Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks
NASA Technical Reports Server (NTRS)
Zaal, Peter M. T.; Sweet, Barbara T.
2012-01-01
Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.
Implementation Of Fuzzy Automated Brake Controller Using TSK Algorithm
NASA Astrophysics Data System (ADS)
Mittal, Ruchi; Kaur, Magandeep
2010-11-01
In this paper an application of Fuzzy Logic for Automatic Braking system is proposed. Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal Depending upon the speed and distance of train. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance depending upon the varying speed and distance of the train.
Task-dependent individual differences in prefrontal connectivity.
Biswal, Bharat B; Eldreth, Dana A; Motes, Michael A; Rypma, Bart
2010-09-01
Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit-symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior.
Task-Dependent Individual Differences in Prefrontal Connectivity
Biswal, Bharat B.; Eldreth, Dana A.; Motes, Michael A.
2010-01-01
Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit–symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior. PMID:20064942
Impact of ground speed and varying seeding rates on meter performance
USDA-ARS?s Scientific Manuscript database
Achieving optimum planter performance is an important requirement for obtaining higher crop yields. Planter performance depends on several factors but meter speed is an important one which is a function of ground speed, seeding rate and row spacing. A study was conducted to evaluate the influence of...
ERIC Educational Resources Information Center
Odaci, Hatice; Çelik, Çigdem B.
2017-01-01
This study examined the relationship between Internet dependence in university students and forms of coping with stress and self-efficacy and investigated whether Internet dependence varies according to such variables as sex roles, gender, and duration of Internet use. The study was performed with 632 university students. The Internet Addiction…
Pauls, Franz; Petermann, Franz; Lepach, Anja Christina
2015-01-01
At present, little is still known about the link between depression, memory and executive functioning. This study examined whether there are memory-related impairments in depressed patients and whether the size of such deficits depends on the age group and on specific types of cognitive measures. Memory performances of 215 clinically depressed patients were compared to the data of a matched control sample. Regression analyses were performed to determine the extent to which executive dysfunctions contributed to episodic memory impairments. When compared with healthy controls, significantly lower episodic memory and executive functioning performances were found for depressed patients of all age groups. Effect sizes appeared to vary across different memory and executive functioning measures. The extent to which executive dysfunctions could explain episodic memory impairments varied depending on the type of measure examined. These findings emphasise the need to consider memory-related functioning of depressed patients in the context of therapeutic treatments.
Internal performance characteristics of vectored axisymmetric ejector nozzles
NASA Technical Reports Server (NTRS)
Lamb, Milton
1993-01-01
A series of vectoring axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at NASA-Langley Research Center. These ejector nozzles used convergent-divergent nozzles as the primary nozzles. The model geometric variables investigated were primary nozzle throat area, primary nozzle expansion ratio, effective ejector expansion ratio (ratio of shroud exit area to primary nozzle throat area), ratio of minimum ejector area to primary nozzle throat area, ratio of ejector upper slot height to lower slot height (measured on the vertical centerline), and thrust vector angle. The primary nozzle pressure ratio was varied from 2.0 to 10.0 depending upon primary nozzle throat area. The corrected ejector-to-primary nozzle weight-flow ratio was varied from 0 (no secondary flow) to approximately 0.21 (21 percent of primary weight-flow rate) depending on ejector nozzle configuration. In addition to the internal performance and pumping characteristics, static pressures were obtained on the shroud walls.
Shi, Wei; Xia, Jun
2017-02-01
Water quality risk management is a global hot research linkage with the sustainable water resource development. Ammonium nitrogen (NH 3 -N) and permanganate index (COD Mn ) as the focus indicators in Huai River Basin, are selected to reveal their joint transition laws based on Markov theory. The time-varying moments model with either time or land cover index as explanatory variables is applied to build the time-varying marginal distributions of water quality time series. Time-varying copula model, which takes the non-stationarity in the marginal distribution and/or the time variation in dependence structure between water quality series into consideration, is constructed to describe a bivariate frequency analysis for NH 3 -N and COD Mn series at the same monitoring gauge. The larger first-order Markov joint transition probability indicates water quality state Class V w , Class IV and Class III will occur easily in the water body of Bengbu Sluice. Both marginal distribution and copula models are nonstationary, and the explanatory variable time yields better performance than land cover index in describing the non-stationarities in the marginal distributions. In modelling the dependence structure changes, time-varying copula has a better fitting performance than the copula with the constant or the time-trend dependence parameter. The largest synchronous encounter risk probability of NH 3 -N and COD Mn simultaneously reaching Class V is 50.61%, while the asynchronous encounter risk probability is largest when NH 3 -N and COD Mn is inferior to class V and class IV water quality standards, respectively.
Comprehensive national database of tree effects on air quality and human health in the United States
Satoshi Hirabayashi; David J. Nowak
2016-01-01
Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and...
Estimating varying coefficients for partial differential equation models.
Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J
2017-09-01
Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.
Generalized semiparametric varying-coefficient models for longitudinal data
NASA Astrophysics Data System (ADS)
Qi, Li
In this dissertation, we investigate the generalized semiparametric varying-coefficient models for longitudinal data that can flexibly model three types of covariate effects: time-constant effects, time-varying effects, and covariate-varying effects, i.e., the covariate effects that depend on other possibly time-dependent exposure variables. First, we consider the model that assumes the time-varying effects are unspecified functions of time while the covariate-varying effects are parametric functions of an exposure variable specified up to a finite number of unknown parameters. The estimation procedures are developed using multivariate local linear smoothing and generalized weighted least squares estimation techniques. The asymptotic properties of the proposed estimators are established. The simulation studies show that the proposed methods have satisfactory finite sample performance. ACTG 244 clinical trial of HIV infected patients are applied to examine the effects of antiretroviral treatment switching before and after HIV developing the 215-mutation. Our analysis shows benefit of treatment switching before developing the 215-mutation. The proposed methods are also applied to the STEP study with MITT cases showing that they have broad applications in medical research.
Contracting out Public Schools and Academic Performance: Evidence from Colombia
ERIC Educational Resources Information Center
Bonilla-Angel, Juan D.
2011-01-01
Contracting out public schools to private institutions is an instrument for reforming public education as it may facilitate academic innovation and improve student academic performance through higher school accountability and autonomy. The degree of autonomy that different providers have may vary substantially depending on the contractual and…
Forster, Jeri E.; MaWhinney, Samantha; Ball, Erika L.; Fairclough, Diane
2011-01-01
Dropout is common in longitudinal clinical trials and when the probability of dropout depends on unobserved outcomes even after conditioning on available data, it is considered missing not at random and therefore nonignorable. To address this problem, mixture models can be used to account for the relationship between a longitudinal outcome and dropout. We propose a Natural Spline Varying-coefficient mixture model (NSV), which is a straightforward extension of the parametric Conditional Linear Model (CLM). We assume that the outcome follows a varying-coefficient model conditional on a continuous dropout distribution. Natural cubic B-splines are used to allow the regression coefficients to semiparametrically depend on dropout and inference is therefore more robust. Additionally, this method is computationally stable and relatively simple to implement. We conduct simulation studies to evaluate performance and compare methodologies in settings where the longitudinal trajectories are linear and dropout time is observed for all individuals. Performance is assessed under conditions where model assumptions are both met and violated. In addition, we compare the NSV to the CLM and a standard random-effects model using an HIV/AIDS clinical trial with probable nonignorable dropout. The simulation studies suggest that the NSV is an improvement over the CLM when dropout has a nonlinear dependence on the outcome. PMID:22101223
Sheng, Li; Wang, Zidong; Zou, Lei; Alsaadi, Fuad E
2017-10-01
In this paper, the event-based finite-horizon H ∞ state estimation problem is investigated for a class of discrete time-varying stochastic dynamical networks with state- and disturbance-dependent noises [also called (x,v) -dependent noises]. An event-triggered scheme is proposed to decrease the frequency of the data transmission between the sensors and the estimator, where the signal is transmitted only when certain conditions are satisfied. The purpose of the problem addressed is to design a time-varying state estimator in order to estimate the network states through available output measurements. By employing the completing-the-square technique and the stochastic analysis approach, sufficient conditions are established to ensure that the error dynamics of the state estimation satisfies a prescribed H ∞ performance constraint over a finite horizon. The desired estimator parameters can be designed via solving coupled backward recursive Riccati difference equations. Finally, a numerical example is exploited to demonstrate the effectiveness of the developed state estimation scheme.
ERIC Educational Resources Information Center
Fong, Anthony; Jaquet, Karina; Finkelstein, Neal
2016-01-01
The information provided in this report shows how students perform when they repeat algebra I and how the level of improvement varies depending on initial course performance and the academic measure (course grades or CST scores). This information can help inform decisions and policies regarding whether and under what circumstances students should…
Age, Sex, and Verbal Abilities Affect Location of Linguistic Connectivity in Ventral Visual Pathway
ERIC Educational Resources Information Center
Burman, Douglas D.; Minas, Taylor; Bolger, Donald J.; Booth, James R.
2013-01-01
Previous studies have shown that the "strength" of connectivity between regions can vary depending upon the cognitive demands of a task. In this study, the "location" of task-dependent connectivity from the primary visual cortex (V1) was examined in 43 children (ages 9-15) performing visual tasks; connectivity maxima were identified for a visual…
Retrospective Attention Interacts with Stimulus Strength to Shape Working Memory Performance.
Wildegger, Theresa; Humphreys, Glyn; Nobre, Anna C
2016-01-01
Orienting attention retrospectively to selective contents in working memory (WM) influences performance. A separate line of research has shown that stimulus strength shapes perceptual representations. There is little research on how stimulus strength during encoding shapes WM performance, and how effects of retrospective orienting might vary with changes in stimulus strength. We explore these questions in three experiments using a continuous-recall WM task. In Experiment 1 we show that benefits of cueing spatial attention retrospectively during WM maintenance (retrocueing) varies according to stimulus contrast during encoding. Retrocueing effects emerge for supraliminal but not sub-threshold stimuli. However, once stimuli are supraliminal, performance is no longer influenced by stimulus contrast. In Experiments 2 and 3 we used a mixture-model approach to examine how different sources of error in WM are affected by contrast and retrocueing. For high-contrast stimuli (Experiment 2), retrocues increased the precision of successfully remembered items. For low-contrast stimuli (Experiment 3), retrocues decreased the probability of mistaking a target with distracters. These results suggest that the processes by which retrospective attentional orienting shape WM performance are dependent on the quality of WM representations, which in turn depends on stimulus strength during encoding.
Laws, Angela Nardoni; Belovsky, Gary E
2010-04-01
An important challenge facing ecologists is to understand how climate change may affect species performance and species interactions. However, predicting how changes in abiotic variables associated with climate change may affect species performance also depends on the biotic context, which can mediate species responses to climatic change. We conducted a 3-yr field experiment to determine how the herbivorous grasshopper Camnula pellucida (Scudder) responds to manipulations of temperature and population density. Grasshopper survival and fecundity decreased with density, indicating the importance of intraspecific competition. Female fecundity tended to increase with temperature, whereas grasshopper survival exhibited a unimodal response to temperature, with highest survival at intermediate temperatures. Grasshopper performance responses to temperature also depended on density. Peak survival in the low-density treatment occurred in warmer conditions than for the high-density treatment, indicating that the intensity of intraspecific competition varies with temperature. Our data show that changes to the temperature regimen can alter grasshopper performance and determine the intensity of intraspecific competition. However, the effects of temperature on grasshopper performance varied with density. Our data indicate the importance of the biotic context in mediating species responses to climatic factors associated with global change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dustin Popp; Zander Mausolff; Sedat Goluoglu
We are proposing to use the code, TDKENO, to model TREAT. TDKENO solves the time dependent, three dimensional Boltzmann transport equation with explicit representation of delayed neutrons. Instead of directly integrating this equation, the neutron flux is factored into two components – a rapidly varying amplitude equation and a slowly varying shape equation and each is solved separately on different time scales. The shape equation is solved using the 3D Monte Carlo transport code KENO, from Oak Ridge National Laboratory’s SCALE code package. Using the Monte Carlo method to solve the shape equation is still computationally intensive, but the operationmore » is only performed when needed. The amplitude equation is solved deterministically and frequently, so the solution gives an accurate time-dependent solution without having to repeatedly We have modified TDKENO to incorporate KENO-VI so that we may accurately represent the geometries within TREAT. This paper explains the motivation behind using generalized geometry, and provides the results of our modifications. TDKENO uses the Improved Quasi-Static method to accomplish this. In this method, the neutron flux is factored into two components. One component is a purely time-dependent and rapidly varying amplitude function, which is solved deterministically and very frequently (small time steps). The other is a slowly varying flux shape function that weakly depends on time and is only solved when needed (significantly larger time steps).« less
Passivity of memristive BAM neural networks with leakage and additive time-varying delays
NASA Astrophysics Data System (ADS)
Wang, Weiping; Wang, Meiqi; Luo, Xiong; Li, Lixiang; Zhao, Wenbing; Liu, Linlin; Ping, Yuan
2018-02-01
This paper investigates the passivity of memristive bidirectional associate memory neural networks (MBAMNNs) with leakage and additive time-varying delays. Based on some useful inequalities and appropriate Lyapunov-Krasovskii functionals (LKFs), several delay-dependent conditions for passivity performance are obtained in linear matrix inequalities (LMIs). Moreover, the leakage delays as well as additive delays are considered separately. Finally, numerical simulations are provided to demonstrate the feasibility of the theoretical results.
NASA Astrophysics Data System (ADS)
Yan, Yifang; Yang, Chunyu; Ma, Xiaoping; Zhou, Linna
2018-02-01
In this paper, sampled-data H∞ filtering problem is considered for Markovian jump singularly perturbed systems with time-varying delay and missing measurements. The sampled-data system is represented by a time-delay system, and the missing measurement phenomenon is described by an independent Bernoulli random process. By constructing an ɛ-dependent stochastic Lyapunov-Krasovskii functional, delay-dependent sufficient conditions are derived such that the filter error system satisfies the prescribed H∞ performance for all possible missing measurements. Then, an H∞ filter design method is proposed in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the feasibility and advantages of the obtained results.
Degradation of lead-zirconate-titanate ceramics under different dc loads
NASA Astrophysics Data System (ADS)
Balke, Nina; Granzow, Torsten; Rödel, Jürgen
2009-05-01
During poling and application in actuators, piezoelectric ceramics like lead-zirconate-titanate are exposed to static or cyclically varying electric fields, often leading to pronounced changes in the electromechanical properties. These fatigue phenomena depend on time, peak electric load, and temperature. Although this process impacts the performance of many actuator materials, its physical understanding remains elusive. This paper proposes a set of key experiments to systematically investigate the changes in the ferroelectric hysteresis, field-dependent relative permittivity, and piezoelectric coefficient after submitting the material to dc loads of varying amplitude and duration. The observed effects are explained based on a model of domain stabilization due to charge accumulation at domain boundaries.
Hospital Variation in Functional Recovery After Stroke.
Bettger, Janet Prvu; Thomas, Laine; Liang, Li; Xian, Ying; Bushnell, Cheryl D; Saver, Jeffrey L; Fonarow, Gregg C; Peterson, Eric D
2017-01-01
Functional status is a key patient-centric outcome, but there are little data on whether functional recovery post-stroke varies among hospitals. This study examined the distribution of functional status 3 months after stroke, determined whether these outcomes vary among hospitals, and identified hospital characteristics associated with better (or worse) functional outcomes. Observational analysis of the AVAIL study (Adherence Evaluation After Ischemic Stroke-Longitudinal) included 2083 ischemic stroke patients enrolled from 82 US hospitals participating in Get With The Guidelines-Stroke and AVAIL. The primary outcome was dependence or death at 3 months (modified Rankin Scale [mRS] score of 3-6). Secondary outcomes included functional dependence (mRS score of 3-5), disabled (mRS score of 2-5), and mRS evaluated as a continuous score. By 3 months post-discharge, 36.5% of patients were functionally dependent or dead. Rates of dependence or death varied widely by discharging hospitals (range: 0%-67%). After risk adjustment, patients had lower rates of 3-month dependence or death when treated at teaching hospitals (odds ratio, 0.72; 95% confidence interval, 0.54-0.96) and certified primary stroke centers (odds ratio, 0.69; 95% confidence interval, 0.53-0.91). In contrast, a composite measure of hospital-level adherence to acute stroke care performance metrics, stroke volume, and bed size was not associated with downstream patient functional status. Findings were robust across mRS end points and sensitivity analyses. One third of acute ischemic stroke patients were functionally dependent or dead 3 months postacute stroke; functional recovery rates varied considerably among hospitals, supporting the need to better determine which care processes can maximize functional outcomes. © 2017 American Heart Association, Inc.
ERIC Educational Resources Information Center
Plant, Jennifer L.; Corden, Mark; Mourad, Michelle; O'Brien, Bridget C.; van Schaik, Sandrijn M.
2013-01-01
;Self-directed learning requires self-assessment of learning needs and performance, a complex process that requires collecting and interpreting data from various sources. Learners' approaches to self-assessment likely vary depending on the learner and the context. The aim of this study was to gain insight into how learners process external…
ERIC Educational Resources Information Center
Gordovil-Merino, Amalia; Guardia-Olmos, Joan; Pero-Cebollero, Maribel
2012-01-01
In this paper, we used simulations to compare the performance of classical and Bayesian estimations in logistic regression models using small samples. In the performed simulations, conditions were varied, including the type of relationship between independent and dependent variable values (i.e., unrelated and related values), the type of variable…
Lateralized Motor Control Processes Determine Asymmetry of Interlimb Transfer
Sainburg, Robert L.; Schaefer, Sydney Y.; Yadav, Vivek
2016-01-01
This experiment tested the hypothesis that interlimb transfer of motor performance depends on recruitment of motor control processes that are specialized to the hemisphere contralateral to the arm that is initially trained. Right-handed participants performed a single-joint task, in which reaches were targeted to 4 different distances. While the speed and accuracy was similar for both hands, the underlying control mechanisms used to vary movement speed with distance were systematically different between the arms: The amplitude of the initial acceleration profiles scaled greater with movement speed for the right-dominant arm, while the duration of the initial acceleration profile scaled greater with movement speed for the left-non-dominant arm. These two processes were previously shown to be differentially disrupted by left and right hemisphere damage, respectively. We now hypothesize that task practice with the right arm might reinforce left-hemisphere mechanisms that vary acceleration amplitude with distance, while practice with the left arm might reinforce right-hemisphere mechanisms that vary acceleration duration with distance. We thus predict that following right arm practice, the left arm should show increased contributions of acceleration amplitude to peak velocities, and following left arm practice, the right arm should show increased contributions of acceleration duration to peak velocities. Our findings support these predictions, indicating that asymmetry in interlimb transfer of motor performance, at least in the task used here, depends on recruitment of lateralized motor control processes. PMID:27491479
Structural effects on mechanical response of MoS2 nanostructures during compression
NASA Astrophysics Data System (ADS)
Bucholz, Eric W.; Sinnott, Susan B.
2013-07-01
In recent years, inorganic nanostructures, such as fullerene-like MoS2 and WS2 nanoparticles, have been shown to be promising candidates for friction and wear reduction in tribological applications. However, it has been demonstrated experimentally that the mechanical response of any given inorganic nanostructure varies depending on its individual structural characteristics such as size, shape, and crystallinity. Here, classical molecular dynamics simulations are performed that investigate the mechanical responses of different types of MoS2 nanostructures during uniaxial compression. The results illustrate the dependence of mechanical behavior on nanoparticle structure and, in particular, indicate that the mechanical properties of MoS2 nanostructures vary significantly with changes in the orientation of the MoS2 walls at the interface.
Performance of hybrid and single-frequency impulse GPR antennas on USGA sporting greens
USDA-ARS?s Scientific Manuscript database
The utility of employing ground-penetrating radar (GPR) technologies for environmental surveys can vary, depending upon the physical properties of the site. Environmental conditions can fluctuate, altering soil properties. Operator proficiency and survey methodology will also influence GPR findings....
Studies on semantic priming effects in right hemisphere stroke: A systematic review
Müller, Juliana de Lima; de Salles, Jerusa Fumagalli
2013-01-01
The role of the right cerebral hemisphere (RH) associated with semantic priming effects (SPEs) must be better understood, since the consequences of RH damage on SPE are not yet well established. OBJECTIVE The aim of this article was to investigate studies analyzing SPEs in patients affected by stroke in the RH through a systematic review, verifying whether there are deficits in SPEs, and whether performance varies depending on the type of semantic processing evaluated or stimulus in the task. METHODS A search was conducted on the LILACS, PUBMED and PSYCINFO databases. RESULTS Out of the initial 27 studies identified, 11 remained in the review. Difficulties in SPEs were shown in five studies. Performance does not seem to vary depending on the type of processing, but on the type of stimulus used. CONCLUSION This ability should be evaluated in individuals that have suffered a stroke in the RH in order to provide treatments that will contribute to their recovery PMID:29213834
Honeybee Odometry: Performance in Varying Natural Terrain
Tautz, Juergen; Zhang, Shaowu; Spaethe, Johannes; Brockmann, Axel; Si, Aung
2004-01-01
Recent studies have shown that honeybees flying through short, narrow tunnels with visually textured walls perform waggle dances that indicate a much greater flight distance than that actually flown. These studies suggest that the bee's “odometer” is driven by the optic flow (image motion) that is experienced during flight. One might therefore expect that, when bees fly to a food source through a varying outdoor landscape, their waggle dances would depend upon the nature of the terrain experienced en route. We trained honeybees to visit feeders positioned along two routes, each 580 m long. One route was exclusively over land. The other was initially over land, then over water and, finally, again over land. Flight over water resulted in a significantly flatter slope of the waggle-duration versus distance regression, compared to flight over land. The mean visual contrast of the scenes was significantly greater over land than over water. The results reveal that, in outdoor flight, the honeybee's odometer does not run at a constant rate; rather, the rate depends upon the properties of the terrain. The bee's perception of distance flown is therefore not absolute, but scene-dependent. These findings raise important and interesting questions about how these animals navigate reliably. PMID:15252454
Employee performance in the knowledge economy: Capturing the keys to success
Fauth, Rebecca; Bevan, Stephen; Mills, Peter
2009-01-01
The present study examines the key determinants of employee performance in a knowledge-intensive service firm located in the UK. Using data from a pilot study, we mapped eight performance-related behaviors to two measures of global performance to isolate the strongest predictors of the latter. We also examined the degree to which these associations varied depending on whether employees or their managers reported on performance as well as according to the degree of complexity (eg, ongoing learning, multitasking, problem solving, etc.) present in workers’ jobs. Findings revealed that more traditional employee performance-related behaviors (eg, dependability) as well as behaviors that have likely increased in importance in the knowledge economy (eg, sharing ideas and information) accounted for the most variance in reported global performance. Sharing ideas and information was a particularly important predictor for workers in complex jobs. When the performance-related behaviors were regressed on the organization’s annual employee appraisal ratings, only dependability and time management behaviors were significantly associated with the outcome. As organizational success increasingly is dependent on intangible inputs stemming from the ideas, innovations and creativity of its workforce, organizations need to ensure that they are capturing the full range of behaviors that help to define their success. Further research with a diverse range of organizations will help define this further. PMID:22110316
Microbial source tracking in highly vulnerable karst drinking water resources.
Diston, D; Robbi, R; Baumgartner, A; Felleisen, R
2018-02-01
Water resources situated in areas with underlying karst geology are particularly vulnerable to fecal pollution. In such vulnerable systems, microbial source tracking (MST) methods are useful tools to elucidate the pathways of both animal and human fecal pollution, leading to more accurate water use risk assessments. Here, we describe the application of a MST toolbox using both culture-dependent bacteriophage and molecular-dependent 16S rRNA assays at spring and well sites in the karstic St Imier Valley, Switzerland. Culture-dependent and molecular-dependent marker performance varied significantly, with the 16S rRNA assays displaying greater sensitivity than their phage counterpart; HF183 was the best performing human wastewater-associated marker while Rum2Bac was the best performing ruminant marker. Differences were observed in pollution regimes between the well and spring sampling sites, with the spring water being more degraded than the well site. Our results inform the choice of marker selection for MST studies and highlight differences in microbial water quality between well and spring karst sites.
Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles
NASA Astrophysics Data System (ADS)
Wilcox, Zachary Donald
The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed controller is then applied to a HSV model, and a Lyapunov analysis is used to prove global exponential reference model tracking in the presence of uncertainty in the state and input matrices and exogenous disturbances. Simulations with a spectrum of gains and temperature profiles on the full nonlinear dynamic model of the HSV is used to illustrate the performance and robustness of the developed controller. In addition, this work considers how the performance of the developed controller varies over a wide variety of control gains and temperature profiles and are optimized with respect to different performance metrics. Specifically, various temperature profile models and related nonlinear temperature dependent disturbances are used to characterize the relative control performance and effort for each model. Examining such metrics as a function of temperature provides a potential inroad to examine the interplay between structural/thermal protection design and control development and has application for future HSV design and control implementation.
Toward the Army of the 1980s: A Study of Male Attitudes Toward Women as Combatants
1978-06-09
questions which included demographic discriminators, positive and negative social role perceptions and personal assessments on hypothetical performance...influence future policy development. The degree of dependence varies among the major variables of social beliefs, gender-role perceptions, mind-sets, and
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Furuya, Keiichiro; Ishizuka, Shinichi
2018-07-01
Model-based controllers with adaptive design variables are often used to control an object with time-dependent characteristics. However, the controller's performance is influenced by many factors such as modeling accuracy and fluctuations in the object's characteristics. One method to overcome these negative factors is to tune model-based controllers. Herein we propose an online tuning method to maintain control performance for an object that exhibits time-dependent variations. The proposed method employs the poles of the controller as design variables because the poles significantly impact performance. Specifically, we use the simultaneous perturbation stochastic approximation (SPSA) to optimize a model-based controller with multiple design variables. Moreover, a vibration control experiment of an object with time-dependent characteristics as the temperature is varied demonstrates that the proposed method allows adaptive control and stably maintains the closed-loop characteristics.
NASA Astrophysics Data System (ADS)
Shokeen, V.; Sanchez Piaia, M.; Bigot, J.-Y.; Müller, T.; Elliott, P.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.
2017-09-01
A joint theoretical and experimental investigation is performed to understand the underlying physics of laser-induced demagnetization in Ni and Co films with varying thicknesses excited by 10 fs optical pulses. Experimentally, the dynamics of spins is studied by determining the time-dependent amplitude of the Voigt vector, retrieved from a full set of magnetic and nonmagnetic quantities performed on both sides of films, with absolute time reference. Theoretically, ab initio calculations are performed using time-dependent density functional theory. Overall, we demonstrate that spin-orbit induced spin flips are the most significant contributors with superdiffusive spin transport, which assumes only that the transport of majority spins without spin flips induced by scattering does not apply in Ni. In Co it plays a significant role during the first ˜20 fs only. Our study highlights the material dependent nature of the demagnetization during the process of thermalization of nonequilibrium spins.
High-resolution time-frequency representation of EEG data using multi-scale wavelets
NASA Astrophysics Data System (ADS)
Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina
2017-09-01
An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.
Impact of rough potentials in rocked ratchet performance
NASA Astrophysics Data System (ADS)
Camargo, S.; Anteneodo, C.
2018-04-01
We consider thermal ratchets modeled by overdamped Brownian motion in a spatially periodic potential with a tilting process, both unbiased on average. We investigate the impact of the introduction of roughness in the potential profile, over the flux and efficiency of the ratchet. Both amplitude and wavelength that characterize roughness are varied. We show that depending on the ratchet parameters, rugosity can either spoil or enhance the ratchet performance.
Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.
An Analysis of the Landscaping Occupation.
ERIC Educational Resources Information Center
Stemple, Lynn L.; Dilley, John E.
The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the landscape services occupation. Depending on the preparation and abilities of the individual student, he may enter the landscape area as (1) nursery worker, (2) landscape planter, (3) landscape…
Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings
NASA Astrophysics Data System (ADS)
Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.
1997-12-01
Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.
Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome
Verant, Michelle L.; Boyles, Justin G.; Waldrep, William; Wibbelt, Gudrun; Blehert, David S.
2012-01-01
White-nose syndrome (WNS) is an emergent disease estimated to have killed over five million North American bats. Caused by the psychrophilic fungus Geomyces destructans, WNS specifically affects bats during hibernation. We describe temperature-dependent growth performance and morphology for six independent isolates of G. destructans from North America and Europe. Thermal performance curves for all isolates displayed an intermediate peak with rapid decline in performance above the peak. Optimal temperatures for growth were between 12.5 and 15.8°C, and the upper critical temperature for growth was between 19.0 and 19.8°C. Growth rates varied across isolates, irrespective of geographic origin, and above 12°C all isolates displayed atypical morphology that may have implications for proliferation of the fungus. This study demonstrates that small variations in temperature, consistent with those inherent of bat hibernacula, affect growth performance and physiology of G. destructans, which may influence temperature-dependent progression and severity of WNS in wild bats.
NASA Astrophysics Data System (ADS)
de Silva, Piotr; Corminboeuf, Clémence
2015-09-01
We construct an orbital-free non-empirical meta-generalized gradient approximation (GGA) functional, which depends explicitly on density through the density overlap regions indicator [P. de Silva and C. Corminboeuf, J. Chem. Theory Comput. 10, 3745 (2014)]. The functional does not depend on either the kinetic energy density or the density Laplacian; therefore, it opens a new class of meta-GGA functionals. By construction, our meta-GGA yields exact exchange and correlation energy for the hydrogen atom and recovers the second order gradient expansion for exchange in the slowly varying limit. We show that for molecular systems, overall performance is better than non-empirical GGAs. For atomization energies, performance is on par with revTPSS, without any dependence on Kohn-Sham orbitals.
Butler, Michael W.; Stahlschmidt, Zachary R.; Ardia, Daniel R.; Davies, Scott; Davis, Jon; Guillette, Louis J.; Johnson, Nicholas; McCormick, Stephen D.; McGraw, Kevin J.; DeNardo, Dale F.
2013-01-01
Animal body temperature (Tbody) varies over daily and annual cycles, affecting multiple aspects of biological performance in both endothermic and ectothermic animals. Yet a comprehensive comparison of thermal performance among animals varying in Tbody (mean and variance) and heat production is lacking. Thus, we examined the thermal sensitivity of immune function (a crucial fitness determinant) in Vertebrata, a group encompassing species of varying thermal biology. Specifically, we investigated temperature-related variation in two innate immune performance metrics, hemagglutination and hemolysis, for 13 species across all seven major vertebrate clades. Agglutination and lysis were temperature dependent and were more strongly related to the thermal biology of species (e.g., mean Tbody) than to the phylogenetic relatedness of species, although these relationships were complex and frequently surprising (e.g., heterotherms did not exhibit broader thermal performance curves than homeotherms). Agglutination and lysis performance were positively correlated within species, except in taxa that produce squalamine, a steroidal antibiotic that does not lyse red blood cells. Interestingly, we found the antithesis of a generalist-specialist trade-off: species with broader temperature ranges of immune performance also had higher peak performance levels. In sum, we have uncovered thermal sensitivity of immune performance in both endotherms and ectotherms, highlighting the role that temperature and life history play in immune function across Vertebrata.
Application of extremum seeking for time-varying systems to resonance control of RF cavities
Scheinker, Alexander
2016-09-13
A recently developed form of extremum seeking for time-varying systems is implemented in hardware for the resonance control of radio-frequency cavities without phase measurements. Normal conducting RF cavity resonance control is performed via a slug tuner, while superconducting TESLA-type cavity resonance control is performed via piezo actuators. The controller maintains resonance by minimizing reflected power by utilizing model-independent adaptive feedback. Unlike standard phase-measurement-based resonance control, the presented approach is not sensitive to arbitrary phase shifts of the RF signals due to temperature-dependent cable length or phasemeasurement hardware changes. The phase independence of this method removes common slowly varying drifts andmore » required periodic recalibration of phase-based methods. A general overview of the adaptive controller is presented along with the proof of principle experimental results at room temperature. Lastly, this method allows us to both maintain a cavity at a desired resonance frequency and also to dynamically modify its resonance frequency to track the unknown time-varying frequency of an RF source, thereby maintaining maximal cavity field strength, based only on power-level measurements.« less
State Space Modeling of Time-Varying Contemporaneous and Lagged Relations in Connectivity Maps
Molenaar, Peter C. M.; Beltz, Adriene M.; Gates, Kathleen M.; Wilson, Stephen J.
2017-01-01
Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. PMID:26546863
Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E
2016-12-01
This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Early Life Manipulations Alter Learning and Memory in Rats
Kosten, Therese A; Kim, Jeansok J; Lee, Hongjoo J.
2012-01-01
Much research shows early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent. PMID:22819985
Variability of furrow infiltration and irrigation performance in a macroporous soil
USDA-ARS?s Scientific Manuscript database
The study of spatial and temporal variations of infiltration in furrows is essential for the design and management of surface irrigation. A key difficulty in quantifying the process is that infiltration is dependent on the depth of flow, which varies along a furrow and with time. An additional diffi...
ERIC Educational Resources Information Center
Colligan, Robert C.
Almost all preschool screening programs depend entirely on information and observations obtained during a brief evaluative session with the child. However, the logistics involved in managing large numbers of parents and children, the use of volunteers having varying degrees of sophistication or competency in assessment, the reliability and…
Nutrition in Children's Sports.
ERIC Educational Resources Information Center
Smith, Nathan J.
Young athletes need to be aware of the importance of good nutrition to athletic performance. A basic diet plan, worked out with a physician to satisfy energy and weight needs, is essential. The best eating schedule and amount and type of food varies with different sports depending on the intensity and duration of physical activity. Weight control…
Forces exerted during microneurosurgery: a cadaver study
Marcus, Hani J; Zareinia, Kourosh; Gan, Liu Shi; Yang, Fang Wei; Lama, Sanju; Yang, Guang-Zhong; Sutherland, Garnette R
2014-01-01
Background A prerequisite for the successful design and use of robots in neurosurgery is knowledge of the forces exerted by surgeons during neurosurgical procedures. The aim of the present cadaver study was to measure the surgical instrument forces exerted during microneurosurgery. Methods An experimental apparatus was set up consisting of a platform for human cadaver brains, a Leica microscope to provide illumination and magnification, and a Quanser 6 Degrees-Of-Freedom Telepresence System for tissue manipulation and force measurements. Results The measured forces varied significantly depending on the region of the brain (P = 0.016) and the maneuver performed (P < 0.0001). Moreover, blunt arachnoid dissection was associated with greater force exertion than sharp dissection (0.22 N vs. 0.03 N; P = 0.001). Conclusions The forces necessary to manipulate brain tissue were surprisingly low and varied depending on the anatomical structure being manipulated, and the maneuver performed. Knowledge of such forces could well increase the safety of microsurgery. © 2014 The Authors. The International Journal of Medical Robotics and Computer Assisted Surgery published by John Wiley & Sons, Ltd. PMID:24431265
Stimulus size dependence of hue changes induced by chromatic surrounds.
Kellner, Christian Johannes; Wachtler, Thomas
2016-03-01
A chromatic surround induces a change in the perceived hue of a stimulus. This shift in hue depends on the chromatic difference between the stimulus and the surround. We investigated how chromatic induction varies with stimulus size and whether the size dependence depends on the surround hue. Subjects performed asymmetric matching of color stimuli with different sizes in surrounds of different chromaticities. Generally, induced hue shifts decreased with increasing stimulus size. This decrease was quantitatively different for different surround hues. However, when size effects were normalized to an overall induction strength, the chromatic specificity was largely reduced. The separability of inducer chromaticity and stimulus size suggests that these effects are mediated by different neural mechanisms.
NASA Astrophysics Data System (ADS)
Lodhi, Ehtisham; Lodhi, Zeeshan; Noman Shafqat, Rana; Chen, Fieda
2017-07-01
Photovoltaic (PV) system usually employed The Maximum power point tracking (MPPT) techniques for increasing its efficiency. The performance of the PV system perhaps boosts by controlling at its apex point of power, in this way maximal power can be given to load. The proficiency of a PV system usually depends upon irradiance, temperature and array architecture. PV array shows a non-linear style for V-I curve and maximal power point on V-P curve also varies with changing environmental conditions. MPPT methods grantees that a PV module is regulated at reference voltage and to produce entire usage of the maximal output power. This paper gives analysis between two widely employed Perturb and Observe (P&O) and Incremental Conductance (INC) MPPT techniques. Their performance is evaluated and compared through theoretical analysis and digital simulation on the basis of response time and efficiency under varying irradiance and temperature condition using Matlab/Simulink.
Chen, Gang; Xu, Zhengyuan; Ding, Haipeng; Sadler, Brian
2009-03-02
We consider outdoor non-line-of-sight deep ultraviolet (UV) solar blind communications at ranges up to 100 m, with different transmitter and receiver geometries. We propose an empirical channel path loss model, and fit the model based on extensive measurements. We observe range-dependent power decay with a power exponent that varies from 0.4 to 2.4 with varying geometry. We compare with the single scattering model, and show that the single scattering assumption leads to a model that is not accurate for small apex angles. Our model is then used to study fundamental communication system performance trade-offs among transmitted optical power, range, link geometry, data rate, and bit error rate. Both weak and strong solar background radiation scenarios are considered to bound detection performance. These results provide guidelines to system design.
CRISPRED: CRISP imaging spectropolarimeter data reduction pipeline
NASA Astrophysics Data System (ADS)
de la Cruz Rodríguez, J.; Löfdahl, M. G.; Sütterlin, P.; Hillberg, T.; Rouppe van der Voort, L.
2017-08-01
CRISPRED reduces data from the CRISP imaging spectropolarimeter at the Swedish 1 m Solar Telescope (SST). It performs fitting routines, corrects optical aberrations from atmospheric turbulence as well as from the optics, and compensates for inter-camera misalignments, field-dependent and time-varying instrumental polarization, and spatial variation in the detector gain and in the zero level offset (bias). It has an object-oriented IDL structure with computationally demanding routines performed in C subprograms called as dynamically loadable modules (DLMs).
NASA Astrophysics Data System (ADS)
Shi, Huai-Long; Zhou, Wei-Xing
2017-11-01
This paper investigates the time-varying risk-premium relation of the Chinese stock markets within the framework of cross-sectional momentum and contrarian effects by adopting the Capital Asset Pricing Model and the Fama-French three-factor model. The evolving arbitrage opportunities are also studied by quantifying the performance of time-varying cross-sectional momentum and contrarian effects in the Chinese stock markets. The relation between the contrarian profitability and market condition factors that could characterize the investment context is also investigated. The results reveal that the risk-premium relation varies over time, and the arbitrage opportunities based on the contrarian portfolios wax and wane over time. The performance of contrarian portfolios are highly dependent on several market conditions. The periods with upward trend of market state, higher market volatility and liquidity, lower macroeconomics uncertainty are related to higher contrarian profitability. These findings are consistent with the Adaptive Markets Hypothesis and have practical implications for market participants.
CLASSIFYING MEDICAL IMAGES USING MORPHOLOGICAL APPEARANCE MANIFOLDS.
Varol, Erdem; Gaonkar, Bilwaj; Davatzikos, Christos
2013-12-31
Input features for medical image classification algorithms are extracted from raw images using a series of pre processing steps. One common preprocessing step in computational neuroanatomy and functional brain mapping is the nonlinear registration of raw images to a common template space. Typically, the registration methods used are parametric and their output varies greatly with changes in parameters. Most results reported previously perform registration using a fixed parameter setting and use the results as input to the subsequent classification step. The variation in registration results due to choice of parameters thus translates to variation of performance of the classifiers that depend on the registration step for input. Analogous issues have been investigated in the computer vision literature, where image appearance varies with pose and illumination, thereby making classification vulnerable to these confounding parameters. The proposed methodology addresses this issue by sampling image appearances as registration parameters vary, and shows that better classification accuracies can be obtained this way, compared to the conventional approach.
Varying execution discipline to increase performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, P.L.; Maccabe, A.B.
1993-12-22
This research investigates the relationship between execution discipline and performance. The hypothesis has two parts: 1. Different execution disciplines exhibit different performance for different computations, and 2. These differences can be effectively predicted by heuristics. A machine model is developed that can vary its execution discipline. That is, the model can execute a given program using either the control-driven, data-driven or demand-driven execution discipline. This model is referred to as a ``variable-execution-discipline`` machine. The instruction set for the model is the Program Dependence Web (PDW). The first part of the hypothesis will be tested by simulating the execution of themore » machine model on a suite of computations, based on the Livermore Fortran Kernel (LFK) Test (a.k.a. the Livermore Loops), using all three execution disciplines. Heuristics are developed to predict relative performance. These heuristics predict (a) the execution time under each discipline for one iteration of each loop and (b) the number of iterations taken by that loop; then the heuristics use those predictions to develop a prediction for the execution of the entire loop. Similar calculations are performed for branch statements. The second part of the hypothesis will be tested by comparing the results of the simulated execution with the predictions produced by the heuristics. If the hypothesis is supported, then the door is open for the development of machines that can vary execution discipline to increase performance.« less
Characterizing Detrended Fluctuation Analysis of multifractional Brownian motion
NASA Astrophysics Data System (ADS)
Setty, V. A.; Sharma, A. S.
2015-02-01
The Hurst exponent (H) is widely used to quantify long range dependence in time series data and is estimated using several well known techniques. Recognizing its ability to remove trends the Detrended Fluctuation Analysis (DFA) is used extensively to estimate a Hurst exponent in non-stationary data. Multifractional Brownian motion (mBm) broadly encompasses a set of models of non-stationary data exhibiting time varying Hurst exponents, H(t) as against a constant H. Recently, there has been a growing interest in time dependence of H(t) and sliding window techniques have been used to estimate a local time average of the exponent. This brought to fore the ability of DFA to estimate scaling exponents in systems with time varying H(t) , such as mBm. This paper characterizes the performance of DFA on mBm data with linearly varying H(t) and further test the robustness of estimated time average with respect to data and technique related parameters. Our results serve as a bench-mark for using DFA as a sliding window estimator to obtain H(t) from time series data.
Farag, Yassin; Leopold, Claudia Sabine
2011-03-01
Since the introduction of aqueous ammoniacal solutions, shellac regained importance for pharmaceutical applications. However, as shellac is a material obtained from natural resources, its quality and thus its physicochemical properties may vary depending on its origin and the type of refining. In this study theophylline pellets were coated with aqueous solutions of three different commercially available shellac types. The inlet air temperature of the coating process was varied, and its influence on drug release from the coated pellet formulations was investigated. Film formation was correlated to the physicochemical and mechanical properties of the investigated shellac types. Pellets coated at lower temperatures showed distinct cracks in the coating film resulting in a loss of the barrier function during dissolution testing. These cracks were nonreversible by additional curing. The physicochemical and mechanical properties of the investigated shellac types varied significantly and could hardly be related to the drug release performance of the investigated formulations. Obviously, with shellac a minimum inlet air temperature must be exceeded to achieve a coherent coating film. This temperature was dependent on the investigated shellac type.
Roland, Carl L; Lake, Joanita; Oderda, Gary M
2016-12-01
We conducted a systematic review to evaluate worldwide human English published literature from 2009 to 2014 on prevalence of opioid misuse/abuse in retrospective databases where International Classification of Diseases (ICD) codes were used. Inclusion criteria for the studies were use of a retrospective database, measured abuse, dependence, and/or poisoning using ICD codes, stated prevalence or it could be derived, and documented time frame. A meta-analysis was not performed. A qualitative narrative synthesis was used, and 16 studies were included for data abstraction. ICD code use varies; 10 studies used ICD codes that encompassed all three terms: abuse, dependence, or poisoning. Eight studies limited determination of misuse/abuse to an opioid user population. Abuse prevalence among opioid users in commercial databases using all three terms of ICD codes varied depending on the opioid; 21 per 1000 persons (reformulated extended-release oxymorphone; 2011-2012) to 113 per 1000 persons (immediate-release opioids; 2010-2011). Abuse prevalence in general populations using all three ICD code terms ranged from 1.15 per 1000 persons (commercial; 6 months 2010) to 8.7 per 1000 persons (Medicaid; 2002-2003). Prevalence increased over time. When similar ICD codes are used, the highest prevalence is in US government-insured populations. Limiting population to continuous opioid users increases prevalence. Prevalence varies depending on ICD codes used, population, time frame, and years studied. Researchers using ICD codes to determine opioid abuse prevalence need to be aware of cautions and limitations.
NASA Astrophysics Data System (ADS)
Ferris, Thomas D.; Farrar, Thomas C.
The temperature dependence of the hydroxyl proton chemical shift and deuterium quadrupolar relaxation time of neat ethanol were measured over the temperature range 190-350 K. The proton isotropic chemical shift varies from 6.2 ppm at 190 K to 4.7 ppm at 350 K. The deuterium NMR relaxation time in ethanol- d 1 varies from 6.2 ms to 309 ms over the same range. Ab initio calculations performed on various ethanol clusters ranging in size from monomer to hexamer show a linear correlation ( R 2 = 0.99) between ≤D, the deuterium quadrupole coupling parameter, and δH, the isotropic proton chemical shift in ppm relative to TMS: ≤D(kHz) = 297.60 - 15.28 δH. The temperature dependence of ≤D ranges from 199.5 kHz at 190 K to 221.4 kHz at 350 K. Using the values for ≤D and the relaxation time data, the temperature dependence of the OD rotational correlation time was found to vary from 282 ps at 190 K to 4.5 ps near the boiling point (350 K). Using these correlation times and bulk viscosity data, the Gierer-Wirtz model predicts a supramolecular cluster volume of about 317 A 3 , the approximate volume of a cyclic pentamer cluter of ethanol molecules. The cluster volume was nearly constant from 340 K to about 290 K.
Aging and loading rate effects on the mechanical behavior of equine bone
NASA Astrophysics Data System (ADS)
Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.
2008-06-01
Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.
77 FR 48505 - Submission for OMB Review; Comment Request-Flammability Standards for Carpets and Rugs
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
... passing test results, then only one test per year is required. For purposes of estimating burden, we have... mail/hand delivery/courier (for paper, disk, or CD-ROM submissions), preferably in five copies, to... to perform each year varies, depending upon the number of carpet styles and the annual volume of...
Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen
2017-10-16
Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menges, F.; Spieser, M.; Riel, H.
The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-basedmore » scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.« less
State space modeling of time-varying contemporaneous and lagged relations in connectivity maps.
Molenaar, Peter C M; Beltz, Adriene M; Gates, Kathleen M; Wilson, Stephen J
2016-01-15
Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Das, Saurabh; Maitra, Animesh
2018-04-01
Characterization of precipitation is important for proper interpretation of rain information from remotely sensed data. Rain attenuation and radar reflectivity (Z) depend directly on the drop size distribution (DSD). The relation between radar reflectivity/rain attenuation and rain rate (R) varies widely depending upon the origin, topography, and drop evolution mechanism and needs further understanding of the precipitation characteristics. The present work utilizes 2 years of concurrent measurements of DSD using a ground-based disdrometer at five diverse climatic conditions in Indian subcontinent and explores the possibility of rain classification based on microphysical characteristics of precipitation. It is observed that both gamma and lognormal distributions are performing almost similar for Indian region with a marginally better performance by one model than other depending upon the locations. It has also been found that shape-slope relationship of gamma distribution can be a good indicator of rain type. The Z-R relation, Z = ARb, is found to vary widely for different precipitation systems, with convective rain that has higher values of A than the stratiform rain for two locations, whereas the reverse is observed for the rest of the three locations. Further, the results indicate that the majority of rainfall (>50%) in Indian region is due to the convective rain although the occurrence time of convective rain is low (<10%).
Effects of amphetamine on delay discounting in rats depend upon the manner in which delay is varied
Maguire, David R; Henson, Cedric; France, Charles P
2014-01-01
Whether stimulant drugs like amphetamine increase or decrease choice of larger delayed reinforcers over smaller immediately available reinforcers under delay discounting procedures can depend on several factors, including the order in which delay is presented. This study examined whether the order of delay presentation impacts drug effects on discounting in rats (n=8) trained and tested under an ascending order, a descending order, as well as under a fixed delay condition. Responses on one lever delivered 1 food pellet immediately and responses on the other lever delivered 3 food pellets immediately or after a delay (4–32 s). In Experiment 1, the delay to the larger reinforcer varied within session and the order of delay presentation (ascending or descending) varied across conditions. In Experiment 2, the same delay value was presented in all blocks of the session (i.e., delay was fixed), and delay varied across phases. Under the ascending order of delay, amphetamine (0.32–1.78 mg/kg) increased choice of the larger reinforcer in some rats and decreased choice in others. In the same rats responding under the descending and fixed delay conditions, amphetamine markedly decreased choice of the larger reinforcer even in the component associated with no delay. In some subjects, the effects of amphetamine differed depending on the manner in which delay was presented, indicating that drug-induced changes in performance were due, in part, to mechanisms other than altered sensitivity to reinforcer delay. These results also suggest that a history of responding under both orders of delay presentation can modulate drug effects. PMID:24780379
Mobit, P N; Nahum, A E; Mayles, P
1998-08-01
A Monte Carlo simulation of the quality dependence of different TL materials, in the form of discs 3.61 mm in diameter and 0.9 mm thick, in radiotherapy photon beams relative to 60Co gamma-rays has been performed. The beam qualities ranged from 50 kV to 25 MV x-rays. The TL materials were: CaF2, CaSO4, LiF and Li2B4O7. The effects of the dopants on energy deposition in the TL material have also been determined for the highly sensitive LiF:Mg:Cu:P (TLD-100H) and for CaF2:Mn. It was found that there was a significant difference in the quality dependence factor derived from Monte Carlo simulations between LiF and LiF:Mg:Cu:P but not between CaF2 and CaF2:Mn. The quality dependence factors for Li2B4O7 varied from 0.990 +/- 0.008 (1 sd) for 25 MV x-rays to 0.940 +/- 0.009 (1 sd) for 50 kV x-rays relative to 60Co gamma-rays; Monte Carlo simulations were also performed for Li2B4O7 in megavoltage electron beams. For CaF2, the quality dependence factor varied from 0.927 +/- 0.008 (1 sd) for 25 MV x-rays to 10.561 +/- 0.008 (1 sd) for 50 kV x-rays. The figure for CaSO4 ranged from 0.943 +/- 0.008 (1 sd) for 25 MV x-rays to 9.010 +/- 0.008 (1 sd) for 50 kV x-rays. The quality dependence factor for CaF2 increases by up to 5% with depth and by up to 15% with field size for the kilovoltage x-ray beams. For LiF-TLD, however, there was no significant dependence on the field size or depth of irradiation in the kilovoltage energy range.
Resolution Enhancement In Ultrasonic Imaging By A Time-Varying Filter
NASA Astrophysics Data System (ADS)
Ching, N. H.; Rosenfeld, D.; Braun, M.
1987-09-01
The study reported here investigates the use of a time-varying filter to compensate for the spreading of ultrasonic pulses due to the frequency dependence of attenuation by tissues. The effect of this pulse spreading is to degrade progressively the axial resolution with increasing depth. The form of compensation required to correct for this effect is impossible to realize exactly. A novel time-varying filter utilizing a bank of bandpass filters is proposed as a realizable approximation of the required compensation. The performance of this filter is evaluated by means of a computer simulation. The limits of its application are discussed. Apart from improving the axial resolution, and hence the accuracy of axial measurements, the compensating filter could be used in implementing tissue characterization algorithms based on attenuation data.
Use of First-Hand and Second-Hand Data in Science: Does Data Type Influence Classroom Conversations?
ERIC Educational Resources Information Center
Hug, Barbara; McNeill, Katherine L.
2008-01-01
In this paper, we examine how students discuss and interpret data and whether these actions vary depending on the type of data they analyse. More specifically, we are interested in whether students perform differently when analysing first-hand data, which they collect themselves, compared with second-hand data provided to them. Our data analysis…
ERIC Educational Resources Information Center
Law, Sui-Heung; Lo, Sing Kai; Chow, Susanna; Cheing, Gladys L.Y.
2011-01-01
Excessive grip force (GF) is often found in children with developmental coordination disorder (DCD). However, their GF control may vary when task constraints are imposed upon their motor performance. This study aimed to investigate how their GF control changes in response to task demands, and to examine their tactile sensitivity. Twenty-one…
No Fatigue Effect on Blink Rate
NASA Technical Reports Server (NTRS)
Kim, W.; Zangemeister, W.; Stark, L.
1984-01-01
Blink rate is reported to vary dependent upon ongoing task performance, perceptual, attentional and cognitive factors, and fatigue. Five levels of task difficulty were operationally defined and task performance as lines read aloud per minute were measured. A single noninvasive infrared TV eyetracker was modified to measure blinking and an on-line computer program identified and counted blinks while the subject performed the tasks. Blink rate decreased by 50% when either task performance increased (fast reading) or visual difficulty increased (blurred text); blink rate increased greatly during rest breaks. There was no change in blink rate during one hour experiments even though subjects complained of severe fatigue.
Statistics of natural binaural sounds.
Młynarski, Wiktor; Jost, Jürgen
2014-01-01
Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.
Statistics of Natural Binaural Sounds
Młynarski, Wiktor; Jost, Jürgen
2014-01-01
Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction. PMID:25285658
NASA Astrophysics Data System (ADS)
Bellier, Joseph; Bontron, Guillaume; Zin, Isabella
2017-12-01
Meteorological ensemble forecasts are nowadays widely used as input of hydrological models for probabilistic streamflow forecasting. These forcings are frequently biased and have to be statistically postprocessed, using most of the time univariate techniques that apply independently to individual locations, lead times and weather variables. Postprocessed ensemble forecasts therefore need to be reordered so as to reconstruct suitable multivariate dependence structures. The Schaake shuffle and ensemble copula coupling are the two most popular methods for this purpose. This paper proposes two adaptations of them that make use of meteorological analogues for reconstructing spatiotemporal dependence structures of precipitation forecasts. Performances of the original and adapted techniques are compared through a multistep verification experiment using real forecasts from the European Centre for Medium-Range Weather Forecasts. This experiment evaluates not only multivariate precipitation forecasts but also the corresponding streamflow forecasts that derive from hydrological modeling. Results show that the relative performances of the different reordering methods vary depending on the verification step. In particular, the standard Schaake shuffle is found to perform poorly when evaluated on streamflow. This emphasizes the crucial role of the precipitation spatiotemporal dependence structure in hydrological ensemble forecasting.
Velocity Dependence of the Kinetic Friction of Nanoparticles
NASA Astrophysics Data System (ADS)
Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre
2010-03-01
The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)
Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Bandorawalla, T.; Herring, H. M.; Gates, T. S.
2003-01-01
Nanoindentation is used to determine the dynamic viscoelastic properties of six polymer materials. It is shown that varying the harmonic frequency of the nanoindentation does not have any significant effect on the measured storage and loss moduli of the polymers. Agreement is found between these results and data from DMA testing of the same materials. Varying the harmonic amplitude of the nanoindentation does not have a significant effect on the measured properties of the high performance resins, however, the storage modulus of the polyethylene decreases as the harmonic amplitude increases. Measured storage and loss moduli are also shown to depend on the density of the polyethylene.
2017-05-22
Influence of postnatal glucocorticoids on hippocampal-dependent learning varies with elevation patterns and administration methods 5b. GRANT NUMBER...of these effects varies with the elevation patterns (level, duration, temporal fluctuation) achieved by different administration methods . In general...learning varies with elevation patterns and administration methods Dragana I. Claflin a, Kevin D. Schmidt a, Zachary D. Vallandingham b, Michal
Defocus and magnification dependent variation of TEM image astigmatism.
Yan, Rui; Li, Kunpeng; Jiang, Wen
2018-01-10
Daily alignment of the microscope is a prerequisite to reaching optimal lens conditions for high resolution imaging in cryo-EM. In this study, we have investigated how image astigmatism varies with the imaging conditions (e.g. defocus, magnification). We have found that the large change of defocus/magnification between visual correction of astigmatism and subsequent data collection tasks, or during data collection, will inevitably result in undesirable astigmatism in the final images. The dependence of astigmatism on the imaging conditions varies significantly from time to time, so that it cannot be reliably compensated by pre-calibration of the microscope. Based on these findings, we recommend that the same magnification and the median defocus of the intended defocus range for final data collection are used in the objective lens astigmatism correction task during microscope alignment and in the focus mode of the iterative low-dose imaging. It is also desirable to develop a fast, accurate method that can perform dynamic correction of the astigmatism for different intended defocuses during automated imaging. Our findings also suggest that the slope of astigmatism changes caused by varying defocuses can be used as a convenient measurement of objective lens rotation symmetry and potentially an acceptance test of new electron microscopes.
Propulsive performance of pitching foils with variable chordwise flexibility
NASA Astrophysics Data System (ADS)
Zeyghami, Samane; Moored, Keith; Lehigh University Team
2017-11-01
Many swimming and flying animals propel themselves efficiently through water by oscillating flexible fins. These fins are not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here we seek to evaluate the effect stiffness profile on the propulsive performance of pitching foils. Stiffness profile characterizes the variation in the local fin stiffness along the chord. To this aim, we developed a low order model of a functionally-graded material where the chordwise flexibility is modeled by two torsional springs along the chordline and the stiffness and location of the springs can be varied arbitrarily. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid-structure interactions. Keeping the leading edge kinematics unchanged, we alter the stiffness profile of the foil and allow it to swim freely in response to the resulting hydrodynamic forces. We then detail the dependency of the hydrodynamic performance and the wake structure to the variations in the local structural properties of the foil.
A study of the relationship between the performance and dependability of a fault-tolerant computer
NASA Technical Reports Server (NTRS)
Goswami, Kumar K.
1994-01-01
This thesis studies the relationship by creating a tool (FTAPE) that integrates a high stress workload generator with fault injection and by using the tool to evaluate system performance under error conditions. The workloads are comprised of processes which are formed from atomic components that represent CPU, memory, and I/O activity. The fault injector is software-implemented and is capable of injecting any memory addressable location, including special registers and caches. This tool has been used to study a Tandem Integrity S2 Computer. Workloads with varying numbers of processes and varying compositions of CPU, memory, and I/O activity are first characterized in terms of performance. Then faults are injected into these workloads. The results show that as the number of concurrent processes increases, the mean fault latency initially increases due to increased contention for the CPU. However, for even higher numbers of processes (less than 3 processes), the mean latency decreases because long latency faults are paged out before they can be activated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheinker, Alexander
A recently developed form of extremum seeking for time-varying systems is implemented in hardware for the resonance control of radio-frequency cavities without phase measurements. Normal conducting RF cavity resonance control is performed via a slug tuner, while superconducting TESLA-type cavity resonance control is performed via piezo actuators. The controller maintains resonance by minimizing reflected power by utilizing model-independent adaptive feedback. Unlike standard phase-measurement-based resonance control, the presented approach is not sensitive to arbitrary phase shifts of the RF signals due to temperature-dependent cable length or phasemeasurement hardware changes. The phase independence of this method removes common slowly varying drifts andmore » required periodic recalibration of phase-based methods. A general overview of the adaptive controller is presented along with the proof of principle experimental results at room temperature. Lastly, this method allows us to both maintain a cavity at a desired resonance frequency and also to dynamically modify its resonance frequency to track the unknown time-varying frequency of an RF source, thereby maintaining maximal cavity field strength, based only on power-level measurements.« less
Profiles of Executive Functioning: Associations with Substance Dependence and Risky Sexual Behavior
Golub, Sarit A.; Starks, Tyrel J.; Kowalczyk, William J.; Thompson, Louisa I.; Parsons, Jeffrey T.
2012-01-01
The present investigations applied a theoretical perspective regarding the impact of executive functioning (EF) on sexual risk among substance users, by using a methodological approach designed to examine whether EF subtypes differentially predict behavior patterns. Participants included 104 substance-using HIV-negative gay and bisexual men. Participants completed five neuropsychological assessment tasks selected to tap discrete EF components, and these data were linked to data on substance dependence and behavioral reports of substance use and sexual risk in the past 30 days. Cluster analysis identified three EF subtypes: a) High-performing (good performance across all measures); b) Low Performing (poor performance across all measures); and c) Poor IGT Performance (impairment on the Iowa Gambling Task (IGT) and its variant, but good performance on all other tasks). The three subtypes did not differ in amount of substance use, but the Low-Performing subtype was associated with greater rates of substance dependence. The Low-Performing subtype reported the highest rates of sexual behavior and risk, while the Poor IGT-Performance subtype reported the lowest rates of sexual risk-taking. Global associations between substance use and sexual risk were strongest among the Low-Performing subtype, but event-level associations appeared strongest among individuals in the High-Performing subtype. These data suggest complex associations between EF and sexual risk among substance users, and suggest that the relationship between substance use and sexual risk may vary by EF subtypes. PMID:22775771
Profiles of executive functioning: associations with substance dependence and risky sexual behavior.
Golub, Sarit A; Starks, Tyrel J; Kowalczyk, William J; Thompson, Louisa I; Parsons, Jeffrey T
2012-12-01
The present investigations applied a theoretical perspective regarding the impact of executive functioning (EF) on sexual risk among substance users, using a methodological approach designed to examine whether EF subtypes differentially predict behavior patterns. Participants included 104 substance-using HIV-negative gay and bisexual men. Participants completed 5 neuropsychological assessment tasks selected to tap discrete EF components, and these data were linked to data on substance dependence and behavioral reports of substance use and sexual risk in the past 30 days. Cluster analysis identified 3 EF subtypes: (a) high performing (good performance across all measures); (b) low performing (poor performance across all measures); and (c) poor IGT performance (impairment on the Iowa Gambling Task [IGT] and its variant, but good performance on all other tasks). The 3 subtypes did not differ in amount of substance use, but the low-performing subtype was associated with greater rates of substance dependence. The low-performing subtype reported the highest rates of sexual behavior and risk, while the poor-IGT-performance subtype reported the lowest rates of sexual risk taking. Global associations between substance use and sexual risk were strongest among the low-performing subtype, but event-level associations appeared strongest among individuals in the high-performing subtype. These data suggest complex associations between EF and sexual risk among substance users, and suggest that the relationship between substance use and sexual risk may vary by EF subtypes. 2013 APA, all rights reserved
Kopriva, Ivica; Persin, Antun; Puizina-Ivić, Neira; Mirić, Lina
2010-07-02
This study was designed to demonstrate robust performance of the novel dependent component analysis (DCA)-based approach to demarcation of the basal cell carcinoma (BCC) through unsupervised decomposition of the red-green-blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is due to the scale invariance property of DCA algorithms, which exploit spectral and spatial diversities between the BCC and the surrounding tissue. Used filtering-based DCA approach represents an extension of the independent component analysis (ICA) and is necessary in order to account for statistical dependence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak edges what represents a challenge for other segmentation methods as well. By comparative performance analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate good performance of DCA-based BCC demarcation in two demanding scenarios where intensity of the fluorescent image has been varied almost two orders of magnitude. Copyright 2010 Elsevier B.V. All rights reserved.
Strength training for athletes: does it really help sports performance?
McGuigan, Michael R; Wright, Glenn A; Fleck, Steven J
2012-03-01
The use of strength training designed to increase underlying strength and power qualities in elite athletes in an attempt to improve athletic performance is commonplace. Although the extent to which strength and power are important to sports performance may vary depending on the activity, the associations between these qualities and performance have been well documented in the literature. The purpose of this review is to provide a brief overview of strength training research to determine if it really helps improve athletic performance. While there is a need for more research with elite athletes to investigate the relationship between strength training and athletic performance, there is sufficient evidence for strength training programs to continue to be an integral part of athletic preparation in team sports.
Optimization strategies for molecular dynamics programs on Cray computers and scalar work stations
NASA Astrophysics Data System (ADS)
Unekis, Michael J.; Rice, Betsy M.
1994-12-01
We present results of timing runs and different optimization strategies for a prototype molecular dynamics program that simulates shock waves in a two-dimensional (2-D) model of a reactive energetic solid. The performance of the program may be improved substantially by simple changes to the Fortran or by employing various vendor-supplied compiler optimizations. The optimum strategy varies among the machines used and will vary depending upon the details of the program. The effect of various compiler options and vendor-supplied subroutine calls is demonstrated. Comparison is made between two scalar workstations (IBM RS/6000 Model 370 and Model 530) and several Cray supercomputers (X-MP/48, Y-MP8/128, and C-90/16256). We find that for a scientific application program dominated by sequential, scalar statements, a relatively inexpensive high-end work station such as the IBM RS/60006 RISC series will outperform single processor performance of the Cray X-MP/48 and perform competitively with single processor performance of the Y-MP8/128 and C-9O/16256.
Ali, S. M.; Mehmood, C. A; Khan, B.; Jawad, M.; Farid, U; Jadoon, J. K.; Ali, M.; Tareen, N. K.; Usman, S.; Majid, M.; Anwar, S. M.
2016-01-01
In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion. PMID:27314229
Ali, S M; Mehmood, C A; Khan, B; Jawad, M; Farid, U; Jadoon, J K; Ali, M; Tareen, N K; Usman, S; Majid, M; Anwar, S M
2016-01-01
In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion.
Pendola, Martin; Jain, Gaurav; Davidyants, Anastasia; ...
2016-09-26
We examined the mineralization performance of a nacre protein, AP7, within seawater mineralization assays that form aragonite and magnesium calcite. Under these conditions AP7 forms hydrogel particles that vary in size and complexity depending upon ionic conditions. These hydrogels “hijack” the mineralization process by limiting nucleation in bulk solution and promoting nucleation within the hydrogels.
The Role of Efficient XML Interchange (EXI) in Navy Wide-Area Network (WAN) Optimization
2015-03-01
compress, and re-encrypt data to continue providing optimization through compression; however, that capability requires careful consideration of...optimization 23 of encrypted data requires a careful analysis and comparison of performance improvements and IA vulnerabilities. It is important...Contained EXI capitalizes on multiple techniques to improve compression, and they vary depending on a set of EXI options passed to the codec
Simulation-based comprehensive benchmarking of RNA-seq aligners
Baruzzo, Giacomo; Hayer, Katharina E; Kim, Eun Ji; Di Camillo, Barbara; FitzGerald, Garret A; Grant, Gregory R
2018-01-01
Alignment is the first step in most RNA-seq analysis pipelines, and the accuracy of downstream analyses depends heavily on it. Unlike most steps in the pipeline, alignment is particularly amenable to benchmarking with simulated data. We performed a comprehensive benchmarking of 14 common splice-aware aligners for base, read, and exon junction-level accuracy and compared default with optimized parameters. We found that performance varied by genome complexity, and accuracy and popularity were poorly correlated. The most widely cited tool underperforms for most metrics, particularly when using default settings. PMID:27941783
Fridley, Jason D; Grime, J Philip
2010-08-01
Studies of whether plant community structure and ecosystem properties depend on the genetic diversity of component populations have been largely restricted to species monocultures and have involved levels of genetic differentiation that do not necessarily correspond to that exhibited by neighboring mature individuals in the field. We established experimental communities of varying intraspecific genetic diversity, using genotypes of eight species propagated from clonal material of individuals derived from a small (100-m2) limestone grassland community, and tested whether genetic diversity (one, four, and eight genotypes per species) influenced community composition and annual aboveground productivity across communities of one, four, and eight species. Eight-species communities were represented by common grass, sedge, and forb species, and four- and one-species communities were represented by four graminoids and the dominant grass Festuca ovina, respectively. After three years of community development, there was a marginal increase of species diversity with increased genetic diversity in four- and eight-species communities, and genetic diversity altered the performance of genotypes in monospecific communities of F. ovina. However, shifts in composition from genetic diversity were not sufficient to alter patterns of community productivity. Neighborhood models describing pairwise interactions between species indicated that genetic diversity decreased the intensity of competition between species in four-species mixtures, thereby promoting competitive equivalency and enhancing species equitability. In F. ovina monocultures, neighborhood models revealed both synergistic and antagonistic interactions between genotypes that were reduced in intensity on more stressful shallow soils. Although the dependence of F. ovina genotype performance on neighborhood genetic composition did not influence total productivity, such dependence was sufficient to uncouple genotype performance in genetic mixtures and monocultures. Our results point to an important connection between local genetic diversity and species diversity in this species-rich ecosystem but suggest that such community-level dependence on genetic diversity may not feedback to ecosystem productivity.
Trauer, Ute; Hilker, Monika
2013-01-01
In insects, a parental immune challenge can prepare and enhance offspring immune activity. Previous studies of such transgenerational immune priming (TGIP) mainly focused on a single offspring life stage. However, different developmental stages may be exposed to different risks and show different susceptibility to parental immune priming. Here we addressed the question (i) whether TGIP effects on the immunity of Manduca sexta offspring vary among the different developmental offspring stages. We differentiated between unchallenged and immunochallenged offspring; for the latter type of offspring, we further investigated (ii) whether TGIP has an impact on the time that enhanced immune levels persist after offspring immune challenge. Finally, we determined (iii) whether TGIP effects on offspring performance depend on the offspring stage. Our results show that TGIP effects on phenoloxidase (PO) activity, but not on antibacterial activity, vary among unchallenged offspring stages. In contrast, TGIP effects on PO and antibacterial activity did not vary among immunochallenged offspring stages. The persistence of enhanced immune levels in immunochallenged offspring was dependent on the parental immune state. Antibacterial (but not PO) activity in offspring of immunochallenged parents decreased over five days after pupal immune challenge, whereas no significant change over time was detectable in offspring of control parents. Finally, TGIP effects on the developmental time of unchallenged offspring varied among stages; young larvae of immunochallenged parents developed faster and gained more weight than larvae of control parents. However, offspring females of immunochallenged parents laid fewer eggs than females derived from control parents. These findings suggest that the benefits which the offspring gains from TGIP during juvenile development are paid by the adults with reduced reproductive power. Our study shows that TGIP effects vary among offspring stages and depend on the type of immunity (PO or antibacterial activity) as well as the time past offspring immune challenge. PMID:23700423
Towards General Evaluation of Intelligent Systems: Lessons Learned from Reproducing AIQ Test Results
NASA Astrophysics Data System (ADS)
Vadinský, Ondřej
2018-03-01
This paper attempts to replicate the results of evaluating several artificial agents using the Algorithmic Intelligence Quotient test originally reported by Legg and Veness. Three experiments were conducted: One using default settings, one in which the action space was varied and one in which the observation space was varied. While the performance of freq, Q0, Qλ, and HLQλ corresponded well with the original results, the resulting values differed, when using MC-AIXI. Varying the observation space seems to have no qualitative impact on the results as reported, while (contrary to the original results) varying the action space seems to have some impact. An analysis of the impact of modifying parameters of MC-AIXI on its performance in the default settings was carried out with the help of data mining techniques used to identifying highly performing configurations. Overall, the Algorithmic Intelligence Quotient test seems to be reliable, however as a general artificial intelligence evaluation method it has several limits. The test is dependent on the chosen reference machine and also sensitive to changes to its settings. It brings out some differences among agents, however, since they are limited in size, the test setting may not yet be sufficiently complex. A demanding parameter sweep is needed to thoroughly evaluate configurable agents that, together with the test format, further highlights computational requirements of an agent. These and other issues are discussed in the paper along with proposals suggesting how to alleviate them. An implementation of some of the proposals is also demonstrated.
Schweigert, Igor V; Bartlett, Rodney J
2008-09-28
Adding a fraction of the nonlocal exchange operator to the local orbital-dependent exchange potential improves the many-body perturbation expansion based on the Kohn-Sham determinant. The effect of such a hybrid scheme on the performance of the orbital-dependent correlation functional from the second-order perturbation theory (PT2H) is investigated numerically. A small fraction of the nonlocal exchange is often sufficient to ensure the existence of the self-consistent solution for the PT2H potential. In the He and Be atoms, including 37% of the nonlocal exchange leads to the correlation energies and electronic densities that are very close to the exact ones. In molecules, varying the fraction of the nonlocal exchange may result in the PT2H energy closely reproducing the CCSD(T) value; however such a fraction depends on the system and does not always result in an accurate electronic density. We also numerically verify that the "semicanonical" perturbation series includes most of the beneficial effects of the nonlocal exchange without sacrificing the locality of the exchange potential.
Jakobson, Christopher M; Tullman-Ercek, Danielle; Mangan, Niall M
2018-05-29
Natural biochemical systems are ubiquitously organized both in space and time. Engineering the spatial organization of biochemistry has emerged as a key theme of synthetic biology, with numerous technologies promising improved biosynthetic pathway performance. One strategy, however, may produce disparate results for different biosynthetic pathways. We use a spatially resolved kinetic model to explore this fundamental design choice in systems and synthetic biology. We predict that two example biosynthetic pathways have distinct optimal organization strategies that vary based on pathway-dependent and cell-extrinsic factors. Moreover, we demonstrate that the optimal design varies as a function of kinetic and biophysical properties, as well as culture conditions. Our results suggest that organizing biosynthesis has the potential to substantially improve performance, but that choosing the appropriate strategy is key. The flexible design-space analysis we propose can be adapted to diverse biosynthetic pathways, and lays a foundation to rationally choose organization strategies for biosynthesis.
Effects of Varying Gravity Levels on fNIRS Headgear Performance and Signal Recovery
NASA Technical Reports Server (NTRS)
Mackey, Jeffrey R.; Harrivel, Angela R.; Adamovsky, Grigory; Lewandowski, Beth E.; Gotti, Daniel J.; Tin, Padetha; Floyd, Bertram M.
2013-01-01
This paper reviews the effects of varying gravitational levels on functional Near-Infrared Spectroscopy (fNIRS) headgear. The fNIRS systems quantify neural activations in the cortex by measuring hemoglobin concentration changes via optical intensity. Such activation measurement allows for the detection of cognitive state, which can be important for emotional stability, human performance and vigilance optimization, and the detection of hazardous operator state. The technique depends on coupling between the fNIRS probe and users skin. Such coupling may be highly susceptible to motion if probe-containing headgear designs are not adequately tested. The lack of reliable and self-applicable headgear robust to the influence of motion artifact currently inhibits its operational use in aerospace environments. Both NASAs Aviation Safety and Human Research Programs are interested in this technology as a method of monitoring cognitive state of pilots and crew.
CFD Analysis of A Starved Four-Pad Tilting-Pad Journal Bearing with An Elastic Support of Pads
NASA Astrophysics Data System (ADS)
Parovay, E. F.; Falaleev, S. V.
2018-01-01
Tilting-pad journal bearings are widely used in technics. Oil starvation operation regime is not common for hydrodynamic bearings. However, correctly designed low-flow journal bearing have to operate efficiently and consistently on high rotor speeds. An elastic support of bearing pads is a set of elastic pins made of steel. Elastic support allows pads to self-align and achieve an optimal operational mode. The article presents the thermohydrodynamic performance of an axial journal bearing. The study deals with 60 mm diameter four-pad tilting-pad journal bearing, submitted to a static load varying from 1000 to 30000 N with a rotating speed varying from 1000 to 10000 rpm. The investigation focuses on numerical studying the characteristics of low-flow tilting-pad journal bearings under oil starvation conditions. Dependencies of the bearing performance on the load, rotational speed of the shaft, and the size of the radial clearance are presented.
NASA Astrophysics Data System (ADS)
Zhai, Ding; Lu, Anyang; Li, Jinghao; Zhang, Qingling
2016-10-01
This paper deals with the problem of the fault detection (FD) for continuous-time singular switched linear systems with multiple time-varying delay. In this paper, the actuator fault is considered. Besides, the systems faults and unknown disturbances are assumed in known frequency domains. Some finite frequency performance indices are initially introduced to design the switched FD filters which ensure that the filtering augmented systems under switching signal with average dwell time are exponentially admissible and guarantee the fault input sensitivity and disturbance robustness. By developing generalised Kalman-Yakubovic-Popov lemma and using Parseval's theorem and Fourier transform, finite frequency delay-dependent sufficient conditions for the existence of such a filter which can guarantee the finite-frequency H- and H∞ performance are derived and formulated in terms of linear matrix inequalities. Four examples are provided to illustrate the effectiveness of the proposed finite frequency method.
Furlong, E.T.; Martin, Jeffrey D.; Werner, S.L.; Gates, Paul M.
2002-01-01
The sensitivity and selective determination of polar pesticides were analyzed using high-performance liquid chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS). The effects of multiple operators and instruments on method performance were evaluated using 440 pairs of fortified reagent-water and blank reagent-water samples. The influence of varying environmental matrices on recovery and precision were also analyzed using 200 fortified ambient water samples and duplicate ambient water samples. The results show that compound stability in filtered water was matrix-, chemical class- and compound-dependent which ranged from 1 day to 2 weeks.
Pilot expertise and hippocampal size: associations with longitudinal flight simulator performance.
Adamson, Maheen M; Bayley, Peter J; Scanlon, Blake K; Farrell, Michelle E; Hernandez, Beatriz; Weiner, Michael W; Yesavage, Jerome A; Taylor, Joy L
2012-09-01
Previous research suggests that the size of the hippocampus can vary in response to intensive training (e.g., during the acquisition of expert knowledge). However, the role of the hippocampus in maintenance of skilled performance is not well understood. The Stanford/Veterans Affairs Aviation MRI Study offers a unique opportunity to observe the interaction of brain structure and multiple levels of expertise on longitudinal flight simulator performance. The current study examined the relationship between hippocampal volume and three levels of aviation expertise, defined by pilot proficiency ratings issued by the U.S. Federal Aviation Administration (11). At 3 annual time points, 60 pilots who varied in their level of aviation expertise (ages ranging from 45 to 69 yr) were tested. At baseline, higher expertise was associated with better flight simulator performance, but not with hippocampal volume. Longitudinally, there was an Expertise x Hippocampal volume interaction, in the direction that a larger hippocampus was associated with better performance at higher levels of expertise. These results are consistent with the notion that expertise in a cognitively demanding domain involves the interplay of acquired knowledge ('mental schemas') and basic hippocampal-dependent processes.
On the failure load and mechanism of polycrystalline graphene by nanoindentation
Sha, Z. D.; Wan, Q.; Pei, Q. X.; Quek, S. S.; Liu, Z. S.; Zhang, Y. W.; Shenoy, V. B.
2014-01-01
Nanoindentation has been recently used to measure the mechanical properties of polycrystalline graphene. However, the measured failure loads are found to be scattered widely and vary from lab to lab. We perform molecular dynamics simulations of nanoindentation on polycrystalline graphene at different sites including grain center, grain boundary (GB), GB triple junction, and holes. Depending on the relative position between the indenter tip and defects, significant scattering in failure load is observed. This scattering is found to arise from a combination of the non-uniform stress state, varied and weakened strengths of different defects, and the relative location between the indenter tip and the defects in polycrystalline graphene. Consequently, the failure behavior of polycrystalline graphene by nanoindentation is critically dependent on the indentation site, and is thus distinct from uniaxial tensile loading. Our work highlights the importance of the interaction between the indentation tip and defects, and the need to explicitly consider the defect characteristics at and near the indentation site in polycrystalline graphene during nanoindentation. PMID:25500732
Gut microbiota dictates the metabolic response of Drosophila to diet
Wong, Adam C.-N.; Dobson, Adam J.; Douglas, Angela E.
2014-01-01
Animal nutrition is profoundly influenced by the gut microbiota, but knowledge of the scope and core mechanisms of the underlying animal–microbiota interactions is fragmentary. To investigate the nutritional traits shaped by the gut microbiota of Drosophila, we determined the microbiota-dependent response of multiple metabolic and performance indices to systematically varied diet composition. Diet-dependent differences between Drosophila bearing its unmanipulated microbiota (conventional flies) and experimentally deprived of its microbiota (axenic flies) revealed evidence for: microbial sparing of dietary B vitamins, especially riboflavin, on low-yeast diets; microbial promotion of protein nutrition, particularly in females; and microbiota-mediated suppression of lipid/carbohydrate storage, especially on high sugar diets. The microbiota also sets the relationship between energy storage and body mass, indicative of microbial modulation of the host signaling networks that coordinate metabolism with body size. This analysis identifies the multiple impacts of the microbiota on the metabolism of Drosophila, and demonstrates that the significance of these different interactions varies with diet composition and host sex. PMID:24577449
Revathi, V M; Balasubramaniam, P
2016-04-01
In this paper, the [Formula: see text] filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov-Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed [Formula: see text] performance. Second, based on the above analysis, the existence of the designed [Formula: see text] filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.
Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope
Li, Xuyou; Guang, Xingxing; Xu, Zhenlong; Li, Guangchun
2017-01-01
Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG. PMID:28880203
Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.
Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun
2017-09-07
Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.
Floyd, Lisa M.; Holmes, Taylor C.; Dean, Jesse C.
2013-01-01
Tendon vibration can alter proprioceptive feedback, one source of sensory information which humans can use to produce accurate movements. However, the effects of tendon vibration during functional movement vary depending on the task. For example, ankle tendon vibration has considerably smaller effects during walking than standing posture. The purpose of this study was to test whether the effects of ankle tendon vibration are predictably influenced by the mechanical demands of a task, as quantified by peak velocity. Twelve participants performed symmetric, cyclical ankle plantarflexion/dorsiflexion movements while lying prone with their ankle motion unconstrained. The prescribed movement period (1s, 3s) and peak-to-peak amplitude (10°, 15°, 20°) were varied across trials; shorter movement periods or larger amplitudes increased the peak velocity. In some trials, vibration was continuously and simultaneously applied to the right ankle plantarflexor and dorsiflexor tendons, while the left ankle tendons were never vibrated. The vibration frequency (40, 80, 120, 160 Hz) was varied across trials. During trials without vibration, participants accurately matched the movement of their ankles. The application of 80 Hz vibration to the right ankle tendons significantly reduced the amplitude of right ankle movement. However, the effect of vibration was smaller during more mechanically demanding (i.e. higher peak velocity) movements. Higher vibration frequencies had larger effects on movement accuracy, possibly due to parallel increases in vibration amplitude. These results demonstrate that the effects of ankle tendon vibration are dependent on the mechanical demand of the task being performed, but cannot definitively identify the underlying physiological mechanism. PMID:24136344
Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.
Ouyang, Yicun; Yin, Hujun
2018-05-01
Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.
Sun, Yanqing; Sun, Liuquan; Zhou, Jie
2013-07-01
This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.
Study and Characterization of Subharmonic Emissions by Using Shaped Ultrasonic Driving Pulse
NASA Astrophysics Data System (ADS)
Masotti, L.; Biagi, E.; Breschi, L.; Vannacci, E.
Subharmonic emissions from Ultrasound Contrast Agents (UCAs) were studied by a Pulse Inversion method in order to assess the feasibility of implementation of this technique to subharmonic imaging. Interesting results concerning the dependence of the subharmonic emission with respect to initial pulse shape are presented. The experimentation was performed also by varying the acoustic pressure and concentration of the contrast agent (SonoVue®)
NASA Astrophysics Data System (ADS)
Park, Subok; Zhang, George Z.; Zeng, Rongping; Myers, Kyle J.
2014-03-01
A task-based assessment of image quality1 for digital breast tomosynthesis (DBT) can be done in either the projected or reconstructed data space. As the choice of observer models and feature selection methods can vary depending on the type of task and data statistics, we previously investigated the performance of two channelized- Hotelling observer models in conjunction with 2D Laguerre-Gauss (LG) and two implementations of partial least squares (PLS) channels along with that of the Hotelling observer in binary detection tasks involving DBT projections.2, 3 The difference in these observers lies in how the spatial correlation in DBT angular projections is incorporated in the observer's strategy to perform the given task. In the current work, we extend our method to the reconstructed data space of DBT. We investigate how various model observers including the aforementioned compare for performing the binary detection of a spherical signal embedded in structured breast phantoms with the use of DBT slices reconstructed via filtered back projection. We explore how well the model observers incorporate the spatial correlation between different numbers of reconstructed DBT slices while varying the number of projections. For this, relatively small and large scan angles (24° and 96°) are used for comparison. Our results indicate that 1) given a particular scan angle, the number of projections needed to achieve the best performance for each observer is similar across all observer/channel combinations, i.e., Np = 25 for scan angle 96° and Np = 13 for scan angle 24°, and 2) given these sufficient numbers of projections, the number of slices for each observer to achieve the best performance differs depending on the channel/observer types, which is more pronounced in the narrow scan angle case.
Robustness and Vulnerability of Networks with Dynamical Dependency Groups.
Bai, Ya-Nan; Huang, Ning; Wang, Lei; Wu, Zhi-Xi
2016-11-28
The dependency property and self-recovery of failure nodes both have great effects on the robustness of networks during the cascading process. Existing investigations focused mainly on the failure mechanism of static dependency groups without considering the time-dependency of interdependent nodes and the recovery mechanism in reality. In this study, we present an evolving network model consisting of failure mechanisms and a recovery mechanism to explore network robustness, where the dependency relations among nodes vary over time. Based on generating function techniques, we provide an analytical framework for random networks with arbitrary degree distribution. In particular, we theoretically find that an abrupt percolation transition exists corresponding to the dynamical dependency groups for a wide range of topologies after initial random removal. Moreover, when the abrupt transition point is above the failure threshold of dependency groups, the evolving network with the larger dependency groups is more vulnerable; when below it, the larger dependency groups make the network more robust. Numerical simulations employing the Erdős-Rényi network and Barabási-Albert scale free network are performed to validate our theoretical results.
The Integrated Mission Design Center (IMDC) at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Karpati, Gabriel; Martin, John; Steiner, Mark; Reinhardt, K.
2002-01-01
NASA Goddard has used its Integrated Mission Design Center (IMDC) to perform more than 150 mission concept studies. The IMDC performs rapid development of high-level, end-to-end mission concepts, typically in just 4 days. The approach to the studies varies, depending on whether the proposed mission is near-future using existing technology, mid-future using new technology being actively developed, or far-future using technology which may not yet be clearly defined. The emphasis and level of detail developed during any particular study depends on which timeframe (near-, mid-, or far-future) is involved and the specific needs of the study client. The most effective mission studies are those where mission capabilities required and emerging technology developments can synergistically work together; thus both enhancing mission capabilities and providing impetus for ongoing technology development.
Fault detection in reciprocating compressor valves under varying load conditions
NASA Astrophysics Data System (ADS)
Pichler, Kurt; Lughofer, Edwin; Pichler, Markus; Buchegger, Thomas; Klement, Erich Peter; Huschenbett, Matthias
2016-03-01
This paper presents a novel approach for detecting cracked or broken reciprocating compressor valves under varying load conditions. The main idea is that the time frequency representation of vibration measurement data will show typical patterns depending on the fault state. The problem is to detect these patterns reliably. For the detection task, we make a detour via the two dimensional autocorrelation. The autocorrelation emphasizes the patterns and reduces noise effects. This makes it easier to define appropriate features. After feature extraction, classification is done using logistic regression and support vector machines. The method's performance is validated by analyzing real world measurement data. The results will show a very high detection accuracy while keeping the false alarm rates at a very low level for different compressor loads, thus achieving a load-independent method. The proposed approach is, to our best knowledge, the first automated method for reciprocating compressor valve fault detection that can handle varying load conditions.
Granular activated carbons from broiler manure: physical, chemical and adsorptive properties.
Lima, Isabel M; Marshall, Wayne E
2005-04-01
Broiler manure produced at large concentrated facilities poses risks to the quality of water and public health. This study utilizes broiler litter and cake as source materials for granular activated carbon production and optimizes conditions for their production. Pelletized manure samples were pyrolyzed at 700 degrees C for 1 h followed by activation in an inert atmosphere under steam at different water flow rates, for a period ranging from 15 to 75 min. Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant, yields varied from 18% to 28%, surface area varied from 253 to 548 m2/g and copper ion adsorption varied from 0.13 to 1.92 mmol Cu2+/g carbon. Best overall performing carbons were steam activated for 45 min at 3 ml/min. Comparative studies with commercial carbons revealed the broiler cake-based carbon as having the highest copper ion efficiency.
Palamara, Gian Marco; Childs, Dylan Z; Clements, Christopher F; Petchey, Owen L; Plebani, Marco; Smith, Matthew J
2014-01-01
Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important implications in understanding and predicting the effects of temperature on the dynamics of populations. PMID:25558365
Blankman, Paul; Hasan, Djo; van Mourik, Martijn S; Gommers, Diederik
2013-06-01
The purpose of this study was to compare the effect of varying levels of assist during pressure support (PSV) and Neurally Adjusted Ventilatory Assist (NAVA) on the aeration of the dependent and non-dependent lung regions by means of Electrical Impedance Tomography (EIT). We studied ten mechanically ventilated patients with Acute Lung Injury (ALI). Positive-End Expiratory Pressure (PEEP) and PSV levels were both 10 cm H₂O during the initial PSV step. Thereafter, we changed the inspiratory pressure to 15 and 5 cm H₂O during PSV. The electrical activity of the diaphragm (EAdi) during pressure support ten was used to define the initial NAVA gain (100 %). Thereafter, we changed NAVA gain to 150 and 50 %, respectively. After each step the assist level was switched back to PSV 10 cm H₂O or NAVA 100 % to get a new baseline. The EIT registration was performed continuously. Tidal impedance variation significantly decreased during descending PSV levels within patients, whereas not during NAVA. The dorsal-to-ventral impedance distribution, expressed according to the center of gravity index, was lower during PSV compared to NAVA. Ventilation contribution of the dependent lung region was equally in balance with the non-dependent lung region during PSV 5 cm H₂O, NAVA 50 and 100 %. Neurally Adjusted Ventilatory Assist ventilation had a beneficial effect on the ventilation of the dependent lung region and showed less over-assistance compared to PSV in patients with ALI.
Zhou, Jincheng; Meng, Ling; Li, Baoping
2017-01-01
This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctuidae) larvae varying in body size in response to two parasitoids varying in oviposition behavior; Microplitis mediator females sting the host with the ovipositor after climbing onto it while Meteorus pulchricornis females make the sting by standing at a close distance from the host. Mythimna separata larvae exhibited evasive (escaping and dropping) and aggressive (thrashing) behaviors to defend themselves against parasitoids M. mediator and M. pulchricornis . Escaping and dropping did not change in probability with host body size or parasitoid species. Thrashing did not vary in frequency with host body size, yet performed more frequently in response to M. mediator than to M. pulchricornis . Parasitoid handling time and stinging likelihood varied depending not only on host body size but also on parasitoid species. Parasitoid handling time increased with host thrashing frequency, similar in slope for both parasitoids yet on a higher intercept for M. mediator than for M. pulchricornis . Handling time decreased with host size for M. pulchricornis but not for M. mediator . The likelihood of realizing an ovipositor sting decreased with thrashing frequency of both small and large hosts for M. pulchricornis , while this was true only for large hosts for M. mediator . Our results suggest that the thrashing behavior of M. separata larvae has a defensive effect on parasitism, depending on host body size and parasitoid species with different oviposition behaviors.
Zhou, Jincheng; Meng, Ling
2017-01-01
This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctuidae) larvae varying in body size in response to two parasitoids varying in oviposition behavior; Microplitis mediator females sting the host with the ovipositor after climbing onto it while Meteorus pulchricornis females make the sting by standing at a close distance from the host. Mythimna separata larvae exhibited evasive (escaping and dropping) and aggressive (thrashing) behaviors to defend themselves against parasitoids M. mediator and M. pulchricornis. Escaping and dropping did not change in probability with host body size or parasitoid species. Thrashing did not vary in frequency with host body size, yet performed more frequently in response to M. mediator than to M. pulchricornis. Parasitoid handling time and stinging likelihood varied depending not only on host body size but also on parasitoid species. Parasitoid handling time increased with host thrashing frequency, similar in slope for both parasitoids yet on a higher intercept for M. mediator than for M. pulchricornis. Handling time decreased with host size for M. pulchricornis but not for M. mediator. The likelihood of realizing an ovipositor sting decreased with thrashing frequency of both small and large hosts for M. pulchricornis, while this was true only for large hosts for M. mediator. Our results suggest that the thrashing behavior of M. separata larvae has a defensive effect on parasitism, depending on host body size and parasitoid species with different oviposition behaviors. PMID:28852593
Effect of nanoparticle size on sessile droplet contact angle
NASA Astrophysics Data System (ADS)
Munshi, A. M.; Singh, V. N.; Kumar, Mukesh; Singh, J. P.
2008-04-01
We report a significant variation in the static contact angle measured on indium oxide (IO) nanoparticle coated Si substrates that have different nanoparticle sizes. These IO nanoparticles, which have well defined shape and sizes, were synthesized by chemical vapor deposition in a horizontal alumina tube furnace. The size of the IO nanoparticles was varied by changing the source material, substrate temperature, and the deposition time. A sessile droplet method was used to determine the macroscopic contact angle on these IO nanoparticle covered Si substrate using two different liquids: de-ionized water and diethylene glycol (DEG). It was observed that contact angle depends strongly on the nanoparticle size. The contact angle was found to vary from 24° to 67° for de-ionized water droplet and from 15° to 60° for DEG droplet, for the nanoparticle sizes varying from 14 to 620 nm. The contact angle decreases with a decrease in the particles size. We have performed a theoretical analysis to determine the dependence of contact angle on the nanoparticle size. This formulation qualitatively shows a similar trend of decrease in the contact angle with a decrease in nanoparticle size. Providing a rough estimate of nanoparticle size by sessile droplet contact angle measurement is the novelty in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolly, S; University of Missouri, Columbia, MO; Chen, H
Purpose: Local noise power spectrum (NPS) properties are significantly affected by calculation variables and CT acquisition and reconstruction parameters, but a thoughtful analysis of these effects is absent. In this study, we performed a complete analysis of the effects of calculation and imaging parameters on the NPS. Methods: The uniformity module of a Catphan phantom was scanned with a Philips Brilliance 64-slice CT simulator using various scanning protocols. Images were reconstructed using both FBP and iDose4 reconstruction algorithms. From these images, local NPS were calculated for regions of interest (ROI) of varying locations and sizes, using four image background removalmore » methods. Additionally, using a predetermined ground truth, NPS calculation accuracy for various calculation parameters was compared for computer simulated ROIs. A complete analysis of the effects of calculation, acquisition, and reconstruction parameters on the NPS was conducted. Results: The local NPS varied with ROI size and image background removal method, particularly at low spatial frequencies. The image subtraction method was the most accurate according to the computer simulation study, and was also the most effective at removing low frequency background components in the acquired data. However, first-order polynomial fitting using residual sum of squares and principle component analysis provided comparable accuracy under certain situations. Similar general trends were observed when comparing the NPS for FBP to that of iDose4 while varying other calculation and scanning parameters. However, while iDose4 reduces the noise magnitude compared to FBP, this reduction is spatial-frequency dependent, further affecting NPS variations at low spatial frequencies. Conclusion: The local NPS varies significantly depending on calculation parameters, image acquisition parameters, and reconstruction techniques. Appropriate local NPS calculation should be performed to capture spatial variations of noise; calculation methodology should be selected with consideration of image reconstruction effects and the desired purpose of CT simulation for radiotherapy tasks.« less
Saint-Joly, C; Desbois, S; Lotti, J P
2000-01-01
The performance of the anaerobic digestion process depends deeply on the quality of the waste to be treated. This has been already demonstrated at the lab-scale. The objective of this study is to confirm this result at the industrial scale, with very long representative period and with the same process, the Valorga process. According to the waste quality and the collection type and even with the same conditions of fermentation, the biogas yield can vary by a factor of 1.5 when it is expressed (under normal conditions of pressure and temperature) in m3 biogas/t fresh waste, and by a factor of 2 when it is expressed in m3 CH4/t volatile solids. So, the biogas performance does not characterise a process since it is deeply governed by waste composition. This biogas productivity becomes a pertinent parameter only with consistent and relevant hypothesis and/or analytical results on the waste composition which depends on the collection procedure, the site characteristics and the season.
Estimating the proportion of true null hypotheses when the statistics are discrete.
Dialsingh, Isaac; Austin, Stefanie R; Altman, Naomi S
2015-07-15
In high-dimensional testing problems π0, the proportion of null hypotheses that are true is an important parameter. For discrete test statistics, the P values come from a discrete distribution with finite support and the null distribution may depend on an ancillary statistic such as a table margin that varies among the test statistics. Methods for estimating π0 developed for continuous test statistics, which depend on a uniform or identical null distribution of P values, may not perform well when applied to discrete testing problems. This article introduces a number of π0 estimators, the regression and 'T' methods that perform well with discrete test statistics and also assesses how well methods developed for or adapted from continuous tests perform with discrete tests. We demonstrate the usefulness of these estimators in the analysis of high-throughput biological RNA-seq and single-nucleotide polymorphism data. implemented in R. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The impact of reward and punishment on skill learning depends on task demands
Steel, Adam; Silson, Edward H.; Stagg, Charlotte J.; Baker, Chris I.
2016-01-01
Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24–48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion. PMID:27786302
The impact of reward and punishment on skill learning depends on task demands.
Steel, Adam; Silson, Edward H; Stagg, Charlotte J; Baker, Chris I
2016-10-27
Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24-48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion.
Running over rough terrain reveals limb control for intrinsic stability.
Daley, Monica A; Biewener, Andrew A
2006-10-17
Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this. Current knowledge is largely limited to studies of steady movement. These studies have revealed fundamental mechanisms used by terrestrial animals for steady locomotion. However, it is unclear whether these models provide an appropriate framework for the neuromuscular and mechanical strategies used to achieve dynamic stability over rough terrain. Perturbation experiments shed light on this issue, revealing the interplay between mechanics and neuromuscular control. We measured limb mechanics of helmeted guinea fowl (Numida meleagris) running over an unexpected drop in terrain, comparing their response to predictions of the mass-spring running model. Adjustment of limb contact angle explains 80% of the variation in stance-phase limb loading following the perturbation. Surprisingly, although limb stiffness varies dramatically, it does not influence the response. This result agrees with a mass-spring model, although it differs from previous findings on humans running over surfaces of varying compliance. However, guinea fowl sometimes deviate from mass-spring dynamics through posture-dependent work performance of the limb, leading to substantial energy absorption following the perturbation. This posture-dependent actuation allows the animal to absorb energy and maintain desired velocity on a sudden substrate drop. Thus, posture-dependent work performance of the limb provides inherent velocity control over rough terrain. These findings highlight how simple mechanical models extend to unsteady conditions, providing fundamental insights into neuromuscular control of movement and the design of dynamically stable legged robots and prosthetic devices.
Thermal Properties of Whispering Gallery Mode Resonators
2014-12-22
in a vacuum chamber, to lower the noise floor and increase the SNR. To study the frequency response of the IR detector , we varied the modulation...performance at a fixed IR modulation (chopping) frequency. Finally, we estimated the noise equivalent power (NEP) of our IR detector . Note that the...the thennal relaxation time of the resonator to estimate the response time of the resonator based infrared (IR) detector . We found that, depending on
Investigation of Super Tube Structure and Performance (Postprint)
2010-04-01
thermosyphon is claimed as thermally superconductive and offers solid state mode of heat transport. A host of speculations about this claim was emerging...sealed structure and design of a conventional heat pipe or thermosyphon is claimed as thermally superconductive and offers solid state mode of heat...matrix. The tilt angle was varied to check for gravity dependence. Tests were run as step functions allowing the tube to reach steady state at a new
Method and Apparatus for Performance Optimization Through Physical Perturbation of Task Elements
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III (Inventor); Pope, Alan T. (Inventor); Palsson, Olafur S. (Inventor); Turner, Marsha J. (Inventor)
2016-01-01
The invention is an apparatus and method of biofeedback training for attaining a physiological state optimally consistent with the successful performance of a task, wherein the probability of successfully completing the task is made is inversely proportional to a physiological difference value, computed as the absolute value of the difference between at least one physiological signal optimally consistent with the successful performance of the task and at least one corresponding measured physiological signal of a trainee performing the task. The probability of successfully completing the task is made inversely proportional to the physiological difference value by making one or more measurable physical attributes of the environment in which the task is performed, and upon which completion of the task depends, vary in inverse proportion to the physiological difference value.
On how high performers keep cool brains in situations of cognitive overload.
Jaeggi, Susanne M; Buschkuehl, Martin; Etienne, Alex; Ozdoba, Christoph; Perrig, Walter J; Nirkko, Arto C
2007-06-01
What happens in the brain when we reach or exceed our capacity limits? Are there individual differences for performance at capacity limits? We used functional magnetic resonance imaging (fMRI) to investigate the impact of increases in processing demand on selected cortical areas when participants performed a parametrically varied and challenging dual task. Low-performing participants respond with large and load-dependent activation increases in many cortical areas when exposed to excessive task requirements, accompanied by decreasing performance. It seems that these participants recruit additional attentional and strategy-related resources with increasing difficulty, which are either not relevant or even detrimental to performance. In contrast, the brains of the high-performing participants "keep cool" in terms of activation changes, despite continuous correct performance, reflecting different and more efficient processing. These findings shed light on the differential implications of performance on activation patterns and underline the importance of the interindividual-differences approach in neuroimaging research.
Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors
NASA Astrophysics Data System (ADS)
Hur, Ji-Hyun; Kim, Deok-Kee
2018-05-01
In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.
Machine characterization based on an abstract high-level language machine
NASA Technical Reports Server (NTRS)
Saavedra-Barrera, Rafael H.; Smith, Alan Jay; Miya, Eugene
1989-01-01
Measurements are presented for a large number of machines ranging from small workstations to supercomputers. The authors combine these measurements into groups of parameters which relate to specific aspects of the machine implementation, and use these groups to provide overall machine characterizations. The authors also define the concept of pershapes, which represent the level of performance of a machine for different types of computation. A metric based on pershapes is introduced that provides a quantitative way of measuring how similar two machines are in terms of their performance distributions. The metric is related to the extent to which pairs of machines have varying relative performance levels depending on which benchmark is used.
Systems and Methods for Peak-Seeking Control
NASA Technical Reports Server (NTRS)
Ryan, John J (Inventor); Speyer, Jason L (Inventor)
2013-01-01
A computerized system and method for peak-seeking-control that uses a unique Kalman filter design to optimize a control loop, in real time, to either maximize or minimize a performance function of a physical object ("plant"). The system and method achieves more accurate and efficient peak-seeking-control by using a time-varying Kalman filter to estimate both the performance function gradient (slope) and Hessian (curvature) based on direct position measurements of the plant, and does not rely upon modeling the plant response to persistent excitation. The system and method can be naturally applied in various applications in which plant performance functions have multiple independent parameters, and it does not depend upon frequency separation to distinguish between system dimensions.
Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors.
Hur, Ji-Hyun; Kim, Deok-Kee
2018-05-04
In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green's function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.
Van Dyck, Hans; Holveck, Marie-Jeanne
2016-11-15
Life histories of organisms may vary with latitude as they experience different thermal constraints and challenges. This geographic, intraspecific variation could be of significance for range dynamics under climate change beyond edge-core comparisons. In this study, we did a reciprocal transplant experiment between the temperature-regimes of two latitudes with an ectotherm insect, examining the effects on energy metabolism and flight performance. Pararge aegeria expanded its ecological niche from cool woodland (ancestral) to warmer habitat in agricultural landscape (novel ecotype). Northern males had higher standard metabolic rates than southern males, but in females these rates depended on their ecotype. Southern males flew for longer than northern ones. In females, body mass-corrected flight performance depended on latitude and thermal treatment during larval development and in case of the southern females, their interaction. Our experimental study provides evidence for the role of ecological differentiation at the core of the range to modulate ecophysiology and flight performance at different latitudes, which in turn may affect the climatic responsiveness of the species.
Van Dyck, Hans; Holveck, Marie-Jeanne
2016-01-01
Life histories of organisms may vary with latitude as they experience different thermal constraints and challenges. This geographic, intraspecific variation could be of significance for range dynamics under climate change beyond edge-core comparisons. In this study, we did a reciprocal transplant experiment between the temperature-regimes of two latitudes with an ectotherm insect, examining the effects on energy metabolism and flight performance. Pararge aegeria expanded its ecological niche from cool woodland (ancestral) to warmer habitat in agricultural landscape (novel ecotype). Northern males had higher standard metabolic rates than southern males, but in females these rates depended on their ecotype. Southern males flew for longer than northern ones. In females, body mass-corrected flight performance depended on latitude and thermal treatment during larval development and in case of the southern females, their interaction. Our experimental study provides evidence for the role of ecological differentiation at the core of the range to modulate ecophysiology and flight performance at different latitudes, which in turn may affect the climatic responsiveness of the species. PMID:27845372
Information content of MOPITT CO profile retrievals: Temporal and geographical variability
NASA Astrophysics Data System (ADS)
Deeter, M. N.; Edwards, D. P.; Gille, J. C.; Worden, H. M.
2015-12-01
Satellite measurements of tropospheric carbon monoxide (CO) enable a wide array of applications including studies of air quality and pollution transport. The MOPITT (Measurements of Pollution in the Troposphere) instrument on the Earth Observing System Terra platform has been measuring CO concentrations globally since March 2000. As indicated by the Degrees of Freedom for Signal (DFS), the standard metric for trace-gas retrieval information content, MOPITT retrieval performance varies over a wide range. We show that both instrumental and geophysical effects yield significant geographical and temporal variability in MOPITT DFS values. Instrumental radiance uncertainties, which describe random errors (or "noise") in the calibrated radiances, vary over long time scales (e.g., months to years) and vary between the four detector elements of MOPITT's linear detector array. MOPITT retrieval performance depends on several factors including thermal contrast, fine-scale variability of surface properties, and CO loading. The relative importance of these various effects is highly variable, as demonstrated by analyses of monthly mean DFS values for the United States and the Amazon Basin. An understanding of the geographical and temporal variability of MOPITT retrieval performance is potentially valuable to data users seeking to limit the influence of the a priori through data filtering. To illustrate, it is demonstrated that calculated regional-average CO mixing ratios may be improved by excluding observations from a subset of pixels in MOPITT's linear detector array.
A comparison of time-varying covariates in two smoking cessation interventions for cardiac patients.
Prenger, Rilana; Pieterse, Marcel E; Braakman-Jansen, Louise M A; Bolman, Catherine; de Vries, Hein; Wiggers, Loes C W
2013-04-01
The aim of the study was to explore the time-varying contribution of social cognitive determinants of smoking cessation following an intervention on cessation. Secondary analyses were performed on data from two comparable randomized controlled trials on brief smoking cessation interventions for cardiac in- and outpatients. Cox regression with time-varying covariates was applied to examine the predictive cognitions for smoking cessation over time. Both samples showed self-efficacy and intention-to-quit to be strong time-varying indicators of smoking cessation during the full 1-year follow-up period, and during the post-treatment phase in particular. Less consistently, time-varying cons of quitting and social influence were also found to be associated with smoking cessation, depending on the sample and type of intervention. Self-efficacy and intention-to-quit were the major covariates and positively related to smoking cessation over time among cardiac patients, in line with social-cognitive theories. Interestingly, both cognitive constructs appeared to act with some delay. Apparently, smoking cessation is a lengthy process in which the interplay between self-efficacy (and intention indirectly) and quitting behavior will largely determine long-term maintenance of abstinence. The presented time-varying analyses seem a valid and feasible way to underpin trajectories of cognitions in datasets with a limited number of time intervals.
Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation.
Ramakrishnan, Sridhar; Laxminarayan, Srinivas; Wesensten, Nancy J; Kamimori, Gary H; Balkin, Thomas J; Reifman, Jaques
2014-10-07
Caffeine is the most widely consumed stimulant to counter sleep-loss effects. While the pharmacokinetics of caffeine in the body is well-understood, its alertness-restoring effects are still not well characterized. In fact, mathematical models capable of predicting the effects of varying doses of caffeine on objective measures of vigilance are not available. In this paper, we describe a phenomenological model of the dose-dependent effects of caffeine on psychomotor vigilance task (PVT) performance of sleep-deprived subjects. We used the two-process model of sleep regulation to quantify performance during sleep loss in the absence of caffeine and a dose-dependent multiplier factor derived from the Hill equation to model the effects of single and repeated caffeine doses. We developed and validated the model fits and predictions on PVT lapse (number of reaction times exceeding 500 ms) data from two separate laboratory studies. At the population-average level, the model captured the effects of a range of caffeine doses (50-300 mg), yielding up to a 90% improvement over the two-process model. Individual-specific caffeine models, on average, predicted the effects up to 23% better than population-average caffeine models. The proposed model serves as a useful tool for predicting the dose-dependent effects of caffeine on the PVT performance of sleep-deprived subjects and, therefore, can be used for determining caffeine doses that optimize the timing and duration of peak performance. Published by Elsevier Ltd.
Electrocatalytic reduction of carbon dioxide on electrodeposited tin-based surfaces
NASA Astrophysics Data System (ADS)
Alba, Bianca Christina S.; Camayang, John Carl A.; Mopon, Marlon L.; del Rosario, Julie Anne D.
2017-08-01
The electrocatalytic reduction of carbon dioxide to small organic molecular compounds provides a means of generating alternative fuel source while suppressing climate change. Suitable catalysts, however, are necessary to optimize its reaction kinetics towards more valuable products. Consequently, in this study, electrodeposited Sn electrodes have been developed as catalysts for CO2 electroreduction. Deposition potential was varied to produce different Sn catalysts. SEM showed varying morphologies and increasing amount as the applied potential becomes more negative. Cyclic voltammetry and chronoamperometry showed that the activity and stability of the catalysts towards CO2 reduction depend on the morphology and presence of tin oxides. These results provide a better understanding on the performance of electrodeposited Sn-based surfaces as catalysts for CO2 reduction.
The risk of a safety-critical event associated with mobile device use in specific driving contexts.
Fitch, Gregory M; Hanowski, Richard J; Guo, Feng
2015-01-01
We explored drivers' mobile device use and its associated risk of a safety-critical event (SCE) in specific driving contexts. Our premise was that the SCE risk associated with mobile device use increases when the driving task becomes demanding. Data from naturalistic driving studies involving commercial motor vehicle drivers and light vehicle drivers were partitioned into subsets representative of specific driving contexts. The subsets were generated using data set attributes that included level of service and relation to junction. These attributes were selected based on exogenous factors known to alter driving task demands. The subsets were analyzed using a case-cohort approach, which was selected to complement previous investigations of mobile device SCE risk using naturalistic driving data. Both commercial motor vehicle and light vehicle drivers varied as to how much they conversed on a mobile device but did not vary their engagement in visual-manual subtasks. Furthermore, commercial motor vehicle drivers conversed less frequently as the driving task demands increased, whereas light vehicle drivers did not. The risk of an SCE associated with mobile device use was dependent on the subtask performed and the driving context. Only visual-manual subtasks were associated with an increased SCE risk, whereas conversing was associated with a decreased risk in some driving contexts. Drivers' engagement in mobile device subtasks varies by driving context. The SCE risk associated with mobile device use is dependent on the types of subtasks performed and the driving context. The findings of this exploratory study can be applied to the design of driver-vehicle interfaces that mitigate distraction by preventing visual-manual subtasks while driving.
Quantitative Investigation of Room-Temperature Breakdown Effects in Pixelated TlBr Detectors
NASA Astrophysics Data System (ADS)
Koehler, Will; He, Zhong; Thrall, Crystal; O'Neal, Sean; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2014-10-01
Due to favorable material properties such as high atomic number (Tl: 81, Br: 35), high density ( 7.56 g/cm3), and a wide band gap (2.68 eV), thallium-bromide (TlBr) is currently under investigation for use as an alternative room-temperature semiconductor gamma-ray spectrometer. TlBr detectors can achieve less than 1% FWHM energy resolution at 662 keV, but these results are limited to stable operation at - 20°C. After days to months of room-temperature operation, ionic conduction causes these devices to fail. This work correlates the varying leakage current with alpha-particle and gamma-ray spectroscopic performances at various operating temperatures. Depth-dependent photopeak centroids exhibit time-dependent transient behavior, which indicates trapping sites form near the anode surface during room-temperature operation. After refabrication, similar performance and functionality of failed detectors returned.
Cameron, Katherine; Murray, Alan
2008-05-01
This paper investigates whether spike-timing-dependent plasticity (STDP) can minimize the effect of mismatch within the context of a depth-from-motion algorithm. To improve noise rejection, this algorithm contains a spike prediction element, whose performance is degraded by analog very large scale integration (VLSI) mismatch. The error between the actual spike arrival time and the prediction is used as the input to an STDP circuit, to improve future predictions. Before STDP adaptation, the error reflects the degree of mismatch within the prediction circuitry. After STDP adaptation, the error indicates to what extent the adaptive circuitry can minimize the effect of transistor mismatch. The circuitry is tested with static and varying prediction times and chip results are presented. The effect of noisy spikes is also investigated. Under all conditions the STDP adaptation is shown to improve performance.
Yang, Ke; Huang, Xingyi; Xie, Liyuan; Wu, Chao; Jiang, Pingkai; Tanaka, Toshikatsu
2012-11-23
A novel route to prepare core-shell structured nanocomposites with excellent dielectric performance is reported. This approach involves the grafting of polystyrene (PS) from the surface of BaTiO(3) by an in situ RAFT polymerization. The core-shell structured PS/BaTiO(3) nanocomposites not only show significantly increased dielectric constant and very low dielectric loss, but also have a weak frequency dependence of dielectric properties over a wide range of frequencies. In addition, the dielectric constant of the nanocomposites can also be easily tuned by varying the thickness of the PS shell. Our method is very promising for preparing high-performance nanocomposites used in energy-storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yadav, Anil Singh; Bhagoria, J. L.
2013-01-01
Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement. PMID:24222752
Yadav, Anil Singh; Bhagoria, J L
2013-01-01
Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.
Fernie, Gordon; Tunney, Richard J
2006-02-01
The Iowa Gambling Task (Bechara, Damasio, Damasio, & Anderson, 1994) has become widely used as a laboratory test of "real-life" decision-making. However, aspects of its administration that have been varied by researchers may differentially affect performance and the conclusions researchers can draw. Some researchers have used facsimile money reinforcers while others have used real money reinforcers. More importantly, the instructions participants receive have also been varied. While no differences have been reported in performance dependent on reinforcer type, no previous comparison of participants' instructions has been conducted. This is despite one set of instructions giving participants a clear hint about the nature of the task. Additionally, in previous research one set of instructions have not been used exclusively with one reinforcer type making any differential or cumulative effects of these factors difficult to interpret. The present study compared the effects of instruction and reinforcer type on IGT performance. When participants received instructions without a hint performance was affected by reinforcer type. This was not the case when the instructions included a hint. In a second IGT session performance was improved in participants who had received the hint instructions compared with those who had not.
Night shift work at specific age ranges and chronic disease risk factors
Ramin, Cody; Devore, Elizabeth E; Wang, Weike; Pierre-Paul, Jeffrey; Wegrzyn, Lani R; Schernhammer, Eva S
2014-01-01
Objectives We examined the association of night shift work history and age when night shift work was performed with cancer and cardiovascular disease risk factors among 54 724 women in the Nurses' Health Study (NHS) II. Methods We calculated age-adjusted and socioeconomic status-adjusted means and percentages for cancer and cardiovascular risk factors in 2009 across categories of night shift work history. We used multivariable-adjusted logistic regression to estimate odds ratios (ORs) and 95% CIs for key risk factors among 54 724 participants (72% ever shift workers). We further examined these associations by age (20–25, 26–35, 36– 45 and 46+ years) at which shift work was performed. Results Ever night shift workers had increased odds of obesity (body mass index ≥30 kg/m2; OR=1.37, 95% CI 1.31 to 1.43); higher caffeine intake (≥131 mg/day; OR=1.16, 95% CI 1.12 to 1.22) and total calorie intake (≥1715 kcal/day; OR=1.09, 95% CI 1.04 to 1.13); current smoking (OR=1.30, 95% CI 1.19 to 1.42); and shorter sleep durations (≤7 h of sleep/day; OR=1.19, 95% CI 1.15 to 1.24) compared to never night shift workers. These estimates varied depending on age at which night work was performed, with a suggestion that night shift work before age 25 was associated with fewer risk factors compared to night shift work at older ages. Conclusions Our results indicate that night shift work may contribute to an adverse chronic disease risk profile, and that risk factors may vary depending on the age at which night shift work was performed. PMID:25261528
Parental representations in drug-dependent patients and their parents.
Torresani, S; Favaretto, E; Zimmermann, C
2000-01-01
The Parental Bonding Instrument (PBI), a measure of perceived parental care and protection, was administered to drug-dependent patients and their parents with the aim to assess the reliability of the instrument in such samples and to compare the parental representations across generations. Ninety drug-dependent patients and 44 mothers and 35 fathers participated. Reliability indices were calculated, and parental representations of parents and their offspring were compared. Linear regression analyses were performed with the patient's PBI score as the dependent variable and the mother's and father's PBI scores as predictor variables. The reliability indices were highly satisfactory and varied between 0.61 and 0.91. The parental bonding of patients, fathers, and mothers was similar. All three groups reported high maternal and paternal control and low maternal care, a pattern characteristic of an "affectionless control" rearing style. Maternal care received by the fathers and paternal protection received by the mothers predicted the care and protection they themselves gave to their drug-dependent offspring.
The impact of cognitive load on delayed recall.
Camos, Valérie; Portrat, Sophie
2015-08-01
Recent studies have suggested that long-term retention of items studied in a working memory span task depends on the refreshing of memory items-more specifically, on the number of refreshing opportunities. However, it was previously shown that refreshing depends on the cognitive load of the concurrent task introduced in the working memory span task. Thus, cognitive load should determine the long-term retention of items assessed in a delayed-recall test if such retention relies on refreshing. In two experiments, while the amount of refreshing opportunities remained constant, we varied the cognitive load of the concurrent task by either introducing tasks differing in their attentional demands or varying the pace of the concurrent task. To verify that this effect was related to refreshing and not to any maintenance mechanism, we also manipulated the availability of subvocal rehearsal. Replicating previous results, increasing cognitive load reduced immediate recall. This increase also had a detrimental effect on delayed recall. Conversely, the addition of concurrent articulation reduced immediate but not delayed recall. This study shows that both working and episodic memory traces depend on the cognitive load of the concurrent task, whereas the use of rehearsal affects only working memory performance. These findings add further evidence of the dissociation between subvocal rehearsal and attentional refreshing.
Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees.
Rabosky, Daniel L
2014-01-01
A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes.
Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees
Rabosky, Daniel L.
2014-01-01
A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes. PMID:24586858
CO line ratios in molecular clouds: the impact of environment
NASA Astrophysics Data System (ADS)
Peñaloza, Camilo H.; Clark, Paul C.; Glover, Simon C. O.; Klessen, Ralf S.
2018-04-01
Line emission is strongly dependent on the local environmental conditions in which the emitting tracers reside. In this work, we focus on modelling the CO emission from simulated giant molecular clouds (GMCs), and study the variations in the resulting line ratios arising from the emission from the J = 1-0, J = 2-1, and J = 3-2 transitions. We perform a set of smoothed particle hydrodynamics simulations with time-dependent chemistry, in which environmental conditions - including total cloud mass, density, size, velocity dispersion, metallicity, interstellar radiation field (ISRF), and the cosmic ray ionization rate (CRIR) - were systematically varied. The simulations were then post-processed using radiative transfer to produce synthetic emission maps in the three transitions quoted above. We find that the cloud-averaged values of the line ratios can vary by up to ±0.3 dex, triggered by changes in the environmental conditions. Changes in the ISRF and/or in the CRIR have the largest impact on line ratios since they directly affect the abundance, temperature, and distribution of CO-rich gas within the clouds. We show that the standard methods used to convert CO emission to H2 column density can underestimate the total H2 molecular gas in GMCs by factors of 2 or 3, depending on the environmental conditions in the clouds.
[Uterine torsion in cattle--therapy and consequences for calf and cow].
Erteld, E; Krohn, J; Dzhakupov, I T; Wehrend, A
2014-01-01
To summarize the available literature on the therapy of uterine torsion in cattle and the consequences for cow and calf. Analysis of the literature using electronic libraries (PubMed, Medline), German veterinary medical journals and obstetrical textbooks. The therapy includes the attempt to rotate the uterus back into its physiological position. Direct and indirect methods of retorsion are available and applied according to the case conditions. Subsequently, the extraction of the calf can be performed via vaginal delivery or caesarean section. The presence of uterine torsion always leads to dystocia. Following a successful retorsion, the time and degree of uterine torsion strongly influence the progress of the birth. The prognosis also depends on the aforementioned factors and varies between good to unsuccessful. The vitality of the calf displays great variation depending on the literature (14-90%), however, is generally greater under field than clinical conditions. Focussing on the puerperal development of the cow, all grades from mild irritations of the uterine involution to fatal complications occur. The influence on fertility depends on the progress of the birth and existing secondary complications. The risk for electrolyte disturbances is increased (approximately 50%) as is the risk of birth-associated injuries (approximately 20%). The incidence of placental retention varies widely between different authors (3-52%).
Automated problem scheduling and reduction of synchronization delay effects
NASA Technical Reports Server (NTRS)
Saltz, Joel H.
1987-01-01
It is anticipated that in order to make effective use of many future high performance architectures, programs will have to exhibit at least a medium grained parallelism. A framework is presented for partitioning very sparse triangular systems of linear equations that is designed to produce favorable preformance results in a wide variety of parallel architectures. Efficient methods for solving these systems are of interest because: (1) they provide a useful model problem for use in exploring heuristics for the aggregation, mapping and scheduling of relatively fine grained computations whose data dependencies are specified by directed acrylic graphs, and (2) because such efficient methods can find direct application in the development of parallel algorithms for scientific computation. Simple expressions are derived that describe how to schedule computational work with varying degrees of granularity. The Encore Multimax was used as a hardware simulator to investigate the performance effects of using the partitioning techniques presented in shared memory architectures with varying relative synchronization costs.
Time-varying span efficiency through the wingbeat of desert locusts.
Henningsson, Per; Bomphrey, Richard J
2012-06-07
The flight performance of animals depends greatly on the efficacy with which they generate aerodynamic forces. Accordingly, maximum range, load-lifting capacity and peak accelerations during manoeuvres are all constrained by the efficiency of momentum transfer to the wake. Here, we use high-speed particle image velocimetry (1 kHz) to record flow velocities in the near wake of desert locusts (Schistocerca gregaria, Forskål). We use the measured flow fields to calculate time-varying span efficiency throughout the wing stroke cycle. The locusts are found to operate at a maximum span efficiency of 79 per cent, typically at a plateau of about 60 per cent for the majority of the downstroke, but at lower values during the upstroke. Moreover, the calculated span efficiencies are highest when the largest lift forces are being generated (90% of the total lift is generated during the plateau of span efficiency) suggesting that the combination of wing kinematics and morphology in locust flight perform most efficiently when doing the most work.
To twist, roll, stroke or poke? A study of input devices for menu navigation in the cockpit.
Stanton, Neville A; Harvey, Catherine; Plant, Katherine L; Bolton, Luke
2013-01-01
Modern interfaces within the aircraft cockpit integrate many flight management system (FMS) functions into a single system. The success of a user's interaction with an interface depends upon the optimisation between the input device, tasks and environment within which the system is used. In this study, four input devices were evaluated using a range of Human Factors methods, in order to assess aspects of usability including task interaction times, error rates, workload, subjective usability and physical discomfort. The performance of the four input devices was compared using a holistic approach and the findings showed that no single input device produced consistently high performance scores across all of the variables evaluated. The touch screen produced the highest number of 'best' scores; however, discomfort ratings for this device were high, suggesting that it is not an ideal solution as both physical and cognitive aspects of performance must be accounted for in design. This study evaluated four input devices for control of a screen-based flight management system. A holistic approach was used to evaluate both cognitive and physical performance. Performance varied across the dependent variables and between the devices; however, the touch screen produced the largest number of 'best' scores.
Bowlin, Melissa S; McLeer, Dorothy F; Danielson-Francois, Anne M
2014-03-01
Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students measure burst and endurance performance in several taxonomic families of spiders whose ecological niches have led to different locomotory adaptations. Based on observations of spiders in their natural habitat and prior background information, students make predictions about spider performance. Students then construct their own knowledge by performing a hands-on, inquiry-based scientific experiment where the results are not necessarily known. Depending on the specific families chosen, students can observe that web-dwelling spiders have more difficulty navigating complex terrestrial terrain than ground-dwelling spiders and that there is a trade-off between burst performance and endurance performance in spiders. Our inexpensive runway design allows for countless variations on this basic experiment; for example, we have successfully used runways to show students how the performance of heterothermic ectotherms varies with temperature. High levels of intra- and interindividual variation in performance underscore the importance of using multiple trials and statistical tests. Finally, this laboratory activity can be completely student driven or standardized, depending on the instructor's preference.
Pointwise influence matrices for functional-response regression.
Reiss, Philip T; Huang, Lei; Wu, Pei-Shien; Chen, Huaihou; Colcombe, Stan
2017-12-01
We extend the notion of an influence or hat matrix to regression with functional responses and scalar predictors. For responses depending linearly on a set of predictors, our definition is shown to reduce to the conventional influence matrix for linear models. The pointwise degrees of freedom, the trace of the pointwise influence matrix, are shown to have an adaptivity property that motivates a two-step bivariate smoother for modeling nonlinear dependence on a single predictor. This procedure adapts to varying complexity of the nonlinear model at different locations along the function, and thereby achieves better performance than competing tensor product smoothers in an analysis of the development of white matter microstructure in the brain. © 2017, The International Biometric Society.
Physics Education for Blind Students: The Teachers' Perspective
NASA Astrophysics Data System (ADS)
Ferreira, Amauri; Dickman, Adriana
2008-03-01
We discuss the challenge high school teachers face when teaching physics to the blind. Using the oral history method, we interview physics teachers who have dealt with the inclusion of blind students in regular classrooms. Based on our study, we find that the performance of these students varies, depending on the studied subject. The narrative makes clear the teachers' lack of preparation to deal with inclusion, and their search for alternative methods to improve blind students' learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przepioski, Joshua
2015-08-25
This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene-2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify themore » dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less
Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przepioski, Joshua
2015-08-28
This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI 2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to bettermore » identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less
Young Children’s Sensitivity to Their Own Ignorance in Informing Others
Kim, Sunae; Paulus, Markus; Sodian, Beate; Proust, Joelle
2016-01-01
Prior research suggests that young children selectively inform others depending on others’ knowledge states. Yet, little is known whether children selectively inform others depending on their own knowledge states. To explore this issue, we manipulated 3- to 4-year-old children’s knowledge about the content of a box and assessed the impact on their decisions to inform another person. Moreover, we assessed the presence of uncertainty gestures while they inform another person in light of the suggestions that children's gestures reflect early developing, perhaps transient, epistemic sensitivity. Finally, we compared children’s performance in the informing context to their explicit verbal judgment of their knowledge states to further confirm the existence of a performance gap between the two tasks. In their decisions to inform, children tend to accurately assess their ignorance, whereas they tend to overestimate their own knowledge states when asked to explicitly report them. Moreover, children display different levels of uncertainty gestures depending on the varying degrees of their informational access. These findings suggest that children’s implicit awareness of their own ignorance may be facilitated in a social, communicative context. PMID:27023683
Di Stefano, C. A.; Kuranz, C. C.; Seely, J. F.; ...
2015-04-01
Here, we present the results of experiments observing the properties of the electron stream generated laterally when a laser irradiates a metal. We also found that the directionality of the electrons is dependent upon their energies, with the higher-energy tail of the spectrum ( 1MeV and higher) being more narrowly focused. This behavior is likely due to the coupling of the electrons to the electric field of the laser. We performed these experiments by using the Titan laser to irradiate a metal wire, creating the electron stream of interest. These electrons propagate to nearby spectator wires of differing metals, causingmore » them to fluoresce at their characteristic K-shell energies. This fluorescence is recorded by a crystal spectrometer. By varying the distances between the wires, we are able to probe the divergence of the electron stream, while by varying the medium through which the electrons propagate (and hence the energy-dependence of electron attenuation), we are able to probe the energy spectrum of the stream.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, Heather E.; Colella, Whitney G.
2015-06-01
Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to 15 distinct 5 kW-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a 1 s sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initialmore » data indicate that the FCSs have relatively stable performance and a long-term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer's stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer's stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4 degrees C, lower than the manufacturer's stated maximum hot water delivery temperature of 65 degrees C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at rated value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at rated value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at rated value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS Unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%. The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a maximum decline in electric power output of approximately 18% was observed over a 500 h period in Jan. 2012.« less
Cooperative effect of pH-dependent ion transport within two symmetric-structured nanochannels.
Meng, Zheyi; Chen, Yang; Li, Xiulin; Xu, Yanglei; Zhai, Jin
2015-04-15
A novel and simple design is introduced to construct bichannel nanofluid diodes by combining two poly(ethylene terephthalate) (PET) films with columnar nanochannel arrays varying in size or in surface charge. This type of bichannel device performs obvious ion current rectification, and the pH-dependent tunability and degree of rectification can be improved by histidine modification. The origin of the ion current rectification and its pH-dependent tunability are attributed to the cooperative effect of the two columnar half-channels and the applied bias on the mobile ions. As a result of surface groups on the bichannel being charged with different polarities or degrees at different pH values, the function of the bichannel device can be converted from a nanofluid diode to a normal nanochannel or to a reverse diode.
Age, cognitive style, and traffic signs.
Lambert, L D; Fleury, M
1994-04-01
This study assessed the efficiency with which young and older adults of varying field dependence extract information from traffic signs. It also identified some visual attributes of signs which affect recognition time. Two experiments were conducted. In Exp. 1, digitized signs, embedded in rural and urban backgrounds, were presented on a computer monitor. Subjects indicated on which side a target sign had appeared. Analysis showed that recognition times were dependent on age and field-dependence scores. Also, visual backgrounds and spatial frequency of pictographs affected RTs. In Exp. 2, recognition RT to 2 signs with redesigned pictographs was measured as well as time taken to detect signs. The signs showing reduced spatial frequency were the fastest to recognize, although no effect was noticed during detection. The subjects who showed the worst performance when facing the original signs benefitted the most from the modifications.
Simulations of threshold displacement in beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Matthew L.; Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB; Fossati, Paul C. M.
Atomic scale molecular dynamics simulations of radiation damage have been performed on beryllium. Direct threshold displacement simulations along a geodesic projection of directions were used to investigate the directional dependence with a high spatial resolution. It was found that the directionally averaged probability of displacement increases from 0 at 35 eV, with the energy at which there is a 50% chance of a displacement occurring is 70 eV and asymptotically approaching 1 for higher energies. This is, however, strongly directionally dependent with a 50% probability of displacement varying from 35 to 120 eV, with low energy directions corresponding to the nearest neighbour directions.more » A new kinetic energy dependent expression for the average maximum displacement of an atom as a function of energy is derived which closely matches the simulated data.« less
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Bangert, L. S.
1982-01-01
An investigation was conducted in the Langley 16 foot Transonic Tunnel and in the static test facility of that tunnel to determine the effects of divergent flap ventilation of an axisymmetric nozzle on nozzle internal (static) and wind on performance. Tests were conducted at 0 deg angle of attack at static conditions and at Mach numbers from 0.6 to 1.2. Ratios of jet total pressure to free stream static pressure were varied from 1.0 (jet off) to approximately 14.0 depending on Mach number. The results of this study indicate that divergent flap ventilation generally provided large performance benefits at overexpanded nozzle conditions and performance reductions at underexpanded nozzle conditions when compared to the baseline (unventilated) nozzles. Ventilation also reduced the peak static and wind on performance levels.
Postfledging nest dependence period for bald eagles in Florida
Wood, P.B.; Collopy, Michael W.; Sekerak, C.M.
1998-01-01
We studied the postfledging dependency period in bald eagles (Haliaeetus leucocephalus), a little studied but important period in the life cycle of avian species. Bald eagles in Florida had a postfledging dependency period of 4-11 weeks (15-22 weeks old). The length of the dependency period did not vary by year of study, sex, number of fledgings, timing of fledging, or hatch order (P > 0.05). Mean distance fledglings ranged from the nest increased with age, but they were observed in the nest or nest tree throughout the postfledging dependency period. Distance from the nest did not vary by sex, number of fledglings, or timing of fledging (P > 0.05). Over 80% of the fledgling observations were within 229 m of the nest. The boundary of the primary protection zone specified in the bald eagle habitat management guidelines for the southeastern United States is 229 m. Restrictions on human disturbance around nest sites should remain in place during the postfledging dependency period because of the close association of fledglings with the nest site. Restrictions also should be flexible because of the varying length of the dependency period.
Performance of FORTRAN floating-point operations on the Flex/32 multicomputer
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.
1987-01-01
A series of experiments has been run to examine the floating-point performance of FORTRAN programs on the Flex/32 (Trademark) computer. The experiments are described, and the timing results are presented. The time required to execute a floating-point operation is found to vary considerbaly depending on a number of factors. One factor of particular interest from an algorithm design standpoint is the difference in speed between common memory accesses and local memory accesses. Common memory accesses were found to be slower, and guidelines are given for determinig when it may be cost effective to copy data from common to local memory.
NASA Astrophysics Data System (ADS)
Hakoda, Christopher; Ren, Baiyang; Lissenden, Cliff J.; Rose, Joseph L.
2017-02-01
Thin-film PVDF (polyvinylidene fluoride) transducers are appealing as low cost, light weight, durable, and flexible sensors for structural health monitoring applications in aircraft structures. However, due to the relatively low Curie temperature of PVDF, there is a concern that it's performance will drop below acceptable levels during elevated-temperature operating conditions. To verify acceptable performance in these environmental operating conditions, temperature history data were collected between 23-60 °C. The effect of temperature on the thin-film PVDF was investigated and a temperature-independent damage feature was assessed. The temperature dependence of the signal's peak amplitude was investigated in both the time domain and the spectral domain to get two damage features. It was found that the measurement of the incident guided wave by the thin-film PVDF transducer had a temperature dependence that varied with frequency. A third damage feature, the mode ratio, was also calculated in the spectral domain with the goal of defining a damage feature that is temperature independent. A comparison of how well these damage features performed when used to identify a notch in an aluminum plate was made using receiver operating characteristic curves and their respective area under the curve values. This result demonstrated that a temperature-independent damage feature can be calculated, to some degree, by using a mode ratio between two modes of similar temperature dependence.
Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja; Holmgren, Magnus A; Liebetrau, Jan; Scheutz, Charlotte
2017-10-01
A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured by ground-based remote sensing varied from 5 to 25kgh -1 (corresponding to a methane loss of 0.6-3.0% of upgraded methane produced), depending on operating conditions and the measurement method applied. Overall methane emissions measured by the on-site measuring approaches varied between 5 and 17kgh -1 (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could be explained, in that the two largest methane-emitting sources, contributing about 90% of the entire site's emissions, were found to be the open digestate storage tank and a pressure release valve on the compressor station. Copyright © 2017. Published by Elsevier Ltd.
Evaluation and attribution of vegetation contribution to seasonal climate predictability
NASA Astrophysics Data System (ADS)
Catalano, Franco; Alessandri, Andrea; De Felice, Matteo
2015-04-01
The land surface model of EC-Earth has been modified to include dependence of vegetation densities on the Leaf Area Index (LAI), based on the Lambert-Beer formulation. Effective vegetation fractional coverage can now vary at seasonal and interannual time-scales and therefore affect biophysical parameters such as the surface roughness, albedo and soil field capacity. The modified model is used to perform a real predictability seasonal hindcast experiment. LAI is prescribed using a recent observational dataset based on the third generation GIMMS and MODIS satellite data. Hindcast setup is: 7 months forecast length, 2 start dates (1st May and 1st November), 10 members, 28 years (1982-2009). The effect of the realistic LAI prescribed from observation is evaluated with respect to a control experiment where LAI does not vary. Hindcast results demonstrate that a realistic representation of vegetation significantly improves the forecasts of temperature and precipitation. The sensitivity is particularly large for temperature during boreal winter over central North America and Central Asia. This may be attributed in particular to the effect of the high vegetation component on the snow cover. Summer forecasts are improved in particular for precipitation over Europe, Sahel, North America, West Russia and Nordeste. Correlation improvements depends on the links between targets (temperature and precipitation) and drivers (surface heat fluxes, albedo, soil moisture, evapotranspiration, moisture divergence) which varies from region to region.
Park, Sangsoo; Spirduso, Waneen; Eakin, Tim; Abraham, Lawrence
2018-01-01
The authors investigated how varying the required low-level forces and the direction of force change affect accuracy and variability of force production in a cyclic isometric pinch force tracking task. Eighteen healthy right-handed adult volunteers performed the tracking task over 3 different force ranges. Root mean square error and coefficient of variation were higher at lower force levels and during minimum reversals compared with maximum reversals. Overall, the thumb showed greater root mean square error and coefficient of variation scores than did the index finger during maximum reversals, but not during minimum reversals. The observed impaired performance during minimum reversals might originate from history-dependent mechanisms of force production and highly coupled 2-digit performance.
Effect of the estrous cycle on water maze acquisition depends on the temperature of the water.
Rubinow, Marisa J; Arseneau, Linda M; Beverly, J Lee; Juraska, Janice M
2004-08-01
The literature on the effects of ovarian hormones on rodent learning and memory is mixed. In this study, the authors examined the role of task stressfulness. Female hooded rats were tested during proestrus or estrus on the hidden-platform water maze in warm (33 degrees C) or cold (19 degrees C) water. There were no effects of cycle or temperature, but estrous phase interacted with temperature such that proestrous rats performed better overall under the warm condition and estrous rats performed better under the cold condition. Plasma corticosterone, measured after 4 trials, varied significantly with estrous phase. Water temperature, perhaps through stress, influences the effect of estrous phase on water maze performance.
Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis
2009-04-01
Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.
Cavitation Damage Experiments for Mercury Spallation Targets At the LANSCE WNR in 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riemer, Bernie; Wendel, Mark W; Felde, David K
2010-01-01
Proton beam experiments investigating cavitation damage in short pulse mercury spallation targets were performed at LANSCE WNR in July of 2008. They included two main areas for investigation: damage dependence on mercury velocity using geometry more prototypic to the SNS target than previously employed and damage dependence on incident proton beam flux intensity. The flow dependence experiment employed six test targets with mercury velocity in the channel ranging from 0 to more than 4 m/s. Each was hit with 100 WNR beam pulses with peak proton flux equivalent to that of SNS operating at 2.7 MW. Damage dependence on incidentmore » proton beam flux intensity was also investigated with three intensity levels used on simple rectangular shaped targets without mercury flow. Intensity variation was imposed by focusing the beam differently while maintaining protons per pulse. This kept total energy deposited in each target constant. A fourth test target was hit with various beams: constant protons and varied spot size; constant spot size and varied protons. No damage will be assessed in this case. Instead, acoustic emissions associated with cavitation collapse were measured by laser Doppler vibrometer (LDV) from readings of exterior vessel motions as well as by mercury wetted acoustic transducers. This paper will provide a description of the experiment and present available results. Damage assessment will require several months before surface analysis can be completed and was not available in time for IWSMT-9.« less
Wang, Dong-Yuan Debbie; Richard, F Dan; Ray, Brittany
2016-01-01
The stimulus-response correspondence (SRC) effect refers to advantages in performance when stimulus and response correspond in dimensions or features, even if the common features are irrelevant to the task. Previous research indicated that the SRC effect depends on the temporal course of stimulus information processing. The current study investigated how the temporal overlap between relevant and irrelevant stimulus processing influences the SRC effect. In this experiment, the irrelevant stimulus (a previously associated tone) preceded the relevant stimulus (a coloured rectangle). The irrelevant and relevant stimuli onset asynchrony was varied to manipulate the temporal overlap between the irrelevant and relevant stimuli processing. Results indicated that the SRC effect size varied as a quadratic function of the temporal overlap between the relevant stimulus and irrelevant stimulus. This finding extends previous experimental observations that the SRC effect size varies in an increasing or decreasing function with reaction time. The current study demonstrated a quadratic function between effect size and the temporal overlap.
Knee arthrodesis with the Vari-Wall nail for treatment of infected total knee arthroplasty.
Garcia-Lopez, Ignacio; Aguayo, Miguel Anguel; Cuevas, Antonio; Navarro, Pablo; Prieto, Cristobal; Carpintero, Pedro
2008-12-01
We reviewed 20 patients who had undergone one-stage (7 cases) or two-stage (13 cases) knee arthrodesis using the Vari-Wall intramedullary nail, as a salvage operation following infection of a total knee arthroplasty. The procedure was followed by systemic antibiotic administration and early rehabilitation. Intraoperative microbiological cultures were taken. The average period of follow-up was 20 months. Solid union was achieved in 80%; mean time to fusion was 9 months. There was no recurrence of infection. The average limb length discrepancy was 2.45 cm. A walking aid was needed by 95% of the patients. The complication rate was 30% including 4 pseudarthroses, one intraoperative fracture and one peroneal nerve palsy. The Vari-Wall intramedullary nail is a good option when an arthrodesis is indicated for salvage of an infected total knee arthroplasty. It can be performed in one or two stages depending on several factors such as microbiologic culture results. It achieved good pain relief and acceptable functional results in this study.
Varying coefficient subdistribution regression for left-truncated semi-competing risks data.
Li, Ruosha; Peng, Limin
2014-10-01
Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.
Nicotine quantity and packaging disclosure in smoked and smokeless tobacco products in India.
Sharma, Priyamvada; Murthy, Pratima; Shivhare, Parul
2015-01-01
A variety of smoked and smokeless tobacco products with varying nicotine content are accessible in India. Nicotine quantity in tobacco products has direct bearing on tobacco dependence. Our objective was to estimate nicotine content in various types of smoked and smokeless products. Disclosure for essential health warning was also checked. Liquid-liquid extraction was used for nicotine extraction and high-performance thin layer chromatography technique was applied for quantification of nicotine in seventy-one smoked and smokeless tobacco products. Significant variation in nicotine content was observed across products. In smoked tobacco, nicotine content varied from 1.01 to 13.0 mg/rod, while in smokeless tobacco products it ranged from 0.8 mg/g to 50.0 mg/g. Moisture content varied from 9% to 21%. This work lists a range of smoked and smokeless tobacco products available in this region. We report a wide variability in nicotine quantity across smoked and smokeless tobacco products. Such variation in nicotine content may have important implications for tobacco cessation interventions and policies.
Propagation of gas jet in liquid
NASA Astrophysics Data System (ADS)
Surin, V. A.; Yevchenko, V. N.; Rubin, V. M.
1984-07-01
A comprehensive experimental study was made of discharge of a gas jet from an orifice and its evolution in a liquid medium. Nitrogen, air, helium, chlorine, carbon dioxide, hydrogen chloride, ammonia, and water vapor superheated to 200 to 250 C were discharged vertically up, vertically down, or laterally into water at 18 to 100 C as well as into aqueous solutions of KOH and NaOH, under pressures varied from hydrostatic to 41x10(5) Pa. They were discharged through sonic cylindrical, conical nozzles and supersonic leLaval, axisymmetric, flat nozzles with orifices 2 to 50 mm wide. The discharge velocity varied from 2 to 1000 m/s and the jet underexpansion ratio varied from 1 to 20. The study has yielded data on the mechanisms of gas-liquid interaction, structure and dynamics of the interaction space, and dependence of those on the discharge conditions and on the degree of gas assimilation. Experiments were performed in both continuous and pulse modes, the latter for a study of transients and back shocks.
Metastability and emergent performance of dynamic interceptive actions.
Pinder, Ross A; Davids, Keith; Renshaw, Ian
2012-09-01
Adaptive patterning of human movement is context specific and dependent on interacting constraints of the performer-environment relationship. Flexibility of skilled behaviour is predicated on the capacity of performers to move between different states of movement organisation to satisfy dynamic task constraints, previously demonstrated in studies of visual perception, bimanual coordination, and an interceptive combat task. Metastability is a movement system property that helps performers to remain in a state of relative coordination with their performance environments, poised between multiple co-existing states (stable and distinct movement patterns or responses). The aim of this study was to examine whether metastability could be exploited in externally paced interceptive actions in fast ball sports, such as cricket. Here we report data on metastability in performance of multi-articular hitting actions by skilled junior cricket batters (n=5). Participants' batting actions (key movement timings and performance outcomes) were analysed in four distinct performance regions varied by ball pitching (bounce) location. Results demonstrated that, at a pre-determined distance to the ball, participants were forced into a meta-stable region of performance where rich and varied patterns of functional movement behaviours emerged. Participants adapted the organisation of responses, resulting in higher levels of variability in movement timing in this performance region, without detrimental effects on the quality of interceptive performance outcomes. Findings provide evidence for the emergence of metastability in a dynamic interceptive action in cricket batting. Flexibility and diversity of movement responses were optimised using experiential knowledge and careful manipulation of key task constraints of the specific sport context. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Karimi, Hamid Reza; Gao, Huijun
2008-07-01
A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.
Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A
2009-09-01
Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.
Celaya, Ileana N.; Arceo-Gómez, Gerardo; Alonso, Conchita; Parra-Tabla, Víctor
2015-01-01
Background and Aims Studies that have evaluated the effects of heterospecific pollen (HP) receipt on plant reproductive success have generally overlooked the variability of the natural abiotic environment in which plants grow. Variability in abiotic conditions, such as light and water availability, has the potential to affect pollen–stigma interactions (i.e. conspecific pollen germination and performance), which will probably influence the effects of HP receipt. Thus, a more complete understanding of the extent, strength and consequences of plant–plant interactions via HP transfer requires better consideration of the range of abiotic conditions in which these interactions occur. This study addresses this issue by evaluating the effects of two HP donors (Tamonea curassavica and Angelonia angustifolia) on the reproductive success of Cuphea gaumeri, an endemic species of the Yucatan Peninsula. Methods Mixed (conspecific pollen and HP) and pure (conspecific pollen only) hand-pollinations were conducted under varying conditions of water and light availability in a full factorial design. Reproductive success was measured as the number of pollen tubes that reached the bottom of the style. Key Results Only one of the two HP donors had a significant effect on C. gaumeri reproductive success, but this effect was dependent on water and light availability. Specifically, HP receipt caused a decrease in pollen tube growth, but only when the availability of water, light or both was low, and not when the availability of both resources was high. Conclusions The results show that the outcome of interspecific post-pollination interactions via HP transfer can be context-dependent and vary with abiotic conditions, thus suggesting that abiotic effects in natural populations may be under-estimated. Such context-dependency could lead to spatial and temporal mosaics in the ecological and evolutionary consequences of post-pollination interactions. PMID:26199385
Thermal stress analysis of ceramic structures with NASTRAN isoparametric solid elements
NASA Technical Reports Server (NTRS)
Lamberson, S. E.; Paul, D. B.
1978-01-01
The performance of the NASTRAN level 16.0, twenty node, isoparametric bricks (CIHEX2) at thermal loading was studied. A free ceramic plate was modelled using twenty node bricks of varying thicknesses. The thermal loading for this problem was uniform over the surface with an extremely large gradient through the thickness. No mechanical loading was considered. Temperature-dependent mechanical properties were considered in this analysis. The NASTRAN results were compared to one dimensional stress distributions calculated by direct numerical integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkesh, Ryan A.; Foster, Michael E.; Ichimura, Andrew S.
The ability to tune the steric envelope through redox events post-synthetically or in tandem with other chemical processes is a powerful tool that could assist in enabling new catalytic methodologies and understanding potential pitfalls in ligand design. The α-diimine ligand, dmp-BIAN, exhibits the peculiar and previously unreported feature of varying steric profiles depending on oxidation state when paired with a main group element. A study of the factors that give rise to this behaviour as well as its impact on the incorporation of other ligands is performed.
2006-01-01
neuropathy . Arthritis is an example of a degenerative condition. Though exact symptoms vary by conditions and the individual, some are common to most...depending upon the part and the access area (J. Warsinske, personal communication, July, 6, 2006). 12 Air Force WMSD iniury data Two jet engine repair...facilities were responsible for receiving, inspecting, and repairing jet engines, tasks that are comparable to the duties of the aircraft maintainers
Polarographic study of cadmium 5-hydroxy 2-(hydroxymethyl) 4H-pyran-4-one complex
NASA Technical Reports Server (NTRS)
Wilson, Ray F.; Daniels, Robert C.
1989-01-01
A polarographic study was performed on the products formed in the interaction of cadmium (II) with a 5-hydroxy 2-(hydroxymethyl) 4H-Pyran-4-one, using varying conditions of pH, supporting electrolytes, and concentrations. Measurements using the differential pulse method show that cadmium (II) exhibits a molar combining ratio of complexing agents to cation ranging from 1 to 1 to 3 to 1 depending on the pH and the supporting electrolyte employed.
Sensitivity of fenestration solar gain to source spectrum and angle of incidence
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCluney, W.R.
1996-12-31
The solar heat gain coefficient (SHGC) is the fraction of solar radiant flux incident on a fenestration system entering a building as heat gain. In general it depends on both the angle of incidence and the spectral distribution of the incident solar radiation. In attempts to improve energy performance and user acceptance of high-performance glazing systems, manufacturers are producing glazing systems with increasing spectral selectivity. This poses potential difficulties for calculations of solar heat gain through windows based upon the use of a single solar spectral weighting function. The sensitivity of modern high-performance glazing systems to both the angle ofmore » incidence and the shape of the incident solar spectrum is examined using a glazing performance simulation program. It is found that as the spectral selectivity of the glazing system increases, the SHGC can vary as the incident spectral distribution varies. The variations can be as great as 50% when using several different representative direct-beam spectra. These include spectra having low and high air masses and a standard spectrum having an air mass of 1.5. The variations can be even greater if clear blue diffuse skylight is considered. It is recommended that the current broad-band shading coefficient method of calculating solar gain be replaced by one that is spectral based.« less
Experimental quantum verification in the presence of temporally correlated noise
NASA Astrophysics Data System (ADS)
Mavadia, S.; Edmunds, C. L.; Hempel, C.; Ball, H.; Roy, F.; Stace, T. M.; Biercuk, M. J.
2018-02-01
Growth in the capabilities of quantum information hardware mandates access to techniques for performance verification that function under realistic laboratory conditions. Here we experimentally characterise the impact of common temporally correlated noise processes on both randomised benchmarking (RB) and gate-set tomography (GST). Our analysis highlights the role of sequence structure in enhancing or suppressing the sensitivity of quantum verification protocols to either slowly or rapidly varying noise, which we treat in the limiting cases of quasi-DC miscalibration and white noise power spectra. We perform experiments with a single trapped 171Yb+ ion-qubit and inject engineered noise (" separators="∝σ^ z ) to probe protocol performance. Experiments on RB validate predictions that measured fidelities over sequences are described by a gamma distribution varying between approximately Gaussian, and a broad, highly skewed distribution for rapidly and slowly varying noise, respectively. Similarly we find a strong gate set dependence of default experimental GST procedures in the presence of correlated errors, leading to significant deviations between estimated and calculated diamond distances in the presence of correlated σ^ z errors. Numerical simulations demonstrate that expansion of the gate set to include negative rotations can suppress these discrepancies and increase reported diamond distances by orders of magnitude for the same error processes. Similar effects do not occur for correlated σ^ x or σ^ y errors or depolarising noise processes, highlighting the impact of the critical interplay of selected gate set and the gauge optimisation process on the meaning of the reported diamond norm in correlated noise environments.
Joos, T J; Miller, W C; Murdoch, D M
2006-08-01
The effect of previously administered bacille Calmette-Guérin (BCG) vaccine on subsequent tuberculin skin tests (TSTs) complicates screening for latent tuberculosis infection (LTBI) in foreign-born persons. To determine the usefulness of the TST as a screening test for LTBI in foreign-born persons. A literature search was performed of published studies that compared tuberculin reactivity amongst BCG-vaccinated and non-vaccinated groups. The percentages of positive reactors in the two groups were then used to calculate a prevalence ratio. The prevalence ratio varied with the age of the groups tested and the incidence of TB in their countries of origin. The TST performed poorly in vaccinated persons of all ages from countries of low TB incidence, but was a useful screen for LTBI in vaccinated adults from countries of high and intermediate incidence. The test performed poorly as a screening method for vaccinated children under 2 years of age. Its usefulness in vaccinated children aged 2-14 years varied considerably. The usefulness of the TST as a screening method for LTBI depends on the age of the patient and the incidence of TB in their country of origin.
Wildlife, fish, and biodiversity [Chapter 11
Curtis Flather
2016-01-01
The 2010 Resources Planning Act (RPA) Assessment (2010 RPA) reviewed recent trends in wildlife, fish, and biodiversity, showing varied responses, depending on the resource, suggesting varied conditions that depend on region, species group, or habitat type. For this RPA Update, we focused on four topics that were motivated by questions stemming from 2010 RPA...
O'Neil, Shawn T; Bump, Joseph K; Beyer, Dean E
2017-11-01
Understanding landscape patterns in mortality risk is crucial for promoting recovery of threatened and endangered species. Humans affect mortality risk in large carnivores such as wolves ( Canis lupus ), but spatiotemporally varying density dependence can significantly influence the landscape of survival. This potentially occurs when density varies spatially and risk is unevenly distributed. We quantified spatiotemporal sources of variation in survival rates of gray wolves ( C. lupus ) during a 21-year period of population recovery in the Upper Peninsula of Michigan, USA. We focused on mapping risk across time using Cox Proportional Hazards (CPH) models with time-dependent covariates, thus exploring a shifting mosaic of survival. Extended CPH models and time-dependent covariates revealed influences of seasonality, density dependence and experience, as well as individual-level factors and landscape predictors of risk. We used results to predict the shifting landscape of risk at the beginning, middle, and end of the wolf recovery time series. Survival rates varied spatially and declined over time. Long-term change was density-dependent, with landscape predictors such as agricultural land cover and edge densities contributing negatively to survival. Survival also varied seasonally and depended on individual experience, sex, and resident versus transient status. The shifting landscape of survival suggested that increasing density contributed to greater potential for human conflict and wolf mortality risk. Long-term spatial variation in key population vital rates is largely unquantified in many threatened, endangered, and recovering species. Variation in risk may indicate potential for source-sink population dynamics, especially where individuals preemptively occupy suitable territories, which forces new individuals into riskier habitat types as density increases. We encourage managers to explore relationships between adult survival and localized changes in population density. Density-dependent risk maps can identify increasing conflict areas or potential habitat sinks which may persist due to high recruitment in adjacent habitats.
Mahfuz, Mohammad Upal
2016-10-01
In this paper, the expressions of achievable strength-based detection probabilities of concentration-encoded molecular communication (CEMC) system have been derived based on finite pulsewidth (FP) pulse-amplitude modulated (PAM) on-off keying (OOK) modulation scheme and strength threshold. An FP-PAM system is characterized by its duty cycle α that indicates the fraction of the entire symbol duration the transmitter remains on and transmits the signal. Results show that the detection performance of an FP-PAM OOK CEMC system significantly depends on the statistical distribution parameters of diffusion-based propagation noise and intersymbol interference (ISI). Analytical detection performance of an FP-PAM OOK CEMC system under ISI scenario has been explained and compared based on receiver operating characteristics (ROC) for impulse (i.e., spike)-modulated (IM) and FP-PAM CEMC schemes. It is shown that the effects of diffusion noise and ISI on ROC can be explained separately based on their communication range-dependent statistics. With full duty cycle, an FP-PAM scheme provides significantly worse performance than an IM scheme. The paper also analyzes the performance of the system when duty cycle, transmission data rate, and quantity of molecules vary.
Flexible margin kinematics and vortex formation of Aurelia aurita and Robojelly.
Villanueva, Alex; Vlachos, Pavlos; Priya, Shashank
2014-01-01
The development of a rowing jellyfish biomimetic robot termed as "Robojelly", has led to the discovery of a passive flexible flap located between the flexion point and bell margin on the Aurelia aurita. A comparative analysis of biomimetic robots showed that the presence of a passive flexible flap results in a significant increase in the swimming performance. In this work we further investigate this concept by developing varying flap geometries and comparing their kinematics with A. aurita. It was shown that the animal flap kinematics can be replicated with high fidelity using a passive structure and a flap with curved and tapered geometry gave the most biomimetic performance. A method for identifying the flap location was established by utilizing the bell curvature and the variation of curvature as a function of time. Flaps of constant cross-section and varying lengths were incorporated on the Robojelly to conduct a systematic study of the starting vortex circulation. Circulation was quantified using velocity field measurements obtained from planar Time Resolved Digital Particle Image Velocimetry (TRDPIV). The starting vortex circulation was scaled using a varying orifice model and a pitching panel model. The varying orifice model which has been traditionally considered as the better representation of jellyfish propulsion did not appear to capture the scaling of the starting vortex. In contrast, the pitching panel representation appeared to better scale the governing flow physics and revealed a strong dependence on the flap kinematics and geometry. The results suggest that an alternative description should be considered for rowing jellyfish propulsion, using a pitching panel method instead of the traditional varying orifice model. Finally, the results show the importance of incorporating the entire bell geometry as a function of time in modeling rowing jellyfish propulsion.
Uddin, Md Jamal; Groenwold, Rolf H H; de Boer, Anthonius; Gardarsdottir, Helga; Martin, Elisa; Candore, Gianmario; Belitser, Svetlana V; Hoes, Arno W; Roes, Kit C B; Klungel, Olaf H
2016-03-01
Instrumental variable (IV) analysis can control for unmeasured confounding, yet it has not been widely used in pharmacoepidemiology. We aimed to assess the performance of IV analysis using different IVs in multiple databases in a study of antidepressant use and hip fracture. Information on adults with at least one prescription of a selective serotonin reuptake inhibitor (SSRI) or tricyclic antidepressant (TCA) during 2001-2009 was extracted from the THIN (UK), BIFAP (Spain), and Mondriaan (Netherlands) databases. IVs were created using the proportion of SSRI prescriptions per practice or using the one, five, or ten previous prescriptions by a physician. Data were analysed using conventional Cox regression and two-stage IV models. In the conventional analysis, SSRI (vs. TCA) was associated with an increased risk of hip fracture, which was consistently found across databases: the adjusted hazard ratio (HR) was approximately 1.35 for time-fixed and 1.50 to 2.49 for time-varying SSRI use, while the IV analysis based on the IVs that appeared to satisfy the IV assumptions showed conflicting results, e.g. the adjusted HRs ranged from 0.55 to 2.75 for time-fixed exposure. IVs for time-varying exposure violated at least one IV assumption and were therefore invalid. This multiple database study shows that the performance of IV analysis varied across the databases for time-fixed and time-varying exposures and strongly depends on the definition of IVs. It remains challenging to obtain valid IVs in pharmacoepidemiological studies, particularly for time-varying exposure, and IV analysis should therefore be interpreted cautiously. Copyright © 2016 John Wiley & Sons, Ltd.
Spectral analysis of hearing protector impulsive insertion loss.
Fackler, Cameron J; Berger, Elliott H; Murphy, William J; Stergar, Michael E
2017-01-01
To characterise the performance of hearing protection devices (HPDs) in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. HPDs were measured per the impulsive test methods of ANSI/ASA S12.42- 2010 . Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analysed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Tested HPDs included a foam earplug, a level-dependent earplug and an electronic sound-restoration earmuff. IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Measurements of IPIL depend strongly on the source used to measure them, especially for HPDs with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD's performance.
Spectral analysis of hearing protector impulsive insertion loss
Fackler, Cameron J.; Berger, Elliott H.; Murphy, William J.; Stergar, Michael E.
2017-01-01
Objective To characterize the performance of hearing protection devices in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. Design Hearing protectors were measured per the impulsive test methods of ANSI/ASA S12.42-2010. Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analyzed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Study Sample Tested devices included a foam earplug, a level-dependent earplug, and an electronic sound-restoration earmuff. Results IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Conclusions Measurements of IPIL depend strongly on the source used to measure them, especially for hearing protectors with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD’s performance. PMID:27885881
Sung, Jongmin; Nag, Suman; Mortensen, Kim I; Vestergaard, Christian L; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A
2015-08-04
Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using 'harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.
Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.
2015-01-01
Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using ‘harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load. PMID:26239258
Mating tactics determine patterns of condition dependence in a dimorphic horned beetle.
Knell, Robert J; Simmons, Leigh W
2010-08-07
The persistence of genetic variability in performance traits such as strength is surprising given the directional selection that such traits experience, which should cause the fixation of the best genetic variants. One possible explanation is 'genic capture' which is usually considered as a candidate mechanism for the maintenance of high genetic variability in sexual signalling traits. This states that if a trait is 'condition dependent', with expression being strongly influenced by the bearer's overall viability, then genetic variability can be maintained via mutation-selection balance. Using a species of dimorphic beetle with males that gain matings either by fighting or by 'sneaking', we tested the prediction of strong condition dependence for strength, walking speed and testes mass. Strength was strongly condition dependent only in those beetles that fight for access to females. Walking speed, with less of an obvious selective advantage, showed no condition dependence, and testes mass was more condition dependent in sneaks, which engage in higher levels of sperm competition. Within a species, therefore, condition dependent expression varies between morphs, and corresponds to the specific selection pressures experienced by that morph. These results support genic capture as a general explanation for the maintenance of genetic variability in traits under directional selection.
A robust variable sampling time BLDC motor control design based upon μ-synthesis.
Hung, Chung-Wen; Yen, Jia-Yush
2013-01-01
The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach.
A Robust Variable Sampling Time BLDC Motor Control Design Based upon μ-Synthesis
Yen, Jia-Yush
2013-01-01
The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach. PMID:24327804
Structural cost optimization of photovoltaic central power station modules and support structure
NASA Technical Reports Server (NTRS)
Sutton, P. D.; Stolte, W. J.; Marsh, R. O.
1979-01-01
The results of a comprehensive study of photovoltaic module structural support concepts for photovoltaic central power stations and their associated costs are presented. The objective of the study has been the identification of structural cost drivers. Parametric structural design and cost analyses of complete array systems consisting of modules, primary support structures, and foundations were performed. Area related module cost was found to be constant with design, size, and loading. A curved glass module concept was evaluated and found to have the potential to significantly reduce panel structural costs. Conclusions of the study are: array costs do not vary greatly among the designs evaluated; panel and array costs are strongly dependent on design loading; and the best support configuration is load dependent
Anisotropic invasion and its consequences in two-strategy evolutionary games on a square lattice
NASA Astrophysics Data System (ADS)
Szabó, György; Varga, Levente; Szabó, Mátyás
2016-11-01
We have studied invasion processes in two-strategy evolutionary games on a square lattice for imitation rule when the players interact with their nearest neighbors. Monte Carlo simulations are performed for systems where the pair interactions are composed of a unit strength coordination game when varying the strengths of the self-dependent and cross-dependent components at a fixed noise level. The visualization of strategy distributions has clearly indicated that circular homogeneous domains evolve into squares with an orientation dependent on the composition. This phenomenon is related to the anisotropy of invasion velocities along the interfaces separating the two homogeneous regions. The quantified invasion velocities indicate the existence of a parameter region in which the invasions are opposite for the horizontal (or vertical) and the tilted interfaces. In this parameter region faceted islands of both strategies shrink and the system evolves from a random initial state into the homogeneous state that first percolated.
Doll, Mark A; Salazar-González, Raúl A; Bodduluri, Srineil; Hein, David W
2017-07-01
Cryopreserved human hepatocytes were used to investigate the role of arylamine N -acetyltransferase 2 (NAT2; EC 2.3.1.5) polymorphism on the N -acetylation of isoniazid (INH). NAT2 genotype was determined by Taqman allelic discrimination assay and INH N -acetylation was measured by high performance liquid chromatography. INH N -acetylation rates in vitro exhibited a robust and highly significant ( P <0.005) NAT2 phenotype-dependent metabolism. N -acetylation rates in situ were INH concentration- and time-dependent. Following incubation for 24 h with 12.5 or 100 µmol/L INH, acetyl-INH concentrations varied significantly ( P = 0.0023 and P = 0.0002) across cryopreserved human hepatocytes samples from rapid, intermediate, and slow acetylators, respectively. The clear association between NAT2 genotype and phenotype supports use of NAT2 genotype to guide INH dosing strategies in the treatment and prevention of tuberculosis.
A complex network-based importance measure for mechatronics systems
NASA Astrophysics Data System (ADS)
Wang, Yanhui; Bi, Lifeng; Lin, Shuai; Li, Man; Shi, Hao
2017-01-01
In view of the negative impact of functional dependency, this paper attempts to provide an alternative importance measure called Improved-PageRank (IPR) for measuring the importance of components in mechatronics systems. IPR is a meaningful extension of the centrality measures in complex network, which considers usage reliability of components and functional dependency between components to increase importance measures usefulness. Our work makes two important contributions. First, this paper integrates the literature of mechatronic architecture and complex networks theory to define component network. Second, based on the notion of component network, a meaningful IPR is brought into the identifying of important components. In addition, the IPR component importance measures, and an algorithm to perform stochastic ordering of components due to the time-varying nature of usage reliability of components and functional dependency between components, are illustrated with a component network of bogie system that consists of 27 components.
Bubble pinch-off and scaling during liquid drop impact on liquid pool
NASA Astrophysics Data System (ADS)
Ray, Bahni; Biswas, Gautam; Sharma, Ashutosh
2012-08-01
Simulations are performed to show entrapment of air bubble accompanied by high speed upward and downward water jets when a water drop impacts a pool of water surface. A new bubble entrapment zone characterised by small bubble pinch-off and long thick jet is found. Depending on the bubble and jet behaviour, the bubble entrapment zone is subdivided into three sub-regimes. The entrapped bubble size and jet height depends on the crater shape and its maximum depth. During the bubble formation, bubble neck develops an almost singular shape as it pinches off. The final pinch-off shape and the power law governing the pinching, rneck ∝ A(t0 - t)αvaries with the Weber number. Weber dependence of the function describing the radius of the bubble during the pinch-off only affects the coefficient A and not the power exponent α.
NASA Astrophysics Data System (ADS)
Li, Jiqing; Huang, Jing; Li, Jianchang
2018-06-01
The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.
An intelligent allocation algorithm for parallel processing
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.
1988-01-01
The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.
Neural network submodel as an abstraction tool: relating network performance to combat outcome
NASA Astrophysics Data System (ADS)
Jablunovsky, Greg; Dorman, Clark; Yaworsky, Paul S.
2000-06-01
Simulation of Command and Control (C2) networks has historically emphasized individual system performance with little architectural context or credible linkage to `bottom- line' measures of combat outcomes. Renewed interest in modeling C2 effects and relationships stems from emerging network intensive operational concepts. This demands improved methods to span the analytical hierarchy between C2 system performance models and theater-level models. Neural network technology offers a modeling approach that can abstract the essential behavior of higher resolution C2 models within a campaign simulation. The proposed methodology uses off-line learning of the relationships between network state and campaign-impacting performance of a complex C2 architecture and then approximation of that performance as a time-varying parameter in an aggregated simulation. Ultimately, this abstraction tool offers an increased fidelity of C2 system simulation that captures dynamic network dependencies within a campaign context.
The Polar Ionosphere and Interplanetary Field.
1987-08-01
model for investigating time dependent behavior of the Polar F-region ionosphere in response to varying interplanetary magnetic field (IMF...conditions. The model has been used to illustrate ionospheric behavior during geomagnetic storms conditions. Future model applications may include...magnetosphere model for investigating time dependent behavior of the polar F-region ionosphere in response to varying interplanetary magnetic field
Presentation-order effects for aesthetic stimulus preference.
Englund, Mats P; Hellström, Åke
2012-10-01
For preference comparisons of paired successive musical excerpts, Koh (American Journal of Psychology, 80, 171-185, 1967) found time-order effects (TOEs) that correlated negatively with stimulus valence-the first (vs. the second) of two unpleasant (vs. two pleasant) excerpts tended to be preferred. We present three experiments designed to investigate whether valence-level-dependent order effects for aesthetic preference (a) can be accounted for using Hellström's (e.g., Journal of Experimental Psychology: Human Perception and Performance, 5, 460-477, 1979) sensation-weighting (SW) model, (b) can be generalized to successive and to simultaneous visual stimuli, and (c) vary, in accordance with the stimulus weighting, with interstimulus interval (ISI; for successive stimuli) or stimulus duration (for simultaneous stimuli). Participants compared paired successive jingles (Exp. 1), successive color patterns (Exp. 2), and simultaneous color patterns (Exp. 3), selecting the preferred stimulus. The results were well described by the SW model, which provided a better fit than did two extended versions of the Bradley-Terry-Luce model. Experiments 1 and 2 revealed higher weights for the second stimulus than for the first, and negatively valence-level-dependent TOEs. In Experiment 3, there was no laterality effect on the stimulus weighting and no valence-level-dependent space-order effects (SOEs). In terms of the SW model, the valence-level-dependent TOEs can be explained as a consequence of differential stimulus weighting in combination with stimulus valence varying from low to high, and the absence of valence-level-dependent SOEs as a consequence of the absence of differential weighting. For successive stimuli, there were no important effects of ISI on weightings and TOEs, and, for simultaneous stimuli, duration had only a small effect on the weighting.
The Role of Soft Power in China’s Security Strategy: Case Studies on the South China Sea and Taiwan
2017-06-09
of power. The study also shows that the interplay between soft and hard power varies significantly depending on the context. 15. SUBJECT TERMS China...sources of power. The study also shows that the interplay between soft and hard power varies significantly depending on the context. v...policies.12 Nye qualifies that the magnitude of soft power that is derived from these sources is situationally dependent . For example, political values
In-medium effects via nuclear stopping in asymmetric colliding nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Mandeep
2016-05-06
The nuclear stopping is studied using isospin-dependent quantum molecular dynamics (IQMD) model in asymmetric colliding nuclei by varying mass asymmetry. The calculations have been done at incident energies varying between 50 and 400 MeV/nucleon for different impact parameters. We investigate the relative role of constant scaled and density-dependent scaled cross-sections. Our study reveals that nuclear stopping depends on the mass asymmetry, incident energy and impact parameter, however, it is independent of the way of scaling the cross-section.
Dai, Lengshi; Shinn-Cunningham, Barbara G
2016-01-01
Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics and task demands.
Context-dependent decisions among options varying in a single dimension.
Morgan, Kate V; Hurly, T Andrew; Bateson, Melissa; Asher, Lucy; Healy, Susan D
2012-02-01
Contrary to theories of rational choice, adding alternatives to a choice set can change the choices made by both humans and animals. This is usually done by adding an inferior decoy to a choice set of two favoured options that are characterized on two distinct dimensions. We presented wild, free-living rufous hummingbirds (Selasphorus rufus) with choices between two or three options that varied in a single dimension only. The options varied in concentration, in volume or in corolla length. When the options varied in concentration, the addition of a medium option to a choice set of a low and a high concentration caused birds to increase their preference for the high option. However, they decreased their preference for the high concentration option when a low option was added to a choice set of high and medium concentrations. When the options varied only in volume, the addition of a high volume option to a choice set of low and medium options decreased the birds' preference for the medium option. We saw no effects of adding a third option when the options varied in corolla length alone. Hummingbirds, then, make context-dependent decisions even when the options vary in only a single dimension although which effect occurs seems to depend on the dimension being manipulated. None of the current theories alone adequately explain these results. Copyright © 2011 Elsevier B.V. All rights reserved.
Intelligent Control for Drag Reduction on the X-48B Vehicle
NASA Technical Reports Server (NTRS)
Griffin, Brian Joseph; Brown, Nelson Andrew; Yoo, Seung Yeun
2011-01-01
This paper focuses on the development of an intelligent control technology for in-flight drag reduction. The system is integrated with and demonstrated on the full X-48B nonlinear simulation. The intelligent control system utilizes a peak-seeking control method implemented with a time-varying Kalman filter. Performance functional coordinate and magnitude measurements, or independent and dependent parameters respectively, are used by the Kalman filter to provide the system with gradient estimates of the designed performance function which is used to drive the system toward a local minimum in a steepestdescent approach. To ensure ease of integration and algorithm performance, a single-input single-output approach was chosen. The framework, specific implementation considerations, simulation results, and flight feasibility issues related to this platform are discussed.
Open-loop frequency acquisition for suppressed-carrier biphase signals using one-pole arm filters
NASA Technical Reports Server (NTRS)
Shah, B.; Holmes, J. K.
1991-01-01
Open loop frequency acquisition performance is discussed for suppressed carrier binary phase shift keyed signals in terms of the probability of detecting the carrier frequency offset when the arms of the Costas loop detector have one pole filters. The approach, which does not require symbol timing, uses fast Fourier transforms (FFTs) to detect the carrier frequency offset. The detection probability, which depends on both the 3 dB arm filter bandwidth and the received symbol signal to noise ratio, is derived and is shown to be independent of symbol timing. It is shown that the performance of this technique is slightly better that other open loop acquisition techniques which use integrators in the arms and whose detection performance varies with symbol timing.
Reading comprehension and expressive writing: a comparison between good and poor comprehenders.
Carretti, Barbara; Re, Anna Maria; Arfè, Barbara
2013-01-01
This study investigated expressive writing in 8- to 10-year-old children with different levels of reading comprehension. Poor and good comprehenders were presented with three expressive writing tasks where the modality (pictorial vs. verbal) and the text genre (narrative vs. descriptive) varied. Results showed that poor comprehenders' performance was minimally influenced by the modality of the prompt. In fact, their performance was generally worse than that of good comprehenders and affected by the text genre, as the quality of their narratives was generally lower than that of good comprehenders. However, in the descriptive text condition, their performance was comparable to that of good comprehenders. One can conclude that their problems depend on the characteristics of the narrative text where coherence and causality are important elements.
Suitable pitch difference to realize anti-loosening performance for various bolts-nuts diameter
NASA Astrophysics Data System (ADS)
Kubo, S.; Tateishi, K.; Noda, N.-A.; Sano, Y.; Takase, Y.; Honda, K.
2018-06-01
In bolt-nut connection, the anti-loosening performance and high fatigue strength are always required with low cost to ensure the connected structure’s safety. In the previous study, a suitable pitch difference between the bolt-nut was obtained as α = 33 μm for M16 JIS bolt- nut through loosening experiment and FEM simulation for tightening process. However, other bolt-nut diameters have not been considered yet. In this paper, therefore, suitable pitch difference is considered for various diameters to realize anti-loosening performance. Since bolt-nut thread geometries are different depending on the diameter, they are expressed as approximate formula. Then, loosening force and anti-loosening force are considered by varying the diameter. Finally, suitable pitch difference {α }minsuit< α < {α }maxsuit was determined from mechanical condition.
Inertial frictional ratchets and their load bearing efficiencies
NASA Astrophysics Data System (ADS)
Kharkongor, D.; Reenbohn, W. L.; Mahato, Mangal C.
2018-03-01
We investigate the performance of an inertial frictional ratchet in a sinusoidal potential driven by a sinusoidal external field. The dependence of the performance on the parameters of the sinusoidally varying friction, such as the mean friction coefficient and its phase difference with the potential, is studied in detail. Interestingly, under certain circumstances, the thermodynamic efficiency of the ratchet against an applied load shows a non-monotonic behaviour as a function of the mean friction coefficient. Also, in the large friction ranges, the efficiency is shown to increase with increasing applied load even though the corresponding ratchet current decreases as the applied load increases. These counterintuitive numerical results are explained in the text.
Kim, Ji Sun; Baek, Jae Ho; Ryu, Young Bok; Hong, Seong-Soo; Lee, Man Sig
2015-01-01
Succinic acid (SA) produced from hydrogenation of maleic anhydride (MAN) is used widely in manufacturing of pharmaceuticals, agrochemicals, surfactants and detergent, green solvent and biodegradable plastic. In this study, we performed that liquid hydrogenation of MAN to SA with 5 wt% Pd supported on activated carbon (Pd/C) at low pressure and temperature. The synthesis of SA was performed in aqueous solution while varying temperature, pressure, catalytic amount and agitation speed. We confirmed that the composition of the products consisting of SA, maleic acid (MA), fumaric acid (FA) and malic acid (MLA) depends on the process. The catalytic characteristics were analyzed by TGA, TEM.
Influence of addition of calcium sulfate dihydrate on drying of autoclaved aerated concrete
NASA Astrophysics Data System (ADS)
Małaszkiewicz, Dorota; Chojnowski, Jacek
2017-11-01
The quality of the autoclaved aerated concrete (AAC) strongly depends on the chemical composition of the raw materials, as well as on the process of the hydrothermal reaction during autoclaving. Performance parameters depend on material structure: fine micron-scale matrix porosity generated by the packing of thin tobermorite plates and coarse aeration pores arising from the foaming of wet mix. In this study the binder varied in calcium sulfate dihydrate (CaSO4ṡ2H2O) content. Five series of AAC specimens were produced, with gypsum content 0; 0.55; 1.15; 2.3 and 3.5% of dry mass respectively. AAC units were produced in UNIPOL technology. The study presents experimental results of AAC moisture stabilization. The initial moisture content was determined directly after autoclaving. Slower drying process was observed for samples containing over 2% of gypsum. Whereas other performance parameters, compressive and tensile strength, as well as water absorption and capillary rise, were significantly better comparing to the reference AAC samples.
NASA Technical Reports Server (NTRS)
Fasnacht, Zachary; Qin, Wenhan; Haffner, David P.; Loyola, Diego; Joiner, Joanna; Krotkov, Nickolay; Vasilkov, Alexander; Spurr, Robert
2017-01-01
Surface Lambertian-equivalent reflectivity (LER) is important for trace gas retrievals in the direct calculation of cloud fractions and indirect calculation of the air mass factor. Current trace gas retrievals use climatological surface LER's. Surface properties that impact the bidirectional reflectance distribution function (BRDF) as well as varying satellite viewing geometry can be important for retrieval of trace gases. Geometry Dependent LER (GLER) captures these effects with its calculation of sun normalized radiances (I/F) and can be used in current LER algorithms (Vasilkov et al. 2016). Pixel by pixel radiative transfer calculations are computationally expensive for large datasets. Modern satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) produce very large datasets as they take measurements at much higher spatial and spectral resolutions. Look up table (LUT) interpolation improves the speed of radiative transfer calculations but complexity increases for non-linear functions. Neural networks perform fast calculations and can accurately predict both non-linear and linear functions with little effort.
NASA Astrophysics Data System (ADS)
Harikrishnan, A. R.; Dhar, Purbarun; Agnihotri, Prabhat K.; Gedupudi, Sateesh; Das, Sarit K.
2018-04-01
Dynamic wettability and contact angle hysteresis can be correlated to shed insight onto any solid-liquid interaction. Complex fluids are capable of altering the expected hysteresis and dynamic wetting behavior due to interfacial interactions. We report the effect of capillary number on the dynamic advancing and receding contact angles of surfactant-based nanocolloidal solutions on hydrophilic, near hydrophobic, and superhydrophobic surfaces by performing forced wetting and de-wetting experiments by employing the embedded needle method. A segregated study is performed to infer the contributing effects of the constituents and effects of particle morphology. The static contact angle hysteresis is found to be a function of particle and surfactant concentrations and greatly depends on the nature of the morphology of the particles. An order of estimate of line energy and a dynamic flow parameter called spreading factor and the transient variations of these parameters are explored which sheds light on the dynamics of contact line movement and response to perturbation of three-phase contact. The Cox-Voinov-Tanner law was found to hold for hydrophilic and a weak dependency on superhydrophobic surfaces with capillary number, and even for the complex fluids, with a varying degree of dependency for different fluids.
Sleep-dependent learning and motor-skill complexity
Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.
2004-01-01
Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics are varied across several degrees of difficulty, and whether this improvement differentially enhances individual transitions of the motor-sequence pattern being learned. We report that subjects show similar overnight improvements in speed whether learning a five-element unimanual sequence (17.7% improvement), a nine-element unimanual sequence (20.2%), or a five-element bimanual sequence (17.5%), but show markedly increased overnight improvement (28.9%) with a nine-element bimanual sequence. In addition, individual transitions within the motor-sequence pattern that appeared most difficult at the end of training showed a significant 17.8% increase in speed overnight, whereas those transitions that were performed most rapidly at the end of training showed only a non-significant 1.4% improvement. Together, these findings suggest that the sleep-dependent learning process selectively provides maximum benefit to motor-skill procedures that proved to be most difficult prior to sleep. PMID:15576888
Electro-thermal analysis of contact resistance
NASA Astrophysics Data System (ADS)
Pandey, Nitin; Jain, Ishant; Reddy, Sudhakar; Gulhane, Nitin P.
2018-05-01
Electro-Mechanical characterization over copper samples are performed at the macroscopic level to understand the dependence of electrical contact resistance and temperature on surface roughness and contact pressure. For two different surface roughness levels of samples, six levels of load are selected and varied to capture the bulk temperature rise and electrical contact resistance. Accordingly, the copper samples are modelled and analysed using COMSOLTM as a simulation package and the results are validated by the experiments. The interface temperature during simulation is obtained using Mikic-Elastic correlation and by directly entering experimental contact resistance value. The load values are varied and then reversed in a similar fashion to capture the hysteresis losses. The governing equations & assumptions underlying these models and their significance are examined & possible justification for the observed variations are discussed. Equivalent Greenwood model is also predicted by mapping the results of the experiment.
Colony Rheology: Active Arthropods Generate Flows
NASA Astrophysics Data System (ADS)
Daniels, Karen; Mann, Michael; Charbonneau, Patrick
2015-03-01
Hydrodynamic-like flows are observed in biological systems as varied as bacteria, insects, birds, fish, and mammals. Both the phenomenology (e.g. front instabilities, milling motions) and the interaction types (hydrodynamic, direct contact, psychological, excluded-volume) strongly vary between systems, but a question common to all of them is to understand the role of particle-scale fluctuations in controlling large-scale rheological behaviors. We will address these questions through experiments on a new system, Tyrolichus casei (cheese mites), which live in dense, self-mixing colonies composed of a mixture of living mites and inert flour/detritus. In experiments performed in a Hele-Shaw geometry, we observe that the rheology of a colony is strongly dependent on the relative concentration of active and inactive particles. In addition to spreading flows, we also observe that the system can generate convective circulation and auto-compaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.
2006-04-07
This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anodemore » ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.« less
Robust control of combustion instabilities
NASA Astrophysics Data System (ADS)
Hong, Boe-Shong
Several interactive dynamical subsystems, each of which has its own time-scale and physical significance, are decomposed to build a feedback-controlled combustion- fluid robust dynamics. On the fast-time scale, the phenomenon of combustion instability is corresponding to the internal feedback of two subsystems: acoustic dynamics and flame dynamics, which are parametrically dependent on the slow-time-scale mean-flow dynamics controlled for global performance by a mean-flow controller. This dissertation constructs such a control system, through modeling, analysis and synthesis, to deal with model uncertainties, environmental noises and time- varying mean-flow operation. Conservation law is decomposed as fast-time acoustic dynamics and slow-time mean-flow dynamics, served for synthesizing LPV (linear parameter varying)- L2-gain robust control law, in which a robust observer is embedded for estimating and controlling the internal status, while achieving trade- offs among robustness, performances and operation. The robust controller is formulated as two LPV-type Linear Matrix Inequalities (LMIs), whose numerical solver is developed by finite-element method. Some important issues related to physical understanding and engineering application are discussed in simulated results of the control system.
Predictors of mammography screening among ethnically diverse low-income women.
Cronan, Terry A; Villalta, Ian; Gottfried, Emily; Vaden, Yavette; Ribas, Mabel; Conway, Terry L
2008-05-01
Breast cancer is the second leading cause of cancer deaths among women in the United States. Minority women are less likely to be screened and more likely to die from breast cancer than are Caucasian women. Although some studies have examined ethnic disparities in mammography screening, no study has examined whether there are ethnic disparities among low-income, ethnically diverse women. The present study was designed to determine whether there are ethnic disparities in mammography screening and predictors of screening among low-income African American, Mexican American, and Caucasian women, and to determine whether the disparities and predictors vary across ethnic groups. The participants were 146 low-income women who were Mexican American (32%), African American (31%), or Caucasian (37%). Statistical analyses were performed to assess the relationships between mammography screening during the past 2 years and potential predictors of screening, both within ethnic groups and for the combined sample. The results varied depending on whether analyses combined ethnic groups or were performed within each of the three ethnic groups. It is, therefore, important to examine within-group differences when examining ethnic disparities in predictors of mammography.
NASA Astrophysics Data System (ADS)
Kore, R. M.; Thakur, A. V.; Fugare, B. Y.; Lokhande, B. J.
2018-04-01
In the present study, we report synthesis of NiO nanoparticles by varying the reagent ratio of nickel nitrate and ammonium bicarbonate using solvent deficient approach. The synthesis process involves the solid state grinding reaction of nickel nitrate and different mole ratio of ammonium bicarbonate varying from 0.5 to 4, to obtain the precursor followed by rinsing and annealing at 300°C for 2 h. The XRD and FTIR analysis is carried to confirm the formation of NiO nanoparticles. The XRD analysis confirms the cubic structure of NiO. The peaks observed in FTIR confirms the presence of Ni - O vibration mode. The FESEM images shows the particle size is larger for lower content of ammonium bicarbonate and decreases with increase in amount of bicarbonate added. Electrochemical performance clearly indicates the specific capacitance increases from 0.5 to 2 and further decreases with increase in the ammonium bicarbonate. The maximum achieved specific capacitance is 1218 Fg-1 for the reagent ratio 2 of ammonium bicarbonate.
Abeare, Christopher A; Messa, Isabelle; Zuccato, Brandon G; Merker, Bradley; Erdodi, Laszlo
2018-03-12
Estimated base rates of invalid performance on baseline testing (base rates of failure) for the management of sport-related concussion range from 6.1% to 40.0%, depending on the validity indicator used. The instability of this key measure represents a challenge in the clinical interpretation of test results that could undermine the utility of baseline testing. To determine the prevalence of invalid performance on baseline testing and to assess whether the prevalence varies as a function of age and validity indicator. This retrospective, cross-sectional study included data collected between January 1, 2012, and December 31, 2016, from a clinical referral center in the Midwestern United States. Participants included 7897 consecutively tested, equivalently proportioned male and female athletes aged 10 to 21 years, who completed baseline neurocognitive testing for the purpose of concussion management. Baseline assessment was conducted with the Immediate Postconcussion Assessment and Cognitive Testing (ImPACT), a computerized neurocognitive test designed for assessment of concussion. Base rates of failure on published ImPACT validity indicators were compared within and across age groups. Hypotheses were developed after data collection but prior to analyses. Of the 7897 study participants, 4086 (51.7%) were male, mean (SD) age was 14.71 (1.78) years, 7820 (99.0%) were primarily English speaking, and the mean (SD) educational level was 8.79 (1.68) years. The base rate of failure ranged from 6.4% to 47.6% across individual indicators. Most of the sample (55.7%) failed at least 1 of 4 validity indicators. The base rate of failure varied considerably across age groups (117 of 140 [83.6%] for those aged 10 years to 14 of 48 [29.2%] for those aged 21 years), representing a risk ratio of 2.86 (95% CI, 2.60-3.16; P < .001). The results for base rate of failure were surprisingly high overall and varied widely depending on the specific validity indicator and the age of the examinee. The strong age association, with 3 of 4 participants aged 10 to 12 years failing validity indicators, suggests that the clinical interpretation and utility of baseline testing in this age group is questionable. These findings underscore the need for close scrutiny of performance validity indicators on baseline testing across age groups.
Modeling micromechanical measurements of depth-varying properties with scanning acoustic microscopy
NASA Astrophysics Data System (ADS)
Marangos, Orestes; Misra, Anil
2018-02-01
Scanning acoustic microscopy (SAM) has been applied to measure the near-surface elastic properties of materials. For many substrates, the near-surface property is not constant but varies with depth. In this paper, we aim to interpret the SAM data from such substrates by modeling the interaction of the focused ultrasonic field with a substrate having a near-surface graded layer. The focused ultrasonic field solutions were represented as spherical harmonic expansions while the substrate solutions were represented as plane wave expansions. The bridging of the two solutions was achieved through the decomposition of the ultrasonic pressure fields in their angular spectra. Parametric studies were performed, which showed that near-surface graded layers exhibit distinctive frequency dependence of their reflectance functions. This behavior is characteristic to the material property gradation profile as well as the extent of the property gradation. The developed model was used to explain the frequency-dependent reflection coefficients measured from an acid-etched dentin substrate. Based on the model calculations, the elastic property variations of the acid-etched dentin near-surface indicate that the topmost part of the etched layer is very soft (3-6 GPa) and transitions to the native dentin through a depth of 27 and 36 microns.
Gama-Flores, José Luis; Huidobro-Salas, María Elena; Sarma, S S S; Nandini, S
2017-01-01
In this study, we quantified intergenerational, demographic variability of Moina macrocopa subjected to cadmium stress. Exposure of M macrocopa to cadmium (0.2, 0.3, and 0.4 mg/L as CdCl 2 ) through 4 consecutive generations revealed changes in demographic responses not only in survivorship variables but also in reproductive parameters. Long-term demographic responses varied differently, depending on the demographic trait and the concentration of heavy metal in the medium. With the exception of generation time, all life history traits were significantly and adversely influenced due to increase in Cd concentrations. The average life span of M macrocopa varied up to 40% depending on Cd level and the generation of exposure. The highest gross reproductive rates were recorded in controls, while the lowest (∼30% less) were recorded at the highest Cd level. Survival-weighted net reproductive rates were reduced by nearly 50% due to Cd toxicity. The rate of population increase per day of M macrocopa was also significantly affected (∼25%) by Cd as compared to controls. This cladoceran showed a dose-response to Cd toxicity with a significance in both magnitude and frequency of offspring production.
Gama-Flores, José Luis; Huidobro-Salas, María Elena; Sarma, S.S.S.; Nandini, S.
2017-01-01
In this study, we quantified intergenerational, demographic variability of Moina macrocopa subjected to cadmium stress. Exposure of M macrocopa to cadmium (0.2, 0.3, and 0.4 mg/L as CdCl2) through 4 consecutive generations revealed changes in demographic responses not only in survivorship variables but also in reproductive parameters. Long-term demographic responses varied differently, depending on the demographic trait and the concentration of heavy metal in the medium. With the exception of generation time, all life history traits were significantly and adversely influenced due to increase in Cd concentrations. The average life span of M macrocopa varied up to 40% depending on Cd level and the generation of exposure. The highest gross reproductive rates were recorded in controls, while the lowest (∼30% less) were recorded at the highest Cd level. Survival-weighted net reproductive rates were reduced by nearly 50% due to Cd toxicity. The rate of population increase per day of M macrocopa was also significantly affected (∼25%) by Cd as compared to controls. This cladoceran showed a dose–response to Cd toxicity with a significance in both magnitude and frequency of offspring production. PMID:28835748
Exploring DC-Kerr effect of impurity doped quantum dots under the aegis of noise
NASA Astrophysics Data System (ADS)
Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas
2018-02-01
Present study performs an extensive exploration of the profiles of DC-Kerr effect (DCKE) of doped GaAs quantum dot (QD) under the control of Gaussian white noise. A large number of important physical parameters have been varied over a range and the resultant changes in the DCKE profiles have been thoroughly analyzed. The said physical parameters comprise of electric field, magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), carrier density, relaxation time, position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The particular physical quantity being varied, presence of noise and its pathway of application, in combination, lead to emergence of diverse features in the DCKE profiles. As a technologically significant aspect we often find maximization of DCKE for some typical combinations as mentioned above. Presence of multiplicative noise, in general, causes greater shift and greater augmentation of DCKE profiles from a noise-free condition than its additive counterpart. The outcomes of the study indicate ample scope of tailoring DCKE of doped QD systems in presence of noise by minute adjustment of several control parameters.
Cating, Emma E M; Pinion, Christopher W; Christesen, Joseph D; Christie, Caleb A; Grumstrup, Erik M; Cahoon, James F; Papanikolas, John M
2017-10-11
Surface trap density in silicon nanowires (NWs) plays a key role in the performance of many semiconductor NW-based devices. We use pump-probe microscopy to characterize the surface recombination dynamics on a point-by-point basis in 301 silicon NWs grown using the vapor-liquid-solid (VLS) method. The surface recombination velocity (S), a metric of the surface quality that is directly proportional to trap density, is determined by the relationship S = d/4τ from measurements of the recombination lifetime (τ) and NW diameter (d) at distinct spatial locations in individual NWs. We find that S varies by as much as 2 orders of magnitude between NWs grown at the same time but varies only by a factor of 2 or three within an individual NW. Although we find that, as expected, smaller-diameter NWs exhibit shorter τ, we also find that smaller wires exhibit higher values of S; this indicates that τ is shorter both because of the geometrical effect of smaller d and because of a poorer quality surface. These results highlight the need to consider interwire heterogeneity as well as diameter-dependent surface effects when fabricating NW-based devices.
NASA Astrophysics Data System (ADS)
Tanaka, K.; Nagaoka, K.; Murakami, S.; Takahashi, H.; Osakabe, M.; Yokoyama, M.; Seki, R.; Michael, C. A.; Yamaguchi, H.; Suzuki, C.; Shimizu, A.; Tokuzawa, T.; Yoshinuma, M.; Akiyama, T.; Ida, K.; Yamada, I.; Yasuhara, R.; Funaba, H.; Kobayashi, T.; Yamada, H.; Du, X. D.; Vyacheslavov, L. N.; Mikkelsen, D. R.; Yun, G. S.; the LHD Experimental Group
2017-11-01
Surveys of the ion and electron heat transports of neutral beam (NB) heating plasma were carried out by power balance analysis in He and H rich plasma at LHD. Collisionality was scanned by changing density and heating power. The characteristics of the transport vary depending on collisionality. In low collisionality, with low density and high heating power, an ion internal transport barrier (ITB) was formed. The ion heat conductivity (χ i) is lower than electron heat conductivity (χ e) in the core region at ρ < 0.7. On the other hand, in high collisionality, with high density and low heating power, χ i is higher than χ e across the entire range of plasma. These different confinement regimes are associated with different fluctuation characteristics. In ion ITB, fluctuation has a peak at ρ = 0.7, and in normal confinement, fluctuation has a peak at ρ = 1.0. The two confinement modes change gradually depending on the collisionality. Scans of concentration ratio between He and H were also performed. The ion confinement improvements were investigated using gyro-Bohm normalization, taking account of the effective mass and charge. The concentration ratio affected the normalized χ i only in the edge region (ρ ~ 1.0). This indicates ion species effects vary depending on collisionality. Turbulence was modulated by the fast ion loss instability. The modulation of turbulence is higher in H rich than in He rich plasma.
NASA Astrophysics Data System (ADS)
Rokita, Pawel
Classical portfolio diversification methods do not take account of any dependence between extreme returns (losses). Many researchers provide, however, some empirical evidence for various assets that extreme-losses co-occur. If the co-occurrence is frequent enough to be statistically significant, it may seriously influence portfolio risk. Such effects may result from a few different properties of financial time series, like for instance: (1) extreme dependence in a (long-term) unconditional distribution, (2) extreme dependence in subsequent conditional distributions, (3) time-varying conditional covariance, (4) time-varying (long-term) unconditional covariance, (5) market contagion. Moreover, a mix of these properties may be present in return time series. Modeling each of them requires different approaches. It seams reasonable to investigate whether distinguishing between the properties is highly significant for portfolio risk measurement. If it is, identifying the effect responsible for high loss co-occurrence would be of a great importance. If it is not, the best solution would be selecting the easiest-to-apply model. This article concentrates on two of the aforementioned properties: extreme dependence (in a long-term unconditional distribution) and time-varying conditional covariance.
Impact of PID on industrial rooftop PV-installations
NASA Astrophysics Data System (ADS)
Buerhop, Claudia; Fecher, Frank W.; Pickel, Tobias; Patel, Tirth; Zetzmann, Cornelia; Camus, Christian; Hauch, Jens; Brabec, Christoph J.
2017-08-01
Potential induced degradation (PID) causes severe damage and financial losses even in modern PV-installations. In Germany, approximately 19% of PV-installations suffer from PID and resulting power loss. This paper focuses on the impact of PID in real installations and how different evaluated time intervals influence the performance ratio (PR) and the determined degradation rate. The analysis focuses exemplarily on a 314 kWp PV-system in the Atlantic coastal climate. IR-imaging is used for identifying PID without operation interruption. Historic electric performance data are available from a monitoring system for several years on system level, string level as well as punctually measured module string IV- curves. The data sets are combined for understanding the PID behavior of this PV plant. The number of PID affected cells within a string varies strongly between 1 to 22% with the string position on the building complex. With increasing number of PID-affected cells the performance ratio decreases down to 60% for daily and monthly periods. Local differences in PID evolution rates are identified. An average PR-reduction of -3.65% per year is found for the PV-plant. On the string level the degradation rate varied up to 8.8% per year depending on the string position and the time period. The analysis reveals that PID generation and evolution in roof-top installations on industrial buildings with locally varying operation conditions can be fairly complex. The results yield that local operating conditions, e.g. ambient weather conditions as well as surrounding conditions on an industrial building, seem to have a dominating impact on the PID evolution rate.
Geographic access to high capability severe acute respiratory failure centers in the United States.
Wallace, David J; Angus, Derek C; Seymour, Christopher W; Yealy, Donald M; Carr, Brendan G; Kurland, Kristen; Boujoukos, Arthur; Kahn, Jeremy M
2014-01-01
Optimal care of adults with severe acute respiratory failure requires specific resources and expertise. We sought to measure geographic access to these centers in the United States. Cross-sectional analysis of geographic access to high capability severe acute respiratory failure centers in the United States. We defined high capability centers using two criteria: (1) provision of adult extracorporeal membrane oxygenation (ECMO), based on either 2008-2013 Extracorporeal Life Support Organization reporting or provision of ECMO to 2010 Medicare beneficiaries; or (2) high annual hospital mechanical ventilation volume, based 2010 Medicare claims. Nonfederal acute care hospitals in the United States. We defined geographic access as the percentage of the state, region and national population with either direct or hospital-transferred access within one or two hours by air or ground transport. Of 4,822 acute care hospitals, 148 hospitals met our ECMO criteria and 447 hospitals met our mechanical ventilation criteria. Geographic access varied substantially across states and regions in the United States, depending on center criteria. Without interhospital transfer, an estimated 58.5% of the national adult population had geographic access to hospitals performing ECMO and 79.0% had geographic access to hospitals performing a high annual volume of mechanical ventilation. With interhospital transfer and under ideal circumstances, an estimated 96.4% of the national adult population had geographic access to hospitals performing ECMO and 98.6% had geographic access to hospitals performing a high annual volume of mechanical ventilation. However, this degree of geographic access required substantial interhospital transfer of patients, including up to two hours by air. Geographic access to high capability severe acute respiratory failure centers varies widely across states and regions in the United States. Adequate referral center access in the case of disasters and pandemics will depend highly on local and regional care coordination across political boundaries.
Night shift work at specific age ranges and chronic disease risk factors.
Ramin, Cody; Devore, Elizabeth E; Wang, Weike; Pierre-Paul, Jeffrey; Wegrzyn, Lani R; Schernhammer, Eva S
2015-02-01
We examined the association of night shift work history and age when night shift work was performed with cancer and cardiovascular disease risk factors among 54 724 women in the Nurses' Health Study (NHS) II. We calculated age-adjusted and socioeconomic status-adjusted means and percentages for cancer and cardiovascular risk factors in 2009 across categories of night shift work history. We used multivariable-adjusted logistic regression to estimate odds ratios (ORs) and 95% CIs for key risk factors among 54 724 participants (72% ever shift workers). We further examined these associations by age (20-25, 26-35, 36-45 and 46+ years) at which shift work was performed. Ever night shift workers had increased odds of obesity (body mass index ≥30 kg/m(2); OR=1.37, 95% CI 1.31 to 1.43); higher caffeine intake (≥131 mg/day; OR=1.16, 95% CI 1.12 to 1.22) and total calorie intake (≥1715 kcal/day; OR=1.09, 95% CI 1.04 to 1.13); current smoking (OR=1.30, 95% CI 1.19 to 1.42); and shorter sleep durations (≤7 h of sleep/day; OR=1.19, 95% CI 1.15 to 1.24) compared to never night shift workers. These estimates varied depending on age at which night work was performed, with a suggestion that night shift work before age 25 was associated with fewer risk factors compared to night shift work at older ages. Our results indicate that night shift work may contribute to an adverse chronic disease risk profile, and that risk factors may vary depending on the age at which night shift work was performed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Intense illumination in the morning hours improved mood and alertness but not mental performance.
Leichtfried, Veronika; Mair-Raggautz, Maria; Schaeffer, Viktoria; Hammerer-Lercher, Angelika; Mair, Gerald; Bartenbach, Christian; Canazei, Markus; Schobersberger, Wolfgang
2015-01-01
Cognitive performance and alertness are two determinants for work efficiency, varying throughout the day and depending on bright light. We conducted a prospective crossover study evaluating the impacts of exposure to an intense, early morning illumination on sustained attention, alertness, mood, and serum melatonin levels in 33 healthy individuals. Compared with a dim illumination, the intense illumination negatively impacted performance requiring sustained attention; however, it positively impacted subjective alertness and mood and had no impact on serum melatonin levels. These results suggest that brief exposure to bright light in the morning hours can improve subjective measures of mood and alertness, but can also have detrimental effects on mental performance as a result of visual distraction. Therefore, it is important that adequate lighting should correspond to both non-visual and visual demands. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Variability in memory performance in aged healthy individuals: an fMRI study.
Grön, Georg; Bittner, Daniel; Schmitz, Bernd; Wunderlich, Arthur P; Tomczak, Reinhard; Riepe, Matthias W
2003-01-01
Episodic memory performance varies in older subjects but underlying biological correlates remain as yet ambiguous. We investigated episodic memory in healthy older individuals (n=24; mean age: 64.4+/-6.7 years) without subjective memory complaints or objective cognitive impairment. Episodic memory was assessed with repetitive learning and recall of abstract geometric patterns during fMRI. Group analysis of brain activity during initial learning and maximum recall revealed hippocampal activation. Correlation analysis of brain activation and task performance demonstrated significant hippocampal activity during initial learning and maximum recall in a success-dependent manner. Neither age nor gray matter densities correlated with hippocampal activation. Functional imaging of episodic memory thus permits to detect objectively variability in hippocampal recruitment in healthy aged individuals without subjective memory complaints. Correlation analysis of brain activation and performance during an episodic memory task may be used to determine and follow-up hippocampal malfunction in a very sensitive manner.
When size matters: attention affects performance by contrast or response gain.
Herrmann, Katrin; Montaser-Kouhsari, Leila; Carrasco, Marisa; Heeger, David J
2010-12-01
Covert attention, the selective processing of visual information in the absence of eye movements, improves behavioral performance. We found that attention, both exogenous (involuntary) and endogenous (voluntary), can affect performance by contrast or response gain changes, depending on the stimulus size and the relative size of the attention field. These two variables were manipulated in a cueing task while stimulus contrast was varied. We observed a change in behavioral performance consonant with a change in contrast gain for small stimuli paired with spatial uncertainty and a change in response gain for large stimuli presented at one location (no uncertainty) and surrounded by irrelevant flanking distracters. A complementary neuroimaging experiment revealed that observers' attention fields were wider with than without spatial uncertainty. Our results support important predictions of the normalization model of attention and reconcile previous, seemingly contradictory findings on the effects of visual attention.
How Explicit and Implicit Test Instructions in an Implicit Learning Task Affect Performance
Witt, Arnaud; Puspitawati, Ira; Vinter, Annie
2013-01-01
Typically developing children aged 5 to 8 years were exposed to artificial grammar learning. Following an implicit exposure phase, half of the participants received neutral instructions at test while the other half received instructions making a direct, explicit reference to the training phase. We first aimed to assess whether implicit learning operated in the two test conditions. We then evaluated the differential impact of age on learning performances as a function of test instructions. The results showed that performance did not vary as a function of age in the implicit instructions condition, while age effects emerged when explicit instructions were employed at test. However, performance was affected differently by age and the instructions given at test, depending on whether the implicit learning of short or long units was assessed. These results suggest that the claim that the implicit learning process is independent of age needs to be revised. PMID:23326409
Measurement techniques of LC display systems
NASA Astrophysics Data System (ADS)
Kosmowski, Bogdan B.; Becker, Michael E.; Neumeier, Juergen
1993-10-01
The strong increase of applications of liquid crystal displays in various areas (measuring, medical equipment, automotive, telecommunication, office, etc.) has forced the demand for the adequate specification of the LCDs performances. The optical, electro-optical and spectral properties of LCDs are strongly dependent on viewing direction, electrical driving conditions, illumination and temperature. All these quantities have to be precisely controlled, when one of them is varied, the resulting optical response of the object is recorded. In this paper we present measuring methods proposed for LCD panels and the computer controlled measuring system (DMS) for their evaluation.
Reflectance confocal microscopy of oral epithelial tissue using an electrically tunable lens
NASA Astrophysics Data System (ADS)
Jabbour, Joey M.; Malik, Bilal H.; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A.; Cheng, Yi-Shing L.; Wright, John M.; Maitland, Kristen C.
2014-02-01
We present the use of a commercially available electrically tunable lens to achieve axial scanning in a reflectance confocal microscope. Over a 255 μm axial scan range, the lateral and axial resolutions varied from 1-2 μm and 4-14 μm, respectively, dependent on the variable focal length of the tunable lens. Confocal imaging was performed on normal human biopsies from the oral cavity ex vivo. Sub-cellular morphologic features were seen throughout the depth of the epithelium while axially scanning using the focus tunable lens.
Connected word recognition using a cascaded neuro-computational model
NASA Astrophysics Data System (ADS)
Hoya, Tetsuya; van Leeuwen, Cees
2016-10-01
We propose a novel framework for processing a continuous speech stream that contains a varying number of words, as well as non-speech periods. Speech samples are segmented into word-tokens and non-speech periods. An augmented version of an earlier-proposed, cascaded neuro-computational model is used for recognising individual words within the stream. Simulation studies using both a multi-speaker-dependent and speaker-independent digit string database show that the proposed method yields a recognition performance comparable to that obtained by a benchmark approach using hidden Markov models with embedded training.
1992-05-01
as supporting electrolytes were recrystallized from methanol, water and ethanol , and water, respectively, and dried under vacuum at 110°C. Electrode...under these conditions 8,17 (vide infra). All measurements were performed at room temperature , 23±1*C. RESULTS AND DISCUSSION The experimental strategy...of interferometer scans during a suitably slow (2 mV s- ) positive-going potential sweep. For solvents containing traces of water, electrooxidative
Strategic Adaptation to Task Characteristics, Incentives, and Individual Differences in Dual-Tasking
Janssen, Christian P.; Brumby, Duncan P.
2015-01-01
We investigate how good people are at multitasking by comparing behavior to a prediction of the optimal strategy for dividing attention between two concurrent tasks. In our experiment, 24 participants had to interleave entering digits on a keyboard with controlling a randomly moving cursor with a joystick. The difficulty of the tracking task was systematically varied as a within-subjects factor. Participants were also exposed to different explicit reward functions that varied the relative importance of the tracking task relative to the typing task (between-subjects). Results demonstrate that these changes in task characteristics and monetary incentives, together with individual differences in typing ability, influenced how participants choose to interleave tasks. This change in strategy then affected their performance on each task. A computational cognitive model was used to predict performance for a wide set of alternative strategies for how participants might have possibly interleaved tasks. This allowed for predictions of optimal performance to be derived, given the constraints placed on performance by the task and cognition. A comparison of human behavior with the predicted optimal strategy shows that participants behaved near optimally. Our findings have implications for the design and evaluation of technology for multitasking situations, as consideration should be given to the characteristics of the task, but also to how different users might use technology depending on their individual characteristics and their priorities. PMID:26161851
An experimental study of laminar film condensation with Stefan number greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, R.L.; Dickinson, D.A.; Chu, T.Y.
1991-05-01
Experimental laminar condensation heat transfer data are reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids, which have been used extensively in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5C to 190C. Over this range of temperature difference, the condensate properties vary significantly; viscosity ofmore » the condensate varies by a factor of nearly 50. Corrections for the temperature-dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data and theory for Stefan number less than unity. To the knowledge of the authors, this is the first reported study of condensation heat transfer examining the effects of Stefan number greater than unity.« less
Ensemble Learning Method for Hidden Markov Models
2014-12-01
Ensemble HMM landmine detector Mine signatures vary according to the mine type, mine size , and burial depth. Similarly, clutter signatures vary with soil ...approaches for the di erent K groups depending on their size and homogeneity. In particular, we investigate the maximum likelihood (ML), the minimum...propose using and optimizing various training approaches for the different K groups depending on their size and homogeneity. In particular, we
A statistical analysis of the daily streamflow hydrograph
NASA Astrophysics Data System (ADS)
Kavvas, M. L.; Delleur, J. W.
1984-03-01
In this study a periodic statistical analysis of daily streamflow data in Indiana, U.S.A., was performed to gain some new insight into the stochastic structure which describes the daily streamflow process. This analysis was performed by the periodic mean and covariance functions of the daily streamflows, by the time and peak discharge -dependent recession limb of the daily streamflow hydrograph, by the time and discharge exceedance level (DEL) -dependent probability distribution of the hydrograph peak interarrival time, and by the time-dependent probability distribution of the time to peak discharge. Some new statistical estimators were developed and used in this study. In general features, this study has shown that: (a) the persistence properties of daily flows depend on the storage state of the basin at the specified time origin of the flow process; (b) the daily streamflow process is time irreversible; (c) the probability distribution of the daily hydrograph peak interarrival time depends both on the occurrence time of the peak from which the inter-arrival time originates and on the discharge exceedance level; and (d) if the daily streamflow process is modeled as the release from a linear watershed storage, this release should depend on the state of the storage and on the time of the release as the persistence properties and the recession limb decay rates were observed to change with the state of the watershed storage and time. Therefore, a time-varying reservoir system needs to be considered if the daily streamflow process is to be modeled as the release from a linear watershed storage.
Leffondré, Karen; Abrahamowicz, Michal; Siemiatycki, Jack
2003-12-30
Case-control studies are typically analysed using the conventional logistic model, which does not directly account for changes in the covariate values over time. Yet, many exposures may vary over time. The most natural alternative to handle such exposures would be to use the Cox model with time-dependent covariates. However, its application to case-control data opens the question of how to manipulate the risk sets. Through a simulation study, we investigate how the accuracy of the estimates of Cox's model depends on the operational definition of risk sets and/or on some aspects of the time-varying exposure. We also assess the estimates obtained from conventional logistic regression. The lifetime experience of a hypothetical population is first generated, and a matched case-control study is then simulated from this population. We control the frequency, the age at initiation, and the total duration of exposure, as well as the strengths of their effects. All models considered include a fixed-in-time covariate and one or two time-dependent covariate(s): the indicator of current exposure and/or the exposure duration. Simulation results show that none of the models always performs well. The discrepancies between the odds ratios yielded by logistic regression and the 'true' hazard ratio depend on both the type of the covariate and the strength of its effect. In addition, it seems that logistic regression has difficulty separating the effects of inter-correlated time-dependent covariates. By contrast, each of the two versions of Cox's model systematically induces either a serious under-estimation or a moderate over-estimation bias. The magnitude of the latter bias is proportional to the true effect, suggesting that an improved manipulation of the risk sets may eliminate, or at least reduce, the bias. Copyright 2003 JohnWiley & Sons, Ltd.
Xu, Xue-Feng; Ji, Xiang
2006-01-01
We used Eremias brenchleyi as a model animal to examine differences in thermal tolerance, selected body temperature, and the thermal dependence of food assimilation and locomotor performance between juvenile and adult lizards. Adults selected higher body temperatures (33.5 vs. 31.7 degrees C) and were able to tolerate a wider range of body temperatures (3.4-43.6 vs. 5.1-40.8 degrees C) than juveniles. Within the body temperature range of 26-38 degrees C, adults overall ate more than juveniles, and food passage rate was faster in adults than juveniles. Apparent digestive coefficient (ADC) and assimilation efficiency (AE) varied among temperature treatments but no clear temperature associated patterns could be discerned for these two variables. At each test temperature ADC and AE were both higher in adults than in juveniles. Sprint speed increased with increase in body temperature at lower body temperatures, but decreased at higher body temperatures. At each test temperature adults ran faster than did juveniles, and the range of body temperatures where lizards maintained 90% of maximum speed differed between adults (27-34 degrees C) and juveniles (29-37 degrees C). Optimal temperatures and thermal sensitivities differed between food assimilation and sprint speed. Our results not only show strong patterns of ontogenetic variation in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in E. brenchleyi, but also add support for the multiple optima hypothesis for the thermal dependence of behavioral and physiological variables in reptiles.
Principal Component Noise Filtering for NAST-I Radiometric Calibration
NASA Technical Reports Server (NTRS)
Tian, Jialin; Smith, William L., Sr.
2011-01-01
The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed- Interferometer (NAST-I) instrument is a high-resolution scanning interferometer that measures emitted thermal radiation between 3.3 and 18 microns. The NAST-I radiometric calibration is achieved using internal blackbody calibration references at ambient and hot temperatures. In this paper, we introduce a refined calibration technique that utilizes a principal component (PC) noise filter to compensate for instrument distortions and artifacts, therefore, further improve the absolute radiometric calibration accuracy. To test the procedure and estimate the PC filter noise performance, we form dependent and independent test samples using odd and even sets of blackbody spectra. To determine the optimal number of eigenvectors, the PC filter algorithm is applied to both dependent and independent blackbody spectra with a varying number of eigenvectors. The optimal number of PCs is selected so that the total root-mean-square (RMS) error is minimized. To estimate the filter noise performance, we examine four different scenarios: apply PC filtering to both dependent and independent datasets, apply PC filtering to dependent calibration data only, apply PC filtering to independent data only, and no PC filters. The independent blackbody radiances are predicted for each case and comparisons are made. The results show significant reduction in noise in the final calibrated radiances with the implementation of the PC filtering algorithm.
Marx, Ivo; Krause, John; Berger, Christoph; Häßler, Frank
2014-01-01
Objectives To effectively manage current task demands, attention must be focused on task-relevant information while task-irrelevant information is rejected. However, in everyday life, people must cope with emotions, which may interfere with actual task demands and may challenge functional attention allocation. Control of interfering emotions has been associated with the proper functioning of the dorsolateral prefrontal cortex (DLPFC). As DLPFC dysfunction is evident in subjects with ADHD and in subjects with alcohol dependence, the current study sought to examine the bottom-up effect of emotional distraction on task performance in both disorders. Methods Male adults with ADHD (n = 22), male adults with alcohol dependence (n = 16), and healthy controls (n = 30) performed an emotional working memory task (n-back task). In the background of the task, we presented neutral and negative stimuli that varied in emotional saliency. Results In both clinical groups, a working memory deficit was evident. Moreover, both clinical groups displayed deficient emotional interference control. The n-back performance of the controls was not affected by the emotional distractors, whereas that of subjects with ADHD deteriorated in the presence of low salient distractors, and that of alcoholics did not deteriorate until high salient distractors were presented. Subsequent to task performance, subjects with ADHD accurately recognized more distractors than did alcoholics and controls. In alcoholics, picture recognition accuracy was negatively associated with n-back performance, suggesting a functional association between the ability to suppress emotional distractors and successful task performance. In subjects with ADHD, performance accuracy was negatively associated with ADHD inattentive symptoms, suggesting that inattention contributes to the performance deficit. Conclusions Subjects with ADHD and alcoholics both display an emotional interference control deficit, which is especially pronounced in subjects with ADHD. Beyond dysfunctional attention allocation processes, a more general attention deficit seems to contribute to the more pronounced performance deficit pattern in ADHD. PMID:25265290
NASA Astrophysics Data System (ADS)
Miles, David M.; Mann, Ian R.; Kale, Andy; Milling, David K.; Narod, Barry B.; Bennest, John R.; Barona, David; Unsworth, Martyn J.
2017-10-01
Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc.) which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C-1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK) engineering plastic (virgin, 30 % glass filled and 30 % carbon filled), and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C-1) had a thermal gain dependence within 5 ppm°C-1 of a traditional sensor constructed from MACOR ceramic (8.1 ppm°C-1). If a modest increase in thermal dependence can be tolerated or compensated, then 30 % glass-filled PEEK is a good candidate for future fluxgate sensors as it is more economical, easier to machine, lighter, and more robust than MACOR.
Hydrogen peroxide concentration by pervaporation of a ternary liquid solution in microfluidics.
Ziemecka, Iwona; Haut, Benoît; Scheid, Benoit
2015-01-21
Pervaporation in a microfluidic device is performed on liquid ternary solutions of hydrogen peroxide-water-methanol in order to concentrate hydrogen peroxide (H2O2) by removing methanol. The quantitative analysis of the pervaporation of solutions with different initial compositions is performed, varying the operating temperature of the microfluidic device. Experimental results together with a mathematical model of the separation process are used to understand the effect of the operating conditions on the microfluidic device efficiency. The parameters influencing significantly the performance of pervaporation in the microfluidic device are determined and the limitations of the process are discussed. For the analysed system, the operating temperature of the chip has to be below the temperature at which H2O2 decomposes. Therefore, the choice of an adequate reduced operating pressure is required, depending on the expected separation efficiency.
Yu, Long; Zhang, Xiaogang
2004-10-01
The electrochemical performance of V2O5 has been studied in propylene carbonate (PC)-containing magnesium perchlorate [Mg(ClO4)2] electrolytes in view of their application as positive electrode in the rechargeable magnesium batteries. V2O5 exhibited good properties in hosting magnesium ions and its electrochemical performance depended on the amount of H2O in the electrolytes. The highest first discharge specific capacities of V2O5 electrode was up to 158.6 mAh/g in 1 mol dm(-3) Mg(ClO4)2 + 1.79 mol dm(-3) H2O/PC electrolytes. Electrochemical impedance spectroscopy (EIS) and charging-discharging tests showed that a reasonable amount of H2O in the electrolyte solution facilitated the electrochemical performance of V2O5 electrodes.
Analysis of a Multi-Machine Database on Divertor Heat Fluxes
NASA Astrophysics Data System (ADS)
Makowski, M. A.
2011-10-01
A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Corresponding plasma parameters were systematically varied in each tokamak, resulting in a combined data set in which Ip varies by a factor 3, Bt varies by a factor of 14.5, and major radius varies by a factor of 2.6. The derived scaling relation consistently predicts narrower heat flux widths than relations currently in use. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with Ip. All three tokamaks independently demonstrate this dependence. The midplane SOL profiles in DIII-D are also found to steepen with higher Ip, similar to the divertor heat flux profiles. Weaker dependencies on the toroidal field and normalized Greenwald density, fGW, are also found, but vary across devices and with the measure of the heat flux width used, either FWHM or integral width. In the combined data set, the strongest size scaling is with minor radius resulting in an approximately linear dependence on a /Ip . This suggests a scaling correlated with the inverse of the poloidal field, as would be expected for critical gradient or drift-based transport. Supported by the US DOE under DE-AC52-07NA27344 and DE-FC02-04ER54698.
NASA Technical Reports Server (NTRS)
Balachandar, S.; Yuen, D. A.; Reuteler, D. M.
1995-01-01
We have applied spectral-transform methods to study three-dimensional thermal convection with temperature-dependent viscosity. The viscosity varies exponentially with the form exp(-BT), where B controls the viscosity contrast and T is temperature. Solutions for high Rayleigh numbers, up to an effective Ra of 6.25 x 10(exp 6), have been obtained for an aspect-ratio of 5x5x1 and a viscosity contrast of 25. Solutions show the localization of toroidal velocity fields with increasing vigor of convection to a coherent network of shear-zones. Viscous dissipation increases with Rayleigh number and is particularly strong in regions of convergent flows and shear deformation. A time-varying depth-dependent mean-flow is generated because of the correlation between laterally varying viscosity and velocity gradients.
Analysis of propagation mechanisms of stimulation-induced fractures in rocks
NASA Astrophysics Data System (ADS)
Krause, Michael; Renner, Joerg
2016-04-01
Effectivity of geothermal energy production depends crucially on the heat exchange between the penetrated hot rock and the circulating water. Hydraulic stimulation of rocks at depth intends to create a network of fractures that constitutes a large area for exchange. Two endmembers of stimulation products are typically considered, tensile hydro-fractures that propagate in direction of the largest principal stress and pre-existing faults that are sheared when fluid pressure reduces the effective normal stress acting on them. The understanding of the propagation mechanisms of fractures under in-situ conditions is still incomplete despite intensive research over the last decades. Wing-cracking has been suggested as a mechanism of fracture extension from pre-existent faults with finite length that are induced to shear. The initiation and extension of the wings is believed to be in tensile mode. Open questions concern the variability of the nominal material property controlling tensile fracture initiation and extension, the mode I facture toughness KIC, with in-situ conditions, e.g., its mean-stress dependence. We investigated the fracture-propagation mechanism in different rocks (sandstones and granites) under varying conditions mimicking those representative for geothermal systems. To determine KIC-values we performed 3-point bending experiments. We varied the confining pressure, the piston velocity, and the position of the chevron notch relative to the loading configuration. Additional triaxial experiments at a range of confining pressures were performed to study wing crack propagation from artificial flaws whose geometrical characteristics, i.e., length, width, and orientation relative to the axial load are varied. We monitored acoustic emissions to constrain the spacio-temporal evolution of the fracturing. We found a significant effect of the length of the artificial flaw and the confining pressure on wing-crack initiation but did not observe a systematic dependence of wing-crack initiation on the orientation of the initial flaw in the range of tested angles. In fact, wings do not develop for artificial flaws shorter than 3 mm. The force required to initiate wing cracking increases with increasing confining pressure as does the apparent fracture toughness. So called ``anti-wing cracks'' were observed too, probably an artifact of the geometrical constraints imposed on the sample in a conventional triaxial compression test.
Calabro, Finnegan J.; Beardsley, Scott A.; Vaina, Lucia M.
2012-01-01
Estimation of time-to-arrival for moving objects is critical to obstacle interception and avoidance, as well as to timing actions such as reaching and grasping moving objects. The source of motion information that conveys arrival time varies with the trajectory of the object raising the question of whether multiple context-dependent mechanisms are involved in this computation. To address this question we conducted a series of psychophysical studies to measure observers’ performance on time-to-arrival estimation when object trajectory was specified by angular motion (“gap closure” trajectories in the frontoparallel plane), looming (colliding trajectories, TTC) or both (passage courses, TTP). We measured performance of time-to-arrival judgments in the presence of irrelevant motion, in which a perpendicular motion vector was added to the object trajectory. Data were compared to models of expected performance based on the use of different components of optical information. Our results demonstrate that for gap closure, performance depended only on the angular motion, whereas for TTC and TTP, both angular and looming motion affected performance. This dissociation of inputs suggests that gap closures are mediated by a separate mechanism than that used for the detection of time-to-collision and time-to-passage. We show that existing models of TTC and TTP estimation make systematic errors in predicting subject performance, and suggest that a model which weights motion cues by their relative time-to-arrival provides a better account of performance. PMID:22056519
Input-independent, Scalable and Fast String Matching on the Cray XMT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Oreste; Chavarría-Miranda, Daniel; Maschhoff, Kristyn J
2009-05-25
String searching is at the core of many security and network applications like search engines, intrusion detection systems, virus scanners and spam filters. The growing size of on-line content and the increasing wire speeds push the need for fast, and often real- time, string searching solutions. For these conditions, many software implementations (if not all) targeting conventional cache-based microprocessors do not perform well. They either exhibit overall low performance or exhibit highly variable performance depending on the types of inputs. For this reason, real-time state of the art solutions rely on the use of either custom hardware or Field-Programmable Gatemore » Arrays (FPGAs) at the expense of overall system flexibility and programmability. This paper presents a software based implementation of the Aho-Corasick string searching algorithm on the Cray XMT multithreaded shared memory machine. Our so- lution relies on the particular features of the XMT architecture and on several algorith- mic strategies: it is fast, scalable and its performance is virtually content-independent. On a 128-processor Cray XMT, it reaches a scanning speed of ≈ 28 Gbps with a performance variability below 10 %. In the 10 Gbps performance range, variability is below 2.5%. By comparison, an Intel dual-socket, 8-core system running at 2.66 GHz achieves a peak performance which varies from 500 Mbps to 10 Gbps depending on the type of input and dictionary size.« less
Lord, Dominique; Park, Peter Young-Jin
2008-07-01
Traditionally, transportation safety analysts have used the empirical Bayes (EB) method to improve the estimate of the long-term mean of individual sites; to correct for the regression-to-the-mean (RTM) bias in before-after studies; and to identify hotspots or high risk locations. The EB method combines two different sources of information: (1) the expected number of crashes estimated via crash prediction models, and (2) the observed number of crashes at individual sites. Crash prediction models have traditionally been estimated using a negative binomial (NB) (or Poisson-gamma) modeling framework due to the over-dispersion commonly found in crash data. A weight factor is used to assign the relative influence of each source of information on the EB estimate. This factor is estimated using the mean and variance functions of the NB model. With recent trends that illustrated the dispersion parameter to be dependent upon the covariates of NB models, especially for traffic flow-only models, as well as varying as a function of different time-periods, there is a need to determine how these models may affect EB estimates. The objectives of this study are to examine how commonly used functional forms as well as fixed and time-varying dispersion parameters affect the EB estimates. To accomplish the study objectives, several traffic flow-only crash prediction models were estimated using a sample of rural three-legged intersections located in California. Two types of aggregated and time-specific models were produced: (1) the traditional NB model with a fixed dispersion parameter and (2) the generalized NB model (GNB) with a time-varying dispersion parameter, which is also dependent upon the covariates of the model. Several statistical methods were used to compare the fitting performance of the various functional forms. The results of the study show that the selection of the functional form of NB models has an important effect on EB estimates both in terms of estimated values, weight factors, and dispersion parameters. Time-specific models with a varying dispersion parameter provide better statistical performance in terms of goodness-of-fit (GOF) than aggregated multi-year models. Furthermore, the identification of hazardous sites, using the EB method, can be significantly affected when a GNB model with a time-varying dispersion parameter is used. Thus, erroneously selecting a functional form may lead to select the wrong sites for treatment. The study concludes that transportation safety analysts should not automatically use an existing functional form for modeling motor vehicle crashes without conducting rigorous analyses to estimate the most appropriate functional form linking crashes with traffic flow.
Ballistic performance of a Kevlar-29 woven fibre composite under varied temperatures
NASA Astrophysics Data System (ADS)
Soykasap, O.; Colakoglu, M.
2010-05-01
Armours are usually manufactured from polymer matrix composites and used for both military and non-military purposes in different seasons, climates, and regions. The mechanical properties of the composites depend on temperature, which also affects their ballistic characteristics. The armour is used to absorb the kinetic energy of a projectile without any major injury to a person. Therefore, besides a high strength and lightness, a high damping capacity is required to absorb the impact energy transferred by the projectile. The ballistic properties of a Kevlar 29/polyvinyl butyral composite are investigated under varied temperatures in this study. The elastic modulus of the composite is determined from the natural frequency of composite specimens at different temperatures by using a damping monitoring method. Then, the backside deformation of composite plates is analysed experimentally and numerically employing the finite-element program Abaqus. The experimental and numeric results obtained are in good agreement.
He, Xiaoxuan; Zhu, Yifang; Li, Chuanfu; Park, Kyungmo; Mohamed, Abdalla Z; Wu, Hongli; Xu, Chunsheng; Zhang, Wei; Wang, Linying; Yang, Jun; Qiu, Bensheng
2014-10-01
Bell's palsy is the most common cause of acute facial nerve paralysis. In China, Bell's palsy is frequently treated with acupuncture. However, its efficacy and underlying mechanism are still controversial. In this study, we used functional MRI to investigate the effect of acupuncture on the functional connectivity of the brain in Bell's palsy patients and healthy individuals. The patients were further grouped according to disease duration and facial motor performance. The results of resting-state functional MRI connectivity show that acupuncture induces significant connectivity changes in the primary somatosensory region of both early and late recovery groups, but no significant changes in either the healthy control group or the recovered group. In the recovery group, the changes also varied with regions and disease duration. Therefore, we propose that the effect of acupuncture stimulation may depend on the functional connectivity status of patients with Bell's palsy.
Inhomogeneity compensation for MR brain image segmentation using a multi-stage FCM-based approach.
Szilágyi, László; Szilágyi, Sándor M; Dávid, László; Benyó, Zoltán
2008-01-01
Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for MR image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into clustering algorithms. This paper proposes a multiple stage fuzzy c-means (FCM) based algorithm for the estimation and compensation of the slowly varying additive or multiplicative noise, supported by a pre-filtering technique for Gaussian and impulse noise elimination. The slowly varying behavior of the bias or gain field is assured by a smoothening filter that performs a context dependent averaging, based on a morphological criterion. The experiments using 2-D synthetic phantoms and real MR images show, that the proposed method provides accurate segmentation. The produced segmentation and fuzzy membership values can serve as excellent support for 3-D registration and segmentation techniques.
Hirabayashi, Satoshi; Nowak, David J
2016-08-01
Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and urban areas in every county in the conterminous United States. The results populated a national database of annual air pollutant removal, concentration changes, and reductions in adverse health incidences and costs for NO2, O3, PM2.5 and SO2. The developed database enabled a first order approximation of air quality and associated human health benefits provided by trees with any forest configurations anywhere in the conterminous United States over time. Comprehensive national database of tree effects on air quality and human health in the United States was developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reijnierse, Esmee M; Trappenburg, Marijke C; Leter, Morena J; Blauw, Gerard Jan; Sipilä, Sarianna; Sillanpää, Elina; Narici, Marco V; Hogrel, Jean-Yves; Butler-Browne, Gillian; McPhee, Jamie S; Gapeyeva, Helena; Pääsuke, Mati; de van der Schueren, Marian A E; Meskers, Carel G M; Maier, Andrea B
2015-01-01
A consensus on the diagnostic criteria for sarcopenia, a common syndrome in the elderly, has not been reached yet. Prevalence rates vary between studies due to the use of different criteria encompassing different measures, correction factors and cutoff points. This study compared prevalence rates of sarcopenia using nine sets of diagnostic criteria applied in two different elderly populations. The study population encompassed 308 healthy elderly participants (152 males, 156 females; mean age 74 years) and 123 geriatric outpatients (54 males, 69 females; mean age 81 years). Diagnostic criteria included relative muscle mass, absolute muscle mass, muscle strength and physical performance. Prevalence rates of sarcopenia varied between 0 and 15% in healthy elderly participants and between 2 and 34% in geriatric outpatients. This study clearly demonstrates the dependency of sarcopenia prevalence rates on the applied diagnostic criteria. © 2015 S. Karger AG, Basel.
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
NASA Technical Reports Server (NTRS)
Roffe, G.; Raman, R. S. V.; Marek, C. J.
1982-01-01
A study of the effects of secondary air addition on the stability and emissions of a gas turbine combustor has been performed. Tests were conducted with two types of flameholders and varying amounts of dilution air addition. Results indicate that NO(x) decreases with increasing dilution air injection, whereas CO is independent of the amount of dilution air and is related to the gas temperature near the walls. The axial location of the dilution air addition has no effect on the performance or stability. Results also indicate that the amount of secondary air entrained by the flameholder recirculation zone is dependent on the amount of dilution air and flameholder geometry.
NASA Astrophysics Data System (ADS)
Sato, Shin-Ichi; Prodi, Nicola; Sakai, Hiroyuki
2004-05-01
To clarify the relationship of the sound fields between the stage and the orchestra pit, we conducted acoustical measurements in a typical historical opera house, the Teatro Comunale of Ferrara, Italy. Orthogonal factors based on the theory of subjective preference and other related factors were analyzed. First, the sound fields for a singer on the stage in relation to the musicians in the pit were analyzed. And then, the sound fields for performers in the pit in relation to the singers on the stage were considered. Because physical factors vary depending on the location of the sound source, performers can move on the stage or in the pit to find the preferred sound field.
Adaptive Variable Bias Magnetic Bearing Control
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.
1998-01-01
Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. With the existence of the bias current, even in no load conditions, there is always some power consumption. In aerospace applications, power consumption becomes an important concern. In response to this concern, an alternative magnetic bearing control method, called Adaptive Variable Bias Control (AVBC), has been developed and its performance examined. The AVBC operates primarily as a proportional-derivative controller with a relatively slow, bias current dependent, time-varying gain. The AVBC is shown to reduce electrical power loss, be nominally stable, and provide control performance similar to conventional bias control. Analytical, computer simulation, and experimental results are presented in this paper.
Experimentally Modeling Black and White Hole Event Horizons via Fluid Flow
NASA Astrophysics Data System (ADS)
Manheim, Marc E.; Lindner, John F.; Manz, Niklas
We will present a scaled down experiment that hydrodynamically models the interaction between electromagnetic waves and black/white holes. It has been mathematically proven that gravity waves in water can behave analogously to electromagnetic waves traveling through spacetime. In this experiment, gravity waves will be generated in a water tank and propagate in a direction opposed to a flow of varying rate. We observe a noticeable change in the wave's spreading behavior as it travels through the simulated horizon with decreased wave speeds up to standing waves, depending on the opposite flow rate. Such an experiment has already been performed in a 97.2 cubic meter tank. We reduced the size significantly to be able to perform the experiment under normal lab conditions.
Switching LPV Control for High Performance Tactical Aircraft
NASA Technical Reports Server (NTRS)
Lu, Bei; Wu, Fen; Kim, SungWan
2004-01-01
This paper examines a switching Linear Parameter-Varying (LPV) control approach to determine if it is practical to use for flight control designs within a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions. The full parameter space is partitioned into overlapping subspaces and a family of LPV controllers are designed, each suitable for a specific parameter subspace. The hysteresis switching logic is used to accomplish the transition among different parameter subspaces. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics in low and high angle of attack regions. The nonlinear simulation results show that the aircraft performs well when switching among different angle of attack regions.
The dark side of the immunohistochemical moon: industry.
Kalyuzhny, Alexander E
2009-12-01
Modern biological research is dependent on tools developed and provided by commercial suppliers, and antibodies for immunohistochemistry are among the most frequently used of these tools. Not all commercial antibodies perform as expected, however; this problem leads researchers to waste time and money when using antibodies that perform inadequately. Different commercial suppliers offer antibodies of varying degrees of quality and, in some cases, are unable to provide expert technical support for the immunohistochemical use of their antibodies. This article briefly describes the production of commercial antibodies from the manufacturer's perspective and presents some guidelines for choosing appropriate commercial antibodies for immunohistochemistry. Additionally, the article suggests steps to establish mutually beneficial relationships between commercial antibody suppliers and researchers who use them.
Whitehead, Phillip J; Worthington, Esme J; Parry, Ruth H; Walker, Marion F; Drummond, Avril E R
2015-11-01
To identify interventions that aim to reduce dependency in activities of daily living (ADL) in homecare service users. To determine: content; effectiveness in improving ability to perform ADL; and whether delivery by qualified occupational therapists influences effectiveness. The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, OTseeker, PEDro, Web of Science, CIRRIE, and ASSIA. We included: randomised controlled trials, non-randomised controlled trials and controlled before and after studies. Two reviewers independently screened studies for inclusion, assessed risk of bias and extracted data. A narrative synthesis of the findings was conducted. Thirteen studies were included, totalling 4975 participants. Ten (77%) were judged to have risk of bias. Interventions were categorised as those termed 're-ablement' or 'restorative homecare' (n=5/13); and those involving separate components which were not described using this terminology (n=8/13). Content of the intervention and level of health professional input varied within and between studies. Effectiveness on ADL: eight studies included an ADL outcome, five favoured the intervention group, only two with statistical significance, both these were controlled before and after studies judged at high risk of bias. ADL outcome was reported using seven different measures. Occupational therapy: there was insufficient evidence to determine whether involvement of qualified occupational therapists influenced effectiveness. There is limited evidence that interventions targeted at personal ADL can reduce homecare service users' dependency with activities, the content of evaluated interventions varies greatly. © The Author(s) 2015.
A critical state model for mudrock behavior at high stress levels
NASA Astrophysics Data System (ADS)
Heidari, M.; Nikolinakou, M. A.; Flemings, P. B.
2016-12-01
Recent experimental work has documented that the compression behavior, friction angle, and lateral stress ratio (k0) of mudrocks vary over the stress range of 1 to 100 MPa. We integrate these observations into a critical state model. The internal friction angle and the slope of the compression curve are key parameters in a mudrock critical state model. Published models assume that these parameters do not depend on the stress level, and hence predict lateral stress and normalized strength ratios that do not change with the stress level. However, recent experimental data on resedimented mudrock samples from Eugene Island, Gulf of Mexico, demonstrate that all these parameters vary considerably with the stress level (Casey and Germaine, 2013; Casey et al., 2015). To represent these variations, we develop an enhanced critical state model that uses a stress-level-dependent friction angle and a curvilinear compression curve. We show that this enhanced model predicts the observed variations of the lateral stress and strength ratios. The successful performance of our model indicates that the critical state theory developed for soil can predict mudrock nonlinear behavior at high stress levels and thus can be used in modeling geologic systems. Casey, B., Germaine, J., 2013. Stress Dependence of Shear Strength in Fine-Grained Soils and Correlations with Liquid Limit. J. Geotech. Geoenviron. Eng. 139, 1709-1717. Casey, B., Germaine, J., Flemings, P.B., Fahy, B.P., 2015. Estimating horizontal stresses for mudrocks under one-dimensional compression. Mar. Pet. Geol. 65, 178-186.
Katz, Daniel S W; Ibáñez, Inés
2016-09-01
Plant distributions are expected to shift in response to climate change, and range expansion dynamics will be shaped by the performance of individuals at the colonizing front. These plants will encounter new biotic communities beyond their range edges, and the net outcome of these encounters could profoundly affect colonization success. However, little is known about how biotic interactions vary across range edges and this has hindered efforts to predict changes in species distributions in response to climate change. In contrast, a rich literature documents how biotic interactions within species ranges vary according to distance to and density of conspecific individuals. Here, we test whether this framework can be extended to explain how biotic interactions differ beyond range edges, where conspecific adults are basically absent. To do so, we planted seven species of trees along a 450-km latitudinal gradient that crossed the current distributional range of five of these species and monitored foliar disease and invertebrate herbivory over 5 yr. Foliar disease and herbivory were analyzed as a function of distance to and density of conspecific and congeneric trees at several spatial scales. We found that within species ranges foliar disease was lower for seedlings that were farther from conspecific adults for Acer rubrum, Carya glabra, Quercus alba, and Robinia pseudoacacia. Beyond range edges, there was even less foliar disease for C. glabra, Q. alba, and R. pseudoacacia (A. rubrum was not planted outside its range). Liriodendron tulipifera did not experience reduced disease within or beyond its range. In contrast, Quercus velutina displayed significant but idiosyncratic patterns in disease at varying distances from conspecifics. Patterns of distance dependent herbivory across spatial scales was generally weak and in some cases negative (i.e., seedlings farther from conspecific adults had more herbivory). Overall, we conclude that differences in biotic interactions across range edges can be thought of as a spatial extension to the concept of distance dependent biotic interactions. This framework also provides the basis for general predictions of how distance dependent biotic interactions will change across range edges in other systems. © 2016 by the Ecological Society of America.
A comparison of visuomotor cue integration strategies for object placement and prehension.
Greenwald, Hal S; Knill, David C
2009-01-01
Visual cue integration strategies are known to depend on cue reliability and how rapidly the visual system processes incoming information. We investigated whether these strategies also depend on differences in the information demands for different natural tasks. Using two common goal-oriented tasks, prehension and object placement, we determined whether monocular and binocular information influence estimates of three-dimensional (3D) orientation differently depending on task demands. Both tasks rely on accurate 3D orientation estimates, but 3D position is potentially more important for grasping. Subjects placed an object on or picked up a disc in a virtual environment. On some trials, the monocular cues (aspect ratio and texture compression) and binocular cues (e.g., binocular disparity) suggested slightly different 3D orientations for the disc; these conflicts either were present upon initial stimulus presentation or were introduced after movement initiation, which allowed us to quantify how information from the cues accumulated over time. We analyzed the time-varying orientations of subjects' fingers in the grasping task and those of the object in the object placement task to quantify how different visual cues influenced motor control. In the first experiment, different subjects performed each task, and those performing the grasping task relied on binocular information more when orienting their hands than those performing the object placement task. When subjects in the second experiment performed both tasks in interleaved sessions, binocular cues were still more influential during grasping than object placement, and the different cue integration strategies observed for each task in isolation were maintained. In both experiments, the temporal analyses showed that subjects processed binocular information faster than monocular information, but task demands did not affect the time course of cue processing. How one uses visual cues for motor control depends on the task being performed, although how quickly the information is processed appears to be task invariant.
Cosmic Ray Neutron Sensing in Complex Systems
NASA Astrophysics Data System (ADS)
Piussi, L. M.; Tomelleri, E.; Tonon, G.; Bertoldi, G.; Mejia Aguilar, A.; Monsorno, R.; Zebisch, M.
2017-12-01
Soil moisture is a key variable in environmental monitoring and modelling: being located at the soil-atmosphere boundary, it is a driving force for water, energy and carbon fluxes. Nevertheless its importance, soil moisture observations lack of long time-series at high acquisition frequency in spatial meso-scale resolutions: traditional measurements deliver either long time series with high measurement frequency at spatial point scale or large scale and low frequency acquisitions. The Cosmic Ray Neutron Sensing (CRNS) technique fills this gap because it supplies information from a footprint of 240m of diameter and 15 to 83 cm of depth at a temporal resolution varying between 15 minutes and 24 hours. In addition, being a passive sensing technique, it is non-invasive. For these reasons, CRNS is gaining more and more attention from the scientific community. Nevertheless, the application of this technique in complex systems is still an open issue: where different Hydrogen pools are present and where their distributions vary appreciably with space and time, the traditional calibration method shows some limits. In order to obtain a better understanding of the data and to compare them with remote sensing products and spatially distributed traditional measurements (i.e. Wireless Sensors Network), the complexity of the surrounding environment has to be taken into account. In the current work we assessed the effects of spatial-temporal variability of soil moisture within the footprint, in a steep, heterogeneous mountain grassland area. Measurement were performed with a Cosmic Ray Neutron Probe (CRNP) and a mobile Wireless Sensors Network. We performed an in-deep sensitivity analysis of the effects of varying distributions of soil moisture on the calibration of the CRNP and our preliminary results show how the footprint shape varies depending on these dynamics. The results are then compared with remote sensing data (Sentinel 1 and 2). The current work is an assessment of different calibration procedures and their effect on the measurement outcome. We found that the response of the CRNP follows quite well the punctual measurement performed by a TDR installed on the site, but discrepancies could be explained by using the Wireless Sensors Network to perform a spatially weighted calibration and to introduce temporal dynamics.
Interference and Shaping in Sensorimotor Adaptations with Rewards
Darshan, Ran; Leblois, Arthur; Hansel, David
2014-01-01
When a perturbation is applied in a sensorimotor transformation task, subjects can adapt and maintain performance by either relying on sensory feedback, or, in the absence of such feedback, on information provided by rewards. For example, in a classical rotation task where movement endpoints must be rotated to reach a fixed target, human subjects can successfully adapt their reaching movements solely on the basis of binary rewards, although this proves much more difficult than with visual feedback. Here, we investigate such a reward-driven sensorimotor adaptation process in a minimal computational model of the task. The key assumption of the model is that synaptic plasticity is gated by the reward. We study how the learning dynamics depend on the target size, the movement variability, the rotation angle and the number of targets. We show that when the movement is perturbed for multiple targets, the adaptation process for the different targets can interfere destructively or constructively depending on the similarities between the sensory stimuli (the targets) and the overlap in their neuronal representations. Destructive interferences can result in a drastic slowdown of the adaptation. As a result of interference, the time to adapt varies non-linearly with the number of targets. Our analysis shows that these interferences are weaker if the reward varies smoothly with the subject's performance instead of being binary. We demonstrate how shaping the reward or shaping the task can accelerate the adaptation dramatically by reducing the destructive interferences. We argue that experimentally investigating the dynamics of reward-driven sensorimotor adaptation for more than one sensory stimulus can shed light on the underlying learning rules. PMID:24415925
Fleck, Alan da Silveira; Vieira, Mariana; Amantéa, Sergio Luís; Rhoden, Claudia Ramos
2014-01-01
Air pollution is exacerbated near heavy traffic roads in cities. Air pollution concentration and composition vary by region and depend on urban-rural gradients. The aim of this study was to evaluate the distribution of air pollution in areas of varying population densities and to compare plant biomonitoring with an established biomarker of human exposure to traffic-related air pollution in children. The areas of study were selected near a major street in 3 different regions. Areas A, B and C represent high, intermediate and low population densities, respectively. Micronucleus assay, an established biomarker of human exposure, was performed in children from these areas. For a plant biomonitoring assay, the pollen abortion assay was performed on Bauhinia variegata in these areas. NO2 and O3 concentrations were determined by passive sampling. We report here that the pollen abortion frequency in Bauhinia variegata is correlated with NO2 concentration (P = 0.004) and is strongly associated with vehicular flow and population density in the studied areas. Micronuclei frequency in buccal cells of children was higher in the regions with more degree of urbanization (P < 0.001) following the same pattern of O3 concentrations (P = 0.030). In conclusion, our results demonstrate that high concentrations of air pollutants in Porto Alegre are related to both human and plant genotoxicity. Areas with different concentration of pollutants demonstrated to have an urbanization gradient dependent pattern which also reflected on genotoxic damage among these areas. PMID:25166920
Free volume dependent fluorescence property of PMMA composite: Positron annihilation studies
NASA Astrophysics Data System (ADS)
Ravindrachary, V.; Praveena, S. D.; Bhajantri, R. F.; Ismayil, Crasta, Vincent
2013-02-01
The free volume related fluorescence properties of chalcone chromophore [1-(4-methylphenyl)-3-(4-N, N, dimethylaminophenyl)-2-propen-1-one doped Poly(methyl methacrylate) have been studied using fluorescence spectroscopy and Positron Annihilation lifetime spectroscopy techniques. The fluorescence spectra show that the fluorescence behavior depends on the free volume dependent polymer microstructure and varies with dopant concentration with in the composite. The origin and variation of fluorescence is understood by twisted internal charge transfer state as well as free volume. The Positron annihilation study shows that the free volume related microstructure of the composite is vary with doping level.
Dziuda, Lukasz; Biernacki, Marcin P; Baran, Paulina M; Truszczyński, Olaf E
2014-05-01
In the study, we checked: 1) how the simulator test conditions affect the severity of simulator sickness symptoms; 2) how the severity of simulator sickness symptoms changes over time; and 3) whether the conditions of the simulator test affect the severity of these symptoms in different ways, depending on the time that has elapsed since the performance of the task in the simulator. We studied 12 men aged 24-33 years (M = 28.8, SD = 3.26) using a truck simulator. The SSQ questionnaire was used to assess the severity of the symptoms of simulator sickness. Each of the subjects performed three 30-minute tasks running along the same route in a driving simulator. Each of these tasks was carried out in a different simulator configuration: A) fixed base platform with poor visibility; B) fixed base platform with good visibility; and C) motion base platform with good visibility. The measurement of the severity of the simulator sickness symptoms took place in five consecutive intervals. The results of the analysis showed that the simulator test conditions affect in different ways the severity of the simulator sickness symptoms, depending on the time which has elapsed since performing the task on the simulator. The simulator sickness symptoms persisted at the highest level for the test conditions involving the motion base platform. Also, when performing the tasks on the motion base platform, the severity of the simulator sickness symptoms varied depending on the time that had elapsed since performing the task. Specifically, the addition of motion to the simulation increased the oculomotor and disorientation symptoms reported as well as the duration of the after-effects. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Lucas, Heather D; Monti, Jim M; McAuley, Edward; Watson, Patrick D; Kramer, Arthur F; Cohen, Neal J
2016-07-01
Subjective memory concerns (SMCs) in healthy older adults are associated with future decline and can indicate preclinical dementia. However, SMCs may be multiply determined, and often correlate with affective or psychosocial variables rather than with performance on memory tests. Our objective was to identify sensitive and selective methods to disentangle the underlying causes of SMCs. Because preclinical dementia pathology targets the hippocampus, we hypothesized that performance on hippocampally dependent relational memory tests would correlate with SMCs. We thus administered a series of memory tasks with varying dependence on relational memory processing to 91 older adults, along with questionnaires assessing depression, anxiety, and memory self-efficacy. We used correlational, regression, and mediation analyses to compare the variance in SMCs accounted for by these measures. Performance on the task most dependent on relational memory processing showed a stronger negative association with SMCs than did other memory performance metrics. SMCs were also negatively associated with memory self-efficacy. These 2 measures, along with age and education, accounted for 40% of the variance in SMCs. Self-efficacy and relational memory were uncorrelated and independent predictors of SMCs. Moreover, self-efficacy statistically mediated the relationship between SMCs and depression and anxiety, which can be detrimental to cognitive aging. These data identify multiple mechanisms that can contribute to SMCs, and suggest that SMCs can both cause and be caused by age-related cognitive decline. Relational memory measures may be effective assays of objective memory difficulties, while assessing self-efficacy could identify detrimental affective responses to cognitive aging. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Effelsberg Monitoring of a Sample of RadioAstron Blazars: Analysis of Intra-Day Variability
NASA Astrophysics Data System (ADS)
Liu, Jun; Bignall, Hayley; Krichbaum, Thomas; Liu, Xiang; Kraus, Alex; Kovalev, Yuri; Sokolovsky, Kirill; Angelakis, Emmanouil; Zensus, J.
2018-04-01
We present the first results of an ongoing intra-day variability (IDV) flux density monitoring program of 107 blazars, which were selected from a sample of RadioAstron space very long baseline interferometry (VLBI) targets. The~IDV observations were performed with the Effelsberg 100-m radio telescope at 4.8\\,GHz, focusing on the statistical properties of IDV in a relatively large sample of compact active galactic nuclei (AGN). We investigated the dependence of rapid ($<$3 day) variability on various source properties through a likelihood approach. We found that the IDV amplitude depends on flux density and that fainter sources vary by about a factor of 3 more than their brighter counterparts. We also found a significant difference in the variability amplitude between inverted- and flat-spectrum radio sources, with the former exhibiting stronger variations. $\\gamma$-ray loud sources were found to vary by up to a factor 4 more than $\\gamma$-ray quiet ones, with 4$\\sigma$ significance. However a galactic latitude dependence was barely observed, which suggests that it is predominantly the intrinsic properties (e.g., angular size, core-dominance) of the blazars that determine how they scintillate, rather than the directional dependence in the interstellar medium (ISM). We showed that the uncertainty in the VLBI brightness temperatures obtained from the space VLBI data of the RadioAstron satellite can be as high as $\\sim$70\\% due to the presence of the rapid flux density variations. Our statistical results support the view that IDV at centimeter wavelengths is predominantly caused by interstellar scintillation (ISS) of the emission from the most compact, core-dominant region in an AGN.
NASA Astrophysics Data System (ADS)
Yu, Rixin; Lipatnikov, Andrei N.
2017-06-01
3D Direct Numerical Simulation (DNS) study of propagation of a single-reaction wave in forced, statistically stationary, homogeneous, isotropic, and constant-density turbulence was performed in order to evaluate both developing UTt and fully developed UTs bulk turbulent consumption velocities by independently varying a ratio of 0.5 ≤u'/SL≤ 90 of the r.m.s. turbulent velocity to the laminar wave speed and a ratio of 0.39 ≤L11/δF≤ 12.5 of the longitudinal integral length scale of the turbulence to the laminar wave thickness. Accordingly, the Damköhler D a =(L11SL ) /(u'δF ) and Karlovitz K a =δF/(SLτη ) numbers were varied from 0.01 to 24.7 and from 0.36 to 587, respectively. Here, τη is the Kolmogorov time scale. The obtained DNS data show that, at sufficiently low Da, the fully developed ratio of UTs/u' is mainly controlled by Da and scales as √{D a }. However, such a scaling should not be extrapolated to high Da. The higher Da (or the lower Ka), the less pronounced dependence of UTs/u' on a ratio of L11/δF. Moreover, scaling laws UT∝u'αSL1 -α(L11/δF ) β are substantially different for developing UTt and fully developed UTs, i.e., the scaling exponents α and, especially, β depend on the wave-development time. Furthermore, α and, especially, β depend on a method used to evaluate the developing UTt. Such effects can contribute to significant scatter of expressions for UT or ST as a function of {u', SL, L11, δF}, obtained by parameterizing various experimental databases.
Koenig, Lane; Soltoff, Samuel A; Demiralp, Berna; Demehin, Akinluwa A; Foster, Nancy E; Steinberg, Caroline Rossi; Vaz, Christopher; Wetzel, Scott; Xu, Susan
In 2016, Medicare's Hospital-Acquired Condition Reduction Program (HAC-RP) will reduce hospital payments by $364 million. Although observers have questioned the validity of certain HAC-RP measures, less attention has been paid to the determination of low-performing hospitals (bottom quartile) and the assignment of penalties. This study investigated possible bias in the HAC-RP by simulating hospitals' likelihood of being in the worst-performing quartile for 8 patient safety measures, assuming identical expected complication rates across hospitals. Simulated likelihood of being a poor performer varied with hospital size. This relationship depended on the measure's complication rate. For 3 of 8 measures examined, the equal-quality simulation identified poor performers similarly to empirical data (c-statistic approximately 0.7 or higher) and explained most of the variation in empirical performance by size (Efron's R 2 > 0.85). The Centers for Medicare & Medicaid Services could address potential bias in the HAC-RP by stratifying by hospital size or using a broader "all-harm" measure.
The neural basis of metacognitive ability
Fleming, Stephen M.; Dolan, Raymond J.
2012-01-01
Ability in various cognitive domains is often assessed by measuring task performance, such as the accuracy of a perceptual categorization. A similar analysis can be applied to metacognitive reports about a task to quantify the degree to which an individual is aware of his or her success or failure. Here, we review the psychological and neural underpinnings of metacognitive accuracy, drawing on research in memory and decision-making. These data show that metacognitive accuracy is dissociable from task performance and varies across individuals. Convergent evidence indicates that the function of the rostral and dorsal aspect of the lateral prefrontal cortex (PFC) is important for the accuracy of retrospective judgements of performance. In contrast, prospective judgements of performance may depend upon medial PFC. We close with a discussion of how metacognitive processes relate to concepts of cognitive control, and propose a neural synthesis in which dorsolateral and anterior prefrontal cortical subregions interact with interoceptive cortices (cingulate and insula) to promote accurate judgements of performance. PMID:22492751
Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y
2016-12-01
The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.
NASA Astrophysics Data System (ADS)
Tewari, S.; Ghosh, A.; Bhattacharjee, A.
2016-11-01
Sintered pellets of zinc oxide (ZnO), both undoped and Al-doped are prepared through a chemical process. Dopant concentration of Aluminium in ZnO [Al/Zn in weight percentage (wt%)] is varied from 0 to 3 wt%. After synthesis structural characterisation of the samples are performed with XRD and SEM-EDAX which confirm that all the samples are of ZnO having polycrystalline nature with particle size from 108.6 to 116 nm. Frequency dependent properties like a.c. conductivity, capacitance, impedance and phase angle are measured in the frequency range 10 Hz to 100 kHz as a function of temperature (in the range 25-150 °C). Nature of a.c. conductivity in these samples indicates hopping type of conduction arising from localised defect states. The frequency and temperature dependent properties under study are found to be as per correlated barrier hoping model. Dielectric and impedance properties studied in the samples indicate distributed relaxation, showing decrease of relaxation time with temperature.
Acosta, Stefan; Björck, Martin; Petersson, Ulf
2017-01-01
The aim of this paper was to review the literature on vacuum-assisted wound closure and mesh-mediated fascial traction (VAWCM) in open abdomen therapy. It was designed as systematic review of observational studies. A Pub Med, EMBASE and Cochrane search from 2007/01-2016/07 was performed combining the Medical Subject Headings "vacuum", "mesh-mediated fascial traction", "temporary abdominal closure", "delayed abdominal closure", "open abdomen", "abdominal compartment syndrome", "negative pressure wound therapy" or "vacuum assisted wound closure". Eleven original studies were found including patients numbering from 7 to 111. Six studies were prospective and five were retrospective. Nine studies were on mixed surgical (n = 9), vascular (n = 6) and trauma (n = 6) patients, while two were exclusively on vascular patients. The primary fascial closure rate per protocol varied from 80-100%. The time to closure of the open abdomen varied between 9-32 days. The entero-atmospheric fistula rate varied from 0-10.0%. The in-hospital survival rate varied from 57-100%. In the largest prospective study, the incisional hernia rate among survivors at 63 months of median follow-up was 54% (27/50), and 16 (33%) repairs out of 48 incisional hernias were performed throughout the study period. The study patients reported lower short form health survey (SF-36) scores than the mean reference population, mainly dependent on the prevalence of major co-morbidities. There was no difference in SF-36 scores or a modified ventral hernia pain questionnaire (VHPQ) at 5 years of follow up between those with versus those without incisional hernias. A high primary fascial closure rate can be achieved with the vacuum-assisted wound closure and meshmediated fascial traction technique in elderly, mainly non-trauma patients, in need of prolonged open abdomen therapy.
Sunspot rotation. II. Effects of varying the field strength and twist of an emerging flux tube
NASA Astrophysics Data System (ADS)
Sturrock, Z.; Hood, A. W.
2016-09-01
Context. Observations of flux emergence indicate that rotational velocities may develop within sunspots. However, the dependence of this rotation on sub-photospheric field strength and twist remains largely unknown. Aims: We investigate the effects of varying the initial field strength and twist of an emerging sub-photospheric magnetic flux tube on the rotation of the sunspots at the photosphere. Methods: We consider a simple model of a stratified domain with a sub-photospheric interior layer and three overlying atmospheric layers. A twisted arched flux tube is inserted in the interior and is allowed to rise into the atmosphere. To achieve this, the magnetohydrodynamic equations are solved using the Lagrangian-remap code, Lare3d. We perform a parameter study by independently varying the sub-photospheric magnetic field strength and twist. Results: Altering the initial magnetic field strength and twist of the flux tube significantly affects the tube's evolution and the rotational motions that develop at the photosphere. The rotation angle, vorticity, and current show a direct dependence on the initial field strength. We find that an increase in field strength increases the angle through which the fieldlines rotate, the length of the fieldlines extending into the atmosphere, and the magnetic energy transported to the atmosphere. This also affects the amount of residual twist in the interior. The length of the fieldlines is crucial as we predict the twist per unit length equilibrates to a lower value on longer fieldlines. No such direct dependence is found when we modify the twist of the magnetic field owing to the complex effect this has on the tension force acting on the tube. However, there is still a clear ordering in quantities such as the rotation angle, helicity, and free energy with higher initial twist cases being related to sunspots that rotate more rapidly, transporting more helicity and magnetic energy to the atmosphere.
Celaya, Ileana N; Arceo-Gómez, Gerardo; Alonso, Conchita; Parra-Tabla, Víctor
2015-10-01
Studies that have evaluated the effects of heterospecific pollen (HP) receipt on plant reproductive success have generally overlooked the variability of the natural abiotic environment in which plants grow. Variability in abiotic conditions, such as light and water availability, has the potential to affect pollen-stigma interactions (i.e. conspecific pollen germination and performance), which will probably influence the effects of HP receipt. Thus, a more complete understanding of the extent, strength and consequences of plant-plant interactions via HP transfer requires better consideration of the range of abiotic conditions in which these interactions occur. This study addresses this issue by evaluating the effects of two HP donors (Tamonea curassavica and Angelonia angustifolia) on the reproductive success of Cuphea gaumeri, an endemic species of the Yucatan Peninsula. Mixed (conspecific pollen and HP) and pure (conspecific pollen only) hand-pollinations were conducted under varying conditions of water and light availability in a full factorial design. Reproductive success was measured as the number of pollen tubes that reached the bottom of the style. Only one of the two HP donors had a significant effect on C. gaumeri reproductive success, but this effect was dependent on water and light availability. Specifically, HP receipt caused a decrease in pollen tube growth, but only when the availability of water, light or both was low, and not when the availability of both resources was high. The results show that the outcome of interspecific post-pollination interactions via HP transfer can be context-dependent and vary with abiotic conditions, thus suggesting that abiotic effects in natural populations may be under-estimated. Such context-dependency could lead to spatial and temporal mosaics in the ecological and evolutionary consequences of post-pollination interactions. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. Allrights reserved. For Permissions, please email: journals.permissions@oup.com.
Personality-dependent dispersal cancelled under predation risk
Cote, Julien; Fogarty, Sean; Tymen, Blaise; Sih, Andrew; Brodin, Tomas
2013-01-01
Dispersal is a fundamental life-history trait for many ecological processes. Recent studies suggest that dispersers, in comparison to residents, display various phenotypic specializations increasing their dispersal inclination or success. Among them, dispersers are believed to be consistently more bold, exploratory, asocial or aggressive than residents. These links between behavioural types and dispersal should vary with the cause of dispersal. However, with the exception of one study, personality-dependent dispersal has not been studied in contrasting environments. Here, we used mosquitofish (Gambusia affinis) to test whether personality-dependent dispersal varies with predation risk, a factor that should induce boldness or sociability-dependent dispersal. Corroborating previous studies, we found that dispersing mosquitofish are less social than non-dispersing fish when there was no predation risk. However, personality-dependent dispersal is negated under predation risk, dispersers having similar personality types to residents. Our results suggest that adaptive dispersal decisions could commonly depend on interactions between phenotypes and ecological contexts. PMID:24197414
Yoder, Paul J.; Bottema-Beutel, Kristen; Woynaroski, Tiffany; Chandrasekhar, Rameela; Sandbank, Michael
2014-01-01
Individuals with autism spectrum disorders (ASDs) have difficulty communicating in ways that are primarily for initiating and maintaining social relatedness (i.e., social communication). We hypothesized that the way researchers measured social communication would affect whether treatment effects were found. Using a best evidence review method, we found that treatments were shown to improve social communication outcomes approximately 54% of the time. The probability that a treatment affected social communication varied greatly depending on whether social communication was directly targeted (63%) or not (39%). Finally, the probability that a treatment affected social communication also varied greatly depending on whether social communication as measured in (a) contexts very similar to treatment sessions (82%) or (b) contexts that differed from treatment on at least setting, materials, and communication partner (33%). This paper also provides several methodological contributions. PMID:25346776
NASA Astrophysics Data System (ADS)
Knecht, Sean D.; Thomas, Robert E.; Mead, Franklin B.; Miley, George H.; Froning, David
2006-01-01
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean ``aneutronic'' dense plasma focus (DPF) fusion power and propulsion technology, with advanced ``lifting body''-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ɛprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ɛprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knecht, Sean D.; Mead, Franklin B.; Thomas, Robert E.
2006-01-20
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q =more » 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.« less
NASA Technical Reports Server (NTRS)
Stanley, Stephanie D.
2008-01-01
Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system, Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various meta! (steel, inconel, and aluminum), phenolic (carbon cloth phenolic and glass cloth phenolic), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber, silica-filled ethylene propylenediene monomer, and carbon-filled ethylene propylenediene monomer) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.
Park, Junghyun; Stump, Brian W.; Hayward, Chris; ...
2016-07-14
This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonablymore » variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. As a result, this suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.« less
NASA Technical Reports Server (NTRS)
Suttles, John T.; Wielicki, Bruce A.; Vemury, Sastri
1992-01-01
The ERBE algorithm is applied to the Nimbus-7 earth radiation budget (ERB) scanner data for June 1979 to analyze the performance of an inversion method in deriving top-of-atmosphere albedos and longwave radiative fluxes. The performance is assessed by comparing ERBE algorithm results with appropriate results derived using the sorting-by-angular-bins (SAB) method, the ERB MATRIX algorithm, and the 'new-cloud ERB' (NCLE) algorithm. Comparisons are made for top-of-atmosphere albedos, longwave fluxes, viewing zenith-angle dependence of derived albedos and longwave fluxes, and cloud fractional coverage. Using the SAB method as a reference, the rms accuracy of monthly average ERBE-derived results are estimated to be 0.0165 (5.6 W/sq m) for albedos (shortwave fluxes) and 3.0 W/sq m for longwave fluxes. The ERBE-derived results were found to depend systematically on the viewing zenith angle, varying from near nadir to near the limb by about 10 percent for albedos and by 6-7 percent for longwave fluxes. Analyses indicated that the ERBE angular models are the most likely source of the systematic angular dependences. Comparison of the ERBE-derived cloud fractions, based on a maximum-likelihood estimation method, with results from the NCLE showed agreement within about 10 percent.
Analog performance of vertical nanowire TFETs as a function of temperature and transport mechanism
NASA Astrophysics Data System (ADS)
Martino, Marcio Dalla Valle; Neves, Felipe; Ghedini Der Agopian, Paula; Martino, João Antonio; Vandooren, Anne; Rooyackers, Rita; Simoen, Eddy; Thean, Aaron; Claeys, Cor
2015-10-01
The goal of this work is to study the analog performance of tunnel field effect transistors (TFETs) and its susceptibility to temperature variation and to different dominant transport mechanisms. The experimental input characteristic of nanowire TFETs with different source compositions (100% Si and Si1-xGex) has been presented, leading to the extraction of the Activation Energy for each bias condition. These first results have been connected to the prevailing transport mechanism for each configuration, namely band-to-band tunneling (BTBT) or trap assisted tunneling (TAT). Afterward, this work analyzes the analog behavior, with the intrinsic voltage gain calculated in terms of Early voltage, transistor efficiency, transconductance and output conductance. Comparing the results for devices with different source compositions, it is interesting to note how the analog trends vary depending on the source characteristics and the prevailing transport mechanisms. This behavior results in a different suitability analysis depending on the working temperature. In other words, devices with full-Silicon source and non-abrupt junction profile present the worst intrinsic voltage gain at room temperature, but the best results for high temperatures. This was possible since, among the 4 studied devices, this configuration was the only one with a positive intrinsic voltage gain dependence on the temperature variation.
Park, Junghyun; Stump, Brian W; Hayward, Chris; Arrowsmith, Stephen J; Che, Il-Young; Drob, Douglas P
2016-07-01
This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonably variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. This suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.
NASA Astrophysics Data System (ADS)
Ma, Zhisai; Liu, Li; Zhou, Sida; Naets, Frank; Heylen, Ward; Desmet, Wim
2017-03-01
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
NASA Astrophysics Data System (ADS)
Zhu, Banghe; Rasmussen, John C.; Litorja, Maritoni; Sevick-Muraca, Eva M.
2017-03-01
All medical devices for Food and Drug market approval require specifications of performance based upon International System of Units (SI) or units derived from SI for reasons of traceability. Recently, near-infrared fluorescence (NIRF) imaging devices of a variety of designs have emerged on the market and in investigational clinical studies. Yet the design of devices used in the clinical studies vary widely, suggesting variable device performance. Device performance depends upon optimal excitation of NIRF imaging agents, rejection of backscattered excitation and ambient light, and selective collection of fluorescence emanating from the fluorophore. There remains no traceable working standards with SI units of radiance to enable prediction that a given molecular imaging agent can be detected in humans by a given NIRF imaging device. Furthermore, as technologies evolve and as NIRF imaging device components change, there remains no standardized means to track device improvements over time and establish clinical performance without involving clinical trials, often costly. In this study, we deployed a methodology to calibrate luminescent radiance of a stable, solid phantom in SI units of mW/cm2/sr for characterizing the measurement performance of ICCD and IsCMOS camera based NIRF imaging devices, such as signal-to-noise ratio (SNR) and contrast. The methodology allowed determination of superior SNR of the ICCD over the IsCMOS system; comparable contrast of ICCD and IsCMOS depending upon binning strategies.
Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan
2012-01-01
A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614
Robust detection of chromosomal interactions from small numbers of cells using low-input Capture-C
Oudelaar, A. Marieke; Davies, James O.J.; Downes, Damien J.; Higgs, Douglas R.
2017-01-01
Abstract Chromosome conformation capture (3C) techniques are crucial to understanding tissue-specific regulation of gene expression, but current methods generally require large numbers of cells. This hampers the investigation of chromatin architecture in rare cell populations. We present a new low-input Capture-C approach that can generate high-quality 3C interaction profiles from 10 000–20 000 cells, depending on the resolution used for analysis. We also present a PCR-free, sequencing-free 3C technique based on NanoString technology called C-String. By comparing C-String and Capture-C interaction profiles we show that the latter are not skewed by PCR amplification. Furthermore, we demonstrate that chromatin interactions detected by Capture-C do not depend on the degree of cross-linking by performing experiments with varying formaldehyde concentrations. PMID:29186505
Rivera, Echo A; Kubiak, Sheryl P; Bybee, Deborah
2014-12-01
Research on women's aggression typically focuses on relational aggression. However, the study of violence must include multiple forms of violence such as aggression against partners and non-partner others, while also considering victimization experiences by partners and non-partners. The focus of this study is the multiple experiences of violence (perpetration and victimization) of women who are incarcerated. Incarcerated women are likely to experience higher rates of both than women in community settings, but most will be released in a brief period of time. Using a random sample (N = 580) we conducted cluster analyses to identify five patterns of women's aggression. Clusters varied depending on the target/s of aggression (i.e., partner and/or others), and type of aggression (i.e., physical and/or intimidation). Multinomial logistic regression was performed to determine the relationship between women's membership in a perpetration cluster and their victimization. Victimization history was related to an increased risk of perpetrating aggression, and varied depending on the target and type of aggression. Our findings provide support that research and interventions addressing women's use of aggression must also address their victimization history. Furthermore, results indicate that for some women, aggression towards partners and others is related. Future research should investigate multiple forms of aggression.
NASA Astrophysics Data System (ADS)
Kyutt, R. T.
2017-04-01
The shape of X-ray diffraction epitaxial layers with high dislocation densities has been studied experimentally. Measurements with an X-ray diffractometer were performed in double- and triple-crystal setups with both Cu K α and Mo K α radiation. Epitaxial layers (GaN, AlN, AlGaN, ZnO, etc.) with different degrees of structural perfection grown by various methods on sapphire, silicon, and silicon carbide substrates have been examined. The layer thickness varied in the range of 0.5-30 μm. It has been found that the center part of peaks is well approximated by the Voigt function with different Lorentz fractions, while the wing intensity drops faster and may be represented by a power function (with the index that varies from one structure to another). A well-marked dependence on the ordering of dislocations was observed. The drop in intensity in the majority of structures with a regular system and regular threading dislocations was close to the theoretically predicted law Δθ-3; the intensity in films with a chaotic distribution decreased much faster. The dependence of the peak shape on the order of reflection, the diffraction geometry, and the epitaxial layer thickness was also examined.
Letcher, B.H.; Horton, G.E.
2008-01-01
We estimated the magnitude and shape of size-dependent survival (SDS) across multiple sampling intervals for two cohorts of stream-dwelling Atlantic salmon (Salmo salar) juveniles using multistate capture-mark-recapture (CMR) models. Simulations designed to test the effectiveness of multistate models for detecting SDS in our system indicated that error in SDS estimates was low and that both time-invariant and time-varying SDS could be detected with sample sizes of >250, average survival of >0.6, and average probability of capture of >0.6, except for cases of very strong SDS. In the field (N ??? 750, survival 0.6-0.8 among sampling intervals, probability of capture 0.6-0.8 among sampling occasions), about one-third of the sampling intervals showed evidence of SDS, with poorer survival of larger fish during the age-2+ autumn and quadratic survival (opposite direction between cohorts) during age-1+ spring. The varying magnitude and shape of SDS among sampling intervals suggest a potential mechanism for the maintenance of the very wide observed size distributions. Estimating SDS using multistate CMR models appears complementary to established approaches, can provide estimates with low error, and can be used to detect intermittent SDS. ?? 2008 NRC Canada.
Osmotic swelling of polyacrylate hydrogels in physiological salt solutions.
Horkay, F; Tasaki, I; Basser, P J
2000-01-01
The swelling behavior of fully neutralized sodium polyacrylate gels was investigated in aqueous solutions of alkali metal (LiCl, NaCl, KCl, CsCl) and alkaline earth metal salts (CaCl2, SrCl2, BaCl2). The total salt concentration and the ratio of monovalent to divalent cations were varied in the biologically significant range. It is found that the concentrations of both monovalent and divalent cations vary continuously and smoothly in the gel despite the abrupt change in the gel volume. The individual elastic, mixing, and ionic contributions to the free energy of the gel were separately determined as a function of the degree of network swelling to elucidate the thermodynamics of swelling. Shear modulus measurements performed at different Ca2+ concentrations suggest that Ca2+ does not form stable cross-links between the polymer chains. At low and moderate swelling ratios the concentration dependence of the shear modulus follows a power law behavior, G variation of phi n, with n = 0.34 +/- 0.03. At high swelling degrees, however, the shear modulus increases with increasing swelling. The value of the Flory-Huggins interaction parameter, chi, determined from osmotic swelling pressure and shear modulus measurements, strongly depends on the ionic composition of the equilibrium solution and increases with increasing Ca2+ concentration.
METAL DIFFUSION IN SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF DWARF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, David; Martel, Hugo; Kawata, Daisuke, E-mail: david-john.williamson.1@ulaval.ca
2016-05-10
We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distributionmore » function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.« less
Loffing, Florian; Hagemann, Norbert
2015-05-01
The fighting hypothesis proposes that left-oriented athletes enjoy a negative frequency-dependent advantage in combat sports such as boxing. Supporting evidence, however, is restricted to cross-sectional frequency data from small samples. Here, we examined the incidence and fight records of 2,403 left- and right-oriented fighters who were listed in the annual ratings of professional boxing from 1924 to 2012. Unexpectedly, left-oriented boxers were overrepresented in no more than 7 of the 89 years considered, their percentages varied up to 30% and increased over the entire period, and frequencies varied substantially between weight divisions. In support of the fighting hypothesis, lose-win ratios indicated larger fighting strength in left- compared to right-oriented boxers, which, however, was not reflected in different proportions of wins and losses by knockout. Our findings are partly consistent with an assumed left-oriented fighters' advantage in combat sports. Such advantage could be explained by negative frequency-dependent selection mechanisms; however, our study also revealed potential limits of the fighting hypothesis such that alternative explanations cannot be fully excluded. We propose that interference by factors not related to performance could also limit the suitability of data from elite sporting competition for testing evolutionary models of human handedness.
Quantifying the effect of varying GHG's concentration in Regional Climate Models
NASA Astrophysics Data System (ADS)
López-Romero, Jose Maria; Jerez, Sonia; Palacios-Peña, Laura; José Gómez-Navarro, Juan; Jiménez-Guerrero, Pedro; Montavez, Juan Pedro
2017-04-01
Regional Climate Models (RCMs) are driven at the boundaries by Global Circulation Models (GCM), and in the particular case of Climate Change projections, such simulations are forced by varying greenhouse gases (GHGs) concentrations. In hindcast simulations driven by reanalysis products, the climate change signal is usually introduced in the assimilation process as well. An interesting question arising in this context is whether GHGs concentrations have to be varied within the RCMs model itself, or rather they should be kept constant. Some groups keep the GHGs concentrations constant under the assumption that information about climate change signal is given throughout the boundaries; sometimes certain radiation parameterization schemes do not permit such changes. Other approaches vary these concentrations arguing that this preserves the physical coherence respect to the driving conditions for the RCM. This work aims to shed light on this topic. For this task, various regional climate simulations with the WRF model for the 1954-2004 period have been carried out for using a Euro-CORDEX compliant domain. A series of simulations with constant and variable GHGs have been performed using both, a GCM (ECHAM6-OM) and a reanalysis product (ERA-20C) data. Results indicate that there exist noticeable differences when introducing varying GHGs concentrations within the RCM domain. The differences in 2-m temperature series between the experiments with varying or constant GHGs concentration strongly depend on the atmospheric conditions, appearing a strong interannual variability. This suggests that short-term experiments are not recommended if the aim is to assess the role of varying GHGs. In addition, and consistently in both GCM and reanalysis-driven experiments, the magnitude of temperature trends, as well as the spatial pattern represented by varying GHGs experiment, are closer to the driving dataset than in experiments keeping constant the GHGs concentration. These results point towards the need for the inclusion of varying GHGs concentration within the RCM itself when dynamically downscaling global datasets, both in GCM and hindcast simulations.
NASA Astrophysics Data System (ADS)
Shimizu, Erina; Ali, Safdar; Tsuda, Takashi; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Hara, Hirohisa; Watanabe, Tetsuya; Nakamura, Nobuyuki
2017-05-01
We report high-resolution density dependent intensity ratio measurements for middle charge states of iron in the extreme ultraviolet (EUV) spectral wavelength range of 160-200 Å. The measurements were performed at the Tokyo EBIT laboratory by employing a flat-field grazing incidence spectrometer installed on a low energy compact electron beam ion trap. The intensity ratios for several line pairs stemming from Fe X, Fe XI and Fe XII were extracted from spectra collected at the electron beam energies of 340 and 400 eV by varying the beam current between 7.5 and 12 mA at each energy. In addition, the effective electron densities were obtained experimentally by imaging the electron beam profile and ion cloud size with a pinhole camera and visible spectrometer, respectively. In this paper, the experimental results are compared with previous data from the literature and with the present calculations performed using a collisional-radiative model. Our experimental results show a rather good agreement with the calculations and previous reported results.
A new technique for thermodynamic engine modeling
NASA Astrophysics Data System (ADS)
Matthews, R. D.; Peters, J. E.; Beckel, S. A.; Shizhi, M.
1983-12-01
Reference is made to the equations given by Matthews (1983) for piston engine performance, which show that this performance depends on four fundamental engine efficiencies (combustion, thermodynamic cycle or indicated thermal, volumetric, and mechanical) as well as on engine operation and design parameters. This set of equations is seen to suggest a different technique for engine modeling; that is, that each efficiency should be modeled individually and the efficiency submodels then combined to obtain an overall engine model. A simple method for predicting the combustion efficiency of piston engines is therefore required. Various methods are proposed here and compared with experimental results. These combustion efficiency models are then combined with various models for the volumetric, mechanical, and indicated thermal efficiencies to yield three different engine models of varying degrees of sophistication. Comparisons are then made of the predictions of the resulting engine models with experimental data. It is found that combustion efficiency is almost independent of load, speed, and compression ratio and is not strongly dependent on fuel type, at least so long as the hydrogen-to-carbon ratio is reasonably close to that for isooctane.
Range-dependence of acoustic channel with traveling sinusoidal surface wave.
Choo, Youngmin; Seong, Woojae; Lee, Keunhwa
2014-04-01
Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.
Flow Physics of Synthetic Jet Interactions on a Sweptback Model with a Control Surface
NASA Astrophysics Data System (ADS)
Monastero, Marianne; Amitay, Michael
2016-11-01
Active flow control using synthetic jets can be used on aerodynamic surfaces to improve performance and increase fuel efficiency. The flowfield resulting from the interaction of the jets with a separated crossflow with a spanwise component must be understood to determine actuator spacing for aircraft integration. The current and previous work showed adjacent synthetic jets located upstream of a control surface hingeline on a sweptback model interact with each other under certain conditions. Whether these interactions are constructive or destructive is dependent on the spanwise spacing of the jets, the severity of separation over the control surface, and the magnitude of the spanwise flow. Measuring and understanding the detailed flow physics of the flow structures emanating from the synthetic jet orifices and their interactions with adjacent jets of varying spacings is the focus of this work. Wind tunnel experiments were conducted at the Rensselaer Polytechnic Institute Subsonic Wind Tunnel using stereo particle image velocimetry (SPIV) and pressure measurements to study the effect that varying the spanwise spacing has on the overall performance. Initial SPIV data gave insight into defining and understanding the mechanisms behind the beneficial or detrimental jets interactions.
Synthetic Jet Interactions with Flows of Varying Separation Severity and Spanwise Flow Magnitude
NASA Astrophysics Data System (ADS)
Monastero, Marianne; Lindstrom, Annika; Amitay, Michael
2017-11-01
Flow physics associated with the interactions of synthetic jet actuators with a highly three-dimensional separated flow over a flapped airfoil were investigated experimentally and analyzed using stereo particle image velocimetry (SPIV) and surface pressure data. Increased understanding of active flow control devices in flows which are representative of airplane wings or tails can lead to actuator placement (i.e., chordwise location, spanwise spacing) with the greatest beneficial effect on performance. An array of discrete synthetic jets was located just upstream of the control surface hingeline and operated at a blowing ratio of 1 and non-dimensional frequency of 48. Detailed flowfield measurements over the control surface were conducted, where the airfoil's sweep angle and the control surface deflection angle were fixed at 20°. Focus was placed on the local and global flowfields as spanwise actuator spacing was varied. Moreover, surface pressure measurement for several sweep angles, control surface deflection angles, and angles of attack were also performed. Actuation resulted in an overall separation reduction and a dependence of local flowfield details (i.e. separation severity, spanwise flow magnitude, flow structures, and jet trajectory) on spanwise jet spacing. The Boeing Company.
Feedback data sources that inform physician self-assessment.
Lockyer, Jocelyn; Armson, Heather; Chesluk, Benjamin; Dornan, Timothy; Holmboe, Eric; Loney, Elaine; Mann, Karen; Sargeant, Joan
2011-01-01
Self-assessment is a process of interpreting data about one's performance and comparing it to explicit or implicit standards. To examine the external data sources physicians used to monitor themselves. Focus groups were conducted with physicians who participated in three practice improvement activities: a multisource feedback program; a program providing patient and chart audit data; and practice-based learning groups. We used grounded theory strategies to understand the external sources that stimulated self-assessment and how they worked. Data from seven focus groups (49 physicians) were analyzed. Physicians used information from structured programs, other educational activities, professional colleagues, and patients. Data were of varying quality, often from non-formal sources with implicit (not explicit) standards. Mandatory programs elicited variable responses, whereas data and activities the physicians selected themselves were more likely to be accepted. Physicians used the information to create a reference point against which they could weigh their performance using it variably depending on their personal interpretation of its accuracy, application, and utility. Physicians use and interpret data and standards of varying quality to inform self-assessment. Physicians may benefit from regular and routine feedback and guidance on how to seek out data for self-assessment.
Piai, Vitória; Roelofs, Ardi; Roete, Ingeborg
2015-01-01
Previous dual-task studies examining the locus of semantic interference of distractor words in picture naming have obtained diverging results. In these studies, participants manually responded to tones and named pictures while ignoring distractor words (picture-word interference, PWI) with varying stimulus onset asynchrony (SOA) between tone and PWI stimulus. Whereas some studies observed no semantic interference at short SOAs, other studies observed effects of similar magnitude at short and long SOAs. The absence of semantic interference in some studies may perhaps be due to better reading skill of participants in these than in the other studies. According to such a reading-ability account, participants' reading skill should be predictive of the magnitude of their interference effect at short SOAs. To test this account, we conducted a dual-task study with tone discrimination and PWI tasks and measured participants' reading ability. The semantic interference effect was of similar magnitude at both short and long SOAs. Participants' reading ability was predictive of their naming speed but not of their semantic interference effect, contrary to the reading ability account. We conclude that the magnitude of semantic interference in picture naming during dual-task performance does not depend on reading skill.
Software Would Largely Automate Design of Kalman Filter
NASA Technical Reports Server (NTRS)
Chuang, Jason C. H.; Negast, William J.
2005-01-01
Embedded Navigation Filter Automatic Designer (ENFAD) is a computer program being developed to automate the most difficult tasks in designing embedded software to implement a Kalman filter in a navigation system. The most difficult tasks are selection of error states of the filter and tuning of filter parameters, which are timeconsuming trial-and-error tasks that require expertise and rarely yield optimum results. An optimum selection of error states and filter parameters depends on navigation-sensor and vehicle characteristics, and on filter processing time. ENFAD would include a simulation module that would incorporate all possible error states with respect to a given set of vehicle and sensor characteristics. The first of two iterative optimization loops would vary the selection of error states until the best filter performance was achieved in Monte Carlo simulations. For a fixed selection of error states, the second loop would vary the filter parameter values until an optimal performance value was obtained. Design constraints would be satisfied in the optimization loops. Users would supply vehicle and sensor test data that would be used to refine digital models in ENFAD. Filter processing time and filter accuracy would be computed by ENFAD.
Mujika, Iñigo; Burke, Louise M
2010-01-01
Team sports are based on intermittent high-intensity activity patterns, but the exact characteristics vary between and within codes, and from one game to the next. Despite the challenge of predicting exact game demands, performance in team sports is often dependent on nutritional factors. Chronic issues include achieving ideal levels of muscle mass and body fat, and supporting the nutrient needs of the training program. Acute issues, both for training and in games, include strategies that allow the player to be well fuelled and hydrated over the duration of exercise. Each player should develop a plan of consuming fluid and carbohydrate according to the needs of their activity patterns, within the breaks that are provided in their sport. In seasonal fixtures, competition varies from a weekly game in some codes to 2-3 games over a weekend road trip in others, and a tournament fixture usually involves 1-3 days between matches. Recovery between events is a major priority, involving rehydration, refuelling and repair/adaptation activities. Some sports supplements may be of value to the team athlete. Sports drinks, gels and liquid meals may be valuable in allowing nutritional goals to be met, while caffeine, creatine and buffering agents may directly enhance performance. Copyright © 2011 S. Karger AG, Basel.
Petit, Magali; Vézina, François
2014-01-01
Reaction norms reflect an organisms' capacity to adjust its phenotype to the environment and allows for identifying trait values associated with physiological limits. However, reaction norms of physiological parameters are mostly unknown for endotherms living in natural conditions. Black-capped chickadees (Poecile atricapillus) increase their metabolic performance during winter acclimatization and are thus good model to measure reaction norms in the wild. We repeatedly measured basal (BMR) and summit (Msum) metabolism in chickadees to characterize, for the first time in a free-living endotherm, reaction norms of these parameters across the natural range of weather variation. BMR varied between individuals and was weakly and negatively related to minimal temperature. Msum varied with minimal temperature following a Z-shape curve, increasing linearly between 24°C and −10°C, and changed with absolute humidity following a U-shape relationship. These results suggest that thermal exchanges with the environment have minimal effects on maintenance costs, which may be individual-dependent, while thermogenic capacity is responding to body heat loss. Our results suggest also that BMR and Msum respond to different and likely independent constraints. PMID:25426860
Stereoscopic shape discrimination is well preserved across changes in object size.
Norman, J Farley; Swindle, Jessica M; Jennings, L RaShae; Mullins, Elizabeth M; Beers, Amanda M
2009-06-01
A single experiment evaluated human observers' ability to discriminate the shape of solid objects that varied in size and orientation in depth. The object shapes were defined by binocular disparity, Lambertian shading, and texture. The object surfaces were smoothly curved and had naturalistic shapes, resembling those of water-smoothed granite rocks. On any given trial, two objects were presented that were either the same or different in terms of shape. When the "same" objects were presented, they differed in their orientation in depth by 25 degrees , 45 degrees , or 65 degrees . The observers were required to judge whether any given pair of objects was the "same" or "different" in terms of shape. The size of the objects was also varied by amounts up to +/-40% relative to the standard size. The observers' shape discrimination performance was strongly affected by the magnitude of the orientation changes in depth - thus, their performance was viewpoint dependent. In contrast, the observers' shape discrimination abilities were only slightly affected by changes in the overall size of the objects. It appears that human observers can recognize the three-dimensional shape of objects in a manner that is relatively independent of size.
Measuring performance in virtual reality phacoemulsification surgery
NASA Astrophysics Data System (ADS)
Söderberg, Per; Laurell, Carl-Gustaf; Simawi, Wamidh; Skarman, Eva; Nordh, Leif; Nordqvist, Per
2008-02-01
We have developed a virtual reality (VR) simulator for phacoemulsification surgery. The current work aimed at developing a relative performance index that characterizes the performance of an individual trainee. We recorded measurements of 28 response variables during three iterated surgical sessions in 9 experienced cataract surgeons, separately for the sculpting phase and the evacuation phase of phacoemulsification surgery and compared their outcome to that of a reference group of naive trainees. We defined an individual overall performance index, an individual class specific performance index and an individual variable specific performance index. We found that on an average the experienced surgeons performed at a lower level than a reference group of naive trainees but that this was particularly attributed to a few surgeons. When their overall performance index was further analyzed as class specific performance index and variable specific performance index it was found that the low level performance was attributed to a behavior that is acceptable for an experienced surgeon but not for a naive trainee. It was concluded that relative performance indices should use a reference group that corresponds to the measured individual since the definition of optimal surgery may vary among trainee groups depending on their level of experience.
Bilateral Hippocampal Dysfunction in Schizophrenia
Hanlon, Faith M.; Houck, Jon M.; Pyeatt, Clinton J.; Lundy, S. Laura; Euler, Matthew J.; Weisend, Michael P.; Thoma, Robert J.; Bustillo, Juan R.; Miller, Gregory A.; Tesche, Claudia D.
2014-01-01
The hippocampus has long been known to be important for memory, with the right hippocampus particularly implicated in nonverbal/visuo-spatial memory and left in verbal/narrative or episodic memory. Despite this hypothesized lateralized functional difference, there has not been a single task that has been shown to activate both the right and left hippocampus differentially, dissociating the two, using neuroimaging. The transverse patterning (TP) task is a strong candidate for this purpose, as it has been shown in human and nonhuman animal studies to theoretically and empirically depend on the hippocampus. In TP, participants choose between stimuli presented in pairs, with the correct choice being a function of the specific pairing. In this project, TP was used to assess lateralized hippocampal function by varying its dependence on verbal material, with the goal of dissociating the two hippocampi. Magnetoencephalographic (MEG) data were collected while controls performed verbal and nonverbal versions of TP in order to verify and validate lateralized activation within the hippocampi. Schizophrenia patients were evaluated to determine whether they exhibited a lateralized hippocampal deficit. As hypothesized, patients’ mean level of behavioral performance was poorer than controls’ on both verbal and nonverbal TP. In contrast, patients had no decrement in performance on a verbal and nonverbal non-hippocampal-dependent matched control task. Also, controls but not patients showed more right hippocampal activation during nonverbal TP and more left hippocampal activation during verbal TP. These data demonstrate the capacity to assess lateralized hippocampal function and suggest a bilateral hippocampal behavioral and activation deficit in schizophrenia. PMID:21763438
Motor demand-dependent activation of ipsilateral motor cortex.
Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael
2014-08-15
The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.
Effect of window length on performance of the elbow-joint angle prediction based on electromyography
NASA Astrophysics Data System (ADS)
Triwiyanto; Wahyunggoro, Oyas; Adi Nugroho, Hanung; Herianto
2017-05-01
The high performance of the elbow joint angle prediction is essential on the development of the devices based on electromyography (EMG) control. The performance of the prediction depends on the feature of extraction parameters such as window length. In this paper, we evaluated the effect of the window length on the performance of the elbow-joint angle prediction. The prediction algorithm consists of zero-crossing feature extraction and second order of Butterworth low pass filter. The feature was used to extract the EMG signal by varying window length. The EMG signal was collected from the biceps muscle while the elbow was moved in the flexion and extension motion. The subject performed the elbow motion by holding a 1-kg load and moved the elbow in different periods (12 seconds, 8 seconds and 6 seconds). The results indicated that the window length affected the performance of the prediction. The 250 window lengths yielded the best performance of the prediction algorithm of (mean±SD) root mean square error = 5.68%±1.53% and Person’s correlation = 0.99±0.0059.
Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines
NASA Technical Reports Server (NTRS)
Rothbrock, A M; Biermann, Arnold E
1938-01-01
Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.
Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
Iturrate, I; Montesano, L; Minguez, J
2013-04-01
A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user's mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.
Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces
NASA Astrophysics Data System (ADS)
Iturrate, I.; Montesano, L.; Minguez, J.
2013-04-01
Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.
Wenchao, Duan; Zhang, Peina; Xiahou, Yujiao; Song, Yahui; Bi, Cuixia; Zhan, Jie; Du, Wei; Huang, Lihui; Möhwald, Helmuth; Xia, Haibing
2018-06-21
It is well known that the activity and stability of electrocatalysts are largely dependent on their surface facets. In this work, we have successfully regulated surface facets of three-dimensional (3D) metallic Au m-n aerogels by salt-induced assembly of citrate-stabilized gold nanoparticles (Au NPs) of two different sizes and further size-dependent localized Ostwald ripening at controlled particle-number ratios, where m and n represent the size of Au NPs, respectively. In addition, 3D Au m-n @Pd aerogels were further synthesized on the basis of Au m-n aerogels and also bear controlled surface facets due to the formation of ultrathin Pd layers on Au m-n aerogels. Taking the electrooxidation of small organic molecules (such as methanol and ethanol) by the resulting Au m-n and Au m-n @Pd aerogels as examples, it is found that surface facets of metallic aerogels with excellent performance can be regulated to realize preferential surface facets for methanol oxidation and ethanol oxidation, respectively. Moreover, they also indeed simultaneously bear high activity and excellent stability. Furthermore, their activities and stability are also highly dependent on the area ratio of active facets and inactive facets on their surfaces, respectively, and these ratios are varied via the mismatch of sizes of adjacent nanoparticles. Thus, this work not only demonstrates the realization of the regulation of the surface facets of metallic aerogels by size-dependent localized Ostwald ripening, but also will open up a new way to improve electrocatalytic performance of three-dimensional metallic aerogels by surface regulation.
Process for forming retrograde profiles in silicon
Weiner, K.H.; Sigmon, T.W.
1996-10-15
A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.
Undistorted 3D microstructures in SU8 formed through two-photon polymerization
NASA Astrophysics Data System (ADS)
Ohlinger, Kris; Lin, Yuankun; Poole, Zsolt; Chen, Kevin P.
2011-09-01
This paper presents the wavelength dependence of two-photon polymerization in SU-8 between 720-780 nm. The study is performed by microstructuring SU-8 through a single-shot exposure of SU-8 to 140 fs tunable laser pulses with 80 MHz repetition rate, or by laser direct writing. Two-photon absorption is closely related to one-photon absorption in pristine SU-8. By careful design of the neighboring micro-structures, or by varying wet-processing parameters during development, undistorted and unbended 3D micro-structures have been fabricated through direct laser writing.
NASA Astrophysics Data System (ADS)
Wysocki, J. K.
1984-02-01
The idea of Young and Clark of independent evaluation of the work function φ and electric field strength F in FEM [R.D. Young and H.E. Clark, Phys. Rev. Letters 17 (1966) 351] has been extended to the energy region above the Fermi level. The estimation of slowly varying elliptic functions, necessary to compute φ and F, using only experimental data is presented. Calculations for the W(111) plane using the field electron energy distribution and the integral field-emission current dependence on retarding voltage have been performed.
Designs and Materials for Better Coronagraph Occulting Masks
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham
2010-01-01
New designs, and materials appropriate for such designs, are under investigation in an effort to develop coronagraph occulting masks having broad-band spectral characteristics superior to those currently employed. These designs and materials are applicable to all coronagraphs, both ground-based and spaceborne. This effort also offers potential benefits for the development of other optical masks and filters that are required (1) for precisely tailored spatial transmission profiles, (2) to be characterized by optical-density neutrality and phase neutrality (that is, to be characterized by constant optical density and constant phase over broad wavelength ranges), and/or (3) not to exhibit optical- density-dependent phase shifts. The need for this effort arises for the following reasons: Coronagraph occulting masks are required to impose, on beams of light transmitted through them, extremely precise control of amplitude and phase according to carefully designed transmission profiles. In the original application that gave rise to this effort, the concern has been to develop broad-band occulting masks for NASA s Terrestrial Planet Finder coronagraph. Until now, experimental samples of these masks have been made from high-energy-beam-sensitive (HEBS) glass, which becomes locally dark where irradiated with a high-energy electron beam, the amount of darkening depending on the electron-beam energy and dose. Precise mask profiles have been written on HEBS glass blanks by use of electron beams, and the masks have performed satisfactorily in monochromatic light. However, the optical-density and phase profiles of the HEBS masks vary significantly with wavelength; consequently, the HEBS masks perform unsatisfactorily in broad-band light. The key properties of materials to be used in coronagraph occulting masks are their extinction coefficients, their indices of refraction, and the variations of these parameters with wavelength. The effort thus far has included theoretical predictions of performances of masks that would be made from alternative materials chosen because the wavelength dependences of their extinction coefficients and their indices of refraction are such that that the optical-density and phase profiles of masks made from these materials can be expected to vary much less with wavelength than do those of masks made from HEBS glass. The alternative materials considered thus far include some elemental metals such as Pt and Ni, metal alloys such as Inconel, metal nitrides such as TiN, and dielectrics such as SiO2. A mask as now envisioned would include thin metal and dielectric films having stepped or smoothly varying thicknesses (see figure). The thicknesses would be chosen, taking account of the indices of refraction and extinction coefficients, to obtain an acceptably close approximation of the desired spatial transmittance profile with a flat phase profile
Electrical and optical performance of mid-wavelength infrared InAsSb heterostructure detectors
NASA Astrophysics Data System (ADS)
Gomółka, Emilia; Kopytko, Małgorzata; Michalczewski, Krystian; Kubiszyn, Łukasz; Kebłowski, Artur; Gawron, Waldemar; Martyniuk, Piotr; Piotrowski, Józef; Rutkowski, Jarosław
2017-10-01
In this work we investigate the high-operating temperature performance of InAsSb/AlSb heterostructure detectors with cut-off wavelengths near 5 μm at 230 K. The devices have been fabricated with different type of the absorbing layer: nominally undoped absorber, and both n- and p-type doped. The results show that the device performance strongly depends on absorber layer doping. Generally, p-type absorber provides higher values of current responsivity than n-type absorber, but at the same time also higher values of dark current. The device with nominally undoped absorbing layer shows moderate values of both current responsivity and dark current. Resulting detectivities D° of non-immersed devices varies from 2×109 to 7×109 cmHz1/2/W at 230 K, which is easily achievable with a two stage thermoelectric cooler.
Collaer, Marcia L; Hill, Erica M
2006-01-01
Visuospatial performance, assessed with the new, group-administered Judgment of Line Angle and Position test (JLAP-13), varied with sex and mathematical competence in a group of adolescents. The JLAP-13, a low-level perceptual task, was modeled after a neuropsychological task dependent upon functioning of the posterior region of the right hemisphere [Benton et al, 1994 Contributions to Neuropsychological Assessment: A Clinical Manual (New York: Oxford University Press)]. High-school boys (N = 52) performed better than girls (N = 62), with a large effect for sex (d = 1.11). Performance increased with mathematical competence, but the sex difference did not vary significantly across different levels of mathematics coursework. On the basis of earlier work, it was predicted that male, but not female, performance in line judgment would decline with disruptions to task geometry (page frame), and that the sex difference would disappear with disruptions to geometry. These predictions were supported by a number of univariate and sex-specific analyses, although an omnibus repeated-measures analysis did not detect the predicted interaction, most likely owing to limitations in power. Thus, there is partial support for the notion that attentional predispositions or strategies may contribute to visuospatial sex differences, with males more likely than females to attend to, and rely upon, internal or external representations of task geometry. Additional support for this hypothesis may require development of new measures or experimental manipulations with more powerful geometrical disruptions.
... Ulcerative colitis care at Mayo Clinic Symptoms Ulcerative colitis symptoms can vary, depending on the severity of inflammation ... children, failure to grow Most people with ulcerative colitis have mild to moderate symptoms. The course of ulcerative colitis may vary, with ...
Global exponential stability for switched memristive neural networks with time-varying delays.
Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia
2016-08-01
This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Performance Optimizing Adaptive Control with Time-Varying Reference Model Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The control synthesis involves the design of a performance optimizing adaptive controller from a subset of control inputs. The resulting effect of the performance optimizing adaptive controller is to modify the initial reference model into a time-varying reference model which satisfies the performance optimization requirement obtained from an optimal control problem. The time-varying reference model modification is accomplished by the real-time solutions of the time-varying Riccati and Sylvester equations coupled with the least-squares parameter estimation of the sensitivities of the performance metric. The effectiveness of the proposed method is demonstrated by an application of maneuver load alleviation control for a flexible aircraft.
Temporal trends and variability of colonoscopy performance in a gastroenterology practice.
le Clercq, Chantal M C; Mooi, Rick J; Winkens, Bjorn; Salden, Bouke N H; Bakker, C Minke; van Nunen, Annick B; Keulen, Eric P T; de Ridder, Rogier J; Masclee, Ad A M; Sanduleanu, Silvia
2016-03-01
Quality measures for colonoscopy are operator dependent and vary. It is unclear whether quality measures change over time. In this study, time-dependent variation in colonoscopy performance was examined in a gastroenterology practice. Colonoscopy and histopathology records that were collected at three hospitals (one university and two non-university hospitals) over three time periods (2007, 2010, and 2013) were reviewed. Data from colonoscopists performing at least 100 procedures per year were analyzed. Inter-colonoscopist variation in performance (i. e. adjusted cecal intubation rate [aCIR], adenoma detection rate [ADR], advanced ADR, mean adenomas per procedure [MAP], proximal ADR, nonpolypoid ADR, and serrated polyp detection rate) were examined using coefficients of variation. Logistic regression analyses were also performed, adjusting for covariates. A total of 23 colonoscopists performing 6400 procedures were included. Overall, the mean aCIR, ADR, MAP, and proximal ADR improved significantly over time, from 91.9 %, 22.5 %, 0.37, and 10.2 % in 2007 to 95.3 %, 25.8 %, 0.45, and 13.4 %, respectively, in 2013 (P < 0.05). The inter-colonoscopist variation in ADR decreased from 37 % in 2007 to 15 % in 2013 (P < 0.05). In the non-university hospitals, mean values for quality measures increased significantly over time, whereas they remained stable in the university hospital. Variability in performance among colonoscopists decreased significantly within the gastroenterology clinical practice. Core quality measures improved over time, mainly through improvement of the lower performers. Measurement of inter-colonoscopist variation in performance helps to identify factors that stimulate or hinder performance, and forms the basis for interventions. http://www.trialregister.nl. © Georg Thieme Verlag KG Stuttgart · New York.
Varying electric charge in multiscale spacetimes
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Magueijo, João; Fernández, David Rodríguez
2014-01-01
We derive the covariant equations of motion for Maxwell field theory and electrodynamics in multiscale spacetimes with weighted Laplacian. An effective spacetime-dependent electric charge of geometric origin naturally emerges from the theory, thus giving rise to a varying fine-structure constant. The theory is compared with other varying-coupling models, such as those with a varying electric charge or varying speed of light. The theory is also confronted with cosmological observations, which can place constraints on the characteristic scales in the multifractional measure. We note that the model considered here is fundamentally different from those previously proposed in the literature, either of the varying-e or varying-c persuasion.
Cerebral NIRS performance testing with molded and 3D-printed phantoms (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Jianting; Huang, Stanley; Chen, Yu; Welle, Cristin G.; Pfefer, T. Joshua
2017-03-01
Near-infrared spectroscopy (NIRS) has emerged as a low-cost, portable approach for rapid, point-of-care detection of hematomas caused by traumatic brain injury. As a new technology, there is a need to develop standardized test methods for objective, quantitative performance evaluation of these devices. Towards this goal, we have developed and studied two types of phantom-based testing approaches. The first involves 3D-printed phantoms incorporating hemoglobin-filled inclusions. Phantom layers representing specific cerebral tissues were printed using photopolymers doped with varying levels of titanium oxide and black resin. The accuracy, precision and spectral dependence of printed phantom optical properties were validated using spectrophotometry. The phantom also includes a hematoma inclusion insert which was filled with a hemoglobin solution. Oxygen saturation levels were modified by adding sodium dithionite at calibrated concentrations. The second phantom approach involves molded silicone layers with a superficial region - simulating the scalp and skull - comprised of removable layers to vary hematoma size and depth, and a bottom layer representing brain matter. These phantoms were tested with both a commercial hematoma detector and a custom NIRS system to optimize their designs and validate their utility in performing inter-device comparisons. The effects of hematoma depth, diameter, and height, as well as tissue optical properties and biological variables including hemoglobin saturation level and scalp/skull thickness were studied. Results demonstrate the ability to quantitatively compare NIRS device performance and indicate the promise of using 3D printing to achieve phantoms with realistic variations in tissue optical properties for evaluating biophotonic device performance.
Reward-Dependent Modulation of Movement Variability
Izawa, Jun; Shadmehr, Reza
2015-01-01
Movement variability is often considered an unwanted byproduct of a noisy nervous system. However, variability can signal a form of implicit exploration, indicating that the nervous system is intentionally varying the motor commands in search of actions that yield the greatest success. Here, we investigated the role of the human basal ganglia in controlling reward-dependent motor variability as measured by trial-to-trial changes in performance during a reaching task. We designed an experiment in which the only performance feedback was success or failure and quantified how reach variability was modulated as a function of the probability of reward. In healthy controls, reach variability increased as the probability of reward decreased. Control of variability depended on the history of past rewards, with the largest trial-to-trial changes occurring immediately after an unrewarded trial. In contrast, in participants with Parkinson's disease, a known example of basal ganglia dysfunction, reward was a poor modulator of variability; that is, the patients showed an impaired ability to increase variability in response to decreases in the probability of reward. This was despite the fact that, after rewarded trials, reach variability in the patients was comparable to healthy controls. In summary, we found that movement variability is partially a form of exploration driven by the recent history of rewards. When the function of the human basal ganglia is compromised, the reward-dependent control of movement variability is impaired, particularly affecting the ability to increase variability after unsuccessful outcomes. PMID:25740529
NASA Astrophysics Data System (ADS)
Burke, G. J.; King, R. J.; Miller, E. K.
1984-09-01
Relative communication efficiency (RCE) as defined by Fenwick and Weeks compares the field of a test antenna to that of a reference antenna at the same location for equal input plower to each antenna. Thus, RCE is similar to power gain but is definable in the presence of ground. The effectiveness of antennas in launching TM surface waves was compared. Antennas considered included the vertical dipole, monople on a ground stake, monopole on a radial-wire ground screen, Beverage antenna and vertical half rhombic. Since the performance of these antennas is strongly dependent on parameters such as the number wires in a ground screen or the length of a Beverage antenna, results are presented with parameters varying over a reasonable range. Thus, antenna performance can be weighed against the effort and limitations of construction.
Commercial Ion Exchange Resin Vitrification in Borosilicate Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicero-Herman, C.A.; Workman, P.; Poole, K.
1998-05-01
Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification processmore » utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.« less
Switching State-Feedback LPV Control with Uncertain Scheduling Parameters
NASA Technical Reports Server (NTRS)
He, Tianyi; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming G.
2017-01-01
This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.
Variable optical attenuator and dynamic mode group equalizer for few mode fibers.
Blau, Miri; Weiss, Israel; Gerufi, Jonathan; Sinefeld, David; Bin-Nun, Moran; Lingle, Robert; Grüner-Nielsen, Lars; Marom, Dan M
2014-12-15
Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes' distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.
The economics and timing of preoperative antibiotics for orthopaedic procedures.
Norman, B A; Bartsch, S M; Duggan, A P; Rodrigues, M B; Stuckey, D R; Chen, A F; Lee, B Y
2013-12-01
The efficacy of antibiotics in preventing surgical site infections (SSIs) depends on the timing of administration relative to the start of surgery. However, currently, both the timing of and recommendations for administration vary substantially. To determine how the economic value from the hospital perspective of preoperative antibiotics varies with the timing of administration for orthopaedic procedures. Computational decision and operational models were developed from the hospital perspective. Baseline analyses looked at current timing of administration, while additional analyses varied the timing of administration, compliance with recommended guidelines, and the goal time-interval. Beginning antibiotic administration within 0-30 min prior to surgery resulted in the lowest costs and SSIs. Operationally, linking to a pre-surgical activity, administering antibiotics prior to incision but after anaesthesia-ready time was optimal, as 92.1% of the time, antibiotics were administered in the optimal time-interval (0-30 min prior to incision). Improving administration compliance from 80% to 90% for this pre-surgical activity results in cost savings of $447 per year for a hospital performing 100 orthopaedic operations a year. This study quantifies the potential cost-savings when antibiotic administration timing is improved, which in turn can guide the amount hospitals should invest to address this issue.
On estimation of time-dependent attributable fraction from population-based case-control studies.
Zhao, Wei; Chen, Ying Qing; Hsu, Li
2017-09-01
Population attributable fraction (PAF) is widely used to quantify the disease burden associated with a modifiable exposure in a population. It has been extended to a time-varying measure that provides additional information on when and how the exposure's impact varies over time for cohort studies. However, there is no estimation procedure for PAF using data that are collected from population-based case-control studies, which, because of time and cost efficiency, are commonly used for studying genetic and environmental risk factors of disease incidences. In this article, we show that time-varying PAF is identifiable from a case-control study and develop a novel estimator of PAF. Our estimator combines odds ratio estimates from logistic regression models and density estimates of the risk factor distribution conditional on failure times in cases from a kernel smoother. The proposed estimator is shown to be consistent and asymptotically normal with asymptotic variance that can be estimated empirically from the data. Simulation studies demonstrate that the proposed estimator performs well in finite sample sizes. Finally, the method is illustrated by a population-based case-control study of colorectal cancer. © 2017, The International Biometric Society.
Beykal, Burcu; Herzberg, Moshe; Oren, Yoram; Mauter, Meagan S
2015-12-15
The objective of this work is to investigate the rate, extent, and structure of amphoteric proteins with charged solid surfaces over a range of applied potentials and surface charges. We use Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring (E-QCM-D) to investigate the adsorption of amphoteric Bovine Serum Albumin (BSA) to a gold electrode while systematically varying the surface charge on the adsorbate and adsorbent by manipulating pH and applied potential, respectively. We also perform cyclic voltammetry-E-QCM-D on an adsorbed layer of BSA to elucidate conformational changes in response to varied applied potentials. We confirm previous results demonstrating that increasing magnitude of applied potential on the gold electrode is positively correlated with increasing mass adsorption when the protein and the surface are oppositely charged. On the other hand, we find that the rate of BSA adsorption is not governed by simple electrostatics, but instead depends on solution pH, an observation not well documented in the literature. Cyclic voltammetry with simultaneous E-QCM-D measurements suggest that BSA protein undergoes a conformational change as the surface potential varies. Copyright © 2015 Elsevier Inc. All rights reserved.
An experimental study of laminar film condensation with Stefan number greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, R.L.; Dickinson, D.A.; Chu, T.Y.
1990-01-01
Experimental laminar condensation heat transfer data is reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids developed in the last decade which have been extensively used in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5{degree}C to 190{degree}C. Over this range of temperature difference, the condensatemore » properties vary significantly. For example, viscosity of the condense varies by a factor of over 50. Corrections for the temperature dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data theory for Stefan number less than 1. To the knowledge of the authors, this is the first reported study of condensation heat transfer for Stefan number greater that unity. 24 refs., 7 figs., 2 tabs.« less
Schiffmann, H; Singer, S; Singer, D; von Richthofen, E; Rathgeber, J; Züchner, K
1999-09-01
Thus far only few data are available on airway humidification during high-frequency oscillatory ventilation (HFOV). Therefore, we studied the performance and efficiency of a heated humidifier (HH) and a heat and moisture exchanger (HME) in HFOV using an artificial lung model. Experiments were performed with a pediatric high-frequency oscillatory ventilator. The artificial lung contained a sponge saturated with water to simulate evaporation and was placed in an incubator heated to 37 degrees C to prevent condensation. The airway humidity was measured using a capacitive humidity sensor. The water loss of the lung model was determined gravimetrically. The water loss of the lung model varied between 2.14 and 3.1 g/h during active humidification; it was 2.85 g/h with passive humidification and 7.56 g/h without humidification. The humidity at the tube connector varied between 34. 2 and 42.5 mg/l, depending on the temperature of the HH and the ventilator setting during active humidification, and between 37 and 39.9 mg/l with passive humidification. In general, HH and HME are suitable devices for airway humidification in HFOV. The performance of the ventilator was not significantly influenced by the mode of humidification. However, the adequacy of humidification and safety of the HME remains to be demonstrated in clinical practice.
NASA Astrophysics Data System (ADS)
Ali, T.; Polakowski, P.; Riedel, S.; Büttner, T.; Kämpfe, T.; Rudolph, M.; Pätzold, B.; Seidel, K.; Löhr, D.; Hoffmann, R.; Czernohorsky, M.; Kühnel, K.; Thrun, X.; Hanisch, N.; Steinke, P.; Calvo, J.; Müller, J.
2018-05-01
The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.
NASA Astrophysics Data System (ADS)
Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.
2016-09-01
The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.
Correlation between driving errors and vigilance level: influence of the driver's age.
Campagne, Aurelie; Pebayle, Thierry; Muzet, Alain
2004-01-01
During long and monotonous driving at night, most drivers progressively show signs of visual fatigue and loss of vigilance. Their capacity to maintain adequate driving performance usually is affected and varies with the age of the driver. The main question is to know, on one hand, if occurrence of fatigue and drowsiness is accompanied by a modification in the driving performance of the driver and, on the other hand, if this relationship partially depends on the driver's age. Forty-six male drivers, divided into three age categories: 20-30, 40-50, and 60-70 years, performed a 350-km motorway driving session at night on a driving simulator. Driving errors were measured in terms of number of running-off-the-road incidents (RORI) and large speed deviations. The evolution of physiological vigilance level was evaluated using electroencephalography (EEG) recording. In older drivers, in comparison with young and middle-aged drivers, the degradation of driving performance was correlated to the evolution of lower frequency waking EEG (i.e., theta). Contrary to young and middle-aged drivers, the deterioration of the vigilance level attested by EEG correlated with the increase in gravity of all studied driving errors in older drivers. Thus, depending on the age category considered, only part of the driving errors would constitute a relevant indication as for the occurrence of a state of low arousal.
Ozturk, Ferhat; Park, Paul J.; Tellez, Joseph; Colletti, Evan; Eiden, Maribeth V.; Almeida-Porada, Graça; Porada, Christopher D.
2014-01-01
Background A fundamental obstacle to using retroviral-mediated gene transfer (GT) to treat human diseases is the relatively low transduction levels that have been achieved in clinically relevant human cells. We previously showed that performing GT in utero overcomes this obstacle and results in significant levels of transduction within multiple fetal organs, with different tissues exhibiting optimal transduction at different developmental stages. We undertook the present study aiming to elucidate the mechanism for this age-dependent transduction, testing the two factors that we hypothesized could be responsible: (i) the proliferative status of the tissue at the time of GT and (ii) the expression level of the amphotropic PiT-2 receptor. Methods Immunofluorescence was performed on tissues from sheep of varying developmental stages to assess the proliferative status of the predominant cells within each organ as a function of age. After developing an enzyme-linked immunosorbent assay (ELISA) and a quantitative reverse transcription chain reaction (qRT-PCR) assay, we then quantified PiT-2 expression at the protein and mRNA levels, respectively. Results The results obtained indicate that the proliferative status of organs at the time of fetal GT is not the major determinant governing transduction efficiency. By contrast, our ELISA and qRT-PCR analyses demonstrated that PiT-2 mRNA and protein levels vary with gestational age, correlating with the observed differences in transduction efficiency. Conclusions The findings of the present study explain the age-related differences that we previously observed in transduction efficiency after in utero GT. They also suggest it may be possible to achieve relatively selective GT to specific tissues by performing in utero GT when levels of PiT-2 are maximal in the desired target organ. PMID:22262359
Chan, Kitty S; Gross, Alden L; Pezzin, Liliana E; Brandt, Jason; Kasper, Judith D
2015-12-01
To harmonize measures of cognitive performance using item response theory (IRT) across two international aging studies. Data for persons ≥65 years from the Health and Retirement Study (HRS, N = 9,471) and the English Longitudinal Study of Aging (ELSA, N = 5,444). Cognitive performance measures varied (HRS fielded 25, ELSA 13); 9 were in common. Measurement precision was examined for IRT scores based on (a) common items, (b) common items adjusted for differential item functioning (DIF), and (c) DIF-adjusted all items. Three common items (day of date, immediate word recall, and delayed word recall) demonstrated DIF by survey. Adding survey-specific items improved precision but mainly for HRS respondents at lower cognitive levels. IRT offers a feasible strategy for harmonizing cognitive performance measures across other surveys and for other multi-item constructs of interest in studies of aging. Practical implications depend on sample distribution and the difficulty mix of in-common and survey-specific items. © The Author(s) 2015.
Characterizing metabolic pathway diversification in the context of perturbation size.
Yang, Laurence; Srinivasan, Shyamsundhar; Mahadevan, Radhakrishnan; Cluett, William R
2015-03-01
Cell metabolism is an important platform for sustainable biofuel, chemical and pharmaceutical production but its complexity presents a major challenge for scientists and engineers. Although in silico strains have been designed in the past with predicted performances near the theoretical maximum, real-world performance is often sub-optimal. Here, we simulate how strain performance is impacted when subjected to many randomly varying perturbations, including discrepancies between gene expression and in vivo flux, osmotic stress, and substrate uptake perturbations due to concentration gradients in bioreactors. This computational study asks whether robust performance can be achieved by adopting robustness-enhancing mechanisms from naturally evolved organisms-in particular, redundancy. Our study shows that redundancy, typically perceived as a ubiquitous robustness-enhancing strategy in nature, can either improve or undermine robustness depending on the magnitude of the perturbations. We also show that the optimal number of redundant pathways used can be predicted for a given perturbation size. Copyright © 2015. Published by Elsevier Inc.
In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance
NASA Astrophysics Data System (ADS)
Sulek, Mark; Adams, Jim; Kaberline, Steve; Ricketts, Mark; Waldecker, James R.
Automotive fuel cell technology has made considerable progress, and hydrogen fuel cell vehicles are regarded as a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great strides have been made, durability is still an issue. One key challenge is controlling MEA contamination. Metal ion contamination within the membrane and the effects on fuel cell performance were investigated. Given the possible benefits of using stainless steel or aluminum for balance-of-plant components or bipolar plates, cations of Al, Fe, Ni and Cr were studied. Membranes were immersed in metal sulfide solutions of varying concentration and then assembled into fuel cell MEAs tested in situ. The ranking of the four transition metals tested in terms of the greatest reduction in fuel cell performance was: Al 3+ ≫ Fe 2+ > Ni 2+, Cr 3+. For iron-contaminated membranes, no change in cell performance was detected until the membrane conductivity loss was greater than approximately 15%.
Subrandom methods for multidimensional nonuniform sampling.
Worley, Bradley
2016-08-01
Methods of nonuniform sampling that utilize pseudorandom number sequences to select points from a weighted Nyquist grid are commonplace in biomolecular NMR studies, due to the beneficial incoherence introduced by pseudorandom sampling. However, these methods require the specification of a non-arbitrary seed number in order to initialize a pseudorandom number generator. Because the performance of pseudorandom sampling schedules can substantially vary based on seed number, this can complicate the task of routine data collection. Approaches such as jittered sampling and stochastic gap sampling are effective at reducing random seed dependence of nonuniform sampling schedules, but still require the specification of a seed number. This work formalizes the use of subrandom number sequences in nonuniform sampling as a means of seed-independent sampling, and compares the performance of three subrandom methods to their pseudorandom counterparts using commonly applied schedule performance metrics. Reconstruction results using experimental datasets are also provided to validate claims made using these performance metrics. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Dong; Tsui, Kwok-Leung
2018-01-01
Bearing-supported shafts are widely used in various machines. Due to harsh working environments, bearing performance degrades over time. To prevent unexpected bearing failures and accidents, bearing performance degradation assessment becomes an emerging topic in recent years. Bearing performance degradation assessment aims to evaluate the current health condition of a bearing through a bearing health indicator. In the past years, many signal processing and data mining based methods were proposed to construct bearing health indicators. However, the upper and lower bounds of these bearing health indicators were not theoretically calculated and they strongly depended on historical bearing data including normal and failure data. Besides, most health indicators are dimensional, which connotes that these health indicators are prone to be affected by varying operating conditions, such as varying speeds and loads. In this paper, based on the principle of squared envelope analysis, we focus on theoretical investigation of bearing performance degradation assessment in the case of additive Gaussian noises, including distribution establishment of squared envelope, construction of a generalized dimensionless bearing health indicator, and mathematical calculation of the upper and lower bounds of the generalized dimensionless bearing health indicator. Then, analyses of simulated and real bearing run to failure data are used as two case studies to illustrate how the generalized dimensionless health indicator works and demonstrate its effectiveness in bearing performance degradation assessment. Results show that squared envelope follows a noncentral chi-square distribution and the upper and lower bounds of the generalized dimensionless health indicator can be mathematically established. Moreover, the generalized dimensionless health indicator is sensitive to an incipient bearing defect in the process of bearing performance degradation.
Effect of Variable Chord Length on Transonic Axial Rotor Performance Investigated
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
2002-01-01
During the life of any gas turbine, blade erosion is present, especially for those units that are exposed to unfiltered air, such as aviation turbofan engines. The effect of this erosion is to reduce the blade chord progressively from the midspan to the tip region and to roughen and distort the blade surface. The effects of roughness on rotor performance have been documented by Suder et al. and Roberts. These papers indicate that the penalty for leading-edge roughness and erosion can be significant. Turbofan operators, therefore, restore chord length at routine maintenance intervals to regain performance before deterioration is too severe to salvage blades. As the rotor blades erode, the leading edge becomes rough - blunt and distorted from the nominal shape - and the aerodynamic performance suffers. Nominal performance can be recovered by recontouring the leading edges. This process, which inherently shortens the blade chord, can be used until the blade chord erodes to the stall limit. Below this chord length, which varies among engine-compressor types, a decrease of stall margin is likely. After compressor blade rework that includes leading edge recontouring, the blades have different chord lengths, ranging from blades that are near nominal chord length down to those near the stall chord limit. Furthermore, as blades erode below the stall limit, they must be replaced with new blades that have the full nominal chord length. Consequently, a set of compressor blades with varying chord lengths will be installed into each turbofan engine that goes through a complete maintenance cycle. The question arises, "Does fan or compressor performance depend on the order in which mixed-chord blades are installed into a fan or compressor disk?"
Theory of electromagnetic cyclotron wave growth in a time-varying magnetoplasma
NASA Technical Reports Server (NTRS)
Gail, William B.
1990-01-01
The effect of a time-dependent perturbation in the magnetoplasma on the wave and particle populations is investigated using the Kennel-Petchek (1966) approach. Perturbations in the cold plasma density, energetic particle distribution, and resonance condition are calculated on the basis of the ideal MHD assumption given an arbitrary compressional magnetic field perturbation. An equation is derived describing the time-dependent growth rate for parallel propagating electromagnetic cyclotron waves in a time-varying magnetoplasma with perturbations superimposed on an equilibrium configuration.
Whitehead, Phillip J; Worthington, Esme J; Parry, Ruth H; Walker, Marion F; Drummond, Avril ER
2015-01-01
Objectives: To identify interventions that aim to reduce dependency in activities of daily living (ADL) in homecare service users. To determine: content; effectiveness in improving ability to perform ADL; and whether delivery by qualified occupational therapists influences effectiveness. Data sources: The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, OTseeker, PEDro, Web of Science, CIRRIE, and ASSIA. Review methods: We included: randomised controlled trials, non-randomised controlled trials and controlled before and after studies. Two reviewers independently screened studies for inclusion, assessed risk of bias and extracted data. A narrative synthesis of the findings was conducted. Results: Thirteen studies were included, totalling 4975 participants. Ten (77%) were judged to have risk of bias. Interventions were categorised as those termed ‘re-ablement’ or ‘restorative homecare’ (n=5/13); and those involving separate components which were not described using this terminology (n=8/13). Content of the intervention and level of health professional input varied within and between studies. Effectiveness on ADL: eight studies included an ADL outcome, five favoured the intervention group, only two with statistical significance, both these were controlled before and after studies judged at high risk of bias. ADL outcome was reported using seven different measures. Occupational therapy: there was insufficient evidence to determine whether involvement of qualified occupational therapists influenced effectiveness. Conclusion: There is limited evidence that interventions targeted at personal ADL can reduce homecare service users’ dependency with activities, the content of evaluated interventions varies greatly. PMID:25587088
Douglas, Angela E.
2014-01-01
The animal gut is perpetually exposed to microorganisms, and this microbiota affects development, nutrient allocation, and immune homeostasis. A major challenge is to understand the contribution of individual microbial species and interactions among species in shaping these microbe-dependent traits. Using the Drosophila melanogaster gut microbiota, we tested whether microbe-dependent performance and nutritional traits of Drosophila are functionally modular, i.e., whether the impact of each microbial taxon on host traits is independent of the presence of other microbial taxa. Gnotobiotic flies were constructed with one or a set of five of the Acetobacter and Lactobacillus species which dominate the gut microbiota of conventional flies (Drosophila with untreated microbiota). Axenic (microbiota-free) flies exhibited prolonged development time and elevated glucose and triglyceride contents. The low glucose content of conventional flies was recapitulated in gnotobiotic Drosophila flies colonized with any of the 5 bacterial taxa tested. In contrast, the development rates and triglyceride levels in monocolonized flies varied depending on the taxon present: Acetobacter species supported the largest reductions, while most Lactobacillus species had no effect. Only flies with both Acetobacter and Lactobacillus had triglyceride contents restored to the level in conventional flies. This could be attributed to two processes: Lactobacillus-mediated promotion of Acetobacter abundance in the fly and a significant negative correlation between fly triglyceride content and Acetobacter abundance. We conclude that the microbial basis of host traits varies in both specificity and modularity; microbe-mediated reduction in glucose is relatively nonspecific and modular, while triglyceride content is influenced by interactions among microbes. PMID:24242251
Study on individual stochastic model of GNSS observations for precise kinematic applications
NASA Astrophysics Data System (ADS)
Próchniewicz, Dominik; Szpunar, Ryszard
2015-04-01
The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.
Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation
NASA Astrophysics Data System (ADS)
Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti
2017-10-01
Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.
The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater.
Cornelissen, E R; Harmsen, D; Beerendonk, E F; Qin, J J; Oo, H; de Korte, K F; Kappelhof, J W M N
2011-01-01
An innovative osmotic membrane bioreactor (OMBR) is currently under development for the reclamation of wastewater, which combines activated sludge treatment and forward osmosis (FO) membrane separation with a RO post-treatment. The research focus is FO membrane fouling and performance using different activated sludge investigated both at laboratory scale (membrane area of 112cm2) and at on-site bench scale (flat sheet membrane area of 0.1 m2). FO performance on laboratory-scale (i) increased with temperature due to a decrease in viscosity and (ii) was independent of the type of activated sludge. Draw solution leakage increased with temperature and varied for different activated sludge. FO performance on bench-scale (i) increased with osmotic driving force, (ii) depended on the membrane orientation due to internal concentration polarization and (iii) was invariant to feed flow decrease and air injection at the feed and draw side. Draw solution leakage could not be evaluated on bench-scale due to experimental limitation. Membrane fouling was not found on laboratory scale and bench-scale, however, partially reversible fouling was found on laboratory scale for FO membranes facing the draw solution. Economic assessment indicated a minimum flux of 15L.m-2 h-1 at 0.5M NaCl for OMBR-RO to be cost effective, depending on the FO membrane price.
Christensen, Bruce K; Patrick, Regan E; Stuss, Donald T; Gillingham, Susan; Zipursky, Robert B
2013-01-01
Schizophrenia (SCZ)-related verbal memory impairment is hypothesized to be mediated, in part, by frontal lobe (FTL) dysfunction. However, little research has contrasted the performance of SCZ patients with that of patients exhibiting circumscribed frontal lesions. The current study compared verbal episodic memory in patients with SCZ and focal FTL lesions (left frontal, LF; right frontal, RF; and bi-frontal, BF) on a four-trial list learning task consisting of three lists of varying semantic organizational structure. Each dependent variable was examined at two levels: scores collapsed across all four trials and learning scores (i.e., trial 4-trial 1). Performance deficits were observed in each patient group across most dependent measures at both levels. Regarding patient group differences, SCZ patients outperformed LF/BF patients (i.e., either learning scores or scores collapsed across trial) on free recall, primacy, primary memory, secondary memory, and subjective organization, whereas they only outperformed RF patients on the semantically blocked list on recency and primary memory. Collectively, these results indicate that the pattern of memory performance is largely similar between patients with SCZ and those with RF lesions. These data support tentative arguments that verbal episodic memory deficits in SCZ may be mediated by frontal dysfunction in the right hemisphere.
Ten Brink, Antonia F; Visser-Meily, Johanna M A; Schut, Martijn J; Kouwenhoven, Mirjam; Eijsackers, Anja L H; Nijboer, Tanja C W
2017-12-01
Patients with neglect ignore or respond slower to contralesional stimuli. Neglect negatively influences independence in activities of daily living (ADL). Prism adaptation (PA) is one of the most frequently studied treatments, yet there is little evidence regarding positive effects on neglect behavior in ADL. To assess whether PA in the subacute phase ameliorates neglect in situations of varying complexity. A total of 70 neglect patients admitted for inpatient stroke rehabilitation received either PA or sham adaptation (SA) for 2 weeks, with full access to standard treatment. There were 7 time-dependent measurements (baseline and 1-4, 6, and 14 weeks after start of treatment). The primary outcome was change of neglect as observed during basic ADL with the Catherine Bergego Scale (CBS). Secondary outcomes were changes in performance on a dynamic multitask (ie, the Mobility Assessment Course [MAC]) and a static paper-and-pencil task (ie, a shape cancellation task [SC]). In all, 34 patients received PA and 35 SA. There were significant time-dependent improvements in performance as measured with the CBS, MAC, and SC (all F > 15.57; P < .001). There was no significant difference in magnitude of improvement between groups on the CBS, MAC, and SC (all F < 2.54; P > .113]. No beneficial effects of PA over SA in the subacute phase poststroke were observed, which was comparable for situations of varying complexity. Heterogeneity of the syndrome, time post-stroke onset, and the content of treatment as usual are discussed. Basic knowledge on subtypes and recovery patterns would aid the development of tailored treatment.
Bunford, Nora; Kinney, Kerry L; Michael, Jamie; Klumpp, Heide
2017-07-03
Accumulating data from fMRI studies implicate the rostral anterior cingulate cortex (rACC) in inhibition of attention to threat distractors that compete with task-relevant goals for processing resources. However, little data is available on the reliability of rACC activation. Our aim in the current study was to examine test-retest reliability of rACC activation over a 12-week period, in the context of a validated emotional interference paradigm that varied in perceptual load. During functional MRI, 23 healthy volunteers completed a task involving a target letter in a string of identical letters (low load) or in a string of mixed letters (high load) superimposed on angry, fearful, and neutral face distractors. Intraclass correlation coefficients (ICCs) indicated that under low, but not high perceptual load, rACC activation to fearful vs. neutral distractors was moderately reliable. Conversely, regardless of perceptual load, rACC activation to angry vs. neutral distractors was not reliable. Regarding behavioral performance, ICCs indicated that accuracy was not reliable regardless of distractor type or perceptual load. Although reaction time (RT) was similarly not reliable regardless of distractor type under low perceptual load, RT to angry vs. neutral distractors and to fearful vs. neutral distractors was reliable under high perceptual load. Together, results indicate the test-retest reliability of rACC activation and corresponding behavioral performance are context dependent; reliability of the former varies as a function of distractor type and level of cognitive demand, whereas reliability of the latter depends on behavioral index (accuracy vs. RT) and level of cognitive demand but not distractor type. Copyright © 2017 Elsevier Inc. All rights reserved.
Microstructure and texture evolution in cold-rolled and annealed alloy MA-956
NASA Astrophysics Data System (ADS)
Hosoda, Takashi
The microstructural and texture development with thermomechanical processing, performed through a combination of cold-rolling and annealing, in MA-956 plate consisting of a layered and inhomogeneous microstructure was systematically assessed. The alloy contained in mass percent, 20 Cr, 4.8 Al, 0.4 Ti, 0.4 Y2O3, and the balance iron. The starting material was as-hot-rolled plate, 9.7 mm thick. The as-hot-rolled plate was subjected to 40%, 60%, and 80% cold-rolling reduction and subsequently annealed at 1000, 1200, or 1380. Assessment of microstructural and texture developments before and after cold-rolling and annealing was performed using light optical microscopy (LOM), Vickers hardness testing, and electron backscatter diffraction (EBSD). Locally introduced misorientations by cold-rolling in each region were evaluated by Kernel Average Misorientation (KAM) maps. The as-hot-rolled condition contained a layered and inhomogeneous microstructure consisting of thin and coarse elongated grains, and aggregated regions which consisted of fine grains and sub-grains with {100} texture parallel to the longitudinal direction. The microstructure of the 40% cold-rolled condition contained deformation bands, and the 60% and 80% cold-rolled conditions also contained highly deformed regions where the deformation bands were intricately tangled. A predominant orientation of (001) parallel to the rolling direction was developed during cold-rolling, becoming more prominent with increasing reduction. The magnitudes of KAM angles varied through the thickness depending on the initial microstructures. Recrystallization occurred in regions where high KAM angles were dense after annealing and nucleation sites were the aggregation regions, deformation bands, and highly deformed regions. The shape and size of the recrystallized grains varied depending on the nucleation sites.
Effects of eddy currents on selective spectral editing experiments at 3T.
Oeltzschner, Georg; Snoussi, Karim; Puts, Nicolaas A; Mikkelsen, Mark; Harris, Ashley D; Pradhan, Subechhya; Tsapkini, Kyrana; Schär, Michael; Barker, Peter B; Edden, Richard A E
2018-03-01
To investigate frequency-offset effects in edited magnetic resonance spectroscopy (MRS) experiments arising from B 0 eddy currents. Macromolecule-suppressed (MM-suppressed) γ-aminobutyric acid (GABA)-edited experiments were performed at 3T. Saturation-offset series of MEGA-PRESS experiments were performed in phantoms, in order to investigate different aspects of the relationship between the effective editing frequencies and eddy currents associated with gradient pulses in the sequence. Difference integrals were quantified for each series, and the offset dependence of the integrals was analyzed to quantify the difference in frequency (Δf) between the actual vs. nominal expected saturation frequency. Saturation-offset N-acetyl-aspartate-phantom experiments show that Δf varied with voxel orientation, ranging from 10.4 Hz (unrotated) to 6.4 Hz (45° rotation about the caudal-cranial axis) and 0.4 Hz (45° rotation about left-right axis), indicating that gradient-related B 0 eddy currents vary with crusher-gradient orientation. Fixing the crusher-gradient coordinate-frame substantially reduced the orientation dependence of Δf (to ∼2 Hz). Water-suppression crusher gradients also introduced a frequency offset, with Δf = 0.6 Hz ("excitation" water suppression), compared to 10.2 Hz (no water suppression). In vivo spectra showed a negative edited "GABA" signal, suggesting Δf on the order of 10 Hz; with fixed crusher-gradient coordinate-frame, the expected positive edited "GABA" signal was observed. Eddy currents associated with pulsed field gradients may have a considerable impact on highly frequency-selective spectral-editing experiments, such as MM-suppressed GABA editing at 3T. Careful selection of crusher gradient orientation may ameliorate these effects. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:673-681. © 2017 International Society for Magnetic Resonance in Medicine.
Nonparametric Regression and the Parametric Bootstrap for Local Dependence Assessment.
ERIC Educational Resources Information Center
Habing, Brian
2001-01-01
Discusses ideas underlying nonparametric regression and the parametric bootstrap with an overview of their application to item response theory and the assessment of local dependence. Illustrates the use of the method in assessing local dependence that varies with examinee trait levels. (SLD)
ERIC Educational Resources Information Center
Smith, S. Mae; Miller, Eva
The effects of drug abuse and dependence vary, depending on the type of drug, polydrug use, and characteristics of the user. The influence of genetic, neurochemical, neuropsyiological, sociocultural, and economic factors suggest that the etiology of substance abuse and dependence is multiply determined. Models explaining the causation of substance…
Modelling Pollutant Dispersion in a Street Network
NASA Astrophysics Data System (ADS)
Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.
2015-04-01
This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.
SLIDE PRESENTATION--PHARMACEUTICALS AS ENVIRONMENTAL CONTAMINANTS: AN OVERVIEW OF THE SCIENCE
While pharmaceuticals are ubiquitous trace contaminants in the environment, thetypes, concentrations, and relative abundances of individual residues will vary depending on thegeographic locale and time of year, primarily a reflection of differing and varying prescribing andconsum...
De Silva, Anurika Priyanjali; Moreno-Betancur, Margarita; De Livera, Alysha Madhu; Lee, Katherine Jane; Simpson, Julie Anne
2017-07-25
Missing data is a common problem in epidemiological studies, and is particularly prominent in longitudinal data, which involve multiple waves of data collection. Traditional multiple imputation (MI) methods (fully conditional specification (FCS) and multivariate normal imputation (MVNI)) treat repeated measurements of the same time-dependent variable as just another 'distinct' variable for imputation and therefore do not make the most of the longitudinal structure of the data. Only a few studies have explored extensions to the standard approaches to account for the temporal structure of longitudinal data. One suggestion is the two-fold fully conditional specification (two-fold FCS) algorithm, which restricts the imputation of a time-dependent variable to time blocks where the imputation model includes measurements taken at the specified and adjacent times. To date, no study has investigated the performance of two-fold FCS and standard MI methods for handling missing data in a time-varying covariate with a non-linear trajectory over time - a commonly encountered scenario in epidemiological studies. We simulated 1000 datasets of 5000 individuals based on the Longitudinal Study of Australian Children (LSAC). Three missing data mechanisms: missing completely at random (MCAR), and a weak and a strong missing at random (MAR) scenarios were used to impose missingness on body mass index (BMI) for age z-scores; a continuous time-varying exposure variable with a non-linear trajectory over time. We evaluated the performance of FCS, MVNI, and two-fold FCS for handling up to 50% of missing data when assessing the association between childhood obesity and sleep problems. The standard two-fold FCS produced slightly more biased and less precise estimates than FCS and MVNI. We observed slight improvements in bias and precision when using a time window width of two for the two-fold FCS algorithm compared to the standard width of one. We recommend the use of FCS or MVNI in a similar longitudinal setting, and when encountering convergence issues due to a large number of time points or variables with missing values, the two-fold FCS with exploration of a suitable time window.
Investigating the variability in brown carbon light-absorption properties
NASA Astrophysics Data System (ADS)
Saleh, R.; Cheng, Z.; Atwi, K.
2017-12-01
Combustion of biomass fuels contributes a significant portion of brown carbon (BrC), the light-absorbing fraction of organic aerosols. BrC exhibits highly variable light-absorption properties, with imaginary part of the refractive indices (k) reported in the literature varying over two orders of magnitude. This high variability in k is attributed to the chaotic nature of combustion; however, there is a major gap in the fundamental understanding of this variability. To address this gap, we hypothesize that BrC is comprised of black carbon (BC) precursors whose transformation to BC has not seen fruition. Depending on the combustion conditions, these BC precursors exhibit different maturity levels which dictate their light-absorption properties (k). The more mature are the precursors, the more absorptive (or BC-like) they are. Therefore, k of BrC obtained from a certain measurement depends on the specific combustion conditions associated with the measurement, leading to the aforementioned variability in the literature. To test this hypothesis, we performed controlled combustion experiments in which the combustion conditions (temperature and air/fuel ratio) were varied and k was retrieved from real-time multi-wavelength light-absorption measurements at each condition. We used benzene, the inception of which during combustion is the initial critical step leading to BC formation, as a model fuel. By varying the combustion conditions from relatively inefficient (low temperature and/or air/fuel ratio) to relatively efficient (high temperature and/or air/fuel ratio), we isolated BrC components with progressively increasing k, spanning the wide range reported in the literature. We also performed thermodenuder measurements to constrain the volatility of the BrC, as well as laser desorption ionization mass spectrometry analysis to constrain its molecular mass. We found that as the combustion conditions approached the BC-formation threshold, the increase in k was associated with an increase in molecular mass and decrease in volatility. This confirms our hypothesis, since the BC precursors are expected to grow in size and become less volatile as they mature. These results provide the first correlation between the BrC physical, chemical, and consequent light-absorption properties.
Predicting the optoelectronic properties of nanowire films based on control of length polydispersity
NASA Astrophysics Data System (ADS)
Large, Matthew J.; Burn, Jake; King, Alice A.; Ogilvie, Sean P.; Jurewicz, Izabela; Dalton, Alan B.
2016-05-01
We demonstrate that the optoelectronic properties of percolating thin films of silver nanowires (AgNWs) are predominantly dependent upon the length distribution of the constituent AgNWs. A generalized expression is derived to describe the dependence of both sheet resistance and optical transmission on this distribution. We experimentally validate the relationship using ultrasonication to controllably vary the length distribution. These results have major implications where nanowire-based films are a desirable material for transparent conductor applications; in particular when application-specific performance criteria must be met. It is of particular interest to have a simple method to generalize the properties of bulk films from an understanding of the base material, as this will speed up the optimisation process. It is anticipated that these results may aid in the adoption of nanowire films in industry, for applications such as touch sensors or photovoltaic electrode structures.
Mechanical responses of a-axis GaN nanowires under axial loads
NASA Astrophysics Data System (ADS)
Wang, R. J.; Wang, C. Y.; Feng, Y. T.; Tang, Chun
2018-03-01
Gallium nitride (GaN) nanowires (NWs) hold technological significance as functional components in emergent nano-piezotronics. However, the examination of their mechanical responses, especially the mechanistic understanding of behavior beyond elasticity (at failure) remains limited due to the constraints of in situ experimentation. We therefore performed simulations of the molecular dynamics (MD) of the mechanical behavior of [1\\bar{2}10]-oriented GaN NWs subjected to tension or compression loading until failure. The mechanical properties and critical deformation processes are characterized in relation to NW sizes and loading conditions. Detailed examinations revealed that the failure mechanisms are size-dependent and controlled by the dislocation mobility on shuffle-set pyramidal planes. The size dependence of the elastic behavior is also examined in terms of the surface structure determined modification of Young’s modulus. In addition, a comparison with c-axis NWs is made to show how size-effect trends vary with the growth orientation of NWs.
NASA Astrophysics Data System (ADS)
Alekseev, M. V.; Vozhakov, I. S.; Lezhnin, S. I.; Pribaturin, N. A.
2017-09-01
A comparative numerical simulation of the supercritical fluid outflow on the thermodynamic equilibrium and non-equilibrium relaxation models of phase transition for different times of relaxation has been performed. The model for the fixed relaxation time based on the experimentally determined radius of liquid droplets was compared with the model of dynamically changing relaxation time, calculated by the formula (7) and depending on local parameters. It is shown that the relaxation time varies significantly depending on the thermodynamic conditions of the two-phase medium in the course of outflowing. The application of the proposed model with dynamic relaxation time leads to qualitatively correct results. The model can be used for both vaporization and condensation processes. It is shown that the model can be improved on the basis of processing experimental data on the distribution of the droplet sizes formed during the breaking up of the liquid jet.
Effects of charge inhomogeneities on elementary excitations in La 2-xSr xCuO₄
Park, S. R.; Hamann, A.; Pintschovius, L.; ...
2011-12-12
Purely local experimental probes of many copper oxide superconductors show that their electronic states are inhomogeneous in real space. For example, scanning tunneling spectroscopic imaging shows strong variations in real space, and according to nuclear quadrupole resonance (NQR) studies, the charge distribution in the bulk varies on the nanoscale. However, the analysis of the experimental results utilizing spatially averaged probes often ignores this fact. We have performed a detailed investigation of the doping dependence of the energy and linewidth of the zone-boundary Cu-O bond-stretching vibration in La 2-xSr xCuO₄ by inelastic neutron scattering. Both our results as well as previouslymore » reported angle-dependent momentum widths of the electronic spectral function detected by angle-resolved photoemission can be reproduced by including the same distribution of local environments extracted from the NQR analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odlyzko, Michael L.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu; Himmetoglu, Burak
2016-07-15
Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen inmore » crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.« less
Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2013-01-01
Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.
Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands.
Teste, François P; Kardol, Paul; Turner, Benjamin L; Wardle, David A; Zemunik, Graham; Renton, Michael; Laliberté, Etienne
2017-01-13
Soil biota influence plant performance through plant-soil feedback, but it is unclear whether the strength of such feedback depends on plant traits and whether plant-soil feedback drives local plant diversity. We grew 16 co-occurring plant species with contrasting nutrient-acquisition strategies from hyperdiverse Australian shrublands and exposed them to soil biota from under their own or other plant species. Plant responses to soil biota varied according to their nutrient-acquisition strategy, including positive feedback for ectomycorrhizal plants and negative feedback for nitrogen-fixing and nonmycorrhizal plants. Simulations revealed that such strategy-dependent feedback is sufficient to maintain the high taxonomic and functional diversity characterizing these Mediterranean-climate shrublands. Our study identifies nutrient-acquisition strategy as a key trait explaining how different plant responses to soil biota promote local plant diversity. Copyright © 2017, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.
Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less
Design of single piece sabot for a single stage gas gun
NASA Astrophysics Data System (ADS)
Vemparala, Vignesh; Mathew, Arun Tom; Rao Koka, Tirumala
2017-11-01
Single piece sabot is a vital part in single stage gas guns for impact testing in aerospace industries. Depending on the type of projectile used the design of sabot varies to accommodate the testing equipment. The velocity of the projectile exiting the barrel is dependent on the material and shape of the sabot used. The material selected for the design of sabot is rigid polyurethane foam, due to their low elastic modulus and low density. Two samples of rigid PU foam is taken and tests are performed to get their exact material properties. These properties are incorporated in numerical simulation to determine the best fit for practical use. Since the PU foams has a wide range of porosity which plays a prominent role in deciding the exit velocity and accuracy of the projectile coming out of the barrel. By optimisation, to the best suitable material sample can be determined.
Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.; ...
2018-03-09
Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less
Incorporating signal-dependent noise for hyperspectral target detection
NASA Astrophysics Data System (ADS)
Morman, Christopher J.; Meola, Joseph
2015-05-01
The majority of hyperspectral target detection algorithms are developed from statistical data models employing stationary background statistics or white Gaussian noise models. Stationary background models are inaccurate as a result of two separate physical processes. First, varying background classes often exist in the imagery that possess different clutter statistics. Many algorithms can account for this variability through the use of subspaces or clustering techniques. The second physical process, which is often ignored, is a signal-dependent sensor noise term. For photon counting sensors that are often used in hyperspectral imaging systems, sensor noise increases as the measured signal level increases as a result of Poisson random processes. This work investigates the impact of this sensor noise on target detection performance. A linear noise model is developed describing sensor noise variance as a linear function of signal level. The linear noise model is then incorporated for detection of targets using data collected at Wright Patterson Air Force Base.
Effect of deformation and orientation on spin orbit density dependent nuclear potential
NASA Astrophysics Data System (ADS)
Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.
2017-11-01
Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β22<0 have higher spin-orbit barrier (compact spin-orbit configuration) in comparison to systems with β2>0. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.
Pathak, Amit
2018-04-12
Motile cells sense the stiffness of their extracellular matrix (ECM) through adhesions and respond by modulating the generated forces, which in turn lead to varying mechanosensitive migration phenotypes. Through modeling and experiments, cell migration speed is known to vary with matrix stiffness in a biphasic manner, with optimal motility at an intermediate stiffness. Here, we present a two-dimensional cell model defined by nodes and elements, integrated with subcellular modeling components corresponding to mechanotransductive adhesion formation, force generation, protrusions and node displacement. On 2D matrices, our calculations reproduce the classic biphasic dependence of migration speed on matrix stiffness and predict that cell types with higher force-generating ability do not slow down on very stiff matrices, thus disabling the biphasic response. We also predict that cell types defined by lower number of total receptors require stiffer matrices for optimal motility, which also limits the biphasic response. For a cell type with robust biphasic migration on 2D surface, simulations in channel-like confined environments of varying width and height predict faster migration in more confined matrices. Simulations performed in shallower channels predict that the biphasic mechanosensitive cell migration response is more robust on 2D micro-patterns as compared to the channel-like 3D confinement. Thus, variations in the dimensionality of matrix confinement alters the way migratory cells sense and respond to the matrix stiffness. Our calculations reveal new phenotypes of stiffness- and topography-sensitive cell migration that critically depend on both cell-intrinsic and matrix properties. These predictions may inform our understanding of various mechanosensitive modes of cell motility that could enable tumor invasion through topographically heterogeneous microenvironments. © 2018 IOP Publishing Ltd.
Xian, Ying; Holloway, Robert G; Pan, Wenqin; Peterson, Eric D
2012-06-01
Public reporting efforts currently profile hospitals based on overall stroke mortality rates, yet the "mix" of hemorrhagic and ischemic stroke cases may impact this rate. Using the 2005 to 2006 New York state data, we examined the degree to which hospital stroke mortality rankings varied regarding ischemic versus hemorrhagic versus total stroke. Observed/expected ratio was calculated using the Agency for Healthcare Research and Quality Inpatient Quality Indicator software. The observed/expected ratio and outlier status based on stroke types across hospitals were examined using Pearson correlation coefficients (r) and weighted κ. Overall 30-day stroke mortality rates were 15.2% and varied from 11.3% for ischemic stroke and 37.3% for intracerebral hemorrhage. Hospital risk-adjusted ischemic stroke observed/expected ratio was weakly correlated with its own intracerebral hemorrhage observed/expected ratio (r=0.38). When examining hospital performance group (mortality better, worse, or no different than average), disagreement was observed in 35 of 81 hospitals (κ=0.23). Total stroke mortality observed/expected ratio and rankings were correlated with intracerebral hemorrhage (r=0.61 and κ=0.36) and ischemic stroke (r=0.94 and κ=0.71), but many hospitals still switched classification depending on mortality metrics. However, hospitals treating a higher percent of hemorrhagic stroke did not have a statistically significant higher total stroke mortality rate relative to those treating fewer hemorrhagic strokes. Hospital stroke mortality ratings varied considerably depending on whether ischemic, hemorrhagic, or total stroke mortality rates were used. Public reporting of stroke mortality measures should consider providing risk-adjusted outcome on separate stroke types.
Modeling Interdependent and Periodic Real-World Action Sequences
Kurashima, Takeshi; Althoff, Tim; Leskovec, Jure
2018-01-01
Mobile health applications, including those that track activities such as exercise, sleep, and diet, are becoming widely used. Accurately predicting human actions in the real world is essential for targeted recommendations that could improve our health and for personalization of these applications. However, making such predictions is extremely difficult due to the complexities of human behavior, which consists of a large number of potential actions that vary over time, depend on each other, and are periodic. Previous work has not jointly modeled these dynamics and has largely focused on item consumption patterns instead of broader types of behaviors such as eating, commuting or exercising. In this work, we develop a novel statistical model, called TIPAS, for Time-varying, Interdependent, and Periodic Action Sequences. Our approach is based on personalized, multivariate temporal point processes that model time-varying action propensities through a mixture of Gaussian intensities. Our model captures short-term and long-term periodic interdependencies between actions through Hawkes process-based self-excitations. We evaluate our approach on two activity logging datasets comprising 12 million real-world actions (e.g., eating, sleep, and exercise) taken by 20 thousand users over 17 months. We demonstrate that our approach allows us to make successful predictions of future user actions and their timing. Specifically, TIPAS improves predictions of actions, and their timing, over existing methods across multiple datasets by up to 156%, and up to 37%, respectively. Performance improvements are particularly large for relatively rare and periodic actions such as walking and biking, improving over baselines by up to 256%. This demonstrates that explicit modeling of dependencies and periodicities in real-world behavior enables successful predictions of future actions, with implications for modeling human behavior, app personalization, and targeting of health interventions. PMID:29780977
Complex motion of a vehicle through a series of signals controlled by power-law phase
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-07-01
We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.
Population extinction under bursty reproduction in a time-modulated environment
NASA Astrophysics Data System (ADS)
Vilk, Ohad; Assaf, Michael
2018-06-01
In recent years nondemographic variability has been shown to greatly affect dynamics of stochastic populations. For example, nondemographic noise in the form of a bursty reproduction process with an a priori unknown burst size, or environmental variability in the form of time-varying reaction rates, have been separately found to dramatically impact the extinction risk of isolated populations. In this work we investigate the extinction risk of an isolated population under the combined influence of these two types of nondemographic variation. Using the so-called momentum-space Wentzel-Kramers-Brillouin (WKB) approach and accounting for the explicit time dependence in the reaction rates, we arrive at a set of time-dependent Hamilton equations. To this end, we evaluate the population's extinction risk by finding the instanton of the time-perturbed Hamiltonian numerically, whereas analytical expressions are presented in particular limits using various perturbation techniques. We focus on two classes of time-varying environments: periodically varying rates corresponding to seasonal effects and a sudden decrease in the birth rate corresponding to a catastrophe. All our theoretical results are tested against numerical Monte Carlo simulations with time-dependent rates and also against a numerical solution of the corresponding time-dependent Hamilton equations.
Perception of coarticulated tones by non-native listeners
NASA Astrophysics Data System (ADS)
Bent, Tessa
2005-04-01
Mandarin lexical tones vary in their acoustic realization depending on the surrounding context. Native listeners compensate for this tonal coarticulation when identifying tones in context. This study investigated how native English listeners handle tonal coarticulation by testing native English and Mandarin listeners discrimination of the four Mandarin lexical tones in tri-syllabic sequences in which the middle tone varied while the first and last tones were held constant. Three different such frames were tested. As expected, Mandarin listeners discriminated all pairs in all contexts with a high degree of accuracy. English listeners exhibited poorer discrimination than Mandarin listeners and their discrimination accuracy showed a high degree of context dependency. In addition to assessing accuracy, reactions times to correctly discriminated different trials were entered into a multidimensional scaling analysis. For both listener groups, the arrangement of tones in perceptual space varied depending on the surrounding context suggesting that listeners attend to different acoustic attributes of the target tone depending on the surrounding tones. These results demonstrate the importance for models of cross-language speech perception of including contextual variation when characterizing the perception of non-native prosodic categories. [Work supported by NIH/NIDCD
Kirschen, Gregory W; Jones, Jason J; Hale, Lauren
2018-06-14
The athletic advantage of sleep, although commonly touted by coaches, trainers, and sports physicians, is still unclear and likely varies by sport, athletic performance metric, and length of sufficient or insufficient sleep. Although recent literature reviews have highlighted circadian and nutritional factors that influence different aspects of athletic performance, a systematic summary of the effects of sleep duration and sleep quality on performance among competitive athletes is lacking. Here we systematically review the relationship between sleep duration and sleep quality and objective athletic performance among competitive athletes across 19 studies representing 12 sports. Taken holistically, we find that the sports requiring speed, tactical strategy, and technical skill are most sensitive to sleep duration manipulations. Furthermore, longer-term sleep manipulations are more likely than acute sleep manipulations (whether deprivation or extension) to affect athletic performance. Thus, the importance of sleep for competitive athletes to achieve high performance is dependent on the demands of the sport as well as the length of sleep interventions. In light of the limited number of studies investigating sleep quality and performance, the potential relevance of subjective sleep quality remains an interesting question for future work.
Conductor gestures influence evaluations of ensemble performance
Morrison, Steven J.; Price, Harry E.; Smedley, Eric M.; Meals, Cory D.
2014-01-01
Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor’s gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance: articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and non-majors (N = 285) viewed sixteen 30 s performances and evaluated the quality of the ensemble’s articulation, dynamics, technique, and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble’s performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity. PMID:25104944
DiDonato, Roberta M.; Surprenant, Aimée M.
2015-01-01
Communication success under adverse conditions requires efficient and effective recruitment of both bottom-up (sensori-perceptual) and top-down (cognitive-linguistic) resources to decode the intended auditory-verbal message. Employing these limited capacity resources has been shown to vary across the lifespan, with evidence indicating that younger adults out-perform older adults for both comprehension and memory of the message. This study examined how sources of interference arising from the speaker (message spoken with conversational vs. clear speech technique), the listener (hearing-listening and cognitive-linguistic factors), and the environment (in competing speech babble noise vs. quiet) interact and influence learning and memory performance using more ecologically valid methods than has been done previously. The results suggest that when older adults listened to complex medical prescription instructions with “clear speech,” (presented at audible levels through insertion earphones) their learning efficiency, immediate, and delayed memory performance improved relative to their performance when they listened with a normal conversational speech rate (presented at audible levels in sound field). This better learning and memory performance for clear speech listening was maintained even in the presence of speech babble noise. The finding that there was the largest learning-practice effect on 2nd trial performance in the conversational speech when the clear speech listening condition was first is suggestive of greater experience-dependent perceptual learning or adaptation to the speaker's speech and voice pattern in clear speech. This suggests that experience-dependent perceptual learning plays a role in facilitating the language processing and comprehension of a message and subsequent memory encoding. PMID:26106353
Murakami, Masumi; Kiuchi, Tatsuto; Nishihara, Mika; Tezuka, Katsunari; Okamoto, Ryo; Izumi, Masayuki; Kajihara, Yasuhiro
2016-01-01
The role of sialyloligosaccharides on the surface of secreted glycoproteins is still unclear because of the difficulty in the preparation of sialylglycoproteins in a homogeneous form. We selected erythropoietin (EPO) as a target molecule and designed an efficient synthetic strategy for the chemical synthesis of a homogeneous form of five EPO glycoforms varying in glycosylation position and the number of human-type biantennary sialyloligosaccharides. A segment coupling strategy performed by native chemical ligation using six peptide segments including glycopeptides yielded homogeneous EPO glycopeptides, and folding experiments of these glycopeptides afforded the correctly folded EPO glycoforms. In an in vivo erythropoiesis assay in mice, all of the EPO glycoforms displayed biological activity, in particular the EPO bearing three sialyloligosaccharides, which exhibited the highest activity. Furthermore, we observed that the hydrophilicity and biological activity of the EPO glycoforms varied depending on the glycosylation pattern. This knowledge will pave the way for the development of homogeneous biologics by chemical synthesis. PMID:26824070
Pistol shooting accuracy as dependent on experience, eyes being opened and available viewing time.
Goonetilleke, Ravindra S; Hoffmann, Errol R; Lau, Wing Chung
2009-05-01
A study of the shooting accuracy of three groups of pistol shooters is reported. The groups included (i) experienced gas pistol shooters; (ii) persons with experience in video shooting games; and (iii) persons with no shooting experience. The viewing time was varied in the tests. The results showed that experience had a significant effect on the mean and root mean square (RMS) shooting errors at the target. The results also showed that the viewing time does not need to exceed about 2s for an experienced pistol shooter and about 3s for a novice shooter to reach the best performance. Two models for the effects of limited viewing time are proposed; both models fit the data well when the viewing time is less than about 2s. The results indicated that the differences occurring with varying levels of experience are due to postural balance and not due to the aiming or cognitive component of the task.
NASA Astrophysics Data System (ADS)
Hufner, D. R.; Augustine, M. R.
2018-05-01
A novel experimental method was developed to simulate underwater explosion pressure pulses within a laboratory environment. An impact-based experimental apparatus was constructed; capable of generating pressure pulses with basic character similar to underwater explosions, while also allowing the pulse to be tuned to different intensities. Having the capability to vary the shock impulse was considered essential to producing various levels of shock-induced damage without the need to modify the fixture. The experimental apparatus and test method are considered ideal for investigating the shock response of composite material systems and/or experimental validation of new material models. One such test program is presented herein, in which a series of E-glass/Vinylester laminates were subjected to a range of shock pulses that induced varying degrees of damage. Analysis-test correlations were performed using a rate-dependent constitutive model capable of representing anisotropic damage and ultimate yarn failure. Agreement between analytical predictions and experimental results was considered acceptable.
Assessment of the impact of traditional septic tank soakaway systems on water quality in Ireland.
Keegan, Mary; Kilroy, Kate; Nolan, Daniel; Dubber, Donata; Johnston, Paul M; Misstear, Bruce D R; O'Flaherty, Vincent; Barrett, Maria; Gill, Laurence W
2014-01-01
One of the key threats to groundwater and surface water quality in Ireland is the impact of poorly designed, constructed or maintained on-site wastewater treatment systems. An extensive study was carried out to quantify the impact of existing sites on water quality. Six existing sites, consisting of a traditional septic tank and soakaway system, located in various ranges of subsoil permeabilities were identified and monitored to determine how well they function under varying subsoil and weather conditions. The preliminary results of the chemical and microbiological pollutant attenuation in the subsoil of the systems have been assessed and treatment performance evaluated, as well as impact on local surface water and groundwater quality. The source of any faecal contamination detected in groundwater, nearby surface water and effluent samples was confirmed by microbial source tracking. From this, it can be seen that the transport and treatment of percolate vary greatly depending on the permeability and composition of the subsoil.
Determination of the radial profile of the photoelastic coefficient of polymer optical fibers
NASA Astrophysics Data System (ADS)
Acheroy, Sophie; Merken, Patrick; Geernaert, Thomas; Ottevaere, Heidi; Thienpont, Hugo; Berghmans, Francis
2016-04-01
We determine the radial profile of the photoelastic constant C(r) in two single mode and one multimode polymer optical fibers (POFs), all fabricated from polymethylmethacrylate (PMMA). To determine C(r) we first determine the retardance of the laterally illuminated fiber submitted to a known tensile stress uniformly distributed over the fiber cross-section. Then we determine the inverse Abel transform of the measured retardance to finally obtain C(r). We compare two algorithms based on the Fourier theory to perform the inverse transform. We obtain disparate distributions of C(r) in the three fibers. The mean value of C(r) varies from -7.6×10-14 to 5.4×10-12 Pa-1. This indicates that, in contrast to glass fibers, the radial profile of the photoelastic constant can considerable vary depending on the type and treatment of POFs, even when made from similar materials, and hence the photoelastic constant should be measured for each type of POF.
Aspect Ratio of Receiver Node Geometry based Indoor WLAN Propagation Model
NASA Astrophysics Data System (ADS)
Naik, Udaykumar; Bapat, Vishram N.
2017-08-01
This paper presents validation of indoor wireless local area network (WLAN) propagation model for varying rectangular receiver node geometry. The rectangular client node configuration is a standard node arrangement in computer laboratories of academic institutes and research organizations. The model assists to install network nodes for the better signal coverage. The proposed model is backed by wide ranging real time received signal strength measurements at 2.4 GHz. The shadow fading component of signal propagation under realistic indoor environment is modelled with the dependency on varying aspect ratio of the client node geometry. The developed new model is useful in predicting indoor path loss for IEEE 802.11b/g WLAN. The new model provides better performance in comparison to well known International Telecommunication Union and free space propagation models. It is shown that the proposed model is simple and can be a useful tool for indoor WLAN node deployment planning and quick method for the best utilisation of the office space.
Triblock copolymer-mediated synthesis of catalytically active gold nanostructures
NASA Astrophysics Data System (ADS)
Santos, Douglas C.; de Souza, Viviane C.; Vasconcelos, Diego A.; Andrade, George R. S.; Gimenez, Iara F.; Teixeira, Zaine
2018-04-01
The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate. [Figure not available: see fulltext.
Survey of patient-oriented total hip replacement information on the World Wide Web.
Mabrey, J D
2000-12-01
The author conducted an informal survey of materials relating to diseases of the hip and total hip replacement as they appeared on the World Wide Web. The results varied depending on the key words used: hip and replacement yielded 1,818 matches; total hip replacement yielded 1,740 matches; hip replacement yielded 4,565 sites; and hip surgery yielded 1,073 sites. The number of sites for total hip replacement was observed to increase with time, having found an additional 30 sites from an identical search performed only 6 weeks earlier. The nature and quality of these sites varied from well-organized and informative, to personal testaments, to obvious commercial endeavors. Overall, this survey found an abundance of material regarding the hip and hip replacements on the World Wide Web, but orthopaedic societies need to take a more active role in constructing, maintaining, and monitoring these sites to best serve the needs of their patients and their members.
NASA Astrophysics Data System (ADS)
Johnson, Ryan Federick; Chelliah, Harsha Kumar
2017-01-01
For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.
Processing of pitch and location in human auditory cortex during visual and auditory tasks.
Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu
2015-01-01
The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand.
Processing of pitch and location in human auditory cortex during visual and auditory tasks
Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu
2015-01-01
The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand. PMID:26594185
Edsgärd, Daniel; Iglesias, Maria Jesus; Reilly, Sarah-Jayne; Hamsten, Anders; Tornvall, Per; Odeberg, Jacob; Emanuelsson, Olof
2016-01-01
Allele-specific expression (ASE) is the imbalance in transcription between maternal and paternal alleles at a locus and can be probed in single individuals using massively parallel DNA sequencing technology. Assessing ASE within a single sample provides a static picture of the ASE, but the magnitude of ASE for a given transcript may vary between different biological conditions in an individual. Such condition-dependent ASE could indicate a genetic variation with a functional role in the phenotypic difference. We investigated ASE through RNA-sequencing of primary white blood cells from eight human individuals before and after the controlled induction of an inflammatory response, and detected condition-dependent and static ASE at 211 and 13021 variants, respectively. We developed a method, GeneiASE, to detect genes exhibiting static or condition-dependent ASE in single individuals. GeneiASE performed consistently over a range of read depths and ASE effect sizes, and did not require phasing of variants to estimate haplotypes. We observed condition-dependent ASE related to the inflammatory response in 19 genes, and static ASE in 1389 genes. Allele-specific expression was confirmed by validation of variants through real-time quantitative RT-PCR, with RNA-seq and RT-PCR ASE effect-size correlations r = 0.67 and r = 0.94 for static and condition-dependent ASE, respectively. PMID:26887787
Acquisition of Skill Proficiency Over Multiple Sessions of a Novel Rover Simulation
NASA Technical Reports Server (NTRS)
Dean, S. L.; DeDios,Y. E.; MacDougall, H. G.; Moore, S. T.; Wood, S. J.
2011-01-01
Following long-duration exploration transits, adaptive changes in sensorimotor function may impair the crew's ability to safely perform manual control tasks such as operating pressurized rovers. Postflight performance will also be influenced by the level of preflight skill proficiency they have attained. The purpose of this study was to characterize the acquisition of skills in a motion-based rover simulation over multiple sessions, and to investigate the effects of varying the simulation scenarios. METHODS: Twenty healthy subjects were tested in 5 sessions, with 1-3 days between sessions. Each session consisted of a serial presentation of 8 discrete tasks to be completed as quickly and accurately as possible. Each task consisted of 1) perspective-taking, using a map that defined a docking target, 2) navigation toward the target around a Martian outpost, and 3) docking a side hatch of the rover to a visually guided target. The simulator utilized a Stewart-type motion base (CKAS, Australia), single-seat cabin with triple scene projection covering 150 deg horizontal by 50 deg vertical, and joystick controller. Subjects were randomly assigned to a control group (tasks identical in the first 4 sessions) or a varied-practice group. The dependent variables for each task included accuracy toward the target and time to completion. RESULTS: The greatest improvements in time to completion occurred during the docking phase. The varied-practice group showed more improvement in perspective-taking accuracy. Perspective-taking accuracy was also affected by the relative orientation of the rover to the docking target. Skill acquisition was correlated with self-ratings of previous gaming experience. DISCUSSION: Varying task selection and difficulty will optimize the preflight acquisition of skills when performing novel operational tasks. Simulation of operational manual control will provide functionally relevant evidence regarding the impact of sensorimotor adaptation on early surface operations and what countermeasures are needed. Learning Objective: The use of a motion-based simulation to investigate decrements in the proficiency to operate pressurized rovers during early surface operations of space exploration missions, along with the acquisition of skill proficiency needed during the preflight phase of the mission.
NASA Technical Reports Server (NTRS)
Stanley, Stephanie D.
2008-01-01
Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system. Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing, attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various metal (steel, Inconel, and aluminum), phenolic (carbon-cloth phenolic [CCP] and glass-cloth phenolic [GCP]), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber [ASNBR]; silica-filled ethylene propylenediene monomer [SFEPDM], and carbon-filled ethylene propylenediene monomer [CFEPDM]) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.
Asynchronous signal-dependent non-uniform sampler
NASA Astrophysics Data System (ADS)
Can-Cimino, Azime; Chaparro, Luis F.; Sejdić, Ervin
2014-05-01
Analog sparse signals resulting from biomedical and sensing network applications are typically non-stationary with frequency-varying spectra. By ignoring that the maximum frequency of their spectra is changing, uniform sampling of sparse signals collects unnecessary samples in quiescent segments of the signal. A more appropriate sampling approach would be signal-dependent. Moreover, in many of these applications power consumption and analog processing are issues of great importance that need to be considered. In this paper we present a signal dependent non-uniform sampler that uses a Modified Asynchronous Sigma Delta Modulator which consumes low-power and can be processed using analog procedures. Using Prolate Spheroidal Wave Functions (PSWF) interpolation of the original signal is performed, thus giving an asynchronous analog to digital and digital to analog conversion. Stable solutions are obtained by using modulated PSWFs functions. The advantage of the adapted asynchronous sampler is that range of frequencies of the sparse signal is taken into account avoiding aliasing. Moreover, it requires saving only the zero-crossing times of the non-uniform samples, or their differences, and the reconstruction can be done using their quantized values and a PSWF-based interpolation. The range of frequencies analyzed can be changed and the sampler can be implemented as a bank of filters for unknown range of frequencies. The performance of the proposed algorithm is illustrated with an electroencephalogram (EEG) signal.
NASA Astrophysics Data System (ADS)
Huber, Samuel; Dunau, Patrick; Wellig, Peter; Stein, Karin
2017-10-01
Background: In target detection, the success rates depend strongly on human observer performances. Two prior studies tested the contributions of target detection algorithms and prior training sessions. The aim of this Swiss-German cooperation study was to evaluate the dependency of human observer performance on the quality of supporting image analysis algorithms. Methods: The participants were presented 15 different video sequences. Their task was to detect all targets in the shortest possible time. Each video sequence showed a heavily cluttered simulated public area from a different viewing angle. In each video sequence, the number of avatars in the area was altered to 100, 150 and 200 subjects. The number of targets appearing was kept at 10%. The number of marked targets varied from 0, 5, 10, 20 up to 40 marked subjects while keeping the positive predictive value of the detection algorithm at 20%. During the task, workload level was assessed by applying an acoustic secondary task. Detection rates and detection times for the targets were analyzed using inferential statistics. Results: The study found Target Detection Time to increase and Target Detection Rates to decrease with increasing numbers of avatars. The same is true for the Secondary Task Reaction Time while there was no effect on Secondary Task Hit Rate. Furthermore, we found a trend for a u-shaped correlation between the numbers of markings and RTST indicating increased workload. Conclusion: The trial results may indicate useful criteria for the design of training and support of observers in observational tasks.
Centaur engine gimbal friction characteristics under simulated thrust load
NASA Technical Reports Server (NTRS)
Askew, J. W.
1986-01-01
An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.
Strategies for enhanced deammonification performance and reduced nitrous oxide emissions.
Leix, Carmen; Drewes, Jörg E; Ye, Liu; Koch, Konrad
2017-07-01
Deammonification's performance and associated nitrous oxide emissions (N 2 O) depend on operational conditions. While studies have investigated factors for high performances and low emissions separately, this study investigated optimizing deammonification performance while simultaneously reducing N 2 O emissions. Using a design of experiment (DoE) method, two models were developed for the prediction of the nitrogen removal rate and N 2 O emissions during single-stage deammonification considering three operational factors (i.e., pH value, feeding and aeration strategy). The emission factor varied between 0.7±0.5% and 4.1±1.2% at different DoE-conditions. The nitrogen removal rate was predicted to be maximized at settings of pH 7.46, intermittent feeding and aeration. Conversely, emissions were predicted to be minimized at the design edges at pH 7.80, single feeding, and continuous aeration. Results suggested a weak positive correlation between the nitrogen removal rate and N 2 O emissions, thus, a single optimizing operational set-point for maximized performance and minimized emissions did not exist. Copyright © 2017 Elsevier Ltd. All rights reserved.
Centaur engine gimbal friction characteristics under simulated thrust load
NASA Astrophysics Data System (ADS)
Askew, J. W.
1986-09-01
An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.
Resource Dependence and Community Well-Being in Rural Canada
ERIC Educational Resources Information Center
Stedman, Richard C.; Parkins, John R.; Beckley, Thomas M.
2004-01-01
The well-being of residents of resource dependent communities is a question of traditional interest to rural sociologists. The label "resource dependent" obscures how this relationship may vary between particular resource industries, regions, or indicators of well-being. Few analyses have compared the relationship between well-being and resource…
Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel
2014-05-20
A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.
Yun, Lifen; Wang, Xifu; Fan, Hongqiang; Li, Xiaopeng
2017-01-01
This paper proposes a reliable facility location design model under imperfect information with site-dependent disruptions; i.e., each facility is subject to a unique disruption probability that varies across the space. In the imperfect information contexts, customers adopt a realistic “trial-and-error” strategy to visit facilities; i.e., they visit a number of pre-assigned facilities sequentially until they arrive at the first operational facility or give up looking for the service. This proposed model aims to balance initial facility investment and expected long-term operational cost by finding the optimal facility locations. A nonlinear integer programming model is proposed to describe this problem. We apply a linearization technique to reduce the difficulty of solving the proposed model. A number of problem instances are studied to illustrate the performance of the proposed model. The results indicate that our proposed model can reveal a number of interesting insights into the facility location design with site-dependent disruptions, including the benefit of backup facilities and system robustness against variation of the loss-of-service penalty. PMID:28486564
Scaling laws for impact fragmentation of spherical solids.
Timár, G; Kun, F; Carmona, H A; Herrmann, H J
2012-07-01
We investigate the impact fragmentation of spherical solid bodies made of heterogeneous brittle materials by means of a discrete element model. Computer simulations are carried out for four different system sizes varying the impact velocity in a broad range. We perform a finite size scaling analysis to determine the critical exponents of the damage-fragmentation phase transition and deduce scaling relations in terms of radius R and impact velocity v(0). The scaling analysis demonstrates that the exponent of the power law distributed fragment mass does not depend on the impact velocity; the apparent change of the exponent predicted by recent simulations can be attributed to the shifting cutoff and to the existence of unbreakable discrete units. Our calculations reveal that the characteristic time scale of the breakup process has a power law dependence on the impact speed and on the distance from the critical speed in the damaged and fragmented states, respectively. The total amount of damage is found to have a similar behavior, which is substantially different from the logarithmic dependence on the impact velocity observed in two dimensions.
Sox2 acts in a dose-dependent fashion to regulate proliferation of cortical progenitors.
Hagey, Daniel W; Muhr, Jonas
2014-12-11
Organ formation and maintenance depends on slowly self-renewing stem cells that supply an intermediate population of rapidly dividing progenitors, but how this proliferative hierarchy is regulated is unknown. By performing genome-wide single-cell and functional analyses in the cortex, we demonstrate that reduced Sox2 expression is a key regulatory signature of the transition between stem cells and rapidly dividing progenitors. In stem cells, Sox2 is expressed at high levels, which enables its repression of proproliferative genes, of which Cyclin D1 is the most potent target. Sox2 confers this function through binding to low-affinity motifs, which facilitate the recruitment of Gro/Tle corepressors in synergy with Tcf/Lef proteins. Upon differentiation, proneural factors reduce Sox2 expression, which derepresses Cyclin D1 and promotes proliferation. Our results show how concentration-dependent Sox2 occupancy of DNA motifs of varying affinities translates into recruitment of repressive complexes, which regulate the proliferative dynamics of neural stem and progenitor cells. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Viability of long range dragonfly migration across the Indian Ocean: An energetics perspective
NASA Astrophysics Data System (ADS)
Saha, Sandeep; Nirwal, Satvik
2016-11-01
Recently Pantala flavescens (dragonflies) have been reported to migrate in millions from India to Eastern Africa on a multigenerational migratory circuit of length 14000-18000 kms. We attempt to understand the ability of dragonflies to perform long range migration by examining the energetics using computer simulations. In absence of a theory for long range insect migrations, we resort to the extensive literature on long range bird migration from the energetics perspective. The flight energetics depends upon instantaneous power and velocity. The mechanical flight power is computed from the power curve which is then converted to mass depletion using Brequet's equation. However, the mechanical flight power itself depends upon the instantaneous velocity which can vary depending upon the current mass. In order to predict the range in our simulations, we assume that the insect progressively tries to achieve the maximum range velocity. The results indicate that the migration range is approximately 1260 kms in 70 hours based on the true airspeed. However, our analysis is restricted by the lack of data and certain caveats in drag prediction and basal metabolism rate.
Forward neutron production at the Fermilab Main Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigmanov, T. S.; Rajaram, D.; Longo, M. J.
2011-01-01
We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58, 84, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as A{sup {alpha}}, where {alpha} is 0.46{+-}0.06 for a beam momentum of 58 GeV/c and 0.54{+-}0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.
Spectrum-based estimators of the bivariate Hurst exponent
NASA Astrophysics Data System (ADS)
Kristoufek, Ladislav
2014-12-01
We discuss two alternate spectrum-based estimators of the bivariate Hurst exponent in the power-law cross-correlations setting, the cross-periodogram and local X -Whittle estimators, as generalizations of their univariate counterparts. As the spectrum-based estimators are dependent on a part of the spectrum taken into consideration during estimation, a simulation study showing performance of the estimators under varying bandwidth parameter as well as correlation between processes and their specification is provided as well. These estimators are less biased than the already existent averaged periodogram estimator, which, however, has slightly lower variance. The spectrum-based estimators can serve as a good complement to the popular time domain estimators.
Stepanova, Elena V; Strube, Michael J
2012-01-01
Participants (N = 106) performed an affective priming task with facial primes that varied in their skin tone and facial physiognomy, and, which were presented either in color or in gray-scale. Participants' racial evaluations were more positive for Eurocentric than for Afrocentric physiognomy faces. Light skin tone faces were evaluated more positively than dark skin tone faces, but the magnitude of this effect depended on the mode of color presentation. The results suggest that in affective priming tasks, faces might not be processed holistically, and instead, visual features of facial priming stimuli independently affect implicit evaluations.
Dynamic characteristic of a 30-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Mantenieks, M. A.; Rawlin, V. K.
1975-01-01
Measurements of the fluctuations of the discharge and beam plasmas of a 30 centimeter ion thruster were performed using 60 Hertz laboratory type power supplies. The time-varying properties of the discharge voltage and current, the ion beam current, and neutralizer keeper current were measured. The intensities of the fluctuations were found to depend on the beam and magnetic baffle currents. The shape of the frequency spectra of the discharge plasma fluctuations was found to be related to the beam and magnetic baffle currents. The measurements indicated that the discharge current fluctuations directly contribute to the beam current fluctuations and that the power supply characteristics modify these fluctuations.
Surround-Masking Affects Visual Estimation Ability
Jastrzebski, Nicola R.; Hugrass, Laila E.; Crewther, Sheila G.; Crewther, David P.
2017-01-01
Visual estimation of numerosity involves the discrimination of magnitude between two distributions or perceptual sets that vary in number of elements. How performance on such estimation depends on peripheral sensory stimulation is unclear, even in typically developing adults. Here, we varied the central and surround contrast of stimuli that comprised a visual estimation task in order to determine whether mechanisms involved with the removal of unessential visual input functionally contributes toward number acuity. The visual estimation judgments of typically developed adults were significantly impaired for high but not low contrast surround stimulus conditions. The center and surround contrasts of the stimuli also differentially affected the accuracy of numerosity estimation depending on whether fewer or more dots were presented. Remarkably, observers demonstrated the highest mean percentage accuracy across stimulus conditions in the discrimination of more elements when the surround contrast was low and the background luminance of the central region containing the elements was dark (black center). Conversely, accuracy was severely impaired during the discrimination of fewer elements when the surround contrast was high and the background luminance of the central region was mid level (gray center). These findings suggest that estimation ability is functionally related to the quality of low-order filtration of unessential visual information. These surround masking results may help understanding of the poor visual estimation ability commonly observed in developmental dyscalculia. PMID:28360845
Prevalence of Celiac Disease in Latin America: A Systematic Review and Meta-Regression
Parra-Medina, Rafael; Molano-Gonzalez, Nicolás; Rojas-Villarraga, Adriana; Agmon-Levin, Nancy; Arango, Maria-Teresa; Shoenfeld, Yehuda; Anaya, Juan-Manuel
2015-01-01
Background Celiac disease (CD) is an immune-mediated enteropathy triggered by the ingestion of gluten in susceptible individuals, and its prevalence varies depending on the studied population. Given that information on CD in Latin America is scarce, we aimed to investigate the prevalence of CD in this region of the world through a systematic review and meta-analysis. Methods and Findings This was a two-phase study. First, a cross-sectional analysis from 981 individuals of the Colombian population was made. Second, a systematic review and meta-regression analysis were performed following the Preferred Reporting Items for Systematic Meta- Analyses (PRISMA) guidelines. Our results disclosed a lack of celiac autoimmunity in the studied Colombian population (i.e., anti-tissue transglutaminase (tTG) and IgA anti-endomysium (EMA)). In the systematic review, 72 studies were considered. The estimated prevalence of CD in Latin Americans ranged between 0.46% and 0.64%. The prevalence of CD in first-degree relatives of CD probands was 5.5%. The coexistence of CD and type 1 diabetes mellitus varied from 4.6% to 8.7%, depending on the diagnosis methods (i.e., autoantibodies and/or biopsies). Conclusions Although CD seems to be a rare condition in Colombians; the general prevalence of the disease in Latin Americans seemingly corresponds to a similar scenario observed in Europeans. PMID:25942408
Lambda: A Mathematica package for operator product expansions in vertex algebras
NASA Astrophysics Data System (ADS)
Ekstrand, Joel
2011-02-01
We give an introduction to the Mathematica package Lambda, designed for calculating λ-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of λ-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation. Program summaryProgram title: Lambda Catalogue identifier: AEHF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 087 No. of bytes in distributed program, including test data, etc.: 131 812 Distribution format: tar.gz Programming language: Mathematica Computer: See specifications for running Mathematica V7 or above. Operating system: See specifications for running Mathematica V7 or above. RAM: Varies greatly depending on calculation to be performed. Classification: 4.2, 5, 11.1. Nature of problem: Calculate operator product expansions (OPEs) of composite fields in 2d conformal field theory. Solution method: Implementation of the algebraic formulation of OPEs given by vertex algebras, and especially by λ-brackets. Running time: Varies greatly depending on calculation requested. The example notebook provided takes about 3 s to run.
Procedures for testing and evaluating spacecraft-type heat pipes
NASA Astrophysics Data System (ADS)
Tower, L. K.; Kaufman, W. B.
1984-04-01
This report describes part of an effort to develop dependable, cost effective spacecraft thermal control heat pipes. In the program the reliability and performance of 30 commercially available heat pipes were assessed. The pipes comprised 10 groups of varying design, with aluminum and stainless steel as structural materials, and methanol and ammonia as working fluids. The factors studied were noncondensible gas accumulation and heat transfer capability in one g. The present report supplements a brief earlier report by describing in detail the procedures required to conduct a comprehensive evaluation of heat pipes for thermal control. It discusses the test facilities and testing procedures. The manner in which data may be taken for estimating useful life and comparing performance is described. Some of the pitfalls in making such judgments are illustrated. Originator supplied keywords include: heat transfer, and corrosion.
DKIST Adaptive Optics System: Simulation Results
NASA Astrophysics Data System (ADS)
Marino, Jose; Schmidt, Dirk
2016-05-01
The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.
NASA Astrophysics Data System (ADS)
Kaise, Toshikazu
Arsenic originating from the lithosphere is widely distributed in the environment. Many arsenicals in the environment are in organic and methylated species. These arsenic compounds in drinking water or food products of marine origin are absorbed in human digestive tracts, metabolized in the human body, and excreted viatheurine. Because arsenic shows varying biological a spects depending on its chemical species, the biological characteristics of arsenic must be determined. It is thought that some metabolic pathways for arsenic and some arsenic circulation exist in aqueous ecosystems. In this paper, the current status of the speciation analysis of arsenic by HPLC/ICP-MS (High Performance Liquid Chromatography-Inductively Coupled Plasma Mass spectrometry) in environmental and biological samples is summarized using recent data.
Boyle, Neil Bernard; Lawton, Clare; Arkbage, Karin; Thorell, Lars; Dye, Louise
2013-01-01
The capacity of psychosocial stressors to provoke the hypothalamic-pituitary-adrenal axis has been demonstrated to vary depending upon a number of psychological factors. Laboratory stressors characterized by social-evaluative threat are proposed to be the most efficacious in the elicitation of a cortisol stress response. Salivary cortisol, cardiovascular, and subjective responses of 16 healthy adults facing a naturalistic stressor characterized by social-evaluative threat (competitive performance auditions) were examined. Audition exposure was sufficient to provoke significant cortisol, arterial blood pressure (systolic and diastolic), and subjective stress responses. Cortisol response reactivity (area under the curve with respect to increase [AUCi]) also correlated with participants' subjective rating of social-evaluative threat. The competitive performance audition context is therefore considered a promising context in which to further explore cortisol responsivity to social-evaluative threat.
NASA Technical Reports Server (NTRS)
Vachon, Jacques; Curry, Robert E.
2010-01-01
Program Objectives: 1) Satellite Calibration and Validation: Provide methods to perform the cal/val requirements for Earth Observing System satellites. 2) New Sensor Development: Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations. 3) Process Studies: Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects. 4) Airborne Networking: Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden Capabilities include: a) Aeronautics history of aircraft developments and milestones. b) Extensive history and experience in instrument integration. c) Extensive history and experience in aircraft modifications. d) Strong background in international deployments. e) Long history of reliable and dependable execution of projects. f) Varied aircraft types providing different capabilities, performance and duration.
Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft
NASA Technical Reports Server (NTRS)
Genova, A. L.
2014-01-01
This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.
Addleman, Shane; Chouyyok, Wilaiwan; Palo, Daniel; Dunn, Brad M.; Brann, Michelle; Billingsley, Gary; Johnson, Darren; Nell, Kara M.
2017-05-25
This work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals beyond commercially available sorbents. This report details the organic and inorganic sorbent uptake, performance, and collection efficiency results for La, Eu, Ho, Ag, Cu and Zn, as well as the characterization of these select sorbent materials. The report also contains estimated costs from an in-depth techno-economic analysis of a scaled up separation process. The estimated financial payback period for installing this equipment varies between 3.3 to 5.7 years depending on the brine flow rate of the geothermal resource.
A parallel implementation of a multisensor feature-based range-estimation method
NASA Technical Reports Server (NTRS)
Suorsa, Raymond E.; Sridhar, Banavar
1993-01-01
There are many proposed vision based methods to perform obstacle detection and avoidance for autonomous or semi-autonomous vehicles. All methods, however, will require very high processing rates to achieve real time performance. A system capable of supporting autonomous helicopter navigation will need to extract obstacle information from imagery at rates varying from ten frames per second to thirty or more frames per second depending on the vehicle speed. Such a system will need to sustain billions of operations per second. To reach such high processing rates using current technology, a parallel implementation of the obstacle detection/ranging method is required. This paper describes an efficient and flexible parallel implementation of a multisensor feature-based range-estimation algorithm, targeted for helicopter flight, realized on both a distributed-memory and shared-memory parallel computer.
Castaneda, Carol Ann; Lopez, Jeffrey E; Joseph, Caleb G; Scholle, Michael D; Mrksich, Milan; Fierke, Carol A
2017-10-24
Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.
Cheng, Kung-Shan; Yuan, Yu; Li, Zhen; Stauffer, Paul R; Maccarini, Paolo; Joines, William T; Dewhirst, Mark W; Das, Shiva K
2009-04-07
In large multi-antenna systems, adaptive controllers can aid in steering the heat focus toward the tumor. However, the large number of sources can greatly increase the steering time. Additionally, controller performance can be degraded due to changes in tissue perfusion which vary non-linearly with temperature, as well as with time and spatial position. The current work investigates whether a reduced-order controller with the assumption of piecewise constant perfusion is robust to temperature-dependent perfusion and achieves steering in a shorter time than required by a full-order controller. The reduced-order controller assumes that the optimal heating setting lies in a subspace spanned by the best heating vectors (virtual sources) of an initial, approximate, patient model. An initial, approximate, reduced-order model is iteratively updated by the controller, using feedback thermal images, until convergence of the heat focus to the tumor. Numerical tests were conducted in a patient model with a right lower leg sarcoma, heated in a 10-antenna cylindrical mini-annual phased array applicator operating at 150 MHz. A half-Gaussian model was used to simulate temperature-dependent perfusion. Simulated magnetic resonance temperature images were used as feedback at each iteration step. Robustness was validated for the controller, starting from four approximate initial models: (1) a 'standard' constant perfusion lower leg model ('standard' implies a model that exactly models the patient with the exception that perfusion is considered constant, i.e., not temperature dependent), (2) a model with electrical and thermal tissue properties varied from 50% higher to 50% lower than the standard model, (3) a simplified constant perfusion pure-muscle lower leg model with +/-50% deviated properties and (4) a standard model with the tumor position in the leg shifted by 1.5 cm. Convergence to the desired focus of heating in the tumor was achieved for all four simulated models. The controller accomplished satisfactory therapeutic outcomes: approximately 80% of the tumor was heated to temperatures 43 degrees C and approximately 93% was maintained at temperatures <41 degrees C. Compared to the controller without model reduction, a approximately 9-25 fold reduction in convergence time was accomplished using approximately 2-3 orthonormal virtual sources. In the situations tested, the controller was robust to the presence of temperature-dependent perfusion. The results of this work can help to lay the foundation for real-time thermal control of multi-antenna hyperthermia systems in clinical situations where perfusion can change rapidly with temperature.
NASA Technical Reports Server (NTRS)
Asbury, Scott C.
1993-01-01
An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to evaluate the internal performance of a nonaxisymmetric convergent divergent nozzle designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap deflection for thrust vectoring in the pitch plane and flow-turning deflectors installed within the divergent flaps for yaw thrust vectoring. Modifications consisting of reducing the sidewall length and deflecting the sidewall outboard were investigated as means to increase yaw-vectoring performance. This investigation studied the effects of multiaxis (pitch and yaw) thrust vectoring on nozzle internal performance characteristics. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 13.0. The results indicate that this nozzle concept can successfully generate multiaxis thrust vectoring. Deflection of the divergent flaps produced resultant pitch vector angles that, although dependent on nozzle pressure ratio, were nearly equal to the geometric pitch vector angle. Losses in resultant thrust due to pitch vectoring were small or negligible. The yaw deflectors produced resultant yaw vector angles up to 21 degrees that were controllable by varying yaw deflector rotation. However, yaw deflector rotation resulted in significant losses in thrust ratios and, in some cases, nozzle discharge coefficient. Either of the sidewall modifications generally reduced these losses and increased maximum resultant yaw vector angle. During multiaxis (simultaneous pitch and yaw) thrust vectoring, little or no cross coupling between the thrust vectoring processes was observed.
Validity of the two-level model for Viterbi decoder gap-cycle performance
NASA Technical Reports Server (NTRS)
Dolinar, S.; Arnold, S.
1990-01-01
A two-level model has previously been proposed for approximating the performance of a Viterbi decoder which encounters data received with periodically varying signal-to-noise ratio. Such cyclically gapped data is obtained from the Very Large Array (VLA), either operating as a stand-alone system or arrayed with Goldstone. This approximate model predicts that the decoder error rate will vary periodically between two discrete levels with the same period as the gap cycle. It further predicts that the length of the gapped portion of the decoder error cycle for a constraint length K decoder will be about K-1 bits shorter than the actual duration of the gap. The two-level model for Viterbi decoder performance with gapped data is subjected to detailed validation tests. Curves showing the cyclical behavior of the decoder error burst statistics are compared with the simple square-wave cycles predicted by the model. The validity of the model depends on a parameter often considered irrelevant in the analysis of Viterbi decoder performance, the overall scaling of the received signal or the decoder's branch-metrics. Three scaling alternatives are examined: optimum branch-metric scaling and constant branch-metric scaling combined with either constant noise-level scaling or constant signal-level scaling. The simulated decoder error cycle curves roughly verify the accuracy of the two-level model for both the case of optimum branch-metric scaling and the case of constant branch-metric scaling combined with constant noise-level scaling. However, the model is not accurate for the case of constant branch-metric scaling combined with constant signal-level scaling.
NASA Astrophysics Data System (ADS)
Malof, Jordan M.; Reichman, Daniël.; Collins, Leslie M.
2018-04-01
A great deal of research has been focused on the development of computer algorithms for buried threat detection (BTD) in ground penetrating radar (GPR) data. Most recently proposed BTD algorithms are supervised, and therefore they employ machine learning models that infer their parameters using training data. Cross-validation (CV) is a popular method for evaluating the performance of such algorithms, in which the available data is systematically split into ܰ disjoint subsets, and an algorithm is repeatedly trained on ܰ-1 subsets and tested on the excluded subset. There are several common types of CV in BTD, which vary principally upon the spatial criterion used to partition the data: site-based, lane-based, region-based, etc. The performance metrics obtained via CV are often used to suggest the superiority of one model over others, however, most studies utilize just one type of CV, and the impact of this choice is unclear. Here we employ several types of CV to evaluate algorithms from a recent large-scale BTD study. The results indicate that the rank-order of the performance of the algorithms varies substantially depending upon which type of CV is used. For example, the rank-1 algorithm for region-based CV is the lowest ranked algorithm for site-based CV. This suggests that any algorithm results should be interpreted carefully with respect to the type of CV employed. We discuss some potential interpretations of performance, given a particular type of CV.
Uniform modeling of bacterial colony patterns with varying nutrient and substrate
NASA Astrophysics Data System (ADS)
Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil
2016-04-01
Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.
Experimentally Identify the Effective Plume Chimney over a Natural Draft Chimney Model
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Chu, C. M.; Tahir, A. M.; Ismail, M. A. bin; Misran, M. S. bin; Ling, L. S.
2017-07-01
The demands of energy are in increasing order due to rapid industrialization and urbanization. The researchers and scientists are working hard to improve the performance of the industry so that the energy consumption can be reduced significantly. Industries like power plant, timber processing plant, oil refinery, etc. performance mainly depend on the cooling tower chimney’s performance, either natural draft or forced draft. Chimney is used to create sufficient draft, so that air can flow through it. Cold inflow or flow reversal at chimney exit is one of the main identified problems that may alter the overall plant performance. The presence Effective Plume Chimney (EPC) is an indication of cold inflow free operation of natural draft chimney. Different mathematical model equations are used to estimate the EPC height over the heat exchanger or hot surface. In this paper, it is aim to identify the EPC experimentally. In order to do that, horizontal temperature profiling is done at the exit of the chimneys of face area 0.56m2, 1.00m2 and 2.25m2. A wire mesh screen is installed at chimneys exit to ensure cold inflow chimney operation. It is found that EPC exists in all modified chimney models and the heights of EPC varied from 1 cm to 9 cm. The mathematical models indicate that the estimated heights of EPC varied from 1 cm to 2.3 cm. Smoke test is also conducted to ensure the existence of EPC and cold inflow free option of chimney. Smoke test results confirmed the presence of EPC and cold inflow free operation of chimney. The performance of the cold inflow free chimney is increased by 50% to 90% than normal chimney.
Motion of glossy objects does not promote separation of lighting and surface colour
2017-01-01
The surface properties of an object, such as texture, glossiness or colour, provide important cues to its identity. However, the actual visual stimulus received by the eye is determined by both the properties of the object and the illumination. We tested whether operational colour constancy for glossy objects (the ability to distinguish changes in spectral reflectance of the object, from changes in the spectrum of the illumination) was affected by rotational motion of either the object or the light source. The different chromatic and geometric properties of the specular and diffuse reflections provide the basis for this discrimination, and we systematically varied specularity to control the available information. Observers viewed animations of isolated objects undergoing either lighting or surface-based spectral transformations accompanied by motion. By varying the axis of rotation, and surface patterning or geometry, we manipulated: (i) motion-related information about the scene, (ii) relative motion between the surface patterning and the specular reflection of the lighting, and (iii) image disruption caused by this motion. Despite large individual differences in performance with static stimuli, motion manipulations neither improved nor degraded performance. As motion significantly disrupts frame-by-frame low-level image statistics, we infer that operational constancy depends on a high-level scene interpretation, which is maintained in all conditions. PMID:29291113
LPV control for the full region operation of a wind turbine integrated with synchronous generator.
Cao, Guoyan; Grigoriadis, Karolos M; Nyanteh, Yaw D
2015-01-01
Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.
A data-centric approach to understanding the pricing of financial options
NASA Astrophysics Data System (ADS)
Healy, J.; Dixon, M.; Read, B.; Cai, F. F.
2002-05-01
We investigate what can be learned from a purely phenomenological study of options prices without modelling assumptions. We fitted neural net (NN) models to LIFFE ``ESX'' European style FTSE 100 index options using daily data from 1992 to 1997. These non-parametric models reproduce the Black-Scholes (BS) analytic model in terms of fit and performance measures using just the usual five inputs (S, X, t, r, IV). We found that adding transaction costs (bid-ask spread) to these standard five parameters gives a comparable fit and performance. Tests show that the bid-ask spread can be a statistically significant explanatory variable for option prices. The difference in option prices between the models with transaction costs and those without ranges from about -3.0 to +1.5 index points, varying with maturity date. However, the difference depends on the moneyness (S/X), being greatest in-the-money. This suggests that use of a five-factor model can result in a pricing difference of up to #10 to #30 per call option contract compared with modelling under transaction costs. We found that the influence of transaction costs varied between different yearly subsets of the data. Open interest is also a significant explanatory variable, but volume is not.
Integration of auditory and vibrotactile stimuli: Effects of frequency
Wilson, E. Courtenay; Reed, Charlotte M.; Braida, Louis D.
2010-01-01
Perceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. Detection performance for combined auditory-tactile presentations was measured using stimulus levels that yielded 63% to 77% correct unimodal performance. In Experiment 1, the vibrotactile stimulus was 250 Hz and the auditory stimulus varied between 125 and 2000 Hz. In Experiment 2, the auditory stimulus was 250 Hz and the tactile stimulus varied between 50 and 400 Hz. In Experiment 3, the auditory and tactile stimuli were always equal in frequency and ranged from 50 to 400 Hz. The highest rates of detection for the combined-modality stimulus were obtained when stimulating frequencies in the two modalities were equal or closely spaced (and within the Pacinian range). Combined-modality detection for closely spaced frequencies was generally consistent with an algebraic sum model of perceptual integration; wider-frequency spacings were generally better fit by a Pythagorean sum model. Thus, perceptual integration of auditory and tactile stimuli at near-threshold levels appears to depend both on absolute frequency and relative frequency of stimulation within each modality. PMID:21117754
LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator
Grigoriadis, Karolos M.; Nyanteh, Yaw D.
2015-01-01
Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control. PMID:25884036
NASA Astrophysics Data System (ADS)
Mainberger, Sebastian; Kindlein, Moritz; Bezold, Franziska; Elts, Ekaterina; Minceva, Mirjana; Briesen, Heiko
2017-06-01
Deep eutectic solvents (DES) have gained a reputation as inexpensive and easy to handle ionic liquid analogues. This work employs molecular dynamics (MD) to simulate a variety of DES. The hydrogen bond acceptor (HBA) choline chloride was paired with the hydrogen bond donors (HBD) glycerol, 1,4-butanediol, and levulinic acid. Levulinic acid was also paired with the zwitterionic HBA betaine. In order to evaluate the reliability of data MD simulations can provide for DES, two force fields were compared: the Merck Molecular Force Field and the General Amber Force Field with two different sets of partial charges for the latter. The force fields were evaluated by comparing available experimental thermodynamic and transport properties against simulated values. Structural analysis was performed on the eutectic systems and compared to non-eutectic compositions. All force fields could be validated against certain experimental properties, but performance varied depending on the system and property in question. While extensive hydrogen bonding was found for all systems, details about the contribution of individual groups strongly varied among force fields. Interaction potentials revealed that HBA-HBA interactions weaken linearly with increasing HBD ratio, while HBD-HBD interactions grew disproportionally in magnitude, which might hint at the eutectic composition of a system.
The effects of varied versus constant high-, medium-, and low-preference stimuli on performance.
Wine, Byron; Wilder, David A
2009-01-01
The purpose of the current study was to compare the delivery of varied versus constant high-, medium-, and low-preference stimuli on performance of 2 adults on a computer-based task in an analogue employment setting. For both participants, constant delivery of the high-preference stimulus produced the greatest increases in performance over baseline; the varied presentation produced performance comparable to constant delivery of medium-preference stimuli. Results are discussed in terms of their implications for the selection and delivery of stimuli as part of employee performance-improvement programs in the field of organizational behavior management.
Effective ergodicity breaking in an exclusion process with varying system length
NASA Astrophysics Data System (ADS)
Schultens, Christoph; Schadschneider, Andreas; Arita, Chikashi
2015-09-01
Stochastic processes of interacting particles in systems with varying length are relevant e.g. for several biological applications. We try to explore what kind of new physical effects one can expect in such systems. As an example, we extend the exclusive queueing process that can be viewed as a one-dimensional exclusion process with varying length, by introducing Langmuir kinetics. This process can be interpreted as an effective model for a queue that interacts with other queues by allowing incoming and leaving of customers in the bulk. We find surprising indications for breaking of ergodicity in a certain parameter regime, where the asymptotic growth behavior depends on the initial length. We show that a random walk with site-dependent hopping probabilities exhibits qualitatively the same behavior.
Demirjian's method in the estimation of age: A study on human third molars.
Lewis, Amitha J; Boaz, Karen; Nagesh, K R; Srikant, N; Gupta, Neha; Nandita, K P; Manaktala, Nidhi
2015-01-01
The primary aim of the following study is to estimate the chronological age based on the stages of third molar development following the eight stages (A to H) method of Demirjian et al. (along with two modifications-Orhan) and secondary aim is to compare third molar development with sex and age. The sample consisted of 115 orthopantomograms from South Indian subjects with known chronological age and gender. Multiple regression analysis was performed with chronological age as the dependable variable and third molar root development as independent variable. All the statistical analysis was performed using the SPSS 11.0 package (IBM ® Corporation). Statistically no significant differences were found in third molar development between males and females. Depending on the available number of wisdom teeth in an individual, R (2) varied for males from 0.21 to 0.48 and for females from 0.16 to 0.38. New equations were derived for estimating the chronological age. The chronological age of a South Indian individual between 14 and 22 years may be estimated based on the regression formulae. However, additional studies with a larger study population must be conducted to meet the need for population-based information on third molar development.
Synthetic Proxy Infrastructure for Task Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junghans, Christoph; Pavel, Robert
The Synthetic Proxy Infrastructure for Task Evaluation is a proxy application designed to support application developers in gauging the performance of various task granularities when determining how best to utilize task based programming models.The infrastructure is designed to provide examples of common communication patterns with a synthetic workload intended to provide performance data to evaluate programming model and platform overheads for the purpose of determining task granularity for task decomposition purposes. This is presented as a reference implementation of a proxy application with run-time configurable input and output task dependencies ranging from an embarrassingly parallel scenario to patterns with stencil-likemore » dependencies upon their nearest neighbors. Once all, if any, inputs are satisfied each task will execute a synthetic workload (a simple DGEMM of in this case) of varying size and output all, if any, outputs to the next tasks.The intent is for this reference implementation to be implemented as a proxy app in different programming models so as to provide the same infrastructure and to allow for application developers to simulate their own communication needs to assist in task decomposition under various models on a given platform.« less
Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses.
Singal, Ashish; Mattison, Lars M; Soule, Charles L; Ballard, John R; Rudie, Eric N; Cressman, Erik N K; Iaizzo, Paul A
2018-03-28
Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm's properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm's physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force-displacement responses, stress-strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force-but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.
Huang, Ling; Gao, Qinggang; Sun, Ling-Dong; Dong, Hao; Shi, Shuo; Cai, Tong; Liao, Qing; Yan, Chun-Hua
2018-05-21
Cesium lead halide (CsPbX 3 ) perovskite has emerged as a promising low-threshold multicolor laser material; however, realizing wavelength-tunable lasing output from a single CsPbX 3 nanostructure is still constrained by integrating different composition. Here, the direct synthesis of composition-graded CsPbBr x I 3- x nanowires (NWs) is reported through vapor-phase epitaxial growth on mica. The graded composition along the NW, with an increased Br/I from the center to the ends, comes from desynchronized deposition of cesium lead halides and temperature-controlled anion-exchange reaction. The graded composition results in varied bandgaps along the NW, which induce a blueshifted emission from the center to the ends. As an efficient gain media, the nanowire exerts position-dependent lasing performance, with a different color at the ends and center respectively above the threshold. Meanwhile, dual-color lasing with a wavelength separation of 35 nm is activated simultaneously at a site with an intermediate composition. This position-dependent dual-color lasing from a single nanowire makes these metal halide perovskites promising for applications in nanoscale optical devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self similarities in desalination dynamics and performance using capacitive deionization.
Ramachandran, Ashwin; Hemmatifar, Ali; Hawks, Steven A; Stadermann, Michael; Santiago, Juan G
2018-09-01
Charge transfer and mass transport are two underlying mechanisms which are coupled in desalination dynamics using capacitive deionization (CDI). We developed simple reduced-order models based on a mixed reactor volume principle which capture the coupled dynamics of CDI operation using closed-form semi-analytical and analytical solutions. We use the models to identify and explore self-similarities in the dynamics among flow rate, current, and voltage for CDI cell operation including both charging and discharging cycles. The similarity approach identifies the specific combination of cell (e.g. capacitance, resistance) and operational parameters (e.g. flow rate, current) which determine a unique effluent dynamic response. We here demonstrate self-similarity using a conventional flow between CDI (fbCDI) architecture, and we hypothesize that our similarity approach has potential application to a wide range of designs. We performed an experimental study of these dynamics and used well-controlled experiments of CDI cell operation to validate and explore limits of the model. For experiments, we used a CDI cell with five electrode pairs and a standard flow between (electrodes) architecture. Guided by the model, we performed a series of experiments that demonstrate natural response of the CDI system. We also identify cell parameters and operation conditions which lead to self-similar dynamics under a constant current forcing function and perform a series of experiments by varying flowrate, currents, and voltage thresholds to demonstrate self-similarity. Based on this study, we hypothesize that the average differential electric double layer (EDL) efficiency (a measure of ion adsorption rate to EDL charging rate) is mainly dependent on user-defined voltage thresholds, whereas flow efficiency (measure of how well desalinated water is recovered from inside the cell) depends on cell volumes flowed during charging, which is determined by flowrate, current and voltage thresholds. Results of experiments strongly support this hypothesis. Results show that cycle efficiency and salt removal for a given flowrate and current are maximum when average EDL and flow efficiencies are approximately equal. We further explored a range of CC operations with varying flowrates, currents, and voltage thresholds using our similarity variables to highlight trade-offs among salt removal, energy, and throughput performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula
NASA Astrophysics Data System (ADS)
Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.
2016-03-01
A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.
NASA Astrophysics Data System (ADS)
Boubaker, Heni; Raza, Syed Ali
2016-10-01
In this paper, we attempt to evaluate the time-varying and asymmetric co-movement of CEE equity markets with the US stock markets around the subprime crisis and the resulting global financial crisis. The econometric approach adopted is based on recent development of time-varying copulas. For that, we propose a new class of time-varying copulas that allows for long memory behavior in both marginal and joint distributions. Our empirical approach relies on the flexibility and usefulness of bivariate copulas that allow to model not only the dynamic co-movement through time but also to account for any extreme interaction, nonlinearity and asymmetry in the co-movement patterns. The time-varying dependence structure can be also modeled conditionally on the economic policy uncertainty index of the crisis country. Empirical results show strong evidence of co-movement between the US and CEE equity markets and find that the co-movement exhibits large time-variations and asymmetry in the tails of the return distributions.
Characterization of shock-dependent reaction rates in an aluminum/perfluoropolyether pyrolant
NASA Astrophysics Data System (ADS)
Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald
2017-01-01
Energetic formulations of perfluoropolyether (PFPE) and aluminum are highly non-ideal. They release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Unlike high explosives, the reactions are shock dependent and can be overdriven to control energy release rate. Reaction rate experiments show that the velocity can vary from 1.25 to 3 km/s. This paper examines the effect of the initial shock conditions upon the reaction rate of the explosive. The following conditions were varied in a series of reaction rate experiments: the high explosive booster mass and geometry; shock attenuation; confinement; and rate stick diameter and length. Several experiments designed to isolate and quantify these dependencies are described and summarized.
Absolute calibration of a multichannel plate detector for low energy O, O-, and O+
NASA Astrophysics Data System (ADS)
Stephen, T. M.; Peko, B. L.
2000-03-01
Absolute detection efficiencies of a commercial multichannel plate detector have been measured for O, O+, and O-, impacting at normal incidence for energies ranging from 30-1000 eV. In addition, the detection efficiencies for O relative to its ions are presented, as they may have a more universal application. The absolute detection efficiencies are strongly energy dependent and significant differences are observed for the various charge states at lower energies. The detection efficiencies for the different charge states appear to converge at higher energies. The strongest energy dependence is for O+; the detection efficiency varies by three orders of magnitude across the energy range studied. The weakest dependence is for O-, which varies less than one order of magnitude.
Magnon Mode Selective Spin Transport in Compensated Ferrimagnets.
Cramer, Joel; Guo, Er-Jia; Geprägs, Stephan; Kehlberger, Andreas; Ivanov, Yurii P; Ganzhorn, Kathrin; Della Coletta, Francesco; Althammer, Matthias; Huebl, Hans; Gross, Rudolf; Kosel, Jürgen; Kläui, Mathias; Goennenwein, Sebastian T B
2017-06-14
We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify the magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. The comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.
NASA Technical Reports Server (NTRS)
Obenschain, A. F.; Faith, T. J.
1973-01-01
Emperical equations have been derived from measurements of solar cell photovoltaic characteristics relating light generated current, IL, and open circuit voltage, VO, to cell temperature, T, intensity of illumination, W, and 1 Mev electron fluence, phi both 2 ohm-cm and 10 ohm-cm cells were tested. The temperature dependency of IL is similar for both resistivities at 140mw/sq cm; at high temperature the coefficient varies with fluence as phi 0.18, while at low temperatures the coefficient is relatively independent of fluence. Fluence dependent degration causes a decrease in IL at a rate proportional to phi 0.153 for both resistivities. At all intensities other than 560 mw/sq cm, a linear dependence of IL on illumination was found. The temperature coefficient of voltage was, to a good approximation, independent of both temperature and illumination for both resistivities. Illumination dependence of VOC was logarithmic, while the decrease with fluence of VOC varied as phi 0.25 for both resistivities.
NASA Astrophysics Data System (ADS)
Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen
2017-04-01
Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential (RTP) coefficients, which directly link regional aerosol or aerosol precursor emissions to the temperature response in different regions. These RTP coefficients can provide a simplified way to perform an initial evaluation of climate impacts of e.g. different emission policy pathways and pollution abatement strategies.
Transient Reliability Analysis Capability Developed for CARES/Life
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.
2001-01-01
The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.
Direction Dependent Effects In Widefield Wideband Full Stokes Radio Imaging
NASA Astrophysics Data System (ADS)
Jagannathan, Preshanth; Bhatnagar, Sanjay; Rau, Urvashi; Taylor, Russ
2015-01-01
Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction dependent gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wideband full stokes power pattern of the Very Large Array(VLA) antennas to demonstrate the level of errors arising from direction-dependent gains. Our estimate is that these errors will be significant in wide-band full-pol mosaic imaging as well and algorithms to correct these errors will be crucial for many up-coming large area surveys (e.g. VLASS)
Temperature dependence of conductivity measurement for conducting polymer
NASA Astrophysics Data System (ADS)
Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining
2014-03-01
Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant
Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macdougall, James, E-mail: jbm34@mail.fresnostate.edu; Singleton, Douglas, E-mail: dougs@csufresno.edu
2014-04-15
Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology ofmore » the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.« less
Fundamental differences between optimization code test problems in engineering applications
NASA Technical Reports Server (NTRS)
Eason, E. D.
1984-01-01
The purpose here is to suggest that there is at least one fundamental difference between the problems used for testing optimization codes and the problems that engineers often need to solve; in particular, the level of precision that can be practically achieved in the numerical evaluation of the objective function, derivatives, and constraints. This difference affects the performance of optimization codes, as illustrated by two examples. Two classes of optimization problem were defined. Class One functions and constraints can be evaluated to a high precision that depends primarily on the word length of the computer. Class Two functions and/or constraints can only be evaluated to a moderate or a low level of precision for economic or modeling reasons, regardless of the computer word length. Optimization codes have not been adequately tested on Class Two problems. There are very few Class Two test problems in the literature, while there are literally hundreds of Class One test problems. The relative performance of two codes may be markedly different for Class One and Class Two problems. Less sophisticated direct search type codes may be less likely to be confused or to waste many function evaluations on Class Two problems. The analysis accuracy and minimization performance are related in a complex way that probably varies from code to code. On a problem where the analysis precision was varied over a range, the simple Hooke and Jeeves code was more efficient at low precision while the Powell code was more efficient at high precision.
Inhibitory Processes in Young Children and Individual Variation in Short-Term Memory
Espy, Kimberly Andrews; Bull, Rebecca
2009-01-01
A precise definition of executive control remains elusive, related in part to the variations among executive tasks in the nature of the task demands, which complicate the identification of test-specific versus construct-specific performance. In this study, tasks were chosen that varied in the nature of the stimulus (verbal, nonverbal), response (naming, somatic motor), conflict type (proactive interference, distraction), and inhibitory process (attention control, response suppression) required. Then performance differences were examined in 184 young children (age range = 3 years 6 months to 6 years 1 month), comparing those with high (5 or more digits) and low (3 or fewer digits) spans to determine the dependence on short-term memory. Results indicated that there was communality in inhibitory task demands across instruments, although the specific pattern of task intercorrelations varied in children with high and low spans. Furthermore, only performance on attention control tasks—that is, that require cognitive engagement/disengagement among an internally represented rule or response set that was previously active versus those currently active—differed between children of high and low spans. In contrast, there were differences neither between children with high and low spans on response suppression tasks nor on tasks when considered by type of stimulus, response, or conflict. Individual differences in well-regulated thought may rest in variations in the ability to maintain information in an active, quickly retrievable state that subserve controlling attention in a goal-relevant fashion. PMID:16144432
Layton, Blythe A.; Cao, Yiping; Ebentier, Darcy L.; Hanley, Kaitlyn; Ballesté, Elisenda; Brandão, João; Byappanahalli, Muruleedhara N.; Converse, Reagan; Farnleitner, Andreas H.; Gentry-Shields, Jennifer; Gourmelon, Michèle; Lee, Chang Soo; Lee, Jiyoung; Lozach, Solen; Madi, Tania; Meijer, Wim G.; Noble, Rachel; Peed, Lindsay; Reischer, Georg H.; Rodrigues, Raquel; Rose, Joan B.; Schriewer, Alexander; Sinigalliano, Chris; Srinivasan, Sangeetha; Stewart, Jill; ,; Laurie, C.; Wang, Dan; Whitman, Richard; Wuertz, Stefan; Jay, Jenny; Holden, Patricia A.; Boehm, Alexandria B.; Shanks, Orin; Griffith, John F.
2013-01-01
A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing in large multi-laboratory studies. Here, we evaluated ten of these methods (BacH, BacHum-UCD, Bacteroides thetaiotaomicron (BtH), BsteriF1, gyrB, HF183 endpoint, HF183 SYBR, HF183 Taqman®, HumM2, and Methanobrevibacter smithii nifH (Mnif)) using 64 blind samples prepared in one laboratory. The blind samples contained either one or two fecal sources from human, wastewater or non-human sources. The assay results were assessed for presence/absence of the human markers and also quantitatively while varying the following: 1) classification of samples that were detected but not quantifiable (DNQ) as positive or negative; 2) reference fecal sample concentration unit of measure (such as culturable indicator bacteria, wet mass, total DNA, etc); and 3) human fecal source type (stool, sewage or septage). Assay performance using presence/absence metrics was found to depend on the classification of DNQ samples. The assays that performed best quantitatively varied based on the fecal concentration unit of measure and laboratory protocol. All methods were consistently more sensitive to human stools compared to sewage or septage in both the presence/absence and quantitative analysis. Overall, HF183 Taqman® was found to be the most effective marker of human fecal contamination in this California-based study.
Added value of double reading in diagnostic radiology,a systematic review.
Geijer, Håkan; Geijer, Mats
2018-06-01
Double reading in diagnostic radiology can find discrepancies in the original report, but a systematic program of double reading is resource consuming. There are conflicting opinions on the value of double reading. The purpose of the current study was to perform a systematic review on the value of double reading. A systematic review was performed to find studies calculating the rate of misses and overcalls with the aim of establishing the added value of double reading by human observers. The literature search resulted in 1610 hits. After abstract and full-text reading, 46 articles were selected for analysis. The rate of discrepancy varied from 0.4 to 22% depending on study setting. Double reading by a sub-specialist, in general, led to high rates of changed reports. The systematic review found rather low discrepancy rates. The benefit of double reading must be balanced by the considerable number of working hours a systematic double-reading scheme requires. A more profitable scheme might be to use systematic double reading for selected, high-risk examination types. A second conclusion is that there seems to be a value of sub-specialisation for increased report quality. A consequent implementation of this would have far-reaching organisational effects. • In double reading, two or more radiologists read the same images. • A systematic literature review was performed. • The discrepancy rates varied from 0.4 to 22% in various studies. • Double reading by sub-specialists found high discrepancy rates.
Lu, Yongke; Kawashima, Akira; Horii, Ikuo; Zhong, Laifu
2005-01-01
Cisplatin (CP)-induced kidney damage and effects of DL-buthionine-(S,R)-sulfoximine (BSO) on it are species- and age-different. It remains unclear whether CP-induced cytotoxicity in renal proximal tubular epithelial cells (RTEC), the main target cells of CP, is also species- and age-different; and whether CP-induced cytotoxicity varies with the difference in age and species, if any, is one of the questions. In the present study, the effects of BSO on CP-induced cytotoxicity in primary cultures of RTEC isolated from monkeys and different age and sex rats were studied. The RTEC were isolated from 3-week-old, 2-month-old, or 5-month-old rats, and 6-8 year-old monkeys. After subculturing, RTEC was inoculated into type I collagen-coated 96-well culture plates; after preincubation, 40 microM BSO was added, 16 hours later, varying concentrations of CP were added. At that time, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were performed to test cell viability. The concentrations of CP that inhibited 50% cell growth (IC50) of RTEC from rats and monkeys were 1.11 and 3.03 mM at 8 hours, and 0.51 and 1.24 mM at 24 hours, respectively. The BSO made the IC50s of RTEC from rats and monkeys lower, down to 0.07 and 0.48 mM at 8 hours, and 0.02 and 0.11 mM at 24 hours, respectively. The IC50s of RTEC from different sex and age rats were almost same. These results suggested that CP-induced cytotoxicity was concentration- and time-dependent, with species-dependent differences, rat RTEC were more susceptible to CP than monkey RTEC, rat RTEC were more dependent on glutathione (GSH) during the stress state were than monkey cells; CP-induced cytotoxicity was without sex- and age-dependent differences in rat RTEC.
Kasukawa, Yuji; Baylink, David J.; Guo, Rongqing; Mohan, Subburaman
2010-01-01
We previously found that the magnitude of skeletal deficits caused by GH deficiency varied during different growth periods. To test the hypothesis that the sensitivity to GH is growth period dependent, we treated GH-deficient lit/lit mice with GH (4 mg/kg body weight·d) or vehicle during the prepubertal and pubertal (d 7–34), pubertal (d 23–34), postpubertal (d 42–55), and adult (d 204–217) periods and evaluated GH effects on the musculoskeletal system by dual energy x-ray absorptiometry (DEXA) and peripheral quantitative computed tomography. GH treatment during different periods significantly increased total body bone mineral content, bone mineral density (BMD), bone area, and lean body mass and decreased percentage of fat compared with vehicle; however, the magnitude of change varied markedly depending on the treatment period. For example, the increase in total body BMD was significantly (P < 0.01) greater when GH was administered between d 42–55 (15%) compared with pubertal (8%) or adult (7.7%) periods, whereas the net loss in percentage of body fat was greatest (−56%) when GH was administered between d 204 and 216 and least (−27%) when GH was administered between d 7 and 35. To determine whether GH-induced anabolic effects on the musculoskeletal system are maintained after GH withdrawal, we performed DEXA measurements 3–7 wk after stopping GH treatment. The increases in total body bone mineral content, BMD, and lean body mass, but not the decrease in body fat, were sustained after GH withdrawal. Our findings demonstrate that the sensitivity to GH in target tissues is growth period and tissue type dependent and that continuous GH treatment is necessary to maintain body fat loss but not BMD gain during a 3–7 wk follow-up. PMID:12933669
Miura, Masatoshi; Goto, Fumiyuki; Inagaki, Yozo; Nomura, Yasuyuki; Oshima, Takeshi; Sugaya, Nagisa
2017-01-01
Tinnitus and dizziness are common complaints encountered in the department of otolaryngology. We hypothesized that when patients complain of both tinnitus and dizziness, perceived handicap, impairment of quality of life, and emotional distress are more severe than the patient who complain of either tinnitus or dizziness. The subjects for this study were 736 patients who visited Hino Municipal Hospital between August 2010 and March 2012, complaining of tinnitus or dizziness. The subjects were divided into three groups depending upon their chief complaints-group B had patients with both tinnitus and dizziness ( N = 75), group T had patients with tinnitus ( N = 145), and group D had patients with dizziness ( N = 516). Assessments were performed using Tinnitus Handicap Inventory (THI) for groups B and T, Dizziness Handicap Inventory (DHI) for groups B and D, Medical Outcomes Study 8-items Short-Form Health Survey (SF-8), and Hospital Anxiety and Depression Scale (HADS). The THI score of group B was higher than that of group T. The scores of PCS (physical component of SF-8) of groups B and D were lower than that of group T. However, there were no significant differences in the DHI scores of groups B and D, and the HADS scores of the three groups. While the physical quality of life was found to vary depending on the presence of dizziness in patients with tinnitus, it was not found to vary depending on the presence of tinnitus in patients with dizziness. It is therefore important to consider the functional impact resulting from dizziness in patients with tinnitus.
Miura, Masatoshi; Goto, Fumiyuki; Inagaki, Yozo; Nomura, Yasuyuki; Oshima, Takeshi; Sugaya, Nagisa
2017-01-01
Tinnitus and dizziness are common complaints encountered in the department of otolaryngology. We hypothesized that when patients complain of both tinnitus and dizziness, perceived handicap, impairment of quality of life, and emotional distress are more severe than the patient who complain of either tinnitus or dizziness. The subjects for this study were 736 patients who visited Hino Municipal Hospital between August 2010 and March 2012, complaining of tinnitus or dizziness. The subjects were divided into three groups depending upon their chief complaints—group B had patients with both tinnitus and dizziness (N = 75), group T had patients with tinnitus (N = 145), and group D had patients with dizziness (N = 516). Assessments were performed using Tinnitus Handicap Inventory (THI) for groups B and T, Dizziness Handicap Inventory (DHI) for groups B and D, Medical Outcomes Study 8-items Short-Form Health Survey (SF-8), and Hospital Anxiety and Depression Scale (HADS). The THI score of group B was higher than that of group T. The scores of PCS (physical component of SF-8) of groups B and D were lower than that of group T. However, there were no significant differences in the DHI scores of groups B and D, and the HADS scores of the three groups. While the physical quality of life was found to vary depending on the presence of dizziness in patients with tinnitus, it was not found to vary depending on the presence of tinnitus in patients with dizziness. It is therefore important to consider the functional impact resulting from dizziness in patients with tinnitus. PMID:29312138
Modelling non-linear effects of dark energy
NASA Astrophysics Data System (ADS)
Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis
2018-04-01
We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.
Pak, Theodore R.; Chacko, Kieran; O’Donnell, Timothy; Huprikar, Shirish; van Bakel, Harm; Kasarskis, Andrew; Scott, Erick R.
2018-01-01
Background Reported per-patient costs of Clostridium difficile infection (CDI) vary by two orders of magnitude among different hospitals, implying that infection control officers need precise, local analyses to guide rational decision-making between interventions. Objective We sought to comprehensively estimate changes in length of stay (LOS) attributable to CDI at one urban tertiary-care facility using only data automatically extractable from the electronic medical record (EMR). Methods We performed a retrospective cohort study of 171,938 visits spanning a 7-year period. 23,968 variables were extracted from EMR data recorded within 24 hours of admission to train elastic net regularized logistic regression models for propensity score matching. To address time-dependent bias (reverse causation), we separately stratified comparisons by time-of-infection and fit multistate models. Results The estimated difference in median LOS for propensity-matched cohorts varied from 3.1 days (95% CI, 2.2–3.9) to 10.1 days (95% CI, 7.3–12.2) depending on the case definition; however, dependency of the estimate on time-to-infection was observed. Stratification by time to first positive toxin assay, excluding probable community-acquired infections, showed a minimum excess LOS of 3.1 days (95% CI, 1.7–4.4). Under the same case definition, the multistate model averaged an excess LOS of 3.3 days (95% CI, 2.6–4.0). Conclusions Two independent time-to-infection adjusted methods converged on similar excess LOS estimates. Changes in LOS can be extrapolated to a marginal dollar costs by multiplying by average costs of an inpatient-day. Infection control officers can leverage automatically extractable EMR data to estimate costs of CDI at their own institution. PMID:29103378
Mannelli, Massimo; Castellano, Maurizio; Schiavi, Francesca; Filetti, Sebastiano; Giacchè, Mara; Mori, Luigi; Pignataro, Viviana; Bernini, Gianpaolo; Giachè, Valentino; Bacca, Alessandra; Biondi, Bernadette; Corona, Giovanni; Di Trapani, Giuseppe; Grossrubatscher, Erika; Reimondo, Giuseppe; Arnaldi, Giorgio; Giacchetti, Gilberta; Veglio, Franco; Loli, Paola; Colao, Annamaria; Ambrosio, Maria Rosaria; Terzolo, Massimo; Letizia, Claudio; Ercolino, Tonino; Opocher, Giuseppe
2009-05-01
The aim of the study was to define the frequency of hereditary forms and the genotype/phenotype correlations in a large cohort of Italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. We examined 501 consecutive patients with pheochromocytomas and/or paragangliomas (secreting or nonsecreting). Complete medical and family histories, as well as the results of clinical, laboratory, and imaging studies, were recorded in a database. Patients were divided into different groups according to their family history, the presence of lesions outside adrenals/paraganglia considered syndromic for VHL disease, MEN2, and NF1, and the number and types of pheochromocytomas and/or paragangliomas. Germ-line mutations in known susceptibility genes were investigated by gene sequencing (VHL, RET, SDHB, SDHC, SDHD) or diagnosed according to phenotype (NF1). In 160 patients younger than 50 yr with a wild-type profile, multiplex ligation-dependent probe amplification assays were performed to detect genomic rearrangements. Germline mutations were detected in 32.1% of cases, but frequencies varied widely depending on the classification criteria and ranged from 100% in patients with associated syndromic lesions to 11.6% in patients with a single tumor and a negative family history. The types and number of pheochromocytomas/paragangliomas as well as age at presentation and malignancy suggest which gene should be screened first. Genomic rearrangements were found in two of 160 patients (1.2%). The frequency of the hereditary forms of pheochromocytoma/paraganglioma varies depending on the family history and the clinical presentation. A positive family history and an accurate clinical evaluation of patients are strong indicators of which genes should be screened first.
NASA Astrophysics Data System (ADS)
Arai, T.; Matsunaga, T.
2017-12-01
GOSAT and the next generation GOSAT-2 satellites estimate the concentration of greenhouse gasses, and distribution of aerosol and cloud to observe solar light reflection and radiation from surface and atmosphere of the Earth. Precise information of the surface and the bidirectional reflectance distribution function (BRDF) are required for the estimation because the surface reflectance of solar light varies with the observation geometry and the surface condition. The purpose of this study is to search an appropriate BRDF model of the GOSAT calibration site (Railroad Valley playa). In 2017, JAXA, NIES, and NASA/OCO-2 teams collaboratively performed 9th vicarious experiments by the simultaneous observation with GOSAT, OCO-2, and ground-based equipment (Kuze et al., 2014) at the Railroad Valley from June 25 to 30. We performed the BRDF measurement to observe solar light reflection by varying with observed angles using a spectroradiometer (FieldSpec4, ASD Inc.) mounted on a one-axis goniometer. The surface sand was shifted to several sizes of grain (75, 125, 250, 500, and 1000 μm), which was measured for the limited area of 5mm diameter with a collimating lens (74-UV, OceanOptics). The BRDF parameters for the observed reflectance were determined by the least squares fitting with the free parameters of a single scattering albedo and an asymmetric factor (Hapke, 2012) for the ultraviolet to near infrared wavelength bands of GOSAT. The resulting value of the single scattering albedo increased with decreasing the grain size of the sands. The observed reflectance of the fine grain sands (below 250 μm) is not varied with observed phase angles (solar incident light - surface sand - detector) as a Lambertian reflectance, but the spectra of coarse grain sands (above 500 μm) are varied with the observation angles. Therefore, a priori information of the target surface such as grain size is required for the determination of the precise reflectance of the target.