; and e) Technology and Infrastructure. The HHC identifies gaps associated with the health risks and plans human physiology research that will result in knowledge required to more fully understand risks and will result in validated countermeasures to mitigate risks.

  20. Investigation of performance deterioration of the CF6/JT9D, high-bypass ratio turbofan engines

    NASA Technical Reports Server (NTRS)

    Ziemianski, J. A.; Mehalic, C. M.

    1980-01-01

    The aircraft energy efficiency program within NASA is developing technology required to improve the fuel efficiency of commercial subsonic transport aricraft. One segment of this program includes engine diagnostics which is directed toward determining the sources and causes of performance deterioration in the Pratt and Whitney Aircraft JT9D and General Electric CF6 high-bypass ratio turbofan engines and developing technology for minimizing the performance losses. Results of engine performance deterioration investigations based on historical data, special engine tests, and specific tests to define the influence of flight loads and component clearances on performance are presented. The results of analysis of several damage mechanisms that contribute to performance deterioration such as blade tip rubs, airfoil surface roughness and erosion, and thermal distortion are also included. The significance of these damage mechanisms on component and overall engine performance is discussed.

  1. Analysis of the Effects of Individual Differences on Cognitive Performance for the Development of Military Socio-Cultural Performance Moderators

    ERIC Educational Resources Information Center

    Bagley, Katherine G.

    2012-01-01

    Technological devices are ubiquitous in nearly every facet of society. There are substantial investments made in organizations on a daily basis to improve information technology. From a military perspective, the ultimate goal of these highly sophisticated devices is to assist soldiers in achieving mission success across dynamic and often chaotic…

  2. Implementation and Performance of GaAs Digital Signal Processing ASICs

    NASA Technical Reports Server (NTRS)

    Whitaker, William D.; Buchanan, Jeffrey R.; Burke, Gary R.; Chow, Terrance W.; Graham, J. Scott; Kowalski, James E.; Lam, Barbara; Siavoshi, Fardad; Thompson, Matthew S.; Johnson, Robert A.

    1993-01-01

    The feasibility of performing high speed digital signal processing in GaAs gate array technology has been demonstrated with the successful implementation of a VLSI communications chip set for NASA's Deep Space Network. This paper describes the techniques developed to solve some of the technology and implementation problems associated with large scale integration of GaAs gate arrays.

  3. Technology efficacy in active prosthetic knees for transfemoral amputees: a quantitative evaluation.

    PubMed

    El-Sayed, Amr M; Hamzaid, Nur Azah; Abu Osman, Noor Azuan

    2014-01-01

    Several studies have presented technological ensembles of active knee systems for transfemoral prosthesis. Other studies have examined the amputees' gait performance while wearing a specific active prosthesis. This paper combined both insights, that is, a technical examination of the components used, with an evaluation of how these improved the gait of respective users. This study aims to offer a quantitative understanding of the potential enhancement derived from strategic integration of core elements in developing an effective device. The study systematically discussed the current technology in active transfemoral prosthesis with respect to its functional walking performance amongst above-knee amputee users, to evaluate the system's efficacy in producing close-to-normal user performance. The performances of its actuator, sensory system, and control technique that are incorporated in each reported system were evaluated separately and numerical comparisons were conducted based on the percentage of amputees' gait deviation from normal gait profile points. The results identified particular components that contributed closest to normal gait parameters. However, the conclusion is limitedly extendable due to the small number of studies. Thus, more clinical validation of the active prosthetic knee technology is needed to better understand the extent of contribution of each component to the most functional development.

  4. NASA'S information technology activities for the 90's

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Erickson, Dan

    1991-01-01

    The Office of Aeronautics, Exploration and Technology (OAET) is completing an extensive assessment of its nearly five hundred million dollars of proposed space technology development work. The budget is divided into four segments which are as follows: (1) the base research and technology program; (2) the Civil Space Technology Initiative (CSTI); (3) the Exploration Technology Program (ETP); and (4) the High Performance Computing Initiative (HPCI). The programs are briefly discussed in the context of Astrotech 21.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The Lightweight Materials activity (LM) within the Vehicle Technologies Program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  6. Cost as a technology driver. [in aerospace R and D

    NASA Technical Reports Server (NTRS)

    Fitzgerald, P. E., Jr.; Savage, M.

    1976-01-01

    Cost managment as a guiding factor in optimum development of technology, and proper timing of cost-saving programs in the development of a system or technology with payoffs in development and operational advances are discussed and illustrated. Advances enhancing the performance of hardware or software advances raising productivity or reducing cost, are outlined, with examples drawn from: thermochemical thrust maximization, development of cryogenic storage tanks, improvements in fuel cells for Space Shuttle, design of a spacecraft pyrotechnic initiator, cost cutting by reduction in the number of parts to be joined, and cost cutting by dramatic reductions in circuit component number with small-scale double-diffused integrated circuitry. Program-focused supporting research and technology models are devised to aid judicious timing of cost-conscious research programs.

  7. Space Technology for the New Century

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The National Aeronautics and Space Administration (NASA) is responsible for developing advanced space technologies that will lower the cost and improve the performance of existing space activities and enable new ones. Although NASA has recently proved adept at incorporating modern technologies into its spacecraft, the agency currently supports relatively little work in long-term space technology development. To enable ambitious future space activities and to achieve its long-term goals, NASA needs to engage in space research and technology development (R&T) in critical areas for the long term. NASA requested that the National Research Council (NRC) examine the nation's space technology needs in the post-2000 time frame and identify high-risk, high-payoff technology that could improve the capabilities and reduce the costs fo NASA, other government, and commercial space programs. The NRC was also asked to suggest how NASA can work more effectively with industry and universities to develop these technologies. To accomplish these ends, the Committee on Advanced Space Technology, under the auspices of the Aeronautics and Space Engineering Board, undertook a systematic process of information gathering and technology assessment. Six key technologies that the committee believes NASA should support are presented.

  8. Sensor and Actuator Needs for More Intelligent Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Schadow, Klaus; Horn, Wolfgang; Pfoertner, Hugo; Stiharu, Ion

    2010-01-01

    This paper provides an overview of the controls and diagnostics technologies, that are seen as critical for more intelligent gas turbine engines (GTE), with an emphasis on the sensor and actuator technologies that need to be developed for the controls and diagnostics implementation. The objective of the paper is to help the "Customers" of advanced technologies, defense acquisition and aerospace research agencies, understand the state-of-the-art of intelligent GTE technologies, and help the "Researchers" and "Technology Developers" for GTE sensors and actuators identify what technologies need to be developed to enable the "Intelligent GTE" concepts and focus their research efforts on closing the technology gap. To keep the effort manageable, the focus of the paper is on "On-Board Intelligence" to enable safe and efficient operation of the engine over its life time, with an emphasis on gas path performance

  9. Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments

    NASA Technical Reports Server (NTRS)

    Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.

    1987-01-01

    The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.

  10. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  11. Electricity from biomass: A development strategy

    NASA Astrophysics Data System (ADS)

    1992-04-01

    The purpose of this document is to review the current status of biomass power technology and to evaluate the future directions for development that could significantly enhance the contribution of biomass power to U.S. production of electricity. This document reviews the basic principles of biomass electric systems, the previous contributions of industry and the National Biomass Energy Programs to technology development, and the options for future technology development. It discusses the market for biomass electric technology and future needs for electric power production to help establish a market-oriented development strategy. It projects trends in the performance and cost of the technology and examines the changing dynamics of the power generation market place to evaluate specific opportunities for biomass power development. In a separate document, the Biomass Power Program Five Year R&D Plan, the details of schedules, funding, and roles of participating R&D organizations within the R&D program funded by the U.S. Department of Energy (DOE) are presented. In evaluating the future directions for research and development, two cases are examined.

  12. Status of modular RTG technology

    NASA Astrophysics Data System (ADS)

    Hartman, Robert F.

    Radioisotope thermoelectric generators (RTGs) have been employed safely and reliably since 1961 to provide spacecraft electrical power for various NASA and Department of Defense missions. Historically, RTG development, fabrication and qualification have been performed under the sponsorship of the Department of Energy's Office of Special Nuclear Projects and its predecessor groups. RTG technology improvement programs have been conducted over the years by the DOE to improve RTG efficiency and operating performance. The modular RTG design concept resulted from such a program and is currently being developed by the General Electric Company for the DOE.

  13. Extravehicular Activity (EVA) Power, Avionics, and Software (PAS) 101

    NASA Technical Reports Server (NTRS)

    Irimies, David

    2011-01-01

    EVA systems consist of a spacesuit or garment, a PLSS, a PAS system, and spacesuit interface hardware. The PAS system is responsible for providing power for the suit, communication of several types of data between the suit and other mission assets, avionics hardware to perform numerous data display and processing functions, and information systems that provide crewmembers data to perform their tasks with more autonomy and efficiency. Irimies discussed how technology development efforts have advanced the state-of-the-art in these areas and shared technology development challenges.

  14. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant V; Bennion, Kevin S; Cousineau, Justine E

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  15. Development of Technologies to Utilize Laser Plasma Radiations Sources for Radiation Effects Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J F

    2007-01-31

    This final report will cover work performed over the period of November 11, 2005 to September 30, 2006 on the contract to develop technologies using laser sources for radiation effects sciences. The report will discuss four topic areas; the laser source experiments on the Gekko Laser at Osaka, Japan, planning for the Charge State Freeze Out experiments to be performed in calendar year 2007, a review of previous xenon gasbags on the LANL Trident laser to provide planning support to the May-June 2007 HELEN experiments.

  16. Technological innovation in neurosurgery: a quantitative study.

    PubMed

    Marcus, Hani J; Hughes-Hallett, Archie; Kwasnicki, Richard M; Darzi, Ara; Yang, Guang-Zhong; Nandi, Dipankar

    2015-07-01

    Technological innovation within health care may be defined as the introduction of a new technology that initiates a change in clinical practice. Neurosurgery is a particularly technology-intensive surgical discipline, and new technologies have preceded many of the major advances in operative neurosurgical techniques. The aim of the present study was to quantitatively evaluate technological innovation in neurosurgery using patents and peer-reviewed publications as metrics of technology development and clinical translation, respectively. The authors searched a patent database for articles published between 1960 and 2010 using the Boolean search term "neurosurgeon OR neurosurgical OR neurosurgery." The top 50 performing patent codes were then grouped into technology clusters. Patent and publication growth curves were then generated for these technology clusters. A top-performing technology cluster was then selected as an exemplar for a more detailed analysis of individual patents. In all, 11,672 patents and 208,203 publications related to neurosurgery were identified. The top-performing technology clusters during these 50 years were image-guidance devices, clinical neurophysiology devices, neuromodulation devices, operating microscopes, and endoscopes. In relation to image-guidance and neuromodulation devices, the authors found a highly correlated rapid rise in the numbers of patents and publications, which suggests that these are areas of technology expansion. An in-depth analysis of neuromodulation-device patents revealed that the majority of well-performing patents were related to deep brain stimulation. Patent and publication data may be used to quantitatively evaluate technological innovation in neurosurgery.

  17. Developments in the design, analysis, and fabrication of advanced technology transmission elements

    NASA Technical Reports Server (NTRS)

    Drago, R. J.; Lenski, J. W., Jr.

    1982-01-01

    Over the last decade, the presently reported proprietary development program for the reduction of helicopter drive system weight and cost and the enhancement of reliability and survivability has produced high speed roller bearings, resin-matrix composite rotor shafts and transmission housings, gear/bearing/shaft system integrations, photoelastic investigation methods for gear tooth strength, and the automatic generation of complex FEM models for gear/shaft systems. After describing the design features and performance capabilities of the hardware developed, attention is given to the prospective benefits to be derived from application of these technologies, with emphasis on the relationship between helicopter drive system performance and cost.

  18. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  19. Core Design Characteristics of the Fluoride Salt-Cooled High Temperature Demonstration Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R; Qualls, A L; Betzler, Benjamin R

    2016-01-01

    Fluoride salt-cooled high temperature reactors (FHRs) are a promising reactor technology option with significant knowledge gaps to implementation. One potential approach to address those technology gaps is via a small-scale demonstration reactor with the goal of increasing the technology readiness level (TRL) of the overall system for the longer term. The objective of this paper is to outline a notional concept for such a system, and to address how the proposed concept would advance the TRL of FHR concepts. Development of the proposed FHR Demonstration Reactor (DR) will enable commercial FHR deployment through disruptive and rapid technology development and demonstration.more » The FHR DR will close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. Important capabilities that will be demonstrated by building and operating the FHR DR include core design methodologies; fabrication and operation of high temperature reactors; salt procurement, handling, maintenance, and ultimate disposal; salt chemistry control to maximize vessel life; tritium management; heat exchanger performance; pump performance; and reactivity control. The FHR DR is considered part of a broader set of FHR technology development and demonstration efforts, some of which are already underway. Nonreactor test efforts (e.g., heated salt loops or loops using simulant fluids) can demonstrate many technologies necessary for commercial deployment of FHRs. The FHR DR, however, fulfills a crucial role in FHR technology development by advancing the technical maturity and readiness level of the system as a whole.« less

  20. Design study of technology requirements for high performance single-propeller-driven business airplanes

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Hammer, J.

    1985-01-01

    Developments in aerodyamic, structural and propulsion technologies which influence the potential for significant improvements in performance and fuel efficiency of general aviation business airplanes are discussed. The advancements include such technolgies as natural laminar flow, composite materials, and advanced intermittent combustion engines. The design goal for this parameter design study is a range of 1300 nm at 300 knots true airspeed with a payload of 1200lbs at 35,000 ft cruise altitude. The individual and synergistic effects of various advanced technologies on the optimization of this class of high performance, single engine, propeller driven business airplanes are identified.

  1. Optimal technology investment strategies for a reusable launch vehicle

    NASA Technical Reports Server (NTRS)

    Moore, A. A.; Braun, R. D.; Powell, R. W.

    1995-01-01

    Within the present budgetary environment, developing the technology that leads to an operationally efficient space transportation system with the required performance is a challenge. The present research focuses on a methodology to determine high payoff technology investment strategies. Research has been conducted at Langley Research Center in which design codes for the conceptual analysis of space transportation systems have been integrated in a multidisciplinary design optimization approach. The current study integrates trajectory, propulsion, weights and sizing, and cost disciplines where the effect of technology maturation on the development cost of a single stage to orbit reusable launch vehicle is examined. Results show that the technology investment prior to full-scale development has a significant economic payoff. The design optimization process is used to determine strategic allocations of limited technology funding to maximize the economic payoff.

  2. Bridging the Gap from Networking Technologies to Applications: Workshop Report

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.; desJardins, Richard

    2000-01-01

    The objective of the Next Generation Internet (NGI) Federal program is threefold, encompassing development of networking technologies, high-performance network testbeds, and revolutionary applications. There have been notable advances in emerging network technologies and several nationwide testbeds have been established, but the integration of emerging technologies into applications is lagging. To help bridge this gap between developers of NGI networking technologies and developers of NGI applications, the NASA Research and Education Network (NREN) project hosted a two-day workshop at NASA Ames Research Center in August 1999. This paper presents a summary of the results of this workshop and also describes some of the challenges NREN is facing while incorporating new technologies into HPCC and other NASA applications. The workshop focused on three technologies - Quality of Service (QoS), advanced multicast, and security-and five major NGI application areas - telemedicine, digital earth, digital video, distributed data-intensive applications, and computational infrastructure applications. Network technology experts, application developers, and NGI testbed representatives came together at the workshop to promote cross-fertilization between the groups. Presentations on the first day, including an overview of the three technologies, application case studies and testbed status reports, laid the foundation for discussions on the second day. The objective of these latter discussions, held within smaller breakout groups, was to establish a coherent picture of the current status of the various pieces of each of the three technologies, to create a roadmap outlining future technology development, and to offer technological guidance to application developers. In this paper we first present a brief overview of the NGI applications that were represented at the workshop, focusing on the identification of technological advances that have successfully been incorporated in each application and technological challenges that remain. Next we present the technology roadmaps that were created at the workshop, summarizing the status of various mechanisms that are currently under development and forecasting when various advances are likely to occur within the next one-to-three-year time span. Then we identify issues that were raised at the workshop that might hinder technology development or that might impede integration into NGI applications. We also report some specific guidelines that were offered at the workshop to enable application developers to integrate and effectively use emerging NGI technology building blocks. Finally, we describe NREN activities to incorporate emerging technologies into NASA applications. These activities include support for other NASA High-Performance Computing and Communications Program areas such as IPG (Information Power Grid), support for NASA science enterprises such as Earth science and Mars program prototyping activities, support for satellite/terrestrial networking applications such as the TransAtlantic and TransPacific demonstrations and the Interplanetary Internet, support for NASA telemedicine applications such as the Virtual Collaborative Clinic, and participation in NGI advanced technology testbed initiatives such as the QBone and the NTON/Supernet. For each activity we highlight the primary technological challenge that is associated with it.

  3. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).

  4. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  5. MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Bierden, Paul; Cornelissen, S.; Ryan, P.

    2014-01-01

    In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.

  6. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for Outpost. To minimize cost and ensure that ISRU technologies, systems, and functions are integrated properly into the Outpost, technology development efforts are being coordinated with other development areas such as Surface Mobility, Surface Power, Life Support, EVA, and Propulsion. Lastly, laboratory and field system-level tests and demonstrations will be performed as often as possible to demonstrate improvements in: Capabilities (ex. digging deeper); Performance (ex. lower power); and Duration (ex. more autonomy or more robustness). This presentation will provide the status of work performed to date within the NASA ISRU project with respect to technology and system development and field demonstration activities, as well as the current strategy to implement ISRU in future robotic and human lunar exploration missions.

  7. Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation questionnaire, and a scoring formula.

  8. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  9. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  10. Compact fiber optic gyroscopes for platform stabilization

    NASA Astrophysics Data System (ADS)

    Dickson, William C.; Yee, Ting K.; Coward, James F.; McClaren, Andrew; Pechner, David A.

    2013-09-01

    SA Photonics has developed a family of compact Fiber Optic Gyroscopes (FOGs) for platform stabilization applications. The use of short fiber coils enables the high update rates required for stabilization applications but presents challenges to maintain high performance. We are able to match the performance of much larger FOGs by utilizing several innovative technologies. These technologies include source noise reduction to minimize Angular Random Walk (ARW), advanced digital signal processing that minimizes bias drift at high update rates, and advanced passive thermal packaging that minimizes temperature induced bias drift while not significantly affecting size, weight, or power. In addition, SA Photonics has developed unique distributed FOG packaging technologies allowing the FOG electronics and photonics to be packaged remotely from the sensor head or independent axis heads to minimize size, weight, and power at the sensing location(s). The use of these technologies has resulted in high performance, including ARW less than 0.001 deg/rt-hr and bias drift less than 0.004 deg/hr at an update rate of 10 kHz, and total packaged volume less than 30 cu. in. for a 6 degree of freedom FOG-based IMU. Specific applications include optical beam stabilization for LIDAR and LADAR, beam stabilization for long-range free-space optical communication, Optical Inertial Reference Units for HEL stabilization, and Ka band antenna pedestal pointing and stabilization. The high performance of our FOGs also enables their use in traditional navigation and positioning applications. This paper will review the technologies enabling our high-performance compact FOGs, and will provide performance test results.

  11. Materials Research Capabilities

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1986-01-01

    Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space. As we proceed, I am confident that our materials research staff will continue to provide important contributions which will help our nation maintain a strong technology position in these areas of growing world competition. Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space.

  12. A technology development program for large space antennas

    NASA Technical Reports Server (NTRS)

    Russell, R. A.; Campbell, T. G.; Freeland, R. E.

    1980-01-01

    The design and application of the offset wrap rib and the maypole (hoop/column) antenna configurations are described. The NASA mission model that generically categorizes the classes of user requirements, as well as the methods used to determine critical technologies and requirements are discussed. Performance estimates for the mesh deployable antenna selected for development are presented.

  13. Requirements for a mobile communications satellite system. Volume 3: Large space structures measurements study

    NASA Technical Reports Server (NTRS)

    Akle, W.

    1983-01-01

    This study report defines a set of tests and measurements required to characterize the performance of a Large Space System (LSS), and to scale this data to other LSS satellites. Requirements from the Mobile Communication Satellite (MSAT) configurations derived in the parent study were used. MSAT utilizes a large, mesh deployable antenna, and encompasses a significant range of LSS technology issues in the areas of structural/dynamics, control, and performance predictability. In this study, performance requirements were developed for the antenna. Special emphasis was placed on antenna surface accuracy, and pointing stability. Instrumentation and measurement systems, applicable to LSS, were selected from existing or on-going technology developments. Laser ranging and angulation systems, presently in breadboard status, form the backbone of the measurements. Following this, a set of ground, STS, and GEO-operational were investigated. A third scale (15 meter) antenna system as selected for ground characterization followed by STS flight technology development. This selection ensures analytical scaling from ground-to-orbit, and size scaling. Other benefits are cost and ability to perform reasonable ground tests. Detail costing of the various tests and measurement systems were derived and are included in the report.

  14. Model Development and Experimental Validation of the Fusible Heat Sink Design for Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.; Le,Hung

    2012-01-01

    The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the model development and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.

  15. The Relationship between Students' Exposure to Technology and Their Achievement in Science and Math

    ERIC Educational Resources Information Center

    Delen, Erhan; Bulut, Okan

    2011-01-01

    The purpose of this study was to examine the effects of information and communication technologies (ICT) on students' math and science achievement. Recently, ICT has been widely used in classrooms for teaching and learning purposes. Therefore, it is important to investigate how these technological developments affect students' performance at…

  16. Development of a Short-Form Measure of Science and Technology Self-Efficacy Using Rasch Analysis

    ERIC Educational Resources Information Center

    Lamb, Richard L.; Vallett, David; Annetta, Leonard

    2014-01-01

    Despite an increased focus on science, technology, engineering, and mathematics (STEM) in U.S. schools, today's students often struggle to maintain adequate performance in these fields compared with students in other countries (Cheek in "Thinking constructively about science, technology, and society education." State University of New…

  17. Cost (and Quality and Value) of Information Technology Support in Large Research Universities.

    ERIC Educational Resources Information Center

    Peebles, Christopher S.; Antolovic, Laurie

    1999-01-01

    Shows how financial and quality measures associated with the Balanced Scorecard (developed by Kaplan and Norton to measure organizational performance) can be applied to information technology (IT) user education and support in large research universities. Focuses on University Information Technology Services that has measured the quality of IT…

  18. A Collaborative Model for Influencing the Technology Integration Behaviors and Dispositions of Preservice Social Studies Teachers

    ERIC Educational Resources Information Center

    Jones, Raymond; Cunningham, Ann; Stewart, Loraine Moses

    2005-01-01

    Collaboration among faculty can enhance the learning experience for preservice teachers and reinforce the integral role of technology in teaching, learning, and professional development in social studies education. Organized around the Performance Profiles outlined by the National Educational Technology Standards for Teachers (NETS[middle dot]T),…

  19. Benchmarking Evaluation Results for Prototype Extravehicular Activity Gloves

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; McFarland, Shane

    2012-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of four prototype gloves developed by Flagsuit LLC, Final Frontier Designs, LLC Dover, and David Clark Company as compared to the Phase VI. All of the companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design ]to hand anthropometry completed range of motion, grip/pinch strength, dexterity, and fit evaluations for each glove design in both the unpressurized and pressurized conditions. This paper provides a comparison of the test results along with a detailed description of hardware and test methodologies used.

  20. Propellant Technologies: A Persuasive Wave of Future Propulsion Benefits

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Ianovski, Leonid S.; Carrick, Patrick

    1997-01-01

    Rocket propellant and propulsion technology improvements can be used to reduce the development time and operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles safer, more operable, and higher performing. Five technology areas are described: Monopropellants, Alternative Hydrocarbons, Gelled Hydrogen, Metallized Gelled Propellants, and High Energy Density Materials. These propellants' benefits for future vehicles are outlined using mission study results and the technologies are briefly discussed.

  1. Technologies for Single-Cell Isolation

    PubMed Central

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-01-01

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926

  2. Technologies for Single-Cell Isolation.

    PubMed

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-07-24

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  3. The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  4. The status of spacecraft bus and platform technology development under the NASA ISPT program

    NASA Astrophysics Data System (ADS)

    Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  5. The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  6. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  7. System driven technology selection for future European launch systems

    NASA Astrophysics Data System (ADS)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  8. Current technology in ion and electrothermal propulsion

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Murch, C. K.

    1973-01-01

    High performance propulsion devices, such as electrostatic ion engines and electrothermal thrusters, are achieving wide user acceptance. The current technology and projected development trends in the areas of ion and electrothermal propulsion systems and components are surveyed.

  9. Methodology to Calculate the ACE and HPQ Metrics Used in the Wave Energy Prize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, Frederick R; Weber, Jochem W; Jenne, Dale S

    The U.S. Department of Energy's Wave Energy Prize Competition encouraged the development of innovative deep-water wave energy conversion technologies that at least doubled device performance above the 2014 state of the art. Because levelized cost of energy (LCOE) metrics are challenging to apply equitably to new technologies where significant uncertainty exists in design and operation, the prize technical team developed a reduced metric as proxy for LCOE, which provides an equitable comparison of low technology readiness level wave energy converter (WEC) concepts. The metric is called 'ACE' which is short for the ratio of the average climate capture width tomore » the characteristic capital expenditure. The methodology and application of the ACE metric used to evaluate the performance of the technologies that competed in the Wave Energy Prize are explained in this report.« less

  10. Performance of Off-the-Shelf Technologies for Spacecraft Cabin Atmospheric Major Constituent Monitoring

    NASA Technical Reports Server (NTRS)

    Tatara, J. D.; Perry, J. L.

    2004-01-01

    Monitoring the atmospheric composition of a crewed spacecraft cabin is central to successfully expanding the breadth and depth of first-hand human knowledge and understanding of space. Highly reliable technologies must be identified and developed to monitor atmospheric composition. This will enable crewed space missions that last weeks, months, and eventually years. Atmospheric composition monitoring is a primary component of any environmental control and life support system. Instrumentation employed to monitor atmospheric composition must be inexpensive, simple, and lightweight and provide robust performance. Such a system will ensure an environment that promotes human safety and health, and that the environment can be maintained with a high degree of confidence. Key to this confidence is the capability for any technology to operate autonomously, with little intervention from the crew or mission control personnel. A study has been conducted using technologies that, with further development, may reach these goals.

  11. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  12. Application of CFCC technology to hot gas filtration applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richlen, S.

    1995-06-01

    Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurementmore » of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.« less

  13. Performation Metrics Development Analysis for Information and Communications Technology Outsourcing: A Case Study

    ERIC Educational Resources Information Center

    Travis, James L., III

    2014-01-01

    This study investigated how and to what extent the development and use of the OV-5a operational architecture decomposition tree (OADT) from the Department of Defense (DoD) Architecture Framework (DoDAF) affects requirements analysis with respect to complete performance metrics for performance-based services acquisition of ICT under rigid…

  14. Instrumentation Development for Large Scale Hypersonic Inflatable Aerodynamic Decelerator Characterization

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2011-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.

  15. The Athena optics

    NASA Astrophysics Data System (ADS)

    Bavdaz, Marcos; Wille, Eric; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Vacanti, Giuseppe; Günther, Ramses; Yanson, Alexei; Vervest, Mark; Haneveld, Jeroen; van Baren, Coen; Zuknik, Karl-Heinz; Christensen, Finn; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Valsecchi, Giuseppe

    2015-09-01

    The Advanced Telescope for High ENergy Astrophysics (Athena) was selected in 2014 as the second large class mission (L2) of the ESA Cosmic Vision Science Programme within the Directorate of Science and Robotic Exploration. The mission development is proceeding via the implementation of the system studies and in parallel a comprehensive series of technology preparation activities. [1-3]. The core enabling technology for the high performance mirror is the Silicon Pore Optics (SPO), a modular X-ray optics technology, which utilises processes and equipment developed for the semiconductor industry [4-31]. This paper provides an overview of the programmatic background, the status of SPO technology and give an outline of the development roadmap and activities undertaken and planned by ESA.

  16. Nuclear Thermal Rocket - Arc Jet Integrated System Model

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Emrich, William

    2016-01-01

    In the post-shuttle era, space exploration is moving into a new regime. Commercial space flight is in development and is planned to take on much of the low earth orbit space flight missions. With the development of a heavy lift launch vehicle, the Space Launch, System, NASA has become focused on deep space exploration. Exploration into deep space has traditionally been done with robotic probes. More ambitious missions such as manned missions to asteroids and Mars will require significant technology development. Propulsion system performance is tied to the achievability of these missions and the requirements of other developing technologies that will be required. Nuclear thermal propulsion offers a significant improvement over chemical propulsion while still achieving high levels of thrust. Opportunities exist; however, to build upon what would be considered a standard nuclear thermal engine to attain improved performance, thus further enabling deep space missions. This paper discuss the modeling of a nuclear thermal system integrated with an arc jet to further augment performance. The performance predictions and systems impacts are discussed.

  17. Unshrouded Impeller Technology Development Status

    NASA Technical Reports Server (NTRS)

    Droege, Alan R.; Williams, Robert W.; Garcia, Roberto

    2000-01-01

    To increase payload and decrease the cost of future Reusable Launch Vehicles (RLVs), engineers at NASA/MSFC and Boeing, Rocketdyne are developing unshrouded impeller technology for application to rocket turbopumps. An unshrouded two-stage high-pressure fuel pump is being developed to meet the performance objectives of a three-stage shrouded pump. The new pump will have reduced manufacturing costs and pump weight. The lower pump weight will allow for increased payload.

  18. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid

    NASA Technical Reports Server (NTRS)

    Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick

    2015-01-01

    The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.

  19. Li Anode Technology for Improved Performance

    NASA Technical Reports Server (NTRS)

    Chen, Tuqiang

    2011-01-01

    A novel, low-cost approach to stabilization of Li metal anodes for high-performance rechargeable batteries was developed. Electrolyte additives are selected and used in Li cell electrolyte systems, promoting formation of a protective coating on Li metal anodes for improved cycle and safety performance. Li batteries developed from the new system will show significantly improved battery performance characteristics, including energy/power density, cycle/ calendar life, cost, and safety.

  20. Use of high performance networks and supercomputers for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  1. DOE New Technology: Sharing New Frontiers, April 1, 1993--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, A.T.; Henline, D.M.

    The purpose of DOE New Technology is to provide information on how to access specific technologies developed through research sponsored by DOE and performed by DOE laboratories or by DOE-contracted researchers. This document describes technologies identified as having potential for commercial applications in addition to a catalog of current patent applications and patents available for licensing from DOE and DOE contractors.

  2. Army AL&T, July-September 2008

    DTIC Science & Technology

    2008-09-01

    Technology , and Logistics (AT&L) Workforce and will summarize best practices , specific initiatives, and relevant accomplishments of DOD and the...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Acquisition, Logistics & Technology (AT&L...logistics, and technology (AL&T) community. We have a vast number of programs that range from developing transformational technologies for our

  3. Debunking Technical Competency as the Sole Source of Innovation

    DTIC Science & Technology

    2015-01-01

    51 Sustaining vs. Disruptive Technologies Advocates for increasing the number of STEM-credentialed graduates often link U.S. innovation to economic...successful companies are led by talented managers who focus on developing sustaining technologies rather than on what he calls disruptive technologies . Sustaining...simpler, smaller, and frequently more convenient to use.53 Disruptive technologies will eventually overtake or match the performance of the

  4. A novel integrated assessment methodology of urban water reuse.

    PubMed

    Listowski, A; Ngo, H H; Guo, W S; Vigneswaran, S

    2011-01-01

    Wastewater is no longer considered a waste product and water reuse needs to play a stronger part in securing urban water supply. Although treatment technologies for water reclamation have significantly improved the question that deserves further analysis is, how selection of a particular wastewater treatment technology relates to performance and sustainability? The proposed assessment model integrates; (i) technology, characterised by selected quantity and quality performance parameters; (ii) productivity, efficiency and reliability criteria; (iii) quantitative performance indicators; (iv) development of evaluation model. The challenges related to hierarchy and selections of performance indicators have been resolved through the case study analysis. The goal of this study is to validate a new assessment methodology in relation to performance of the microfiltration (MF) technology, a key element of the treatment process. Specific performance data and measurements were obtained at specific Control and Data Acquisition Points (CP) to satisfy the input-output inventory in relation to water resources, products, material flows, energy requirements, chemicals use, etc. Performance assessment process contains analysis and necessary linking across important parametric functions leading to reliable outcomes and results.

  5. DFT algorithms for bit-serial GaAs array processor architectures

    NASA Technical Reports Server (NTRS)

    Mcmillan, Gary B.

    1988-01-01

    Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.

  6. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  7. Hybrid propulsion technology program: Phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Schuler, A. L.; Wiley, D. R.

    1989-01-01

    The program objectives of developing hybrid propulsion technology (HPT) to enable its application for manned and unmanned high thrust, high performance space launch vehicles are examined. The studies indicate that the hybrid propulsion (HP) is very attractive, especially when applied to large boosters for programs such as the Advanced Launch System (ALS) and the second generation Space Shuttle. Some of the advantages of HP are identified. Space launch vehicles using HP are less costly than those flying today because their propellant and insulation costs are much less and there are fewer operational restraints due to reduced safety requirements. Boosters using HP have safety features that are highly desirable, particularly for manned flights. HP systems will have a clean exhaust and high performance. Boosters using HP readily integrate with launch vehicles and their launch operations, because they are very compact for the amount of energy contained. Hybrid propulsion will increase the probability of mission success. In order to properly develop the technologies of HP, preliminary HP concepts are evaluated. System analyses and trade studies were performed to identify technologies applicable to HP.

  8. The Backyard Human Performance Technologist: Applying the Development Research Methodology to Develop and Validate a New Instructional Design Framework

    ERIC Educational Resources Information Center

    Brock, Timothy R.

    2009-01-01

    Development research methodology (DRM) has been recommended as a viable research approach to expand the practice-to-theory/theory-to-practice literature that human performance technology (HPT) practitioners can integrate into the day-to-day work flow they already use to develop instructional products. However, little has been written about how it…

  9. From Smart-Eco Building to High-Performance Architecture: Optimization of Energy Consumption in Architecture of Developing Countries

    NASA Astrophysics Data System (ADS)

    Mahdavinejad, M.; Bitaab, N.

    2017-08-01

    Search for high-performance architecture and dreams of future architecture resulted in attempts towards meeting energy efficient architecture and planning in different aspects. Recent trends as a mean to meet future legacy in architecture are based on the idea of innovative technologies for resource efficient buildings, performative design, bio-inspired technologies etc. while there are meaningful differences between architecture of developed and developing countries. Significance of issue might be understood when the emerging cities are found interested in Dubaization and other related booming development doctrines. This paper is to analyze the level of developing countries’ success to achieve smart-eco buildings’ goals and objectives. Emerging cities of West of Asia are selected as case studies of the paper. The results of the paper show that the concept of high-performance architecture and smart-eco buildings are different in developing countries in comparison with developed countries. The paper is to mention five essential issues in order to improve future architecture of developing countries: 1- Integrated Strategies for Energy Efficiency, 2- Contextual Solutions, 3- Embedded and Initial Energy Assessment, 4- Staff and Occupancy Wellbeing, 5- Life-Cycle Monitoring.

  10. Payload software technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A software analysis was performed of known STS sortie payload elements and their associated experiments. This provided basic data for STS payload software characteristics and sizes. A set of technology drivers was identified based on a survey of future technology needs and an assessment of current software technology. The results will be used to evolve a planned approach to software technology development. The purpose of this plan is to ensure that software technology is advanced at a pace and a depth sufficient to fulfill the identified future needs.

  11. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala,; Tayyab,; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2018-06-13

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  12. Optics & Materials Science & Technology (OMST) Organization at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala,; Tayyab,; Nguyen, Hoang

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategymore » today.« less

  13. Next Generation Life Support (NGLS): High Performance EVA Glove (HPEG) Technology Development Element

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah; Barta, Daniel; Stephan, Ryan; Gaddis, Stephen

    2015-01-01

    The overall objective is to develop advanced gloves for extra vehicular activity (EVA) for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. The glove prototypes that result from the successful completion of this technology development activity will be delivered to NASA's Human Exploration Operations Mission Directorate (HEOMD) and ultimately to be included in an integrated test with the next generation spacesuit currently under development.

  14. Users perspectives on interactive distance technology enabling home-based motor training for stroke patients.

    PubMed

    Ehn, Maria; Hansson, Pär; Sjölinder, Marie; Boman, Inga-Lill; Folke, Mia; Sommerfeld, Disa; Borg, Jörgen; Palmcrantz, Susanne

    2015-01-01

    The aim of this work has been to develop a technical support enabling home-based motor training after stroke. The basis for the work plan has been to develop an interactive technical solution supporting three different groups of stroke patients: (1) patients with stroke discharged from hospital with support from neuro team; (2) patients with stroke whose support from neuro team will be phased out and (3) patients living with impaired motor functions long-term. The technology has been developed in close collaboration with end-users using a method earlier evaluated and described [12]. This paper describes the main functions of the developed technology. Further, results from early user-tests with end-users, performed to identify needs for improvements to be carried out during further technical development. The developed technology will be tested further in a pilot study of the safety and, usefulness of the technology when applied as a support for motor training in three different phases of the post-stroke rehabilitation process.

  15. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  16. Autonomous intelligent assembly systems LDRD 105746 final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2013-04-01

    This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control frameworkmore » for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.« less

  17. Innovations for competitiveness: European views on "better-faster-cheaper"

    NASA Astrophysics Data System (ADS)

    Atzei, A.; Groepper, P.; Novara, M.; Pseiner, K.

    1999-09-01

    The paper elaborates on " lessons learned" from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely: a) the adaptations of industrial and public organisations to the global market needs; b) the understanding of the bottleneck factors limiting competitiveness; c) the trends toward new system architectures and new engineering and production methods; d) the understanding of the role of new technology in the future applications. Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the "better, faster, cheaper" philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes. A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for "faster, better, cheaper" appears to concern primarily "cost-effective", performant autonomous spacecraft, "cost-effective", reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet. In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.

  18. Trade-Off Analysis Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    NASAs Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASAs four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. CNS previously developed a report which applied the methodology, to three space Internet-based communications scenarios for future missions. CNS conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. GRC selected for further analysis the scenario that involved unicast communications between a Low-Earth-Orbit (LEO) International Space Station (ISS) and a ground terminal Internet node via a Tracking and Data Relay Satellite (TDRS) transfer. This report contains a tradeoff analysis on the selected scenario. The analysis examines the performance characteristics of the various protocols and architectures. The tradeoff analysis incorporates the results of a CNS developed analytical model that examined performance parameters.

  19. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  20. Transport composite fuselage technology: Impact dynamics and acoustic transmission

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.

    1986-01-01

    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.

  1. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  2. An open architecture for medical image workstation

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Hu, Zhiqiang; Wang, Xiangyun

    2005-04-01

    Dealing with the difficulties of integrating various medical image viewing and processing technologies with a variety of clinical and departmental information systems and, in the meantime, overcoming the performance constraints in transferring and processing large-scale and ever-increasing image data in healthcare enterprise, we design and implement a flexible, usable and high-performance architecture for medical image workstations. This architecture is not developed for radiology only, but for any workstations in any application environments that may need medical image retrieving, viewing, and post-processing. This architecture contains an infrastructure named Memory PACS and different kinds of image applications built on it. The Memory PACS is in charge of image data caching, pre-fetching and management. It provides image applications with a high speed image data access and a very reliable DICOM network I/O. In dealing with the image applications, we use dynamic component technology to separate the performance-constrained modules from the flexibility-constrained modules so that different image viewing or processing technologies can be developed and maintained independently. We also develop a weakly coupled collaboration service, through which these image applications can communicate with each other or with third party applications. We applied this architecture in developing our product line and it works well. In our clinical sites, this architecture is applied not only in Radiology Department, but also in Ultrasonic, Surgery, Clinics, and Consultation Center. Giving that each concerned department has its particular requirements and business routines along with the facts that they all have different image processing technologies and image display devices, our workstations are still able to maintain high performance and high usability.

  3. The applicability of DOE solar cell and array technology to space power

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Stella, P. M.; Berman, P. A.

    1980-01-01

    An evaluation of the main terrestrial photovoltaic development projects was performed. Technologies that may have applicability to space power are identified. Where appropriate, recommendations are made for programs to capitalize on developed technology. It is concluded that while the funding expended by DOE is considerably greater than the space (NASA and DOD) budget for photovoltaics, the terrestrial goals and the means for satisfying them are sufficiently different from space needs that little direct benefit currently exists for space applications.

  4. Surface plasmon resonance as a tool for ligand-binding assay reagent characterization in bioanalysis of biotherapeutics.

    PubMed

    Duo, Jia; Bruno, JoAnne; Kozhich, Alexander; David-Brown, Donata; Luo, Linlin; Kwok, Suk; Santockyte, Rasa; Haulenbeek, Jonathan; Liu, Rong; Hamuro, Lora; Peterson, Jon E; Piccoli, Steven; DeSilva, Binodh; Pillutla, Renuka; Zhang, Yan J

    2018-04-01

    Ligand-binding assay (LBA) performance depends on quality reagents. Strategic reagent screening and characterization is critical to LBA development, optimization and validation. Application of advanced technologies expedites the reagent screening and assay development process. By evaluating surface plasmon resonance technology that offers high-throughput kinetic information, this article aims to provide perspectives on applying the surface plasmon resonance technology to strategic LBA critical reagent screening and characterization supported by a number of case studies from multiple biotherapeutic programs.

  5. Review of infrared technology in The Netherlands

    NASA Astrophysics Data System (ADS)

    de Jong, Arie N.

    1993-11-01

    The use of infrared sensors in the Netherlands is substantial. Users can be found in a variety of disciplines, military as well as civil. This need for IR sensors implied a long history on IR technology and development. The result was a large technological-capability allowing the realization of IR hardware: specialized measuring equipment, engineering development models, prototype and production sensors for different applications. These applications range from small size, local radiometry up to large space-borne imaging. Large scale production of IR sensors has been realized for army vehicles. IR sensors have been introduced now in all of the armed forces. Facilities have been built to test the performance of these sensors. Models have been developed to predict the performance of a new sensor. A great effort has been spent on atmospheric research, leading to knowledge upon atmospheric- and background limitations of IR sensors.

  6. Feasibility of remotely manipulated welding in space. A step in the development of novel joining technologies

    NASA Technical Reports Server (NTRS)

    Masubuchi, K.; Agapakis, J. E.; Debiccari, A.; Vonalt, C.

    1983-01-01

    In order to establish permanent human presence in space technologies of constructing and repairing space stations and other space structures must be developed. Most construction jobs are performed on earth and the fabricated modules will then be delivered to space by the Space Shuttle. Only limited final assembly jobs, which are primarily mechanical fastening, will be performed on site in space. Such fabrication plans, however, limit the designs of these structures, because each module must fit inside the transport vehicle and must withstand launching stresses which are considerably high. Large-scale utilization of space necessitates more extensive construction work on site. Furthermore, continuous operations of space stations and other structures require maintenance and repairs of structural components as well as of tools and equipment on these space structures. Metal joining technologies, and especially high-quality welding, in space need developing.

  7. Effects of thermal blooming on systems comprised of tiled subapertures

    NASA Astrophysics Data System (ADS)

    Leakeas, Charles L.; Bartell, Richard J.; Krizo, Matthew J.; Fiorino, Steven T.; Cusumano, Salvatore J.; Whiteley, Matthew R.

    2010-04-01

    Laser weapon systems comprise of tiled subapertures are rapidly emerging in the directed energy community. The Air Force Institute of Technology Center for Directed Energy (AFIT/CDE), under sponsorship of the HEL Joint Technology Office has developed performance models of such laser weapon system configurations consisting of tiled arrays of both slab and fiber subapertures. These performance models are based on results of detailed waveoptics analyses conducted using WaveTrain. Previous performance model versions developed in this effort represent system characteristics such as subaperture shape, aperture fill factor, subaperture intensity profile, subaperture placement in the primary aperture, subaperture mutual coherence (piston), subaperture differential jitter (tilt), and beam quality wave-front error associated with each subaperture. The current work is a prerequisite for the development of robust performance models for turbulence and thermal blooming effects for tiled systems. Emphasis is placed on low altitude tactical scenarios. The enhanced performance model developed will be added to AFIT/CDE's HELEEOS parametric one-on-one engagement level model via the Scaling for High Energy Laser and Relay Engagement (SHaRE) toolbox.

  8. The change in critical technologies for computational physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1990-01-01

    It is noted that the types of technology required for computational physics are changing as the field matures. Emphasis has shifted from computer technology to algorithm technology and, finally, to visual analysis technology as areas of critical research for this field. High-performance graphical workstations tied to a supercommunicator with high-speed communications along with the development of especially tailored visualization software has enabled analysis of highly complex fluid-dynamics simulations. Particular reference is made here to the development of visual analysis tools at NASA's Numerical Aerodynamics Simulation Facility. The next technology which this field requires is one that would eliminate visual clutter by extracting key features of simulations of physics and technology in order to create displays that clearly portray these key features. Research in the tuning of visual displays to human cognitive abilities is proposed. The immediate transfer of technology to all levels of computers, specifically the inclusion of visualization primitives in basic software developments for all work stations and PCs, is recommended.

  9. The application of decision analysis to life support research and technology development

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.

    1994-01-01

    Applied research and technology development is often characterized by uncertainty, risk, and significant delays before tangible returns are obtained. Decision making regarding which technologies to advance and what resources to devote to them is a challenging but essential task. In the application of life support technology to future manned space flight, new technology concepts typically are characterized by nonexistent data and rough approximations of technology performance, uncertain future flight program needs, and a complex, time-intensive process to develop technology to a flight-ready status. Decision analysis is a quantitative, logic-based discipline that imposes formalism and structure to complex problems. It also accounts for the limits of knowledge that may be available at the time a decision is needed. The utility of decision analysis to life support technology R & D was evaluated by applying it to two case studies. The methodology was found to provide insight that is not possible from more traditional analysis approaches.

  10. Development of high purity large forgings for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  11. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  12. Design definition study of a NASA/Navy lift/cruise fan technology V/STOL airplane: Risk assessment addendum to the final report

    NASA Technical Reports Server (NTRS)

    Zabinsky, J. M.; Burnham, R. W.; Flora, C. C.; Gotlieb, P.; Grande, D. L.; Gunnarson, D. W.; Howard, W. M.; Hunt, D.; Jakubowski, G. W.; Johnson, P. E.

    1975-01-01

    An assessment of risk, in terms of delivery delays, cost overrun, and performance achievement, associated with the V/STOL technology airplane is presented. The risk is discussed in terms of weight, structure, aerodynamics, propulsion, mechanical drive, and flight controls. The analysis ensures that risks associated with the design and development of the airplane will be eliminated in the course of the program and a useful technology airplane that meets the predicted cost, schedule, and performance can be produced.

  13. Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, D.W.

    1995-12-01

    The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate inmore » the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.« less

  14. Specific NIST projects in support of the NIJ Concealed Weapon Detection and Imaging Program

    NASA Astrophysics Data System (ADS)

    Paulter, Nicholas G.

    1998-12-01

    The Electricity Division of the National Institute of Standards and Technology is developing revised performance standards for hand-held (HH) and walk-through (WT) metal weapon detectors, test procedures and systems for these detectors, and a detection/imaging system for finding concealed weapons. The revised standards will replace the existing National Institute of Justice (NIJ) standards for HH and WT devices and will include detection performance specifications as well as system specifications (environmental conditions, mechanical strength and safety, response reproducibility and repeatability, quality assurance, test reporting, etc.). These system requirements were obtained from the Law Enforcement and corrections Technology Advisory Council, an advisory council for the NIJ. Reproducible and repeatable test procedures and appropriate measurement systems will be developed for evaluating HH and WT detection performance. A guide to the technology and application of non- eddy-current-based detection/imaging methods (such as acoustic, passive millimeter-wave and microwave, active millimeter-wave and terahertz-wave, x-ray, etc.) Will be developed. The Electricity Division is also researching the development of a high- frequency/high-speed (300 GH to 1 THz) pulse-illuminated, stand- off, video-rate, concealed weapons/contraband imaging system.

  15. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  16. High-performance, flexible, deployable array development for space applications

    NASA Technical Reports Server (NTRS)

    Gehling, Russell N.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Flexible, deployable arrays are an attractive alternative to conventional solar arrays for near-term and future space power applications, particularly due to their potential for high specific power and low storage volume. Combined with low-cost flexible thin-film photovoltaics, these arrays have the potential to become an enabling or an enhancing technology for many missions. In order to expedite the acceptance of thin-film photovoltaics for space applications, however, parallel development of flexible photovoltaics and the corresponding deployable structure is essential. Many innovative technologies must be incorporated in these arrays to ensure a significant performance increase over conventional technologies. For example, innovative mechanisms which employ shape memory alloys for storage latches, deployment mechanisms, and array positioning gimbals can be incorporated into flexible array design with significant improvement in the areas of cost, weight, and reliability. This paper discusses recent activities at Martin Marietta regarding the development of flexible, deployable solar array technology. Particular emphasis is placed on the novel use of shape memory alloys for lightweight deployment elements to improve the overall specific power of the array. Array performance projections with flexible thin-film copper-indium-diselenide (CIS) are presented, and government-sponsored solar array programs recently initiated at Martin Marietta through NASA and Air Force Phillips Laboratory are discussed.

  17. Habitats and Surface Construction Technology and Development Roadmap

    NASA Technical Reports Server (NTRS)

    Cohen, Marc; Kennedy, Kriss J.

    1997-01-01

    The vision of the technology and development teams at NASA Ames and Johnson Research Centers is to provide the capability for automated delivery and emplacement of habitats and surface facilities. The benefits of the program are as follows: Composites and Inflatables: 30-50% (goal) lighter than Al Hard Structures; Capability for Increased Habitable Volume, Launch Efficiency; Long Term Growth Potential; and Supports initiation of commercial and industrial expansion. Key Habitats and Surface Construction (H&SC) technology issues are: Habitat Shell Structural Materials; Seals and Mechanisms; Construction and Assembly: Automated Pro-Deploy Construction Systems; ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs; Radiation Protection (Health and Human Performance Tech.); Life Support System (Regenerative Life Support System Tech.); Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.); and Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.) What is being done regarding these issues?: Use of composite materials for X-38 CRV, RLV, etc.; TransHAB inflatable habitat design/development; Japanese corporations working on ISRU-derived construction processes. What needs to be done for the 2004 Go Decision?: Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.; Determine Credibility of Inflatable Structures for Human Habitation; and Determine Seal Technology for Mechanisms and Hatches, Life Cycle, and Durability. An overview encompassing all of the issues above is presented.

  18. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  19. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  20. Environmental Management vitrification activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumrine, P.H.

    1996-05-01

    Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy`s (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity formore » the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success.« less

Top