Sample records for performed microarray analyses

  1. Missing value imputation for microarray data: a comprehensive comparison study and a web tool.

    PubMed

    Chiu, Chia-Chun; Chan, Shih-Yao; Wang, Chung-Ching; Wu, Wei-Sheng

    2013-01-01

    Microarray data are usually peppered with missing values due to various reasons. However, most of the downstream analyses for microarray data require complete datasets. Therefore, accurate algorithms for missing value estimation are needed for improving the performance of microarray data analyses. Although many algorithms have been developed, there are many debates on the selection of the optimal algorithm. The studies about the performance comparison of different algorithms are still incomprehensive, especially in the number of benchmark datasets used, the number of algorithms compared, the rounds of simulation conducted, and the performance measures used. In this paper, we performed a comprehensive comparison by using (I) thirteen datasets, (II) nine algorithms, (III) 110 independent runs of simulation, and (IV) three types of measures to evaluate the performance of each imputation algorithm fairly. First, the effects of different types of microarray datasets on the performance of each imputation algorithm were evaluated. Second, we discussed whether the datasets from different species have different impact on the performance of different algorithms. To assess the performance of each algorithm fairly, all evaluations were performed using three types of measures. Our results indicate that the performance of an imputation algorithm mainly depends on the type of a dataset but not on the species where the samples come from. In addition to the statistical measure, two other measures with biological meanings are useful to reflect the impact of missing value imputation on the downstream data analyses. Our study suggests that local-least-squares-based methods are good choices to handle missing values for most of the microarray datasets. In this work, we carried out a comprehensive comparison of the algorithms for microarray missing value imputation. Based on such a comprehensive comparison, researchers could choose the optimal algorithm for their datasets easily. Moreover, new imputation algorithms could be compared with the existing algorithms using this comparison strategy as a standard protocol. In addition, to assist researchers in dealing with missing values easily, we built a web-based and easy-to-use imputation tool, MissVIA (http://cosbi.ee.ncku.edu.tw/MissVIA), which supports many imputation algorithms. Once users upload a real microarray dataset and choose the imputation algorithms, MissVIA will determine the optimal algorithm for the users' data through a series of simulations, and then the imputed results can be downloaded for the downstream data analyses.

  2. Missing value imputation for microarray data: a comprehensive comparison study and a web tool

    PubMed Central

    2013-01-01

    Background Microarray data are usually peppered with missing values due to various reasons. However, most of the downstream analyses for microarray data require complete datasets. Therefore, accurate algorithms for missing value estimation are needed for improving the performance of microarray data analyses. Although many algorithms have been developed, there are many debates on the selection of the optimal algorithm. The studies about the performance comparison of different algorithms are still incomprehensive, especially in the number of benchmark datasets used, the number of algorithms compared, the rounds of simulation conducted, and the performance measures used. Results In this paper, we performed a comprehensive comparison by using (I) thirteen datasets, (II) nine algorithms, (III) 110 independent runs of simulation, and (IV) three types of measures to evaluate the performance of each imputation algorithm fairly. First, the effects of different types of microarray datasets on the performance of each imputation algorithm were evaluated. Second, we discussed whether the datasets from different species have different impact on the performance of different algorithms. To assess the performance of each algorithm fairly, all evaluations were performed using three types of measures. Our results indicate that the performance of an imputation algorithm mainly depends on the type of a dataset but not on the species where the samples come from. In addition to the statistical measure, two other measures with biological meanings are useful to reflect the impact of missing value imputation on the downstream data analyses. Our study suggests that local-least-squares-based methods are good choices to handle missing values for most of the microarray datasets. Conclusions In this work, we carried out a comprehensive comparison of the algorithms for microarray missing value imputation. Based on such a comprehensive comparison, researchers could choose the optimal algorithm for their datasets easily. Moreover, new imputation algorithms could be compared with the existing algorithms using this comparison strategy as a standard protocol. In addition, to assist researchers in dealing with missing values easily, we built a web-based and easy-to-use imputation tool, MissVIA (http://cosbi.ee.ncku.edu.tw/MissVIA), which supports many imputation algorithms. Once users upload a real microarray dataset and choose the imputation algorithms, MissVIA will determine the optimal algorithm for the users' data through a series of simulations, and then the imputed results can be downloaded for the downstream data analyses. PMID:24565220

  3. permGPU: Using graphics processing units in RNA microarray association studies.

    PubMed

    Shterev, Ivo D; Jung, Sin-Ho; George, Stephen L; Owzar, Kouros

    2010-06-16

    Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

  4. Shrinkage regression-based methods for microarray missing value imputation.

    PubMed

    Wang, Hsiuying; Chiu, Chia-Chun; Wu, Yi-Ching; Wu, Wei-Sheng

    2013-01-01

    Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods.

  5. EMAAS: An extensible grid-based Rich Internet Application for microarray data analysis and management

    PubMed Central

    Barton, G; Abbott, J; Chiba, N; Huang, DW; Huang, Y; Krznaric, M; Mack-Smith, J; Saleem, A; Sherman, BT; Tiwari, B; Tomlinson, C; Aitman, T; Darlington, J; Game, L; Sternberg, MJE; Butcher, SA

    2008-01-01

    Background Microarray experimentation requires the application of complex analysis methods as well as the use of non-trivial computer technologies to manage the resultant large data sets. This, together with the proliferation of tools and techniques for microarray data analysis, makes it very challenging for a laboratory scientist to keep up-to-date with the latest developments in this field. Our aim was to develop a distributed e-support system for microarray data analysis and management. Results EMAAS (Extensible MicroArray Analysis System) is a multi-user rich internet application (RIA) providing simple, robust access to up-to-date resources for microarray data storage and analysis, combined with integrated tools to optimise real time user support and training. The system leverages the power of distributed computing to perform microarray analyses, and provides seamless access to resources located at various remote facilities. The EMAAS framework allows users to import microarray data from several sources to an underlying database, to pre-process, quality assess and analyse the data, to perform functional analyses, and to track data analysis steps, all through a single easy to use web portal. This interface offers distance support to users both in the form of video tutorials and via live screen feeds using the web conferencing tool EVO. A number of analysis packages, including R-Bioconductor and Affymetrix Power Tools have been integrated on the server side and are available programmatically through the Postgres-PLR library or on grid compute clusters. Integrated distributed resources include the functional annotation tool DAVID, GeneCards and the microarray data repositories GEO, CELSIUS and MiMiR. EMAAS currently supports analysis of Affymetrix 3' and Exon expression arrays, and the system is extensible to cater for other microarray and transcriptomic platforms. Conclusion EMAAS enables users to track and perform microarray data management and analysis tasks through a single easy-to-use web application. The system architecture is flexible and scalable to allow new array types, analysis algorithms and tools to be added with relative ease and to cope with large increases in data volume. PMID:19032776

  6. MVIAeval: a web tool for comprehensively evaluating the performance of a new missing value imputation algorithm.

    PubMed

    Wu, Wei-Sheng; Jhou, Meng-Jhun

    2017-01-13

    Missing value imputation is important for microarray data analyses because microarray data with missing values would significantly degrade the performance of the downstream analyses. Although many microarray missing value imputation algorithms have been developed, an objective and comprehensive performance comparison framework is still lacking. To solve this problem, we previously proposed a framework which can perform a comprehensive performance comparison of different existing algorithms. Also the performance of a new algorithm can be evaluated by our performance comparison framework. However, constructing our framework is not an easy task for the interested researchers. To save researchers' time and efforts, here we present an easy-to-use web tool named MVIAeval (Missing Value Imputation Algorithm evaluator) which implements our performance comparison framework. MVIAeval provides a user-friendly interface allowing users to upload the R code of their new algorithm and select (i) the test datasets among 20 benchmark microarray (time series and non-time series) datasets, (ii) the compared algorithms among 12 existing algorithms, (iii) the performance indices from three existing ones, (iv) the comprehensive performance scores from two possible choices, and (v) the number of simulation runs. The comprehensive performance comparison results are then generated and shown as both figures and tables. MVIAeval is a useful tool for researchers to easily conduct a comprehensive and objective performance evaluation of their newly developed missing value imputation algorithm for microarray data or any data which can be represented as a matrix form (e.g. NGS data or proteomics data). Thus, MVIAeval will greatly expedite the progress in the research of missing value imputation algorithms.

  7. BABAR: an R package to simplify the normalisation of common reference design microarray-based transcriptomic datasets

    PubMed Central

    2010-01-01

    Background The development of DNA microarrays has facilitated the generation of hundreds of thousands of transcriptomic datasets. The use of a common reference microarray design allows existing transcriptomic data to be readily compared and re-analysed in the light of new data, and the combination of this design with large datasets is ideal for 'systems'-level analyses. One issue is that these datasets are typically collected over many years and may be heterogeneous in nature, containing different microarray file formats and gene array layouts, dye-swaps, and showing varying scales of log2- ratios of expression between microarrays. Excellent software exists for the normalisation and analysis of microarray data but many data have yet to be analysed as existing methods struggle with heterogeneous datasets; options include normalising microarrays on an individual or experimental group basis. Our solution was to develop the Batch Anti-Banana Algorithm in R (BABAR) algorithm and software package which uses cyclic loess to normalise across the complete dataset. We have already used BABAR to analyse the function of Salmonella genes involved in the process of infection of mammalian cells. Results The only input required by BABAR is unprocessed GenePix or BlueFuse microarray data files. BABAR provides a combination of 'within' and 'between' microarray normalisation steps and diagnostic boxplots. When applied to a real heterogeneous dataset, BABAR normalised the dataset to produce a comparable scaling between the microarrays, with the microarray data in excellent agreement with RT-PCR analysis. When applied to a real non-heterogeneous dataset and a simulated dataset, BABAR's performance in identifying differentially expressed genes showed some benefits over standard techniques. Conclusions BABAR is an easy-to-use software tool, simplifying the simultaneous normalisation of heterogeneous two-colour common reference design cDNA microarray-based transcriptomic datasets. We show BABAR transforms real and simulated datasets to allow for the correct interpretation of these data, and is the ideal tool to facilitate the identification of differentially expressed genes or network inference analysis from transcriptomic datasets. PMID:20128918

  8. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    PubMed

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  9. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase

    PubMed Central

    Kohlmann, Alexander; Kipps, Thomas J; Rassenti, Laura Z; Downing, James R; Shurtleff, Sheila A; Mills, Ken I; Gilkes, Amanda F; Hofmann, Wolf-Karsten; Basso, Giuseppe; Dell’Orto, Marta Campo; Foà, Robin; Chiaretti, Sabina; De Vos, John; Rauhut, Sonja; Papenhausen, Peter R; Hernández, Jesus M; Lumbreras, Eva; Yeoh, Allen E; Koay, Evelyn S; Li, Rachel; Liu, Wei-min; Williams, Paul M; Wieczorek, Lothar; Haferlach, Torsten

    2008-01-01

    Gene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing. Unsupervised, supervised, and r2 correlation analyses demonstrated that microarray analysis can be performed with remarkably high intra-laboratory reproducibility and with comparable quality and reliability. PMID:18573112

  10. MGDB: crossing the marker genes of a user microarray with a database of public-microarrays marker genes.

    PubMed

    Huerta, Mario; Munyi, Marc; Expósito, David; Querol, Enric; Cedano, Juan

    2014-06-15

    The microarrays performed by scientific teams grow exponentially. These microarray data could be useful for researchers around the world, but unfortunately they are underused. To fully exploit these data, it is necessary (i) to extract these data from a repository of the high-throughput gene expression data like Gene Expression Omnibus (GEO) and (ii) to make the data from different microarrays comparable with tools easy to use for scientists. We have developed these two solutions in our server, implementing a database of microarray marker genes (Marker Genes Data Base). This database contains the marker genes of all GEO microarray datasets and it is updated monthly with the new microarrays from GEO. Thus, researchers can see whether the marker genes of their microarray are marker genes in other microarrays in the database, expanding the analysis of their microarray to the rest of the public microarrays. This solution helps not only to corroborate the conclusions regarding a researcher's microarray but also to identify the phenotype of different subsets of individuals under investigation, to frame the results with microarray experiments from other species, pathologies or tissues, to search for drugs that promote the transition between the studied phenotypes, to detect undesirable side effects of the treatment applied, etc. Thus, the researcher can quickly add relevant information to his/her studies from all of the previous analyses performed in other studies as long as they have been deposited in public repositories. Marker-gene database tool: http://ibb.uab.es/mgdb © The Author 2014. Published by Oxford University Press.

  11. Application of the Gini correlation coefficient to infer regulatory relationships in transcriptome analysis.

    PubMed

    Ma, Chuang; Wang, Xiangfeng

    2012-09-01

    One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than 11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey's biweight correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene expression patterns or transcriptional network analyses.

  12. Application of the Gini Correlation Coefficient to Infer Regulatory Relationships in Transcriptome Analysis[W][OA

    PubMed Central

    Ma, Chuang; Wang, Xiangfeng

    2012-01-01

    One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than 11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey’s biweight correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene expression patterns or transcriptional network analyses. PMID:22797655

  13. Karyotype versus microarray testing for genetic abnormalities after stillbirth.

    PubMed

    Reddy, Uma M; Page, Grier P; Saade, George R; Silver, Robert M; Thorsten, Vanessa R; Parker, Corette B; Pinar, Halit; Willinger, Marian; Stoll, Barbara J; Heim-Hall, Josefine; Varner, Michael W; Goldenberg, Robert L; Bukowski, Radek; Wapner, Ronald J; Drews-Botsch, Carolyn D; O'Brien, Barbara M; Dudley, Donald J; Levy, Brynn

    2012-12-06

    Genetic abnormalities have been associated with 6 to 13% of stillbirths, but the true prevalence may be higher. Unlike karyotype analysis, microarray analysis does not require live cells, and it detects small deletions and duplications called copy-number variants. The Stillbirth Collaborative Research Network conducted a population-based study of stillbirth in five geographic catchment areas. Standardized postmortem examinations and karyotype analyses were performed. A single-nucleotide polymorphism array was used to detect copy-number variants of at least 500 kb in placental or fetal tissue. Variants that were not identified in any of three databases of apparently unaffected persons were then classified into three groups: probably benign, clinical significance unknown, or pathogenic. We compared the results of karyotype and microarray analyses of samples obtained after delivery. In our analysis of samples from 532 stillbirths, microarray analysis yielded results more often than did karyotype analysis (87.4% vs. 70.5%, P<0.001) and provided better detection of genetic abnormalities (aneuploidy or pathogenic copy-number variants, 8.3% vs. 5.8%; P=0.007). Microarray analysis also identified more genetic abnormalities among 443 antepartum stillbirths (8.8% vs. 6.5%, P=0.02) and 67 stillbirths with congenital anomalies (29.9% vs. 19.4%, P=0.008). As compared with karyotype analysis, microarray analysis provided a relative increase in the diagnosis of genetic abnormalities of 41.9% in all stillbirths, 34.5% in antepartum stillbirths, and 53.8% in stillbirths with anomalies. Microarray analysis is more likely than karyotype analysis to provide a genetic diagnosis, primarily because of its success with nonviable tissue, and is especially valuable in analyses of stillbirths with congenital anomalies or in cases in which karyotype results cannot be obtained. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.).

  14. Porous Silicon Antibody Microarrays for Quantitative Analysis: Measurement of Free and Total PSA in Clinical Plasma Samples

    PubMed Central

    Tojo, Axel; Malm, Johan; Marko-Varga, György; Lilja, Hans; Laurell, Thomas

    2014-01-01

    The antibody microarrays have become widespread, but their use for quantitative analyses in clinical samples has not yet been established. We investigated an immunoassay based on nanoporous silicon antibody microarrays for quantification of total prostate-specific-antigen (PSA) in 80 clinical plasma samples, and provide quantitative data from a duplex microarray assay that simultaneously quantifies free and total PSA in plasma. To further develop the assay the porous silicon chips was placed into a standard 96-well microtiter plate for higher throughput analysis. The samples analyzed by this quantitative microarray were 80 plasma samples obtained from men undergoing clinical PSA testing (dynamic range: 0.14-44ng/ml, LOD: 0.14ng/ml). The second dataset, measuring free PSA (dynamic range: 0.40-74.9ng/ml, LOD: 0.47ng/ml) and total PSA (dynamic range: 0.87-295ng/ml, LOD: 0.76ng/ml), was also obtained from the clinical routine. The reference for the quantification was a commercially available assay, the ProStatus PSA Free/Total DELFIA. In an analysis of 80 plasma samples the microarray platform performs well across the range of total PSA levels. This assay might have the potential to substitute for the large-scale microtiter plate format in diagnostic applications. The duplex assay paves the way for a future quantitative multiplex assay, which analyses several prostate cancer biomarkers simultaneously. PMID:22921878

  15. Lecithin:retinol acyltransferase in ARPE-19

    DTIC Science & Technology

    2005-04-05

    analyses. (A) Microarray analysis was performed on RNA extracted from ARPE 19. Both LRAT (white), and housekeeping gene G3PDH (shaded) were detected...about one third of the house keeping gene glyceraldehydes-3-phosphate dehydrogenase ( G3PDH ) 663G66. Western analyses with tLRAT antibody showed that LRAT

  16. Development and application of a fluorescence protein microarray for detecting serum alpha-fetoprotein in patients with hepatocellular carcinoma.

    PubMed

    Zhang, Aiying; Yin, Chengzeng; Wang, Zhenshun; Zhang, Yonghong; Zhao, Yuanshun; Li, Ang; Sun, Huanqin; Lin, Dongdong; Li, Ning

    2016-12-01

    Objective To develop a simple, effective, time-saving and low-cost fluorescence protein microarray method for detecting serum alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma (HCC). Method Non-contact piezoelectric print techniques were applied to fluorescence protein microarray to reduce the cost of prey antibody. Serum samples from patients with HCC and healthy control subjects were collected and evaluated for the presence of AFP using a novel fluorescence protein microarray. To validate the fluorescence protein microarray, serum samples were tested for AFP using an enzyme-linked immunosorbent assay (ELISA). Results A total of 110 serum samples from patients with HCC ( n = 65) and healthy control subjects ( n = 45) were analysed. When the AFP cut-off value was set at 20 ng/ml, the fluorescence protein microarray had a sensitivity of 91.67% and a specificity of 93.24% for detecting serum AFP. Serum AFP quantified via fluorescence protein microarray had a similar diagnostic performance compared with ELISA in distinguishing patients with HCC from healthy control subjects (area under receiver operating characteristic curve: 0.906 for fluorescence protein microarray; 0.880 for ELISA). Conclusion A fluorescence protein microarray method was developed for detecting serum AFP in patients with HCC.

  17. Development and application of a fluorescence protein microarray for detecting serum alpha-fetoprotein in patients with hepatocellular carcinoma

    PubMed Central

    Zhang, Aiying; Yin, Chengzeng; Wang, Zhenshun; Zhang, Yonghong; Zhao, Yuanshun; Li, Ang; Sun, Huanqin; Lin, Dongdong

    2016-01-01

    Objective To develop a simple, effective, time-saving and low-cost fluorescence protein microarray method for detecting serum alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma (HCC). Method Non-contact piezoelectric print techniques were applied to fluorescence protein microarray to reduce the cost of prey antibody. Serum samples from patients with HCC and healthy control subjects were collected and evaluated for the presence of AFP using a novel fluorescence protein microarray. To validate the fluorescence protein microarray, serum samples were tested for AFP using an enzyme-linked immunosorbent assay (ELISA). Results A total of 110 serum samples from patients with HCC (n = 65) and healthy control subjects (n = 45) were analysed. When the AFP cut-off value was set at 20 ng/ml, the fluorescence protein microarray had a sensitivity of 91.67% and a specificity of 93.24% for detecting serum AFP. Serum AFP quantified via fluorescence protein microarray had a similar diagnostic performance compared with ELISA in distinguishing patients with HCC from healthy control subjects (area under receiver operating characteristic curve: 0.906 for fluorescence protein microarray; 0.880 for ELISA). Conclusion A fluorescence protein microarray method was developed for detecting serum AFP in patients with HCC. PMID:27885040

  18. Extraction and labeling methods for microarrays using small amounts of plant tissue.

    PubMed

    Stimpson, Alexander J; Pereira, Rhea S; Kiss, John Z; Correll, Melanie J

    2009-03-01

    Procedures were developed to maximize the yield of high-quality RNA from small amounts of plant biomass for microarrays. Two disruption techniques (bead milling and pestle and mortar) were compared for the yield and the quality of RNA extracted from 1-week-old Arabidopsis thaliana seedlings (approximately 0.5-30 mg total biomass). The pestle and mortar method of extraction showed enhanced RNA quality at the smaller biomass samples compared with the bead milling technique, although the quality in the bead milling could be improved with additional cooling steps. The RNA extracted from the pestle and mortar technique was further tested to determine if the small quantity of RNA (500 ng-7 microg) was appropriate for microarray analyses. A new method of low-quantity RNA labeling for microarrays (NuGEN Technologies, Inc.) was used on five 7-day-old seedlings (approximately 2.5 mg fresh weight total) of Arabidopsis that were grown in the dark and exposed to 1 h of red light or continued dark. Microarray analyses were performed on a small plant sample (five seedlings; approximately 2.5 mg) using these methods and compared with extractions performed with larger biomass samples (approximately 500 roots). Many well-known light-regulated genes between the small plant samples and the larger biomass samples overlapped in expression changes, and the relative expression levels of selected genes were confirmed with quantitative real-time polymerase chain reaction, suggesting that these methods can be used for plant experiments where the biomass is extremely limited (i.e. spaceflight studies).

  19. Addressable droplet microarrays for single cell protein analysis.

    PubMed

    Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R

    2014-11-07

    Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.

  20. A Versatile Microarray Platform for Capturing Rare Cells

    NASA Astrophysics Data System (ADS)

    Brinkmann, Falko; Hirtz, Michael; Haller, Anna; Gorges, Tobias M.; Vellekoop, Michael J.; Riethdorf, Sabine; Müller, Volkmar; Pantel, Klaus; Fuchs, Harald

    2015-10-01

    Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences.

  1. Identification of differentially expressed genes and false discovery rate in microarray studies.

    PubMed

    Gusnanto, Arief; Calza, Stefano; Pawitan, Yudi

    2007-04-01

    To highlight the development in microarray data analysis for the identification of differentially expressed genes, particularly via control of false discovery rate. The emergence of high-throughput technology such as microarrays raises two fundamental statistical issues: multiplicity and sensitivity. We focus on the biological problem of identifying differentially expressed genes. First, multiplicity arises due to testing tens of thousands of hypotheses, rendering the standard P value meaningless. Second, known optimal single-test procedures such as the t-test perform poorly in the context of highly multiple tests. The standard approach of dealing with multiplicity is too conservative in the microarray context. The false discovery rate concept is fast becoming the key statistical assessment tool replacing the P value. We review the false discovery rate approach and argue that it is more sensible for microarray data. We also discuss some methods to take into account additional information from the microarrays to improve the false discovery rate. There is growing consensus on how to analyse microarray data using the false discovery rate framework in place of the classical P value. Further research is needed on the preprocessing of the raw data, such as the normalization step and filtering, and on finding the most sensitive test procedure.

  2. mRNA-Based Parallel Detection of Active Methanotroph Populations by Use of a Diagnostic Microarray

    PubMed Central

    Bodrossy, Levente; Stralis-Pavese, Nancy; Konrad-Köszler, Marianne; Weilharter, Alexandra; Reichenauer, Thomas G.; Schöfer, David; Sessitsch, Angela

    2006-01-01

    A method was developed for the mRNA-based application of microbial diagnostic microarrays to detect active microbial populations. DNA- and mRNA-based analyses of environmental samples were compared and confirmed via quantitative PCR. Results indicated that mRNA-based microarray analyses may provide additional information on the composition and functioning of microbial communities. PMID:16461725

  3. Assessment of data processing to improve reliability of microarray experiments using genomic DNA reference.

    PubMed

    Yang, Yunfeng; Zhu, Mengxia; Wu, Liyou; Zhou, Jizhong

    2008-09-16

    Using genomic DNA as common reference in microarray experiments has recently been tested by different laboratories. Conflicting results have been reported with regard to the reliability of microarray results using this method. To explain it, we hypothesize that data processing is a critical element that impacts the data quality. Microarray experiments were performed in a gamma-proteobacterium Shewanella oneidensis. Pair-wise comparison of three experimental conditions was obtained either with two labeled cDNA samples co-hybridized to the same array, or by employing Shewanella genomic DNA as a standard reference. Various data processing techniques were exploited to reduce the amount of inconsistency between both methods and the results were assessed. We discovered that data quality was significantly improved by imposing the constraint of minimal number of replicates, logarithmic transformation and random error analyses. These findings demonstrate that data processing significantly influences data quality, which provides an explanation for the conflicting evaluation in the literature. This work could serve as a guideline for microarray data analysis using genomic DNA as a standard reference.

  4. Genes misregulated in C. elegans deficient in Dicer, RDE-4, or RDE-1 are enriched for innate immunity genes.

    PubMed

    Welker, Noah C; Habig, Jeffrey W; Bass, Brenda L

    2007-07-01

    We describe the first microarray analysis of a whole animal containing a mutation in the Dicer gene. We used adult Caenorhabditis elegans and, to distinguish among different roles of Dicer, we also performed microarray analyses of animals with mutations in rde-4 and rde-1, which are involved in silencing by siRNA, but not miRNA. Surprisingly, we find that the X chromosome is greatly enriched for genes regulated by Dicer. Comparison of all three microarray data sets indicates the majority of Dicer-regulated genes are not dependent on RDE-4 or RDE-1, including the X-linked genes. However, all three data sets are enriched in genes important for innate immunity and, specifically, show increased expression of innate immunity genes.

  5. Genes misregulated in C. elegans deficient in Dicer, RDE-4, or RDE-1 are enriched for innate immunity genes

    PubMed Central

    Welker, Noah C.; Habig, Jeffrey W.; Bass, Brenda L.

    2007-01-01

    We describe the first microarray analysis of a whole animal containing a mutation in the Dicer gene. We used adult Caenorhabditis elegans and, to distinguish among different roles of Dicer, we also performed microarray analyses of animals with mutations in rde-4 and rde-1, which are involved in silencing by siRNA, but not miRNA. Surprisingly, we find that the X chromosome is greatly enriched for genes regulated by Dicer. Comparison of all three microarray data sets indicates the majority of Dicer-regulated genes are not dependent on RDE-4 or RDE-1, including the X-linked genes. However, all three data sets are enriched in genes important for innate immunity and, specifically, show increased expression of innate immunity genes. PMID:17526642

  6. Microarray Analysis of Differential Gene Expression Profile Between Human Fetal and Adult Heart.

    PubMed

    Geng, Zhimin; Wang, Jue; Pan, Lulu; Li, Ming; Zhang, Jitai; Cai, Xueli; Chu, Maoping

    2017-04-01

    Although many changes have been discovered during heart maturation, the genetic mechanisms involved in the changes between immature and mature myocardium have only been partially elucidated. Here, gene expression profile changed between the human fetal and adult heart was characterized. A human microarray was applied to define the gene expression signatures of the fetal (13-17 weeks of gestation, n = 4) and adult hearts (30-40 years old, n = 4). Gene ontology analyses, pathway analyses, gene set enrichment analyses, and signal transduction network were performed to predict the function of the differentially expressed genes. Ten mRNAs were confirmed by quantificational real-time polymerase chain reaction. 5547 mRNAs were found to be significantly differentially expressed. "Cell cycle" was the most enriched pathway in the down-regulated genes. EFGR, IGF1R, and ITGB1 play a central role in the regulation of heart development. EGFR, IGF1R, and FGFR2 were the core genes regulating cardiac cell proliferation. The quantificational real-time polymerase chain reaction results were concordant with the microarray data. Our data identified the transcriptional regulation of heart development in the second trimester and the potential regulators that play a prominent role in the regulation of heart development and cardiac cells proliferation.

  7. Transcriptome-Wide Mega-Analyses Reveal Joint Dysregulation of Immunologic Genes and Transcription Regulators in Brain and Blood in Schizophrenia

    PubMed Central

    Hess, Jonathan L.; Tylee, Daniel S.; Barve, Rahul; de Jong, Simone; Ophoff, Roel A.; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J.; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T.; Glatt, Stephen J.

    2016-01-01

    The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n = 315) and from ex-vivo blood tissues (n = 578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. PMID:27450777

  8. Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia.

    PubMed

    Hess, Jonathan L; Tylee, Daniel S; Barve, Rahul; de Jong, Simone; Ophoff, Roel A; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T; Glatt, Stephen J

    2016-10-01

    The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n=315) and from ex-vivo blood tissues (n=578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. Published by Elsevier B.V.

  9. Evaluation of microarray data normalization procedures using spike-in experiments

    PubMed Central

    Rydén, Patrik; Andersson, Henrik; Landfors, Mattias; Näslund, Linda; Hartmanová, Blanka; Noppa, Laila; Sjöstedt, Anders

    2006-01-01

    Background Recently, a large number of methods for the analysis of microarray data have been proposed but there are few comparisons of their relative performances. By using so-called spike-in experiments, it is possible to characterize the analyzed data and thereby enable comparisons of different analysis methods. Results A spike-in experiment using eight in-house produced arrays was used to evaluate established and novel methods for filtration, background adjustment, scanning, channel adjustment, and censoring. The S-plus package EDMA, a stand-alone tool providing characterization of analyzed cDNA-microarray data obtained from spike-in experiments, was developed and used to evaluate 252 normalization methods. For all analyses, the sensitivities at low false positive rates were observed together with estimates of the overall bias and the standard deviation. In general, there was a trade-off between the ability of the analyses to identify differentially expressed genes (i.e. the analyses' sensitivities) and their ability to provide unbiased estimators of the desired ratios. Virtually all analysis underestimated the magnitude of the regulations; often less than 50% of the true regulations were observed. Moreover, the bias depended on the underlying mRNA-concentration; low concentration resulted in high bias. Many of the analyses had relatively low sensitivities, but analyses that used either the constrained model (i.e. a procedure that combines data from several scans) or partial filtration (a novel method for treating data from so-called not-found spots) had with few exceptions high sensitivities. These methods gave considerable higher sensitivities than some commonly used analysis methods. Conclusion The use of spike-in experiments is a powerful approach for evaluating microarray preprocessing procedures. Analyzed data are characterized by properties of the observed log-ratios and the analysis' ability to detect differentially expressed genes. If bias is not a major problem; we recommend the use of either the CM-procedure or partial filtration. PMID:16774679

  10. The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice

    PubMed Central

    van Huet, Ramon A. C.; Pierrache, Laurence H.M.; Meester-Smoor, Magda A.; Klaver, Caroline C.W.; van den Born, L. Ingeborgh; Hoyng, Carel B.; de Wijs, Ilse J.; Collin, Rob W. J.; Hoefsloot, Lies H.

    2015-01-01

    Purpose To determine the efficacy of multiple versions of a commercially available arrayed primer extension (APEX) microarray chip for autosomal recessive retinitis pigmentosa (arRP). Methods We included 250 probands suspected of arRP who were genetically analyzed with the APEX microarray between January 2008 and November 2013. The mode of inheritance had to be autosomal recessive according to the pedigree (including isolated cases). If the microarray identified a heterozygous mutation, we performed Sanger sequencing of exons and exon–intron boundaries of that specific gene. The efficacy of this microarray chip with the additional Sanger sequencing approach was determined by the percentage of patients that received a molecular diagnosis. We also collected data from genetic tests other than the APEX analysis for arRP to provide a detailed description of the molecular diagnoses in our study cohort. Results The APEX microarray chip for arRP identified the molecular diagnosis in 21 (8.5%) of the patients in our cohort. Additional Sanger sequencing yielded a second mutation in 17 patients (6.8%), thereby establishing the molecular diagnosis. In total, 38 patients (15.2%) received a molecular diagnosis after analysis using the microarray and additional Sanger sequencing approach. Further genetic analyses after a negative result of the arRP microarray (n = 107) resulted in a molecular diagnosis of arRP (n = 23), autosomal dominant RP (n = 5), X-linked RP (n = 2), and choroideremia (n = 1). Conclusions The efficacy of the commercially available APEX microarray chips for arRP appears to be low, most likely caused by the limitations of this technique and the genetic and allelic heterogeneity of RP. Diagnostic yields up to 40% have been reported for next-generation sequencing (NGS) techniques that, as expected, thereby outperform targeted APEX analysis. PMID:25999674

  11. Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment.

    PubMed

    Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina

    2006-06-01

    Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.

  12. Recursive feature selection with significant variables of support vectors.

    PubMed

    Tsai, Chen-An; Huang, Chien-Hsun; Chang, Ching-Wei; Chen, Chun-Houh

    2012-01-01

    The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.

  13. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    PubMed Central

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  14. Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium

    PubMed Central

    Howat, William J; Blows, Fiona M; Provenzano, Elena; Brook, Mark N; Morris, Lorna; Gazinska, Patrycja; Johnson, Nicola; McDuffus, Leigh‐Anne; Miller, Jodi; Sawyer, Elinor J; Pinder, Sarah; van Deurzen, Carolien H M; Jones, Louise; Sironen, Reijo; Visscher, Daniel; Caldas, Carlos; Daley, Frances; Coulson, Penny; Broeks, Annegien; Sanders, Joyce; Wesseling, Jelle; Nevanlinna, Heli; Fagerholm, Rainer; Blomqvist, Carl; Heikkilä, Päivi; Ali, H Raza; Dawson, Sarah‐Jane; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli‐Matti; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W; Couch, Fergus J; Olson, Janet E; Devillee, Peter; Mesker, Wilma E; Seyaneve, Caroline M; Hollestelle, Antoinette; Benitez, Javier; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Bolla, Manjeet K; Easton, Douglas F; Schmidt, Marjanka K; Pharoah, Paul D; Sherman, Mark E

    2014-01-01

    Abstract Breast cancer risk factors and clinical outcomes vary by tumour marker expression. However, individual studies often lack the power required to assess these relationships, and large‐scale analyses are limited by the need for high throughput, standardized scoring methods. To address these limitations, we assessed whether automated image analysis of immunohistochemically stained tissue microarrays can permit rapid, standardized scoring of tumour markers from multiple studies. Tissue microarray sections prepared in nine studies containing 20 263 cores from 8267 breast cancers stained for two nuclear (oestrogen receptor, progesterone receptor), two membranous (human epidermal growth factor receptor 2 and epidermal growth factor receptor) and one cytoplasmic (cytokeratin 5/6) marker were scanned as digital images. Automated algorithms were used to score markers in tumour cells using the Ariol system. We compared automated scores against visual reads, and their associations with breast cancer survival. Approximately 65–70% of tissue microarray cores were satisfactory for scoring. Among satisfactory cores, agreement between dichotomous automated and visual scores was highest for oestrogen receptor (Kappa = 0.76), followed by human epidermal growth factor receptor 2 (Kappa = 0.69) and progesterone receptor (Kappa = 0.67). Automated quantitative scores for these markers were associated with hazard ratios for breast cancer mortality in a dose‐response manner. Considering visual scores of epidermal growth factor receptor or cytokeratin 5/6 as the reference, automated scoring achieved excellent negative predictive value (96–98%), but yielded many false positives (positive predictive value = 30–32%). For all markers, we observed substantial heterogeneity in automated scoring performance across tissue microarrays. Automated analysis is a potentially useful tool for large‐scale, quantitative scoring of immunohistochemically stained tissue microarrays available in consortia. However, continued optimization, rigorous marker‐specific quality control measures and standardization of tissue microarray designs, staining and scoring protocols is needed to enhance results. PMID:27499890

  15. MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data

    PubMed Central

    2014-01-01

    Background Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consuming, complex, and requires fundamental computational and bioinformatics skills. The development of analytical workflows to automate these tasks simplifies the processing of, improves the efficiency of, and serves to standardize multiple and sequential analyses. Once installed, workflows facilitate the tedious steps required to run rapid intra- and inter-dataset comparisons. Results We developed a workflow to facilitate and standardize Meta-Analysis of Affymetrix Microarray Data analysis (MAAMD) in Kepler. Two freely available stand-alone software tools, R and AltAnalyze were embedded in MAAMD. The inputs of MAAMD are user-editable csv files, which contain sample information and parameters describing the locations of input files and required tools. MAAMD was tested by analyzing 4 different GEO datasets from mice and drosophila. MAAMD automates data downloading, data organization, data quality control assesment, differential gene expression analysis, clustering analysis, pathway visualization, gene-set enrichment analysis, and cross-species orthologous-gene comparisons. MAAMD was utilized to identify gene orthologues responding to hypoxia or hyperoxia in both mice and drosophila. The entire set of analyses for 4 datasets (34 total microarrays) finished in ~ one hour. Conclusions MAAMD saves time, minimizes the required computer skills, and offers a standardized procedure for users to analyze microarray datasets and make new intra- and inter-dataset comparisons. PMID:24621103

  16. Evaluation of Montanide TM ISA 71 VG adjuvant during profilin vaccination against experimental coccidiosis

    USDA-ARS?s Scientific Manuscript database

    Chickens were immunized subcutaneously with an Eimeria recombinant profilin protein plus MontanideTM ISA 70 VG (ISA 70) or MontanideTM ISA 71 VG (ISA 71) water-in-oil adjuvants, or with profilin alone, and comparative RNA microarray analyses were performed to ascertain global transcriptomic changes ...

  17. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    PubMed

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  18. Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples.

    PubMed

    Wimmer, Isabella; Tröscher, Anna R; Brunner, Florian; Rubino, Stephen J; Bien, Christian G; Weiner, Howard L; Lassmann, Hans; Bauer, Jan

    2018-04-20

    Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources commonly used in pathology. However, formalin fixation modifies nucleic acids challenging the isolation of high-quality RNA for genetic profiling. Here, we assessed feasibility and reliability of microarray studies analysing transcriptome data from fresh, fresh-frozen (FF) and FFPE tissues. We show that reproducible microarray data can be generated from only 2 ng FFPE-derived RNA. For RNA quality assessment, fragment size distribution (DV200) and qPCR proved most suitable. During RNA isolation, extending tissue lysis time to 10 hours reduced high-molecular-weight species, while additional incubation at 70 °C markedly increased RNA yields. Since FF- and FFPE-derived microarrays constitute different data entities, we used indirect measures to investigate gene signal variation and relative gene expression. Whole-genome analyses revealed high concordance rates, while reviewing on single-genes basis showed higher data variation in FFPE than FF arrays. Using an experimental model, gene set enrichment analysis (GSEA) of FFPE-derived microarrays and fresh tissue-derived RNA-Seq datasets yielded similarly affected pathways confirming the applicability of FFPE tissue in global gene expression analysis. Our study provides a workflow comprising RNA isolation, quality assessment and microarray profiling using minimal RNA input, thus enabling hypothesis-generating pathway analyses from limited amounts of precious, pathologically significant FFPE tissues.

  19. Systematic Omics Analysis Review (SOAR) Tool to Support Risk Assessment

    PubMed Central

    McConnell, Emma R.; Bell, Shannon M.; Cote, Ila; Wang, Rong-Lin; Perkins, Edward J.; Garcia-Reyero, Natàlia; Gong, Ping; Burgoon, Lyle D.

    2014-01-01

    Environmental health risk assessors are challenged to understand and incorporate new data streams as the field of toxicology continues to adopt new molecular and systems biology technologies. Systematic screening reviews can help risk assessors and assessment teams determine which studies to consider for inclusion in a human health assessment. A tool for systematic reviews should be standardized and transparent in order to consistently determine which studies meet minimum quality criteria prior to performing in-depth analyses of the data. The Systematic Omics Analysis Review (SOAR) tool is focused on assisting risk assessment support teams in performing systematic reviews of transcriptomic studies. SOAR is a spreadsheet tool of 35 objective questions developed by domain experts, focused on transcriptomic microarray studies, and including four main topics: test system, test substance, experimental design, and microarray data. The tool will be used as a guide to identify studies that meet basic published quality criteria, such as those defined by the Minimum Information About a Microarray Experiment standard and the Toxicological Data Reliability Assessment Tool. Seven scientists were recruited to test the tool by using it to independently rate 15 published manuscripts that study chemical exposures with microarrays. Using their feedback, questions were weighted based on importance of the information and a suitability cutoff was set for each of the four topic sections. The final validation resulted in 100% agreement between the users on four separate manuscripts, showing that the SOAR tool may be used to facilitate the standardized and transparent screening of microarray literature for environmental human health risk assessment. PMID:25531884

  20. The pathogenesis shared between abdominal aortic aneurysms and intracranial aneurysms: a microarray analysis.

    PubMed

    Wang, Wen; Li, Hao; Zhao, Zheng; Wang, Haoyuan; Zhang, Dong; Zhang, Yan; Lan, Qing; Wang, Jiangfei; Cao, Yong; Zhao, Jizong

    2018-04-01

    Abdominal aortic aneurysms (AAAs) and intracranial saccular aneurysms (IAs) are the most common types of aneurysms. This study was to investigate the common pathogenesis shared between these two kinds of aneurysms. We collected 12 IAs samples and 12 control arteries from the Beijing Tiantan Hospital and performed microarray analysis. In addition, we utilized the microarray datasets of IAs and AAAs from the Gene Expression Omnibus (GEO), in combination with our microarray results, to generate messenger RNA expression profiles for both AAAs and IAs in our study. Functional exploration and protein-protein interaction (PPI) analysis were performed. A total of 727 common genes were differentially expressed (404 was upregulated; 323 was downregulated) for both AAAs and IAs. The GO and pathway analyses showed that the common dysregulated genes were mainly enriched in vascular smooth muscle contraction, muscle contraction, immune response, defense response, cell activation, IL-6 signaling and chemokine signaling pathways, etc. The further protein-protein analysis identified 35 hub nodes, including TNF, IL6, MAPK13, and CCL5. These hub node genes were enriched in inflammatory response, positive regulation of IL-6 production, chemokine signaling pathway, and T/B cell receptor signaling pathway. Our study will gain new insight into the molecular mechanisms for the pathogenesis of both types of aneurysms and provide new therapeutic targets for the patients harboring AAAs and IAs.

  1. Dual-color Proteomic Profiling of Complex Samples with a Microarray of 810 Cancer-related Antibodies*

    PubMed Central

    Schröder, Christoph; Jacob, Anette; Tonack, Sarah; Radon, Tomasz P.; Sill, Martin; Zucknick, Manuela; Rüffer, Sven; Costello, Eithne; Neoptolemos, John P.; Crnogorac-Jurcevic, Tatjana; Bauer, Andrea; Fellenberg, Kurt; Hoheisel, Jörg D.

    2010-01-01

    Antibody microarrays have the potential to enable comprehensive proteomic analysis of small amounts of sample material. Here, protocols are presented for the production, quality assessment, and reproducible application of antibody microarrays in a two-color mode with an array of 1,800 features, representing 810 antibodies that were directed at 741 cancer-related proteins. In addition to measures of array quality, we implemented indicators for the accuracy and significance of dual-color detection. Dual-color measurements outperform a single-color approach concerning assay reproducibility and discriminative power. In the analysis of serum samples, depletion of high-abundance proteins did not improve technical assay quality. On the contrary, depletion introduced a strong bias in protein representation. In an initial study, we demonstrated the applicability of the protocols to proteins derived from urine samples. We identified differences between urine samples from pancreatic cancer patients and healthy subjects and between sexes. This study demonstrates that biomedically relevant data can be produced. As demonstrated by the thorough quality analysis, the dual-color antibody array approach proved to be competitive with other proteomic techniques and comparable in performance to transcriptional microarray analyses. PMID:20164060

  2. GENE EXPRESSION IN THE TESTES OF NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CATS USING HUMAN CDNA MICROARRAY ANALYSES

    EPA Science Inventory

    GENE EXPRESSION IN THE TESTES OF NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CATS USING HUMAN cDNA MICROARRAY ANALYSES

    B.S. Pukazhenthi1, J. C. Rockett2, M. Ouyang3, D.J. Dix2, J.G. Howard1, P. Georgopoulos4, W.J. J. Welsh3 and D. E. Wildt1

    1Department of Reproductiv...

  3. Chromosomal microarray findings in pregnancies with an isolated pelvic kidney.

    PubMed

    Sagi-Dain, Lena; Singer, Amihood; Frumkin, Ayala; Shalata, Adel; Koifman, Arie; Segel, Reeval; Benyamini, Lilach; Rienstein, Shlomit; Kahyat, Morad; Sharony, Reuven; Maya, Idit; Ben Shachar, Shay

    2018-05-29

    To examine the risk for abnormal chromosomal microarray analysis (CMA) results among fetuses with an apparently isolated pelvic kidney. Data from all CMA analyses performed due to an isolated pelvic kidney reported to the Israeli Ministry of Health between January 2013 and September 2016 were retrospectively obtained. Risk estimation was performed comparing the rate of abnormal observed CMA findings to the general population risk, based on a systematic review encompassing 9272 cases and on local data of 5541 cases. Of 120 pregnancies with an isolated pelvic kidney, two gain-of-copy number variants suggesting microduplication syndromes were demonstrated (1.67%). In addition, three variants of unknown significance were detected (2.5%). The risk for clinically significant CMA findings among pregnancies with an isolated single pelvic kidney was not significantly different compared to both control populations. The results of our study question the practice of routine CMA analysis in fetuses with an isolated pelvic kidney.

  4. STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data

    PubMed Central

    Jupiter, Daniel; Chen, Hailin; VanBuren, Vincent

    2009-01-01

    Background Although expression microarrays have become a standard tool used by biologists, analysis of data produced by microarray experiments may still present challenges. Comparison of data from different platforms, organisms, and labs may involve complicated data processing, and inferring relationships between genes remains difficult. Results STARNET 2 is a new web-based tool that allows post hoc visual analysis of correlations that are derived from expression microarray data. STARNET 2 facilitates user discovery of putative gene regulatory networks in a variety of species (human, rat, mouse, chicken, zebrafish, Drosophila, C. elegans, S. cerevisiae, Arabidopsis and rice) by graphing networks of genes that are closely co-expressed across a large heterogeneous set of preselected microarray experiments. For each of the represented organisms, raw microarray data were retrieved from NCBI's Gene Expression Omnibus for a selected Affymetrix platform. All pairwise Pearson correlation coefficients were computed for expression profiles measured on each platform, respectively. These precompiled results were stored in a MySQL database, and supplemented by additional data retrieved from NCBI. A web-based tool allows user-specified queries of the database, centered at a gene of interest. The result of a query includes graphs of correlation networks, graphs of known interactions involving genes and gene products that are present in the correlation networks, and initial statistical analyses. Two analyses may be performed in parallel to compare networks, which is facilitated by the new HEATSEEKER module. Conclusion STARNET 2 is a useful tool for developing new hypotheses about regulatory relationships between genes and gene products, and has coverage for 10 species. Interpretation of the correlation networks is supported with a database of previously documented interactions, a test for enrichment of Gene Ontology terms, and heat maps of correlation distances that may be used to compare two networks. The list of genes in a STARNET network may be useful in developing a list of candidate genes to use for the inference of causal networks. The tool is freely available at , and does not require user registration. PMID:19828039

  5. Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.

    PubMed

    Cole, Steve W; Galic, Zoran; Zack, Jerome A

    2003-09-22

    Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements. Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays. Freestanding JAVA application at http://microarray.crump.ucla.edu/focus

  6. Validation of the Swine Protein-Annotated Oligonucleotide Microarray

    USDA-ARS?s Scientific Manuscript database

    The specificity and utility of the Swine Protein-Annotated Oligonucleotide Microarray, or Pigoligoarray (www.pigoligoarray.org), has been evaluated by profiling the expression of transcripts from four porcine tissues. Tools for comparative analyses of expression on the Pigoligoarray were developed i...

  7. Combined analysis of transcriptome and proteome data as a tool for the identification of candidate biomarkers in renal cell carcinoma

    PubMed Central

    Seliger, Barbara; Dressler, Sven P.; Wang, Ena; Kellner, Roland; Recktenwald, Christian V.; Lottspeich, Friedrich; Marincola, Francesco M.; Baumgärtner, Maja; Atkins, Derek; Lichtenfels, Rudolf

    2012-01-01

    Results obtained from expression profilings of renal cell carcinoma using different “ome”-based approaches and comprehensive data analysis demonstrated that proteome-based technologies and cDNA microarray analyses complement each other during the discovery phase for disease-related candidate biomarkers. The integration of the respective data revealed the uniqueness and complementarities of the different technologies. While comparative cDNA microarray analyses though restricted to upregulated targets largely revealed genes involved in controlling gene/protein expression (19%) and signal transduction processes (13%), proteomics/PROTEOMEX-defined candidate biomarkers include enzymes of the cellular metabolism (36%), transport proteins (12%) and cell motility/structural molecules (10%). Candidate biomarkers defined by proteomics and PROTEOMEX are frequently shared, whereas the sharing rate between cDNA microarray and proteome-based profilings is limited. Putative candidate biomarkers provide insights into their cellular (dys)function and their diagnostic/prognostic value but still warrant further validation in larger patient numbers. Based on the fact that merely 3 candidate biomarkers were shared by all applied technologies, namely annexin A4, tubulin alpha-1A chain and ubiquitin carboxyl-terminal hydrolase L1 the analysis at a single hierarchical level of biological regulation seems to provide only limited results thus emphasizing the importance and benefit of performing rather combinatorial screenings which can complement the standard clinical predictors. PMID:19235166

  8. Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer.

    PubMed

    Wu, Hao; Wu, Runliu; Chen, Miao; Li, Daojiang; Dai, Jing; Zhang, Yi; Gao, Kai; Yu, Jun; Hu, Gui; Guo, Yihang; Lin, Changwei; Li, Xiaorong

    2017-03-28

    Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis. However, the mechanism remains largely unknown. Thousands of significantly dysregulated lncRNAs and mRNAs were identified by microarray. Furthermore, a miR-133b-meditated lncRNA-mRNA ceRNA network was revealed, a subset of which was validated in 14 paired CRC patient tumor/non-tumor samples. Gene set enrichment analysis (GSEA) results demonstrated that lncRNAs ENST00000520055 and ENST00000535511 shared KEGG pathways with miR-133b target genes. We used microarrays to survey the lncRNA and mRNA expression profiles of colorectal cancer and para-cancer tissues. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to explore the functions of the significantly dysregulated genes. An innovate method was employed that combined analyses of two microarray data sets to construct a miR-133b-mediated lncRNA-mRNA competing endogenous RNAs (ceRNA) network. Quantitative RT-PCR analysis was used to validate part of this network. GSEA was used to predict the potential functions of these lncRNAs. This study identifies and validates a new method to investigate the miR-133b-mediated lncRNA-mRNA ceRNA network and lays the foundation for future investigation into the role of lncRNAs in colorectal cancer.

  9. Cardiac mesenchymal progenitors from postmortem cardiac tissues retained cellular characterization.

    PubMed

    Kami, D; Kitani, T; Nakata, M; Gojo, S

    2014-05-01

    Currently, cells for transplantation in regenerative medicine are derived from either autologous or allogeneic tissue. The former has the drawbacks that the quality of donor cells may depend on the condition of the patient, while the quantity of the cells may also be limited. To solve these problems, we investigated the potential of allogeneic cardiac mesenchymal progenitors (CMPs) derived from postmortem hearts, which may be immunologically privileged similar to bone marrow-derived mesenchymal progenitors. We examined whether viable CMPs could be isolated from C57/B6 murine cardiac tissues harvested at 24 hours postmortem. After 2- to 3-week propagation with a high dose of basic fibroblast growth factor, we performed cellular characteristics analyses, which included proliferation and differentiation property flow cytometry and microarray analyses. Postmortem CMPs had a longer lag phase after seeding than CMPs obtained from living tissues, but otherwise had similar characteristics in all the analyses. In addition, global gene expression analysis by microarray showed that cells derived from postmortem and living tissues had similar characteristics. These results indicate that allogeneic postmortem CMPs have potential for cell transplantation because they circumvent the issue of both the quality and quantity of donor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Tissue microarray immunohistochemical detection of brachyury is not a prognostic indicator in chordoma.

    PubMed

    Zhang, Linlin; Guo, Shang; Schwab, Joseph H; Nielsen, G Petur; Choy, Edwin; Ye, Shunan; Zhang, Zhan; Mankin, Henry; Hornicek, Francis J; Duan, Zhenfeng

    2013-01-01

    Brachyury is a marker for notochord-derived tissues and neoplasms, such as chordoma. However, the prognostic relevance of brachyury expression in chordoma is still unknown. The improvement of tissue microarray technology has provided the opportunity to perform analyses of tumor tissues on a large scale in a uniform and consistent manner. This study was designed with the use of tissue microarray to determine the expression of brachyury. Brachyury expression in chordoma tissues from 78 chordoma patients was analyzed by immunohistochemical staining of tissue microarray. The clinicopathologic parameters, including gender, age, location of tumor and metastatic status were evaluated. Fifty-nine of 78 (75.64%) tumors showed nuclear staining for brachyury, and among them, 29 tumors (49.15%) showed 1+ (<30% positive cells) staining, 15 tumors (25.42%) had 2+ (31% to 60% positive cells) staining, and 15 tumors (25.42%) demonstrated 3+ (61% to 100% positive cells) staining. Brachyury nuclear staining was detected more frequently in sacral chordomas than in chordomas of the mobile spine. However, there was no significant relationship between brachyury expression and other clinical variables. By Kaplan-Meier analysis, brachyury expression failed to produce any significant relationship with the overall survival rate. In conclusion, brachyury expression is not a prognostic indicator in chordoma.

  11. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  12. CNV-ROC: A cost effective, computer-aided analytical performance evaluator of chromosomal microarrays

    PubMed Central

    Goodman, Corey W.; Major, Heather J.; Walls, William D.; Sheffield, Val C.; Casavant, Thomas L.; Darbro, Benjamin W.

    2016-01-01

    Chromosomal microarrays (CMAs) are routinely used in both research and clinical laboratories; yet, little attention has been given to the estimation of genome-wide true and false negatives during the assessment of these assays and how such information could be used to calibrate various algorithmic metrics to improve performance. Low-throughput, locus-specific methods such as fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), or multiplex ligation-dependent probe amplification (MLPA) preclude rigorous calibration of various metrics used by copy number variant (CNV) detection algorithms. To aid this task, we have established a comparative methodology, CNV-ROC, which is capable of performing a high throughput, low cost, analysis of CMAs that takes into consideration genome-wide true and false negatives. CNV-ROC uses a higher resolution microarray to confirm calls from a lower resolution microarray and provides for a true measure of genome-wide performance metrics at the resolution offered by microarray testing. CNV-ROC also provides for a very precise comparison of CNV calls between two microarray platforms without the need to establish an arbitrary degree of overlap. Comparison of CNVs across microarrays is done on a per-probe basis and receiver operator characteristic (ROC) analysis is used to calibrate algorithmic metrics, such as log2 ratio threshold, to enhance CNV calling performance. CNV-ROC addresses a critical and consistently overlooked aspect of analytical assessments of genome-wide techniques like CMAs which is the measurement and use of genome-wide true and false negative data for the calculation of performance metrics and comparison of CNV profiles between different microarray experiments. PMID:25595567

  13. Microarray characterization of gene expression changes in blood during acute ethanol exposure

    PubMed Central

    2013-01-01

    Background As part of the civil aviation safety program to define the adverse effects of ethanol on flying performance, we performed a DNA microarray analysis of human whole blood samples from a five-time point study of subjects administered ethanol orally, followed by breathalyzer analysis, to monitor blood alcohol concentration (BAC) to discover significant gene expression changes in response to the ethanol exposure. Methods Subjects were administered either orange juice or orange juice with ethanol. Blood samples were taken based on BAC and total RNA was isolated from PaxGene™ blood tubes. The amplified cDNA was used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses to evaluate differential gene expression. Microarray data was analyzed in a pipeline fashion to summarize and normalize and the results evaluated for relative expression across time points with multiple methods. Candidate genes showing distinctive expression patterns in response to ethanol were clustered by pattern and further analyzed for related function, pathway membership and common transcription factor binding within and across clusters. RT-qPCR was used with representative genes to confirm relative transcript levels across time to those detected in microarrays. Results Microarray analysis of samples representing 0%, 0.04%, 0.08%, return to 0.04%, and 0.02% wt/vol BAC showed that changes in gene expression could be detected across the time course. The expression changes were verified by qRT-PCR. The candidate genes of interest (GOI) identified from the microarray analysis and clustered by expression pattern across the five BAC points showed seven coordinately expressed groups. Analysis showed function-based networks, shared transcription factor binding sites and signaling pathways for members of the clusters. These include hematological functions, innate immunity and inflammation functions, metabolic functions expected of ethanol metabolism, and pancreatic and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance. PMID:23883607

  14. Performing statistical analyses on quantitative data in Taverna workflows: an example using R and maxdBrowse to identify differentially-expressed genes from microarray data.

    PubMed

    Li, Peter; Castrillo, Juan I; Velarde, Giles; Wassink, Ingo; Soiland-Reyes, Stian; Owen, Stuart; Withers, David; Oinn, Tom; Pocock, Matthew R; Goble, Carole A; Oliver, Stephen G; Kell, Douglas B

    2008-08-07

    There has been a dramatic increase in the amount of quantitative data derived from the measurement of changes at different levels of biological complexity during the post-genomic era. However, there are a number of issues associated with the use of computational tools employed for the analysis of such data. For example, computational tools such as R and MATLAB require prior knowledge of their programming languages in order to implement statistical analyses on data. Combining two or more tools in an analysis may also be problematic since data may have to be manually copied and pasted between separate user interfaces for each tool. Furthermore, this transfer of data may require a reconciliation step in order for there to be interoperability between computational tools. Developments in the Taverna workflow system have enabled pipelines to be constructed and enacted for generic and ad hoc analyses of quantitative data. Here, we present an example of such a workflow involving the statistical identification of differentially-expressed genes from microarray data followed by the annotation of their relationships to cellular processes. This workflow makes use of customised maxdBrowse web services, a system that allows Taverna to query and retrieve gene expression data from the maxdLoad2 microarray database. These data are then analysed by R to identify differentially-expressed genes using the Taverna RShell processor which has been developed for invoking this tool when it has been deployed as a service using the RServe library. In addition, the workflow uses Beanshell scripts to reconcile mismatches of data between services as well as to implement a form of user interaction for selecting subsets of microarray data for analysis as part of the workflow execution. A new plugin system in the Taverna software architecture is demonstrated by the use of renderers for displaying PDF files and CSV formatted data within the Taverna workbench. Taverna can be used by data analysis experts as a generic tool for composing ad hoc analyses of quantitative data by combining the use of scripts written in the R programming language with tools exposed as services in workflows. When these workflows are shared with colleagues and the wider scientific community, they provide an approach for other scientists wanting to use tools such as R without having to learn the corresponding programming language to analyse their own data.

  15. Performing statistical analyses on quantitative data in Taverna workflows: An example using R and maxdBrowse to identify differentially-expressed genes from microarray data

    PubMed Central

    Li, Peter; Castrillo, Juan I; Velarde, Giles; Wassink, Ingo; Soiland-Reyes, Stian; Owen, Stuart; Withers, David; Oinn, Tom; Pocock, Matthew R; Goble, Carole A; Oliver, Stephen G; Kell, Douglas B

    2008-01-01

    Background There has been a dramatic increase in the amount of quantitative data derived from the measurement of changes at different levels of biological complexity during the post-genomic era. However, there are a number of issues associated with the use of computational tools employed for the analysis of such data. For example, computational tools such as R and MATLAB require prior knowledge of their programming languages in order to implement statistical analyses on data. Combining two or more tools in an analysis may also be problematic since data may have to be manually copied and pasted between separate user interfaces for each tool. Furthermore, this transfer of data may require a reconciliation step in order for there to be interoperability between computational tools. Results Developments in the Taverna workflow system have enabled pipelines to be constructed and enacted for generic and ad hoc analyses of quantitative data. Here, we present an example of such a workflow involving the statistical identification of differentially-expressed genes from microarray data followed by the annotation of their relationships to cellular processes. This workflow makes use of customised maxdBrowse web services, a system that allows Taverna to query and retrieve gene expression data from the maxdLoad2 microarray database. These data are then analysed by R to identify differentially-expressed genes using the Taverna RShell processor which has been developed for invoking this tool when it has been deployed as a service using the RServe library. In addition, the workflow uses Beanshell scripts to reconcile mismatches of data between services as well as to implement a form of user interaction for selecting subsets of microarray data for analysis as part of the workflow execution. A new plugin system in the Taverna software architecture is demonstrated by the use of renderers for displaying PDF files and CSV formatted data within the Taverna workbench. Conclusion Taverna can be used by data analysis experts as a generic tool for composing ad hoc analyses of quantitative data by combining the use of scripts written in the R programming language with tools exposed as services in workflows. When these workflows are shared with colleagues and the wider scientific community, they provide an approach for other scientists wanting to use tools such as R without having to learn the corresponding programming language to analyse their own data. PMID:18687127

  16. RNA sequencing: current and prospective uses in metabolic research.

    PubMed

    Vikman, Petter; Fadista, Joao; Oskolkov, Nikolay

    2014-10-01

    Previous global RNA analysis was restricted to known transcripts in species with a defined transcriptome. Next generation sequencing has transformed transcriptomics by making it possible to analyse expressed genes with an exon level resolution from any tissue in any species without any a priori knowledge of which genes that are being expressed, splice patterns or their nucleotide sequence. In addition, RNA sequencing is a more sensitive technique compared with microarrays with a larger dynamic range, and it also allows for investigation of imprinting and allele-specific expression. This can be done for a cost that is able to compete with that of a microarray, making RNA sequencing a technique available to most researchers. Therefore RNA sequencing has recently become the state of the art with regards to large-scale RNA investigations and has to a large extent replaced microarrays. The only drawback is the large data amounts produced, which together with the complexity of the data can make a researcher spend far more time on analysis than performing the actual experiment. © 2014 Society for Endocrinology.

  17. Circular RNA Expression Profile of Pancreatic Ductal Adenocarcinoma Revealed by Microarray.

    PubMed

    Li, Haimin; Hao, Xiaokun; Wang, Huimin; Liu, Zhengcai; He, Yong; Pu, Meng; Zhang, Hongtao; Yu, Hengchao; Duan, Juanli; Qu, Shibin

    2016-01-01

    Circular RNAs (circRNAs) are a special novel type of a stable, diverse and conserved noncoding RNA in mammalian cells. Particularly in cancer, circRNAs have been reported to be widely involved in the physiological/pathological process of life. However, it is unclear whether circRNAs are specifically involved in pancreatic ductal adenocarcinoma (PDAC). We investigated the expression profile of circRNAs in six PDAC cancer samples and paired adjacent normal tissues using microarray. A high-throughput circRNA microarray was used to identify dysregulated circular RNAs in six PDAC patients. Bioinformatic analyses were applied to study these differentially expressed circRNAs. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to confirm these results. We revealed and confirmed that a number of circRNAs were dysregulated, which suggests a potential role in pancreatic cancer. this study demonstrates that clusters of circRNAs are aberrantly expressed in PDAC compared with normal samples and provides new potential targets for the future treatment of PDAC and novel insights into PDAC biology. © 2016 The Author(s) Published by S. Karger AG, Basel.

  18. RECOVERING FILTER-BASED MICROARRAY DATA FOR PATHWAYS ANALYSIS USING A MULTIPOINT ALIGNMENT STRATEGY

    EPA Science Inventory

    The use of commercial microarrays are rapidly becoming the method of choice for profiling gene expression and assessing various disease states. Research Genetics has provided a series of well defined biological and software tools to the research community for these analyses. Th...

  19. EDGE3: A web-based solution for management and analysis of Agilent two color microarray experiments

    PubMed Central

    Vollrath, Aaron L; Smith, Adam A; Craven, Mark; Bradfield, Christopher A

    2009-01-01

    Background The ability to generate transcriptional data on the scale of entire genomes has been a boon both in the improvement of biological understanding and in the amount of data generated. The latter, the amount of data generated, has implications when it comes to effective storage, analysis and sharing of these data. A number of software tools have been developed to store, analyze, and share microarray data. However, a majority of these tools do not offer all of these features nor do they specifically target the commonly used two color Agilent DNA microarray platform. Thus, the motivating factor for the development of EDGE3 was to incorporate the storage, analysis and sharing of microarray data in a manner that would provide a means for research groups to collaborate on Agilent-based microarray experiments without a large investment in software-related expenditures or extensive training of end-users. Results EDGE3 has been developed with two major functions in mind. The first function is to provide a workflow process for the generation of microarray data by a research laboratory or a microarray facility. The second is to store, analyze, and share microarray data in a manner that doesn't require complicated software. To satisfy the first function, EDGE3 has been developed as a means to establish a well defined experimental workflow and information system for microarray generation. To satisfy the second function, the software application utilized as the user interface of EDGE3 is a web browser. Within the web browser, a user is able to access the entire functionality, including, but not limited to, the ability to perform a number of bioinformatics based analyses, collaborate between research groups through a user-based security model, and access to the raw data files and quality control files generated by the software used to extract the signals from an array image. Conclusion Here, we present EDGE3, an open-source, web-based application that allows for the storage, analysis, and controlled sharing of transcription-based microarray data generated on the Agilent DNA platform. In addition, EDGE3 provides a means for managing RNA samples and arrays during the hybridization process. EDGE3 is freely available for download at . PMID:19732451

  20. EDGE(3): a web-based solution for management and analysis of Agilent two color microarray experiments.

    PubMed

    Vollrath, Aaron L; Smith, Adam A; Craven, Mark; Bradfield, Christopher A

    2009-09-04

    The ability to generate transcriptional data on the scale of entire genomes has been a boon both in the improvement of biological understanding and in the amount of data generated. The latter, the amount of data generated, has implications when it comes to effective storage, analysis and sharing of these data. A number of software tools have been developed to store, analyze, and share microarray data. However, a majority of these tools do not offer all of these features nor do they specifically target the commonly used two color Agilent DNA microarray platform. Thus, the motivating factor for the development of EDGE(3) was to incorporate the storage, analysis and sharing of microarray data in a manner that would provide a means for research groups to collaborate on Agilent-based microarray experiments without a large investment in software-related expenditures or extensive training of end-users. EDGE(3) has been developed with two major functions in mind. The first function is to provide a workflow process for the generation of microarray data by a research laboratory or a microarray facility. The second is to store, analyze, and share microarray data in a manner that doesn't require complicated software. To satisfy the first function, EDGE3 has been developed as a means to establish a well defined experimental workflow and information system for microarray generation. To satisfy the second function, the software application utilized as the user interface of EDGE(3) is a web browser. Within the web browser, a user is able to access the entire functionality, including, but not limited to, the ability to perform a number of bioinformatics based analyses, collaborate between research groups through a user-based security model, and access to the raw data files and quality control files generated by the software used to extract the signals from an array image. Here, we present EDGE(3), an open-source, web-based application that allows for the storage, analysis, and controlled sharing of transcription-based microarray data generated on the Agilent DNA platform. In addition, EDGE(3) provides a means for managing RNA samples and arrays during the hybridization process. EDGE(3) is freely available for download at http://edge.oncology.wisc.edu/.

  1. Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology

    PubMed Central

    Sato, Fumiaki; Tsuchiya, Soken; Terasawa, Kazuya; Tsujimoto, Gozoh

    2009-01-01

    Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of microRNA microarray chips are commercially available. Thus, we compared repeatability and comparability of five different microRNA microarray platforms (Agilent, Ambion, Exiqon, Invitrogen and Toray) using 309 microRNAs probes, and the Taqman microRNA system using 142 microRNA probes. This study demonstrated that microRNA microarray has high intra-platform repeatability and comparability to quantitative RT-PCR of microRNA. Among the five platforms, Agilent and Toray array showed relatively better performances than the others. However, the current lineup of commercially available microRNA microarray systems fails to show good inter-platform concordance, probably because of lack of an adequate normalization method and severe divergence in stringency of detection call criteria between different platforms. This study provided the basic information about the performance and the problems specific to the current microRNA microarray systems. PMID:19436744

  2. Use of diagnostic accuracy as a metric for evaluating laboratory proficiency with microarray assays using mixed-tissue RNA reference samples.

    PubMed

    Pine, P S; Boedigheimer, M; Rosenzweig, B A; Turpaz, Y; He, Y D; Delenstarr, G; Ganter, B; Jarnagin, K; Jones, W D; Reid, L H; Thompson, K L

    2008-11-01

    Effective use of microarray technology in clinical and regulatory settings is contingent on the adoption of standard methods for assessing performance. The MicroArray Quality Control project evaluated the repeatability and comparability of microarray data on the major commercial platforms and laid the groundwork for the application of microarray technology to regulatory assessments. However, methods for assessing performance that are commonly applied to diagnostic assays used in laboratory medicine remain to be developed for microarray assays. A reference system for microarray performance evaluation and process improvement was developed that includes reference samples, metrics and reference datasets. The reference material is composed of two mixes of four different rat tissue RNAs that allow defined target ratios to be assayed using a set of tissue-selective analytes that are distributed along the dynamic range of measurement. The diagnostic accuracy of detected changes in expression ratios, measured as the area under the curve from receiver operating characteristic plots, provides a single commutable value for comparing assay specificity and sensitivity. The utility of this system for assessing overall performance was evaluated for relevant applications like multi-laboratory proficiency testing programs and single-laboratory process drift monitoring. The diagnostic accuracy of detection of a 1.5-fold change in signal level was found to be a sensitive metric for comparing overall performance. This test approaches the technical limit for reliable discrimination of differences between two samples using this technology. We describe a reference system that provides a mechanism for internal and external assessment of laboratory proficiency with microarray technology and is translatable to performance assessments on other whole-genome expression arrays used for basic and clinical research.

  3. CNV-ROC: A cost effective, computer-aided analytical performance evaluator of chromosomal microarrays.

    PubMed

    Goodman, Corey W; Major, Heather J; Walls, William D; Sheffield, Val C; Casavant, Thomas L; Darbro, Benjamin W

    2015-04-01

    Chromosomal microarrays (CMAs) are routinely used in both research and clinical laboratories; yet, little attention has been given to the estimation of genome-wide true and false negatives during the assessment of these assays and how such information could be used to calibrate various algorithmic metrics to improve performance. Low-throughput, locus-specific methods such as fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), or multiplex ligation-dependent probe amplification (MLPA) preclude rigorous calibration of various metrics used by copy number variant (CNV) detection algorithms. To aid this task, we have established a comparative methodology, CNV-ROC, which is capable of performing a high throughput, low cost, analysis of CMAs that takes into consideration genome-wide true and false negatives. CNV-ROC uses a higher resolution microarray to confirm calls from a lower resolution microarray and provides for a true measure of genome-wide performance metrics at the resolution offered by microarray testing. CNV-ROC also provides for a very precise comparison of CNV calls between two microarray platforms without the need to establish an arbitrary degree of overlap. Comparison of CNVs across microarrays is done on a per-probe basis and receiver operator characteristic (ROC) analysis is used to calibrate algorithmic metrics, such as log2 ratio threshold, to enhance CNV calling performance. CNV-ROC addresses a critical and consistently overlooked aspect of analytical assessments of genome-wide techniques like CMAs which is the measurement and use of genome-wide true and false negative data for the calculation of performance metrics and comparison of CNV profiles between different microarray experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Molecular profiles of pre- and postoperative breast cancer tumours reveal differentially expressed genes.

    PubMed

    Riis, Margit L H; Lüders, Torben; Markert, Elke K; Haakensen, Vilde D; Nesbakken, Anne-Jorun; Kristensen, Vessela N; Bukholm, Ida R K

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology.

  5. Molecular Profiles of Pre- and Postoperative Breast Cancer Tumours Reveal Differentially Expressed Genes

    PubMed Central

    Riis, Margit L. H.; Lüders, Torben; Markert, Elke K.; Haakensen, Vilde D.; Nesbakken, Anne-Jorun; Kristensen, Vessela N.; Bukholm, Ida R. K.

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology. PMID:23227362

  6. Derivation of Tissue-specific Functional Gene Sets to Aid Transcriptomic Analysis of Chemical Impacts on the Teleost Reproductive Axis.

    EPA Science Inventory

    Oligonucleotide microarrays are a powerful tool for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-based analyses to detect diffe...

  7. MIGS-GPU: Microarray Image Gridding and Segmentation on the GPU.

    PubMed

    Katsigiannis, Stamos; Zacharia, Eleni; Maroulis, Dimitris

    2017-05-01

    Complementary DNA (cDNA) microarray is a powerful tool for simultaneously studying the expression level of thousands of genes. Nevertheless, the analysis of microarray images remains an arduous and challenging task due to the poor quality of the images that often suffer from noise, artifacts, and uneven background. In this study, the MIGS-GPU [Microarray Image Gridding and Segmentation on Graphics Processing Unit (GPU)] software for gridding and segmenting microarray images is presented. MIGS-GPU's computations are performed on the GPU by means of the compute unified device architecture (CUDA) in order to achieve fast performance and increase the utilization of available system resources. Evaluation on both real and synthetic cDNA microarray images showed that MIGS-GPU provides better performance than state-of-the-art alternatives, while the proposed GPU implementation achieves significantly lower computational times compared to the respective CPU approaches. Consequently, MIGS-GPU can be an advantageous and useful tool for biomedical laboratories, offering a user-friendly interface that requires minimum input in order to run.

  8. Advances in analytical methodologies to guide bioprocess engineering for bio-therapeutics.

    PubMed

    Saldova, Radka; Kilcoyne, Michelle; Stöckmann, Henning; Millán Martín, Silvia; Lewis, Amanda M; Tuite, Catherine M E; Gerlach, Jared Q; Le Berre, Marie; Borys, Michael C; Li, Zheng Jian; Abu-Absi, Nicholas R; Leister, Kirk; Joshi, Lokesh; Rudd, Pauline M

    2017-03-01

    This study was performed to monitor the glycoform distribution of a recombinant antibody fusion protein expressed in CHO cells over the course of fed-batch bioreactor runs using high-throughput methods to accurately determine the glycosylation status of the cell culture and its product. Three different bioreactors running similar conditions were analysed at the same five time-points using the advanced methods described here. N-glycans from cell and secreted glycoproteins from CHO cells were analysed by HILIC-UPLC and MS, and the total glycosylation (both N- and O-linked glycans) secreted from the CHO cells were analysed by lectin microarrays. Cell glycoproteins contained mostly high mannose type N-linked glycans with some complex glycans; sialic acid was α-(2,3)-linked, galactose β-(1,4)-linked, with core fucose. Glycans attached to secreted glycoproteins were mostly complex with sialic acid α-(2,3)-linked, galactose β-(1,4)-linked, with mostly core fucose. There were no significant differences noted among the bioreactors in either the cell pellets or supernatants using the HILIC-UPLC method and only minor differences at the early time-points of days 1 and 3 by the lectin microarray method. In comparing different time-points, significant decreases in sialylation and branching with time were observed for glycans attached to both cell and secreted glycoproteins. Additionally, there was a significant decrease over time in high mannose type N-glycans from the cell glycoproteins. A combination of the complementary methods HILIC-UPLC and lectin microarrays could provide a powerful and rapid HTP profiling tool capable of yielding qualitative and quantitative data for a defined biopharmaceutical process, which would allow valuable near 'real-time' monitoring of the biopharmaceutical product. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Performance evaluation of DNA copy number segmentation methods.

    PubMed

    Pierre-Jean, Morgane; Rigaill, Guillem; Neuvial, Pierre

    2015-07-01

    A number of bioinformatic or biostatistical methods are available for analyzing DNA copy number profiles measured from microarray or sequencing technologies. In the absence of rich enough gold standard data sets, the performance of these methods is generally assessed using unrealistic simulation studies, or based on small real data analyses. To make an objective and reproducible performance assessment, we have designed and implemented a framework to generate realistic DNA copy number profiles of cancer samples with known truth. These profiles are generated by resampling publicly available SNP microarray data from genomic regions with known copy-number state. The original data have been extracted from dilutions series of tumor cell lines with matched blood samples at several concentrations. Therefore, the signal-to-noise ratio of the generated profiles can be controlled through the (known) percentage of tumor cells in the sample. This article describes this framework and its application to a comparison study between methods for segmenting DNA copy number profiles from SNP microarrays. This study indicates that no single method is uniformly better than all others. It also helps identifying pros and cons of the compared methods as a function of biologically informative parameters, such as the fraction of tumor cells in the sample and the proportion of heterozygous markers. This comparison study may be reproduced using the open source and cross-platform R package jointseg, which implements the proposed data generation and evaluation framework: http://r-forge.r-project.org/R/?group_id=1562. © The Author 2014. Published by Oxford University Press.

  10. Functional Analyses of NSF1 in Wine Yeast Using Interconnected Correlation Clustering and Molecular Analyses

    PubMed Central

    Bessonov, Kyrylo; Walkey, Christopher J.; Shelp, Barry J.; van Vuuren, Hennie J. J.; Chiu, David; van der Merwe, George

    2013-01-01

    Analyzing time-course expression data captured in microarray datasets is a complex undertaking as the vast and complex data space is represented by a relatively low number of samples as compared to thousands of available genes. Here, we developed the Interdependent Correlation Clustering (ICC) method to analyze relationships that exist among genes conditioned on the expression of a specific target gene in microarray data. Based on Correlation Clustering, the ICC method analyzes a large set of correlation values related to gene expression profiles extracted from given microarray datasets. ICC can be applied to any microarray dataset and any target gene. We applied this method to microarray data generated from wine fermentations and selected NSF1, which encodes a C2H2 zinc finger-type transcription factor, as the target gene. The validity of the method was verified by accurate identifications of the previously known functional roles of NSF1. In addition, we identified and verified potential new functions for this gene; specifically, NSF1 is a negative regulator for the expression of sulfur metabolism genes, the nuclear localization of Nsf1 protein (Nsf1p) is controlled in a sulfur-dependent manner, and the transcription of NSF1 is regulated by Met4p, an important transcriptional activator of sulfur metabolism genes. The inter-disciplinary approach adopted here highlighted the accuracy and relevancy of the ICC method in mining for novel gene functions using complex microarray datasets with a limited number of samples. PMID:24130853

  11. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.

    PubMed

    Zhang, Wenqian; Yu, Ying; Hertwig, Falk; Thierry-Mieg, Jean; Zhang, Wenwei; Thierry-Mieg, Danielle; Wang, Jian; Furlanello, Cesare; Devanarayan, Viswanath; Cheng, Jie; Deng, Youping; Hero, Barbara; Hong, Huixiao; Jia, Meiwen; Li, Li; Lin, Simon M; Nikolsky, Yuri; Oberthuer, André; Qing, Tao; Su, Zhenqiang; Volland, Ruth; Wang, Charles; Wang, May D; Ai, Junmei; Albanese, Davide; Asgharzadeh, Shahab; Avigad, Smadar; Bao, Wenjun; Bessarabova, Marina; Brilliant, Murray H; Brors, Benedikt; Chierici, Marco; Chu, Tzu-Ming; Zhang, Jibin; Grundy, Richard G; He, Min Max; Hebbring, Scott; Kaufman, Howard L; Lababidi, Samir; Lancashire, Lee J; Li, Yan; Lu, Xin X; Luo, Heng; Ma, Xiwen; Ning, Baitang; Noguera, Rosa; Peifer, Martin; Phan, John H; Roels, Frederik; Rosswog, Carolina; Shao, Susan; Shen, Jie; Theissen, Jessica; Tonini, Gian Paolo; Vandesompele, Jo; Wu, Po-Yen; Xiao, Wenzhong; Xu, Joshua; Xu, Weihong; Xuan, Jiekun; Yang, Yong; Ye, Zhan; Dong, Zirui; Zhang, Ke K; Yin, Ye; Zhao, Chen; Zheng, Yuanting; Wolfinger, Russell D; Shi, Tieliu; Malkas, Linda H; Berthold, Frank; Wang, Jun; Tong, Weida; Shi, Leming; Peng, Zhiyu; Fischer, Matthias

    2015-06-25

    Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.

  12. Two-Dimensional VO2 Mesoporous Microarrays for High-Performance Supercapacitor

    NASA Astrophysics Data System (ADS)

    Fan, Yuqi; Ouyang, Delong; Li, Bao-Wen; Dang, Feng; Ren, Zongming

    2018-05-01

    Two-dimensional (2D) mesoporous VO2 microarrays have been prepared using an organic-inorganic liquid interface. The units of microarrays consist of needle-like VO2 particles with a mesoporous structure, in which crack-like pores with a pore size of about 2 nm and depth of 20-100 nm are distributed on the particle surface. The liquid interface acts as a template for the formation of the 2D microarrays, as identified from the kinetic observation. Due to the mesoporous structure of the units and high conductivity of the microarray, such 2D VO2 microarrays exhibit a high specific capacitance of 265 F/g at 1 A/g and excellent rate capability (182 F/g at 10 A/g) and cycling stability, suggesting the effect of unique microstructure for improving the electrochemical performance.

  13. High throughput gene expression profiling: a molecular approach to integrative physiology

    PubMed Central

    Liang, Mingyu; Cowley, Allen W; Greene, Andrew S

    2004-01-01

    Integrative physiology emphasizes the importance of understanding multiple pathways with overlapping, complementary, or opposing effects and their interactions in the context of intact organisms. The DNA microarray technology, the most commonly used method for high-throughput gene expression profiling, has been touted as an integrative tool that provides insights into regulatory pathways. However, the physiology community has been slow in acceptance of these techniques because of early failure in generating useful data and the lack of a cohesive theoretical framework in which experiments can be analysed. With recent advances in both technology and analysis, we propose a concept of multidimensional integration of physiology that incorporates data generated by DNA microarray and other functional, genomic, and proteomic approaches to achieve a truly integrative understanding of physiology. Analysis of several studies performed in simpler organisms or in mammalian model animals supports the feasibility of such multidimensional integration and demonstrates the power of DNA microarray as an indispensable molecular tool for such integration. Evaluation of DNA microarray techniques indicates that these techniques, despite limitations, have advanced to a point where the question-driven profiling research has become a feasible complement to the conventional, hypothesis-driven research. With a keen sense of homeostasis, global regulation, and quantitative analysis, integrative physiologists are uniquely positioned to apply these techniques to enhance the understanding of complex physiological functions. PMID:14678487

  14. MOLECULAR METHODS (E.G., MICROARRAYS) APPLIED TO PLANT GENOMES FOR ASSESSING GENETIC CHANGE AND ENVIRONMENTAL STRESS

    EPA Science Inventory

    This is a technical document that presents a detailed sample standard operating procedure (S.O.P.) for preparing plant nucleic acid samples for microarray analyses using commercial ¿chips¿ such as those sold by Affymetrix. It also presents the application of a commercially availa...

  15. Gene expression profiles in the testis associated with testis-ova in adult Japanese medaka (Oryziaslatipes) exposed to 17α-ethinylestradiol.

    PubMed

    Hirakawa, Ikumi; Miyagawa, Shinichi; Katsu, Yoshinao; Kagami, Yoshihiro; Tatarazako, Norihisa; Kobayashi, Tohru; Kusano, Teruhiko; Mizutani, Takeshi; Ogino, Yukiko; Takeuchi, Takashi; Ohta, Yasuhiko; Iguchi, Taisen

    2012-05-01

    The occurrence of oocytes in the testis (testis-ova) of several fish species is often associated with exposure of estrogenic chemicals. However, induction mechanisms of the testis-ova remain to be elucidated. To develop marker genes for detecting testis-ova in the testis, adult male medaka were exposed to nominal concentration of 100 ng L(-1) of 17α-ethinylestradiol (EE2) for 3-5 weeks, and 800 ng estradiol benzoate (EB) for 3 weeks (experiment I), and a measured concentration of 20 ng L(-1) EE2 for 1-6 weeks (experiment II). Histological analysis was performed for the testis, and microarray analyses were performed for the testis, liver and brain. Microarray analysis in the estrogen-exposed medaka liver showed vitellogenin and choriogenin as estrogen responsive genes. Testis-ova were induced in the testis after 4 weeks of exposure to 100 ng L(-1) EE2, 3 weeks of exposure to 800 ng EB, and 6 weeks of exposure to 20 ng L(-1) EE2. Microarray analysis of estrogen-exposed testes revealed up-regulation of genes related to zona pellucida (ZP) and the oocytes marker gene, 42Sp50. Using quantitative RT-PCR we confirmed that Zpc5 gene can be used as a marker for the detection of testis-ova in male medaka. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Gene expression profile of blood cells for the prediction of delayed cerebral ischemia after intracranial aneurysm rupture: a pilot study in humans.

    PubMed

    Baumann, Antoine; Devaux, Yvan; Audibert, Gérard; Zhang, Lu; Bracard, Serge; Colnat-Coulbois, Sophie; Klein, Olivier; Zannad, Faiez; Charpentier, Claire; Longrois, Dan; Mertes, Paul-Michel

    2013-01-01

    Delayed cerebral ischemia (DCI) is a potentially devastating complication after intracranial aneurysm rupture and its mechanisms remain poorly elucidated. Early identification of the patients prone to developing DCI after rupture may represent a major breakthrough in its prevention and treatment. The single gene approach of DCI has demonstrated interest in humans. We hypothesized that whole genome expression profile of blood cells may be useful for better comprehension and prediction of aneurysmal DCI. Over a 35-month period, 218 patients with aneurysm rupture were included in this study. DCI was defined as the occurrence of a new delayed neurological deficit occurring within 2 weeks after aneurysm rupture with evidence of ischemia either on perfusion-diffusion MRI, CT angiography or CT perfusion imaging, or with cerebral angiography. DCI patients were matched against controls based on 4 out of 5 criteria (age, sex, Fisher grade, aneurysm location and smoking status). Genome-wide expression analysis of blood cells obtained at admission was performed by microarrays. Transcriptomic analysis was performed using long oligonucleotide microarrays representing 25,000 genes. Quantitative PCR: 1 µg of total RNA extracted was reverse-transcribed, and the resulting cDNA was diluted 10-fold before performing quantitative PCR. Microarray data were first analyzed by 'Significance Analysis of Microarrays' software which includes the Benjamini correction for multiple testing. In a second step, microarray data fold change was compared using a two-tailed, paired t test. Analysis of receiver-operating characteristic (ROC) curves and the area under the ROC curves were used for prediction analysis. Logistic regression models were used to investigate the additive value of multiple biomarkers. A total of 16 patients demonstrated DCI. Significance Analysis of Microarrays software failed to retrieve significant genes, most probably because of the heterogeneity of the patients included in the microarray experiments and the small size of the DCI population sample. Standard two-tailed paired t test and C-statistic revealed significant associations between gene expression and the occurrence of DCI: in particular, the expression of neuroregulin 1 was 1.6-fold upregulated in patients with DCI (p = 0.01) and predicted DCI with an area under the ROC curve of 0.96. Logistic regression analyses revealed a significant association between neuroregulin 1 and DCI (odds ratio 1.46, 95% confidence interval 1.02-2.09, p = 0.02). This pilot study suggests that blood cells may be a reservoir of prognostic biomarkers of DCI in patients with intracranial aneurysm rupture. Despite an evident lack of power, this study elicited neuroregulin 1, a vasoreactivity-, inflammation- and angiogenesis-related gene, as a possible candidate predictor of DCI. Larger cohort studies are needed but genome-wide microarray-based studies are promising research tools for the understanding of DCI after intracranial aneurysm rupture. © 2013 S. Karger AG, Basel.

  17. COLD-PCR and microarray: two independent highly sensitive approaches allowing the identification of fetal paternally inherited mutations in maternal plasma.

    PubMed

    Galbiati, Silvia; Monguzzi, Alessandra; Damin, Francesco; Soriani, Nadia; Passiu, Marianna; Castellani, Carlo; Natacci, Federica; Curcio, Cristina; Seia, Manuela; Lalatta, Faustina; Chiari, Marcella; Ferrari, Maurizio; Cremonesi, Laura

    2016-07-01

    Until now, non-invasive prenatal diagnosis of genetic diseases found only limited routine applications. In autosomal recessive diseases, it can be used to determine the carrier status of the fetus through the detection of a paternally inherited disease allele in cases where maternal and paternal mutated alleles differ. Conditions for non-invasive identification of fetal paternally inherited mutations in maternal plasma were developed by two independent approaches: coamplification at lower denaturation temperature-PCR (COLD-PCR) and highly sensitive microarrays. Assays were designed for identifying 14 mutations, 7 causing β-thalassaemia and 7 cystic fibrosis. In total, 87 non-invasive prenatal diagnoses were performed by COLD-PCR in 75 couples at risk for β-thalassaemia and 12 for cystic fibrosis. First, to identify the more appropriate methodology for the analysis of minority mutated fetal alleles in maternal plasma, both fast and full COLD-PCR protocols were developed for the most common Italian β-thalassaemia Cd39 and IVSI.110 mutations. In 5 out of 31 samples, no enrichment was obtained with the fast protocol, while full COLD-PCR provided the correct fetal genotypes. Thus, full COLD-PCR protocols were developed for all the remaining mutations and all analyses confirmed the fetal genotypes obtained by invasive prenatal diagnosis. Microarray analysis was performed on 40 samples from 28 couples at risk for β-thalassaemia and 12 for cystic fibrosis. Results were in complete concordance with those obtained by both COLD-PCR and invasive procedures. COLD-PCR and microarray approaches are not expensive, simple to handle, fast and can be easily set up in specialised clinical laboratories where prenatal diagnosis is routinely performed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Gene Expression Analyses of Subchondral Bone in Early Experimental Osteoarthritis by Microarray

    PubMed Central

    Chen, YuXian; Shen, Jun; Lu, HuaDing; Zeng, Chun; Ren, JianHua; Zeng, Hua; Li, ZhiFu; Chen, ShaoMing; Cai, DaoZhang; Zhao, Qing

    2012-01-01

    Osteoarthritis (OA) is a degenerative joint disease that affects both cartilage and bone. A better understanding of the early molecular changes in subchondral bone may help elucidate the pathogenesis of OA. We used microarray technology to investigate the time course of molecular changes in the subchondral bone in the early stages of experimental osteoarthritis in a rat model. We identified 2,234 differentially expressed (DE) genes at 1 week, 1,944 at 2 weeks and 1,517 at 4 weeks post-surgery. Further analyses of the dysregulated genes indicated that the events underlying subchondral bone remodeling occurred sequentially and in a time-dependent manner at the gene expression level. Some of the identified dysregulated genes that were identified have suspected roles in bone development or remodeling; these genes include Alp, Igf1, Tgf β1, Postn, Mmp3, Tnfsf11, Acp5, Bmp5, Aspn and Ihh. The differences in the expression of these genes were confirmed by real-time PCR, and the results indicated that our microarray data accurately reflected gene expression patterns characteristic of early OA. To validate the results of our microarray analysis at the protein level, immunohistochemistry staining was used to investigate the expression of Mmp3 and Aspn protein in tissue sections. These analyses indicate that Mmp3 protein expression completely matched the results of both the microarray and real-time PCR analyses; however, Aspn protein expression was not observed to differ at any time. In summary, our study demonstrated a simple method of separation of subchondral bone sample from the knee joint of rat, which can effectively avoid bone RNA degradation. These findings also revealed the gene expression profiles of subchondral bone in the rat OA model at multiple time points post-surgery and identified important DE genes with known or suspected roles in bone development or remodeling. These genes may be novel diagnostic markers or therapeutic targets for OA. PMID:22384228

  19. Construction of a cDNA microarray derived from the ascidian Ciona intestinalis.

    PubMed

    Azumi, Kaoru; Takahashi, Hiroki; Miki, Yasufumi; Fujie, Manabu; Usami, Takeshi; Ishikawa, Hisayoshi; Kitayama, Atsusi; Satou, Yutaka; Ueno, Naoto; Satoh, Nori

    2003-10-01

    A cDNA microarray was constructed from a basal chordate, the ascidian Ciona intestinalis. The draft genome of Ciona has been read and inferred to contain approximately 16,000 protein-coding genes, and cDNAs for transcripts of 13,464 genes have been characterized and compiled as the "Ciona intestinalis Gene Collection Release I". In the present study, we constructed a cDNA microarray of these 13,464 Ciona genes. A preliminary experiment with Cy3- and Cy5-labeled probes showed extensive differential gene expression between fertilized eggs and larvae. In addition, there was a good correlation between results obtained by the present microarray analysis and those from previous EST analyses. This first microarray of a large collection of Ciona intestinalis cDNA clones should facilitate the analysis of global gene expression and gene networks during the embryogenesis of basal chordates.

  20. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  1. Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm.

    PubMed

    Saberkari, Hamidreza; Bahrami, Sheyda; Shamsi, Mousa; Amoshahy, Mohammad Javad; Ghavifekr, Habib Badri; Sedaaghi, Mohammad Hossein

    2015-01-01

    DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.

  2. Self-Directed Student Research through Analysis of Microarray Datasets: A Computer-Based Functional Genomics Practical Class for Masters-Level Students

    ERIC Educational Resources Information Center

    Grenville-Briggs, Laura J.; Stansfield, Ian

    2011-01-01

    This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate…

  3. A genome-wide 20 K citrus microarray for gene expression analysis

    PubMed Central

    Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose

    2008-01-01

    Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to catalogue genes expressed in citrus globular embryos. PMID:18598343

  4. Gene-expression profiling using suppression-subtractive hybridization and cDNA microarray in rat mononuclear cells in response to welding-fume exposure.

    PubMed

    Rim, Kyung Taek; Park, Kun Koo; Sung, Jae Hyuck; Chung, Yong Hyun; Han, Jeong Hee; Cho, Key Seung; Kim, Kwang Jong; Yu, Il Je

    2004-06-01

    Welders with radiographic pneumoconiosis abnormalities have shown a gradual clearing of the X-ray identified effects following removal from exposure. In some cases, the pulmonary fibrosis associated with welding fumes appears in a more severe form in welders. Accordingly, for the early detection of welding-fume-exposure-induced pulmonary fibrosis, the gene expression profiles of peripheral mononuclear cells from rats exposed to welding fumes were studied using suppression-subtractive hybridization (SSH) and a cDNA microarray. As such, Sprague-Dawley rats were exposed to a stainless steel arc welding fume for 2 h/day in an inhalation chamber with a 1107.5 +/- 2.6 mg/m3 concentration of total suspended particulate (TSP) for 30 days. Thereafter, the total RNA was extracted from the peripheral blood mononuclear cells, the cDNA synthesized from the total RNA using the SMART PCR cDNA method, and SSH performed to select the welding-fume-exposure-regulated genes. The cDNAs identified by the SSH were then cloned into a plasmid miniprep, sequenced and the sequences analysed using the NCBI BLAST programme. In the SSH cloned cDNA microarray analysis, five genes were found to increase their expression by 1.9-fold or more, including Rgs 14, which plays an important function in cellular signal transduction pathways; meanwhile 36 genes remained the same and 30 genes decreased their expression by more than 59%, including genes associated with the immune response, transcription factors and tyrosine kinases. Among the 5200 genes analysed, 256 genes (5.1%) were found to increase their gene expression, while 742 genes (15%) decreased their gene expression in response to the welding-fume exposure when tested using a commercial 5.0k DNA microarray. Therefore, unlike exposure to other toxic substances, prolonged welding-fume exposure was found to substantially downregulate many genes.

  5. Noncoding RNAs in human intervertebral disc degeneration: An integrated microarray study.

    PubMed

    Liu, Xu; Che, Lu; Xie, Yan-Ke; Hu, Qing-Jie; Ma, Chi-Jiao; Pei, Yan-Jun; Wu, Zhi-Gang; Liu, Zhi-Heng; Fan, Li-Ying; Wang, Hai-Qiang

    2015-09-01

    Accumulating evidence indicates that noncoding RNAs play important roles in a multitude of biological processes. The striking findings of miRNAs (microRNAs) and lncRNAs (long noncoding RNAs) as members of noncoding RNAs open up an exciting era in the studies of gene regulation. More recently, the reports of circRNAs (circular RNAs) add fuel to the noncoding RNAs research. Human intervertebral disc degeneration (IDD) is a main cause of low back pain as a disabling spinal disease. We have addressed the expression profiles if miRNAs, lncRNAs and mRNAs in IDD (Wang et al., J Pathology, 2011 and Wan et al., Arthritis Res Ther, 2014). Furthermore, we thoroughly analysed noncoding RNAs, including miRNAs, lncRNAs and circRNAs in IDD using the very same samples. Here we delineate in detail the contents of the aforementioned microarray analyses. Microarray and sample annotation data were deposited in GEO under accession number GSE67567 as SuperSeries. The integrated analyses of these noncoding RNAs will shed a novel light on coding-noncoding regulatory machinery.

  6. Application of a Novel Functional Gene Microarray to Probe the Functional Ecology of Ammonia Oxidation in Nitrifying Activated Sludge

    PubMed Central

    Short, Michael D.; Abell, Guy C. J.; Bodrossy, Levente; van den Akker, Ben

    2013-01-01

    We report on the first study trialling a newly-developed, functional gene microarray (FGA) for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML) and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS) plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively). FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples – an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems. PMID:24155925

  7. Development of a DNA microarray for species identification of quarantine aphids.

    PubMed

    Lee, Won Sun; Choi, Hwalran; Kang, Jinseok; Kim, Ji-Hoon; Lee, Si Hyeock; Lee, Seunghwan; Hwang, Seung Yong

    2013-12-01

    Aphid pests are being brought into Korea as a result of increased crop trading. Aphids exist on growth areas of plants, and thus plant growth is seriously affected by aphid pests. However, aphids are very small and have several sexual morphs and life stages, so it is difficult to identify species on the basis of morphological features. This problem was approached using DNA microarray technology. DNA targets of the cytochrome c oxidase subunit I gene were generated with a fluorescent dye-labelled primer and were hybridised onto a DNA microarray consisting of specific probes. After analysing the signal intensity of the specific probes, the unique patterns from the DNA microarray, consisting of 47 species-specific probes, were obtained to identify 23 aphid species. To confirm the accuracy of the developed DNA microarray, ten individual blind samples were used in blind trials, and the identifications were completely consistent with the sequencing data of all individual blind samples. A microarray has been developed to distinguish aphid species. DNA microarray technology provides a rapid, easy, cost-effective and accurate method for identifying aphid species for pest control management. © 2013 Society of Chemical Industry.

  8. A comparative study of RNA-Seq and microarray data analysis on the two examples of rectal-cancer patients and Burkitt Lymphoma cells.

    PubMed

    Wolff, Alexander; Bayerlová, Michaela; Gaedcke, Jochen; Kube, Dieter; Beißbarth, Tim

    2018-01-01

    Pipeline comparisons for gene expression data are highly valuable for applied real data analyses, as they enable the selection of suitable analysis strategies for the dataset at hand. Such pipelines for RNA-Seq data should include mapping of reads, counting and differential gene expression analysis or preprocessing, normalization and differential gene expression in case of microarray analysis, in order to give a global insight into pipeline performances. Four commonly used RNA-Seq pipelines (STAR/HTSeq-Count/edgeR, STAR/RSEM/edgeR, Sailfish/edgeR, TopHat2/Cufflinks/CuffDiff)) were investigated on multiple levels (alignment and counting) and cross-compared with the microarray counterpart on the level of gene expression and gene ontology enrichment. For these comparisons we generated two matched microarray and RNA-Seq datasets: Burkitt Lymphoma cell line data and rectal cancer patient data. The overall mapping rate of STAR was 98.98% for the cell line dataset and 98.49% for the patient dataset. Tophat's overall mapping rate was 97.02% and 96.73%, respectively, while Sailfish had only an overall mapping rate of 84.81% and 54.44%. The correlation of gene expression in microarray and RNA-Seq data was moderately worse for the patient dataset (ρ = 0.67-0.69) than for the cell line dataset (ρ = 0.87-0.88). An exception were the correlation results of Cufflinks, which were substantially lower (ρ = 0.21-0.29 and 0.34-0.53). For both datasets we identified very low numbers of differentially expressed genes using the microarray platform. For RNA-Seq we checked the agreement of differentially expressed genes identified in the different pipelines and of GO-term enrichment results. In conclusion the combination of STAR aligner with HTSeq-Count followed by STAR aligner with RSEM and Sailfish generated differentially expressed genes best suited for the dataset at hand and in agreement with most of the other transcriptomics pipelines.

  9. Quantitative Proteomic and Microarray Analysis of the Archaeon Methanosarcina Acetivorans Grown with Acetate Versus Methanol*

    PubMed Central

    Li, Lingyun; Li, Qingbo; Rohlin, Lars; Kim, UnMi; Salmon, Kirsty; Rejtar, Tomas; Gunsalus, Robert P.; Karger, Barry L.; Ferry, James G.

    2008-01-01

    Summary Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs. methanol-grown cells metabolically labeled with 14N vs. 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs. methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were ≥ 3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were ≥ 2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs. methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory systems specific for each growth substrate. PMID:17269732

  10. Identification of embryonic pancreatic genes using Xenopus DNA microarrays.

    PubMed

    Hayata, Tadayoshi; Blitz, Ira L; Iwata, Nahoko; Cho, Ken W Y

    2009-06-01

    The pancreas is both an exocrine and endocrine endodermal organ involved in digestion and glucose homeostasis. During embryogenesis, the anlagen of the pancreas arise from dorsal and ventral evaginations of the foregut that later fuse to form a single organ. To better understand the molecular genetics of early pancreas development, we sought to isolate markers that are uniquely expressed in this tissue. Microarray analysis was performed comparing dissected pancreatic buds, liver buds, and the stomach region of tadpole stage Xenopus embryos. A total of 912 genes were found to be differentially expressed between these organs during early stages of organogenesis. K-means clustering analysis predicted 120 of these genes to be specifically enriched in the pancreas. Of these, we report on the novel expression patterns of 24 genes. Our analyses implicate the involvement of previously unsuspected signaling pathways during early pancreas development. Developmental Dynamics 238:1455-1466, 2009. (c) 2009 Wiley-Liss, Inc.

  11. EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    PubMed Central

    Zhu, Yuerong; Zhu, Yuelin; Xu, Wei

    2008-01-01

    Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103

  12. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium

    PubMed Central

    2014-01-01

    We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings. PMID:25150838

  13. Microarrays in brain research: the good, the bad and the ugly.

    PubMed

    Mirnics, K

    2001-06-01

    Making sense of microarray data is a complex process, in which the interpretation of findings will depend on the overall experimental design and judgement of the investigator performing the analysis. As a result, differences in tissue harvesting, microarray types, sample labelling and data analysis procedures make post hoc sharing of microarray data a great challenge. To ensure rapid and meaningful data exchange, we need to create some order out of the existing chaos. In these ground-breaking microarray standardization and data sharing efforts, NIH agencies should take a leading role

  14. Cell-Based Microarrays for In Vitro Toxicology

    NASA Astrophysics Data System (ADS)

    Wegener, Joachim

    2015-07-01

    DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.

  15. The genes Scgb1a1, Lpo and Gbp2 characteristically expressed in peri-implant epithelium of rats.

    PubMed

    Mori, Gentaro; Sasaki, Hodaka; Makabe, Yasushi; Yoshinari, Masao; Yajima, Yasutomo

    2016-12-01

    The peri-implant epithelium (PIE) plays an important role in the prevention against initial stage of inflammation. To minimize the risk of peri-implantitis, it is necessary to understand the biological characteristics of the PIE. The aim of this study was to investigate the characteristic gene expression profile of PIE as compared to junctional epithelium (JE) using laser microdissection and microarray analysis. Left upper first molars of 4-week-old rat were extracted, and titanium alloy implants were placed. Four weeks after surgery, samples were harvested by laser microdissection, and total RNA samples were isolated. Comprehensive analyses of genes expressed in the JE and PIE were performed using microarray analysis. Confirmation of the differential expression of selected genes was performed by quantitative real-time polymerase chain reaction and immunohistochemistry. The microarray analysis showed that 712 genes were more than twofold change upregulated in the PIE compared with the JE. Genes Scgb1a1 were significantly upregulated more than 19.1-fold, Lpo more than 19.0-fold, and Gbp2 more than 8.9-fold, in the PIE (P < 0.01). Immunohistochemical localization of SCGB1A1, LPO, and GBP2 was observed in PIE. The present results suggested that genes Scgb1a1, Lpo, and Gbp2 are characteristically expressed in the PIE. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Gene expression profiling in gill tissues of White spot syndrome virus infected black tiger shrimp Penaeus monodon by DNA microarray.

    PubMed

    Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G

    2015-06-01

    White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

  17. Improvement of experimental testing and network training conditions with genome-wide microarrays for more accurate predictions of drug gene targets

    PubMed Central

    2014-01-01

    Background Genome-wide microarrays have been useful for predicting chemical-genetic interactions at the gene level. However, interpreting genome-wide microarray results can be overwhelming due to the vast output of gene expression data combined with off-target transcriptional responses many times induced by a drug treatment. This study demonstrates how experimental and computational methods can interact with each other, to arrive at more accurate predictions of drug-induced perturbations. We present a two-stage strategy that links microarray experimental testing and network training conditions to predict gene perturbations for a drug with a known mechanism of action in a well-studied organism. Results S. cerevisiae cells were treated with the antifungal, fluconazole, and expression profiling was conducted under different biological conditions using Affymetrix genome-wide microarrays. Transcripts were filtered with a formal network-based method, sparse simultaneous equation models and Lasso regression (SSEM-Lasso), under different network training conditions. Gene expression results were evaluated using both gene set and single gene target analyses, and the drug’s transcriptional effects were narrowed first by pathway and then by individual genes. Variables included: (i) Testing conditions – exposure time and concentration and (ii) Network training conditions – training compendium modifications. Two analyses of SSEM-Lasso output – gene set and single gene – were conducted to gain a better understanding of how SSEM-Lasso predicts perturbation targets. Conclusions This study demonstrates that genome-wide microarrays can be optimized using a two-stage strategy for a more in-depth understanding of how a cell manifests biological reactions to a drug treatment at the transcription level. Additionally, a more detailed understanding of how the statistical model, SSEM-Lasso, propagates perturbations through a network of gene regulatory interactions is achieved. PMID:24444313

  18. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification

    PubMed Central

    Ge, Jing; Chow, Danielle N.; Fessler, Jessica L.; Weingeist, David M.; Wood, David K.; Engelward, Bevin P.

    2015-01-01

    The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. PMID:25527723

  19. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification.

    PubMed

    Ge, Jing; Chow, Danielle N; Fessler, Jessica L; Weingeist, David M; Wood, David K; Engelward, Bevin P

    2015-01-01

    The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. © The Author 2014. Published by Oxford University Press on behalf of the Mutagenesis Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. RNA transcriptional biosignature analysis for identifying febrile infants with serious bacterial infections in the emergency department: a feasibility study.

    PubMed

    Mahajan, Prashant; Kuppermann, Nathan; Suarez, Nicolas; Mejias, Asuncion; Casper, Charlie; Dean, J Michael; Ramilo, Octavio

    2015-01-01

    To develop the infrastructure and demonstrate the feasibility of conducting microarray-based RNA transcriptional profile analyses for the diagnosis of serious bacterial infections in febrile infants 60 days and younger in a multicenter pediatric emergency research network. We designed a prospective multicenter cohort study with the aim of enrolling more than 4000 febrile infants 60 days and younger. To ensure success of conducting complex genomic studies in emergency department (ED) settings, we established an infrastructure within the Pediatric Emergency Care Applied Research Network, including 21 sites, to evaluate RNA transcriptional profiles in young febrile infants. We developed a comprehensive manual of operations and trained site investigators to obtain and process blood samples for RNA extraction and genomic analyses. We created standard operating procedures for blood sample collection, processing, storage, shipping, and analyses. We planned to prospectively identify, enroll, and collect 1 mL blood samples for genomic analyses from eligible patients to identify logistical issues with study procedures. Finally, we planned to batch blood samples and determined RNA quantity and quality at the central microarray laboratory and organized data analysis with the Pediatric Emergency Care Applied Research Network data coordinating center. Below we report on establishment of the infrastructure and the feasibility success in the first year based on the enrollment of a limited number of patients. We successfully established the infrastructure at 21 EDs. Over the first 5 months we enrolled 79% (74 of 94) of eligible febrile infants. We were able to obtain and ship 1 mL of blood from 74% (55 of 74) of enrolled participants, with at least 1 sample per participating ED. The 55 samples were shipped and evaluated at the microarray laboratory, and 95% (52 of 55) of blood samples were of adequate quality and contained sufficient RNA for expression analysis. It is possible to create a robust infrastructure to conduct genomic studies in young febrile infants in the context of a multicenter pediatric ED research setting. The sufficient quantity and high quality of RNA obtained suggests that whole blood transcriptional profile analysis for the diagnostic evaluation of young febrile infants can be successfully performed in this setting.

  1. The Glycan Microarray Story from Construction to Applications.

    PubMed

    Hyun, Ji Young; Pai, Jaeyoung; Shin, Injae

    2017-04-18

    Not only are glycan-mediated binding processes in cells and organisms essential for a wide range of physiological processes, but they are also implicated in various pathological processes. As a result, elucidation of glycan-associated biomolecular interactions and their consequences is of great importance in basic biological research and biomedical applications. In 2002, we and others were the first to utilize glycan microarrays in efforts aimed at the rapid analysis of glycan-associated recognition events. Because they contain a number of glycans immobilized in a dense and orderly manner on a solid surface, glycan microarrays enable multiple parallel analyses of glycan-protein binding events while utilizing only small amounts of glycan samples. Therefore, this microarray technology has become a leading edge tool in studies aimed at elucidating roles played by glycans and glycan binding proteins in biological systems. In this Account, we summarize our efforts on the construction of glycan microarrays and their applications in studies of glycan-associated interactions. Immobilization strategies of functionalized and unmodified glycans on derivatized glass surfaces are described. Although others have developed immobilization techniques, our efforts have focused on improving the efficiencies and operational simplicity of microarray construction. The microarray-based technology has been most extensively used for rapid analysis of the glycan binding properties of proteins. In addition, glycan microarrays have been employed to determine glycan-protein interactions quantitatively, detect pathogens, and rapidly assess substrate specificities of carbohydrate-processing enzymes. More recently, the microarrays have been employed to identify functional glycans that elicit cell surface lectin-mediated cellular responses. Owing to these efforts, it is now possible to use glycan microarrays to expand the understanding of roles played by glycans and glycan binding proteins in biological systems.

  2. Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data

    PubMed Central

    Müller, Christian; Schillert, Arne; Röthemeier, Caroline; Trégouët, David-Alexandre; Proust, Carole; Binder, Harald; Pfeiffer, Norbert; Beutel, Manfred; Lackner, Karl J.; Schnabel, Renate B.; Tiret, Laurence; Wild, Philipp S.; Blankenberg, Stefan

    2016-01-01

    Technical variation plays an important role in microarray-based gene expression studies, and batch effects explain a large proportion of this noise. It is therefore mandatory to eliminate technical variation while maintaining biological variability. Several strategies have been proposed for the removal of batch effects, although they have not been evaluated in large-scale longitudinal gene expression data. In this study, we aimed at identifying a suitable method for batch effect removal in a large study of microarray-based longitudinal gene expression. Monocytic gene expression was measured in 1092 participants of the Gutenberg Health Study at baseline and 5-year follow up. Replicates of selected samples were measured at both time points to identify technical variability. Deming regression, Passing-Bablok regression, linear mixed models, non-linear models as well as ReplicateRUV and ComBat were applied to eliminate batch effects between replicates. In a second step, quantile normalization prior to batch effect correction was performed for each method. Technical variation between batches was evaluated by principal component analysis. Associations between body mass index and transcriptomes were calculated before and after batch removal. Results from association analyses were compared to evaluate maintenance of biological variability. Quantile normalization, separately performed in each batch, combined with ComBat successfully reduced batch effects and maintained biological variability. ReplicateRUV performed perfectly in the replicate data subset of the study, but failed when applied to all samples. All other methods did not substantially reduce batch effects in the replicate data subset. Quantile normalization plus ComBat appears to be a valuable approach for batch correction in longitudinal gene expression data. PMID:27272489

  3. Plasma long noncoding RNA expression profile identified by microarray in patients with Crohn's disease.

    PubMed

    Chen, Dong; Liu, Jiang; Zhao, Hui-Ying; Chen, Yi-Peng; Xiang, Zun; Jin, Xi

    2016-05-21

    To investigate the expression pattern of plasma long noncoding RNAs (lncRNAs) in Chrohn's disease (CD) patients. Microarray screening and qRT-PCR verification of lncRNAs and mRNAs were performed in CD and control subjects, followed by hierarchy clustering, GO and KEGG pathway analyses. Significantly dysregulated lncRNAs were categorized into subgroups of antisense lncRNAs, enhancer lncRNAs and lincRNAs. To predict the regulatory effect of lncRNAs on mRNAs, a CNC network analysis was performed and cross linked with significantly changed lncRNAs. The overlapping lncRNAs were randomly selected and verified by qRT-PCR in a larger cohort. Initially, there were 1211 up-regulated and 777 down-regulated lncRNAs as well as 1020 up-regulated and 953 down-regulated mRNAs after microarray analysis; a heat map based on these results showed good categorization into the CD and control groups. GUSBP2 and AF113016 had the highest fold change of the up- and down-regulated lncRNAs, whereas TBC1D17 and CCL3L3 had the highest fold change of the up- and down-regulated mRNAs. Six (SNX1, CYFIP2, CD6, CMTM8, STAT4 and IGFBP7) of 10 mRNAs and 8 (NR_033913, NR_038218, NR_036512, NR_049759, NR_033951, NR_045408, NR_038377 and NR_039976) of 14 lncRNAs showed the same change trends on the microarray and qRT-PCR results with statistical significance. Based on the qRT-PCR verified mRNAs, 1358 potential lncRNAs with 2697 positive correlations and 2287 negative correlations were predicted by the CNC network. The plasma lncRNAs profiles provide preliminary data for the non-invasive diagnosis of CD and a resource for further specific lncRNA-mRNA pathway exploration.

  4. Evaluation of artificial time series microarray data for dynamic gene regulatory network inference.

    PubMed

    Xenitidis, P; Seimenis, I; Kakolyris, S; Adamopoulos, A

    2017-08-07

    High-throughput technology like microarrays is widely used in the inference of gene regulatory networks (GRNs). We focused on time series data since we are interested in the dynamics of GRNs and the identification of dynamic networks. We evaluated the amount of information that exists in artificial time series microarray data and the ability of an inference process to produce accurate models based on them. We used dynamic artificial gene regulatory networks in order to create artificial microarray data. Key features that characterize microarray data such as the time separation of directly triggered genes, the percentage of directly triggered genes and the triggering function type were altered in order to reveal the limits that are imposed by the nature of microarray data on the inference process. We examined the effect of various factors on the inference performance such as the network size, the presence of noise in microarray data, and the network sparseness. We used a system theory approach and examined the relationship between the pole placement of the inferred system and the inference performance. We examined the relationship between the inference performance in the time domain and the true system parameter identification. Simulation results indicated that time separation and the percentage of directly triggered genes are crucial factors. Also, network sparseness, the triggering function type and noise in input data affect the inference performance. When two factors were simultaneously varied, it was found that variation of one parameter significantly affects the dynamic response of the other. Crucial factors were also examined using a real GRN and acquired results confirmed simulation findings with artificial data. Different initial conditions were also used as an alternative triggering approach. Relevant results confirmed that the number of datasets constitutes the most significant parameter with regard to the inference performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. MiR-141-3p is upregulated in esophageal squamous cell carcinoma and targets pleckstrin homology domain leucine-rich repeat protein phosphatase-2, a negative regulator of the PI3K/AKT pathway.

    PubMed

    Ishibashi, Osamu; Akagi, Ichiro; Ogawa, Yota; Inui, Takashi

    2018-05-11

    The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is frequently activated in various human cancers and plays essential roles in their development and progression. Accumulating evidence suggests that dysregulated expression of microRNAs (miRNAs) is closely associated with cancer progression and metastasis. Here, we focused on miRNAs that could regulate genes related to the PI3K/AKT pathway in esophageal squamous cell carcinoma (ESCC). To identify upregulated miRNAs and their possible target genes in ESCC, we performed microarray-based integrative analyses of miRNA and mRNA expression levels in three human ESCC cell lines and a normal esophageal epithelial cell line. The miRNA microarray analysis revealed that miR-31-5p, miR-141-3p, miR-200b-3p, miR-200c-3p, and miR-205-5p were expressed at higher levels in the ESCC cell lines than the normal esophageal epithelial cell line. Bioinformatical analyses of mRNA microarray data identified several AKT/PI3K pathway-related genes as candidate targets of these miRNAs, which include tumor suppressors such as DNA-damage-inducible transcript 4 and pleckstrin homology domain leucine-rich repeat protein phosphatase-2 (PHLPP2). To validate the targets of relevant miRNAs experimentally, synthetic mimics of the miRNAs were transfected into the esophageal epithelial cell line. Here, we report that miR-141-3p suppress the expression of PHLPP2, a negative regulators of the AKT/PI3K pathway, as a target in ESCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Immune and inflammatory gene signature in rat cerebrum in subarachnoid hemorrhage with microarray analysis.

    PubMed

    Lee, Chu-I; Chou, An-Kuo; Lin, Ching-Chih; Chou, Chia-Hua; Loh, Joon-Khim; Lieu, Ann-Shung; Wang, Chih-Jen; Huang, Chi-Ying F; Howng, Shen-Long; Hong, Yi-Ren

    2012-01-01

    Cerebral vasospasm following subarachnoid hemorrhage (SAH) has been studied in terms of a contraction of the major cerebral arteries, but the effect of cerebrum tissue in SAH is not yet well understood. To gain insight into the biology of SAH-expressing cerebrum, we employed oligonucleotide microarrays to characterize the gene expression profiles of cerebrum tissue at the early stage of SAH. Functional gene expression in the cerebrum was analyzed 2 h following stage 1-hemorrhage in Sprague-Dawley rats. mRNA was investigated by performing microarray and quantitative real-time PCR analyses, and protein expression was determined by Western blot analysis. In this study, 18 upregulated and 18 downregulated genes displayed at least a 1.5-fold change. Five genes were verified by real-time PCR, including three upregulated genes [prostaglandin E synthase (PGES), CD14 antigen, and tissue inhibitor of metalloproteinase 1 (TIMP1)] as well as two downregulated genes [KRAB-zinc finger protein-2 (KZF-2) and γ-aminobutyric acid B receptor 1 (GABA B receptor)]. Notably, there were functional implications for the three upregulated genes involved in the inflammatory SAH process. However, the mechanisms leading to decreased KZF-2 and GABA B receptor expression in SAH have never been characterized. We conclude that oligonucleotide microarrays have the potential for use as a method to identify candidate genes associated with SAH and to provide novel investigational targets, including genes involved in the immune and inflammatory response. Furthermore, understanding the regulation of MMP9/TIMP1 during the early stages of SAH may elucidate the pathophysiological mechanisms in SAH rats.

  7. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor.

    PubMed

    Davis, Sean; Meltzer, Paul S

    2007-07-15

    Microarray technology has become a standard molecular biology tool. Experimental data have been generated on a huge number of organisms, tissue types, treatment conditions and disease states. The Gene Expression Omnibus (Barrett et al., 2005), developed by the National Center for Bioinformatics (NCBI) at the National Institutes of Health is a repository of nearly 140,000 gene expression experiments. The BioConductor project (Gentleman et al., 2004) is an open-source and open-development software project built in the R statistical programming environment (R Development core Team, 2005) for the analysis and comprehension of genomic data. The tools contained in the BioConductor project represent many state-of-the-art methods for the analysis of microarray and genomics data. We have developed a software tool that allows access to the wealth of information within GEO directly from BioConductor, eliminating many the formatting and parsing problems that have made such analyses labor-intensive in the past. The software, called GEOquery, effectively establishes a bridge between GEO and BioConductor. Easy access to GEO data from BioConductor will likely lead to new analyses of GEO data using novel and rigorous statistical and bioinformatic tools. Facilitating analyses and meta-analyses of microarray data will increase the efficiency with which biologically important conclusions can be drawn from published genomic data. GEOquery is available as part of the BioConductor project.

  8. Development of a Digital Microarray with Interferometric Reflectance Imaging

    NASA Astrophysics Data System (ADS)

    Sevenler, Derin

    This dissertation describes a new type of molecular assay for nucleic acids and proteins. We call this technique a digital microarray since it is conceptually similar to conventional fluorescence microarrays, yet it performs enumerative ('digital') counting of the number captured molecules. Digital microarrays are approximately 10,000-fold more sensitive than fluorescence microarrays, yet maintain all of the strengths of the platform including low cost and high multiplexing (i.e., many different tests on the same sample simultaneously). Digital microarrays use gold nanorods to label the captured target molecules. Each gold nanorod on the array is individually detected based on its light scattering, with an interferometric microscopy technique called SP-IRIS. Our optimized high-throughput version of SP-IRIS is able to scan a typical array of 500 spots in less than 10 minutes. Digital DNA microarrays may have utility in applications where sequencing is prohibitively expensive or slow. As an example, we describe a digital microarray assay for gene expression markers of bacterial drug resistance.

  9. Mining microarrays for metabolic meaning: nutritional regulation of hypothalamic gene expression.

    PubMed

    Mobbs, Charles V; Yen, Kelvin; Mastaitis, Jason; Nguyen, Ha; Watson, Elizabeth; Wurmbach, Elisa; Sealfon, Stuart C; Brooks, Andrew; Salton, Stephen R J

    2004-06-01

    DNA microarray analysis has been used to investigate relative changes in the level of gene expression in the CNS, including changes that are associated with disease, injury, psychiatric disorders, drug exposure or withdrawal, and memory formation. We have used oligonucleotide microarrays to identify hypothalamic genes that respond to nutritional manipulation. In addition to commonly used microarray analysis based on criteria such as fold-regulation, we have also found that simply carrying out multiple t tests then sorting by P value constitutes a highly reliable method to detect true regulation, as assessed by real-time polymerase chain reaction (PCR), even for relatively low abundance genes or relatively low magnitude of regulation. Such analyses directly suggested novel mechanisms that mediate effects of nutritional state on neuroendocrine function and are being used to identify regulated gene products that may elucidate the metabolic pathology of obese ob/ob, lean Vgf-/Vgf-, and other models with profound metabolic impairments.

  10. Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears.

    PubMed

    Rai, Muhammad Farooq; Tycksen, Eric D; Sandell, Linda J; Brophy, Robert H

    2018-01-01

    Microarrays and RNA-seq are at the forefront of high throughput transcriptome analyses. Since these methodologies are based on different principles, there are concerns about the concordance of data between the two techniques. The concordance of RNA-seq and microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed in clinically derived ligament tissues. To demonstrate the concordance between RNA-seq and microarrays and to assess potential benefits of RNA-seq over microarrays, we assessed differences in transcript expression in anterior cruciate ligament (ACL) tissues based on time-from-injury. ACL remnants were collected from patients with an ACL tear at the time of ACL reconstruction. RNA prepared from torn ACL remnants was subjected to Agilent microarrays (N = 24) and RNA-seq (N = 8). The correlation of biological replicates in RNA-seq and microarrays data was similar (0.98 vs. 0.97), demonstrating that each platform has high internal reproducibility. Correlations between the RNA-seq data and the individual microarrays were low, but correlations between the RNA-seq values and the geometric mean of the microarrays values were moderate. The cross-platform concordance for differentially expressed transcripts or enriched pathways was linearly correlated (r = 0.64). RNA-Seq was superior in detecting low abundance transcripts and differentiating biologically critical isoforms. Additional independent validation of transcript expression was undertaken using microfluidic PCR for selected genes. PCR data showed 100% concordance (in expression pattern) with RNA-seq and microarrays data. These findings demonstrate that RNA-seq has advantages over microarrays for transcriptome profiling of ligament tissues when available and affordable. Furthermore, these findings are likely transferable to other musculoskeletal tissues where tissue collection is challenging and cells are in low abundance. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:484-497, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes

    PubMed Central

    Seo, Minseok; Shin, Su-kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung

    2016-01-01

    Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of data from experimental microarrays and simulation studies, the proposed model-based approach was shown to provide a more powerful result than the naïve approach and the hierarchical approach. Since our approach is model-based, it is very flexible and can easily handle different types of covariates. PMID:26964035

  12. An efficient method to identify differentially expressed genes in microarray experiments

    PubMed Central

    Qin, Huaizhen; Feng, Tao; Harding, Scott A.; Tsai, Chung-Jui; Zhang, Shuanglin

    2013-01-01

    Motivation Microarray experiments typically analyze thousands to tens of thousands of genes from small numbers of biological replicates. The fact that genes are normally expressed in functionally relevant patterns suggests that gene-expression data can be stratified and clustered into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible to improve screening power while minimizing information loss. Results We propose a powerful and computationally simple method for finding differentially expressed genes in small microarray experiments. The method incorporates a novel stratification-based tight clustering algorithm, principal component analysis and information pooling. Comprehensive simulations show that our method is substantially more powerful than the popular SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method proved more robust than the popular alternatives for identification of differentially expressed genes. Availability The C++ code to implement the proposed method is available upon request for academic use. PMID:18453554

  13. Investigating the Genome Diversity of B. cereus and Evolutionary Aspects of B. anthracis Emergence

    PubMed Central

    Papazisi, Leka; Rasko, David A.; Ratnayake, Shashikala; Bock, Geoff R.; Remortel, Brian G.; Appalla, Lakshmi; Liu, Jia; Dracheva, Tatiana; Braisted, John C.; Shallom, Shamira; Jarrahi, Benham; Snesrud, Erik; Ahn, Susie; Sun, Qiang; Rilstone, Jenifer; Økstad, Ole Andreas; Kolstø, Anne-Brit; Fleischmann, Robert D.; Peterson, Scott N.

    2011-01-01

    Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of B. anthracis the causative agent of anthrax–a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a “species” DNA microarray. Comparative genomic hybridization analyses of 41 strains indicates that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represent a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall a shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence. PMID:21447378

  14. Automatic Identification and Quantification of Extra-Well Fluorescence in Microarray Images.

    PubMed

    Rivera, Robert; Wang, Jie; Yu, Xiaobo; Demirkan, Gokhan; Hopper, Marika; Bian, Xiaofang; Tahsin, Tasnia; Magee, D Mitchell; Qiu, Ji; LaBaer, Joshua; Wallstrom, Garrick

    2017-11-03

    In recent studies involving NAPPA microarrays, extra-well fluorescence is used as a key measure for identifying disease biomarkers because there is evidence to support that it is better correlated with strong antibody responses than statistical analysis involving intraspot intensity. Because this feature is not well quantified by traditional image analysis software, identification and quantification of extra-well fluorescence is performed manually, which is both time-consuming and highly susceptible to variation between raters. A system that could automate this task efficiently and effectively would greatly improve the process of data acquisition in microarray studies, thereby accelerating the discovery of disease biomarkers. In this study, we experimented with different machine learning methods, as well as novel heuristics, for identifying spots exhibiting extra-well fluorescence (rings) in microarray images and assigning each ring a grade of 1-5 based on its intensity and morphology. The sensitivity of our final system for identifying rings was found to be 72% at 99% specificity and 98% at 92% specificity. Our system performs this task significantly faster than a human, while maintaining high performance, and therefore represents a valuable tool for microarray image analysis.

  15. Robust gene selection methods using weighting schemes for microarray data analysis.

    PubMed

    Kang, Suyeon; Song, Jongwoo

    2017-09-02

    A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

  16. MiMiR – an integrated platform for microarray data sharing, mining and analysis

    PubMed Central

    Tomlinson, Chris; Thimma, Manjula; Alexandrakis, Stelios; Castillo, Tito; Dennis, Jayne L; Brooks, Anthony; Bradley, Thomas; Turnbull, Carly; Blaveri, Ekaterini; Barton, Geraint; Chiba, Norie; Maratou, Klio; Soutter, Pat; Aitman, Tim; Game, Laurence

    2008-01-01

    Background Despite considerable efforts within the microarray community for standardising data format, content and description, microarray technologies present major challenges in managing, sharing, analysing and re-using the large amount of data generated locally or internationally. Additionally, it is recognised that inconsistent and low quality experimental annotation in public data repositories significantly compromises the re-use of microarray data for meta-analysis. MiMiR, the Microarray data Mining Resource was designed to tackle some of these limitations and challenges. Here we present new software components and enhancements to the original infrastructure that increase accessibility, utility and opportunities for large scale mining of experimental and clinical data. Results A user friendly Online Annotation Tool allows researchers to submit detailed experimental information via the web at the time of data generation rather than at the time of publication. This ensures the easy access and high accuracy of meta-data collected. Experiments are programmatically built in the MiMiR database from the submitted information and details are systematically curated and further annotated by a team of trained annotators using a new Curation and Annotation Tool. Clinical information can be annotated and coded with a clinical Data Mapping Tool within an appropriate ethical framework. Users can visualise experimental annotation, assess data quality, download and share data via a web-based experiment browser called MiMiR Online. All requests to access data in MiMiR are routed through a sophisticated middleware security layer thereby allowing secure data access and sharing amongst MiMiR registered users prior to publication. Data in MiMiR can be mined and analysed using the integrated EMAAS open source analysis web portal or via export of data and meta-data into Rosetta Resolver data analysis package. Conclusion The new MiMiR suite of software enables systematic and effective capture of extensive experimental and clinical information with the highest MIAME score, and secure data sharing prior to publication. MiMiR currently contains more than 150 experiments corresponding to over 3000 hybridisations and supports the Microarray Centre's large microarray user community and two international consortia. The MiMiR flexible and scalable hardware and software architecture enables secure warehousing of thousands of datasets, including clinical studies, from microarray and potentially other -omics technologies. PMID:18801157

  17. MiMiR--an integrated platform for microarray data sharing, mining and analysis.

    PubMed

    Tomlinson, Chris; Thimma, Manjula; Alexandrakis, Stelios; Castillo, Tito; Dennis, Jayne L; Brooks, Anthony; Bradley, Thomas; Turnbull, Carly; Blaveri, Ekaterini; Barton, Geraint; Chiba, Norie; Maratou, Klio; Soutter, Pat; Aitman, Tim; Game, Laurence

    2008-09-18

    Despite considerable efforts within the microarray community for standardising data format, content and description, microarray technologies present major challenges in managing, sharing, analysing and re-using the large amount of data generated locally or internationally. Additionally, it is recognised that inconsistent and low quality experimental annotation in public data repositories significantly compromises the re-use of microarray data for meta-analysis. MiMiR, the Microarray data Mining Resource was designed to tackle some of these limitations and challenges. Here we present new software components and enhancements to the original infrastructure that increase accessibility, utility and opportunities for large scale mining of experimental and clinical data. A user friendly Online Annotation Tool allows researchers to submit detailed experimental information via the web at the time of data generation rather than at the time of publication. This ensures the easy access and high accuracy of meta-data collected. Experiments are programmatically built in the MiMiR database from the submitted information and details are systematically curated and further annotated by a team of trained annotators using a new Curation and Annotation Tool. Clinical information can be annotated and coded with a clinical Data Mapping Tool within an appropriate ethical framework. Users can visualise experimental annotation, assess data quality, download and share data via a web-based experiment browser called MiMiR Online. All requests to access data in MiMiR are routed through a sophisticated middleware security layer thereby allowing secure data access and sharing amongst MiMiR registered users prior to publication. Data in MiMiR can be mined and analysed using the integrated EMAAS open source analysis web portal or via export of data and meta-data into Rosetta Resolver data analysis package. The new MiMiR suite of software enables systematic and effective capture of extensive experimental and clinical information with the highest MIAME score, and secure data sharing prior to publication. MiMiR currently contains more than 150 experiments corresponding to over 3000 hybridisations and supports the Microarray Centre's large microarray user community and two international consortia. The MiMiR flexible and scalable hardware and software architecture enables secure warehousing of thousands of datasets, including clinical studies, from microarray and potentially other -omics technologies.

  18. Determination of Minimum Training Sample Size for Microarray-Based Cancer Outcome Prediction–An Empirical Assessment

    PubMed Central

    Cheng, Ningtao; Wu, Leihong; Cheng, Yiyu

    2013-01-01

    The promise of microarray technology in providing prediction classifiers for cancer outcome estimation has been confirmed by a number of demonstrable successes. However, the reliability of prediction results relies heavily on the accuracy of statistical parameters involved in classifiers. It cannot be reliably estimated with only a small number of training samples. Therefore, it is of vital importance to determine the minimum number of training samples and to ensure the clinical value of microarrays in cancer outcome prediction. We evaluated the impact of training sample size on model performance extensively based on 3 large-scale cancer microarray datasets provided by the second phase of MicroArray Quality Control project (MAQC-II). An SSNR-based (scale of signal-to-noise ratio) protocol was proposed in this study for minimum training sample size determination. External validation results based on another 3 cancer datasets confirmed that the SSNR-based approach could not only determine the minimum number of training samples efficiently, but also provide a valuable strategy for estimating the underlying performance of classifiers in advance. Once translated into clinical routine applications, the SSNR-based protocol would provide great convenience in microarray-based cancer outcome prediction in improving classifier reliability. PMID:23861920

  19. Support vector machine and principal component analysis for microarray data classification

    NASA Astrophysics Data System (ADS)

    Astuti, Widi; Adiwijaya

    2018-03-01

    Cancer is a leading cause of death worldwide although a significant proportion of it can be cured if it is detected early. In recent decades, technology called microarray takes an important role in the diagnosis of cancer. By using data mining technique, microarray data classification can be performed to improve the accuracy of cancer diagnosis compared to traditional techniques. The characteristic of microarray data is small sample but it has huge dimension. Since that, there is a challenge for researcher to provide solutions for microarray data classification with high performance in both accuracy and running time. This research proposed the usage of Principal Component Analysis (PCA) as a dimension reduction method along with Support Vector Method (SVM) optimized by kernel functions as a classifier for microarray data classification. The proposed scheme was applied on seven data sets using 5-fold cross validation and then evaluation and analysis conducted on term of both accuracy and running time. The result showed that the scheme can obtained 100% accuracy for Ovarian and Lung Cancer data when Linear and Cubic kernel functions are used. In term of running time, PCA greatly reduced the running time for every data sets.

  20. Design and evaluation of Actichip, a thematic microarray for the study of the actin cytoskeleton

    PubMed Central

    Muller, Jean; Mehlen, André; Vetter, Guillaume; Yatskou, Mikalai; Muller, Arnaud; Chalmel, Frédéric; Poch, Olivier; Friederich, Evelyne; Vallar, Laurent

    2007-01-01

    Background The actin cytoskeleton plays a crucial role in supporting and regulating numerous cellular processes. Mutations or alterations in the expression levels affecting the actin cytoskeleton system or related regulatory mechanisms are often associated with complex diseases such as cancer. Understanding how qualitative or quantitative changes in expression of the set of actin cytoskeleton genes are integrated to control actin dynamics and organisation is currently a challenge and should provide insights in identifying potential targets for drug discovery. Here we report the development of a dedicated microarray, the Actichip, containing 60-mer oligonucleotide probes for 327 genes selected for transcriptome analysis of the human actin cytoskeleton. Results Genomic data and sequence analysis features were retrieved from GenBank and stored in an integrative database called Actinome. From these data, probes were designed using a home-made program (CADO4MI) allowing sequence refinement and improved probe specificity by combining the complementary information recovered from the UniGene and RefSeq databases. Actichip performance was analysed by hybridisation with RNAs extracted from epithelial MCF-7 cells and human skeletal muscle. Using thoroughly standardised procedures, we obtained microarray images with excellent quality resulting in high data reproducibility. Actichip displayed a large dynamic range extending over three logs with a limit of sensitivity between one and ten copies of transcript per cell. The array allowed accurate detection of small changes in gene expression and reliable classification of samples based on the expression profiles of tissue-specific genes. When compared to two other oligonucleotide microarray platforms, Actichip showed similar sensitivity and concordant expression ratios. Moreover, Actichip was able to discriminate the highly similar actin isoforms whereas the two other platforms did not. Conclusion Our data demonstrate that Actichip is a powerful alternative to commercial high density microarrays for cytoskeleton gene profiling in normal or pathological samples. Actichip is available upon request. PMID:17727702

  1. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.

    PubMed

    Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K

    2010-11-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. ALTERATIONS IN THE DEVELOPING TESTIS TRANSCRIPTOME FOLLOWING EMBRYONIC VINCLOZOLIN EXPOSURE

    PubMed Central

    Clement, Tracy M.; Savenkova, Marina I.; Settles, Matthew; Anway, Matthew D.; Skinner, Michael K.

    2010-01-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic day 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. PMID:20566332

  3. Microarray Technology for the Diagnosis of Fetal Chromosomal Aberrations: Which Platform Should We Use?

    PubMed Central

    Karampetsou, Evangelia; Morrogh, Deborah; Chitty, Lyn

    2014-01-01

    The advantage of microarray (array) over conventional karyotype for the diagnosis of fetal pathogenic chromosomal anomalies has prompted the use of microarrays in prenatal diagnostics. In this review we compare the performance of different array platforms (BAC, oligonucleotide CGH, SNP) and designs (targeted, whole genome, whole genome, and targeted, custom) and discuss their advantages and disadvantages in relation to prenatal testing. We also discuss the factors to consider when implementing a microarray testing service for the diagnosis of fetal chromosomal aberrations. PMID:26237396

  4. Tissue microarrays and quantitative tissue-based image analysis as a tool for oncology biomarker and diagnostic development.

    PubMed

    Dolled-Filhart, Marisa P; Gustavson, Mark D

    2012-11-01

    Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.

  5. Direct labeling of serum proteins by fluorescent dye for antibody microarray.

    PubMed

    Klimushina, M V; Gumanova, N G; Metelskaya, V A

    2017-05-06

    Analysis of serum proteome by antibody microarray is used to identify novel biomarkers and to study signaling pathways including protein phosphorylation and protein-protein interactions. Labeling of serum proteins is important for optimal performance of the antibody microarray. Proper choice of fluorescent label and optimal concentration of protein loaded on the microarray ensure good quality of imaging that can be reliably scanned and processed by the software. We have optimized direct serum protein labeling using fluorescent dye Arrayit Green 540 (Arrayit Corporation, USA) for antibody microarray. Optimized procedure produces high quality images that can be readily scanned and used for statistical analysis of protein composition of the serum. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Self-directed student research through analysis of microarray datasets: a computer-based functional genomics practical class for masters-level students.

    PubMed

    Grenville-Briggs, Laura J; Stansfield, Ian

    2011-01-01

    This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate active learning through experience of current research methods in bioinformatics and functional genomics. They seek to closely mimic a realistic research environment, and require the students first to propose research hypotheses, then test those hypotheses using specific sections of the microarray dataset. The complexity of the microarray data provides students with the freedom to propose their own unique hypotheses, tested using appropriate sections of the microarray data. This research latitude was highly regarded by students and is a strength of this practical. In addition, the focus on DNA damage by radiation and mutagenic chemicals allows them to place their results in a human medical context, and successfully sparks broad interest in the subject material. In evaluation, 79% of students scored the practical workshops on a five-point scale as 4 or 5 (totally effective) for student learning. More broadly, the general use of microarray data as a "student research playground" is also discussed. Copyright © 2011 Wiley Periodicals, Inc.

  7. Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing

    PubMed Central

    Kesherwani, Varun; Shahshahan, Hamid R.

    2017-01-01

    Although diabetes mellitus (DM) causes cardiomyopathy and exacerbates heart failure, the underlying molecular mechanisms for diabetic cardiomyopathy/heart failure are poorly understood. Insulin2 mutant (Ins2+/-) Akita is a mouse model of T1DM, which manifests cardiac dysfunction. However, molecular changes at cardiac transcriptome level that lead to cardiomyopathy remain unclear. To understand the molecular changes in the heart of diabetic Akita mice, we profiled cardiac transcriptome of Ins2+/- Akita and Ins2+/+ control mice using next generation sequencing (NGS) and microarray, and determined the implications of differentially expressed genes on various heart failure signaling pathways using Ingenuity pathway (IPA) analysis. First, we validated hyperglycemia, increased cardiac fibrosis, and cardiac dysfunction in twelve-week male diabetic Akita. Then, we analyzed the transcriptome levels in the heart. NGS analyses on Akita heart revealed 137 differentially expressed transcripts, where Bone Morphogenic Protein-10 (BMP10) was the most upregulated and hairy and enhancer of split-related (HELT) was the most downregulated gene. Moreover, twelve long non-coding RNAs (lncRNAs) were upregulated. The microarray analyses on Akita heart showed 351 differentially expressed transcripts, where vomeronasal-1 receptor-180 (Vmn1r180) was the most upregulated and WD Repeat Domain 83 Opposite Strand (WDR83OS) was the most downregulated gene. Further, miR-101c and H19 lncRNA were upregulated but Neat1 lncRNA was downregulated in Akita heart. Eleven common genes were upregulated in Akita heart in both NGS and microarray analyses. IPA analyses revealed the role of these differentially expressed genes in key signaling pathways involved in diabetic cardiomyopathy. Our results provide a platform to initiate focused future studies by targeting these genes and/or non-coding RNAs, which are differentially expressed in Akita hearts and are involved in diabetic cardiomyopathy. PMID:28837672

  8. Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray

    PubMed Central

    Ramirez, Lisa S.; Wang, Jun

    2016-01-01

    Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications. PMID:26780370

  9. Estimation of gene induction enables a relevance-based ranking of gene sets.

    PubMed

    Bartholomé, Kilian; Kreutz, Clemens; Timmer, Jens

    2009-07-01

    In order to handle and interpret the vast amounts of data produced by microarray experiments, the analysis of sets of genes with a common biological functionality has been shown to be advantageous compared to single gene analyses. Some statistical methods have been proposed to analyse the differential gene expression of gene sets in microarray experiments. However, most of these methods either require threshhold values to be chosen for the analysis, or they need some reference set for the determination of significance. We present a method that estimates the number of differentially expressed genes in a gene set without requiring a threshold value for significance of genes. The method is self-contained (i.e., it does not require a reference set for comparison). In contrast to other methods which are focused on significance, our approach emphasizes the relevance of the regulation of gene sets. The presented method measures the degree of regulation of a gene set and is a useful tool to compare the induction of different gene sets and place the results of microarray experiments into the biological context. An R-package is available.

  10. Separate-channel analysis of two-channel microarrays: recovering inter-spot information.

    PubMed

    Smyth, Gordon K; Altman, Naomi S

    2013-05-26

    Two-channel (or two-color) microarrays are cost-effective platforms for comparative analysis of gene expression. They are traditionally analysed in terms of the log-ratios (M-values) of the two channel intensities at each spot, but this analysis does not use all the information available in the separate channel observations. Mixed models have been proposed to analyse intensities from the two channels as separate observations, but such models can be complex to use and the gain in efficiency over the log-ratio analysis is difficult to quantify. Mixed models yield test statistics for the null distributions can be specified only approximately, and some approaches do not borrow strength between genes. This article reformulates the mixed model to clarify the relationship with the traditional log-ratio analysis, to facilitate information borrowing between genes, and to obtain an exact distributional theory for the resulting test statistics. The mixed model is transformed to operate on the M-values and A-values (average log-expression for each spot) instead of on the log-expression values. The log-ratio analysis is shown to ignore information contained in the A-values. The relative efficiency of the log-ratio analysis is shown to depend on the size of the intraspot correlation. A new separate channel analysis method is proposed that assumes a constant intra-spot correlation coefficient across all genes. This approach permits the mixed model to be transformed into an ordinary linear model, allowing the data analysis to use a well-understood empirical Bayes analysis pipeline for linear modeling of microarray data. This yields statistically powerful test statistics that have an exact distributional theory. The log-ratio, mixed model and common correlation methods are compared using three case studies. The results show that separate channel analyses that borrow strength between genes are more powerful than log-ratio analyses. The common correlation analysis is the most powerful of all. The common correlation method proposed in this article for separate-channel analysis of two-channel microarray data is no more difficult to apply in practice than the traditional log-ratio analysis. It provides an intuitive and powerful means to conduct analyses and make comparisons that might otherwise not be possible.

  11. Microarray analysis of gene expression profiles in ripening pineapple fruits.

    PubMed

    Koia, Jonni H; Moyle, Richard L; Botella, Jose R

    2012-12-18

    Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general.

  12. Microarray analysis of gene expression profiles in ripening pineapple fruits

    PubMed Central

    2012-01-01

    Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general. PMID:23245313

  13. Development of a Schistosoma mansoni shotgun O-glycan microarray and application to the discovery of new antigenic schistosome glycan motifs.

    PubMed

    van Diepen, Angela; van der Plas, Arend-Jan; Kozak, Radoslaw P; Royle, Louise; Dunne, David W; Hokke, Cornelis H

    2015-06-01

    Upon infection with Schistosoma, antibody responses are mounted that are largely directed against glycans. Over the last few years significant progress has been made in characterising the antigenic properties of N-glycans of Schistosoma mansoni. Despite also being abundantly expressed by schistosomes, much less is understood about O-glycans and antibody responses to these have not yet been systematically analysed. Antibody binding to schistosome glycans can be analysed efficiently and quantitatively using glycan microarrays, but O-glycan array construction and exploration is lagging behind because no universal O-glycanase is available, and release of O-glycans has been dependent on chemical methods. Recently, a modified hydrazinolysis method has been developed that allows the release of O-glycans with free reducing termini and limited degradation, and we applied this method to obtain O-glycans from different S. mansoni life stages. Two-dimensional HPLC separation of 2-aminobenzoic acid-labelled O-glycans generated 362 O-glycan-containing fractions that were printed on an epoxide-modified glass slide, thereby generating the first shotgun O-glycan microarray containing naturally occurring schistosome O-glycans. Monoclonal antibodies and mass spectrometry showed that the O-glycan microarray contains well-known antigenic glycan motifs as well as numerous other, potentially novel, antibody targets. Incubations of the microarrays with sera from Schistosoma-infected humans showed substantial antibody responses to O-glycans in addition to those observed to the previously investigated N- and glycosphingolipid glycans. This underlines the importance of the inclusion of these often schistosome-specific O-glycans in glycan antigen studies and indicates that O-glycans contain novel antigenic motifs that have potential for use in diagnostic methods and studies aiming at the discovery of vaccine targets. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. CrossQuery: a web tool for easy associative querying of transcriptome data.

    PubMed

    Wagner, Toni U; Fischer, Andreas; Thoma, Eva C; Schartl, Manfred

    2011-01-01

    Enormous amounts of data are being generated by modern methods such as transcriptome or exome sequencing and microarray profiling. Primary analyses such as quality control, normalization, statistics and mapping are highly complex and need to be performed by specialists. Thereafter, results are handed back to biomedical researchers, who are then confronted with complicated data lists. For rather simple tasks like data filtering, sorting and cross-association there is a need for new tools which can be used by non-specialists. Here, we describe CrossQuery, a web tool that enables straight forward, simple syntax queries to be executed on transcriptome sequencing and microarray datasets. We provide deep-sequencing data sets of stem cell lines derived from the model fish Medaka and microarray data of human endothelial cells. In the example datasets provided, mRNA expression levels, gene, transcript and sample identification numbers, GO-terms and gene descriptions can be freely correlated, filtered and sorted. Queries can be saved for later reuse and results can be exported to standard formats that allow copy-and-paste to all widespread data visualization tools such as Microsoft Excel. CrossQuery enables researchers to quickly and freely work with transcriptome and microarray data sets requiring only minimal computer skills. Furthermore, CrossQuery allows growing association of multiple datasets as long as at least one common point of correlated information, such as transcript identification numbers or GO-terms, is shared between samples. For advanced users, the object-oriented plug-in and event-driven code design of both server-side and client-side scripts allow easy addition of new features, data sources and data types.

  15. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling.

    PubMed

    Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A

    2010-05-01

    Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.

  16. Functional comparison of microarray data across multiple platforms using the method of percentage of overlapping functions.

    PubMed

    Li, Zhiguang; Kwekel, Joshua C; Chen, Tao

    2012-01-01

    Functional comparison across microarray platforms is used to assess the comparability or similarity of the biological relevance associated with the gene expression data generated by multiple microarray platforms. Comparisons at the functional level are very important considering that the ultimate purpose of microarray technology is to determine the biological meaning behind the gene expression changes under a specific condition, not just to generate a list of genes. Herein, we present a method named percentage of overlapping functions (POF) and illustrate how it is used to perform the functional comparison of microarray data generated across multiple platforms. This method facilitates the determination of functional differences or similarities in microarray data generated from multiple array platforms across all the functions that are presented on these platforms. This method can also be used to compare the functional differences or similarities between experiments, projects, or laboratories.

  17. Employing image processing techniques for cancer detection using microarray images.

    PubMed

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A meta-data based method for DNA microarray imputation.

    PubMed

    Jörnsten, Rebecka; Ouyang, Ming; Wang, Hui-Yu

    2007-03-29

    DNA microarray experiments are conducted in logical sets, such as time course profiling after a treatment is applied to the samples, or comparisons of the samples under two or more conditions. Due to cost and design constraints of spotted cDNA microarray experiments, each logical set commonly includes only a small number of replicates per condition. Despite the vast improvement of the microarray technology in recent years, missing values are prevalent. Intuitively, imputation of missing values is best done using many replicates within the same logical set. In practice, there are few replicates and thus reliable imputation within logical sets is difficult. However, it is in the case of few replicates that the presence of missing values, and how they are imputed, can have the most profound impact on the outcome of downstream analyses (e.g. significance analysis and clustering). This study explores the feasibility of imputation across logical sets, using the vast amount of publicly available microarray data to improve imputation reliability in the small sample size setting. We download all cDNA microarray data of Saccharomyces cerevisiae, Arabidopsis thaliana, and Caenorhabditis elegans from the Stanford Microarray Database. Through cross-validation and simulation, we find that, for all three species, our proposed imputation using data from public databases is far superior to imputation within a logical set, sometimes to an astonishing degree. Furthermore, the imputation root mean square error for significant genes is generally a lot less than that of non-significant ones. Since downstream analysis of significant genes, such as clustering and network analysis, can be very sensitive to small perturbations of estimated gene effects, it is highly recommended that researchers apply reliable data imputation prior to further analysis. Our method can also be applied to cDNA microarray experiments from other species, provided good reference data are available.

  19. The Diagnostic Yield of Array Comparative Genomic Hybridization Is High Regardless of Severity of Intellectual Disability/Developmental Delay in Children.

    PubMed

    D'Arrigo, Stefano; Gavazzi, Francesco; Alfei, Enrico; Zuffardi, Orsetta; Montomoli, Cristina; Corso, Barbara; Buzzi, Erika; Sciacca, Francesca L; Bulgheroni, Sara; Riva, Daria; Pantaleoni, Chiara

    2016-05-01

    Microarray-based comparative genomic hybridization is a method of molecular analysis that identifies chromosomal anomalies (or copy number variants) that correlate with clinical phenotypes. The aim of the present study was to apply a clinical score previously designated by de Vries to 329 patients with intellectual disability/developmental disorder (intellectual disability/developmental delay) referred to our tertiary center and to see whether the clinical factors are associated with a positive outcome of aCGH analyses. Another goal was to test the association between a positive microarray-based comparative genomic hybridization result and the severity of intellectual disability/developmental delay. Microarray-based comparative genomic hybridization identified structural chromosomal alterations responsible for the intellectual disability/developmental delay phenotype in 16% of our sample. Our study showed that causative copy number variants are frequently found even in cases of mild intellectual disability (30.77%). We want to emphasize the need to conduct microarray-based comparative genomic hybridization on all individuals with intellectual disability/developmental delay, regardless of the severity, because the degree of intellectual disability/developmental delay does not predict the diagnostic yield of microarray-based comparative genomic hybridization. © The Author(s) 2015.

  20. Contact printing of protein microarrays.

    PubMed

    Austin, John; Holway, Antonia H

    2011-01-01

    A review is provided of contact-printing technologies for the fabrication of planar protein microarrays. The key printing performance parameters for creating protein arrays are reviewed. Solid pin and quill pin technologies are described and their strengths and weaknesses compared.

  1. [Research progress of probe design software of oligonucleotide microarrays].

    PubMed

    Chen, Xi; Wu, Zaoquan; Liu, Zhengchun

    2014-02-01

    DNA microarray has become an essential medical genetic diagnostic tool for its high-throughput, miniaturization and automation. The design and selection of oligonucleotide probes are critical for preparing gene chips with high quality. Several sets of probe design software have been developed and are available to perform this work now. Every set of the software aims to different target sequences and shows different advantages and limitations. In this article, the research and development of these sets of software are reviewed in line with three main criteria, including specificity, sensitivity and melting temperature (Tm). In addition, based on the experimental results from literatures, these sets of software are classified according to their applications. This review will be helpful for users to choose an appropriate probe-design software. It will also reduce the costs of microarrays, improve the application efficiency of microarrays, and promote both the research and development (R&D) and commercialization of high-performance probe design software.

  2. Genotyping microarray: Mutation screening in Spanish families with autosomal dominant retinitis pigmentosa

    PubMed Central

    García-Hoyos, María; Cortón, Marta; Ávila-Fernández, Almudena; Riveiro-Álvarez, Rosa; Giménez, Ascensión; Hernan, Inma; Carballo, Miguel; Ayuso, Carmen

    2012-01-01

    Purpose Presently, 22 genes have been described in association with autosomal dominant retinitis pigmentosa (adRP); however, they explain only 50% of all cases, making genetic diagnosis of this disease difficult and costly. The aim of this study was to evaluate a specific genotyping microarray for its application to the molecular diagnosis of adRP in Spanish patients. Methods We analyzed 139 unrelated Spanish families with adRP. Samples were studied by using a genotyping microarray (adRP). All mutations found were further confirmed with automatic sequencing. Rhodopsin (RHO) sequencing was performed in all negative samples for the genotyping microarray. Results The adRP genotyping microarray detected the mutation associated with the disease in 20 of the 139 families with adRP. As in other populations, RHO was found to be the most frequently mutated gene in these families (7.9% of the microarray genotyped families). The rate of false positives (microarray results not confirmed with sequencing) and false negatives (mutations in RHO detected with sequencing but not with the genotyping microarray) were established, and high levels of analytical sensitivity (95%) and specificity (100%) were found. Diagnostic accuracy was 15.1%. Conclusions The adRP genotyping microarray is a quick, cost-efficient first step in the molecular diagnosis of Spanish patients with adRP. PMID:22736939

  3. A proposed metric for assessing the measurement quality of individual microarrays

    PubMed Central

    Kim, Kyoungmi; Page, Grier P; Beasley, T Mark; Barnes, Stephen; Scheirer, Katherine E; Allison, David B

    2006-01-01

    Background High-density microarray technology is increasingly applied to study gene expression levels on a large scale. Microarray experiments rely on several critical steps that may introduce error and uncertainty in analyses. These steps include mRNA sample extraction, amplification and labeling, hybridization, and scanning. In some cases this may be manifested as systematic spatial variation on the surface of microarray in which expression measurements within an individual array may vary as a function of geographic position on the array surface. Results We hypothesized that an index of the degree of spatiality of gene expression measurements associated with their physical geographic locations on an array could indicate the summary of the physical reliability of the microarray. We introduced a novel way to formulate this index using a statistical analysis tool. Our approach regressed gene expression intensity measurements on a polynomial response surface of the microarray's Cartesian coordinates. We demonstrated this method using a fixed model and presented results from real and simulated datasets. Conclusion We demonstrated the potential of such a quantitative metric for assessing the reliability of individual arrays. Moreover, we showed that this procedure can be incorporated into laboratory practice as a means to set quality control specifications and as a tool to determine whether an array has sufficient quality to be retained in terms of spatial correlation of gene expression measurements. PMID:16430768

  4. Microarray-integrated optoelectrofluidic immunoassay system

    PubMed Central

    Han, Dongsik

    2016-01-01

    A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection. PMID:27190571

  5. Microarray-integrated optoelectrofluidic immunoassay system.

    PubMed

    Han, Dongsik; Park, Je-Kyun

    2016-05-01

    A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection.

  6. Use of principal components analysis and protein microarray to explore the association of HIV-1-specific IgG responses with disease progression.

    PubMed

    Gerns Storey, Helen L; Richardson, Barbra A; Singa, Benson; Naulikha, Jackie; Prindle, Vivian C; Diaz-Ochoa, Vladimir E; Felgner, Phil L; Camerini, David; Horton, Helen; John-Stewart, Grace; Walson, Judd L

    2014-01-01

    The role of HIV-1-specific antibody responses in HIV disease progression is complex and would benefit from analysis techniques that examine clusterings of responses. Protein microarray platforms facilitate the simultaneous evaluation of numerous protein-specific antibody responses, though excessive data are cumbersome in analyses. Principal components analysis (PCA) reduces data dimensionality by generating fewer composite variables that maximally account for variance in a dataset. To identify clusters of antibody responses involved in disease control, we investigated the association of HIV-1-specific antibody responses by protein microarray, and assessed their association with disease progression using PCA in a nested cohort design. Associations observed among collections of antibody responses paralleled protein-specific responses. At baseline, greater antibody responses to the transmembrane glycoprotein (TM) and reverse transcriptase (RT) were associated with higher viral loads, while responses to the surface glycoprotein (SU), capsid (CA), matrix (MA), and integrase (IN) proteins were associated with lower viral loads. Over 12 months greater antibody responses were associated with smaller decreases in CD4 count (CA, MA, IN), and reduced likelihood of disease progression (CA, IN). PCA and protein microarray analyses highlighted a collection of HIV-specific antibody responses that together were associated with reduced disease progression, and may not have been identified by examining individual antibody responses. This technique may be useful to explore multifaceted host-disease interactions, such as HIV coinfections.

  7. Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context?

    PubMed

    Benschop, Corina C G; Quaak, Frederike C A; Boon, Mathilde E; Sijen, Titia; Kuiper, Irene

    2012-03-01

    Forensic analysis of biological traces generally encompasses the investigation of both the person who contributed to the trace and the body site(s) from which the trace originates. For instance, for sexual assault cases, it can be beneficial to distinguish vaginal samples from skin or saliva samples. In this study, we explored the use of microbial flora to indicate vaginal origin. First, we explored the vaginal microbiome for a large set of clinical vaginal samples (n = 240) by next generation sequencing (n = 338,184 sequence reads) and found 1,619 different sequences. Next, we selected 389 candidate probes targeting genera or species and designed a microarray, with which we analysed a diverse set of samples; 43 DNA extracts from vaginal samples and 25 DNA extracts from samples from other body sites, including sites in close proximity of or in contact with the vagina. Finally, we used the microarray results and next generation sequencing dataset to assess the potential for a future approach that uses microbial markers to indicate vaginal origin. Since no candidate genera/species were found to positively identify all vaginal DNA extracts on their own, while excluding all non-vaginal DNA extracts, we deduce that a reliable statement about the cellular origin of a biological trace should be based on the detection of multiple species within various genera. Microarray analysis of a sample will then render a microbial flora pattern that is probably best analysed in a probabilistic approach.

  8. Systems biology of cancer biomarker detection.

    PubMed

    Mitra, Sanga; Das, Smarajit; Chakrabarti, Jayprokas

    2013-01-01

    Cancer systems-biology is an ever-growing area of research due to explosion of data; how to mine these data and extract useful information is the problem. To have an insight on carcinogenesis one need to systematically mine several resources, such as databases, microarray and next-generation sequences. This review encompasses management and analysis of cancer data, databases construction and data deposition, whole transcriptome and genome comparison, analysing results from high throughput experiments to uncover cellular pathways and molecular interactions, and the design of effective algorithms to identify potential biomarkers. Recent technical advances such as ChIP-on-chip, ChIP-seq and RNA-seq can be applied to get epigenetic information transformed into a high-throughput endeavour to which systems biology and bioinformatics are making significant inroads. The data from ENCODE and GENCODE projects available through UCSC genome browser can be considered as benchmark for comparison and meta-analysis. A pipeline for integrating next generation sequencing data, microarray data, and putting them together with the existing database is discussed. The understanding of cancer genomics is changing the way we approach cancer diagnosis and treatment. To give a better understanding of utilizing available resources' we have chosen oral cancer to show how and what kind of analysis can be done. This review is a computational genomic primer that provides a bird's eye view of computational and bioinformatics' tools currently available to perform integrated genomic and system biology analyses of several carcinoma.

  9. Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline

    PubMed Central

    2013-01-01

    Background As high-throughput genomic technologies become accurate and affordable, an increasing number of data sets have been accumulated in the public domain and genomic information integration and meta-analysis have become routine in biomedical research. In this paper, we focus on microarray meta-analysis, where multiple microarray studies with relevant biological hypotheses are combined in order to improve candidate marker detection. Many methods have been developed and applied in the literature, but their performance and properties have only been minimally investigated. There is currently no clear conclusion or guideline as to the proper choice of a meta-analysis method given an application; the decision essentially requires both statistical and biological considerations. Results We performed 12 microarray meta-analysis methods for combining multiple simulated expression profiles, and such methods can be categorized for different hypothesis setting purposes: (1) HS A : DE genes with non-zero effect sizes in all studies, (2) HS B : DE genes with non-zero effect sizes in one or more studies and (3) HS r : DE gene with non-zero effect in "majority" of studies. We then performed a comprehensive comparative analysis through six large-scale real applications using four quantitative statistical evaluation criteria: detection capability, biological association, stability and robustness. We elucidated hypothesis settings behind the methods and further apply multi-dimensional scaling (MDS) and an entropy measure to characterize the meta-analysis methods and data structure, respectively. Conclusions The aggregated results from the simulation study categorized the 12 methods into three hypothesis settings (HS A , HS B , and HS r ). Evaluation in real data and results from MDS and entropy analyses provided an insightful and practical guideline to the choice of the most suitable method in a given application. All source files for simulation and real data are available on the author’s publication website. PMID:24359104

  10. Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline.

    PubMed

    Chang, Lun-Ching; Lin, Hui-Min; Sibille, Etienne; Tseng, George C

    2013-12-21

    As high-throughput genomic technologies become accurate and affordable, an increasing number of data sets have been accumulated in the public domain and genomic information integration and meta-analysis have become routine in biomedical research. In this paper, we focus on microarray meta-analysis, where multiple microarray studies with relevant biological hypotheses are combined in order to improve candidate marker detection. Many methods have been developed and applied in the literature, but their performance and properties have only been minimally investigated. There is currently no clear conclusion or guideline as to the proper choice of a meta-analysis method given an application; the decision essentially requires both statistical and biological considerations. We performed 12 microarray meta-analysis methods for combining multiple simulated expression profiles, and such methods can be categorized for different hypothesis setting purposes: (1) HS(A): DE genes with non-zero effect sizes in all studies, (2) HS(B): DE genes with non-zero effect sizes in one or more studies and (3) HS(r): DE gene with non-zero effect in "majority" of studies. We then performed a comprehensive comparative analysis through six large-scale real applications using four quantitative statistical evaluation criteria: detection capability, biological association, stability and robustness. We elucidated hypothesis settings behind the methods and further apply multi-dimensional scaling (MDS) and an entropy measure to characterize the meta-analysis methods and data structure, respectively. The aggregated results from the simulation study categorized the 12 methods into three hypothesis settings (HS(A), HS(B), and HS(r)). Evaluation in real data and results from MDS and entropy analyses provided an insightful and practical guideline to the choice of the most suitable method in a given application. All source files for simulation and real data are available on the author's publication website.

  11. Altered Expression of Diabetes-Related Genes in Alzheimer's Disease Brains: The Hisayama Study

    PubMed Central

    Hokama, Masaaki; Oka, Sugako; Leon, Julio; Ninomiya, Toshiharu; Honda, Hiroyuki; Sasaki, Kensuke; Iwaki, Toru; Ohara, Tomoyuki; Sasaki, Tomio; LaFerla, Frank M.; Kiyohara, Yutaka; Nakabeppu, Yusaku

    2014-01-01

    Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM. PMID:23595620

  12. Supervised normalization of microarrays

    PubMed Central

    Mecham, Brigham H.; Nelson, Peter S.; Storey, John D.

    2010-01-01

    Motivation: A major challenge in utilizing microarray technologies to measure nucleic acid abundances is ‘normalization’, the goal of which is to separate biologically meaningful signal from other confounding sources of signal, often due to unavoidable technical factors. It is intuitively clear that true biological signal and confounding factors need to be simultaneously considered when performing normalization. However, the most popular normalization approaches do not utilize what is known about the study, both in terms of the biological variables of interest and the known technical factors in the study, such as batch or array processing date. Results: We show here that failing to include all study-specific biological and technical variables when performing normalization leads to biased downstream analyses. We propose a general normalization framework that fits a study-specific model employing every known variable that is relevant to the expression study. The proposed method is generally applicable to the full range of existing probe designs, as well as to both single-channel and dual-channel arrays. We show through real and simulated examples that the method has favorable operating characteristics in comparison to some of the most highly used normalization methods. Availability: An R package called snm implementing the methodology will be made available from Bioconductor (http://bioconductor.org). Contact: jstorey@princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20363728

  13. A case report of two male siblings with autism and duplication of Xq13-q21, a region including three genes predisposing for autism.

    PubMed

    Wentz, Elisabet; Vujic, Mihailo; Kärrstedt, Ewa-Lotta; Erlandsson, Anna; Gillberg, Christopher

    2014-05-01

    Autism spectrum disorder, severe behaviour problems and duplication of the Xq12 to Xq13 region have recently been described in three male relatives. To describe the psychiatric comorbidity and dysmorphic features, including craniosynostosis, of two male siblings with autism and duplication of the Xq13 to Xq21 region, and attempt to narrow down the number of duplicated genes proposed to be leading to global developmental delay and autism. We performed DNA sequencing of certain exons of the TWIST1 gene, the FGFR2 gene and the FGFR3 gene. We also performed microarray analysis of the DNA. In addition to autism, the two male siblings exhibited severe learning disability, self-injurious behaviour, temper tantrums and hyperactivity, and had no communicative language. Chromosomal analyses were normal. Neither of the two siblings showed mutations of the sequenced exons known to produce craniosynostosis. The microarray analysis detected an extra copy of a region on the long arm of chromosome X, chromosome band Xq13.1-q21.1. Comparison of our two cases with previously described patients allowed us to identify three genes predisposing for autism in the duplicated chromosomal region. Sagittal craniosynostosis is also a new finding linked to the duplication.

  14. Integrative missing value estimation for microarray data.

    PubMed

    Hu, Jianjun; Li, Haifeng; Waterman, Michael S; Zhou, Xianghong Jasmine

    2006-10-12

    Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples. We present the integrative Missing Value Estimation method (iMISS) by incorporating information from multiple reference microarray datasets to improve missing value estimation. For each gene with missing data, we derive a consistent neighbor-gene list by taking reference data sets into consideration. To determine whether the given reference data sets are sufficiently informative for integration, we use a submatrix imputation approach. Our experiments showed that iMISS can significantly and consistently improve the accuracy of the state-of-the-art Local Least Square (LLS) imputation algorithm by up to 15% improvement in our benchmark tests. We demonstrated that the order-statistics-based integrative imputation algorithms can achieve significant improvements over the state-of-the-art missing value estimation approaches such as LLS and is especially good for imputing microarray datasets with a limited number of samples, high rates of missing data, or very noisy measurements. With the rapid accumulation of microarray datasets, the performance of our approach can be further improved by incorporating larger and more appropriate reference datasets.

  15. Endoglin (CD105) expression on microvessel endothelial cells in juvenile nasopharyngeal angiofibroma: tissue microarray analysis and association with prognostic significance.

    PubMed

    Wang, Jing-Jing; Sun, Xi-Cai; Hu, Li; Liu, Zhuo-Fu; Yu, Hua-Peng; Li, Han; Wang, Shu-Yi; Wang, De-Hui

    2013-12-01

    The purpose of this study was to examine endoglin (CD105) expression on microvessel endothelial cells (ECs) in juvenile nasopharyngeal angiofibroma (JNA) and its relationship with recurrence. Immunohistochemistry was performed to detect CD105 expression in a tissue microarray from 70 patients with JNA. Correlation between CD105 expression on microvessel ECs and clinicopathological features, as well as tumor recurrence, were analyzed. Immunohistochemistry revealed CD105 expression on ECs but not in stroma of patients with JNA. Chi-square analysis indicated CD105-based microvessel density (MVD) was correlated with JNA recurrence (p = .013). Univariate and multivariate analyses determined that MVD was a significant predictor of time to recurrence (p = .009). The CD105-based MVD was better for predicting disease recurrence (AUROC: 0.673; p = .036) than other clinicopathological features. MVD is a useful predictor for poor prognosis of patients with JNA after curative resection. Angiogenesis, which may play an important role in the occurrence and development of JNA, is therefore a potential therapeutic target for JNA. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  16. A curated collection of tissue microarray images and clinical outcome data of prostate cancer patients

    PubMed Central

    Zhong, Qing; Guo, Tiannan; Rechsteiner, Markus; Rüschoff, Jan H.; Rupp, Niels; Fankhauser, Christian; Saba, Karim; Mortezavi, Ashkan; Poyet, Cédric; Hermanns, Thomas; Zhu, Yi; Moch, Holger; Aebersold, Ruedi; Wild, Peter J.

    2017-01-01

    Microscopy image data of human cancers provide detailed phenotypes of spatially and morphologically intact tissues at single-cell resolution, thus complementing large-scale molecular analyses, e.g., next generation sequencing or proteomic profiling. Here we describe a high-resolution tissue microarray (TMA) image dataset from a cohort of 71 prostate tissue samples, which was hybridized with bright-field dual colour chromogenic and silver in situ hybridization probes for the tumour suppressor gene PTEN. These tissue samples were digitized and supplemented with expert annotations, clinical information, statistical models of PTEN genetic status, and computer source codes. For validation, we constructed an additional TMA dataset for 424 prostate tissues, hybridized with FISH probes for PTEN, and performed survival analysis on a subset of 339 radical prostatectomy specimens with overall, disease-specific and recurrence-free survival (maximum 167 months). For application, we further produced 6,036 image patches derived from two whole slides. Our curated collection of prostate cancer data sets provides reuse potential for both biomedical and computational studies. PMID:28291248

  17. Gene expression microarray analysis encompassing metamorphosis and the onset of calcification in the scleractinian coral Montastraea faveolata.

    PubMed

    Reyes-Bermudez, Alejandro; Desalvo, Michael K; Voolstra, Christian R; Sunagawa, Shinichi; Szmant, Alina M; Iglesias-Prieto, Roberto; Medina, Mónica

    2009-01-01

    Similar to many marine invertebrates, scleractinian corals experience a dramatic morphological transformation, as well as a habitat switch, upon settlement and metamorphosis. At this time, planula larvae transform from non-calcifying, demersal, motile organisms into sessile, calcifying, benthic juvenile polyps. We performed gene expression microarray analyses between planulae, aposymbiotic primary polyps, and symbiotic adult tissue to elucidate the molecular mechanisms underlying coral metamorphosis and early stages of calcification in the Robust/Short clade scleractinian coral Montastraea faveolata. Among the annotated genes, the most abundant upregulated transcripts in the planula stage are involved in protein synthesis, chromatin assembly and mitochondrial metabolism; the polyp stage, morphogenesis, protein catabolism and organic matrix synthesis; and the adult stage, sexual reproduction, stress response and symbiosis. We also present evidence showing that the planula and adult transcriptomes are more similar to each other than to the polyp transcriptome. Our results also point to a large number of uncharacterized adult coral-specific genes likely involved in coral-specific functions such as symbiosis and calcification.

  18. Transcriptional profiling of the parr–smolt transformation in Atlantic salmon

    USGS Publications Warehouse

    Robertson, Laura S.; McCormick, Stephen D.

    2012-01-01

    The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of smolts compared to parr. Smolts had higher levels of gill Na+/K+-ATPase activity, plasma cortisol and plasma thyroid hormones relative to parr. Across all five tissues, stringent microarray analyses identified 48 features that were differentially expressed in smolts compared to parr. Using a less stringent method we found 477 features that were differentially expressed at least 1.2-fold in smolts, including 172 features in the gill. Smolts had higher mRNA levels of genes involved in transcription, protein biosynthesis and folding, electron transport, oxygen transport, and sensory perception and lower mRNA levels for genes involved in proteolysis. Quantitative RT-PCR was used to confirm differential expression in select genes identified by microarray analyses and to quantify expression of other genes known to be involved in smolting. This study expands our understanding of the molecular processes that underlie smolting in Atlantic salmon and identifies genes for further investigation.

  19. Plastic Polymers for Efficient DNA Microarray Hybridization: Application to Microbiological Diagnostics▿

    PubMed Central

    Zhao, Zhengshan; Peytavi, Régis; Diaz-Quijada, Gerardo A.; Picard, Francois J.; Huletsky, Ann; Leblanc, Éric; Frenette, Johanne; Boivin, Guy; Veres, Teodor; Dumoulin, Michel M.; Bergeron, Michel G.

    2008-01-01

    Fabrication of microarray devices using traditional glass slides is not easily adaptable to integration into microfluidic systems. There is thus a need for the development of polymeric materials showing a high hybridization signal-to-background ratio, enabling sensitive detection of microbial pathogens. We have developed such plastic supports suitable for highly sensitive DNA microarray hybridizations. The proof of concept of this microarray technology was done through the detection of four human respiratory viruses that were amplified and labeled with a fluorescent dye via a sensitive reverse transcriptase PCR (RT-PCR) assay. The performance of the microarray hybridization with plastic supports made of PMMA [poly(methylmethacrylate)]-VSUVT or Zeonor 1060R was compared to that with high-quality glass slide microarrays by using both passive and microfluidic hybridization systems. Specific hybridization signal-to-background ratios comparable to that obtained with high-quality commercial glass slides were achieved with both polymeric substrates. Microarray hybridizations demonstrated an analytical sensitivity equivalent to approximately 100 viral genome copies per RT-PCR, which is at least 100-fold higher than the sensitivities of previously reported DNA hybridizations on plastic supports. Testing of these plastic polymers using a microfluidic microarray hybridization platform also showed results that were comparable to those with glass supports. In conclusion, PMMA-VSUVT and Zeonor 1060R are both suitable for highly sensitive microarray hybridizations. PMID:18784318

  20. Development and application of a microarray meter tool to optimize microarray experiments

    PubMed Central

    Rouse, Richard JD; Field, Katrine; Lapira, Jennifer; Lee, Allen; Wick, Ivan; Eckhardt, Colleen; Bhasker, C Ramana; Soverchia, Laura; Hardiman, Gary

    2008-01-01

    Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control) and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization) using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray) manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a) a measure of variability in the signal intensities, b) a measure of the signal dynamic range and c) a measure of variability of the spot morphologies. PMID:18710498

  1. Switching benchmarks in cancer of unknown primary: from autopsy to microarray.

    PubMed

    Pentheroudakis, George; Golfinopoulos, Vassilios; Pavlidis, Nicholas

    2007-09-01

    Cancer of unknown primary (CUP) is associated with unknown biology and dismal prognosis. Information on the primary site of origin is scant and has never been analysed. We systematically reviewed all published evidence on the CUP primary site identified by two different approaches, either autopsy or microarray gene expression profiling. Published reports on identification of CUP primary site by autopsy or microarray-based multigene expression platforms were retrieved and analysed for year of publication, primary site, patient age, gender, histology, rate of primary identification, manifestations and metastatic deposits, microarray chip technology, training and validation sets, mathematical modelling, classification accuracy and number of classifying genes. From 1944 to 2000, a total of 884 CUP patients (66% males) underwent autopsy in 12 studies after presenting with metastatic or systemic symptoms and succumbing to their disease. A primary was identified in 644 (73%) of them, mostly in the lung (27%), pancreas (24%), hepatobiliary tree (8%), kidneys (8%), bowel, genital system and stomach, as a small focus of adenocarcinoma or poorly differentiated carcinoma. An unpredictable systemic dissemination was evident with high frequency of lung (46%), nodal (35%), bone (17%), brain (16%) and uncommon (18%) deposits. Between the 1944-1980 and the 1980-2000 series, female representation increased, 'undetermined neoplasm' diagnosis became rarer, pancreatic primaries were found less often while colonic ones were identified more frequently. Four studies using microarray technology profiled more than 500 CUP cases using classifier set of genes (ranging from 10 to 495) and reported strikingly dissimilar frequencies of assigned primary sites (lung 11.5%, pancreas 12.5%, bowel 12%, breast 15%, hepatobiliary tree 8%, kidneys 6%, genital system 9%, bladder 5%) in 75-90% of the cases. Evolution in medical imaging technology, diet and lifestyle habits probably account for changing epidemiology of CUP primaries in autopsies. Discrepant assignment of primary sites by microarrays may be due to the presence of 'sanctuary sites' in autopsies, molecular misclassification and the postulated presence of a pro-metastatic genetic signature. In view of the absence of patient therapeutic or prognostic benefit with primary identification, gene expression profiling should be re-orientated towards unraveling the complex pathophysiology of metastases.

  2. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    PubMed

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements

    PubMed Central

    2012-01-01

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings. PMID:16964229

  4. Women's experiences receiving abnormal prenatal chromosomal microarray testing results.

    PubMed

    Bernhardt, Barbara A; Soucier, Danielle; Hanson, Karen; Savage, Melissa S; Jackson, Laird; Wapner, Ronald J

    2013-02-01

    Genomic microarrays can detect copy-number variants not detectable by conventional cytogenetics. This technology is diffusing rapidly into prenatal settings even though the clinical implications of many copy-number variants are currently unknown. We conducted a qualitative pilot study to explore the experiences of women receiving abnormal results from prenatal microarray testing performed in a research setting. Participants were a subset of women participating in a multicenter prospective study "Prenatal Cytogenetic Diagnosis by Array-based Copy Number Analysis." Telephone interviews were conducted with 23 women receiving abnormal prenatal microarray results. We found that five key elements dominated the experiences of women who had received abnormal prenatal microarray results: an offer too good to pass up, blindsided by the results, uncertainty and unquantifiable risks, need for support, and toxic knowledge. As prenatal microarray testing is increasingly used, uncertain findings will be common, resulting in greater need for careful pre- and posttest counseling, and more education of and resources for providers so they can adequately support the women who are undergoing testing.

  5. The use of open source bioinformatics tools to dissect transcriptomic data.

    PubMed

    Nitsche, Benjamin M; Ram, Arthur F J; Meyer, Vera

    2012-01-01

    Microarrays are a valuable technology to study fungal physiology on a transcriptomic level. Various microarray platforms are available comprising both single and two channel arrays. Despite different technologies, preprocessing of microarray data generally includes quality control, background correction, normalization, and summarization of probe level data. Subsequently, depending on the experimental design, diverse statistical analysis can be performed, including the identification of differentially expressed genes and the construction of gene coexpression networks.We describe how Bioconductor, a collection of open source and open development packages for the statistical programming language R, can be used for dissecting microarray data. We provide fundamental details that facilitate the process of getting started with R and Bioconductor. Using two publicly available microarray datasets from Aspergillus niger, we give detailed protocols on how to identify differentially expressed genes and how to construct gene coexpression networks.

  6. Preoperative overnight parenteral nutrition (TPN) improves skeletal muscle protein metabolism indicated by microarray algorithm analyses in a randomized trial.

    PubMed

    Iresjö, Britt-Marie; Engström, Cecilia; Lundholm, Kent

    2016-06-01

    Loss of muscle mass is associated with increased risk of morbidity and mortality in hospitalized patients. Uncertainties of treatment efficiency by short-term artificial nutrition remain, specifically improvement of protein balance in skeletal muscles. In this study, algorithmic microarray analysis was applied to map cellular changes related to muscle protein metabolism in human skeletal muscle tissue during provision of overnight preoperative total parenteral nutrition (TPN). Twenty-two patients (11/group) scheduled for upper GI surgery due to malignant or benign disease received a continuous peripheral all-in-one TPN infusion (30 kcal/kg/day, 0.16 gN/kg/day) or saline infusion for 12 h prior operation. Biopsies from the rectus abdominis muscle were taken at the start of operation for isolation of muscle RNA RNA expression microarray analyses were performed with Agilent Sureprint G3, 8 × 60K arrays using one-color labeling. 447 mRNAs were differently expressed between study and control patients (P < 0.1). mRNAs related to ribosomal biogenesis, mRNA processing, and translation were upregulated during overnight nutrition; particularly anabolic signaling S6K1 (P < 0.01-0.1). Transcripts of genes associated with lysosomal degradation showed consistently lower expression during TPN while mRNAs for ubiquitin-mediated degradation of proteins as well as transcripts related to intracellular signaling pathways, PI3 kinase/MAPkinase, were either increased or decreased. In conclusion, muscle mRNA alterations during overnight standard TPN infusions at constant rate altered mRNAs associated with mTOR signaling; increased initiation of protein translation; and suppressed autophagy/lysosomal degradation of proteins. This indicates that overnight preoperative parenteral nutrition is effective to promote muscle protein metabolism. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments.

    PubMed

    Kitchen, Robert R; Sabine, Vicky S; Simen, Arthur A; Dixon, J Michael; Bartlett, John M S; Sims, Andrew H

    2011-12-01

    Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR) and individual or pooled breast-tumour RNA. A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependent upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement) and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. The magnitude of systematic processing noise in a microarray experiment is variable across probes and experiments, however it is generally the case that procedures earlier in the sample-preparation workflow are liable to introduce the most noise. Careful experimental design is important to protect against noise, detailed meta-data should always be provided, and diagnostic procedures should be routinely performed prior to downstream analyses for the detection of bias in microarray studies.

  8. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments

    PubMed Central

    2011-01-01

    Background Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR) and individual or pooled breast-tumour RNA. Results A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependant upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement) and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. Conclusions The magnitude of systematic processing noise in a microarray experiment is variable across probes and experiments, however it is generally the case that procedures earlier in the sample-preparation workflow are liable to introduce the most noise. Careful experimental design is important to protect against noise, detailed meta-data should always be provided, and diagnostic procedures should be routinely performed prior to downstream analyses for the detection of bias in microarray studies. PMID:22133085

  9. A Platform for Combined DNA and Protein Microarrays Based on Total Internal Reflection Fluorescence

    PubMed Central

    Asanov, Alexander; Zepeda, Angélica; Vaca, Luis

    2012-01-01

    We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax. PMID:22438738

  10. Variance stabilization and normalization for one-color microarray data using a data-driven multiscale approach.

    PubMed

    Motakis, E S; Nason, G P; Fryzlewicz, P; Rutter, G A

    2006-10-15

    Many standard statistical techniques are effective on data that are normally distributed with constant variance. Microarray data typically violate these assumptions since they come from non-Gaussian distributions with a non-trivial mean-variance relationship. Several methods have been proposed that transform microarray data to stabilize variance and draw its distribution towards the Gaussian. Some methods, such as log or generalized log, rely on an underlying model for the data. Others, such as the spread-versus-level plot, do not. We propose an alternative data-driven multiscale approach, called the Data-Driven Haar-Fisz for microarrays (DDHFm) with replicates. DDHFm has the advantage of being 'distribution-free' in the sense that no parametric model for the underlying microarray data is required to be specified or estimated; hence, DDHFm can be applied very generally, not just to microarray data. DDHFm achieves very good variance stabilization of microarray data with replicates and produces transformed intensities that are approximately normally distributed. Simulation studies show that it performs better than other existing methods. Application of DDHFm to real one-color cDNA data validates these results. The R package of the Data-Driven Haar-Fisz transform (DDHFm) for microarrays is available in Bioconductor and CRAN.

  11. Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline

    PubMed Central

    Rahmatallah, Yasir; Emmert-Streib, Frank

    2016-01-01

    Transcriptome sequencing (RNA-seq) is gradually replacing microarrays for high-throughput studies of gene expression. The main challenge of analyzing microarray data is not in finding differentially expressed genes, but in gaining insights into the biological processes underlying phenotypic differences. To interpret experimental results from microarrays, gene set analysis (GSA) has become the method of choice, in particular because it incorporates pre-existing biological knowledge (in a form of functionally related gene sets) into the analysis. Here we provide a brief review of several statistically different GSA approaches (competitive and self-contained) that can be adapted from microarrays practice as well as those specifically designed for RNA-seq. We evaluate their performance (in terms of Type I error rate, power, robustness to the sample size and heterogeneity, as well as the sensitivity to different types of selection biases) on simulated and real RNA-seq data. Not surprisingly, the performance of various GSA approaches depends only on the statistical hypothesis they test and does not depend on whether the test was developed for microarrays or RNA-seq data. Interestingly, we found that competitive methods have lower power as well as robustness to the samples heterogeneity than self-contained methods, leading to poor results reproducibility. We also found that the power of unsupervised competitive methods depends on the balance between up- and down-regulated genes in tested gene sets. These properties of competitive methods have been overlooked before. Our evaluation provides a concise guideline for selecting GSA approaches, best performing under particular experimental settings in the context of RNA-seq. PMID:26342128

  12. Discrimination of Influenza Infection (A/2009 H1N1) from Prior Exposure by Antibody Protein Microarray Analysis

    PubMed Central

    te Beest, Dennis; de Bruin, Erwin; Imholz, Sandra; Wallinga, Jacco; Teunis, Peter; Koopmans, Marion; van Boven, Michiel

    2014-01-01

    Reliable discrimination of recent influenza A infection from previous exposure using hemagglutination inhibition (HI) or virus neutralization tests is currently not feasible. This is due to low sensitivity of the tests and the interference of antibody responses generated by previous infections. Here we investigate the diagnostic characteristics of a newly developed antibody (HA1) protein microarray using data from cross-sectional serological studies carried out before and after the pandemic of 2009. The data are analysed by mixture models, providing a probabilistic classification of sera (susceptible, prior-exposed, recently infected). Estimated sensitivity and specificity for identifying A/2009 infections are low using HI (66% and 51%), and high when using A/2009 microarray data alone or together with A/1918 microarray data (96% and 95%). As a heuristic, a high A/2009 to A/1918 antibody ratio (>1.05) is indicative of recent infection, while a low ratio is indicative of a pre-existing response, even if the A/2009 titer is high. We conclude that highly sensitive and specific classification of individual sera is possible using the protein microarray, thereby enabling precise estimation of age-specific infection attack rates in the population even if sample sizes are small. PMID:25405997

  13. Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity.

    PubMed

    Gazquez, Ayelén; Vilas, Juan Manuel; Colman Lerner, Jorge Esteban; Maiale, Santiago Javier; Calzadilla, Pablo Ignacio; Menéndez, Ana Bernardina; Rodríguez, Andrés Alberto

    2018-06-01

    The purpose of this research was to identify differences between two contrasting rice cultivars in their response to suboptimal low temperatures stress. A transcriptomic analysis of the seedlings was performed and results were complemented with biochemical and physiological analyses. The microarray analysis showed downregulation of many genes related with PSII and particularly with the oxygen evolving complex in the sensitive cultivar IR50. Complementary studies indicated that the PSII performance, the degree of oxygen evolving complex coupling with the PSII core and net photosynthetic rate diminished in this cultivar in response to the stress. However, the tolerant cultivar Koshihikari was able to maintain its energy equilibrium by sustaining the photosynthetic capacity. The increase of oleic acid in Koshihikari could be related with membrane remodelling of the chloroplasts and hence contribute to tolerance. Overall, these results work as a ground for future analyses that look forward to characterize possible mechanisms to tolerate this stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Cambridge Healthtech Institute's Third Annual Conference on Lab-on-a-Chip and Microarrays. 22-24 January 2001, Zurich, Switzerland.

    PubMed

    Jain, K K

    2001-02-01

    Cambridge Healthtech Institute's Third Annual Conference on Lab-on-a-Chip and Microarray technology covered the latest advances in this technology and applications in life sciences. Highlights of the meetings are reported briefly with emphasis on applications in genomics, drug discovery and molecular diagnostics. There was an emphasis on microfluidics because of the wide applications in laboratory and drug discovery. The lab-on-a-chip provides the facilities of a complete laboratory in a hand-held miniature device. Several microarray systems have been used for hybridisation and detection techniques. Oligonucleotide scanning arrays provide a versatile tool for the analysis of nucleic acid interactions and provide a platform for improving the array-based methods for investigation of antisense therapeutics. A method for analysing combinatorial DNA arrays using oligonucleotide-modified gold nanoparticle probes and a conventional scanner has considerable potential in molecular diagnostics. Various applications of microarray technology for high-throughput screening in drug discovery and single nucleotide polymorphisms (SNP) analysis were discussed. Protein chips have important applications in proteomics. With the considerable amount of data generated by the different technologies using microarrays, it is obvious that the reading of the information and its interpretation and management through the use of bioinformatics is essential. Various techniques for data analysis were presented. Biochip and microarray technology has an essential role to play in the evolving trends in healthcare, which integrate diagnosis with prevention/treatment and emphasise personalised medicines.

  15. ArraySolver: an algorithm for colour-coded graphical display and Wilcoxon signed-rank statistics for comparing microarray gene expression data.

    PubMed

    Khan, Haseeb Ahmad

    2004-01-01

    The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann-Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n < or = 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform.

  16. ArraySolver: An Algorithm for Colour-Coded Graphical Display and Wilcoxon Signed-Rank Statistics for Comparing Microarray Gene Expression Data

    PubMed Central

    2004-01-01

    The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann–Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n ≤ 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform. PMID:18629036

  17. Gene expression profiling in human skeletal muscle during recovery from eccentric exercise

    PubMed Central

    Mohoney, D. J.; Safdar, A.; Parise, G.; Melov, S.; Fu, Minghua; MacNeil, L.; Kaczor, J.; Payne, E. T.; Tarnopolsky, M. A.

    2009-01-01

    We used cDNA microarrays to screen for differentially expressed genes during recovery from exercise-induced muscle damage in humans. Male subjects (n = 4) performed 300 maximal eccentric contractions, and skeletal muscle biopsy samples were analyzed at 3 h and 48 h after exercise. In total, 113 genes increased 3 h postexercise, and 34 decreased. At 48 h postexercise, 59 genes increased and 29 decreased. On the basis of these data, we chose 19 gene changes and conducted secondary analyses using real-time RT-PCR from muscle biopsy samples taken from 11 additional subjects who performed an identical bout of exercise. Real-time RT-PCR analyses confirmed that exercise-induced muscle damage led to a rapid (3 h) increase in sterol response element binding protein 2 (SREBP-2), followed by a delayed (48 h) increase in the SREBP-2 gene targets Acyl CoA:cholesterol acyltransferase (ACAT)-2 and insulin-induced gene 1 (insig-1). The expression of the IL-1 receptor, a known regulator of SREBP-2, was also elevated after exercise. Taken together, these expression changes suggest a transcriptional program for increasing cholesterol and lipid synthesis and/or modification. Additionally, damaging exercise induced the expression of protein kinase H11, capping protein Z alpha (capZα), and modulatory calcineurin-interacting protein 1 (MCIP1), as well as cardiac ankryin repeat protein 1 (CARP1), DNAJB2, c-myc, and junD, each of which are likely involved in skeletal muscle growth, remodeling, and stress management. In summary, using DNA microarrays and RT-PCR, we have identified novel genes that respond to skeletal muscle damage, which, given the known biological functions, are likely involved in recovery from and/or adaptation to damaging exercise. PMID:18321953

  18. The application of artificial intelligence to microarray data: identification of a novel gene signature to identify bladder cancer progression.

    PubMed

    Catto, James W F; Abbod, Maysam F; Wild, Peter J; Linkens, Derek A; Pilarsky, Christian; Rehman, Ishtiaq; Rosario, Derek J; Denzinger, Stefan; Burger, Maximilian; Stoehr, Robert; Knuechel, Ruth; Hartmann, Arndt; Hamdy, Freddie C

    2010-03-01

    New methods for identifying bladder cancer (BCa) progression are required. Gene expression microarrays can reveal insights into disease biology and identify novel biomarkers. However, these experiments produce large datasets that are difficult to interpret. To develop a novel method of microarray analysis combining two forms of artificial intelligence (AI): neurofuzzy modelling (NFM) and artificial neural networks (ANN) and validate it in a BCa cohort. We used AI and statistical analyses to identify progression-related genes in a microarray dataset (n=66 tumours, n=2800 genes). The AI-selected genes were then investigated in a second cohort (n=262 tumours) using immunohistochemistry. We compared the accuracy of AI and statistical approaches to identify tumour progression. AI identified 11 progression-associated genes (odds ratio [OR]: 0.70; 95% confidence interval [CI], 0.56-0.87; p=0.0004), and these were more discriminate than genes chosen using statistical analyses (OR: 1.24; 95% CI, 0.96-1.60; p=0.09). The expression of six AI-selected genes (LIG3, FAS, KRT18, ICAM1, DSG2, and BRCA2) was determined using commercial antibodies and successfully identified tumour progression (concordance index: 0.66; log-rank test: p=0.01). AI-selected genes were more discriminate than pathologic criteria at determining progression (Cox multivariate analysis: p=0.01). Limitations include the use of statistical correlation to identify 200 genes for AI analysis and that we did not compare regression identified genes with immunohistochemistry. AI and statistical analyses use different techniques of inference to determine gene-phenotype associations and identify distinct prognostic gene signatures that are equally valid. We have identified a prognostic gene signature whose members reflect a variety of carcinogenic pathways that could identify progression in non-muscle-invasive BCa. 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  19. Using Kepler for Tool Integration in Microarray Analysis Workflows.

    PubMed

    Gan, Zhuohui; Stowe, Jennifer C; Altintas, Ilkay; McCulloch, Andrew D; Zambon, Alexander C

    Increasing numbers of genomic technologies are leading to massive amounts of genomic data, all of which requires complex analysis. More and more bioinformatics analysis tools are being developed by scientist to simplify these analyses. However, different pipelines have been developed using different software environments. This makes integrations of these diverse bioinformatics tools difficult. Kepler provides an open source environment to integrate these disparate packages. Using Kepler, we integrated several external tools including Bioconductor packages, AltAnalyze, a python-based open source tool, and R-based comparison tool to build an automated workflow to meta-analyze both online and local microarray data. The automated workflow connects the integrated tools seamlessly, delivers data flow between the tools smoothly, and hence improves efficiency and accuracy of complex data analyses. Our workflow exemplifies the usage of Kepler as a scientific workflow platform for bioinformatics pipelines.

  20. Microarray expression technology: from start to finish.

    PubMed

    Elvidge, Gareth

    2006-01-01

    The recent introduction of new microarray expression technologies and the further development of established platforms ensure that the researcher is presented with a range of options for performing an experiment. Whilst this has opened up the possibilities for future applications, such as exon-specific arrays, increased sample throughput and 'chromatin immunoprecipitation (ChIP) on chip' experiments, the initial decision processes and experiment planning are made more difficult. This review will give an overview of the various technologies that are available to perform a microarray expression experiment, from the initial planning stages through to the final data analysis. Both practical aspects and data analysis options will be considered. The relative advantages and disadvantages will be discussed with insights provided for future directions of the technology.

  1. An efficient pseudomedian filter for tiling microrrays.

    PubMed

    Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B

    2007-06-07

    Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at http://tiling.gersteinlab.org/pseudomedian/.

  2. An efficient pseudomedian filter for tiling microrrays

    PubMed Central

    Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B

    2007-01-01

    Background Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. Results We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Conclusion Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at . PMID:17555595

  3. Prediction of regulatory gene pairs using dynamic time warping and gene ontology.

    PubMed

    Yang, Andy C; Hsu, Hui-Huang; Lu, Ming-Da; Tseng, Vincent S; Shih, Timothy K

    2014-01-01

    Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.

  4. Single-Nucleotide Polymorphism-Microarray Ploidy Analysis of Paraffin-Embedded Products of Conception in Recurrent Pregnancy Loss Evaluations.

    PubMed

    Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C

    2015-07-01

    To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal cytogenetic results. Recommended recurrent pregnancy loss screening was unnecessary in almost half the patients in our study. II.

  5. On the classification techniques in data mining for microarray data classification

    NASA Astrophysics Data System (ADS)

    Aydadenta, Husna; Adiwijaya

    2018-03-01

    Cancer is one of the deadly diseases, according to data from WHO by 2015 there are 8.8 million more deaths caused by cancer, and this will increase every year if not resolved earlier. Microarray data has become one of the most popular cancer-identification studies in the field of health, since microarray data can be used to look at levels of gene expression in certain cell samples that serve to analyze thousands of genes simultaneously. By using data mining technique, we can classify the sample of microarray data thus it can be identified with cancer or not. In this paper we will discuss some research using some data mining techniques using microarray data, such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5, and simulation of Random Forest algorithm with technique of reduction dimension using Relief. The result of this paper show performance measure (accuracy) from classification algorithm (SVM, ANN, Naive Bayes, kNN, C4.5, and Random Forets).The results in this paper show the accuracy of Random Forest algorithm higher than other classification algorithms (Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5). It is hoped that this paper can provide some information about the speed, accuracy, performance and computational cost generated from each Data Mining Classification Technique based on microarray data.

  6. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE.

    PubMed

    Rao, Archana N; Grainger, David W

    2014-04-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.

  7. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    PubMed Central

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA’s persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  8. Molecular classification of benign prostatic hyperplasia: A gene expression profiling study in a rat model.

    PubMed

    Hata, Junya; Satoh, Yuichi; Akaihata, Hidenori; Hiraki, Hiroyuki; Ogawa, Soichiro; Haga, Nobuhiro; Ishibashi, Kei; Aikawa, Ken; Kojima, Yoshiyuki

    2016-07-01

    To characterize the molecular features of benign prostatic hyperplasia by carrying out a gene expression profiling analysis in a rat model. Fetal urogenital sinus isolated from 20-day-old male rat embryo was implanted into a pubertal male rat ventral prostate. The implanted urogenital sinus grew time-dependently, and the pathological findings at 3 weeks after implantation showed epithelial hyperplasia as well as stromal hyperplasia. Whole-genome oligonucleotide microarray analysis utilizing approximately 30 000 oligonucleotide probes was carried out using prostate specimens during the prostate growth process (3 weeks after implantation). Microarray analyses showed 926 upregulated (>2-fold change, P < 0.01) and 3217 downregulated genes (<0.5-fold change, P < 0.01) in benign prostatic hyperplasia specimens compared with normal prostate. Gene ontology analyses of upregulated genes showed predominant genetic themes of involvement in development (162 genes, P = 2.01 × 10(-4) ), response to stimulus (163 genes, P = 7.37 × 10(-13) ) and growth (32 genes, P = 1.93 × 10(-5) ). When we used both normal prostate and non-transplanted urogenital sinuses as controls to identify benign prostatic hyperplasia-specific genes, 507 and 406 genes were upregulated and downregulated, respectively. Functional network and pathway analyses showed that genes associated with apoptosis modulation by heat shock protein 70, interleukin-1, interleukin-2 and interleukin-5 signaling pathways, KIT signaling pathway, and secretin-like G-protein-coupled receptors, class B, were relatively activated during the growth process in the benign prostatic hyperplasia specimens. In contrast, genes associated with cholesterol biosynthesis were relatively inactivated. Our microarray analyses of the benign prostatic hyperplasia model rat might aid in clarifying the molecular mechanism of benign prostatic hyperplasia progression, and identifying molecular targets for benign prostatic hyperplasia treatment. © 2016 The Japanese Urological Association.

  9. Interlaboratory comparison of immunohistochemical testing for HER2: results of the 2004 and 2005 College of American Pathologists HER2 Immunohistochemistry Tissue Microarray Survey.

    PubMed

    Fitzgibbons, Patrick L; Murphy, Douglas A; Dorfman, David M; Roche, Patrick C; Tubbs, Raymond R

    2006-10-01

    Correct assessment of human epidermal growth factor receptor 2 (HER2) status is essential in managing patients with invasive breast carcinoma, but few data are available on the accuracy of laboratories performing HER2 testing by immunohistochemistry (IHC). To review the results of the 2004 and 2005 College of American Pathologists HER2 Immunohistochemistry Tissue Microarray Survey. The HER2 survey is designed for laboratories performing immunohistochemical staining and interpretation for HER2. The survey uses tissue microarrays, each consisting of ten 3-mm tissue cores obtained from different invasive breast carcinomas. All cases are also analyzed by fluorescence in situ hybridization. Participants receive 8 tissue microarrays (80 cases) with instructions to perform immunostaining for HER2 using the laboratory's standard procedures. The laboratory interprets the stained slides and returns results to the College of American Pathologists for analysis. In 2004 and 2005, a core was considered "graded" when at least 90% of laboratories agreed on the result--negative (0, 1+) versus positive (2+, 3+). This interlaboratory comparison survey included 102 laboratories in 2004 and 141 laboratories in 2005. Of the 160 cases in both surveys, 111 (69%) achieved 90% consensus (graded). All 43 graded cores scored as IHC-positive were fluorescence in situ hybridization-positive, whereas all but 3 of the 68 IHC-negative graded cores were fluorescence in situ hybridization-negative. Ninety-seven (95%) of 102 laboratories in 2004 and 129 (91%) of 141 laboratories in 2005 correctly scored at least 90% of the graded cores. Performance among laboratories performing HER2 IHC in this tissue microarray-based survey was excellent. Cores found to be IHC-positive or IHC-negative by participant consensus can be used as validated benchmarks for interlaboratory comparison, allowing laboratories to assess their performance and determine if improvements are needed.

  10. Knowledge-based analysis of microarrays for the discovery of transcriptional regulation relationships

    PubMed Central

    2010-01-01

    Background The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. Results In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. Conclusion High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data. PMID:20122245

  11. Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control.

    PubMed

    Brunner, C; Hoffmann, K; Thiele, T; Schedler, U; Jehle, H; Resch-Genger, U

    2015-04-01

    Commercial platforms consisting of ready-to-use microarrays printed with target-specific DNA probes, a microarray scanner, and software for data analysis are available for different applications in medical diagnostics and food analysis, detecting, e.g., viral and bacteriological DNA sequences. The transfer of these tools from basic research to routine analysis, their broad acceptance in regulated areas, and their use in medical practice requires suitable calibration tools for regular control of instrument performance in addition to internal assay controls. Here, we present the development of a novel assay-adapted calibration slide for a commercialized DNA-based assay platform, consisting of precisely arranged fluorescent areas of various intensities obtained by incorporating different concentrations of a "green" dye and a "red" dye in a polymer matrix. These dyes present "Cy3" and "Cy5" analogues with improved photostability, chosen based upon their spectroscopic properties closely matching those of common labels for the green and red channel of microarray scanners. This simple tool allows to efficiently and regularly assess and control the performance of the microarray scanner provided with the biochip platform and to compare different scanners. It will be eventually used as fluorescence intensity scale for referencing of assays results and to enhance the overall comparability of diagnostic tests.

  12. Knowledge-based analysis of microarrays for the discovery of transcriptional regulation relationships.

    PubMed

    Seok, Junhee; Kaushal, Amit; Davis, Ronald W; Xiao, Wenzhong

    2010-01-18

    The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data.

  13. A Customized DNA Microarray for Microbial Source Tracking ...

    EPA Pesticide Factsheets

    It is estimated that more than 160, 000 miles of rivers and streams in the United States are impaired due to the presence of waterborne pathogens. These pathogens typically originate from human and other animal fecal pollution sources; therefore, a rapid microbial source tracking (MST) method is needed to facilitate water quality assessment and impaired water remediation. We report a novel qualitative DNA microarray technology consisting of 453 probes for the detection of general fecal and host-associated bacteria, viruses, antibiotic resistance, and other environmentally relevant genetic indicators. A novel data normalization and reduction approach is also presented to help alleviate false positives often associated with high-density microarray applications. To evaluate the performance of the approach, DNA and cDNA was isolated from swine, cattle, duck, goose and gull fecal reference samples, as well as soiled poultry liter and raw municipal sewage. Based on nonmetric multidimensional scaling analysis of results, findings suggest that the novel microarray approach may be useful for pathogen detection and identification of fecal contamination in recreational waters. The ability to simultaneously detect a large collection of environmentally important genetic indicators in a single test has the potential to provide water quality managers with a wide range of information in a short period of time. Future research is warranted to measure microarray performance i

  14. Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration.

    PubMed

    Kohler, Julia; Popov, Cvetan; Klotz, Barbara; Alberton, Paolo; Prall, Wolf Christian; Haasters, Florian; Müller-Deubert, Sigrid; Ebert, Regina; Klein-Hitpass, Ludger; Jakob, Franz; Schieker, Matthias; Docheva, Denitsa

    2013-12-01

    Although the link between altered stem cell properties and tissue aging has been recognized, the molecular and cellular processes of tendon aging have not been elucidated. As tendons contain stem/progenitor cells (TSPC), we investigated whether the molecular and cellular attributes of TSPC alter during tendon aging and degeneration. Comparing TSPC derived from young/healthy (Y-TSPC) and aged/degenerated human Achilles tendon biopsies (A-TSPC), we observed that A-TSPC exhibit a profound self-renewal and clonogenic deficits, while their multipotency was still retained. Senescence analysis showed a premature entry into senescence of the A-TSPC, a finding accompanied by an upregulation of p16(INK4A). To identify age-related molecular factors, we performed microarray and gene ontology analyses. These analyses revealed an intriguing transcriptomal shift in A-TSPC, where the most differentially expressed probesets encode for genes regulating cell adhesion, migration, and actin cytoskeleton. Time-lapse analysis showed that A-TSPC exhibit decelerated motion and delayed wound closure concomitant to a higher actin stress fiber content and a slower turnover of actin filaments. Lastly, based on the expression analyses of microarray candidates, we suggest that dysregulated cell-matrix interactions and the ROCK kinase pathway might be key players in TSPC aging. Taken together, we propose that during tendon aging and degeneration, the TSPC pool is becoming exhausted in terms of size and functional fitness. Thus, our study provides the first fundamental basis for further exploration into the molecular mechanisms behind tendon aging and degeneration as well as for the selection of novel tendon-specific therapeutical targets. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    PubMed Central

    2010-01-01

    Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered), missing value imputation (2), standardization of data (2), gene selection (19) or clustering method (11). The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that background correction is preferable, in particular if the gene selection is successful. However, this is an area that needs to be studied further in order to draw any general conclusions. Conclusions The choice of cluster analysis, and in particular gene selection, has a large impact on the ability to cluster individuals correctly based on expression profiles. Normalization has a positive effect, but the relative performance of different normalizations is an area that needs more research. In summary, although clustering, gene selection and normalization are considered standard methods in bioinformatics, our comprehensive analysis shows that selecting the right methods, and the right combinations of methods, is far from trivial and that much is still unexplored in what is considered to be the most basic analysis of genomic data. PMID:20937082

  16. The effect of column purification on cDNA indirect labelling for microarrays

    PubMed Central

    Molas, M Lia; Kiss, John Z

    2007-01-01

    Background The success of the microarray reproducibility is dependent upon the performance of standardized procedures. Since the introduction of microarray technology for the analysis of global gene expression, reproducibility of results among different laboratories has been a major problem. Two of the main contributors to this variability are the use of different microarray platforms and different laboratory practices. In this paper, we address the latter question in terms of how variation in one of the steps of a labelling procedure affects the cDNA product prior to microarray hybridization. Results We used a standard procedure to label cDNA for microarray hybridization and employed different types of column chromatography for cDNA purification. After purifying labelled cDNA, we used the Agilent 2100 Bioanalyzer and agarose gel electrophoresis to assess the quality of the labelled cDNA before its hybridization onto a microarray platform. There were major differences in the cDNA profile (i.e. cDNA fragment lengths and abundance) as a result of using four different columns for purification. In addition, different columns have different efficiencies to remove rRNA contamination. This study indicates that the appropriate column to use in this type of protocol has to be experimentally determined. Finally, we present new evidence establishing the importance of testing the method of purification used during an indirect labelling procedure. Our results confirm the importance of assessing the quality of the sample in the labelling procedure prior to hybridization onto a microarray platform. Conclusion Standardization of column purification systems to be used in labelling procedures will improve the reproducibility of microarray results among different laboratories. In addition, implementation of a quality control check point of the labelled samples prior to microarray hybridization will prevent hybridizing a poor quality sample to expensive micorarrays. PMID:17597522

  17. The effect of column purification on cDNA indirect labelling for microarrays.

    PubMed

    Molas, M Lia; Kiss, John Z

    2007-06-27

    The success of the microarray reproducibility is dependent upon the performance of standardized procedures. Since the introduction of microarray technology for the analysis of global gene expression, reproducibility of results among different laboratories has been a major problem. Two of the main contributors to this variability are the use of different microarray platforms and different laboratory practices. In this paper, we address the latter question in terms of how variation in one of the steps of a labelling procedure affects the cDNA product prior to microarray hybridization. We used a standard procedure to label cDNA for microarray hybridization and employed different types of column chromatography for cDNA purification. After purifying labelled cDNA, we used the Agilent 2100 Bioanalyzer and agarose gel electrophoresis to assess the quality of the labelled cDNA before its hybridization onto a microarray platform. There were major differences in the cDNA profile (i.e. cDNA fragment lengths and abundance) as a result of using four different columns for purification. In addition, different columns have different efficiencies to remove rRNA contamination. This study indicates that the appropriate column to use in this type of protocol has to be experimentally determined. Finally, we present new evidence establishing the importance of testing the method of purification used during an indirect labelling procedure. Our results confirm the importance of assessing the quality of the sample in the labelling procedure prior to hybridization onto a microarray platform. Standardization of column purification systems to be used in labelling procedures will improve the reproducibility of microarray results among different laboratories. In addition, implementation of a quality control check point of the labelled samples prior to microarray hybridization will prevent hybridizing a poor quality sample to expensive micorarrays.

  18. Evolution of the MIDTAL microarray: the adaption and testing of oligonucleotide 18S and 28S rDNA probes and evaluation of subsequent microarray generations with Prymnesium spp. cultures and field samples.

    PubMed

    McCoy, Gary R; Touzet, Nicolas; Fleming, Gerard T A; Raine, Robin

    2015-07-01

    The toxic microalgal species Prymnesium parvum and Prymnesium polylepis are responsible for numerous fish kills causing economic stress on the aquaculture industry and, through the consumption of contaminated shellfish, can potentially impact on human health. Monitoring of toxic phytoplankton is traditionally carried out by light microscopy. However, molecular methods of identification and quantification are becoming more common place. This study documents the optimisation of the novel Microarrays for the Detection of Toxic Algae (MIDTAL) microarray from its initial stages to the final commercial version now available from Microbia Environnement (France). Existing oligonucleotide probes used in whole-cell fluorescent in situ hybridisation (FISH) for Prymnesium species from higher group probes to species-level probes were adapted and tested on the first-generation microarray. The combination and interaction of numerous other probes specific for a whole range of phytoplankton taxa also spotted on the chip surface caused high cross reactivity, resulting in false-positive results on the microarray. The probe sequences were extended for the subsequent second-generation microarray, and further adaptations of the hybridisation protocol and incubation temperatures significantly reduced false-positive readings from the first to the second-generation chip, thereby increasing the specificity of the MIDTAL microarray. Additional refinement of the subsequent third-generation microarray protocols with the addition of a poly-T amino linker to the 5' end of each probe further enhanced the microarray performance but also highlighted the importance of optimising RNA labelling efficiency when testing with natural seawater samples from Killary Harbour, Ireland.

  19. Glycosylation-related genes in NS0 cells are insensitive to moderately elevated ammonium concentrations

    PubMed Central

    Brodsky, Arthur Nathan; Caldwell, Mary; Bae, Sooneon; Harcum, Sarah W.

    2014-01-01

    NS0 and Chinese hamster ovary (CHO) cell lines are used to produce recombinant proteins for human therapeutics; however, ammonium accumulation can negatively impact cell growth, recombinant protein production, and protein glycosylation. To improve product quality and decrease costs, the relationship between ammonium and protein glycosylation needs to be elucidated. While ammonium has been shown to adversely affect glycosylation-related gene expression in CHO cells, NS0 studies have not been performed. Therefore, this study sought to determine if glycosylation in NS0 cells were ammonium-sensitive at the gene expression level. Using a DNA microarray that contained mouse glycosylation-related and housekeeping genes, the of these genes was analysed in response to various culture conditions – elevated ammonium, elevated salt, and elevated ammonium with proline. Surprisingly, no significant differences in gene expression levels were observed between the control and these conditions. Further, the elevated ammonium cultures were analysed using real-time quantitative reverse transcriptase PCR (qRT-PCR) for key glycosylation genes, and the qRT-PCR results corroborated the DNA microarray results, demonstrating that NS0 cells are ammonium-insensitive at the gene expression level. Since NS0 are known to have elevated nucleotide sugar pools under ammonium stress, and none of the genes directly responsible for these metabolic pools were changed, consequently cellular control at the translational or substrate-level must be responsible for the universally observed decreased glycosylation quality under elevated ammonium. PMID:25062658

  20. Expression and Function of the Progesterone Receptor in Human Prostate Stroma Provide Novel Insights to Cell Proliferation Control

    PubMed Central

    Yu, Yue; Liu, Liangliang; Xie, Ning; Xue, Hui; Fazli, Ladan; Buttyan, Ralph; Wang, Yuzhuo; Gleave, Martin

    2013-01-01

    Context: Like other tissues, the prostate is an admixture of many different cell types that can be segregated into components of the epithelium or stroma. Reciprocal interactions between these 2 types of cells are critical for maintaining prostate homeostasis, whereas aberrant stromal cell proliferation can disrupt this balance and result in diseases such as benign prostatic hyperplasia. Although the androgen and estrogen receptors are relatively well studied for their functions in controlling stromal cell proliferation and differentiation, the role of the progesterone receptor (PR) remains unclear. Objective: The aim of the study was to investigate the expression and function of the PR in the prostate. Design and Setting: Human prostate biopsies, renal capsule xenografts, and prostate stromal cells were used. Immunohistochemistry, Western blotting, real-time quantitative PCR, cell proliferation, flow cytometry, and gene microarray analyses were performed. Results: Two PR isoforms, PRA and PRB, are expressed in prostate stromal fibroblasts and smooth muscle cells, but not in epithelial cells. Both PR isoforms suppress prostate stromal cell proliferation through inhibition of the expression of cyclinA, cyclinB, and cdc25c, thus delaying cell cycling through S and M phases. Gene microarray analyses further demonstrated that PRA and PRB regulated different transcriptomes. However, one of the major gene groups commonly regulated by both PR isoforms was the one associated with regulation of cell proliferation. Conclusion: PR plays an inhibitory role in prostate stromal cell proliferation. PMID:23666965

  1. Relevance of TNBS-Colitis in Rats: A Methodological Study with Endoscopic, Histologic and Transcriptomic Characterization and Correlation to IBD

    PubMed Central

    Brenna, Øystein; Furnes, Marianne W.; Drozdov, Ignat; van Beelen Granlund, Atle; Flatberg, Arnar; Sandvik, Arne K.; Zwiggelaar, Rosalie T. M.; Mårvik, Ronald; Nordrum, Ivar S.; Kidd, Mark; Gustafsson, Björn I.

    2013-01-01

    Background Rectal instillation of trinitrobenzene sulphonic acid (TNBS) in ethanol is an established model for inflammatory bowel disease (IBD). We aimed to 1) set up a TNBS-colitis protocol resulting in an endoscopic and histologic picture resembling IBD, 2) study the correlation between endoscopic, histologic and gene expression alterations at different time points after colitis induction, and 3) compare rat and human IBD mucosal transcriptomic data to evaluate whether TNBS-colitis is an appropriate model of IBD. Methodology/Principal Findings Five female Sprague Daley rats received TNBS diluted in 50% ethanol (18 mg/0.6 ml) rectally. The rats underwent colonoscopy with biopsy at different time points. RNA was extracted from rat biopsies and microarray was performed. PCR and in situ hybridization (ISH) were done for validation of microarray results. Rat microarray profiles were compared to human IBD expression profiles (25 ulcerative colitis Endoscopic score demonstrated mild to moderate colitis after three and seven days, but declined after twelve days. Histologic changes corresponded with the endoscopic appearance. Over-represented Gene Ontology Biological Processes included: Cell Adhesion, Immune Response, Lipid Metabolic Process, and Tissue Regeneration. IL-1α, IL-1β, TLR2, TLR4, PRNP were all significantly up-regulated, while PPARγ was significantly down-regulated. Among genes with highest fold change (FC) were SPINK4, LBP, ADA, RETNLB and IL-1α. The highest concordance in differential expression between TNBS and IBD transcriptomes was three days after colitis induction. ISH and PCR results corresponded with the microarray data. The most concordantly expressed biologically relevant pathways included TNF signaling, Cell junction organization, and Interleukin-1 processing. Conclusions/Significance Endoscopy with biopsies in TNBS-colitis is useful to follow temporal changes of inflammation visually and histologically, and to acquire tissue for gene expression analyses. TNBS-colitis is an appropriate model to study specific biological processes in IBD. PMID:23382912

  2. A novel strategy of integrated microarray analysis identifies CENPA, CDK1 and CDC20 as a cluster of diagnostic biomarkers in lung adenocarcinoma.

    PubMed

    Liu, Wan-Ting; Wang, Yang; Zhang, Jing; Ye, Fei; Huang, Xiao-Hui; Li, Bin; He, Qing-Yu

    2018-07-01

    Lung adenocarcinoma (LAC) is the most lethal cancer and the leading cause of cancer-related death worldwide. The identification of meaningful clusters of co-expressed genes or representative biomarkers may help improve the accuracy of LAC diagnoses. Public databases, such as the Gene Expression Omnibus (GEO), provide rich resources of valuable information for clinics, however, the integration of multiple microarray datasets from various platforms and institutes remained a challenge. To determine potential indicators of LAC, we performed genome-wide relative significance (GWRS), genome-wide global significance (GWGS) and support vector machine (SVM) analyses progressively to identify robust gene biomarker signatures from 5 different microarray datasets that included 330 samples. The top 200 genes with robust signatures were selected for integrative analysis according to "guilt-by-association" methods, including protein-protein interaction (PPI) analysis and gene co-expression analysis. Of these 200 genes, only 10 genes showed both intensive PPI network and high gene co-expression correlation (r > 0.8). IPA analysis of this regulatory networks suggested that the cell cycle process is a crucial determinant of LAC. CENPA, as well as two linked hub genes CDK1 and CDC20, are determined to be potential indicators of LAC. Immunohistochemical staining showed that CENPA, CDK1 and CDC20 were highly expressed in LAC cancer tissue with co-expression patterns. A Cox regression model indicated that LAC patients with CENPA + /CDK1 + and CENPA + /CDC20 + were high-risk groups in terms of overall survival. In conclusion, our integrated microarray analysis demonstrated that CENPA, CDK1 and CDC20 might serve as novel cluster of prognostic biomarkers for LAC, and the cooperative unit of three genes provides a technically simple approach for identification of LAC patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Genomic Approach to Study Floral Development Genes in Rosa sp.

    PubMed Central

    Chauvet, Aurélie; Maene, Marion; Pécrix, Yann; Yang, Shu-Hua; Jeauffre, Julien; Thouroude, Tatiana; Boltz, Véronique; Martin-Magniette, Marie-Laure; Janczarski, Stéphane; Legeai, Fabrice; Renou, Jean-Pierre; Vergne, Philippe; Le Bris, Manuel; Foucher, Fabrice; Bendahmane, Mohammed

    2011-01-01

    Cultivated for centuries, the varieties of rose have been selected based on a number of flower traits. Understanding the genetic and molecular basis that contributes to these traits will impact on future improvements for this economically important ornamental plant. In this study, we used scanning electron microscopy and sections of meristems and flowers to establish a precise morphological calendar from early rose flower development stages to senescing flowers. Global gene expression was investigated from floral meristem initiation up to flower senescence in three rose genotypes exhibiting contrasted floral traits including continuous versus once flowering and simple versus double flower architecture, using a newly developed Affymetrix microarray (Rosa1_Affyarray) tool containing sequences representing 4765 unigenes expressed during flower development. Data analyses permitted the identification of genes associated with floral transition, floral organs initiation up to flower senescence. Quantitative real time PCR analyses validated the mRNA accumulation changes observed in microarray hybridizations for a selection of 24 genes expressed at either high or low levels. Our data describe the early flower development stages in Rosa sp, the production of a rose microarray and demonstrate its usefulness and reliability to study gene expression during extensive development phases, from the vegetative meristem to the senescent flower. PMID:22194838

  4. Response of sweet orange (Citrus sinensis) to 'Candidatus Liberibacter asiaticus' infection: microscopy and microarray analyses.

    PubMed

    Kim, Jeong-Soon; Sagaram, Uma Shankar; Burns, Jacqueline K; Li, Jian-Liang; Wang, Nian

    2009-01-01

    Citrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium 'Candidatus Liberibacter spp.' In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls. Investigation of the host response was examined with citrus microarray hybridization based on 33,879 expressed sequence tag sequences from several citrus species and hybrids. The microarray analysis indicated that HLB infection significantly affected expression of 624 genes whose encoded proteins were categorized according to function. The categories included genes associated with sugar metabolism, plant defense, phytohormone, and cell wall metabolism, as well as 14 other gene categories. The anatomical analyses indicated that HLB bacterium infection caused phloem disruption, sucrose accumulation, and plugged sieve pores. The up-regulation of three key starch biosynthetic genes including ADP-glucose pyrophosphorylase, starch synthase, granule-bound starch synthase and starch debranching enzyme likely contributed to accumulation of starch in HLB-affected leaves. The HLB-associated phloem blockage resulted from the plugged sieve pores rather than the HLB bacterial aggregates since 'Ca. Liberibacter asiaticus' does not form aggregate in citrus. The up-regulation of pp2 gene is related to callose deposition to plug the sieve pores in HLB-affected plants.

  5. Microarray analysis of genes differentially expressed in HepG2 cells cultured in simulated microgravity: preliminary report

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Risin, D.; Pellis, N. R.; Yoffe, B.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conducive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells.

  6. MAPPI-DAT: data management and analysis for protein-protein interaction data from the high-throughput MAPPIT cell microarray platform.

    PubMed

    Gupta, Surya; De Puysseleyr, Veronic; Van der Heyden, José; Maddelein, Davy; Lemmens, Irma; Lievens, Sam; Degroeve, Sven; Tavernier, Jan; Martens, Lennart

    2017-05-01

    Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge. We have therefore built the MAPPIT cell microArray Protein Protein Interaction-Data management & Analysis Tool (MAPPI-DAT) as an automated data management and analysis tool for MAPPIT cell microarray experiments. MAPPI-DAT stores the experimental data and metadata in a systematic and structured way, automates data analysis and interpretation, and enables the meta-analysis of MAPPIT cell microarray data across all stored experiments. MAPPI-DAT is developed in Python, using R for data analysis and MySQL as data management system. MAPPI-DAT is cross-platform and can be ran on Microsoft Windows, Linux and OS X/macOS. The source code and a Microsoft Windows executable are freely available under the permissive Apache2 open source license at https://github.com/compomics/MAPPI-DAT. jan.tavernier@vib-ugent.be or lennart.martens@vib-ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  7. Gene selection for microarray data classification via subspace learning and manifold regularization.

    PubMed

    Tang, Chang; Cao, Lijuan; Zheng, Xiao; Wang, Minhui

    2017-12-19

    With the rapid development of DNA microarray technology, large amount of genomic data has been generated. Classification of these microarray data is a challenge task since gene expression data are often with thousands of genes but a small number of samples. In this paper, an effective gene selection method is proposed to select the best subset of genes for microarray data with the irrelevant and redundant genes removed. Compared with original data, the selected gene subset can benefit the classification task. We formulate the gene selection task as a manifold regularized subspace learning problem. In detail, a projection matrix is used to project the original high dimensional microarray data into a lower dimensional subspace, with the constraint that the original genes can be well represented by the selected genes. Meanwhile, the local manifold structure of original data is preserved by a Laplacian graph regularization term on the low-dimensional data space. The projection matrix can serve as an importance indicator of different genes. An iterative update algorithm is developed for solving the problem. Experimental results on six publicly available microarray datasets and one clinical dataset demonstrate that the proposed method performs better when compared with other state-of-the-art methods in terms of microarray data classification. Graphical Abstract The graphical abstract of this work.

  8. Profiling In Situ Microbial Community Structure with an Amplification Microarray

    PubMed Central

    Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.

    2013-01-01

    The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129

  9. A cDNA microarray gene expression data classifier for clinical diagnostics based on graph theory.

    PubMed

    Benso, Alfredo; Di Carlo, Stefano; Politano, Gianfranco

    2011-01-01

    Despite great advances in discovering cancer molecular profiles, the proper application of microarray technology to routine clinical diagnostics is still a challenge. Current practices in the classification of microarrays' data show two main limitations: the reliability of the training data sets used to build the classifiers, and the classifiers' performances, especially when the sample to be classified does not belong to any of the available classes. In this case, state-of-the-art algorithms usually produce a high rate of false positives that, in real diagnostic applications, are unacceptable. To address this problem, this paper presents a new cDNA microarray data classification algorithm based on graph theory and is able to overcome most of the limitations of known classification methodologies. The classifier works by analyzing gene expression data organized in an innovative data structure based on graphs, where vertices correspond to genes and edges to gene expression relationships. To demonstrate the novelty of the proposed approach, the authors present an experimental performance comparison between the proposed classifier and several state-of-the-art classification algorithms.

  10. [Saccharomyces boulardii reduced intestinal inflammation in mice model of 2,4,6-trinitrobencene sulfonic acid induced colitis: based on microarray].

    PubMed

    Lee, Sang Kil; Kim, Hyo Jong; Chi, Sung Gil

    2010-01-01

    Saccharomyces boulardii has been reported to be beneficial in the treatment of inflammatory bowel disease. The aim of this work was to evaluate the effect of S. boulardii in a mice model of 2,4,6-trinitrobencene sulfonic acid (TNBS) induced colitis and analyze the expression of genes in S. boulardii treated mice by microarray. BALB/c mice received TNBS or TNBS and S. boulardii treatment for 4 days. Microarray was performed on total mRNA form colon, and histologic evaluation was also performed. In mice treated with S. boulardii, the histological appearance and mortality rate were significantly restored compared with rats receiving only TNBS. Among 330 genes which were altered by both S. boulardii and TNBS (>2 folds), 193 genes were down-regulated by S. boulardii in microarray. Most of genes which were down-regulated by S. bouardii were functionally classified as inflammatory and immune response related genes. S. boulardii may reduce colonic inflammation along with regulation of inflammatory and immune responsive genes in TNBS-induced colitis.

  11. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies

    PubMed Central

    2012-01-01

    Background The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate. Results We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures. Conclusion T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In contrast, popular normalization approaches like quantile, LOWESS, Peng's method and VSN normalization alter the data distributions of regulation microarrays to such an extent that using these approaches will impact the reliability of the downstream analysis substantially. PMID:22276688

  12. Fuzzy support vector machine for microarray imbalanced data classification

    NASA Astrophysics Data System (ADS)

    Ladayya, Faroh; Purnami, Santi Wulan; Irhamah

    2017-11-01

    DNA microarrays are data containing gene expression with small sample sizes and high number of features. Furthermore, imbalanced classes is a common problem in microarray data. This occurs when a dataset is dominated by a class which have significantly more instances than the other minority classes. Therefore, it is needed a classification method that solve the problem of high dimensional and imbalanced data. Support Vector Machine (SVM) is one of the classification methods that is capable of handling large or small samples, nonlinear, high dimensional, over learning and local minimum issues. SVM has been widely applied to DNA microarray data classification and it has been shown that SVM provides the best performance among other machine learning methods. However, imbalanced data will be a problem because SVM treats all samples in the same importance thus the results is bias for minority class. To overcome the imbalanced data, Fuzzy SVM (FSVM) is proposed. This method apply a fuzzy membership to each input point and reformulate the SVM such that different input points provide different contributions to the classifier. The minority classes have large fuzzy membership so FSVM can pay more attention to the samples with larger fuzzy membership. Given DNA microarray data is a high dimensional data with a very large number of features, it is necessary to do feature selection first using Fast Correlation based Filter (FCBF). In this study will be analyzed by SVM, FSVM and both methods by applying FCBF and get the classification performance of them. Based on the overall results, FSVM on selected features has the best classification performance compared to SVM.

  13. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    NASA Astrophysics Data System (ADS)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  14. A DNA microarray-based assay to detect dual infection with two dengue virus serotypes.

    PubMed

    Díaz-Badillo, Alvaro; Muñoz, María de Lourdes; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G; Martínez-Muñoz, Jorge P; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-04-25

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  15. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    PubMed Central

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  16. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability

    PubMed Central

    2009-01-01

    Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical. Conclusion Feature variability can have a strong impact on breast cancer signature composition, as well as the classification of individual patient samples. We therefore strongly recommend that feature variability is considered in analyzing data from microarray breast cancer expression profiling experiments. PMID:19941644

  17. A Novel Plasmid-Based Microarray Screen Identifies Suppressors of rrp6Δ in Saccharomyces cerevisiae▿†

    PubMed Central

    Abruzzi, Katharine; Denome, Sylvia; Olsen, Jens Raabjerg; Assenholt, Jannie; Haaning, Line Lindegaard; Jensen, Torben Heick; Rosbash, Michael

    2007-01-01

    Genetic screens in Saccharomyces cerevisiae provide novel information about interacting genes and pathways. We screened for high-copy-number suppressors of a strain with the gene encoding the nuclear exosome component Rrp6p deleted, with either a traditional plate screen for suppressors of rrp6Δ temperature sensitivity or a novel microarray enhancer/suppressor screening (MES) strategy. MES combines DNA microarray technology with high-copy-number plasmid expression in liquid media. The plate screen and MES identified overlapping, but also different, suppressor genes. Only MES identified the novel mRNP protein Nab6p and the tRNA transporter Los1p, which could not have been identified in a traditional plate screen; both genes are toxic when overexpressed in rrp6Δ strains at 37°C. Nab6p binds poly(A)+ RNA, and the functions of Nab6p and Los1p suggest that mRNA metabolism and/or protein synthesis are growth rate limiting in rrp6Δ strains. Microarray analyses of gene expression in rrp6Δ strains and a number of suppressor strains support this hypothesis. PMID:17101774

  18. High density DNA microarrays: algorithms and biomedical applications.

    PubMed

    Liu, Wei-Min

    2004-08-01

    DNA microarrays are devices capable of detecting the identity and abundance of numerous DNA or RNA segments in samples. They are used for analyzing gene expressions, identifying genetic markers and detecting mutations on a genomic scale. The fundamental chemical mechanism of DNA microarrays is the hybridization between probes and targets due to the hydrogen bonds of nucleotide base pairing. Since the cross hybridization is inevitable, and probes or targets may form undesirable secondary or tertiary structures, the microarray data contain noise and depend on experimental conditions. It is crucial to apply proper statistical algorithms to obtain useful signals from noisy data. After we obtained the signals of a large amount of probes, we need to derive the biomedical information such as the existence of a transcript in a cell, the difference of expression levels of a gene in multiple samples, and the type of a genetic marker. Furthermore, after the expression levels of thousands of genes or the genotypes of thousands of single nucleotide polymorphisms are determined, it is usually important to find a small number of genes or markers that are related to a disease, individual reactions to drugs, or other phenotypes. All these applications need careful data analyses and reliable algorithms.

  19. Methodological Challenges in Protein Microarray and Immunohistochemistry for the Discovery of Novel Autoantibodies in Paediatric Acute Disseminated Encephalomyelitis

    PubMed Central

    Peschl, Patrick; Ramberger, Melanie; Höftberger, Romana; Jöhrer, Karin; Baumann, Matthias; Rostásy, Kevin; Reindl, Markus

    2017-01-01

    Acute disseminated encephalomyelitis (ADEM) is a rare autoimmune-mediated demyelinating disease affecting mainly children and young adults. Differentiation to multiple sclerosis is not always possible, due to overlapping clinical symptoms and recurrent and multiphasic forms. Until now, immunoglobulins reactive to myelin oligodendrocyte glycoprotein (MOG antibodies) have been found in a subset of patients with ADEM. However, there are still patients lacking autoantibodies, necessitating the identification of new autoantibodies as biomarkers in those patients. Therefore, we aimed to identify novel autoantibody targets in ADEM patients. Sixteen ADEM patients (11 seronegative, 5 seropositive for MOG antibodies) were analysed for potential new biomarkers, using a protein microarray and immunohistochemistry on rat brain tissue to identify antibodies against intracellular and surface neuronal and glial antigens. Nine candidate antigens were identified in the protein microarray analysis in at least two patients per group. Immunohistochemistry on rat brain tissue did not reveal new target antigens. Although no new autoantibody targets could be found here, future studies should aim to identify new biomarkers for therapeutic and prognostic purposes. The microarray analysis and immunohistochemistry methods used here have several limitations, which should be considered in future searches for biomarkers. PMID:28327523

  20. Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis.

    PubMed

    Liu, Mingyuan; Hou, Xiaojun; Zhang, Ping; Hao, Yong; Yang, Yiting; Wu, Xiongfeng; Zhu, Desheng; Guan, Yangtai

    2013-05-01

    Multiple sclerosis (MS) is the most prevalent demyelinating disease and the principal cause of neurological disability in young adults. Recent microarray gene expression profiling studies have identified several genetic variants contributing to the complex pathogenesis of MS, however, expressional and functional studies are still required to further understand its molecular mechanism. The present study aimed to analyze the molecular mechanism of MS using microarray analysis combined with bioinformatics techniques. We downloaded the gene expression profile of MS from Gene Expression Omnibus (GEO) and analysed the microarray data using the differentially coexpressed genes (DCGs) and links package in R and Database for Annotation, Visualization and Integrated Discovery. The regulatory impact factor (RIF) algorithm was used to measure the impact factor of transcription factor. A total of 1,297 DCGs between MS patients and healthy controls were identified. Functional annotation indicated that these DCGs were associated with immune and neurological functions. Furthermore, the RIF result suggested that IKZF1, BACH1, CEBPB, EGR1, FOS may play central regulatory roles in controlling gene expression in the pathogenesis of MS. Our findings confirm the presence of multiple molecular alterations in MS and indicate the possibility for identifying prognostic factors associated with MS pathogenesis.

  1. [Differentially expressed genes of cell signal transduction associated with benzene poisoning by cDNA microarray].

    PubMed

    Wang, Hong; Bi, Yongyi; Tao, Ning; Wang, Chunhong

    2005-08-01

    To detect the differential expression of cell signal transduction genes associated with benzene poisoning, and to explore the pathogenic mechanisms of blood system damage induced by benzene. Peripheral white blood cell gene expression profile of 7 benzene poisoning patients, including one aplastic anemia, was determined by cDNA microarray. Seven chips from normal workers were served as controls. Cluster analysis of gene expression profile was performed. Among the 4265 target genes, 176 genes associated with cell signal transduction were differentially expressed. 35 up-regulated genes including PTPRC, STAT4, IFITM1 etc were found in at least 6 pieces of microarray; 45 down-regulated genes including ARHB, PPP3CB, CDC37 etc were found in at least 5 pieces of microarray. cDNA microarray technology is an effective technique for screening the differentially expressed genes of cell signal transduction. Disorder in cell signal transduction may play certain role in the pathogenic mechanism of benzene poisoning.

  2. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity.

    PubMed

    Elferink, M G L; Olinga, P; Draaisma, A L; Merema, M T; Bauerschmidt, S; Polman, J; Schoonen, W G; Groothuis, G M M

    2008-06-15

    The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such as Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl(4), fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.

  3. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elferink, M.G.L.; Olinga, P.; Draaisma, A.L.

    2008-06-15

    The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such asmore » Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl{sub 4}, fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.« less

  4. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    PubMed

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  5. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency.

    PubMed

    Xue, Gang-Ping; McIntyre, C Lynne; Chapman, Scott; Bower, Neil I; Way, Heather; Reverter, Antonio; Clarke, Bryan; Shorter, Ray

    2006-08-01

    High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Delta(13)C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE.

  6. Genomics of the Effect of Spinal Cord Stimulation on an Animal Model of Neuropathic Pain.

    PubMed

    Vallejo, Ricardo; Tilley, Dana M; Cedeño, David L; Kelley, Courtney A; DeMaegd, Margaret; Benyamin, Ramsin

    2016-08-01

    Few studies have evaluated single-gene changes modulated by spinal cord stimulation (SCS), providing a narrow understanding of molecular changes. Genomics allows for a robust analysis of holistic gene changes in response to stimulation. Rats were randomized into six groups to determine the effect of continuous SCS in uninjured and spared-nerve injury (SNI) animals. After behavioral assessment, tissues from the dorsal quadrant of the spinal cord (SC) and dorsal root ganglion (DRG) underwent full-genome microarray analyses. Weighted Gene Correlation Network Analysis (WGCNA), and Gene Ontology (GO) analysis identified similar expression patterns, molecular functions and biological processes for significant genes. Microarray analyses reported 20,985 gene probes in SC and 19,104 in DRG. WGCNA sorted 7449 SC and 4275 DRG gene probes into 29 and 9 modules, respectively. WGCNA provided significant modules from paired comparisons of experimental groups. GO analyses reported significant biological processes influenced by injury, as well as the presence of an electric field. The genes Tlr2, Cxcl16, and Cd68 were used to further validate the microarray based on significant response to SCS in SNI animals. They were up-regulated in the SC while both Tlr2 and Cd68 were up-regulated in the DRG. The process described provides highly significant interconnected genes and pathways responsive to injury and/or electric field in the SC and DRG. Genes in the SC respond significantly to the SCS in both injured and uninjured animals, while those in the DRG significantly responded to injury, and SCS in injured animals. © 2016 International Neuromodulation Society.

  7. Building gene co-expression networks using transcriptomics data for systems biology investigations: Comparison of methods using microarray data

    PubMed Central

    Kadarmideen, Haja N; Watson-haigh, Nathan S

    2012-01-01

    Gene co-expression networks (GCN), built using high-throughput gene expression data are fundamental aspects of systems biology. The main aims of this study were to compare two popular approaches to building and analysing GCN. We use real ovine microarray transcriptomics datasets representing four different treatments with Metyrapone, an inhibitor of cortisol biosynthesis. We conducted several microarray quality control checks before applying GCN methods to filtered datasets. Then we compared the outputs of two methods using connectivity as a criterion, as it measures how well a node (gene) is connected within a network. The two GCN construction methods used were, Weighted Gene Co-expression Network Analysis (WGCNA) and Partial Correlation and Information Theory (PCIT) methods. Nodes were ranked based on their connectivity measures in each of the four different networks created by WGCNA and PCIT and node ranks in two methods were compared to identify those nodes which are highly differentially ranked (HDR). A total of 1,017 HDR nodes were identified across one or more of four networks. We investigated HDR nodes by gene enrichment analyses in relation to their biological relevance to phenotypes. We observed that, in contrast to WGCNA method, PCIT algorithm removes many of the edges of the most highly interconnected nodes. Removal of edges of most highly connected nodes or hub genes will have consequences for downstream analyses and biological interpretations. In general, for large GCN construction (with > 20000 genes) access to large computer clusters, particularly those with larger amounts of shared memory is recommended. PMID:23144540

  8. Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis

    PubMed Central

    Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng

    2016-01-01

    Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid. PMID:28101509

  9. Noninvasive electromagnetic fields on keratinocyte growth and migration.

    PubMed

    Huo, Ran; Ma, Qianli; Wu, James J; Chin-Nuke, Kayla; Jing, Yuqi; Chen, Juan; Miyar, Maria E; Davis, Stephen C; Li, Jie

    2010-08-01

    Although evidence has shown that very small electrical currents produce a beneficial therapeutic result for wounds, noninvasive electromagnetic field (EMF) therapy has consisted mostly of anecdotal clinical reports, with very few well-controlled laboratory mechanistic studies. In this study, we evaluate the effects and potential mechanisms of a noninvasive EMF device on skin wound repair. The effects of noninvasive EMF on keratinocytes and fibroblasts were assessed via proliferation and incisional wound model migration assays. cDNA microarray and RT-PCR were utilized to assess genetic expression changes in keratinocytes after noninvasive EMF treatment. In vitro analyses with human skin keratinocyte cultures demonstrated that noninvasive EMFs have a strong effect on accelerating keratinocyte migration and a relatively weaker effect on promoting keratinocyte proliferation. The positive effects of noninvasive EMFs on cell migration and proliferation seem keratinocyte-specific without such effects seen on dermal fibroblasts. cDNA microarray and RT-PCR performed revealed increased expression of CRK7 and HOXC8 genes in treated keratinocytes. This study suggests that a noninvasive EMF accelerates wound re-epithelialization through a mechanism of promoting keratinocyte migration and proliferation, possibly due to upregulation of CRK7 and HOXC8 genes. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety ofmore » inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells. - Highlights: • Human adipose stem cells (hASCs) were isolated, characterized and cultured. • Growth factor combinations were evaluated for their effectiveness in differentiation using IHC. • hASCs were differentiated into smooth muscle (SM)-like cells using TGF-β1 and BMP4 combination. • Microarray analysis was performed for hASCs, SM-like cells and coronary artery-SMCs. • Microarray data was used to perform hierarchical clustering and interpretation of activated pathways.« less

  11. Experimental design for three-color and four-color gene expression microarrays.

    PubMed

    Woo, Yong; Krueger, Winfried; Kaur, Anupinder; Churchill, Gary

    2005-06-01

    Three-color microarrays, compared with two-color microarrays, can increase design efficiency and power to detect differential expression without additional samples and arrays. Furthermore, three-color microarray technology is currently available at a reasonable cost. Despite the potential advantages, clear guidelines for designing and analyzing three-color experiments do not exist. We propose a three- and a four-color cyclic design (loop) and a complementary graphical representation to help design experiments that are balanced, efficient and robust to hybridization failures. In theory, three-color loop designs are more efficient than two-color loop designs. Experiments using both two- and three-color platforms were performed in parallel and their outputs were analyzed using linear mixed model analysis in R/MAANOVA. These results demonstrate that three-color experiments using the same number of samples (and fewer arrays) will perform as efficiently as two-color experiments. The improved efficiency of the design is somewhat offset by a reduced dynamic range and increased variability in the three-color experimental system. This result suggests that, with minor technological improvements, three-color microarrays using loop designs could detect differential expression more efficiently than two-color loop designs. http://www.jax.org/staff/churchill/labsite/software Multicolor cyclic design construction methods and examples along with additional results of the experiment are provided at http://www.jax.org/staff/churchill/labsite/pubs/yong.

  12. 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia.

    PubMed

    Schönmann, Susan; Loy, Alexander; Wimmersberger, Céline; Sobek, Jens; Aquino, Catharine; Vandamme, Peter; Frey, Beat; Rehrauer, Hubert; Eberl, Leo

    2009-04-01

    For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.

  13. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  14. Microarray-based screening of heat shock protein inhibitors.

    PubMed

    Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten

    2014-06-20

    Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes.

    PubMed

    Brock, Guy N; Shaffer, John R; Blakesley, Richard E; Lotz, Meredith J; Tseng, George C

    2008-01-10

    Gene expression data frequently contain missing values, however, most down-stream analyses for microarray experiments require complete data. In the literature many methods have been proposed to estimate missing values via information of the correlation patterns within the gene expression matrix. Each method has its own advantages, but the specific conditions for which each method is preferred remains largely unclear. In this report we describe an extensive evaluation of eight current imputation methods on multiple types of microarray experiments, including time series, multiple exposures, and multiple exposures x time series data. We then introduce two complementary selection schemes for determining the most appropriate imputation method for any given data set. We found that the optimal imputation algorithms (LSA, LLS, and BPCA) are all highly competitive with each other, and that no method is uniformly superior in all the data sets we examined. The success of each method can also depend on the underlying "complexity" of the expression data, where we take complexity to indicate the difficulty in mapping the gene expression matrix to a lower-dimensional subspace. We developed an entropy measure to quantify the complexity of expression matrixes and found that, by incorporating this information, the entropy-based selection (EBS) scheme is useful for selecting an appropriate imputation algorithm. We further propose a simulation-based self-training selection (STS) scheme. This technique has been used previously for microarray data imputation, but for different purposes. The scheme selects the optimal or near-optimal method with high accuracy but at an increased computational cost. Our findings provide insight into the problem of which imputation method is optimal for a given data set. Three top-performing methods (LSA, LLS and BPCA) are competitive with each other. Global-based imputation methods (PLS, SVD, BPCA) performed better on mcroarray data with lower complexity, while neighbour-based methods (KNN, OLS, LSA, LLS) performed better in data with higher complexity. We also found that the EBS and STS schemes serve as complementary and effective tools for selecting the optimal imputation algorithm.

  16. A benchmark for statistical microarray data analysis that preserves actual biological and technical variance.

    PubMed

    De Hertogh, Benoît; De Meulder, Bertrand; Berger, Fabrice; Pierre, Michael; Bareke, Eric; Gaigneaux, Anthoula; Depiereux, Eric

    2010-01-11

    Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance of statistical methods. Our novel method ranks the probesets from a dataset composed of publicly-available biological microarray data and extracts subset matrices with precise information/noise ratios. Our method can be used to determine the capability of different methods to better estimate variance for a given number of replicates. The mean-variance and mean-fold change relationships of the matrices revealed a closer approximation of biological reality. Performance analysis refined the results from benchmarks published previously.We show that the Shrinkage t test (close to Limma) was the best of the methods tested, except when two replicates were examined, where the Regularized t test and the Window t test performed slightly better. The R scripts used for the analysis are available at http://urbm-cluster.urbm.fundp.ac.be/~bdemeulder/.

  17. Equalizer reduces SNP bias in Affymetrix microarrays.

    PubMed

    Quigley, David

    2015-07-30

    Gene expression microarrays measure the levels of messenger ribonucleic acid (mRNA) in a sample using probe sequences that hybridize with transcribed regions. These probe sequences are designed using a reference genome for the relevant species. However, most model organisms and all humans have genomes that deviate from their reference. These variations, which include single nucleotide polymorphisms, insertions of additional nucleotides, and nucleotide deletions, can affect the microarray's performance. Genetic experiments comparing individuals bearing different population-associated single nucleotide polymorphisms that intersect microarray probes are therefore subject to systemic bias, as the reduction in binding efficiency due to a technical artifact is confounded with genetic differences between parental strains. This problem has been recognized for some time, and earlier methods of compensation have attempted to identify probes affected by genome variants using statistical models. These methods may require replicate microarray measurement of gene expression in the relevant tissue in inbred parental samples, which are not always available in model organisms and are never available in humans. By using sequence information for the genomes of organisms under investigation, potentially problematic probes can now be identified a priori. However, there is no published software tool that makes it easy to eliminate these probes from an annotation. I present equalizer, a software package that uses genome variant data to modify annotation files for the commonly used Affymetrix IVT and Gene/Exon platforms. These files can be used by any microarray normalization method for subsequent analysis. I demonstrate how use of equalizer on experiments mapping germline influence on gene expression in a genetic cross between two divergent mouse species and in human samples significantly reduces probe hybridization-induced bias, reducing false positive and false negative findings. The equalizer package reduces probe hybridization bias from experiments performed on the Affymetrix microarray platform, allowing accurate assessment of germline influence on gene expression.

  18. A microarray-based genotyping and genetic mapping approach for highly heterozygous outcrossing species enables localization of a large fraction of the unassembled Populus trichocarpa genome sequence.

    PubMed

    Drost, Derek R; Novaes, Evandro; Boaventura-Novaes, Carolina; Benedict, Catherine I; Brown, Ryan S; Yin, Tongming; Tuskan, Gerald A; Kirst, Matias

    2009-06-01

    Microarrays have demonstrated significant power for genome-wide analyses of gene expression, and recently have also revolutionized the genetic analysis of segregating populations by genotyping thousands of loci in a single assay. Although microarray-based genotyping approaches have been successfully applied in yeast and several inbred plant species, their power has not been proven in an outcrossing species with extensive genetic diversity. Here we have developed methods for high-throughput microarray-based genotyping in such species using a pseudo-backcross progeny of 154 individuals of Populus trichocarpa and P. deltoides analyzed with long-oligonucleotide in situ-synthesized microarray probes. Our analysis resulted in high-confidence genotypes for 719 single-feature polymorphism (SFP) and 1014 gene expression marker (GEM) candidates. Using these genotypes and an established microsatellite (SSR) framework map, we produced a high-density genetic map comprising over 600 SFPs, GEMs and SSRs. The abundance of gene-based markers allowed us to localize over 35 million base pairs of previously unplaced whole-genome shotgun (WGS) scaffold sequence to putative locations in the genome of P. trichocarpa. A high proportion of sampled scaffolds could be verified for their placement with independently mapped SSRs, demonstrating the previously un-utilized power that high-density genotyping can provide in the context of map-based WGS sequence reassembly. Our results provide a substantial contribution to the continued improvement of the Populus genome assembly, while demonstrating the feasibility of microarray-based genotyping in a highly heterozygous population. The strategies presented are applicable to genetic mapping efforts in all plant species with similarly high levels of genetic diversity.

  19. Bioinformatics on the cloud computing platform Azure.

    PubMed

    Shanahan, Hugh P; Owen, Anne M; Harrison, Andrew P

    2014-01-01

    We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We focus on the usability of the resource rather than its performance. We provide an example of how R can be used on Azure to analyse a large amount of microarray expression data deposited at the public database ArrayExpress. We provide a walk through to demonstrate explicitly how Azure can be used to perform these analyses in Appendix S1 and we offer a comparison with a local computation. We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning curve for bioinformatics developers who will usually have a Linux and scripting language background. On the other hand, the presence of an additional set of libraries makes it easier to deploy software in a parallel (scalable) fashion and explicitly manage such a production run with only a few hundred lines of code, most of which can be incorporated from a template. We propose that this environment is best suited for running stable bioinformatics software by users not involved with its development.

  20. Bioinformatics on the Cloud Computing Platform Azure

    PubMed Central

    Shanahan, Hugh P.; Owen, Anne M.; Harrison, Andrew P.

    2014-01-01

    We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We focus on the usability of the resource rather than its performance. We provide an example of how R can be used on Azure to analyse a large amount of microarray expression data deposited at the public database ArrayExpress. We provide a walk through to demonstrate explicitly how Azure can be used to perform these analyses in Appendix S1 and we offer a comparison with a local computation. We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning curve for bioinformatics developers who will usually have a Linux and scripting language background. On the other hand, the presence of an additional set of libraries makes it easier to deploy software in a parallel (scalable) fashion and explicitly manage such a production run with only a few hundred lines of code, most of which can be incorporated from a template. We propose that this environment is best suited for running stable bioinformatics software by users not involved with its development. PMID:25050811

  1. Evaluation of Four RNA Extraction Methods for Gene Expression Analyses of Cryptosporidium parvum and Toxoplasma gondii Oocys

    EPA Science Inventory

    Cryptosporidium spp. and Toxoplasma gondii are important coccidian parasites that have caused waterborne and foodborne disease outbreaks worldwide. Techniques like subtractive hybridization, microarrays, and quantitative reverse transcriptase real-time polymerase chain reaction (...

  2. Curcumin is a potent modulator of microglial gene expression and migration

    PubMed Central

    2011-01-01

    Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB) signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and Signal transducer and activator of transcription 1 was reduced in LPS-triggered microglia. These transcriptional changes in curcumin-treated LPS-primed microglia also lead to decreased neurotoxicity with reduced apoptosis of 661W photoreceptor cultures. Conclusions Collectively, our results suggest that curcumin is a potent modulator of the microglial transcriptome. Curcumin attenuates microglial migration and triggers a phenotype with anti-inflammatory and neuroprotective properties. Thus, curcumin could be a nutraceutical compound to develop immuno-modulatory and neuroprotective therapies for the treatment of various neurodegenerative disorders. PMID:21958395

  3. An alternative method to amplify RNA without loss of signal conservation for expression analysis with a proteinase DNA microarray in the ArrayTube format.

    PubMed

    Schüler, Susann; Wenz, Ingrid; Wiederanders, B; Slickers, P; Ehricht, R

    2006-06-12

    Recent developments in DNA microarray technology led to a variety of open and closed devices and systems including high and low density microarrays for high-throughput screening applications as well as microarrays of lower density for specific diagnostic purposes. Beside predefined microarrays for specific applications manufacturers offer the production of custom-designed microarrays adapted to customers' wishes. Array based assays demand complex procedures including several steps for sample preparation (RNA extraction, amplification and sample labelling), hybridization and detection, thus leading to a high variability between several approaches and resulting in the necessity of extensive standardization and normalization procedures. In the present work a custom designed human proteinase DNA microarray of lower density in ArrayTube format was established. This highly economic open platform only requires standard laboratory equipment and allows the study of the molecular regulation of cell behaviour by proteinases. We established a procedure for sample preparation and hybridization and verified the array based gene expression profile by quantitative real-time PCR (QRT-PCR). Moreover, we compared the results with the well established Affymetrix microarray. By application of standard labelling procedures with e.g. Klenow fragment exo-, single primer amplification (SPA) or In Vitro Transcription (IVT) we noticed a loss of signal conservation for some genes. To overcome this problem we developed a protocol in accordance with the SPA protocol, in which we included target specific primers designed individually for each spotted oligomer. Here we present a complete array based assay in which only the specific transcripts of interest are amplified in parallel and in a linear manner. The array represents a proof of principle which can be adapted to other species as well. As the designed protocol for amplifying mRNA starts from as little as 100 ng total RNA, it presents an alternative method for detecting even low expressed genes by microarray experiments in a highly reproducible and sensitive manner. Preservation of signal integrity is demonstrated out by QRT-PCR measurements. The little amounts of total RNA necessary for the analyses make this method applicable for investigations with limited material as in clinical samples from, for example, organ or tumour biopsies. Those are arguments in favour of the high potential of our assay compared to established procedures for amplification within the field of diagnostic expression profiling. Nevertheless, the screening character of microarray data must be mentioned, and independent methods should verify the results.

  4. Reusable conductimetric array of interdigitated microelectrodes for the readout of low-density microarrays.

    PubMed

    Mallén, Maria; Díaz-González, María; Bonilla, Diana; Salvador, Juan P; Marco, María P; Baldi, Antoni; Fernández-Sánchez, César

    2014-06-17

    Low-density protein microarrays are emerging tools in diagnostics whose deployment could be primarily limited by the cost of fluorescence detection schemes. This paper describes an electrical readout system of microarrays comprising an array of gold interdigitated microelectrodes and an array of polydimethylsiloxane microwells, which enabled multiplexed detection of up to thirty six biological events on the same substrate. Similarly to fluorescent readout counterparts, the microarray can be developed on disposable glass slide substrates. However, unlike them, the presented approach is compact and requires a simple and inexpensive instrumentation. The system makes use of urease labeled affinity reagents for developing the microarrays and is based on detection of conductivity changes taking place when ionic species are generated in solution due to the catalytic hydrolysis of urea. The use of a polydimethylsiloxane microwell array facilitates the positioning of the measurement solution on every spot of the microarray. Also, it ensures the liquid tightness and isolation from the surrounding ones during the microarray readout process, thereby avoiding evaporation and chemical cross-talk effects that were shown to affect the sensitivity and reliability of the system. The performance of the system is demonstrated by carrying out the readout of a microarray for boldenone anabolic androgenic steroid hormone. Analytical results are comparable to those obtained by fluorescent scanner detection approaches. The estimated detection limit is 4.0 ng mL(-1), this being below the threshold value set by the World Anti-Doping Agency and the European Community. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. MicroGen: a MIAME compliant web system for microarray experiment information and workflow management.

    PubMed

    Burgarella, Sarah; Cattaneo, Dario; Pinciroli, Francesco; Masseroli, Marco

    2005-12-01

    Improvements of bio-nano-technologies and biomolecular techniques have led to increasing production of high-throughput experimental data. Spotted cDNA microarray is one of the most diffuse technologies, used in single research laboratories and in biotechnology service facilities. Although they are routinely performed, spotted microarray experiments are complex procedures entailing several experimental steps and actors with different technical skills and roles. During an experiment, involved actors, who can also be located in a distance, need to access and share specific experiment information according to their roles. Furthermore, complete information describing all experimental steps must be orderly collected to allow subsequent correct interpretation of experimental results. We developed MicroGen, a web system for managing information and workflow in the production pipeline of spotted microarray experiments. It is constituted of a core multi-database system able to store all data completely characterizing different spotted microarray experiments according to the Minimum Information About Microarray Experiments (MIAME) standard, and of an intuitive and user-friendly web interface able to support the collaborative work required among multidisciplinary actors and roles involved in spotted microarray experiment production. MicroGen supports six types of user roles: the researcher who designs and requests the experiment, the spotting operator, the hybridisation operator, the image processing operator, the system administrator, and the generic public user who can access the unrestricted part of the system to get information about MicroGen services. MicroGen represents a MIAME compliant information system that enables managing workflow and supporting collaborative work in spotted microarray experiment production.

  6. Intratumoral heterogeneity analysis reveals hidden associations between protein expression losses and patient survival in clear cell renal cell carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2017-01-01

    Intratumoral heterogeneity (ITH) is a prominent feature of kidney cancer. It is not known whether it has utility in finding associations between protein expression and clinical parameters. We used ITH that is detected by immunohistochemistry (IHC) to aid the association analysis between the loss of SWI/SNF components and clinical parameters.160 ccRCC tumors (40 per tumor stage) were used to generate tissue microarray (TMA). Four foci from different regions of each tumor were selected. IHC was performed against PBRM1, ARID1A, SETD2, SMARCA4, and SMARCA2. Statistical analyses were performed to correlate biomarker losses with patho-clinical parameters. Categorical variables were compared between groups using Fisher's exact tests. Univariate and multivariable analyses were used to correlate biomarker changes and patient survivals. Multivariable analyses were performed by constructing decision trees using the classification and regression trees (CART) methodology. IHC detected widespread ITH in ccRCC tumors. The statistical analysis of the “Truncal loss” (root loss) found additional correlations between biomarker losses and tumor stages than the traditional “Loss in tumor (total)”. Losses of SMARCA4 or SMARCA2 significantly improved prognosis for overall survival (OS). Losses of PBRM1, ARID1A or SETD2 had the opposite effect. Thus “Truncal Loss” analysis revealed hidden links between protein losses and patient survival in ccRCC. PMID:28445125

  7. Transcriptome profiling of the intoxication response of Tenebrio molitor larvae to Bacillus thuringiensis Cry3Aa protoxin.

    PubMed

    Oppert, Brenda; Dowd, Scot E; Bouffard, Pascal; Li, Lewyn; Conesa, Ana; Lorenzen, Marcé D; Toutges, Michelle; Marshall, Jeremy; Huestis, Diana L; Fabrick, Jeff; Oppert, Cris; Jurat-Fuentes, Juan Luis

    2012-01-01

    Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor to date. Furthermore, the methods in this study are useful for comparative analyses in organisms lacking a sequenced genome.

  8. Transcriptome Profiling of the Intoxication Response of Tenebrio molitor Larvae to Bacillus thuringiensis Cry3Aa Protoxin

    PubMed Central

    Oppert, Brenda; Dowd, Scot E.; Bouffard, Pascal; Li, Lewyn; Conesa, Ana; Lorenzen, Marcé D.; Toutges, Michelle; Marshall, Jeremy; Huestis, Diana L.; Fabrick, Jeff; Oppert, Cris; Jurat-Fuentes, Juan Luis

    2012-01-01

    Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor to date. Furthermore, the methods in this study are useful for comparative analyses in organisms lacking a sequenced genome. PMID:22558093

  9. Cell Wall Modifications in Maize Pulvini in Response to Gravitational Stress1[W][OA

    PubMed Central

    Zhang, Qisen; Pettolino, Filomena A.; Dhugga, Kanwarpal S.; Rafalski, J. Antoni; Tingey, Scott; Taylor, Jillian; Shirley, Neil J.; Hayes, Kevin; Beatty, Mary; Abrams, Suzanne R.; Zaharia, L. Irina; Burton, Rachel A.; Bacic, Antony; Fincher, Geoffrey B.

    2011-01-01

    Changes in cell wall polysaccharides, transcript abundance, metabolite profiles, and hormone concentrations were monitored in the upper and lower regions of maize (Zea mays) pulvini in response to gravistimulation, during which maize plants placed in a horizontal position returned to the vertical orientation. Heteroxylan levels increased in the lower regions of the pulvini, together with lignin, but xyloglucans and heteromannan contents decreased. The degree of substitution of heteroxylan with arabinofuranosyl residues decreased in the lower pulvini, which exhibited increased mechanical strength as the plants returned to the vertical position. Few or no changes in noncellulosic wall polysaccharides could be detected on the upper side of the pulvinus, and crystalline cellulose content remained essentially constant in both the upper and lower pulvinus. Microarray analyses showed that spatial and temporal changes in transcript profiles were consistent with the changes in wall composition that were observed in the lower regions of the pulvinus. In addition, the microarray analyses indicated that metabolic pathways leading to the biosynthesis of phytohormones were differentially activated in the upper and lower regions of the pulvinus in response to gravistimulation. Metabolite profiles and measured hormone concentrations were consistent with the microarray data, insofar as auxin, physiologically active gibberellic acid, and metabolites potentially involved in lignin biosynthesis increased in the elongating cells of the lower pulvinus. PMID:21697508

  10. SYMBIOmatics: synergies in Medical Informatics and Bioinformatics--exploring current scientific literature for emerging topics.

    PubMed

    Rebholz-Schuhman, Dietrich; Cameron, Graham; Clark, Dominic; van Mulligen, Erik; Coatrieux, Jean-Louis; Del Hoyo Barbolla, Eva; Martin-Sanchez, Fernando; Milanesi, Luciano; Porro, Ivan; Beltrame, Francesco; Tollis, Ioannis; Van der Lei, Johan

    2007-03-08

    The SYMBIOmatics Specific Support Action (SSA) is "an information gathering and dissemination activity" that seeks "to identify synergies between the bioinformatics and the medical informatics" domain to improve collaborative progress between both domains (ref. to http://www.symbiomatics.org). As part of the project experts in both research fields will be identified and approached through a survey. To provide input to the survey, the scientific literature was analysed to extract topics relevant to both medical informatics and bioinformatics. This paper presents results of a systematic analysis of the scientific literature from medical informatics research and bioinformatics research. In the analysis pairs of words (bigrams) from the leading bioinformatics and medical informatics journals have been used as indication of existing and emerging technologies and topics over the period 2000-2005 ("recent") and 1990-1990 ("past"). We identified emerging topics that were equally important to bioinformatics and medical informatics in recent years such as microarray experiments, ontologies, open source, text mining and support vector machines. Emerging topics that evolved only in bioinformatics were system biology, protein interaction networks and statistical methods for microarray analyses, whereas emerging topics in medical informatics were grid technology and tissue microarrays. We conclude that although both fields have their own specific domains of interest, they share common technological developments that tend to be initiated by new developments in biotechnology and computer science.

  11. SYMBIOmatics: Synergies in Medical Informatics and Bioinformatics – exploring current scientific literature for emerging topics

    PubMed Central

    Rebholz-Schuhman, Dietrich; Cameron, Graham; Clark, Dominic; van Mulligen, Erik; Coatrieux, Jean-Louis; Del Hoyo Barbolla, Eva; Martin-Sanchez, Fernando; Milanesi, Luciano; Porro, Ivan; Beltrame, Francesco; Tollis, Ioannis; Van der Lei, Johan

    2007-01-01

    Background The SYMBIOmatics Specific Support Action (SSA) is "an information gathering and dissemination activity" that seeks "to identify synergies between the bioinformatics and the medical informatics" domain to improve collaborative progress between both domains (ref. to ). As part of the project experts in both research fields will be identified and approached through a survey. To provide input to the survey, the scientific literature was analysed to extract topics relevant to both medical informatics and bioinformatics. Results This paper presents results of a systematic analysis of the scientific literature from medical informatics research and bioinformatics research. In the analysis pairs of words (bigrams) from the leading bioinformatics and medical informatics journals have been used as indication of existing and emerging technologies and topics over the period 2000–2005 ("recent") and 1990–1990 ("past"). We identified emerging topics that were equally important to bioinformatics and medical informatics in recent years such as microarray experiments, ontologies, open source, text mining and support vector machines. Emerging topics that evolved only in bioinformatics were system biology, protein interaction networks and statistical methods for microarray analyses, whereas emerging topics in medical informatics were grid technology and tissue microarrays. Conclusion We conclude that although both fields have their own specific domains of interest, they share common technological developments that tend to be initiated by new developments in biotechnology and computer science. PMID:17430562

  12. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineermore » regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.« less

  13. Network-based de-noising improves prediction from microarray data.

    PubMed

    Kato, Tsuyoshi; Murata, Yukio; Miura, Koh; Asai, Kiyoshi; Horton, Paul B; Koji, Tsuda; Fujibuchi, Wataru

    2006-03-20

    Prediction of human cell response to anti-cancer drugs (compounds) from microarray data is a challenging problem, due to the noise properties of microarrays as well as the high variance of living cell responses to drugs. Hence there is a strong need for more practical and robust methods than standard methods for real-value prediction. We devised an extended version of the off-subspace noise-reduction (de-noising) method to incorporate heterogeneous network data such as sequence similarity or protein-protein interactions into a single framework. Using that method, we first de-noise the gene expression data for training and test data and also the drug-response data for training data. Then we predict the unknown responses of each drug from the de-noised input data. For ascertaining whether de-noising improves prediction or not, we carry out 12-fold cross-validation for assessment of the prediction performance. We use the Pearson's correlation coefficient between the true and predicted response values as the prediction performance. De-noising improves the prediction performance for 65% of drugs. Furthermore, we found that this noise reduction method is robust and effective even when a large amount of artificial noise is added to the input data. We found that our extended off-subspace noise-reduction method combining heterogeneous biological data is successful and quite useful to improve prediction of human cell cancer drug responses from microarray data.

  14. Evaluation of a low density DNA microarray for small B-cell non-Hodgkin lymphoma differential diagnosis.

    PubMed

    Gillet, Jean-Pierre; Molina, Thierry Jo; Jamart, Jacques; Gaulard, Philippe; Leroy, Karen; Briere, Josette; Theate, Ivan; Thieblemont, Catherine; Bosly, Andre; Herin, Michel; Hamels, Jacques; Remacle, Jose

    2009-03-01

    Lymphomas are classified according to the World Health Organisation (WHO) classification which defines subtypes on the basis of clinical, morphological, immunophenotypic, molecular and cytogenetic criteria. Differential diagnosis of the subtypes is sometimes difficult, especially for small B-cell lymphoma (SBCL). Standardisation of molecular genetic assays using multiple gene expression analysis by microarrays could be a useful complement to the current diagnosis. The aim of the present study was to develop a low density DNA microarray for the analysis of 107 genes associated with B-cell non-Hodgkin lymphoma and to evaluate its performance in the diagnosis of SBCL. A predictive tool based on Fisher discriminant analysis using a training set of 40 patients including four different subtypes (follicular lymphoma n = 15, mantle cell lymphoma n = 7, B-cell chronic lymphocytic leukemia n = 6 and splenic marginal zone lymphoma n = 12) was designed. A short additional preliminary analysis to gauge the accuracy of this signature was then performed on an external set of nine patients. Using this model, eight of nine of those samples were classified successfully. This pilot study demonstrates that such a microarray tool may be a promising diagnostic approach for small B-cell non-Hodgkin lymphoma.

  15. Evaluation of gene expression classification studies: factors associated with classification performance.

    PubMed

    Novianti, Putri W; Roes, Kit C B; Eijkemans, Marinus J C

    2014-01-01

    Classification methods used in microarray studies for gene expression are diverse in the way they deal with the underlying complexity of the data, as well as in the technique used to build the classification model. The MAQC II study on cancer classification problems has found that performance was affected by factors such as the classification algorithm, cross validation method, number of genes, and gene selection method. In this paper, we study the hypothesis that the disease under study significantly determines which method is optimal, and that additionally sample size, class imbalance, type of medical question (diagnostic, prognostic or treatment response), and microarray platform are potentially influential. A systematic literature review was used to extract the information from 48 published articles on non-cancer microarray classification studies. The impact of the various factors on the reported classification accuracy was analyzed through random-intercept logistic regression. The type of medical question and method of cross validation dominated the explained variation in accuracy among studies, followed by disease category and microarray platform. In total, 42% of the between study variation was explained by all the study specific and problem specific factors that we studied together.

  16. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power Tools), (ii) the manual loading of preprocessing libraries, and (iii) the management of intermediate files, such as results and metadata. Micro-Analyzer users can directly manage Affymetrix binary data without worrying about locating and invoking the proper preprocessing tools and chip-specific libraries. Moreover, users of the Micro-Analyzer tool can load the preprocessed data directly into the well-known TM4 platform, extending in such a way also the TM4 capabilities. Consequently, Micro Analyzer offers the following advantages: (i) it reduces possible errors in the preprocessing and further analysis phases, e.g. due to the incorrect choice of parameters or due to the use of old libraries, (ii) it enables the combined and centralized pre-processing of different arrays, (iii) it may enhance the quality of further analysis by storing the workflow, i.e. information about the preprocessing steps, and (iv) finally Micro-Analzyer is freely available as a standalone application at the project web site http://sourceforge.net/projects/microanalyzer/. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. CLUSFAVOR 5.0: hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles

    PubMed Central

    Peterson, Leif E

    2002-01-01

    CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816

  18. High-density fiber-optic DNA random microsphere array.

    PubMed

    Ferguson, J A; Steemers, F J; Walt, D R

    2000-11-15

    A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.

  19. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    EPA Science Inventory

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  20. Molecular differential diagnosis of follicular thyroid carcinoma and adenoma based on gene expression profiling by using formalin-fixed paraffin-embedded tissues

    PubMed Central

    2013-01-01

    Background Differential diagnosis between malignant follicular thyroid cancer (FTC) and benign follicular thyroid adenoma (FTA) is a great challenge for even an experienced pathologist and requires special effort. Molecular markers may potentially support a differential diagnosis between FTC and FTA in postoperative specimens. The purpose of this study was to derive molecular support for differential post-operative diagnosis, in the form of a simple multigene mRNA-based classifier that would differentiate between FTC and FTA tissue samples. Methods A molecular classifier was created based on a combined analysis of two microarray datasets (using 66 thyroid samples). The performance of the classifier was assessed using an independent dataset comprising 71 formalin-fixed paraffin-embedded (FFPE) samples (31 FTC and 40 FTA), which were analysed by quantitative real-time PCR (qPCR). In addition, three other microarray datasets (62 samples) were used to confirm the utility of the classifier. Results Five of 8 genes selected from training datasets (ELMO1, EMCN, ITIH5, KCNAB1, SLCO2A1) were amplified by qPCR in FFPE material from an independent sample set. Three other genes did not amplify in FFPE material, probably due to low abundance. All 5 analysed genes were downregulated in FTC compared to FTA. The sensitivity and specificity of the 5-gene classifier tested on the FFPE dataset were 71% and 72%, respectively. Conclusions The proposed approach could support histopathological examination: 5-gene classifier may aid in molecular discrimination between FTC and FTA in FFPE material. PMID:24099521

  1. Molecular Phylogenetic and Expression Analysis of the Complete WRKY Transcription Factor Family in Maize

    PubMed Central

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-01-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance. PMID:22279089

  2. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    PubMed

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

  3. Microarray analyses reveal distinct roles for Rel proteins in the Drosophila immune response

    PubMed Central

    Pal, Subhamoy; Wu, Junlin; Wu, Louisa P.

    2007-01-01

    The NF-κB group of transcription factors play an important role in mediating immune responses in organisms as diverse as insects and mammals. The fruit fly Drosophila melanogaster express three closely related NF-κB-like transcription factors: Dorsal, Dif, and Relish. To study their roles in vivo, we used microarrays to determine the effect of null mutations in individual Rel transcription factors on larval immune gene expression. Of the 188 genes that were significantly up-regulated in wildtype larvae upon bacterial challenge, overlapping but distinct groups of genes were affected in the Rel mutants. We also ectopically expressed Dorsal or Dif and used cDNA microarrays to determine the genes that were up-regulated in the presence of these transcription factors. This expression was sufficient to drive expression of some immune genes, suggesting redundancy in the regulation of these genes. Combining this data, we also identified novel genes that may be specific targets of Dif. PMID:17537510

  4. Facile generation of cell microarrays using vacuum degassing and coverslip sweeping.

    PubMed

    Wang, Min S; Luo, Zhen; Cherukuri, Sundar; Nitin, Nitin

    2014-07-15

    A simple method to generate cell microarrays with high-percentage well occupancy and well-defined cell confinement is presented. This method uses a synergistic combination of vacuum degassing and coverslip sweeping. The vacuum degassing step dislodges air bubbles from the microwells, which in turn enables the cells to enter the microwells, while the physical sweeping step using a glass coverslip removes the excess cells outside the microwells. This low-cost preparation method provides a simple solution to generating cell microarrays that can be performed in basic research laboratories and point-of-care settings for routine cell-based screening assays. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Development and Comparison of Two Assay Formats for Parallel Detection of Four Biothreat Pathogens by Using Suspension Microarrays

    PubMed Central

    Janse, Ingmar; Bok, Jasper M.; Hamidjaja, Raditijo A.; Hodemaekers, Hennie M.; van Rotterdam, Bart J.

    2012-01-01

    Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics. PMID:22355407

  6. Development and comparison of two assay formats for parallel detection of four biothreat pathogens by using suspension microarrays.

    PubMed

    Janse, Ingmar; Bok, Jasper M; Hamidjaja, Raditijo A; Hodemaekers, Hennie M; van Rotterdam, Bart J

    2012-01-01

    Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics.

  7. Association of HADHA expression with the risk of breast cancer: targeted subset analysis and meta-analysis of microarray data

    PubMed Central

    2012-01-01

    Background The role of n-3 fatty acids in prevention of breast cancer is well recognized, but the underlying molecular mechanisms are still unclear. In view of the growing need for early detection of breast cancer, Graham et al. (2010) studied the microarray gene expression in histologically normal epithelium of subjects with or without breast cancer. We conducted a secondary analysis of this dataset with a focus on the genes (n = 47) involved in fat and lipid metabolism. We used stepwise multivariate logistic regression analyses, volcano plots and false discovery rates for association analyses. We also conducted meta-analyses of other microarray studies using random effects models for three outcomes--risk of breast cancer (380 breast cancer patients and 240 normal subjects), risk of metastasis (430 metastatic compared to 1104 non-metastatic breast cancers) and risk of recurrence (484 recurring versus 890 non-recurring breast cancers). Results The HADHA gene [hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit] was significantly under-expressed in breast cancer; more so in those with estrogen receptor-negative status. Our meta-analysis showed an 18.4%-26% reduction in HADHA expression in breast cancer. Also, there was an inconclusive but consistent under-expression of HADHA in subjects with metastatic and recurring breast cancers. Conclusions Involvement of mitochondria and the mitochondrial trifunctional protein (encoded by HADHA gene) in breast carcinogenesis is known. Our results lend additional support to the possibility of this involvement. Further, our results suggest that targeted subset analysis of large genome-based datasets can provide interesting association signals. PMID:22240105

  8. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients.

    PubMed

    Popescu, F; Jaslow, C R; Kutteh, W H

    2018-04-01

    Will the addition of 24-chromosome microarray analysis on miscarriage tissue combined with the standard American Society for Reproductive Medicine (ASRM) evaluation for recurrent miscarriage explain most losses? Over 90% of patients with recurrent pregnancy loss (RPL) will have a probable or definitive cause identified when combining genetic testing on miscarriage tissue with the standard ASRM evaluation for recurrent miscarriage. RPL is estimated to occur in 2-4% of reproductive age couples. A probable cause can be identified in approximately 50% of patients after an ASRM recommended workup including an evaluation for parental chromosomal abnormalities, congenital and acquired uterine anomalies, endocrine imbalances and autoimmune factors including antiphospholipid syndrome. Single-center, prospective cohort study that included 100 patients seen in a private RPL clinic from 2014 to 2017. All 100 women had two or more pregnancy losses, a complete evaluation for RPL as defined by the ASRM, and miscarriage tissue evaluated by 24-chromosome microarray analysis after their second or subsequent miscarriage. Frequencies of abnormal results for evidence-based diagnostic tests considered definite or probable causes of RPL (karyotyping for parental chromosomal abnormalities, and 24-chromosome microarray evaluation for products of conception (POC); pelvic sonohysterography, hysterosalpingogram, or hysteroscopy for uterine anomalies; immunological tests for lupus anticoagulant and anticardiolipin antibodies; and blood tests for thyroid stimulating hormone (TSH), prolactin and hemoglobin A1c) were evaluated. We excluded cases where there was maternal cell contamination of the miscarriage tissue or if the ASRM evaluation was incomplete. A cost analysis for the evaluation of RPL was conducted to determine whether a proposed procedure of 24-chromome microarray evaluation followed by an ASRM RPL workup (for those RPL patients who had a normal 24-chromosome microarray evaluation) was more cost-efficient than conducting ASRM RPL workups on RPL patients followed by 24-chromosome microarray analysis (for those RPL patients who had a normal RPL workup). A definite or probable cause of pregnancy loss was identified in the vast majority (95/100; 95%) of RPL patients when a 24-chromosome pair microarray evaluation of POC testing is combined with the standard ASRM RPL workup evaluation at the time of the second or subsequent loss. The ASRM RPL workup identified an abnormality and a probable explanation for pregnancy loss in only 45/100 or 45% of all patients. A definite abnormality was identified in 67/100 patients or 67% when initial testing was performed using 24-chromosome microarray analyses on the miscarriage tissue. Only 5/100 (5%) patients, who had a euploid loss and a normal ASRM RPL workup, had a pregnancy loss without a probable or definitive cause identified. All other losses were explained by an abnormal 24-chromosome microarray analysis of the miscarriage tissue, an abnormal finding of the RPL workup, or a combination of both. Results from the cost analysis indicated that an initial approach of using a 24-chromosome microarray analysis on miscarriage tissue resulted in a 50% savings in cost to the health care system and to the patient. This is a single-center study on a small group of well-characterized women with RPL. There was an incomplete follow-up on subsequent pregnancy outcomes after evaluation, however this should not affect our principal results. The maternal age of patients varied from 26 to 45 years old. More aneuploid pregnancy losses would be expected in older women, particularly over the age of 35 years old. Evaluation of POC using 24-chromosome microarray analysis adds significantly to the ASRM recommended evaluation of RPL. Genetic evaluation on miscarriage tissue obtained at the time of the second and subsequent pregnancy losses should be offered to all couples with two or more consecutive pregnancy losses. The combination of a genetic evaluation on miscarriage tissue with an evidence-based evaluation for RPL will identify a probable or definitive cause in over 90% of miscarriages. No funding was received for this study and there are no conflicts of interest to declare. Not applicable.

  9. BμG@Sbase—a microbial gene expression and comparative genomic database

    PubMed Central

    Witney, Adam A.; Waldron, Denise E.; Brooks, Lucy A.; Tyler, Richard H.; Withers, Michael; Stoker, Neil G.; Wren, Brendan W.; Butcher, Philip D.; Hinds, Jason

    2012-01-01

    The reducing cost of high-throughput functional genomic technologies is creating a deluge of high volume, complex data, placing the burden on bioinformatics resources and tool development. The Bacterial Microarray Group at St George's (BμG@S) has been at the forefront of bacterial microarray design and analysis for over a decade and while serving as a hub of a global network of microbial research groups has developed BμG@Sbase, a microbial gene expression and comparative genomic database. BμG@Sbase (http://bugs.sgul.ac.uk/bugsbase/) is a web-browsable, expertly curated, MIAME-compliant database that stores comprehensive experimental annotation and multiple raw and analysed data formats. Consistent annotation is enabled through a structured set of web forms, which guide the user through the process following a set of best practices and controlled vocabulary. The database currently contains 86 expertly curated publicly available data sets (with a further 124 not yet published) and full annotation information for 59 bacterial microarray designs. The data can be browsed and queried using an explorer-like interface; integrating intuitive tree diagrams to present complex experimental details clearly and concisely. Furthermore the modular design of the database will provide a robust platform for integrating other data types beyond microarrays into a more Systems analysis based future. PMID:21948792

  10. BμG@Sbase--a microbial gene expression and comparative genomic database.

    PubMed

    Witney, Adam A; Waldron, Denise E; Brooks, Lucy A; Tyler, Richard H; Withers, Michael; Stoker, Neil G; Wren, Brendan W; Butcher, Philip D; Hinds, Jason

    2012-01-01

    The reducing cost of high-throughput functional genomic technologies is creating a deluge of high volume, complex data, placing the burden on bioinformatics resources and tool development. The Bacterial Microarray Group at St George's (BμG@S) has been at the forefront of bacterial microarray design and analysis for over a decade and while serving as a hub of a global network of microbial research groups has developed BμG@Sbase, a microbial gene expression and comparative genomic database. BμG@Sbase (http://bugs.sgul.ac.uk/bugsbase/) is a web-browsable, expertly curated, MIAME-compliant database that stores comprehensive experimental annotation and multiple raw and analysed data formats. Consistent annotation is enabled through a structured set of web forms, which guide the user through the process following a set of best practices and controlled vocabulary. The database currently contains 86 expertly curated publicly available data sets (with a further 124 not yet published) and full annotation information for 59 bacterial microarray designs. The data can be browsed and queried using an explorer-like interface; integrating intuitive tree diagrams to present complex experimental details clearly and concisely. Furthermore the modular design of the database will provide a robust platform for integrating other data types beyond microarrays into a more Systems analysis based future.

  11. Seasonal dynamics of freshwater pathogens as measured by microarray at Lake Sapanca, a drinking water source in the north-eastern part of Turkey.

    PubMed

    Akçaalan, Reyhan; Albay, Meric; Koker, Latife; Baudart, Julia; Guillebault, Delphine; Fischer, Sabine; Weigel, Wilfried; Medlin, Linda K

    2017-12-22

    Monitoring drinking water quality is an important public health issue. Two objectives from the 4 years, six nations, EU Project μAqua were to develop hierarchically specific probes to detect and quantify pathogens in drinking water using a PCR-free microarray platform and to design a standardised water sampling program from different sources in Europe to obtain sufficient material for downstream analysis. Our phylochip contains barcodes (probes) that specifically identify freshwater pathogens that are human health risks in a taxonomic hierarchical fashion such that if species is present, the entire taxonomic hierarchy (genus, family, order, phylum, kingdom) leading to it must also be present, which avoids false positives. Molecular tools are more rapid, accurate and reliable than traditional methods, which means faster mitigation strategies with less harm to humans and the community. We present microarray results for the presence of freshwater pathogens from a Turkish lake used drinking water and inferred cyanobacterial cell equivalents from samples concentrated from 40 into 1 L in 45 min using hollow fibre filters. In two companion studies from the same samples, cyanobacterial toxins were analysed using chemical methods and those dates with highest toxin values also had highest cell equivalents as inferred from this microarray study.

  12. Curation of microarray oligonucleotides and corresponding ESTs/cDNAs used for gene expression analysis in zebra finches.

    PubMed

    Lovell, Peter V; Huizinga, Nicole A; Getachew, Abel; Mees, Brianna; Friedrich, Samantha R; Wirthlin, Morgan; Mello, Claudio V

    2018-05-18

    Zebra finches are a major model organism for investigating mechanisms of vocal learning, a trait that enables spoken language in humans. The development of cDNA collections with expressed sequence tags (ESTs) and microarrays has allowed for extensive molecular characterizations of circuitry underlying vocal learning and production. However, poor database curation can lead to errors in transcriptome and bioinformatics analyses, limiting the impact of these resources. Here we used genomic alignments and synteny analysis for orthology verification to curate and reannotate ~ 35% of the oligonucleotides and corresponding ESTs/cDNAs that make-up Agilent microarrays for gene expression analysis in finches. We found that: (1) 5475 out of 43,084 oligos (a) failed to align to the zebra finch genome, (b) aligned to multiple loci, or (c) aligned to Chr_un only, and thus need to be flagged until a better genome assembly is available, or (d) reflect cloning artifacts; (2) Out of 9635 valid oligos examined further, 3120 were incorrectly named, including 1533 with no known orthologs; and (3) 2635 oligos required name update. The resulting curated dataset provides a reference for correcting gene identification errors in previous finch microarrays studies, and avoiding such errors in future studies.

  13. Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow

    PubMed Central

    Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip

    2014-01-01

    Aim To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). Methods A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Results Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. Conclusions We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH. PMID:23969274

  14. Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow.

    PubMed

    Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip

    2014-01-01

    To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH.

  15. The CD117 immunohistochemistry tissue microarray survey for quality assurance and interlaboratory comparison: a College of American Pathologists Cell Markers Committee Study.

    PubMed

    Dorfman, David M; Bui, Marilyn M; Tubbs, Raymond R; Hsi, Eric D; Fitzgibbons, Patrick L; Linden, Michael D; Rickert, Robert R; Roche, Patrick C

    2006-06-01

    We have developed tissue microarray-based surveys to allow laboratories to compare their performance in staining predictive immunohistochemical markers, including proto-oncogene CD117 (c-kit), which is characteristically expressed in gastrointestinal stromal tumors (GISTs). GISTs exhibit activating mutations in the c-kit proto-oncogene, which render them amenable to treatment with imatinib mesylate. Consequently, correct identification of c-Kit expression is important for the diagnosis and treatment of GISTs. To analyze CD117 immunohistochemical staining performance by a large number of clinical laboratories. A mechanical device was used to construct tissue microarrays consisting of 3 x 1-mm cores of 10 tumor samples, which can be used to generate hundreds of tissue sections from the arrayed cases, suitable for large-scale interlaboratory comparison of immunohistochemical staining. An initial survey of 63 laboratories and a second survey of 90 laboratories, performed in 2004 and 2005, exhibited >81% concordance for 7 of 10 cores, including all 4 GIST cases, which were immunoreactive for CD117 with >95% staining concordance. Three of the cores achieved less than 81% concordance of results, possibly due to the presence of foci of necrosis in one core and CD117-positive mast cells in 2 cores of CD117-negative neoplasms. There was good performance among a large number of laboratories performing CD117 immunohistochemical staining, with consistently higher concordance of results for CD117-positive GIST cases than for nonimmunoreactive cases. Tissue microarrays for CD117 and other predictive markers should be useful for interlaboratory comparisons, quality assurance, and education of participants regarding staining nuances such as the expression of CKIT by nonneoplastic mast cells.

  16. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.

    Background Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Results Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolasesmore » were down-regulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius. Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. Conclusions Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases was not tested as part of the research discussed, many of the glycoside hydrolases found in the A. acidocaldarius Type Strain appear to have a broader substrate range than represented by the glycoside hydrolase family in which the enzymes were categorized.« less

  17. Long Noncoding RNA Profiling from Fasciola Gigantica Excretory/Secretory Product-Induced M2 to M1 Macrophage Polarization.

    PubMed

    Luo, Honglin; Zhang, Yaoyao; Sheng, Zhaoan; Luo, Tao; Chen, Jie; Liu, Junjie; Wang, Huifeng; Chen, Miao; Shi, Yunliang; Li, Lequn

    2018-05-22

    Long noncoding RNAs (lncRNAs) are well known regulators of gene expression that play essential roles in macrophage activation and polarization. However, the role of lncRNA in Fasciola gigantica excretory/secretory products (ESP)-induced M2 polarization into M1 macrophages is unclear. Herein, we performed lncRNA profiling of lncRNAs and mRNAs during the ESP-induced macrophage polarization process. F. gigantica ESP was used to induce peritoneal cavity M2 macrophages in BALB/c mice (5-6 weeks old) in vivo, and these cells were subsequently isolated and stimulated with IFN-γ + LPS to induce M1 cells in vitro. LncRNA and mRNA profiling was performed via microarray at the end of both polarization stages. In total, 2,844 lncRNAs (1,579 upregulated and 1,265 downregulated) and 1,782 mRNAs (789 upregulated and 993 downregulated) were differentially expressed in M2 macrophages compared to M1 macrophages, and six lncRNAs were identified during polarization. We selected 34 differentially expressed lncRNAs and mRNAs to validate the results of microarray analysis using quantitative real-time PCR (qPCR). Pathway and Gene Ontology (GO) analyses demonstrated that these altered transcripts were involved in multiple biological processes, particularly peptidase activity and carbohydrate metabolism. Furthermore, coding and non-coding gene (CNC) and mRNA-related ceRNA network analyses were conducted to predict lncRNA expression trends and the potential target genes of these lncRNAs and mRNAs. Moreover, we determined that four lncRNAs and four mRNAs might participate in F. gigantica ESP-induced M2 polarization into M1 macrophages. This study illustrates the basic profiling of lncRNAs and mRNAs during F. gigantica ESP-induced M2 polarization into M1 macrophages and deepens our understanding of the mechanism underlying this process. © 2018 The Author(s). Published by S. Karger AG, Basel.

  18. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis

    PubMed Central

    Wapner, Ronald J.; Martin, Christa Lese; Levy, Brynn; Ballif, Blake C.; Eng, Christine M.; Zachary, Julia M.; Savage, Melissa; Platt, Lawrence D.; Saltzman, Daniel; Grobman, William A.; Klugman, Susan; Scholl, Thomas; Simpson, Joe Leigh; McCall, Kimberly; Aggarwal, Vimla S.; Bunke, Brian; Nahum, Odelia; Patel, Ankita; Lamb, Allen N.; Thom, Elizabeth A.; Beaudet, Arthur L.; Ledbetter, David H.; Shaffer, Lisa G.; Jackson, Laird

    2013-01-01

    Background Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. Methods Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. Results We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down’s syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. Conclusions In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.) PMID:23215555

  19. Microarray Detection Call Methodology as a Means to Identify and Compare Transcripts Expressed within Syncytial Cells from Soybean (Glycine max) Roots Undergoing Resistant and Susceptible Reactions to the Soybean Cyst Nematode (Heterodera glycines)

    PubMed Central

    Klink, Vincent P.; Overall, Christopher C.; Alkharouf, Nadim W.; MacDonald, Margaret H.; Matthews, Benjamin F.

    2010-01-01

    Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process. PMID:20508855

  20. Mitochondrial dysfunction, oxidative stress and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Mark H.; Qian, Weijun; Wang, Haixing

    2008-02-10

    The molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinson disease (PD) are not completely understood. Here we use mass spectrometry and microarrays to study the proteomic and transcriptomic changes in the striatum of two mouse models of PD, induced by the distinct neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH). Proteomic analyses resulted in the identification and relative quantification of 912 proteins with two or more unique peptides and 85 proteins with significant abundance changes following neurotoxin treatment. Similarly, microarray analyses revealed 181 genes with significant changes in mRNA following neurotoxin treatment. The combined protein and gene list providesmore » a clearer picture of the potential mechanisms underlying neurodegeneration observed in PD. Functional analysis of this combined list revealed a number of significant categories, including mitochondrial dysfunction, oxidative stress response and apoptosis. Additionally, codon usage and miRNAs may play an important role in translational control in the striatum. These results constitute one of the largest datasets integrating protein and transcript changes for these neurotoxin models with many similar endpoint phenotypes but distinct mechanisms.« less

  1. An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions.

    PubMed

    van Haaften, Rachel I M; Luceri, Cristina; van Erk, Arie; Evelo, Chris T A

    2009-06-01

    Omics technology used for large-scale measurements of gene expression is rapidly evolving. This work pointed out the need of an extensive bioinformatics analyses for array quality assessment before and after gene expression clustering and pathway analysis. A study focused on the effect of red wine polyphenols on rat colon mucosa was used to test the impact of quality control and normalisation steps on the biological conclusions. The integration of data visualization, pathway analysis and clustering revealed an artifact problem that was solved with an adapted normalisation. We propose a possible point to point standard analysis procedure, based on a combination of clustering and data visualization for the analysis of microarray data.

  2. Ischemic and Nephrotoxic Acute Renal Failure are Distinguished by their Broad Transcriptomic Responses (102/160 char)

    PubMed Central

    Yuen, Peter S.T.; Jo, Sang-Kyung; Holly, Mikaela K.; Hu, Xuzhen; Star, Robert A.

    2006-01-01

    Acute renal failure (ARF) has a high morbidity and mortality. In animal ARF models, effective treatments must be administered before or shortly after the insult, limiting their clinical potential. We used microarrays to identify early biomarkers that distinguish ischemic from nephrotoxic ARF, or biomarkers that detect both injury types. We compared rat kidney transcriptomes 2 and 8 hours after ischemia/reperfusion and after mercuric chloride. Quality control and statistical analyses were necessary to normalize microarrays from different lots, eliminate outliers, and exclude unaltered genes. Principal component analysis revealed distinct ischemic and nephrotoxic trajectories, and clear array groupings. Therefore, we used supervised analysis, t-tests and fold changes, to compile gene lists for each group, exclusive or non-exclusive, alone or in combination. There was little network connectivity, even in the largest group. Some microarray-identified genes were validated by TaqMan assay, ruling out artifacts. Western blotting confirmed that HO-1 and ATF3 proteins were upregulated; however, unexpectedly, their localization changed within the kidney. HO-1 staining shifted from cortical (early) to outer stripe of the outer medulla (late), primarily in detaching cells, after mercuric chloride, but not ischemia/reperfusion. ATF3 staining was similar, but with additional early transient expression in the outer stripe after ischemia/reperfusion. We conclude that microarray-identified genes must be evaluated not only for protein levels, but also for anatomical distribution among different zones, nephron segments, or cell types. Although protein detection reagents are limited, microarray data lay a rich foundation to explore biomarkers, therapeutics, and pathophysiology of ARF. PMID:16507785

  3. Analysis and modelling of septic shock microarray data using Singular Value Decomposition.

    PubMed

    Allanki, Srinivas; Dixit, Madhulika; Thangaraj, Paul; Sinha, Nandan Kumar

    2017-06-01

    Being a high throughput technique, enormous amounts of microarray data has been generated and there arises a need for more efficient techniques of analysis, in terms of speed and accuracy. Finding the differentially expressed genes based on just fold change and p-value might not extract all the vital biological signals that occur at a lower gene expression level. Besides this, numerous mathematical models have been generated to predict the clinical outcome from microarray data, while very few, if not none, aim at predicting the vital genes that are important in a disease progression. Such models help a basic researcher narrow down and concentrate on a promising set of genes which leads to the discovery of gene-based therapies. In this article, as a first objective, we have used the lesser known and used Singular Value Decomposition (SVD) technique to build a microarray data analysis tool that works with gene expression patterns and intrinsic structure of the data in an unsupervised manner. We have re-analysed a microarray data over the clinical course of Septic shock from Cazalis et al. (2014) and have shown that our proposed analysis provides additional information compared to the conventional method. As a second objective, we developed a novel mathematical model that predicts a set of vital genes in the disease progression that works by generating samples in the continuum between health and disease, using a simple normal-distribution-based random number generator. We also verify that most of the predicted genes are indeed related to septic shock. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Bioinformatics analysis of differentially expressed gene profiles associated with systemic lupus erythematosus

    PubMed Central

    Wu, Chengjiang; Zhao, Yangjing; Lin, Yu; Yang, Xinxin; Yan, Meina; Min, Yujiao; Pan, Zihui; Xia, Sheng; Shao, Qixiang

    2018-01-01

    DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein-protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG-I-like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll-like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2′-5′-oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin-like modifier, DExD/H-box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2′-5′-oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG-I-like receptor signaling, cytosolic DNA-sensing, toll-like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited significant co-expressed tendency in multi-experiment microarray datasets (P<0.01). In conclusion, these key genes and cellular pathways may improve the current understanding of the underlying mechanism of development of SLE. These key genes may be potential biomarkers of diagnosis, therapy and prognosis for SLE. PMID:29257335

  5. Bone health nutraceuticals alter microarray mRNA gene expression: A randomized, parallel, open-label clinical study.

    PubMed

    Lin, Yumei; Kazlova, Valentina; Ramakrishnan, Shyam; Murray, Mary A; Fast, David; Chandra, Amitabh; Gellenbeck, Kevin W

    2016-01-15

    Dietary intake of fruits and vegetables has been suggested to have a role in promoting bone health. More specifically, the polyphenols they contain have been linked to physiological effects related to bone mineral density and bone metabolism. In this research, we use standard microarray analyses of peripheral whole blood from post-menopausal women treated with two fixed combinations of plant extracts standardized to polyphenol content to identify differentially expressed genes relevant to bone health. In this 28-day open-label study, healthy post-menopausal women were randomized into three groups, each receiving one of three investigational fixed combinations of plant extracts: an anti-resorptive (AR) combination of pomegranate fruit (Punica granatum L.) and grape seed (Vitis vinifera L.) extracts; a bone formation (BF) combination of quercetin (Dimorphandra mollis Benth) and licorice (Glycyrrhiza glabra L.) extracts; and a fixed combination of all four plant extracts (AR plus BF). Standard microarray analysis was performed on peripheral whole blood samples taken before and after each treatment. Annotated genes were analyzed for their association to bone health by comparison to a gene library. The AR combination down-regulated a number of genes involved in reduction of bone resorption including cathepsin G (CTSG) and tachykinin receptor 1 (TACR1). The AR combination also up-regulated genes associated with formation of extracellular matrix including heparan sulfate proteoglycan 2 (HSPG2) and hyaluronoglucosaminidase 1 (HYAL1). In contrast, treatment with the BF combination resulted in up-regulation of bone morphogenetic protein 2 (BMP-2) and COL1A1 (collagen type I α1) genes which are linked to bone and collagen formation while down-regulating genes linked to osteoclastogenesis. Treatment with a combination of all four plant extracts had a distinctly different effect on gene expression than the results of the AR and BF combinations individually. These results could be due to multiple feedback systems balancing activities of osteoblasts and osteoclasts. In summary, this ex-vivo microarray study indicated that the pomegranate, grape seed, quercetin and licorice combinations of plant extracts modulated gene expression for both osteoclastic and osteogenic processes. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses

    PubMed Central

    Stokes, Todd H; Torrance, JT; Li, Henry; Wang, May D

    2008-01-01

    Background A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. Results To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers (Semantic Agents) such as Google to further enhance data discovery. Conclusions Microarray data and meta information in ArrayWiki are distributed and visualized using a novel and compact data storage format, BioPNG. Also, they are open to the research community for curation, modification, and contribution. By making a small investment of time to learn the syntax and structure common to all sites running MediaWiki software, domain scientists and practioners can all contribute to make better use of microarray technologies in research and medical practices. ArrayWiki is available at . PMID:18541053

  7. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray

    PubMed Central

    2010-01-01

    Background Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Results Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties. Conclusion All results suggest that our high-density flax oligo-microarray platform can be used as a very sensitive tool for analyzing gene expression in a large variety of tissues as well as in different cultivars. Moreover, this highly reliable platform can also be used for the quantification of mRNA transcriptional profiling in different flax tissues. PMID:20964859

  8. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray.

    PubMed

    Fenart, Stéphane; Ndong, Yves-Placide Assoumou; Duarte, Jorge; Rivière, Nathalie; Wilmer, Jeroen; van Wuytswinkel, Olivier; Lucau, Anca; Cariou, Emmanuelle; Neutelings, Godfrey; Gutierrez, Laurent; Chabbert, Brigitte; Guillot, Xavier; Tavernier, Reynald; Hawkins, Simon; Thomasset, Brigitte

    2010-10-21

    Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties. All results suggest that our high-density flax oligo-microarray platform can be used as a very sensitive tool for analyzing gene expression in a large variety of tissues as well as in different cultivars. Moreover, this highly reliable platform can also be used for the quantification of mRNA transcriptional profiling in different flax tissues.

  9. The effects of microgravity on gene expression of Arabidopsis

    NASA Astrophysics Data System (ADS)

    Correll, Melanie; Stimpson, Alexander; Pereira, Rhea; Kiss, John Z.

    TROPI (for TROPIsms) consisted of a series of experiments on the International Space Station to study the interaction between phototropism and gravitropism. As part of TROPI, we received frozen Arabidopsis seedlings from the ISS on three shuttle missions (STS-116, STS-117 and STS-120). These seedlings are being used for gene expression studies. Unfortunately, the quality of RNA returned from the first return mission was poor while that from the second and third missions were of high quality. This indicates that some environmental parameters were not maintained during first return mission since all of these samples were stored in the same location at -80° C on the ISS. Therefore, due to the loss during the first sample return, we had to develop new protocols to maximize RNA yields and optimize labeling techniques for microarray analysis. Using these new protocols, RNA was extracted from several sets of seedlings grown in various light treatments and µg levels and microarray analyses performed. Hundreds of genes were shown to be regulated in response to microgravity and include transcription factors (WRKY, MYB, ZF families) and those involved in plant hormone signaling (auxin, ethylene, and ABA responsive genes). The characterization of the regulated pathways and genes specific to gravity and light treatments is underway. (This project is Supported By: NASA NCC2-1200).

  10. Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of Drosophila melanogaster

    PubMed Central

    Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.

    2015-01-01

    Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231

  11. Humoral immune profiling of mycobacterial antigen recognition in sarcoidosis and Löfgren's syndrome using high-content peptide microarrays.

    PubMed

    Ferrara, Giovanni; Valentini, Davide; Rao, Martin; Wahlström, Jan; Grunewald, Johan; Larsson, Lars-Olof; Brighenti, Susanna; Dodoo, Ernest; Zumla, Alimuddin; Maeurer, Markus

    2017-03-01

    Sarcoidosis is considered an idiopathic granulomatous disease, although similar immunological and clinical features with tuberculosis (TB) suggest mycobacterial involvement in its pathogenesis. High-content peptide microarrays (HCPM) may help to decipher mycobacteria-specific antibody reactivity in sarcoidosis. Serum samples from patients with sarcoidosis, Löfgren's syndrome, and TB, as well as from healthy individuals (12/group), were tested on HCPM containing 5964 individual peptides spanning 154 Mycobacterium tuberculosis proteins displayed as 15-amino acid stretches. Inclusion/exclusion and significance analyses were performed according to published methods. Each study group recognized 68-78% M. tuberculosis peptides at least once. M. tuberculosis epitope recognition by sarcoidosis patient sera was 42.7%, and by TB patient sera was 39.1%. Seven and 16 peptides were recognized in 9/12 (75%) and 8/12 (67%) sarcoidosis patient sera but not in TB patient sera, respectively. Nine (75%) and eight (67%) out of twelve TB patient sera, respectively recognized M. tuberculosis peptides that were not recognized in sarcoidosis patient sera. Specific IgG recognition patterns for M. tuberculosis antigens in sarcoidosis patients re-affirm mycobacterial involvement in sarcoidosis, providing biologically relevant targets for future studies pertaining to diagnostics and immunotherapy. Copyright © 2017. Published by Elsevier Ltd.

  12. DNA Microarray Profiling Highlights Nrf2-Mediated Chemoprevention Targeted by Wasabi-Derived Isothiocyanates in HepG2 Cells.

    PubMed

    Trio, Phoebe Zapanta; Kawahara, Atsuyoshi; Tanigawa, Shunsuke; Sakao, Kozue; Hou, De-Xing

    2017-01-01

    6-MSITC and 6-MTITC are sulforaphane (SFN) analogs found in Japanese Wasabi. As we reported previously, Wasabi isothiocyanates (ITCs) are activators of Nrf2-antioxidant response element pathway, and also inhibitors of pro-inflammatory cyclooxygenase-2. This study is the first to assess the global changes in transcript levels by Wasabi ITCs, comparing with SFN, in HepG2 cells. We performed comparative gene expression profiling by treating HepG2 cells with ITCs, followed by DNA microarray analyses using HG-U133 plus 2.0 oligonucleotide array. Partial array data on selected gene products were confirmed by RT-PCR and Western blotting. Ingenuity Pathway Analysis (IPA) was used to identify functional subsets of genes and biologically significant network pathways. 6-MTITC showed the highest number of differentially altered (≥2 folds) gene expression, of which 114 genes were upregulated and 75 were downregulated. IPA revealed that Nrf2-mediated pathway, together with glutamate metabolism, is the common significantly modulated pathway across treatments. Interestingly, 6-MSITC exhibited the most potent effect toward Nrf2-mediated pathway. Our data suggest that 6-MSITC could exert chemopreventive role against cancer through its underlying antioxidant activity via the activation of Nrf2-mediated subsequent induction of cytoprotective genes.

  13. Chromosomal aneuploidies and copy number variations in posterior fossa abnormalities diagnosed by prenatal ultrasonography.

    PubMed

    Lei, Ting; Feng, Jie-Ling; Xie, Ying-Jun; Xie, Hong-Ning; Zheng, Ju; Lin, Mei-Fang

    2017-11-01

    To explore the genetic aetiology of fetal posterior fossa abnormalities (PFAs). This study involved cases of PFAs that were identified by prenatal ultrasonographic screening and confirmed postnatally between January 2012 and January 2016. Conventional cytogenetic analyses and chromosomal microarray analysis were performed, and chromosomal aneuploidies and copy number variations (CNVs) were identified. Among 74 cases included in this study, 8 were of Blake's pouch cyst; 7, Dandy-Walker malformation; 11, vermian hypoplasia; 32, enlarged cisterna magna; and 16, cerebellar hypoplasia. The rates of nonbenign chromosomal aberrations (including chromosomal aneuploidies, pathogenic CNVs, and variants of unknown significance) were 2/8 (25.0%), 2/7 (28.5%), 8/11 (72.7%), 7/32 (21.9%), and 6/16 (37.5%), respectively. Cases were also classified as isolated PFAs (30/74), PFAs with other central nervous system (CNS) abnormalities (13/74), or PFAs with extra-CNS structural abnormalities (31/74). No fetuses with isolated PFAs or PFAs accompanied by other CNS abnormalities exhibited chromosomal aneuploidies or pathogenic CNVs. The rate of pathogenic chromosomal aberrations in the remaining fetuses was 17/31 (22.9%). The combined use of chromosomal microarray analysis and karyotype analysis might assist the prenatal diagnosis and management of PFAs, with extra-CNS structural abnormalities being detected by ultrasonography. © 2017 John Wiley & Sons, Ltd.

  14. Image-guided genomic analysis of tissue response to laser-induced thermal stress

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Helms, Mike; Kalish, Flora; Contag, Christopher H.

    2011-05-01

    The cytoprotective response to thermal injury is characterized by transcriptional activation of ``heat shock proteins'' (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.

  15. Comparative study of joint analysis of microarray gene expression data in survival prediction and risk assessment of breast cancer patients

    PubMed Central

    2016-01-01

    Abstract Microarray gene expression data sets are jointly analyzed to increase statistical power. They could either be merged together or analyzed by meta-analysis. For a given ensemble of data sets, it cannot be foreseen which of these paradigms, merging or meta-analysis, works better. In this article, three joint analysis methods, Z -score normalization, ComBat and the inverse normal method (meta-analysis) were selected for survival prognosis and risk assessment of breast cancer patients. The methods were applied to eight microarray gene expression data sets, totaling 1324 patients with two clinical endpoints, overall survival and relapse-free survival. The performance derived from the joint analysis methods was evaluated using Cox regression for survival analysis and independent validation used as bias estimation. Overall, Z -score normalization had a better performance than ComBat and meta-analysis. Higher Area Under the Receiver Operating Characteristic curve and hazard ratio were also obtained when independent validation was used as bias estimation. With a lower time and memory complexity, Z -score normalization is a simple method for joint analysis of microarray gene expression data sets. The derived findings suggest further assessment of this method in future survival prediction and cancer classification applications. PMID:26504096

  16. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis

    PubMed Central

    Karsten, Stanislav L.; Van Deerlin, Vivianna M. D.; Sabatti, Chiara; Gill, Lisa H.; Geschwind, Daniel H.

    2002-01-01

    Archival formalin-fixed, paraffin-embedded and ethanol-fixed tissues represent a potentially invaluable resource for gene expression analysis, as they are the most widely available material for studies of human disease. Little data are available evaluating whether RNA obtained from fixed (archival) tissues could produce reliable and reproducible microarray expression data. Here we compare the use of RNA isolated from human archival tissues fixed in ethanol and formalin to frozen tissue in cDNA microarray experiments. Since an additional factor that can limit the utility of archival tissue is the often small quantities available, we also evaluate the use of the tyramide signal amplification method (TSA), which allows the use of small amounts of RNA. Detailed analysis indicates that TSA provides a consistent and reproducible signal amplification method for cDNA microarray analysis, across both arrays and the genes tested. Analysis of this method also highlights the importance of performing non-linear channel normalization and dye switching. Furthermore, archived, fixed specimens can perform well, but not surprisingly, produce more variable results than frozen tissues. Consistent results are more easily obtainable using ethanol-fixed tissues, whereas formalin-fixed tissue does not typically provide a useful substrate for cDNA synthesis and labeling. PMID:11788730

  17. Development and assessment of whole-genome oligonucleotide microarrays to analyze an anaerobic microbial community and its responses to oxidative stress.

    PubMed

    Scholten, Johannes C M; Culley, David E; Nie, Lei; Munn, Kyle J; Chow, Lely; Brockman, Fred J; Zhang, Weiwen

    2007-06-29

    The application of DNA microarray technology to investigate multiple-species microbial communities presents great challenges. In this study, we reported the design and quality assessment of four whole genome oligonucleotide microarrays for two syntroph bacteria, Desulfovibrio vulgaris and Syntrophobacter fumaroxidans, and two archaeal methanogens, Methanosarcina barkeri, and Methanospirillum hungatei, and their application to analyze global gene expression in a four-species microbial community in response to oxidative stress. In order to minimize the possibility of cross-hybridization, cross-genome comparison was performed to assure all probes unique to each genome so that the microarrays could provide species-level resolution. Microarray quality was validated by the good reproducibility of experimental measurements of multiple biological and analytical replicates. This study showed that S. fumaroxidans and M. hungatei responded to the oxidative stress with up-regulation of several genes known to be involved in reactive oxygen species (ROS) detoxification, such as catalase and rubrerythrin in S. fumaroxidans and thioredoxin and heat shock protein Hsp20 in M. hungatei. However, D. vulgaris seemed to be less sensitive to the oxidative stress as a member of a four-species community, since no gene involved in ROS detoxification was up-regulated. Our work demonstrated the successful application of microarrays to a multiple-species microbial community, and our preliminary results indicated that this approach could provide novel insights on the metabolism within microbial communities.

  18. Microbial forensics: fiber optic microarray subtyping of Bacillus anthracis

    NASA Astrophysics Data System (ADS)

    Shepard, Jason R. E.

    2009-05-01

    The past decade has seen increased development and subsequent adoption of rapid molecular techniques involving DNA analysis for detection of pathogenic microorganisms, also termed microbial forensics. The continued accumulation of microbial sequence information in genomic databases now better positions the field of high-throughput DNA analysis to proceed in a more manageable fashion. The potential to build off of these databases exists as technology continues to develop, which will enable more rapid, cost effective analyses. This wealth of genetic information, along with new technologies, has the potential to better address some of the current problems and solve the key issues involved in DNA analysis of pathogenic microorganisms. To this end, a high density fiber optic microarray has been employed, housing numerous DNA sequences simultaneously for detection of various pathogenic microorganisms, including Bacillus anthracis, among others. Each organism is analyzed with multiple sequences and can be sub-typed against other closely related organisms. For public health labs, real-time PCR methods have been developed as an initial preliminary screen, but culture and growth are still considered the gold standard. Technologies employing higher throughput than these standard methods are better suited to capitalize on the limitless potential garnered from the sequence information. Microarray analyses are one such format positioned to exploit this potential, and our array platform is reusable, allowing repetitive tests on a single array, providing an increase in throughput and decrease in cost, along with a certainty of detection, down to the individual strain level.

  19. Genomic paradigms for food-borne enteric pathogen analysis at the USFDA: case studies highlighting method utility, integration and resolution.

    PubMed

    Elkins, C A; Kotewicz, M L; Jackson, S A; Lacher, D W; Abu-Ali, G S; Patel, I R

    2013-01-01

    Modern risk control and food safety practices involving food-borne bacterial pathogens are benefiting from new genomic technologies for rapid, yet highly specific, strain characterisations. Within the United States Food and Drug Administration (USFDA) Center for Food Safety and Applied Nutrition (CFSAN), optical genome mapping and DNA microarray genotyping have been used for several years to quickly assess genomic architecture and gene content, respectively, for outbreak strain subtyping and to enhance retrospective trace-back analyses. The application and relative utility of each method varies with outbreak scenario and the suspect pathogen, with comparative analytical power enhanced by database scale and depth. Integration of these two technologies allows high-resolution scrutiny of the genomic landscapes of enteric food-borne pathogens with notable examples including Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica serovars from a variety of food commodities. Moreover, the recent application of whole genome sequencing technologies to food-borne pathogen outbreaks and surveillance has enhanced resolution to the single nucleotide scale. This new wealth of sequence data will support more refined next-generation custom microarray designs, targeted re-sequencing and "genomic signature recognition" approaches involving a combination of genes and single nucleotide polymorphism detection to distil strain-specific fingerprinting to a minimised scale. This paper examines the utility of microarrays and optical mapping in analysing outbreaks, reviews best practices and the limits of these technologies for pathogen differentiation, and it considers future integration with whole genome sequencing efforts.

  20. Extending Immunological Profiling in the Gilthead Sea Bream, Sparus aurata, by Enriched cDNA Library Analysis, Microarray Design and Initial Studies upon the Inflammatory Response to PAMPs.

    PubMed

    Boltaña, Sebastian; Castellana, Barbara; Goetz, Giles; Tort, Lluis; Teles, Mariana; Mulero, Victor; Novoa, Beatriz; Figueras, Antonio; Goetz, Frederick W; Gallardo-Escarate, Cristian; Planas, Josep V; Mackenzie, Simon

    2017-02-03

    This study describes the development and validation of an enriched oligonucleotide-microarray platform for Sparus aurata (SAQ) to provide a platform for transcriptomic studies in this species. A transcriptome database was constructed by assembly of gilthead sea bream sequences derived from public repositories of mRNA together with reads from a large collection of expressed sequence tags (EST) from two extensive targeted cDNA libraries characterizing mRNA transcripts regulated by both bacterial and viral challenge. The developed microarray was further validated by analysing monocyte/macrophage activation profiles after challenge with two Gram-negative bacterial pathogen-associated molecular patterns (PAMPs; lipopolysaccharide (LPS) and peptidoglycan (PGN)). Of the approximately 10,000 EST sequenced, we obtained a total of 6837 EST longer than 100 nt, with 3778 and 3059 EST obtained from the bacterial-primed and from the viral-primed cDNA libraries, respectively. Functional classification of contigs from the bacterial- and viral-primed cDNA libraries by Gene Ontology (GO) showed that the top five represented categories were equally represented in the two libraries: metabolism (approximately 24% of the total number of contigs), carrier proteins/membrane transport (approximately 15%), effectors/modulators and cell communication (approximately 11%), nucleoside, nucleotide and nucleic acid metabolism (approximately 7.5%) and intracellular transducers/signal transduction (approximately 5%). Transcriptome analyses using this enriched oligonucleotide platform identified differential shifts in the response to PGN and LPS in macrophage-like cells, highlighting responsive gene-cassettes tightly related to PAMP host recognition. As observed in other fish species, PGN is a powerful activator of the inflammatory response in S. aurata macrophage-like cells. We have developed and validated an oligonucleotide microarray (SAQ) that provides a platform enriched for the study of gene expression in S. aurata with an emphasis upon immunity and the immune response.

  1. Rapid Detection of Rare Deleterious Variants by Next Generation Sequencing with Optional Microarray SNP Genotype Data

    PubMed Central

    Watson, Christopher M.; Crinnion, Laura A.; Gurgel‐Gianetti, Juliana; Harrison, Sally M.; Daly, Catherine; Antanavicuite, Agne; Lascelles, Carolina; Markham, Alexander F.; Pena, Sergio D. J.; Bonthron, David T.

    2015-01-01

    ABSTRACT Autozygosity mapping is a powerful technique for the identification of rare, autosomal recessive, disease‐causing genes. The ease with which this category of disease gene can be identified has greatly increased through the availability of genome‐wide SNP genotyping microarrays and subsequently of exome sequencing. Although these methods have simplified the generation of experimental data, its analysis, particularly when disparate data types must be integrated, remains time consuming. Moreover, the huge volume of sequence variant data generated from next generation sequencing experiments opens up the possibility of using these data instead of microarray genotype data to identify disease loci. To allow these two types of data to be used in an integrated fashion, we have developed AgileVCFMapper, a program that performs both the mapping of disease loci by SNP genotyping and the analysis of potentially deleterious variants using exome sequence variant data, in a single step. This method does not require microarray SNP genotype data, although analysis with a combination of microarray and exome genotype data enables more precise delineation of disease loci, due to superior marker density and distribution. PMID:26037133

  2. DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data

    PubMed Central

    Glez-Peña, Daniel; Álvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino

    2009-01-01

    Background Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. Results DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. Conclusion DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released. PMID:19178723

  3. DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data.

    PubMed

    Glez-Peña, Daniel; Alvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino

    2009-01-29

    Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released.

  4. RNA Extraction Methods for Real-Time PCR and Microarray Analyses of Cryptosporidium and Toxoplasma gondii Oocysts - 2nd Presentation

    EPA Science Inventory

    The ability of infectious oocyst forms of Toxoplasma gondii and Cryptosporidium spp. to resist disinfection treatments and cause disease may have significant public health implications. Currently, little is known about oocyst-specific factors involved during host cell invasion pr...

  5. Methods for transcriptomic analyses of the porcine host immune response: application to Salmonella infection using microarrays

    USDA-ARS?s Scientific Manuscript database

    Technological developments in both the collection and analysis of molecular genetic data over the past few years have provided new opportunities for an improved understanding of the global response to pathogen exposure. Such developments are particularly dramatic for scientists studying the pig, whe...

  6. An integrated approach for identifying wrongly labelled samples when performing classification in microarray data.

    PubMed

    Leung, Yuk Yee; Chang, Chun Qi; Hung, Yeung Sam

    2012-01-01

    Using hybrid approach for gene selection and classification is common as results obtained are generally better than performing the two tasks independently. Yet, for some microarray datasets, both classification accuracy and stability of gene sets obtained still have rooms for improvement. This may be due to the presence of samples with wrong class labels (i.e. outliers). Outlier detection algorithms proposed so far are either not suitable for microarray data, or only solve the outlier detection problem on their own. We tackle the outlier detection problem based on a previously proposed Multiple-Filter-Multiple-Wrapper (MFMW) model, which was demonstrated to yield promising results when compared to other hybrid approaches (Leung and Hung, 2010). To incorporate outlier detection and overcome limitations of the existing MFMW model, three new features are introduced in our proposed MFMW-outlier approach: 1) an unbiased external Leave-One-Out Cross-Validation framework is developed to replace internal cross-validation in the previous MFMW model; 2) wrongly labeled samples are identified within the MFMW-outlier model; and 3) a stable set of genes is selected using an L1-norm SVM that removes any redundant genes present. Six binary-class microarray datasets were tested. Comparing with outlier detection studies on the same datasets, MFMW-outlier could detect all the outliers found in the original paper (for which the data was provided for analysis), and the genes selected after outlier removal were proven to have biological relevance. We also compared MFMW-outlier with PRAPIV (Zhang et al., 2006) based on same synthetic datasets. MFMW-outlier gave better average precision and recall values on three different settings. Lastly, artificially flipped microarray datasets were created by removing our detected outliers and flipping some of the remaining samples' labels. Almost all the 'wrong' (artificially flipped) samples were detected, suggesting that MFMW-outlier was sufficiently powerful to detect outliers in high-dimensional microarray datasets.

  7. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization

    PubMed Central

    Girard, Laurie D.; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G.

    2014-01-01

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have a high complexity cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotidesequence-dependent segment and a unique “target sequence-independent” 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets. PMID:25489607

  8. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    PubMed

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets.

  9. Identification of candidate genes in osteoporosis by integrated microarray analysis.

    PubMed

    Li, J J; Wang, B Q; Fei, Q; Yang, Y; Li, D

    2016-12-01

    In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs. A total of three microarray studies were selected for integrated analysis. In all, 1125 genes were found to be significantly differentially expressed between osteoporosis patients and normal controls, with 373 upregulated and 752 downregulated genes. Positive regulation of the cellular amino metabolic process (gene ontology (GO): 0033240, false discovery rate (FDR) = 1.00E + 00) was significantly enriched under the GO category for biological processes, while for molecular functions, flavin adenine dinucleotide binding (GO: 0050660, FDR = 3.66E-01) and androgen receptor binding (GO: 0050681, FDR = 6.35E-01) were significantly enriched. DEGs were enriched in many osteoporosis-related signalling pathways, including those of mitogen-activated protein kinase (MAPK) and calcium. Protein-protein interaction (PPI) network analysis showed that the significant hub proteins contained ubiquitin specific peptidase 9, X-linked (Degree = 99), ubiquitin specific peptidase 19 (Degree = 57) and ubiquitin conjugating enzyme E2 B (Degree = 57). Analysis of gene function of identified differentially expressed genes may expand our understanding of fundamental mechanisms leading to osteoporosis. Moreover, significantly enriched pathways, such as MAPK and calcium, may involve in osteoporosis through osteoblastic differentiation and bone formation.Cite this article: J. J. Li, B. Q. Wang, Q. Fei, Y. Yang, D. Li. Identification of candidate genes in osteoporosis by integrated microarray analysis. Bone Joint Res 2016;5:594-601. DOI: 10.1302/2046-3758.512.BJR-2016-0073.R1. © 2016 Fei et al.

  10. Genetic programming based ensemble system for microarray data classification.

    PubMed

    Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To

    2015-01-01

    Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved.

  11. Genetic Programming Based Ensemble System for Microarray Data Classification

    PubMed Central

    Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To

    2015-01-01

    Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved. PMID:25810748

  12. Deletion of the transcriptional coactivator PGC1α in skeletal muscles is associated with reduced expression of genes related to oxidative muscle function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatazawa, Yukino; Research Fellow of Japan Society for the Promotion of Science, Tokyo; Minami, Kimiko

    The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared withmore » that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α’s function in the oxidative energy metabolism of skeletal muscles. - Highlights: • Microarray analysis was performed in the skeletal muscle of PGC1α KO mice. • Expression of genes in the oxidative energy metabolism was decreased. • Bioinformatic analysis of promoter region of the genes predicted involvement of ERR. • PGC1α KO microarray data in this study show the mirror image of transgenic data.« less

  13. Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients

    PubMed Central

    Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia

    2012-01-01

    Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications. PMID:23071521

  14. Chemical Composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells.

    PubMed

    Sertel, Serkan; Eichhorn, Tolga; Plinkert, Peter K; Efferth, Thomas

    2011-01-01

    Oral squamous cell carcinoma (OSCC) is a challenging disease with a high mortality rate. Natural products represent a valuable source for the development of novel anticancer drugs. We investigated the cytotoxic potential of essential oil from the leaves of a medicinal plant, Levisticum officinale (lovage) on head and neck squamous carcinoma cells (HNSCC). Cytotoxicity of lovage essential oil was investigated on the HNSCC cell line, UMSCC1. Additionally, we performed pharmacogenomics analyses. Lovage essential oil extract had an IC₅₀ value of 292.6 μg/ml. Genes involved in apoptosis, cancer, cellular growth and cell cycle regulation were the most prominently affected in microarray analyses. The three pathways to be most significantly regulated were extracellular signal-regulated kinase 5 (ERK5) signaling, integrin-linked kinase (ILK) signaling, virus entry via endocytic pathways and p53 signaling. Levisticum officinale essential oil inhibits human HNSCC cell growth.

  15. Systematic validation and atomic force microscopy of non-covalent short oligonucleotide barcode microarrays.

    PubMed

    Cook, Michael A; Chan, Chi-Kin; Jorgensen, Paul; Ketela, Troy; So, Daniel; Tyers, Mike; Ho, Chi-Yip

    2008-02-06

    Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20-60 base) unique sequence tags, or "barcodes", associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5'-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM), we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis.

  16. A perspective on DNA microarray technology in food and nutritional science.

    PubMed

    Kato, Hisanori; Saito, Kenji; Kimura, Takeshi

    2005-09-01

    The functions of nutrients and other foods have been revealed at the level of gene regulation. The advent of DNA microarray technology has enabled us to analyze the body's response to these factors in a much more holistic manner than before. This review is intended to overview the present status of this DNA microarray technology, hoping to provide food and nutrition scientists, especially those who are planning to introduce this technology, with hints and suggestions. The number of papers examining transcriptomics analysis in food and nutrition science has expanded over the last few years. The effects of some dietary conditions and administration of specific nutrients or food factors are studied in various animal models and cultured cells. The target food components range from macronutrients and micronutrients to other functional food factors. Such studies have already yielded fruitful results, which include discovery of novel functions of a food, uncovering hitherto unknown mechanisms of action, and analyses of food safety. The potency of DNA microarray technology in food and nutrition science is broadly recognized. This technique will surely continue to provide researchers and the public with valuable information on the beneficial and adverse effects of food factors. It should also be acknowledged, however, that there remain problems such as standardization of the data and sharing of the results among researchers in this field.

  17. Metadata management and semantics in microarray repositories.

    PubMed

    Kocabaş, F; Can, T; Baykal, N

    2011-12-01

    The number of microarray and other high-throughput experiments on primary repositories keeps increasing as do the size and complexity of the results in response to biomedical investigations. Initiatives have been started on standardization of content, object model, exchange format and ontology. However, there are backlogs and inability to exchange data between microarray repositories, which indicate that there is a great need for a standard format and data management. We have introduced a metadata framework that includes a metadata card and semantic nets that make experimental results visible, understandable and usable. These are encoded in syntax encoding schemes and represented in RDF (Resource Description Frame-word), can be integrated with other metadata cards and semantic nets, and can be exchanged, shared and queried. We demonstrated the performance and potential benefits through a case study on a selected microarray repository. We concluded that the backlogs can be reduced and that exchange of information and asking of knowledge discovery questions can become possible with the use of this metadata framework.

  18. Separation and Analysis of Adherent and Non-Adherent Cancer Cells Using a Single-Cell Microarray Chip.

    PubMed

    Yamamura, Shohei; Yamada, Eriko; Kimura, Fukiko; Miyajima, Kumiko; Shigeto, Hajime

    2017-10-21

    A new single-cell microarray chip was designed and developed to separate and analyze single adherent and non-adherent cancer cells. The single-cell microarray chip is made of polystyrene with over 60,000 microchambers of 10 different size patterns (31-40 µm upper diameter, 11-20 µm lower diameter). A drop of suspension of adherent carcinoma (NCI-H1650) and non-adherent leukocyte (CCRF-CEM) cells was placed onto the chip, and single-cell occupancy of NCI-H1650 and CCRF-CEM was determined to be 79% and 84%, respectively. This was achieved by controlling the chip design and surface treatment. Analysis of protein expression in single NCI-H1650 and CCRF-CEM cells was performed on the single-cell microarray chip by multi-antibody staining. Additionally, with this system, we retrieved positive single cells from the microchambers by a micromanipulator. Thus, this system demonstrates the potential for easy and accurate separation and analysis of various types of single cells.

  19. Evaluation of chronic lymphocytic leukemia by oligonucleotide-based microarray analysis uncovers novel aberrations not detected by FISH or cytogenetic analysis

    PubMed Central

    2011-01-01

    Background Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence in situ hybridization (FISH). Results Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23. Conclusions Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future. PMID:22087757

  20. Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis

    PubMed Central

    Voelckel, Claudia; Borevitz, Justin O.; Kramer, Elena M.; Hodges, Scott A.

    2010-01-01

    Background The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels. Methodology/Principal Findings We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource). Conclusions/Significance Our comparative gene expression analyses suggest that 1) petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2) petals of A. formosa and A. thaliana may be independently derived, 3) staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4) staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology. PMID:20352114

  1. Functional genomics annotation of a statistical epistasis network associated with bladder cancer susceptibility.

    PubMed

    Hu, Ting; Pan, Qinxin; Andrew, Angeline S; Langer, Jillian M; Cole, Michael D; Tomlinson, Craig R; Karagas, Margaret R; Moore, Jason H

    2014-04-11

    Several different genetic and environmental factors have been identified as independent risk factors for bladder cancer in population-based studies. Recent studies have turned to understanding the role of gene-gene and gene-environment interactions in determining risk. We previously developed the bioinformatics framework of statistical epistasis networks (SEN) to characterize the global structure of interacting genetic factors associated with a particular disease or clinical outcome. By applying SEN to a population-based study of bladder cancer among Caucasians in New Hampshire, we were able to identify a set of connected genetic factors with strong and significant interaction effects on bladder cancer susceptibility. To support our statistical findings using networks, in the present study, we performed pathway enrichment analyses on the set of genes identified using SEN, and found that they are associated with the carcinogen benzo[a]pyrene, a component of tobacco smoke. We further carried out an mRNA expression microarray experiment to validate statistical genetic interactions, and to determine if the set of genes identified in the SEN were differentially expressed in a normal bladder cell line and a bladder cancer cell line in the presence or absence of benzo[a]pyrene. Significant nonrandom sets of genes from the SEN were found to be differentially expressed in response to benzo[a]pyrene in both the normal bladder cells and the bladder cancer cells. In addition, the patterns of gene expression were significantly different between these two cell types. The enrichment analyses and the gene expression microarray results support the idea that SEN analysis of bladder in population-based studies is able to identify biologically meaningful statistical patterns. These results bring us a step closer to a systems genetic approach to understanding cancer susceptibility that integrates population and laboratory-based studies.

  2. SAR405838: A novel and potent inhibitor of the MDM2:p53 axis for the treatment of dedifferentiated liposarcoma

    PubMed Central

    Bill, Kate Lynn J.; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J.; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J.; Prudner, Bethany C.; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E.

    2016-01-01

    Purpose Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a “hallmark” of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the p53-MDM2 axis as a potential therapeutic target for DDLPS. Here we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. Experimental Design The therapeutic effectiveness of SAR405838 was compared to the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. Results SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. Conclusion SAR405838 is currently in early phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. PMID:26475335

  3. SAR405838: A Novel and Potent Inhibitor of the MDM2:p53 Axis for the Treatment of Dedifferentiated Liposarcoma.

    PubMed

    Bill, Kate Lynn J; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J; Prudner, Bethany C; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E

    2016-03-01

    Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a "hallmark" of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the MDM2:p53 axis as a potential therapeutic target for DDLPS. Here, we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. The therapeutic effectiveness of SAR405838 was compared with the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell-cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. SAR405838 is currently in early-phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. ©2015 American Association for Cancer Research.

  4. Macrophage Gene Expression Associated with Remodeling of the Prepartum Rat Cervix: Microarray and Pathway Analyses

    PubMed Central

    Dobyns, Abigail E.; Goyal, Ravi; Carpenter, Lauren Grisham; Freeman, Tom C.; Longo, Lawrence D.; Yellon, Steven M.

    2015-01-01

    As the critical gatekeeper for birth, prepartum remodeling of the cervix is associated with increased resident macrophages (Mφ), proinflammatory processes, and extracellular matrix degradation. This study tested the hypothesis that expression of genes unique to Mφs characterizes the prepartum from unremodeled nonpregnant cervix. Perfused cervix from prepartum day 21 postbreeding (D21) or nonpregnant (NP) rats, with or without Mφs, had RNA extracted and whole genome microarray analysis performed. By subtractive analyses, expression of 194 and 120 genes related to Mφs in the cervix from D21 rats were increased and decreased, respectively. In both D21 and NP groups, 158 and 57 Mφ genes were also more or less up- or down-regulated, respectively. Mφ gene expression patterns were most strongly correlated within groups and in 5 major clustering patterns. In the cervix from D21 rats, functional categories and canonical pathways of increased expression by Mφ gene related to extracellular matrix, cell proliferation, differentiation, as well as cell signaling. Pathways were characteristic of inflammation and wound healing, e.g., CD163, CD206, and CCR2. Signatures of only inflammation pathways, e.g., CSF1R, EMR1, and MMP12 were common to both D21 and NP groups. Thus, a novel and complex balance of Mφ genes and clusters differentiated the degraded extracellular matrix and cellular genomic activities in the cervix before birth from the unremodeled state. Predicted Mφ activities, pathways, and networks raise the possibility that expression patterns of specific genes characterize and promote prepartum remodeling of the cervix for parturition at term and with preterm labor. PMID:25811906

  5. The Development of Translational Biomarkers as a Tool for Improving the Understanding, Diagnosis and Treatment of Chronic Neuropathic Pain.

    PubMed

    Buckley, David A; Jennings, Elaine M; Burke, Nikita N; Roche, Michelle; McInerney, Veronica; Wren, Jonathan D; Finn, David P; McHugh, Patrick C

    2018-03-01

    Chronic neuropathic pain (CNP) is one of the most significant unmet clinical needs in modern medicine. Alongside the lack of effective treatments, there is a great deficit in the availability of objective diagnostic methods to reliably facilitate an accurate diagnosis. We therefore aimed to determine the feasibility of a simple diagnostic test by analysing differentially expressed genes in the blood of patients diagnosed with CNP of the lower back and compared to healthy human controls. Refinement of microarray expression data was performed using correlation analysis with 3900 human 2-colour microarray experiments. Selected genes were analysed in the dorsal horn of Sprague-Dawley rats after L5 spinal nerve ligation (SNL), using qRT-PCR and ddPCR, to determine possible associations with pathophysiological mechanisms underpinning CNP and whether they represent translational biomarkers of CNP. We found that of the 15 potential biomarkers identified, tissue inhibitor of matrix metalloproteinase-1 (TIMP1) gene expression was upregulated in chronic neuropathic lower back pain (CNBP) (p = 0.0049) which positively correlated (R = 0.68, p = ≤0.05) with increased plasma TIMP1 levels in this group (p = 0.0433). Moreover, plasma TIMP1 was also significantly upregulated in CNBP than chronic inflammatory lower back pain (p = 0.0272). In the SNL model, upregulation of the Timp1 gene was also observed (p = 0.0058) alongside a strong trend for the upregulation of melanocortin 1 receptor (p = 0.0847). Our data therefore highlights several genes that warrant further investigation, and of these, TIMP1 shows the greatest potential as an accessible and translational CNP biomarker.

  6. Microarray-based characterization of differential gene expression during vocal fold wound healing in rats

    PubMed Central

    Welham, Nathan V.; Ling, Changying; Dawson, John A.; Kendziorski, Christina; Thibeault, Susan L.; Yamashita, Masaru

    2015-01-01

    The vocal fold (VF) mucosa confers elegant biomechanical function for voice production but is susceptible to scar formation following injury. Current understanding of VF wound healing is hindered by a paucity of data and is therefore often generalized from research conducted in skin and other mucosal systems. Here, using a previously validated rat injury model, expression microarray technology and an empirical Bayes analysis approach, we generated a VF-specific transcriptome dataset to better capture the system-level complexity of wound healing in this specialized tissue. We measured differential gene expression at 3, 14 and 60 days post-injury compared to experimentally naïve controls, pursued functional enrichment analyses to refine and add greater biological definition to the previously proposed temporal phases of VF wound healing, and validated the expression and localization of a subset of previously unidentified repair- and regeneration-related genes at the protein level. Our microarray dataset is a resource for the wider research community and has the potential to stimulate new hypotheses and avenues of investigation, improve biological and mechanistic insight, and accelerate the identification of novel therapeutic targets. PMID:25592437

  7. Peptidoglycan microarray as a novel tool to explore protein-ligand recognition.

    PubMed

    Wang, Ning; Hirata, Akiyoshi; Nokihara, Kiyoshi; Fukase, Koichi; Fujimoto, Yukari

    2016-11-04

    Peptidoglycan is a giant bag-shaped molecule essential for bacterial cell shape and resistance to osmotic stresses. The activity of a large number of bacterial surface proteins involved in cell growth and division requires binding to this macromolecule. Recognition of peptidoglycan by immune effectors is also crucial for the establishment of the immune response against pathogens. The availability of pure and chemically defined peptidoglycan fragments is a major technical bottleneck that has precluded systematic studies of the mechanisms underpinning protein-mediated peptidoglycan recognition. Here, we report a microarray strategy suitable to carry out comprehensive studies to characterize proteins-peptidoglycan interactions. We describe a method to introduce a functional group on peptidoglycan fragments allowing their stable immobilization on amorphous carbon chip plates to minimize nonspecific binding. Such peptidoglycan microarrays were used with a model peptidoglycan binding protein-the human peptidoglycan recognition protein-S (hPGRP-S). We propose that this strategy could be implemented to carry out high-throughput analyses to study peptidoglycan binding proteins. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 422-429, 2016. © 2016 Wiley Periodicals, Inc.

  8. An improved K-means clustering method for cDNA microarray image segmentation.

    PubMed

    Wang, T N; Li, T J; Shao, G F; Wu, S X

    2015-07-14

    Microarray technology is a powerful tool for human genetic research and other biomedical applications. Numerous improvements to the standard K-means algorithm have been carried out to complete the image segmentation step. However, most of the previous studies classify the image into two clusters. In this paper, we propose a novel K-means algorithm, which first classifies the image into three clusters, and then one of the three clusters is divided as the background region and the other two clusters, as the foreground region. The proposed method was evaluated on six different data sets. The analyses of accuracy, efficiency, expression values, special gene spots, and noise images demonstrate the effectiveness of our method in improving the segmentation quality.

  9. Overcoming bias and systematic errors in next generation sequencing data.

    PubMed

    Taub, Margaret A; Corrada Bravo, Hector; Irizarry, Rafael A

    2010-12-10

    Considerable time and effort has been spent in developing analysis and quality assessment methods to allow the use of microarrays in a clinical setting. As is the case for microarrays and other high-throughput technologies, data from new high-throughput sequencing technologies are subject to technological and biological biases and systematic errors that can impact downstream analyses. Only when these issues can be readily identified and reliably adjusted for will clinical applications of these new technologies be feasible. Although much work remains to be done in this area, we describe consistently observed biases that should be taken into account when analyzing high-throughput sequencing data. In this article, we review current knowledge about these biases, discuss their impact on analysis results, and propose solutions.

  10. The Innate Immune Database (IIDB)

    PubMed Central

    Korb, Martin; Rust, Aistair G; Thorsson, Vesteinn; Battail, Christophe; Li, Bin; Hwang, Daehee; Kennedy, Kathleen A; Roach, Jared C; Rosenberger, Carrie M; Gilchrist, Mark; Zak, Daniel; Johnson, Carrie; Marzolf, Bruz; Aderem, Alan; Shmulevich, Ilya; Bolouri, Hamid

    2008-01-01

    Background As part of a National Institute of Allergy and Infectious Diseases funded collaborative project, we have performed over 150 microarray experiments measuring the response of C57/BL6 mouse bone marrow macrophages to toll-like receptor stimuli. These microarray expression profiles are available freely from our project web site . Here, we report the development of a database of computationally predicted transcription factor binding sites and related genomic features for a set of over 2000 murine immune genes of interest. Our database, which includes microarray co-expression clusters and a host of web-based query, analysis and visualization facilities, is available freely via the internet. It provides a broad resource to the research community, and a stepping stone towards the delineation of the network of transcriptional regulatory interactions underlying the integrated response of macrophages to pathogens. Description We constructed a database indexed on genes and annotations of the immediate surrounding genomic regions. To facilitate both gene-specific and systems biology oriented research, our database provides the means to analyze individual genes or an entire genomic locus. Although our focus to-date has been on mammalian toll-like receptor signaling pathways, our database structure is not limited to this subject, and is intended to be broadly applicable to immunology. By focusing on selected immune-active genes, we were able to perform computationally intensive expression and sequence analyses that would currently be prohibitive if applied to the entire genome. Using six complementary computational algorithms and methodologies, we identified transcription factor binding sites based on the Position Weight Matrices available in TRANSFAC. For one example transcription factor (ATF3) for which experimental data is available, over 50% of our predicted binding sites coincide with genome-wide chromatin immnuopreciptation (ChIP-chip) results. Our database can be interrogated via a web interface. Genomic annotations and binding site predictions can be automatically viewed with a customized version of the Argo genome browser. Conclusion We present the Innate Immune Database (IIDB) as a community resource for immunologists interested in gene regulatory systems underlying innate responses to pathogens. The database website can be freely accessed at . PMID:18321385

  11. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping.

    PubMed

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren; Nielsen, Morten

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope.

  12. Quantitative comparison of microarray experiments with published leukemia related gene expression signatures.

    PubMed

    Klein, Hans-Ulrich; Ruckert, Christian; Kohlmann, Alexander; Bullinger, Lars; Thiede, Christian; Haferlach, Torsten; Dugas, Martin

    2009-12-15

    Multiple gene expression signatures derived from microarray experiments have been published in the field of leukemia research. A comparison of these signatures with results from new experiments is useful for verification as well as for interpretation of the results obtained. Currently, the percentage of overlapping genes is frequently used to compare published gene signatures against a signature derived from a new experiment. However, it has been shown that the percentage of overlapping genes is of limited use for comparing two experiments due to the variability of gene signatures caused by different array platforms or assay-specific influencing parameters. Here, we present a robust approach for a systematic and quantitative comparison of published gene expression signatures with an exemplary query dataset. A database storing 138 leukemia-related published gene signatures was designed. Each gene signature was manually annotated with terms according to a leukemia-specific taxonomy. Two analysis steps are implemented to compare a new microarray dataset with the results from previous experiments stored and curated in the database. First, the global test method is applied to assess gene signatures and to constitute a ranking among them. In a subsequent analysis step, the focus is shifted from single gene signatures to chromosomal aberrations or molecular mutations as modeled in the taxonomy. Potentially interesting disease characteristics are detected based on the ranking of gene signatures associated with these aberrations stored in the database. Two example analyses are presented. An implementation of the approach is freely available as web-based application. The presented approach helps researchers to systematically integrate the knowledge derived from numerous microarray experiments into the analysis of a new dataset. By means of example leukemia datasets we demonstrate that this approach detects related experiments as well as related molecular mutations and may help to interpret new microarray data.

  13. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significancemore » analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.« less

  14. Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species.

    PubMed

    Vallée, Maud; Gravel, Catherine; Palin, Marie-France; Reghenas, Hélène; Stothard, Paul; Wishart, David S; Sirard, Marc-André

    2005-07-01

    The main objective of the present study was to identify novel oocyte-specific genes in three different species: bovine, mouse, and Xenopus laevis. To achieve this goal, two powerful technologies were combined: a polymerase chain reaction (PCR)-based cDNA subtraction, and cDNA microarrays. Three subtractive libraries consisting of 3456 clones were established and enriched for oocyte-specific transcripts. Sequencing analysis of the positive insert-containing clones resulted in the following classification: 53% of the clones corresponded to known cDNAs, 26% were classified as uncharacterized cDNAs, and a final 9% were classified as novel sequences. All these clones were used for cDNA microarray preparation. Results from these microarray analyses revealed that in addition to already known oocyte-specific genes, such as GDF9, BMP15, and ZP, known genes with unknown function in the oocyte were identified, such as a MLF1-interacting protein (MLF1IP), B-cell translocation gene 4 (BTG4), and phosphotyrosine-binding protein (xPTB). Furthermore, 15 novel oocyte-specific genes were validated by reverse transcription-PCR to confirm their preferential expression in the oocyte compared to somatic tissues. The results obtained in the present study confirmed that microarray analysis is a robust technique to identify true positives from the suppressive subtractive hybridization experiment. Furthermore, obtaining oocyte-specific genes from three species simultaneously allowed us to look at important genes that are conserved across species. Further characterization of these novel oocyte-specific genes will lead to a better understanding of the molecular mechanisms related to the unique functions found in the oocyte.

  15. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.

    PubMed

    Jaakson, K; Zernant, J; Külm, M; Hutchinson, A; Tonisson, N; Glavac, D; Ravnik-Glavac, M; Hawlina, M; Meltzer, M R; Caruso, R C; Testa, F; Maugeri, A; Hoyng, C B; Gouras, P; Simonelli, F; Lewis, R A; Lupski, J R; Cremers, F P M; Allikmets, R

    2003-11-01

    Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research. Copyright 2003 Wiley-Liss, Inc.

  16. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    PubMed Central

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope. PMID:28095436

  17. Comprehensive Assessments of RNA-seq by the SEQC Consortium: FDA-Led Efforts Advance Precision Medicine.

    PubMed

    Xu, Joshua; Gong, Binsheng; Wu, Leihong; Thakkar, Shraddha; Hong, Huixiao; Tong, Weida

    2016-03-15

    Studies on gene expression in response to therapy have led to the discovery of pharmacogenomics biomarkers and advances in precision medicine. Whole transcriptome sequencing (RNA-seq) is an emerging tool for profiling gene expression and has received wide adoption in the biomedical research community. However, its value in regulatory decision making requires rigorous assessment and consensus between various stakeholders, including the research community, regulatory agencies, and industry. The FDA-led SEquencing Quality Control (SEQC) consortium has made considerable progress in this direction, and is the subject of this review. Specifically, three RNA-seq platforms (Illumina HiSeq, Life Technologies SOLiD, and Roche 454) were extensively evaluated at multiple sites to assess cross-site and cross-platform reproducibility. The results demonstrated that relative gene expression measurements were consistently comparable across labs and platforms, but not so for the measurement of absolute expression levels. As part of the quality evaluation several studies were included to evaluate the utility of RNA-seq in clinical settings and safety assessment. The neuroblastoma study profiled tumor samples from 498 pediatric neuroblastoma patients by both microarray and RNA-seq. RNA-seq offers more utilities than microarray in determining the transcriptomic characteristics of cancer. However, RNA-seq and microarray-based models were comparable in clinical endpoint prediction, even when including additional features unique to RNA-seq beyond gene expression. The toxicogenomics study compared microarray and RNA-seq profiles of the liver samples from rats exposed to 27 different chemicals representing multiple toxicity modes of action. Cross-platform concordance was dependent on chemical treatment and transcript abundance. Though both RNA-seq and microarray are suitable for developing gene expression based predictive models with comparable prediction performance, RNA-seq offers advantages over microarray in profiling genes with low expression. The rat BodyMap study provided a comprehensive rat transcriptomic body map by performing RNA-Seq on 320 samples from 11 organs in either sex of juvenile, adolescent, adult and aged Fischer 344 rats. Lastly, the transferability study demonstrated that signature genes of predictive models are reciprocally transferable between microarray and RNA-seq data for model development using a comprehensive approach with two large clinical data sets. This result suggests continued usefulness of legacy microarray data in the coming RNA-seq era. In conclusion, the SEQC project enhances our understanding of RNA-seq and provides valuable guidelines for RNA-seq based clinical application and safety evaluation to advance precision medicine.

  18. Novel statistical framework to identify differentially expressed genes allowing transcriptomic background differences.

    PubMed

    Ling, Zhi-Qiang; Wang, Yi; Mukaisho, Kenichi; Hattori, Takanori; Tatsuta, Takeshi; Ge, Ming-Hua; Jin, Li; Mao, Wei-Min; Sugihara, Hiroyuki

    2010-06-01

    Tests of differentially expressed genes (DEGs) from microarray experiments are based on the null hypothesis that genes that are irrelevant to the phenotype/stimulus are expressed equally in the target and control samples. However, this strict hypothesis is not always true, as there can be several transcriptomic background differences between target and control samples, including different cell/tissue types, different cell cycle stages and different biological donors. These differences lead to increased false positives, which have little biological/medical significance. In this article, we propose a statistical framework to identify DEGs between target and control samples from expression microarray data allowing transcriptomic background differences between these samples by introducing a modified null hypothesis that the gene expression background difference is normally distributed. We use an iterative procedure to perform robust estimation of the null hypothesis and identify DEGs as outliers. We evaluated our method using our own triplicate microarray experiment, followed by validations with reverse transcription-polymerase chain reaction (RT-PCR) and on the MicroArray Quality Control dataset. The evaluations suggest that our technique (i) results in less false positive and false negative results, as measured by the degree of agreement with RT-PCR of the same samples, (ii) can be applied to different microarray platforms and results in better reproducibility as measured by the degree of DEG identification concordance both intra- and inter-platforms and (iii) can be applied efficiently with only a few microarray replicates. Based on these evaluations, we propose that this method not only identifies more reliable and biologically/medically significant DEG, but also reduces the power-cost tradeoff problem in the microarray field. Source code and binaries freely available for download at http://comonca.org.cn/fdca/resources/softwares/deg.zip.

  19. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

    PubMed

    Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

    2008-06-18

    Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson correlation coefficient and the SD-weighted correlation coefficient, and is particularly useful for clustering replicated microarray data. This computational approach should be generally useful for proteomic data or other high-throughput analysis methodology.

  20. Gene features selection for three-class disease classification via multiple orthogonal partial least square discriminant analysis and S-plot using microarray data.

    PubMed

    Yang, Mingxing; Li, Xiumin; Li, Zhibin; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Li, Xuejun; Yang, Shuyu

    2013-01-01

    DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes. Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub's leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.

  1. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease

    PubMed Central

    Romero-Garmendia, Irati; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora

    2018-01-01

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models. PMID:29748492

  2. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease.

    PubMed

    Romero-Garmendia, Irati; Garcia-Etxebarria, Koldo; Hernandez-Vargas, Hector; Santin, Izortze; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora; Bilbao, Jose Ramon

    2018-05-10

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.

  3. Optimization of cDNA microarrays procedures using criteria that do not rely on external standards.

    PubMed

    Bruland, Torunn; Anderssen, Endre; Doseth, Berit; Bergum, Hallgeir; Beisvag, Vidar; Laegreid, Astrid

    2007-10-18

    The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish.

  4. Optimization of cDNA microarrays procedures using criteria that do not rely on external standards

    PubMed Central

    Bruland, Torunn; Anderssen, Endre; Doseth, Berit; Bergum, Hallgeir; Beisvag, Vidar; Lægreid, Astrid

    2007-01-01

    Background The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. Results We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. Conclusion The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish. PMID:17949480

  5. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    PubMed

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional microarrays that rely on passive hybridization. With further refinement, this novel, rapid, highly automated microarray technology has potential applications in multipathogen surveillance of livestock diseases. © 2017 Her Majesty the Queen in Right of Canada • Transboundary and Emerging Diseases.

  6. Differential gene expression detection and sample classification using penalized linear regression models.

    PubMed

    Wu, Baolin

    2006-02-15

    Differential gene expression detection and sample classification using microarray data have received much research interest recently. Owing to the large number of genes p and small number of samples n (p > n), microarray data analysis poses big challenges for statistical analysis. An obvious problem owing to the 'large p small n' is over-fitting. Just by chance, we are likely to find some non-differentially expressed genes that can classify the samples very well. The idea of shrinkage is to regularize the model parameters to reduce the effects of noise and produce reliable inferences. Shrinkage has been successfully applied in the microarray data analysis. The SAM statistics proposed by Tusher et al. and the 'nearest shrunken centroid' proposed by Tibshirani et al. are ad hoc shrinkage methods. Both methods are simple, intuitive and prove to be useful in empirical studies. Recently Wu proposed the penalized t/F-statistics with shrinkage by formally using the (1) penalized linear regression models for two-class microarray data, showing good performance. In this paper we systematically discussed the use of penalized regression models for analyzing microarray data. We generalize the two-class penalized t/F-statistics proposed by Wu to multi-class microarray data. We formally derive the ad hoc shrunken centroid used by Tibshirani et al. using the (1) penalized regression models. And we show that the penalized linear regression models provide a rigorous and unified statistical framework for sample classification and differential gene expression detection.

  7. Laser capture microdissection of embryonic cells and preparation of RNA for microarray assays.

    PubMed

    Redmond, Latasha C; Pang, Christopher J; Dumur, Catherine; Haar, Jack L; Lloyd, Joyce A

    2014-01-01

    In order to compare the global gene expression profiles of different embryonic cell types, it is first necessary to isolate the specific cells of interest. The purpose of this chapter is to provide a step-by-step protocol to perform laser capture microdissection (LCM) on embryo samples and obtain sufficient amounts of high-quality RNA for microarray hybridizations. Using the LCM/microarray strategy on mouse embryo samples has some challenges, because the cells of interest are available in limited quantities. The first step in the protocol is to obtain embryonic tissue, and immediately cryoprotect and freeze it in a cryomold containing Optimal Cutting Temperature freezing media (Sakura Finetek), using a dry ice-isopentane bath. The tissue is then cryosectioned, and the microscope slides are processed to fix, stain, and dehydrate the cells. LCM is employed to isolate specific cell types from the slides, identified under the microscope by virtue of their morphology. Detailed protocols are provided for using the currently available ArcturusXT LCM instrument and CapSure(®) LCM Caps, to which the selected cells adhere upon laser capture. To maintain RNA integrity, upon removing a slide from the final processing step, or attaching the first cells on the LCM cap, LCM is completed within 20 min. The cells are then immediately recovered from the LCM cap using a denaturing solution that stabilizes RNA integrity. RNA is prepared using standard methods, modified for working with small samples. To ensure the validity of the microarray data, the quality of the RNA is assessed using the Agilent bioanalyzer. Only RNA that is of sufficient integrity and quantity is used to perform microarray assays. This chapter provides guidance regarding troubleshooting and optimization to obtain high-quality RNA from cells of limited availability, obtained from embryo samples by LCM.

  8. Determination of Specific Antibody Responses to the Six Species of Ebola and Marburg Viruses by Multiplexed Protein Microarrays

    PubMed Central

    Kamata, Teddy; Natesan, Mohan; Warfield, Kelly; Aman, M. Javad

    2014-01-01

    Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses. PMID:25230936

  9. Determination of specific antibody responses to the six species of ebola and Marburg viruses by multiplexed protein microarrays.

    PubMed

    Kamata, Teddy; Natesan, Mohan; Warfield, Kelly; Aman, M Javad; Ulrich, Robert G

    2014-12-01

    Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Laser Capture Microdissection of Embryonic Cells and Preparation of RNA for Microarray Assays

    PubMed Central

    Redmond, Latasha C.; Pang, Christopher J.; Dumur, Catherine; Haar, Jack L.; Lloyd, Joyce A.

    2014-01-01

    In order to compare the global gene expression profiles of different embryonic cell types, it is first necessary to isolate the specific cells of interest. The purpose of this chapter is to provide a step-by-step protocol to perform laser capture microdissection (LCM) on embryo samples and obtain sufficient amounts of high-quality RNA for microarray hybridizations. Using the LCM/microarray strategy on mouse embryo samples has some challenges, because the cells of interest are available in limited quantities. The first step in the protocol is to obtain embryonic tissue, and immediately cryoprotect and freeze it in a cryomold containing Optimal Cutting Temperature freezing media (Sakura Finetek), using a dry ice–isopentane bath. The tissue is then cryosectioned, and the microscope slides are processed to fix, stain, and dehydrate the cells. LCM is employed to isolate specific cell types from the slides, identified under the microscope by virtue of their morphology. Detailed protocols are provided for using the currently available ArcturusXT LCM instrument and CapSure® LCM Caps, to which the selected cells adhere upon laser capture. To maintain RNA integrity, upon removing a slide from the final processing step, or attaching the first cells on the LCM cap, LCM is completed within 20 min. The cells are then immediately recovered from the LCM cap using a denaturing solution that stabilizes RNA integrity. RNA is prepared using standard methods, modified for working with small samples. To ensure the validity of the microarray data, the quality of the RNA is assessed using the Agilent bioanalyzer. Only RNA that is of sufficient integrity and quantity is used to perform microarray assays. This chapter provides guidance regarding troubleshooting and optimization to obtain high-quality RNA from cells of limited availability, obtained from embryo samples by LCM. PMID:24318813

  11. An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data.

    PubMed

    Hsu, Arthur L; Tang, Sen-Lin; Halgamuge, Saman K

    2003-11-01

    Current Self-Organizing Maps (SOMs) approaches to gene expression pattern clustering require the user to predefine the number of clusters likely to be expected. Hierarchical clustering methods used in this area do not provide unique partitioning of data. We describe an unsupervised dynamic hierarchical self-organizing approach, which suggests an appropriate number of clusters, to perform class discovery and marker gene identification in microarray data. In the process of class discovery, the proposed algorithm identifies corresponding sets of predictor genes that best distinguish one class from other classes. The approach integrates merits of hierarchical clustering with robustness against noise known from self-organizing approaches. The proposed algorithm applied to DNA microarray data sets of two types of cancers has demonstrated its ability to produce the most suitable number of clusters. Further, the corresponding marker genes identified through the unsupervised algorithm also have a strong biological relationship to the specific cancer class. The algorithm tested on leukemia microarray data, which contains three leukemia types, was able to determine three major and one minor cluster. Prediction models built for the four clusters indicate that the prediction strength for the smaller cluster is generally low, therefore labelled as uncertain cluster. Further analysis shows that the uncertain cluster can be subdivided further, and the subdivisions are related to two of the original clusters. Another test performed using colon cancer microarray data has automatically derived two clusters, which is consistent with the number of classes in data (cancerous and normal). JAVA software of dynamic SOM tree algorithm is available upon request for academic use. A comparison of rectangular and hexagonal topologies for GSOM is available from http://www.mame.mu.oz.au/mechatronics/journalinfo/Hsu2003supp.pdf

  12. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.

    PubMed

    Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu

    2018-03-12

    In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.

  13. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE

    PubMed Central

    Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.

    2010-01-01

    Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258

  14. Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression

    Treesearch

    Amber J. Vanden Wymelenberg; Jill A. Gaskell; Michael D. Mozuch; Philip J. Kersten; Grzegorz Sabat; Diego Martinez; Daniel Cullen

    2009-01-01

    The wood decay basidiomycete Phanerochaete chrysosporium was grown under standard ligninolytic or cellulolytic conditions and subjected to whole-genome expression microarray analysis and liquid chromatography-tandem mass spectrometry of extracellular proteins. A total of 545 genes were flagged on the basis of significant changes in transcript accumulation and/or...

  15. Microarray and growth analyses identify differences and similarities of early corn response to weeds, shade, and nitrogen stress

    USDA-ARS?s Scientific Manuscript database

    Weed interference with crop growth is often attributed to water, nutrient, or light competition; however, specific physiological responses to these stresses are not well described. This study’s objective was to compare growth, yield, and gene expression responses of corn to nitrogen (N), low light (...

  16. Transcriptome profiling and expression analyses of genes critical to wheat adaptation to low temperature

    USDA-ARS?s Scientific Manuscript database

    Background: To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expressi...

  17. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity.

    PubMed

    He, Chengyong; Jiang, Shengwei; Jin, Haijing; Chen, Shuzhen; Lin, Gan; Yao, Huan; Wang, Xiaoyong; Mi, Peng; Ji, Zhiliang; Lin, Yuchun; Lin, Zhongning; Liu, Gang

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are highly cytotoxic and target cancer cells with high specificity; however, the mechanism by which SPIONs induce cancer cell-specific cytotoxicity remains unclear. Herein, the molecular mechanism of SPION-induced cancer cell-specific cytotoxicity to cancer cells is clarified through DNA microarray and bioinformatics analyses. SPIONs can interference with the mitochondrial electron transport chain (METC) in cancer cells, which further affects the production of ATP, mitochondrial membrane potential, and microdistribution of calcium, and induces cell apoptosis. Additionally, SPIONs induce the formation of reactive oxygen species in mitochondria; these reactive oxygen species trigger cancer-specific cytotoxicity due to the lower antioxidative capacity of cancer cells. Moreover, the DNA microarray and gene ontology analyses revealed that SPIONs elevate the expression of metallothioneins in both normal and cancer cells but decrease the expression of METC genes in cancer cells. Overall, these results suggest that SPIONs induce cancer cell death by targeting the METC, which is helpful for designing anti-cancer nanotheranostics and evaluating the safety of future nanomedicines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Detection systems for carbapenemase gene identification should include the SME serine carbapenemase.

    PubMed

    Bush, Karen; Pannell, Megan; Lock, John L; Queenan, Anne Marie; Jorgensen, James H; Lee, Ryan M; Lewis, James S; Jarrett, Deidre

    2013-01-01

    Carbapenemase detection has become a major problem in hospitals that encounter outbreaks of infections caused by carbapenem-resistant Gram-negative bacteria. Rapid detection systems have been reported using multiplex PCR analyses and DNA microarray assays. Major carbapenemases that are detected by these systems include the KPC and OXA serine carbapenemases, and the IMP, VIM and NDM families of metallo-β-lactamases. However, increasing numbers of the SME serine carbapenemase are being reported from Serratia marcescens, especially from North and South America. These organisms differ from many of the other carbapenemase-producing pathogens in that they are generally susceptible to the expanded-spectrum cephalosporins ceftazidime and cefepime while retaining resistance to almost all other β-lactam antibiotics. Thus, multiplex PCR assays or DNA microarray testing of carbapenem-resistant S. marcescens isolates should include analyses for production of the SME carbapenemase. Confirmation of the presence of this enzyme may provide reassurance that oxyimino-cephalosporins can be considered for treatment of infections caused by these carbapenem-resistant pathogens. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  19. Genome-Wide Association Study of a Validated Case Definition of Gulf War Illness in a Population-Representative Sample

    DTIC Science & Technology

    2013-09-01

    sequence dataset. All procedures were performed by personnel in the IIMT UT Southwestern Genomics and Microarray Core using standard protocols. More... sequencing run, samples were demultiplexed using standard algorithms in the Genomics and Microarray Core and processed into individual sample Illumina single... Sequencing (RNA-Seq), using Illumina’s multiplexing mRNA-Seq to generate full sequence libraries from the poly-A tailed RNA to a read depth of 30

  20. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    PubMed Central

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  1. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    PubMed

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  2. Multiclass classification of microarray data samples with a reduced number of genes

    PubMed Central

    2011-01-01

    Background Multiclass classification of microarray data samples with a reduced number of genes is a rich and challenging problem in Bioinformatics research. The problem gets harder as the number of classes is increased. In addition, the performance of most classifiers is tightly linked to the effectiveness of mandatory gene selection methods. Critical to gene selection is the availability of estimates about the maximum number of genes that can be handled by any classification algorithm. Lack of such estimates may lead to either computationally demanding explorations of a search space with thousands of dimensions or classification models based on gene sets of unrestricted size. In the former case, unbiased but possibly overfitted classification models may arise. In the latter case, biased classification models unable to support statistically significant findings may be obtained. Results A novel bound on the maximum number of genes that can be handled by binary classifiers in binary mediated multiclass classification algorithms of microarray data samples is presented. The bound suggests that high-dimensional binary output domains might favor the existence of accurate and sparse binary mediated multiclass classifiers for microarray data samples. Conclusions A comprehensive experimental work shows that the bound is indeed useful to induce accurate and sparse multiclass classifiers for microarray data samples. PMID:21342522

  3. Establishment and Application of a Visual DNA Microarray for the Detection of Food-borne Pathogens.

    PubMed

    Li, Yongjin

    2016-01-01

    The accurate detection and identification of food-borne pathogenic microorganisms is critical for food safety nowadays. In the present work, a visual DNA microarray was established and applied to detect pathogens commonly found in food, including Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in food samples. Multiplex PCR (mPCR) was employed to simultaneously amplify specific gene fragments, fimY for Salmonella, ipaH for Shigella, iap for L. monocytogenes and ECs2841 for E. coli O157:H7, respectively. Biotinylated PCR amplicons annealed to the microarray probes were then reacted with a streptavidin-alkaline phosphatase conjugate and nitro blue tetrazolium/5-bromo-4-chloro-3'-indolylphosphate, p-toluidine salt (NBT/BCIP); the positive results were easily visualized as blue dots formatted on the microarray surface. The performance of a DNA microarray was tested against 14 representative collection strains and mock-contamination food samples. The combination of mPCR and a visual micro-plate chip specifically and sensitively detected Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in standard strains and food matrices with a sensitivity of ∼10(2) CFU/mL of bacterial culture. Thus, the developed method is advantageous because of its high throughput, cost-effectiveness and ease of use.

  4. Comparison of DNA Microarray, Loop-Mediated Isothermal Amplification (LAMP) and Real-Time PCR with DNA Sequencing for Identification of Fusarium spp. Obtained from Patients with Hematologic Malignancies.

    PubMed

    de Souza, Marcela; Matsuzawa, Tetsuhiro; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Busso-Lopes, Ariane Fidelis; Levin, Anna Sara Shafferman; Schreiber, Angélica Zaninelli; Mikami, Yuzuru; Gonoi, Tohoru; Kamei, Katsuhiko; Moretti, Maria Luiza; Trabasso, Plínio

    2017-08-01

    The performance of three molecular biology techniques, i.e., DNA microarray, loop-mediated isothermal amplification (LAMP), and real-time PCR were compared with DNA sequencing for properly identification of 20 isolates of Fusarium spp. obtained from blood stream as etiologic agent of invasive infections in patients with hematologic malignancies. DNA microarray, LAMP and real-time PCR identified 16 (80%) out of 20 samples as Fusarium solani species complex (FSSC) and four (20%) as Fusarium spp. The agreement among the techniques was 100%. LAMP exhibited 100% specificity, while DNA microarray, LAMP and real-time PCR showed 100% sensitivity. The three techniques had 100% agreement with DNA sequencing. Sixteen isolates were identified as FSSC by sequencing, being five Fusarium keratoplasticum, nine Fusarium petroliphilum and two Fusarium solani. On the other hand, sequencing identified four isolates as Fusarium non-solani species complex (FNSSC), being three isolates as Fusarium napiforme and one isolate as Fusarium oxysporum. Finally, LAMP proved to be faster and more accessible than DNA microarray and real-time PCR, since it does not require a thermocycler. Therefore, LAMP signalizes as emerging and promising methodology to be used in routine identification of Fusarium spp. among cases of invasive fungal infections.

  5. Expanding probe repertoire and improving reproducibility in human genomic hybridization

    PubMed Central

    Dorman, Stephanie N.; Shirley, Ben C.; Knoll, Joan H. M.; Rogan, Peter K.

    2013-01-01

    Diagnostic DNA hybridization relies on probes composed of single copy (sc) genomic sequences. Sc sequences in probe design ensure high specificity and avoid cross-hybridization to other regions of the genome, which could lead to ambiguous results that are difficult to interpret. We examine how the distribution and composition of repetitive sequences in the genome affects sc probe performance. A divide and conquer algorithm was implemented to design sc probes. With this approach, sc probes can include divergent repetitive elements, which hybridize to unique genomic targets under higher stringency experimental conditions. Genome-wide custom probe sets were created for fluorescent in situ hybridization (FISH) and microarray genomic hybridization. The scFISH probes were developed for detection of copy number changes within small tumour suppressor genes and oncogenes. The microarrays demonstrated increased reproducibility by eliminating cross-hybridization to repetitive sequences adjacent to probe targets. The genome-wide microarrays exhibited lower median coefficients of variation (17.8%) for two HapMap family trios. The coefficients of variations of commercial probes within 300 nt of a repetitive element were 48.3% higher than the nearest custom probe. Furthermore, the custom microarray called a chromosome 15q11.2q13 deletion more consistently. This method for sc probe design increases probe coverage for FISH and lowers variability in genomic microarrays. PMID:23376933

  6. Integrated in silico and biological validation of the blocking effect of Cot-1 DNA on Microarray-CGH.

    PubMed

    Kang, Seung-Hui; Park, Chan Hee; Jeung, Hei Cheul; Kim, Ki-Yeol; Rha, Sun Young; Chung, Hyun Cheol

    2007-06-01

    In array-CGH, various factors may act as variables influencing the result of experiments. Among them, Cot-1 DNA, which has been used as a repetitive sequence-blocking agent, may become an artifact-inducing factor in BAC array-CGH. To identify the effect of Cot-1 DNA on Microarray-CGH experiments, Cot-1 DNA was labeled directly and Microarray-CGH experiments were performed. The results confirmed that probes which hybridized more completely with Cot-1 DNA had a higher sequence similarity to the Alu element. Further, in the sex-mismatched Microarray-CGH experiments, the variation and intensity in the fluorescent signal were reduced in the high intensity probe group in which probes were better hybridized with Cot-1 DNA. Otherwise, those of the low intensity probe group showed no alterations regardless of Cot-1 DNA. These results confirmed by in silico methods that Cot-1 DNA could block repetitive sequences in gDNA and probes. In addition, it was confirmed biologically that the blocking effect of Cot-1 DNA could be presented via its repetitive sequences, especially Alu elements. Thus, in contrast to BAC-array CGH, the use of Cot-1 DNA is advantageous in controlling experimental variation in Microarray-CGH.

  7. Bayesian hierarchical modeling for subject-level response classification in peptide microarray immunoassays

    PubMed Central

    Imholte, Gregory; Gottardo, Raphael

    2017-01-01

    Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. PMID:27061097

  8. Comprehensive Census of Bacteria in Clean Rooms by Using DNA Microarray and Cloning Methods▿ †

    PubMed Central

    La Duc, Myron T.; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J. A.; Venkateswaran, Kasthuri

    2009-01-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments. PMID:19700540

  9. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods.

    PubMed

    La Duc, Myron T; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J A; Venkateswaran, Kasthuri

    2009-10-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments.

  10. puma: a Bioconductor package for propagating uncertainty in microarray analysis.

    PubMed

    Pearson, Richard D; Liu, Xuejun; Sanguinetti, Guido; Milo, Marta; Lawrence, Neil D; Rattray, Magnus

    2009-07-09

    Most analyses of microarray data are based on point estimates of expression levels and ignore the uncertainty of such estimates. By determining uncertainties from Affymetrix GeneChip data and propagating these uncertainties to downstream analyses it has been shown that we can improve results of differential expression detection, principal component analysis and clustering. Previously, implementations of these uncertainty propagation methods have only been available as separate packages, written in different languages. Previous implementations have also suffered from being very costly to compute, and in the case of differential expression detection, have been limited in the experimental designs to which they can be applied. puma is a Bioconductor package incorporating a suite of analysis methods for use on Affymetrix GeneChip data. puma extends the differential expression detection methods of previous work from the 2-class case to the multi-factorial case. puma can be used to automatically create design and contrast matrices for typical experimental designs, which can be used both within the package itself but also in other Bioconductor packages. The implementation of differential expression detection methods has been parallelised leading to significant decreases in processing time on a range of computer architectures. puma incorporates the first R implementation of an uncertainty propagation version of principal component analysis, and an implementation of a clustering method based on uncertainty propagation. All of these techniques are brought together in a single, easy-to-use package with clear, task-based documentation. For the first time, the puma package makes a suite of uncertainty propagation methods available to a general audience. These methods can be used to improve results from more traditional analyses of microarray data. puma also offers improvements in terms of scope and speed of execution over previously available methods. puma is recommended for anyone working with the Affymetrix GeneChip platform for gene expression analysis and can also be applied more generally.

  11. Prenatal metformin exposure in mice programs the metabolic phenotype of the offspring during a high fat diet at adulthood.

    PubMed

    Salomäki, Henriikka; Vähätalo, Laura H; Laurila, Kirsti; Jäppinen, Norma T; Penttinen, Anna-Maija; Ailanen, Liisa; Ilyasizadeh, Juan; Pesonen, Ullamari; Koulu, Markku

    2013-01-01

    The antidiabetic drug metformin is currently used prior and during pregnancy for polycystic ovary syndrome, as well as during gestational diabetes mellitus. We investigated the effects of prenatal metformin exposure on the metabolic phenotype of the offspring during adulthood in mice. Metformin (300 mg/kg) or vehicle was administered orally to dams on regular diet from the embryonic day E0.5 to E17.5. Gene expression profiles in liver and brain were analysed from 4-day old offspring by microarray. Body weight development and several metabolic parameters of offspring were monitored both during regular diet (RD-phase) and high fat diet (HFD-phase). At the end of the study, two doses of metformin or vehicle were given acutely to mice at the age of 20 weeks, and Insig-1 and GLUT4 mRNA expressions in liver and fat tissue were analysed using qRT-PCR. Metformin exposed fetuses were lighter at E18.5. There was no effect of metformin on the maternal body weight development or food intake. Metformin exposed offspring gained more body weight and mesenteric fat during the HFD-phase. The male offspring also had impaired glucose tolerance and elevated fasting glucose during the HFD-phase. Moreover, the expression of GLUT4 mRNA was down-regulated in epididymal fat in male offspring prenatally exposed to metformin. Based on the microarray and subsequent qRT-PCR analyses, the expression of Insig-1 was changed in the liver of neonatal mice exposed to metformin prenatally. Furthermore, metformin up-regulated the expression of Insig-1 later in development. Gene set enrichment analysis based on preliminary microarray data identified several differentially enriched pathways both in control and metformin exposed mice. The present study shows that prenatal metformin exposure causes long-term programming effects on the metabolic phenotype during high fat diet in mice. This should be taken into consideration when using metformin as a therapeutic agent during pregnancy.

  12. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jing; Rocke, David M.; Perry, George

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  13. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE PAGES

    Xia, Jing; Rocke, David M.; Perry, George; ...

    2014-01-01

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  14. Microbial Diagnostic Microarrays for the Detection and Typing of Food- and Water-Borne (Bacterial) Pathogens

    PubMed Central

    Kostić, Tanja; Sessitsch, Angela

    2011-01-01

    Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples. PMID:27605332

  15. Systematic Validation and Atomic Force Microscopy of Non-Covalent Short Oligonucleotide Barcode Microarrays

    PubMed Central

    Cook, Michael A.; Chan, Chi-Kin; Jorgensen, Paul; Ketela, Troy; So, Daniel; Tyers, Mike; Ho, Chi-Yip

    2008-01-01

    Background Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20–60 base) unique sequence tags, or “barcodes”, associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. Methodology/Principal Findings Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5′-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM), we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. Conclusions/Significance These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis. PMID:18253494

  16. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina.

    PubMed

    Bidard, Frédérique; Imbeaud, Sandrine; Reymond, Nancie; Lespinet, Olivier; Silar, Philippe; Clavé, Corinne; Delacroix, Hervé; Berteaux-Lecellier, Véronique; Debuchy, Robert

    2010-06-18

    The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS), we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  17. Multi-membership gene regulation in pathway based microarray analysis

    PubMed Central

    2011-01-01

    Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531

  18. Multi-membership gene regulation in pathway based microarray analysis.

    PubMed

    Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M

    2011-09-22

    Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.

  19. geneCommittee: a web-based tool for extensively testing the discriminatory power of biologically relevant gene sets in microarray data classification.

    PubMed

    Reboiro-Jato, Miguel; Arrais, Joel P; Oliveira, José Luis; Fdez-Riverola, Florentino

    2014-01-30

    The diagnosis and prognosis of several diseases can be shortened through the use of different large-scale genome experiments. In this context, microarrays can generate expression data for a huge set of genes. However, to obtain solid statistical evidence from the resulting data, it is necessary to train and to validate many classification techniques in order to find the best discriminative method. This is a time-consuming process that normally depends on intricate statistical tools. geneCommittee is a web-based interactive tool for routinely evaluating the discriminative classification power of custom hypothesis in the form of biologically relevant gene sets. While the user can work with different gene set collections and several microarray data files to configure specific classification experiments, the tool is able to run several tests in parallel. Provided with a straightforward and intuitive interface, geneCommittee is able to render valuable information for diagnostic analyses and clinical management decisions based on systematically evaluating custom hypothesis over different data sets using complementary classifiers, a key aspect in clinical research. geneCommittee allows the enrichment of microarrays raw data with gene functional annotations, producing integrated datasets that simplify the construction of better discriminative hypothesis, and allows the creation of a set of complementary classifiers. The trained committees can then be used for clinical research and diagnosis. Full documentation including common use cases and guided analysis workflows is freely available at http://sing.ei.uvigo.es/GC/.

  20. Differential gene expression related to Nora virus infection of Drosophila melanogaster

    PubMed Central

    Cordes, Ethan J.; Licking-Murray, Kellie D; Carlson, Kimberly A.

    2013-01-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. PMID:23603562

  1. MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: a molecular portrait of stage 4S.

    PubMed

    Bénard, Jean; Raguénez, Gilda; Kauffmann, Audrey; Valent, Alexander; Ripoche, Hugues; Joulin, Virginie; Job, Bastien; Danglot, Gisèle; Cantais, Sabrina; Robert, Thomas; Terrier-Lacombe, Marie-José; Chassevent, Agnès; Koscielny, Serge; Fischer, Matthias; Berthold, Frank; Lipinski, Marc; Tursz, Thomas; Dessen, Philippe; Lazar, Vladimir; Valteau-Couanet, Dominique

    2008-10-01

    Stage 4 neuroblastoma (NB) are heterogeneous regarding their clinical presentations and behavior. Indeed infants (stage 4S and non-stage 4S of age <365days at diagnosis) show regression contrasting with progression in children (>365days). Our study aimed at: (i) identifying age-based genomic and gene expression profiles of stage 4 NB supporting this clinical stratification; and (ii) finding a stage 4S NB signature. Differential genome and transcriptome analyses of a learning set of MYCN-non amplified stage 4 NB tumors at diagnosis (n=29 tumors including 12 stage 4S) were performed using 1Mb BAC microarrays and Agilent 22K probes oligo-microarrays. mRNA chips data following filtering yielded informative genes before supervised hierarchical clustering to identify relationship among tumor samples. After confirmation by quantitative RT-PCR, a stage 4S NB's gene cluster was obtained and submitted to a validation set (n=22 tumors). Genomic abnormalities of infant's tumors (whole chromosomes gains or loss) differ radically from that of children (intra-chromosomal rearrangements) but could not discriminate infants with 4S from those without this presentation. In contrast, differential gene expression by looking at both individual genes and whole biological pathways leads to a molecular stage 4S NB portrait which provides new biological clues about this fascinating entity.

  2. Multiple primer extension by DNA polymerase on a novel plastic DNA array coated with a biocompatible polymer

    PubMed Central

    Kinoshita, Kenji; Fujimoto, Kentaro; Yakabe, Toru; Saito, Shin; Hamaguchi, Yuzo; Kikuchi, Takayuki; Nonaka, Ken; Murata, Shigenori; Masuda, Daisuke; Takada, Wataru; Funaoka, Sohei; Arai, Susumu; Nakanishi, Hisao; Yokoyama, Kanehisa; Fujiwara, Kazuhiko; Matsubara, Kenichi

    2007-01-01

    DNA microarrays are routinely used to monitor gene expression profiling and single nucleotide polymorphisms (SNPs). However, for practically useful high performance, the detection sensitivity is still not adequate, leaving low expression genes undetected. To resolve this issue, we have developed a new plastic S-BIO® PrimeSurface® with a biocompatible polymer; its surface chemistry offers an extraordinarily stable thermal property for a lack of pre-activated glass slide surface. The oligonucleotides immobilized on this substrate are robust in boiling water and show no significant loss of hybridization activity during dissociation treatment. This allowed us to hybridize the templates, extend the 3′ end of the immobilized DNA primers on the S-Bio® by DNA polymerase using deoxynucleotidyl triphosphates (dNTP) as extender units, release the templates by denaturalization and use the same templates for a second round of reactions similar to that of the PCR method. By repeating this cycle, the picomolar concentration range of the template oligonucleotide can be detected as stable signals via the incorporation of labeled dUTP into primers. This method of Multiple Primer EXtension (MPEX) could be further extended as an alternative route for producing DNA microarrays for SNP analyses via simple template preparation such as reverse transcript cDNA or restriction enzyme treatment of genome DNA. PMID:17135189

  3. Design of 240,000 orthogonal 25mer DNA barcode probes.

    PubMed

    Xu, Qikai; Schlabach, Michael R; Hannon, Gregory J; Elledge, Stephen J

    2009-02-17

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the test hybridizations, we also discovered new probe design rules that significantly reduce cross-hybridization after their introduction into the framework of the algorithm. These rules should improve the performance of DNA microarray probe designs for many applications.

  4. Design of 240,000 orthogonal 25mer DNA barcode probes

    PubMed Central

    Xu, Qikai; Schlabach, Michael R.; Hannon, Gregory J.; Elledge, Stephen J.

    2009-01-01

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the test hybridizations, we also discovered new probe design rules that significantly reduce cross-hybridization after their introduction into the framework of the algorithm. These rules should improve the performance of DNA microarray probe designs for many applications. PMID:19171886

  5. A Self-Directed Method for Cell-Type Identification and Separation of Gene Expression Microarrays

    PubMed Central

    Zuckerman, Neta S.; Noam, Yair; Goldsmith, Andrea J.; Lee, Peter P.

    2013-01-01

    Gene expression analysis is generally performed on heterogeneous tissue samples consisting of multiple cell types. Current methods developed to separate heterogeneous gene expression rely on prior knowledge of the cell-type composition and/or signatures - these are not available in most public datasets. We present a novel method to identify the cell-type composition, signatures and proportions per sample without need for a-priori information. The method was successfully tested on controlled and semi-controlled datasets and performed as accurately as current methods that do require additional information. As such, this method enables the analysis of cell-type specific gene expression using existing large pools of publically available microarray datasets. PMID:23990767

  6. Cell cycle arrest and gene expression profiling of testis in mice exposed to fluoride.

    PubMed

    Su, Kai; Sun, Zilong; Niu, Ruiyan; Lei, Ying; Cheng, Jing; Wang, Jundong

    2017-05-01

    Exposure to fluoride results in low reproductive capacity; however, the mechanism underlying the impact of fluoride on male productive system still remains obscure. To assess the potential toxicity in testis of mice administrated with fluoride, global genome microarray and real-time PCR were performed to detect and identify the altered transcriptions. The results revealed that 763 differentially expressed genes were identified, including 330 up-regulated and 433 down-regulated genes, which were involved in spermatogenesis, apoptosis, DNA damage, DNA replication, and cell differentiation. Twelve differential expressed genes were selected to confirm the microarray results using real-time PCR, and the result kept the same tendency with that of microarray. Furthermore, compared with the control group, more apoptotic spermatogenic cells were observed in the fluoride group, and the spermatogonium were markedly increased in S phase and decreased in G2/M phase by fluoride. Our findings suggested global genome microarray provides an insight into the reproductive toxicity induced by fluoride, and several important biological clues for further investigations. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1558-1565, 2017. © 2016 Wiley Periodicals, Inc.

  7. Simplified Microarray Technique for Identifying mRNA in Rare Samples

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo; Kadambi, Geeta

    2007-01-01

    Two simplified methods of identifying messenger ribonucleic acid (mRNA), and compact, low-power apparatuses to implement the methods, are at the proof-of-concept stage of development. These methods are related to traditional methods based on hybridization of nucleic acid, but whereas the traditional methods must be practiced in laboratory settings, these methods could be practiced in field settings. Hybridization of nucleic acid is a powerful technique for detection of specific complementary nucleic acid sequences, and is increasingly being used for detection of changes in gene expression in microarrays containing thousands of gene probes. A traditional microarray study entails at least the following six steps: 1. Purification of cellular RNA, 2. Amplification of complementary deoxyribonucleic acid [cDNA] by polymerase chain reaction (PCR), 3. Labeling of cDNA with fluorophores of Cy3 (a green cyanine dye) and Cy5 (a red cyanine dye), 4. Hybridization to a microarray chip, 5. Fluorescence scanning the array(s) with dual excitation wavelengths, and 6. Analysis of the resulting images. This six-step procedure must be performed in a laboratory because it requires bulky equipment.

  8. Spotting and validation of a genome wide oligonucleotide chip with duplicate measurement of each gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomassen, Mads; Skov, Vibe; Eiriksdottir, Freyja

    2006-06-16

    The quality of DNA microarray based gene expression data relies on the reproducibility of several steps in a microarray experiment. We have developed a spotted genome wide microarray chip with oligonucleotides printed in duplicate in order to minimise undesirable biases, thereby optimising detection of true differential expression. The validation study design consisted of an assessment of the microarray chip performance using the MessageAmp and FairPlay labelling kits. Intraclass correlation coefficient (ICC) was used to demonstrate that MessageAmp was significantly more reproducible than FairPlay. Further examinations with MessageAmp revealed the applicability of the system. The linear range of the chips wasmore » three orders of magnitude, the precision was high, as 95% of measurements deviated less than 1.24-fold from the expected value, and the coefficient of variation for relative expression was 13.6%. Relative quantitation was more reproducible than absolute quantitation and substantial reduction of variance was attained with duplicate spotting. An analysis of variance (ANOVA) demonstrated no significant day-to-day variation.« less

  9. Quality control of inkjet technology for DNA microarray fabrication.

    PubMed

    Pierik, Anke; Dijksman, Frits; Raaijmakers, Adrie; Wismans, Ton; Stapert, Henk

    2008-12-01

    A robust manufacturing process is essential to make high-quality DNA microarrays, especially for use in diagnostic tests. We investigated different failure modes of the inkjet printing process used to manufacture low-density microarrays. A single nozzle inkjet spotter was provided with two optical imaging systems, monitoring in real time the flight path of every droplet. If a droplet emission failure is detected, the printing process is automatically stopped. We analyzed over 1.3 million droplets. This information was used to investigate the performance of the inkjet system and to obtain detailed insight into the frequency and causes of jetting failures. Of all the substrates investigated, 96.2% were produced without any system or jetting failures. In 1.6% of the substrates, droplet emission failed and was correctly identified. Appropriate measures could then be taken to get the process back on track. In 2.2%, the imaging systems failed while droplet emission occurred correctly. In 0.1% of the substrates, droplet emission failure that was not timely detected occurred. Thus, the overall yield of the microarray manufacturing process was 99.9%, which is highly acceptable for prototyping.

  10. DNA microarray-based PCR ribotyping of Clostridium difficile.

    PubMed

    Schneeberg, Alexander; Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2015-02-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Microbiology of aquatic environments: Characterizations of the microbiotas of municipal water supplies, the International Space Station Internal Active Thermal Control System's heat transport fluid, and US Space Shuttle drinking water

    NASA Astrophysics Data System (ADS)

    Bernardini, James Nicholas, III

    An understanding of the microbiota within life support systems is essential for the prolonged presence of humans in space. This is because microbes may cause disease or induce biofouling and/or corrosion within spacecraft water systems. It is imperative that we develop effective high-throughput technologies for characterizing microbial populations that can eventually be used in the space environment. This dissertation describes testing and development of such methodologies, targeting both bacteria and viruses in water, and examines the bacterial and viral diversity within two spacecraft life support systems. The bacterial community of the International Space Station Internal Active Thermal Control System (IATCS) was examined using conventional culture-based and advanced molecular techniques including adenosine triphosphate (ATP) and Limulus Amebocyte Lysate (LAL) assays, direct microscopic examination, and analyses of 16S rRNA gene libraries from the community metagenome. The cultivable heterotrophs of the IATCS fluids ranged from below detection limit to 1.1x10 5/100 ml, and viable cells, measured by ATP, ranged from 1.4x10 3/100 ml to 7.7x105/100 ml. DNA extraction, cloning, sequencing, and bioinformatic analysis of the clones from 16S RNA gene libraries showed members of the firmicutes, alpha, beta, and gamma-proteobacteria to be present in the fluids. This persistent microbial bioburden and the presence of probable metal reducers, biofilm formers, and opportunistic pathogens illustrate the need for better characterization of bacterial communities present within spacecraft fluids. A new methodology was developed for detection of viruses in water using microarrays. Samples were concentrated by lyophilization, resuspended and filtered (0.22microm). Viral nucleic acids were then extracted, amplified, fluorescently labeled and hybridized onto a custom microarray with probes for ˜1000 known viruses. Numerous virus signatures were observed. Human Adenovirus C and Influenza A viruses were used to verify positive microarray hybridizations by quantitative polymerase chain reaction (PCR), reverse transcriptase PCR, and conventional PCR. Experiments were performed using municipal drinking water, IATCS fluids, and Shuttle drinking water. Thus, this dissertation describes what we believe is the first molecular analysis of the IATCS bacterial ecology and the first use and validation of a microarray-based assay for the detection of viral genetic signatures within drinking waters.

  12. Dynamic variable selection in SNP genotype autocalling from APEX microarray data.

    PubMed

    Podder, Mohua; Welch, William J; Zamar, Ruben H; Tebbutt, Scott J

    2006-11-30

    Single nucleotide polymorphisms (SNPs) are DNA sequence variations, occurring when a single nucleotide--adenine (A), thymine (T), cytosine (C) or guanine (G)--is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX). This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart) is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias. Using a set of 32 Coriell DNA samples plus three negative PCR controls as a training data set, we have developed a fully-automated genotyping algorithm based on simple linear discriminant analysis (LDA) using dynamic variable selection. The algorithm combines separate analyses based on the multiple probe sets to give a final posterior probability for each candidate genotype. We have tested our algorithm on a completely independent data set of 270 DNA samples, with validated genotypes, from patients admitted to the intensive care unit (ICU) of St. Paul's Hospital (plus one negative PCR control sample). Our method achieves a concordance rate of 98.9% with a 99.6% call rate for a set of 96 SNPs. By adjusting the threshold value for the final posterior probability of the called genotype, the call rate reduces to 94.9% with a higher concordance rate of 99.6%. We also reversed the two independent data sets in their training and testing roles, achieving a concordance rate up to 99.8%. The strength of this APEX chemistry-based platform is its unique redundancy having multiple probes for a single SNP. Our model-based genotype calling algorithm captures the redundancy in the system considering all the underlying probe features of a particular SNP, automatically down-weighting any 'bad data' corresponding to image artifacts on the microarray slide or failure of a specific chemistry. In this regard, our method is able to automatically select the probes which work well and reduce the effect of other so-called bad performing probes in a sample-specific manner, for any number of SNPs.

  13. Semantically enabled and statistically supported biological hypothesis testing with tissue microarray databases

    PubMed Central

    2011-01-01

    Background Although many biological databases are applying semantic web technologies, meaningful biological hypothesis testing cannot be easily achieved. Database-driven high throughput genomic hypothesis testing requires both of the capabilities of obtaining semantically relevant experimental data and of performing relevant statistical testing for the retrieved data. Tissue Microarray (TMA) data are semantically rich and contains many biologically important hypotheses waiting for high throughput conclusions. Methods An application-specific ontology was developed for managing TMA and DNA microarray databases by semantic web technologies. Data were represented as Resource Description Framework (RDF) according to the framework of the ontology. Applications for hypothesis testing (Xperanto-RDF) for TMA data were designed and implemented by (1) formulating the syntactic and semantic structures of the hypotheses derived from TMA experiments, (2) formulating SPARQLs to reflect the semantic structures of the hypotheses, and (3) performing statistical test with the result sets returned by the SPARQLs. Results When a user designs a hypothesis in Xperanto-RDF and submits it, the hypothesis can be tested against TMA experimental data stored in Xperanto-RDF. When we evaluated four previously validated hypotheses as an illustration, all the hypotheses were supported by Xperanto-RDF. Conclusions We demonstrated the utility of high throughput biological hypothesis testing. We believe that preliminary investigation before performing highly controlled experiment can be benefited. PMID:21342584

  14. R Script Approach to Infer Toxoplasma Infection Mechanisms From Microarrays and Domain-Domain Protein Interactions

    PubMed Central

    Arenas, Ailan F; Salcedo, Gladys E; Gomez-Marin, Jorge E

    2017-01-01

    Pathogen-host protein-protein interaction systems examine the interactions between the protein repertoires of 2 distinct organisms. Some of these pathogen proteins interact with the host protein system and may manipulate it for their own advantages. In this work, we designed an R script by concatenating 2 functions called rowDM and rowCVmed to infer pathogen-host interaction using previously reported microarray data, including host gene enrichment analysis and the crossing of interspecific domain-domain interactions. We applied this script to the Toxoplasma-host system to describe pathogen survival mechanisms from human, mouse, and Toxoplasma Gene Expression Omnibus series. Our outcomes exhibited similar results with previously reported microarray analyses, but we found other important proteins that could contribute to toxoplasma pathogenesis. We observed that Toxoplasma ROP38 is the most differentially expressed protein among toxoplasma strains. Enrichment analysis and KEGG mapping indicated that the human retinal genes most affected by Toxoplasma infections are those related to antiapoptotic mechanisms. We suggest that proteins PIK3R1, PRKCA, PRKCG, PRKCB, HRAS, and c-JUN could be the possible substrates for differentially expressed Toxoplasma kinase ROP38. Likewise, we propose that Toxoplasma causes overexpression of apoptotic suppression human genes. PMID:29317802

  15. mRNA expression profiling of laser microbeam microdissected cells from slender embryonic structures.

    PubMed

    Scheidl, Stefan J; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-03-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-beta1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions.

  16. A multilevel Lab on chip platform for DNA analysis.

    PubMed

    Marasso, Simone Luigi; Giuri, Eros; Canavese, Giancarlo; Castagna, Riccardo; Quaglio, Marzia; Ferrante, Ivan; Perrone, Denis; Cocuzza, Matteo

    2011-02-01

    Lab-on-chips (LOCs) are critical systems that have been introduced to speed up and reduce the cost of traditional, laborious and extensive analyses in biological and biomedical fields. These ambitious and challenging issues ask for multi-disciplinary competences that range from engineering to biology. Starting from the aim to integrate microarray technology and microfluidic devices, a complex multilevel analysis platform has been designed, fabricated and tested (All rights reserved-IT Patent number TO2009A000915). This LOC successfully manages to interface microfluidic channels with standard DNA microarray glass slides, in order to implement a complete biological protocol. Typical Micro Electro Mechanical Systems (MEMS) materials and process technologies were employed. A silicon/glass microfluidic chip and a Polydimethylsiloxane (PDMS) reaction chamber were fabricated and interfaced with a standard microarray glass slide. In order to have a high disposable system all micro-elements were passive and an external apparatus provided fluidic driving and thermal control. The major microfluidic and handling problems were investigated and innovative solutions were found. Finally, an entirely automated DNA hybridization protocol was successfully tested with a significant reduction in analysis time and reagent consumption with respect to a conventional protocol.

  17. Genome-Wide Identification, Evolutionary Expansion, and Expression Profile of Homeodomain-Leucine Zipper Gene Family in Poplar (Populus trichocarpa)

    PubMed Central

    Hu, Ruibo; Chi, Xiaoyuan; Chai, Guohua; Kong, Yingzhen; He, Guo; Wang, Xiaoyu; Shi, Dachuan; Zhang, Dongyuan; Zhou, Gongke

    2012-01-01

    Background Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. Principal Findings In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I–IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. Conclusions Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles. PMID:22359569

  18. Tumor Necrosis Factor-α Regulates Distinct Molecular Pathways and Gene Networks in Cultured Skeletal Muscle Cells

    PubMed Central

    Gupta, Sanjay K.; Dahiya, Saurabh; Lundy, Robert F.; Kumar, Ashok

    2010-01-01

    Background Skeletal muscle wasting is a debilitating consequence of large number of disease states and conditions. Tumor necrosis factor-α (TNF-α) is one of the most important muscle-wasting cytokine, elevated levels of which cause significant muscular abnormalities. However, the underpinning molecular mechanisms by which TNF-α causes skeletal muscle wasting are less well-understood. Methodology/Principal Findings We have used microarray, quantitative real-time PCR (QRT-PCR), Western blot, and bioinformatics tools to study the effects of TNF-α on various molecular pathways and gene networks in C2C12 cells (a mouse myoblastic cell line). Microarray analyses of C2C12 myotubes treated with TNF-α (10 ng/ml) for 18h showed differential expression of a number of genes involved in distinct molecular pathways. The genes involved in nuclear factor-kappa B (NF-kappaB) signaling, 26s proteasome pathway, Notch1 signaling, and chemokine networks are the most important ones affected by TNF-α. The expression of some of the genes in microarray dataset showed good correlation in independent QRT-PCR and Western blot assays. Analysis of TNF-treated myotubes showed that TNF-α augments the activity of both canonical and alternative NF-κB signaling pathways in myotubes. Bioinformatics analyses of microarray dataset revealed that TNF-α affects the activity of several important pathways including those involved in oxidative stress, hepatic fibrosis, mitochondrial dysfunction, cholesterol biosynthesis, and TGF-β signaling. Furthermore, TNF-α was found to affect the gene networks related to drug metabolism, cell cycle, cancer, neurological disease, organismal injury, and abnormalities in myotubes. Conclusions TNF-α regulates the expression of multiple genes involved in various toxic pathways which may be responsible for TNF-induced muscle loss in catabolic conditions. Our study suggests that TNF-α activates both canonical and alternative NF-κB signaling pathways in a time-dependent manner in skeletal muscle cells. The study provides novel insight into the mechanisms of action of TNF-α in skeletal muscle cells. PMID:20967264

  19. Eureka-DMA: an easy-to-operate graphical user interface for fast comprehensive investigation and analysis of DNA microarray data.

    PubMed

    Abelson, Sagi

    2014-02-24

    In the past decade, the field of molecular biology has become increasingly quantitative; rapid development of new technologies enables researchers to investigate and address fundamental issues quickly and in an efficient manner which were once impossible. Among these technologies, DNA microarray provides methodology for many applications such as gene discovery, diseases diagnosis, drug development and toxicological research and it has been used increasingly since it first emerged. Multiple tools have been developed to interpret the high-throughput data produced by microarrays. However, many times, less consideration has been given to the fact that an extensive and effective interpretation requires close interplay between the bioinformaticians who analyze the data and the biologists who generate it. To bridge this gap and to simplify the usability of such tools we developed Eureka-DMA - an easy-to-operate graphical user interface that allows bioinformaticians and bench-biologists alike to initiate analyses as well as to investigate the data produced by DNA microarrays. In this paper, we describe Eureka-DMA, a user-friendly software that comprises a set of methods for the interpretation of gene expression arrays. Eureka-DMA includes methods for the identification of genes with differential expression between conditions; it searches for enriched pathways and gene ontology terms and combines them with other relevant features. It thus enables the full understanding of the data for following testing as well as generating new hypotheses. Here we show two analyses, demonstrating examples of how Eureka-DMA can be used and its capability to produce relevant and reliable results. We have integrated several elementary expression analysis tools to provide a unified interface for their implementation. Eureka-DMA's simple graphical user interface provides effective and efficient framework in which the investigator has the full set of tools for the visualization and interpretation of the data with the option of exporting the analysis results for later use in other platforms. Eureka-DMA is freely available for academic users and can be downloaded at http://blue-meduza.org/Eureka-DMA.

  20. Molecular pathological analysis for determining the possible mechanism of piperonyl butoxide-induced hepatocarcinogenesis in mice.

    PubMed

    Muguruma, Masako; Nishimura, Jihei; Jin, Meilan; Kashida, Yoko; Moto, Mitsuyoshi; Takahashi, Miwa; Yokouchi, Yusuke; Mitsumori, Kunitoshi

    2006-12-07

    Piperonyl butoxide (PBO), alpha-[2-(2-butoxyethoxy)ethoxy]-4,5-methylene-dioxy-2-propyltoluene, is widely used as a synergist for pyrethrins. In order to clarify the possible mechanism of non-genotoxic hepatocarcinogenesis induced by PBO, molecular pathological analyses consisting of low-density microarray analysis and real-time reverse transcriptase (RT)-PCR were performed in male ICR mice fed a basal powdered diet containing 6000 or 0 ppm PBO for 1, 4, or 8 weeks. The animals were sacrificed at weeks 1, 4, and 8, and the livers were histopathologically examined and analyzed for gene expression using the microarray at weeks 1 and 4 followed by real-time RT-PCR at each time point. Reactive oxygen species (ROS) products were also measured using liver microsomes. At each time point, the hepatocytes of PBO-treated mice showed centrilobular hypertrophy and increased lipofuscin deposition in Schmorl staining. The ROS products were significantly increased in the liver microsomes of PBO-treated mice. In the microarray analysis, the expression of oxidative and metabolic stress-related genes--cytochrome P450 (Cyp) 1A1, Cyp2A5 (week 1 only), Cyp2B9, Cyp2B10, and NADPH-cytochrome P450 oxidoreductase (Por) was over-expressed in mice given PBO at weeks 1 and 4. Fluctuations of these genes were confirmed by real-time RT-PCR in PBO-treated mice at each time point. In additional real-time RT-PCR, the expression of Cyclin D1 gene, key regulator of cell-cycle progression, and Xrcc5 gene, DNA damage repair-related gene, was significantly increased at each time point and at week 8, respectively. These results suggest the possibility that PBO has the potential to generate ROS via the metabolic pathway and to induce oxidative stress, including oxidative DNA damage, resulting in the induction of hepatocellular tumors in mice.

  1. Gene expression profiling of three different stressors in the water flea Daphnia magna.

    PubMed

    Jansen, Mieke; Vergauwen, Lucia; Vandenbrouck, Tine; Knapen, Dries; Dom, Nathalie; Spanier, Katina I; Cielen, Anke; De Meester, Luc

    2013-07-01

    Microarrays are an ideal tool to screen for differences in gene expression of thousands of genes simultaneously. However, often commercial arrays are not available. In this study, we performed microarray analyses to evaluate patterns of gene transcription following exposure to two natural and one anthropogenic stressor. cDNA microarrays compiled of three life stage specific and three stressor-specific EST libraries, yielding 1734 different EST sequences, were used. We exposed juveniles of the water flea Daphnia magna for 48, 96 and 144 h to three stressors known to exert strong selection in natural populations of this species i.e. a sublethal concentration of the pesticide carbaryl, infective spores of the endoparasite Pasteuria ramosa, and fish predation risk mimicked by exposure to fish kairomones. A total of 148 gene fragments were differentially expressed compared to the control. Based on a PCA, the exposure treatments were separated into two main groups based on the extent of the transcriptional response: a low and a high (144 h of fish or carbaryl exposure and 96 h of parasite exposure) stress group. Firstly, we observed a general stress-related transcriptional expression profile independent of the treatment characterized by repression of transcripts involved in transcription, translation, signal transduction and energy metabolism. Secondly, we observed treatment-specific responses including signs of migration to deeper water layers in response to fish predation, structural challenge of the cuticle in response to carbaryl exposure, and disturbance of the ATP production in parasite exposure. A third important conclusion is that transcription expression patterns exhibit stress-specific changes over time. Parasite exposure shows the most differentially expressed gene fragments after 96 h. The peak of differentially expressed transcripts came only after 144 h of fish exposure, while carbaryl exposure induced a more stable number of differently expressed gene fragments over time.

  2. Functional Genomic Analysis of the Impact of Camelina (Camelina sativa) Meal on Atlantic Salmon (Salmo salar) Distal Intestine Gene Expression and Physiology.

    PubMed

    Brown, Tyler D; Hori, Tiago S; Xue, Xi; Ye, Chang Lin; Anderson, Derek M; Rise, Matthew L

    2016-06-01

    The inclusion of plant meals in diets of farmed Atlantic salmon can elicit inflammatory responses in the distal intestine (DI). For the present work, fish were fed a standard fish meal (FM) diet or a diet with partial replacement of FM with solvent-extracted camelina meal (CM) (8, 16, or 24 % CM inclusion) during a 16-week feeding trial. A significant decrease in growth performance was seen in fish fed all CM inclusion diets (Hixson et al. in Aquacult Nutr 22:615-630, 2016). A 4x44K oligonucleotide microarray experiment was carried out and significance analysis of microarrays (SAM) and rank products (RP) methods were used to identify differentially expressed genes between the DIs of fish fed the 24 % CM diet and those fed the FM diet. Twelve features representing six known transcripts and two unknowns were identified as CM responsive by both SAM and RP. The six known transcripts (including thioredoxin and ependymin), in addition to tgfb, mmp13, and GILT, were studied using qPCR with RNA templates from all four experimental diet groups. All six microarray-identified genes were confirmed to be CM responsive, as was tgfb and mmp13. Histopathological analyses identified signs of inflammation in the DI of salmon fed CM-containing diets, including lamina propria and sub-epithelial mucosa thickening, infiltration of eosinophilic granule cells, increased goblet cells and decreased enterocyte vacuolization. All of these were significantly altered in 24 % CM compared to all other diets, with the latter two also altered in 16 % CM compared with 8 % CM and control diet groups. Significant correlation was seen between histological parameters as well as between five of the qPCR analyzed genes and histological parameters. These molecular biomarkers of inflammation arising from long-term dietary CM exposure will be useful in the development of CM-containing diets that do not have deleterious effects on salmon growth or physiology.

  3. High-resolution droplet-based fractionation of nano-LC separations onto microarrays for MALDI-MS analysis.

    PubMed

    Küster, Simon K; Pabst, Martin; Jefimovs, Konstantins; Zenobi, Renato; Dittrich, Petra S

    2014-05-20

    We present a robust droplet-based device, which enables the fractionation of ultralow flow rate nanoflow liquid chromatography (nano-LC) eluate streams at high frequencies and high peak resolution. This is achieved by directly interfacing the separation column to a micro T-junction, where the eluate stream is compartmentalized into picoliter droplets. This immediate compartmentalization prevents peak dispersion during eluate transport and conserves the chromatographic performance. Subsequently, nanoliter eluate fractions are collected at a rate of one fraction per second on a high-density microarray to retain the separation with high temporal resolution. Chromatographic separations of up to 45 min runtime can thus be archived on a single microarray possessing 2700 sample spots. The performance of this device is demonstrated by fractionating the separation of a tryptic digest of a known protein mixture onto the microarray chip and subsequently analyzing the sample archive using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Resulting peak widths are found to be significantly reduced compared to standard continuous flow spotting technologies as well as in comparison to a conventional nano-LC-electrospray ionization-mass spectrometry interface. Moreover, we demonstrate the advantage of our high-definition nanofractionation device by applying two different MALDI matrices to all collected fractions in an alternating fashion. Since the information that is obtained from a MALDI-MS measurement depends on the choice of MALDI matrix, we can extract complementary information from neighboring spots containing almost identical composition but different matrices.

  4. Cell and tissue microarray technologies for protein and nucleic acid expression profiling.

    PubMed

    Cardano, Marina; Diaferia, Giuseppe R; Falavigna, Maurizio; Spinelli, Chiara C; Sessa, Fausto; DeBlasio, Pasquale; Biunno, Ida

    2013-02-01

    Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform.

  5. DigOut: viewing differential expression genes as outliers.

    PubMed

    Yu, Hui; Tu, Kang; Xie, Lu; Li, Yuan-Yuan

    2010-12-01

    With regards to well-replicated two-conditional microarray datasets, the selection of differentially expressed (DE) genes is a well-studied computational topic, but for multi-conditional microarray datasets with limited or no replication, the same task is not properly addressed by previous studies. This paper adopts multivariate outlier analysis to analyze replication-lacking multi-conditional microarray datasets, finding that it performs significantly better than the widely used limit fold change (LFC) model in a simulated comparative experiment. Compared with the LFC model, the multivariate outlier analysis also demonstrates improved stability against sample variations in a series of manipulated real expression datasets. The reanalysis of a real non-replicated multi-conditional expression dataset series leads to satisfactory results. In conclusion, a multivariate outlier analysis algorithm, like DigOut, is particularly useful for selecting DE genes from non-replicated multi-conditional gene expression dataset.

  6. Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay.

    PubMed

    Szkola, A; Linares, E M; Worbs, S; Dorner, B G; Dietrich, R; Märtlbauer, E; Niessner, R; Seidel, M

    2014-11-21

    Simultaneous detection of small and large molecules on microarray immunoassays is a challenge that limits some applications in multiplex analysis. This is the case for biosecurity, where fast, cheap and reliable simultaneous detection of proteotoxins and small toxins is needed. Two highly relevant proteotoxins, ricin (60 kDa) and bacterial toxin staphylococcal enterotoxin B (SEB, 30 kDa) and the small phycotoxin saxitoxin (STX, 0.3 kDa) are potential biological warfare agents and require an analytical tool for simultaneous detection. Proteotoxins are successfully detected by sandwich immunoassays, whereas competitive immunoassays are more suitable for small toxins (<1 kDa). Based on this need, this work provides a novel and efficient solution based on anti-idiotypic antibodies for small molecules to combine both assay principles on one microarray. The biotoxin measurements are performed on a flow-through chemiluminescence microarray platform MCR3 in 18 minutes. The chemiluminescence signal was amplified by using a poly-horseradish peroxidase complex (polyHRP), resulting in low detection limits: 2.9 ± 3.1 μg L(-1) for ricin, 0.1 ± 0.1 μg L(-1) for SEB and 2.3 ± 1.7 μg L(-1) for STX. The developed multiplex system for the three biotoxins is completely novel, relevant in the context of biosecurity and establishes the basis for research on anti-idiotypic antibodies for microarray immunoassays.

  7. Hierarchical Gene Selection and Genetic Fuzzy System for Cancer Microarray Data Classification

    PubMed Central

    Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid

    2015-01-01

    This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice. PMID:25823003

  8. Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.

    PubMed

    Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid

    2015-01-01

    This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.

  9. High Frequency of Chlamydia trachomatis Mixed Infections Detected by Microarray Assay in South American Samples.

    PubMed

    Gallo Vaulet, Lucía; Entrocassi, Carolina; Portu, Ana I; Castro, Erica; Di Bartolomeo, Susana; Ruettger, Anke; Sachse, Konrad; Rodriguez Fermepin, Marcelo

    2016-01-01

    Chlamydia trachomatis is one of the most common sexually transmitted infections worldwide. Based on sequence variation in the ompA gene encoding the major outer membrane protein, the genotyping scheme distinguishes 17 recognized genotypes, i.e. A, B, Ba, C, D, Da, E, F, G, H, I, Ia, J, K, L1, L2, and L3. Genotyping is an important tool for epidemiological tracking of C. trachomatis infections, including the revelation of transmission pathways and association with tissue tropism and pathogenicity. Moreover, genotyping can be useful for clinicians to establish the correct treatment when LGV strains are detected. Recently a microarray assay was described that offers several advantages, such as rapidity, ease of standardization and detection of mixed infections. The aim of this study was to evaluate the performance of the DNA microarray-based assay for C. trachomatis genotyping of clinical samples already typed by PCR-RFLP from South America. The agreement between both typing techniques was 90.05% and the overall genotype distribution obtained with both techniques was similar. Detection of mixed-genotype infections was significantly higher using the microarray assay (8.4% of cases) compared to PCR-RFLP (0.5%). Among 178 samples, the microarray assay identified 10 ompA genotypes, i.e. D, Da, E, F, G, H, I, J, K and L2. The most predominant type was genotype E, followed by D and F.

  10. Cloud-Scale Genomic Signals Processing for Robust Large-Scale Cancer Genomic Microarray Data Analysis.

    PubMed

    Harvey, Benjamin Simeon; Ji, Soo-Yeon

    2017-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.

  11. A hybrid approach to device integration on a genetic analysis platform

    NASA Astrophysics Data System (ADS)

    Brennan, Des; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Justice, John; Aherne, Margaret; Macek, Milan; Galvin, Paul

    2012-10-01

    Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization.

  12. MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering

    PubMed Central

    Kim, Eun-Youn; Kim, Seon-Young; Ashlock, Daniel; Nam, Dougu

    2009-01-01

    Background Uncovering subtypes of disease from microarray samples has important clinical implications such as survival time and sensitivity of individual patients to specific therapies. Unsupervised clustering methods have been used to classify this type of data. However, most existing methods focus on clusters with compact shapes and do not reflect the geometric complexity of the high dimensional microarray clusters, which limits their performance. Results We present a cluster-number-based ensemble clustering algorithm, called MULTI-K, for microarray sample classification, which demonstrates remarkable accuracy. The method amalgamates multiple k-means runs by varying the number of clusters and identifies clusters that manifest the most robust co-memberships of elements. In addition to the original algorithm, we newly devised the entropy-plot to control the separation of singletons or small clusters. MULTI-K, unlike the simple k-means or other widely used methods, was able to capture clusters with complex and high-dimensional structures accurately. MULTI-K outperformed other methods including a recently developed ensemble clustering algorithm in tests with five simulated and eight real gene-expression data sets. Conclusion The geometric complexity of clusters should be taken into account for accurate classification of microarray data, and ensemble clustering applied to the number of clusters tackles the problem very well. The C++ code and the data sets tested are available from the authors. PMID:19698124

  13. A novel piezoelectric quartz micro-array immunosensor for detection of immunoglobulinE.

    PubMed

    Yao, Chunyan; Chen, Qinghai; Chen, Ming; Zhang, Bo; Luo, Yang; Huang, Qing; Huang, Junfu; Fu, Weiling

    2006-12-01

    A novel multi-channel 2 x 5 model of piezoelectric (PZ) micro-array immunosensor has been developed for quantitative detection of human immunoglobulinE (IgE) in serum. Every crystal unit of the fabricated piezoelectric IgE micro-array immunosensor can oscillate without interfering each other. A multi-channel 2 x 5 model micro-array immunosensor as compared with the traditional one-channel immunosensor can provide eight times higher detection speeds for IgE assay. The anti-IgE antibody is deposited on the gold electrode's surface of 10 MHz AT-cut quartz crystals by SPA (staphylococcal protein A), and serves as an antibody recognizing layer. The highly ordered antibody monolayers ensure well-controlled surface structure and offer many advantages to the performance of the sensor. The uniform amount of antibody monolayer coated by the SPA is good, and non-specific reaction caused by other immunoglobulin in sample is found. The fabricated PZ immunosensor can be used for human IgE determination in the range of 5-300 IU/ml with high precision (CV is 4%). 50 human serum samples were detected by the micro-array immunosensor, and the results agreed well with those given by the commercially ELISA test kits. The correlation coefficient is 0.94 between ELISA and PZ immunosensor. After regeneration with NaOH the coated immunosensor can be reused 6 times without appreciable loss of activity.

  14. A View of the Therapy for Bell's Palsy Based on Molecular Biological Analyses of Facial Muscles.

    PubMed

    Moriyama, Hiroshi; Mitsukawa, Nobuyuki; Itoh, Masahiro; Otsuka, Naruhito

    2017-12-01

    Details regarding the molecular biological features of Bell's palsy have not been widely reported in textbooks. We genetically analyzed facial muscles and clarified these points. We performed genetic analysis of facial muscle specimens from Japanese patients with severe (House-Brackmann facial nerve grading system V) and moderate (House-Brackmann facial nerve grading system III) dysfunction due to Bell's palsy. Microarray analysis of gene expression was performed using specimens from the healthy and affected sides, and gene expression was compared. Changes in gene expression were defined as an affected side/healthy side ratio of >1.5 or <0.5. We observed that the gene expression in Bell's palsy changes with the degree of facial nerve palsy. Especially, muscle, neuron, and energy category genes tended to fluctuate with the degree of facial nerve palsy. It is expected that this study will aid in the development of new treatments and diagnostic/prognostic markers based on the severity of facial nerve palsy.

  15. Digital microarray analysis for digital artifact genomics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger; Handley, James; Williams, Deborah

    2013-06-01

    We implement a Spatial Voting (SV) based analogy of microarray analysis for digital gene marker identification in malware code sections. We examine a famous set of malware formally analyzed by Mandiant and code named Advanced Persistent Threat (APT1). APT1 is a Chinese organization formed with specific intent to infiltrate and exploit US resources. Manidant provided a detailed behavior and sting analysis report for the 288 malware samples available. We performed an independent analysis using a new alternative to the traditional dynamic analysis and static analysis we call Spatial Analysis (SA). We perform unsupervised SA on the APT1 originating malware code sections and report our findings. We also show the results of SA performed on some members of the families associated by Manidant. We conclude that SV based SA is a practical fast alternative to dynamics analysis and static analysis.

  16. A novel universal DNA labeling and amplification system for rapid microarray-based detection of 117 antibiotic resistance genes in Gram-positive bacteria.

    PubMed

    Strauss, Christian; Endimiani, Andrea; Perreten, Vincent

    2015-01-01

    A rapid and simple DNA labeling system has been developed for disposable microarrays and has been validated for the detection of 117 antibiotic resistance genes abundant in Gram-positive bacteria. The DNA was fragmented and amplified using phi-29 polymerase and random primers with linkers. Labeling and further amplification were then performed by classic PCR amplification using biotinylated primers specific for the linkers. The microarray developed by Perreten et al. (Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., Frey, J., 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J.Clin.Microbiol. 43, 2291-2302.) was improved by additional oligonucleotides. A total of 244 oligonucleotides (26 to 37 nucleotide length and with similar melting temperatures) were spotted on the microarray, including genes conferring resistance to clinically important antibiotic classes like β-lactams, macrolides, aminoglycosides, glycopeptides and tetracyclines. Each antibiotic resistance gene is represented by at least 2 oligonucleotides designed from consensus sequences of gene families. The specificity of the oligonucleotides and the quality of the amplification and labeling were verified by analysis of a collection of 65 strains belonging to 24 species. Association between genotype and phenotype was verified for 6 antibiotics using 77 Staphylococcus strains belonging to different species and revealed 95% test specificity and a 93% predictive value of a positive test. The DNA labeling and amplification is independent of the species and of the target genes and could be used for different types of microarrays. This system has also the advantage to detect several genes within one bacterium at once, like in Staphylococcus aureus strain BM3318, in which up to 15 genes were detected. This new microarray-based detection system offers a large potential for applications in clinical diagnostic, basic research, food safety and surveillance programs for antimicrobial resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A remark on copy number variation detection methods.

    PubMed

    Li, Shuo; Dou, Xialiang; Gao, Ruiqi; Ge, Xinzhou; Qian, Minping; Wan, Lin

    2018-01-01

    Copy number variations (CNVs) are gain and loss of DNA sequence of a genome. High throughput platforms such as microarrays and next generation sequencing technologies (NGS) have been applied for genome wide copy number losses. Although progress has been made in both approaches, the accuracy and consistency of CNV calling from the two platforms remain in dispute. In this study, we perform a deep analysis on copy number losses on 254 human DNA samples, which have both SNP microarray data and NGS data publicly available from Hapmap Project and 1000 Genomes Project respectively. We show that the copy number losses reported from Hapmap Project and 1000 Genome Project only have < 30% overlap, while these reports are required to have cross-platform (e.g. PCR, microarray and high-throughput sequencing) experimental supporting by their corresponding projects, even though state-of-art calling methods were employed. On the other hand, copy number losses are found directly from HapMap microarray data by an accurate algorithm, i.e. CNVhac, almost all of which have lower read mapping depth in NGS data; furthermore, 88% of which can be supported by the sequences with breakpoint in NGS data. Our results suggest the ability of microarray calling CNVs and the possible introduction of false negatives from the unessential requirement of the additional cross-platform supporting. The inconsistency of CNV reports from Hapmap Project and 1000 Genomes Project might result from the inadequate information containing in microarray data, the inconsistent detection criteria, or the filtration effect of cross-platform supporting. The statistical test on CNVs called from CNVhac show that the microarray data can offer reliable CNV reports, and majority of CNV candidates can be confirmed by raw sequences. Therefore, the CNV candidates given by a good caller could be highly reliable without cross-platform supporting, so additional experimental information should be applied in need instead of necessarily.

  18. Positive regulation of spondin 2 by thyroid hormone is associated with cell migration and invasion.

    PubMed

    Liao, Chen-Hsin; Yeh, Shih-Chi; Huang, Ya-Hui; Chen, Ruey-Nan; Tsai, Ming-Ming; Chen, Wei-Jan; Chi, Hsiang-Cheng; Tai, Pei-Ju; Liao, Chia-Jung; Wu, Sheng-Ming; Cheng, Wan-Li; Pai, Li-Mei; Lin, Kwang-Huei

    2010-03-01

    The thyroid hormone 3,3',5-triiodo-L-thyronine (T(3)) regulates growth, development, and differentiation processes in animals. These activities are mediated by the nuclear thyroid hormone receptors (TRs). Microarray analyses were performed previously to study the mechanism of regulation triggered by T(3) treatment in hepatoma cell lines. The results showed that spondin 2 was regulated positively by T(3). However, the underlying mechanism and the physiological role of T(3) in the regulation of spondin 2 are not clear. To verify the microarray results, spondin 2 was further investigated using semi-quantitative reverse transcription-PCR and western blotting. After 48 h of T(3) treatment in the HepG2-TR alpha 1#1 cell line, spondin 2 mRNA and protein levels increased by 3.9- to 5.7-fold. Similar results were observed in thyroidectomized rats. To localize the regulatory region in spondin 2, we performed serial deletions of the promoter and chromatin immunoprecipitation assays. The T(3) response element on the spondin 2 promoter was localized in the -1104/-1034 or -984/-925 regions. To explore the effect of spondin 2 on cellular function, spondin 2 knockdown cell lines were established from Huh7 cells. Knockdown cells had higher migration ability and invasiveness compared with control cells. Conversely, spondin 2 overexpression in J7 cells led to lower migration ability and invasiveness compared with control cells. Furthermore, this study demonstrated that spondin 2 overexpression in some types of hepatocellular carcinomas is TR dependent. Together, these experimental findings suggest that spondin 2, which is regulated by T(3), has an important role in cell invasion, cell migration, and tumor progression.

  19. Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes

    PubMed Central

    2011-01-01

    Background Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models. Results Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653). Conclusions OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo. PMID:21864415

  20. Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes.

    PubMed

    Leow, Soon-Sen; Sekaran, Shamala Devi; Sundram, Kalyana; Tan, YewAi; Sambanthamurthi, Ravigadevi

    2011-08-25

    Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models. Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653). OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo.

  1. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis

    PubMed Central

    Marty, Amber J.; Broman, Aimee T.; Zarnowski, Robert; Dwyer, Teigan G.; Bond, Laura M.; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Ntambi, James M.; Keleş, Sündüz; Kendziorski, Christina; Gauthier, Gregory M.

    2015-01-01

    In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. PMID:26114571

  2. Diversity Arrays Technology (DArT) for Pan-Genomic Evolutionary Studies of Non-Model Organisms

    PubMed Central

    James, Karen E.; Schneider, Harald; Ansell, Stephen W.; Evers, Margaret; Robba, Lavinia; Uszynski, Grzegorz; Pedersen, Niklas; Newton, Angela E.; Russell, Stephen J.; Vogel, Johannes C.; Kilian, Andrzej

    2008-01-01

    Background High-throughput tools for pan-genomic study, especially the DNA microarray platform, have sparked a remarkable increase in data production and enabled a shift in the scale at which biological investigation is possible. The use of microarrays to examine evolutionary relationships and processes, however, is predominantly restricted to model or near-model organisms. Methodology/Principal Findings This study explores the utility of Diversity Arrays Technology (DArT) in evolutionary studies of non-model organisms. DArT is a hybridization-based genotyping method that uses microarray technology to identify and type DNA polymorphism. Theoretically applicable to any organism (even one for which no prior genetic data are available), DArT has not yet been explored in exclusively wild sample sets, nor extensively examined in a phylogenetic framework. DArT recovered 1349 markers of largely low copy-number loci in two lineages of seed-free land plants: the diploid fern Asplenium viride and the haploid moss Garovaglia elegans. Direct sequencing of 148 of these DArT markers identified 30 putative loci including four routinely sequenced for evolutionary studies in plants. Phylogenetic analyses of DArT genotypes reveal phylogeographic and substrate specificity patterns in A. viride, a lack of phylogeographic pattern in Australian G. elegans, and additive variation in hybrid or mixed samples. Conclusions/Significance These results enable methodological recommendations including procedures for detecting and analysing DArT markers tailored specifically to evolutionary investigations and practical factors informing the decision to use DArT, and raise evolutionary hypotheses concerning substrate specificity and biogeographic patterns. Thus DArT is a demonstrably valuable addition to the set of existing molecular approaches used to infer biological phenomena such as adaptive radiations, population dynamics, hybridization, introgression, ecological differentiation and phylogeography. PMID:18301759

  3. Microarray analyses reveal novel targets of exercise-induced stress resistance in the dorsal raphe nucleus

    PubMed Central

    Loughridge, Alice B.; Greenwood, Benjamin N.; Day, Heidi E. W.; McQueen, Matthew B.; Fleshner, Monika

    2013-01-01

    Serotonin (5-HT) is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression. The mechanisms by which exercise confers protection against stress-induced behaviors, however, remain unknown. One way by which exercise could generate stress resistance is by producing plastic changes in gene expression in the dorsal raphe nucleus (DRN). The DRN has a high concentration of 5-HT neurons and is implicated in stress-related mood disorders. The goal of the current experiment was to identify changes in the expression of genes that could be novel targets of exercise-induced stress resistance in the DRN. Adult, male F344 rats were allowed voluntary access to running wheels for 6 weeks; exposed to inescapable stress or no stress; and sacrificed immediately and 2 h after stressor termination. Laser capture micro dissection selectively sampled the DRN. mRNA expression was measured using the whole genome Affymetrix microarray. Comprehensive data analyses of gene expression included differential gene expression, log fold change (LFC) contrast analyses with False Discovery Rate correction, KEGG and Wiki Web Gestalt pathway enrichment analyses, and Weighted Gene Correlational Network Analysis (WGCNA). Our results suggest that physically active rats exposed to stress modulate expression of twice the number of genes, and display a more rapid and strongly coordinated response, than sedentary rats. Bioinformatics analyses revealed several potential targets of stress resistance including genes that are related to immune processes, tryptophan metabolism, and circadian/diurnal rhythms. PMID:23717271

  4. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women.

    PubMed

    Dewulf, Evelyne M; Cani, Patrice D; Claus, Sandrine P; Fuentes, Susana; Puylaert, Philippe G B; Neyrinck, Audrey M; Bindels, Laure B; de Vos, Willem M; Gibson, Glenn R; Thissen, Jean-Paul; Delzenne, Nathalie M

    2013-08-01

    To highlight the contribution of the gut microbiota to the modulation of host metabolism by dietary inulin-type fructans (ITF prebiotics) in obese women. A double blind, placebo controlled, intervention study was performed with 30 obese women treated with ITF prebiotics (inulin/oligofructose 50/50 mix; n=15) or placebo (maltodextrin; n=15) for 3 months (16 g/day). Blood, faeces and urine sampling, oral glucose tolerance test, homeostasis model assessment and impedancemetry were performed before and after treatment. The gut microbial composition in faeces was analysed by phylogenetic microarray and qPCR analysis of 16S rDNA. Plasma and urine metabolic profiles were analysed by 1H-NMR spectroscopy. Treatment with ITF prebiotics, but not the placebo, led to an increase in Bifidobacterium and Faecalibacterium prausnitzii; both bacteria negatively correlated with serum lipopolysaccharide levels. ITF prebiotics also decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium, an effect associated with a slight decrease in fat mass and with plasma lactate and phosphatidylcholine levels. No clear treatment clustering could be detected for gut microbial analysis or plasma and urine metabolomic profile analyses. However, ITF prebiotics led to subtle changes in the gut microbiota that may importantly impact on several key metabolites implicated in obesity and/or diabetes. ITF prebiotics selectively changed the gut microbiota composition in obese women, leading to modest changes in host metabolism, as suggested by the correlation between some bacterial species and metabolic endotoxaemia or metabolomic signatures.

  5. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    PubMed

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Nasopharyngeal teratoma, congenital diaphragmatic hernia and Dandy-Walker malformation - a yet uncharacterized syndrome.

    PubMed

    Gupta, N; Shastri, S; Singh, P K; Jana, M; Mridha, A; Verma, G; Kabra, M

    2016-11-01

    An association of congenital diaphragmatic hernia, dandy walker malformation and nasopharyngeal teratoma is very rare. Here, we report a fourth case with this association where chromosomal microarray and whole exome sequencing (WES) was performed to understand the underlying genetic basis. Findings of few variants especially a novel variation in HIRA provided some insights. An association of congenital diaphragmatic hernia, dandy walker malformation and nasopharyngeal teratoma is very rare. Here, we report a fourth case with this association where chromosomal microarray and whole exome sequencing (WES) was performed to understand the underlying genetic basis. Findings of few variants especially a novel variation in HIRA provided some insights. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification

    PubMed Central

    Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC2), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible. PMID:29666661

  8. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    PubMed

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  9. GenePublisher: Automated analysis of DNA microarray data.

    PubMed

    Knudsen, Steen; Workman, Christopher; Sicheritz-Ponten, Thomas; Friis, Carsten

    2003-07-01

    GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at http://www.cbs.dtu.dk/services/GenePublisher. Raw data are uploaded to the server together with a specification of the data. The server performs normalization, statistical analysis and visualization of the data. The results are run against databases of signal transduction pathways, metabolic pathways and promoter sequences in order to extract more information. The results of the entire analysis are summarized in report form and returned to the user.

  10. Biomarkers of Selenium Action in Prostate Cancer

    DTIC Science & Technology

    2006-03-01

    without BPH) transition zone tissue of a 42-year-old man ac- cording to previously described methods [4]. The pre- sence of contaminating epithelial...protein secreted by cells using a sensitive ELISA method . Replicating the conditions used for the microarray analyses, cells were fed fresh medium...4 Introduction Biomarkers of selenium actions in prostate tissue would be of great value in stratifying patients

  11. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis

    PubMed Central

    Nie, Hongyi; Liu, Xiaoyan; Pan, Jiao; Li, Wenfeng; Li, Zhiguo; Zhang, Shaowu; Chen, Shenglu; Miao, Xiaoqing; Zheng, Nenggan; Su, Songkun

    2017-01-01

    Abstract China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production. PMID:28981563

  12. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis.

    PubMed

    Nie, Hongyi; Liu, Xiaoyan; Pan, Jiao; Li, Wenfeng; Li, Zhiguo; Zhang, Shaowu; Chen, Shenglu; Miao, Xiaoqing; Zheng, Nenggan; Su, Songkun

    2017-01-01

    China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production.

  13. The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer.

    PubMed

    Bizama, Carolina; Benavente, Felipe; Salvatierra, Edgardo; Gutiérrez-Moraga, Ana; Espinoza, Jaime A; Fernández, Elmer A; Roa, Iván; Mazzolini, Guillermo; Sagredo, Eduardo A; Gidekel, Manuel; Podhajcer, Osvaldo L

    2014-02-15

    Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer. © 2013 UICC.

  14. Detection of cryptic pathogenic copy number variations and constitutional loss of heterozygosity using high resolution SNP microarray analysis in 117 patients referred for cytogenetic analysis and impact on clinical practice.

    PubMed

    Bruno, D L; Ganesamoorthy, D; Schoumans, J; Bankier, A; Coman, D; Delatycki, M; Gardner, R J M; Hunter, M; James, P A; Kannu, P; McGillivray, G; Pachter, N; Peters, H; Rieubland, C; Savarirayan, R; Scheffer, I E; Sheffield, L; Tan, T; White, S M; Yeung, A; Bowman, Z; Ngo, C; Choy, K W; Cacheux, V; Wong, L; Amor, D J; Slater, H R

    2009-02-01

    Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.

  15. Reuse of imputed data in microarray analysis increases imputation efficiency

    PubMed Central

    Kim, Ki-Yeol; Kim, Byoung-Jin; Yi, Gwan-Su

    2004-01-01

    Background The imputation of missing values is necessary for the efficient use of DNA microarray data, because many clustering algorithms and some statistical analysis require a complete data set. A few imputation methods for DNA microarray data have been introduced, but the efficiency of the methods was low and the validity of imputed values in these methods had not been fully checked. Results We developed a new cluster-based imputation method called sequential K-nearest neighbor (SKNN) method. This imputes the missing values sequentially from the gene having least missing values, and uses the imputed values for the later imputation. Although it uses the imputed values, the efficiency of this new method is greatly improved in its accuracy and computational complexity over the conventional KNN-based method and other methods based on maximum likelihood estimation. The performance of SKNN was in particular higher than other imputation methods for the data with high missing rates and large number of experiments. Application of Expectation Maximization (EM) to the SKNN method improved the accuracy, but increased computational time proportional to the number of iterations. The Multiple Imputation (MI) method, which is well known but not applied previously to microarray data, showed a similarly high accuracy as the SKNN method, with slightly higher dependency on the types of data sets. Conclusions Sequential reuse of imputed data in KNN-based imputation greatly increases the efficiency of imputation. The SKNN method should be practically useful to save the data of some microarray experiments which have high amounts of missing entries. The SKNN method generates reliable imputed values which can be used for further cluster-based analysis of microarray data. PMID:15504240

  16. Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts

    PubMed Central

    Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W

    2011-01-01

    Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's functions. PMID:21892412

  17. Variation-preserving normalization unveils blind spots in gene expression profiling

    PubMed Central

    Roca, Carlos P.; Gomes, Susana I. L.; Amorim, Mónica J. B.; Scott-Fordsmand, Janeck J.

    2017-01-01

    RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression. PMID:28276435

  18. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    NASA Technical Reports Server (NTRS)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced substantially by combining it with other technologies for automated, miniaturized, high-throughput biological measurements, such as fast sequencing, protein identification (proteomics) and metabolite profiling (metabolomics). Thus, the system can be integrated with other biomedical instruments in order to support and enhance telemedicine capability onboard ISS. NASA's mission includes sustained investment in critical research leading to effective countermeasures to minimize the risks associated with human spaceflight, and the use of appropriate technology to sustain space exploration at reasonable cost. Our integrated microarray technology is expected to fulfill these two critical requirements and to enable the scientific community to better understand and monitor the effects of the space environment on microorganisms and on the astronaut, in the process leveraging current capabilities and overcoming present limitations.

  19. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina

    PubMed Central

    2010-01-01

    Background The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. Findings We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS), we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. Conclusions A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis. PMID:20565839

  20. Prevalence, identification by a DNA microarray-based assay of human and food isolates Listeria spp. from Tunisia.

    PubMed

    Hmaïed, F; Helel, S; Le Berre, V; François, J-M; Leclercq, A; Lecuit, M; Smaoui, H; Kechrid, A; Boudabous, A; Barkallah, I

    2014-02-01

    We aimed at evaluating the prevalence of Listeria species isolated from food samples and characterizing food and human cases isolates. Between 2005 and 2007, one hundred food samples collected in the markets of Tunis were analysed in our study. Five strains of Listeria monocytogenes responsible for human listeriosis isolated in hospital of Tunis were included. Multiplex PCR serogrouping and pulsed field gel electrophoresis (PFGE) applying the enzyme AscI and ApaI were used for the characterization of isolates of L. monocytogenes. We have developed a rapid microarray-based assay to a reliable discrimination of species within the Listeria genus. The prevalence of Listeria spp. in food samples was estimated at 14% by using classical biochemical identification. Two samples were assigned to L. monocytogenes and 12 to L. innocua. DNA microarray allowed unambiguous identification of Listeria species. Our results obtained by microarray-based assay were in accordance with the biochemical identification. The two food L. monocytogenes isolates were assigned to the PCR serogroup IIa (serovar 1/2a). Whereas human L. monocytogenes isolates were of PCR serogroup IVb, (serovars 4b). These isolates present a high similarity in PFGE. Food L. monocytogenes isolates were classified into two different pulsotypes. These pulsotypes were different from that of the five strains responsible for the human cases. We confirmed the presence of Listeria spp. in variety of food samples in Tunis. Increased food and clinical surveillance must be taken into consideration in Tunisia to identify putative infections sources. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Normal uniform mixture differential gene expression detection for cDNA microarrays

    PubMed Central

    Dean, Nema; Raftery, Adrian E

    2005-01-01

    Background One of the primary tasks in analysing gene expression data is finding genes that are differentially expressed in different samples. Multiple testing issues due to the thousands of tests run make some of the more popular methods for doing this problematic. Results We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE) detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple univariate normal-uniform mixture model, in combination with new normalization methods for spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed (2002) [1]. It takes account of multiple testing, and gives probabilities of differential expression as part of its output. It can be applied to either single-slide or replicated experiments, and it is very fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of Microarrays (SAM), and Empirical Bayes for microarrays (EBarrays) with both Gamma-Gamma and Lognormal-Normal models. Conclusion The method gives a high probability of differential expression to genes known/suspected a priori to be differentially expressed and a low probability to the others. In terms of known false positives and false negatives, the method outperforms all multiple-replicate methods except for the Gamma-Gamma EBarrays method to which it offers comparable results with the added advantages of greater simplicity, speed, fewer assumptions and applicability to the single replicate case. An R package called nudge to implement the methods in this paper will be made available soon at . PMID:16011807

  2. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks.

    PubMed

    Zhang, Xiaomeng; Shao, Bin; Wu, Yangle; Qi, Ouyang

    2013-01-01

    One of the major objectives in systems biology is to understand the relation between the topological structures and the dynamics of biological regulatory networks. In this context, various mathematical tools have been developed to deduct structures of regulatory networks from microarray expression data. In general, from a single data set, one cannot deduct the whole network structure; additional expression data are usually needed. Thus how to design a microarray expression experiment in order to get the most information is a practical problem in systems biology. Here we propose three methods, namely, maximum distance method, trajectory entropy method, and sampling method, to derive the optimal initial conditions for experiments. The performance of these methods is tested and evaluated in three well-known regulatory networks (budding yeast cell cycle, fission yeast cell cycle, and E. coli. SOS network). Based on the evaluation, we propose an efficient strategy for the design of microarray expression experiments.

  3. Cell and Tissue Microarray Technologies for Protein and Nucleic Acid Expression Profiling

    PubMed Central

    Cardano, Marina; Diaferia, Giuseppe R.; Falavigna, Maurizio; Spinelli, Chiara C.; Sessa, Fausto; DeBlasio, Pasquale

    2013-01-01

    Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform. PMID:23172795

  4. Single molecule characterization of DNA binding and strand displacement reactions on lithographic DNA origami microarrays.

    PubMed

    Scheible, Max B; Pardatscher, Günther; Kuzyk, Anton; Simmel, Friedrich C

    2014-03-12

    The combination of molecular self-assembly based on the DNA origami technique with lithographic patterning enables the creation of hierarchically ordered nanosystems, in which single molecules are positioned at precise locations on multiple length scales. Based on a hybrid assembly protocol utilizing DNA self-assembly and electron-beam lithography on transparent glass substrates, we here demonstrate a DNA origami microarray, which is compatible with the requirements of single molecule fluorescence and super-resolution microscopy. The spatial arrangement allows for a simple and reliable identification of single molecule events and facilitates automated read-out and data analysis. As a specific application, we utilize the microarray to characterize the performance of DNA strand displacement reactions localized on the DNA origami structures. We find considerable variability within the array, which results both from structural variations and stochastic reaction dynamics prevalent at the single molecule level.

  5. Plasmonically amplified fluorescence bioassay with microarray format

    NASA Astrophysics Data System (ADS)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  6. Autonomous system for Web-based microarray image analysis.

    PubMed

    Bozinov, Daniel

    2003-12-01

    Software-based feature extraction from DNA microarray images still requires human intervention on various levels. Manual adjustment of grid and metagrid parameters, precise alignment of superimposed grid templates and gene spots, or simply identification of large-scale artifacts have to be performed beforehand to reliably analyze DNA signals and correctly quantify their expression values. Ideally, a Web-based system with input solely confined to a single microarray image and a data table as output containing measurements for all gene spots would directly transform raw image data into abstracted gene expression tables. Sophisticated algorithms with advanced procedures for iterative correction function can overcome imminent challenges in image processing. Herein is introduced an integrated software system with a Java-based interface on the client side that allows for decentralized access and furthermore enables the scientist to instantly employ the most updated software version at any given time. This software tool is extended from PixClust as used in Extractiff incorporated with Java Web Start deployment technology. Ultimately, this setup is destined for high-throughput pipelines in genome-wide medical diagnostics labs or microarray core facilities aimed at providing fully automated service to its users.

  7. How large a training set is needed to develop a classifier for microarray data?

    PubMed

    Dobbin, Kevin K; Zhao, Yingdong; Simon, Richard M

    2008-01-01

    A common goal of gene expression microarray studies is the development of a classifier that can be used to divide patients into groups with different prognoses, or with different expected responses to a therapy. These types of classifiers are developed on a training set, which is the set of samples used to train a classifier. The question of how many samples are needed in the training set to produce a good classifier from high-dimensional microarray data is challenging. We present a model-based approach to determining the sample size required to adequately train a classifier. It is shown that sample size can be determined from three quantities: standardized fold change, class prevalence, and number of genes or features on the arrays. Numerous examples and important experimental design issues are discussed. The method is adapted to address ex post facto determination of whether the size of a training set used to develop a classifier was adequate. An interactive web site for performing the sample size calculations is provided. We showed that sample size calculations for classifier development from high-dimensional microarray data are feasible, discussed numerous important considerations, and presented examples.

  8. MAGMA: analysis of two-channel microarrays made easy.

    PubMed

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  9. Estimating differential expression from multiple indicators

    PubMed Central

    Ilmjärv, Sten; Hundahl, Christian Ansgar; Reimets, Riin; Niitsoo, Margus; Kolde, Raivo; Vilo, Jaak; Vasar, Eero; Luuk, Hendrik

    2014-01-01

    Regardless of the advent of high-throughput sequencing, microarrays remain central in current biomedical research. Conventional microarray analysis pipelines apply data reduction before the estimation of differential expression, which is likely to render the estimates susceptible to noise from signal summarization and reduce statistical power. We present a probe-level framework, which capitalizes on the high number of concurrent measurements to provide more robust differential expression estimates. The framework naturally extends to various experimental designs and target categories (e.g. transcripts, genes, genomic regions) as well as small sample sizes. Benchmarking in relation to popular microarray and RNA-sequencing data-analysis pipelines indicated high and stable performance on the Microarray Quality Control dataset and in a cell-culture model of hypoxia. Experimental-data-exhibiting long-range epigenetic silencing of gene expression was used to demonstrate the efficacy of detecting differential expression of genomic regions, a level of analysis not embraced by conventional workflows. Finally, we designed and conducted an experiment to identify hypothermia-responsive genes in terms of monotonic time-response. As a novel insight, hypothermia-dependent up-regulation of multiple genes of two major antioxidant pathways was identified and verified by quantitative real-time PCR. PMID:24586062

  10. Development and application of a DNA microarray-based yeast two-hybrid system

    PubMed Central

    Suter, Bernhard; Fontaine, Jean-Fred; Yildirimman, Reha; Raskó, Tamás; Schaefer, Martin H.; Rasche, Axel; Porras, Pablo; Vázquez-Álvarez, Blanca M.; Russ, Jenny; Rau, Kirstin; Foulle, Raphaele; Zenkner, Martina; Saar, Kathrin; Herwig, Ralf; Andrade-Navarro, Miguel A.; Wanker, Erich E.

    2013-01-01

    The yeast two-hybrid (Y2H) system is the most widely applied methodology for systematic protein–protein interaction (PPI) screening and the generation of comprehensive interaction networks. We developed a novel Y2H interaction screening procedure using DNA microarrays for high-throughput quantitative PPI detection. Applying a global pooling and selection scheme to a large collection of human open reading frames, proof-of-principle Y2H interaction screens were performed for the human neurodegenerative disease proteins huntingtin and ataxin-1. Using systematic controls for unspecific Y2H results and quantitative benchmarking, we identified and scored a large number of known and novel partner proteins for both huntingtin and ataxin-1. Moreover, we show that this parallelized screening procedure and the global inspection of Y2H interaction data are uniquely suited to define specific PPI patterns and their alteration by disease-causing mutations in huntingtin and ataxin-1. This approach takes advantage of the specificity and flexibility of DNA microarrays and of the existence of solid-related statistical methods for the analysis of DNA microarray data, and allows a quantitative approach toward interaction screens in human and in model organisms. PMID:23275563

  11. Functionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays

    PubMed Central

    Fixe, F.; Dufva, M.; Telleman, P.; Christensen, C. B. V.

    2004-01-01

    A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques. PMID:14718554

  12. Segment and fit thresholding: a new method for image analysis applied to microarray and immunofluorescence data.

    PubMed

    Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E; Allen, Peter J; Sempere, Lorenzo F; Haab, Brian B

    2015-10-06

    Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.

  13. Segment and Fit Thresholding: A New Method for Image Analysis Applied to Microarray and Immunofluorescence Data

    PubMed Central

    Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M.; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E.; Allen, Peter J.; Sempere, Lorenzo F.; Haab, Brian B.

    2016-01-01

    Certain experiments involve the high-throughput quantification of image data, thus requiring algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multi-color, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu’s method for selected images. SFT promises to advance the goal of full automation in image analysis. PMID:26339978

  14. Differential gene expression related to Nora virus infection of Drosophila melanogaster.

    PubMed

    Cordes, Ethan J; Licking-Murray, Kellie D; Carlson, Kimberly A

    2013-08-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. Copyright © 2013. Published by Elsevier B.V.

  15. Importing MAGE-ML format microarray data into BioConductor.

    PubMed

    Durinck, Steffen; Allemeersch, Joke; Carey, Vincent J; Moreau, Yves; De Moor, Bart

    2004-12-12

    The microarray gene expression markup language (MAGE-ML) is a widely used XML (eXtensible Markup Language) standard for describing and exchanging information about microarray experiments. It can describe microarray designs, microarray experiment designs, gene expression data and data analysis results. We describe RMAGEML, a new Bioconductor package that provides a link between cDNA microarray data stored in MAGE-ML format and the Bioconductor framework for preprocessing, visualization and analysis of microarray experiments. http://www.bioconductor.org. Open Source.

  16. Gene Expression-Based Survival Prediction in Lung Adenocarcinoma: A Multi-Site, Blinded Validation Study

    PubMed Central

    Shedden, Kerby; Taylor, Jeremy M.G.; Enkemann, Steve A.; Tsao, Ming S.; Yeatman, Timothy J.; Gerald, William L.; Eschrich, Steve; Jurisica, Igor; Venkatraman, Seshan E.; Meyerson, Matthew; Kuick, Rork; Dobbin, Kevin K.; Lively, Tracy; Jacobson, James W.; Beer, David G.; Giordano, Thomas J.; Misek, David E.; Chang, Andrew C.; Zhu, Chang Qi; Strumpf, Dan; Hanash, Samir; Shepherd, Francis A.; Ding, Kuyue; Seymour, Lesley; Naoki, Katsuhiko; Pennell, Nathan; Weir, Barbara; Verhaak, Roel; Ladd-Acosta, Christine; Golub, Todd; Gruidl, Mike; Szoke, Janos; Zakowski, Maureen; Rusch, Valerie; Kris, Mark; Viale, Agnes; Motoi, Noriko; Travis, William; Sharma, Anupama

    2009-01-01

    Although prognostic gene expression signatures for survival in early stage lung cancer have been proposed, for clinical application it is critical to establish their performance across different subject populations and in different laboratories. Here we report a large, training-testing, multi-site blinded validation study to characterize the performance of several prognostic models based on gene expression for 442 lung adenocarcinomas. The hypotheses proposed examined whether microarray measurements of gene expression either alone or combined with basic clinical covariates (stage, age, sex) can be used to predict overall survival in lung cancer subjects. Several models examined produced risk scores that substantially correlated with actual subject outcome. Most methods performed better with clinical data, supporting the combined use of clinical and molecular information when building prognostic models for early stage lung cancer. This study also provides the largest available set of microarray data with extensive pathological and clinical annotation for lung adenocarcinomas. PMID:18641660

  17. Microarray Я US: a user-friendly graphical interface to Bioconductor tools that enables accurate microarray data analysis and expedites comprehensive functional analysis of microarray results.

    PubMed

    Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu

    2012-06-08

    Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.

  18. A novel feature extraction approach for microarray data based on multi-algorithm fusion

    PubMed Central

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277

  19. A novel feature extraction approach for microarray data based on multi-algorithm fusion.

    PubMed

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.

  20. A robust two-way semi-linear model for normalization of cDNA microarray data

    PubMed Central

    Wang, Deli; Huang, Jian; Xie, Hehuang; Manzella, Liliana; Soares, Marcelo Bento

    2005-01-01

    Background Normalization is a basic step in microarray data analysis. A proper normalization procedure ensures that the intensity ratios provide meaningful measures of relative expression values. Methods We propose a robust semiparametric method in a two-way semi-linear model (TW-SLM) for normalization of cDNA microarray data. This method does not make the usual assumptions underlying some of the existing methods. For example, it does not assume that: (i) the percentage of differentially expressed genes is small; or (ii) the numbers of up- and down-regulated genes are about the same, as required in the LOWESS normalization method. We conduct simulation studies to evaluate the proposed method and use a real data set from a specially designed microarray experiment to compare the performance of the proposed method with that of the LOWESS normalization approach. Results The simulation results show that the proposed method performs better than the LOWESS normalization method in terms of mean square errors for estimated gene effects. The results of analysis of the real data set also show that the proposed method yields more consistent results between the direct and the indirect comparisons and also can detect more differentially expressed genes than the LOWESS method. Conclusions Our simulation studies and the real data example indicate that the proposed robust TW-SLM method works at least as well as the LOWESS method and works better when the underlying assumptions for the LOWESS method are not satisfied. Therefore, it is a powerful alternative to the existing normalization methods. PMID:15663789

  1. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    PubMed

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Supervised group Lasso with applications to microarray data analysis

    PubMed Central

    Ma, Shuangge; Song, Xiao; Huang, Jian

    2007-01-01

    Background A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis of diseases using microarray gene expression data. It has been demonstrated that gene expression data have cluster structure, where the clusters consist of co-regulated genes which tend to have coordinated functions. However, most available statistical methods for gene selection do not take into consideration the cluster structure. Results We propose a supervised group Lasso approach that takes into account the cluster structure in gene expression data for gene selection and predictive model building. For gene expression data without biological cluster information, we first divide genes into clusters using the K-means approach and determine the optimal number of clusters using the Gap method. The supervised group Lasso consists of two steps. In the first step, we identify important genes within each cluster using the Lasso method. In the second step, we select important clusters using the group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to allow for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We apply the proposed method to disease classification and survival analysis with microarray data. Conclusion We analyze four microarray data sets using the proposed approach: two cancer data sets with binary cancer occurrence as outcomes and two lymphoma data sets with survival outcomes. The results show that the proposed approach is capable of identifying a small number of influential gene clusters and important genes within those clusters, and has better prediction performance than existing methods. PMID:17316436

  3. Application of Immunosignatures for Diagnosis of Valley Fever

    PubMed Central

    Navalkar, Krupa Arun; Johnston, Stephen Albert; Woodbury, Neal; Galgiani, John N.; Magee, D. Mitchell; Chicacz, Zbigniew

    2014-01-01

    Valley fever (VF) is difficult to diagnose, partly because the symptoms of VF are confounded with those of other community-acquired pneumonias. Confirmatory diagnostics detect IgM and IgG antibodies against coccidioidal antigens via immunodiffusion (ID). The false-negative rate can be as high as 50% to 70%, with 5% of symptomatic patients never showing detectable antibody levels. In this study, we tested whether the immunosignature diagnostic can resolve VF false negatives. An immunosignature is the pattern of antibody binding to random-sequence peptides on a peptide microarray. A 10,000-peptide microarray was first used to determine whether valley fever patients can be distinguished from 3 other cohorts with similar infections. After determining the VF-specific peptides, a small 96-peptide diagnostic array was created and tested. The performances of the 10,000-peptide array and the 96-peptide diagnostic array were compared to that of the ID diagnostic standard. The 10,000-peptide microarray classified the VF samples from the other 3 infections with 98% accuracy. It also classified VF false-negative patients with 100% sensitivity in a blinded test set versus 28% sensitivity for ID. The immunosignature microarray has potential for simultaneously distinguishing valley fever patients from those with other fungal or bacterial infections. The same 10,000-peptide array can diagnose VF false-negative patients with 100% sensitivity. The smaller 96-peptide diagnostic array was less specific for diagnosing false negatives. We conclude that the performance of the immunosignature diagnostic exceeds that of the existing standard, and the immunosignature can distinguish related infections and might be used in lieu of existing diagnostics. PMID:24964807

  4. Comprehensive analysis of correlation coefficients estimated from pooling heterogeneous microarray data

    PubMed Central

    2013-01-01

    Background The synthesis of information across microarray studies has been performed by combining statistical results of individual studies (as in a mosaic), or by combining data from multiple studies into a large pool to be analyzed as a single data set (as in a melting pot of data). Specific issues relating to data heterogeneity across microarray studies, such as differences within and between labs or differences among experimental conditions, could lead to equivocal results in a melting pot approach. Results We applied statistical theory to determine the specific effect of different means and heteroskedasticity across 19 groups of microarray data on the sign and magnitude of gene-to-gene Pearson correlation coefficients obtained from the pool of 19 groups. We quantified the biases of the pooled coefficients and compared them to the biases of correlations estimated by an effect-size model. Mean differences across the 19 groups were the main factor determining the magnitude and sign of the pooled coefficients, which showed largest values of bias as they approached ±1. Only heteroskedasticity across the pool of 19 groups resulted in less efficient estimations of correlations than did a classical meta-analysis approach of combining correlation coefficients. These results were corroborated by simulation studies involving either mean differences or heteroskedasticity across a pool of N > 2 groups. Conclusions The combination of statistical results is best suited for synthesizing the correlation between expression profiles of a gene pair across several microarray studies. PMID:23822712

  5. Dye bias correction in dual-labeled cDNA microarray gene expression measurements.

    PubMed Central

    Rosenzweig, Barry A; Pine, P Scott; Domon, Olen E; Morris, Suzanne M; Chen, James J; Sistare, Frank D

    2004-01-01

    A significant limitation to the analytical accuracy and precision of dual-labeled spotted cDNA microarrays is the signal error due to dye bias. Transcript-dependent dye bias may be due to gene-specific differences of incorporation of two distinctly different chemical dyes and the resultant differential hybridization efficiencies of these two chemically different targets for the same probe. Several approaches were used to assess and minimize the effects of dye bias on fluorescent hybridization signals and maximize the experimental design efficiency of a cell culture experiment. Dye bias was measured at the individual transcript level within each batch of simultaneously processed arrays by replicate dual-labeled split-control sample hybridizations and accounted for a significant component of fluorescent signal differences. This transcript-dependent dye bias alone could introduce unacceptably high numbers of both false-positive and false-negative signals. We found that within a given set of concurrently processed hybridizations, the bias is remarkably consistent and therefore measurable and correctable. The additional microarrays and reagents required for paired technical replicate dye-swap corrections commonly performed to control for dye bias could be costly to end users. Incorporating split-control microarrays within a set of concurrently processed hybridizations to specifically measure dye bias can eliminate the need for technical dye swap replicates and reduce microarray and reagent costs while maintaining experimental accuracy and technical precision. These data support a practical and more efficient experimental design to measure and mathematically correct for dye bias. PMID:15033598

  6. Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer.

    PubMed

    Beyer, Sasha J; Zhang, Xiaoli; Jimenez, Rafael E; Lee, Mei-Ling T; Richardson, Andrea L; Huang, Kun; Jhiang, Sissy M

    2011-10-11

    Na+/I- symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified. NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype. Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.

  7. Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis.

    PubMed

    Luo, Jun; Dunn, Thomas; Ewing, Charles; Sauvageot, Jurga; Chen, Yidong; Trent, Jeffrey; Isaacs, William

    2002-05-15

    Despite the high prevalence of benign prostatic hyperplasia (BPH) in the aging male, little is known regarding the etiology of this disease. A better understanding of the molecular etiology of BPH would be facilitated by a comprehensive analysis of gene expression patterns that are characteristic of benign growth in the prostate gland. Since genes differentially expressed between BPH and normal prostate tissues are likely to reflect underlying pathogenic mechanisms involved in the development of BPH, we performed comparative gene expression analysis using cDNA microarray technology to identify candidate genes associated with BPH. Total RNA was extracted from a set of 9 BPH specimens from men with extensive hyperplasia and a set of 12 histologically normal prostate tissues excised from radical prostatectomy specimens. Each of these 21 RNA samples was labeled with Cy3 in a reverse transcription reaction and cohybridized with a Cy5 labeled common reference sample to a cDNA microarray containing 6,500 human genes. Normalized fluorescent intensity ratios from each hybridization experiment were extracted to represent the relative mRNA abundance for each gene in each sample. Weighted gene and random permutation analyses were performed to generate a subset of genes with statistically significant differences in expression between BPH and normal prostate tissues. Semi-quantitative PCR analysis was performed to validate differential expression. A subset of 76 genes involved in a wide range of cellular functions was identified to be differentially expressed between BPH and normal prostate tissues. Semi-quantitative PCR was performed on 10 genes and 8 were validated. Genes consistently upregulated in BPH when compared to normal prostate tissues included: a restricted set of growth factors and their binding proteins (e.g. IGF-1 and -2, TGF-beta3, BMP5, latent TGF-beta binding protein 1 and -2); hydrolases, proteases, and protease inhibitors (e.g. neuropathy target esterase, MMP2, alpha-2-macroglobulin); stress response enzymes (e.g. COX2, GSTM5); and extracellular matrix molecules (e.g. laminin alpha 4 and beta 1, chondroitin sulfate proteoglycan 2, lumican). Genes consistently expressing less mRNA in BPH than in normal prostate tissues were less commonly observed and included the transcription factor KLF4, thrombospondin 4, nitric oxide synthase 2A, transglutaminase 3, and gastrin releasing peptide. We identified a diverse set of genes that are potentially related to benign prostatic hyperplasia, including genes both previously implicated in BPH pathogenesis as well as others not previously linked to this disease. Further targeted validation and investigations of these genes at the DNA, mRNA, and protein levels are warranted to determine the clinical relevance and possible therapeutic utility of these genes. Copyright 2002 Wiley-Liss, Inc.

  8. Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer's disease-like rats using microarray analysis

    PubMed Central

    Wang, Zhe; Xu, Panpan; Chen, Biyue; Zhang, Zheyu; Zhang, Chunhu; Zhan, Qiong; Huang, Siqi; Xia, Zi-an

    2018-01-01

    Alzheimer’s disease (AD) is the most common form of dementia worldwide. Accumulating evidence indicates that non-coding RNAs are strongly implicated in AD-associated pathophysiology. However, the role of these ncRNAs remains largely unknown. In the present study, we used microarray analysis technology to characterize the expression patterns of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in hippocampal tissue from Aβ1-42-induced AD model rats, to integrate interaction data and thus provide novel insights into the mechanisms underlying AD. A total of 555 circRNAs, 183 miRNAs and 319 mRNAs were identified to be significantly dysregulated (fold-change ≥ 2.0 and p-value < 0.05) in the hippocampus of AD rats. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of randomly-selected circRNAs, miRNAs and mRNAs. Next, GO and KEGG pathway analyses were performed to further investigate ncRNAs biological functions and potential mechanisms. In addition, we constructed circRNA-miRNA and competitive endogenous RNA (ceRNA) regulatory networks to determine functional interactions between ncRNAs and mRNAs. Our results suggest the involvement of different ncRNA expression patterns in the pathogenesis of AD. Our findings provide a novel perspective for further research into AD pathogenesis and might facilitate the development of novel therapeutics targeting ncRNAs. PMID:29706607

  9. An interferometric imaging biosensor using weighted spectrum analysis to confirm DNA monolayer films with attogram sensitivity.

    PubMed

    Fu, Rongxin; Li, Qi; Wang, Ruliang; Xue, Ning; Lin, Xue; Su, Ya; Jiang, Kai; Jin, Xiangyu; Lin, Rongzan; Gan, Wupeng; Lu, Ying; Huang, Guoliang

    2018-05-01

    Interferometric imaging biosensors are powerful and convenient tools for confirming the existence of DNA monolayer films on silicon microarray platforms. However, their accuracy and sensitivity need further improvement because DNA molecules contribute to an inconspicuous interferometric signal both in thickness and size. Such weaknesses result in poor performance of these biosensors for low DNA content analyses and point mutation tests. In this paper, an interferometric imaging biosensor with weighted spectrum analysis is presented to confirm DNA monolayer films. The interferometric signal of DNA molecules can be extracted and then quantitative detection results for DNA microarrays can be reconstructed. With the proposed strategy, the relative error of thickness detection was reduced from 88.94% to merely 4.15%. The mass sensitivity per unit area of the proposed biosensor reached 20 attograms (ag). Therefore, the sample consumption per unit area of the target DNA content was only 62.5 zeptomoles (zm), with the volume of 0.25 picolitres (pL). Compared with the fluorescence resonance energy transfer (FRET), the measurement veracity of the interferometric imaging biosensor with weighted spectrum analysis is free to the changes in spotting concentration and DNA length. The detection range was more than 1µm. Moreover, single nucleotide mismatch could be pointed out combined with specific DNA ligation. A mutation experiment for lung cancer detection proved the high selectivity and accurate analysis capability of the presented biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury.

    PubMed

    Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Kashiwada, Yoshiki

    2015-04-01

    This work aimed at evaluating the effect of fermented ginseng (FG) and fermented red ginseng (FRG) against rat liver injury caused by paracetamol (acetaminophen (APAP)). Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and histopathological changes in the liver were analysed to determine the degree of liver injury. Deoxyribonucleic acid (DNA) microarray analysis was performed to compare gene expression levels altered in the rat livers. Phosphorylated Jun-N-terminal kinase (JNK) in human hepatocellular carcinoma (HepG2) cells were detected using western blot analysis to investigate the anti-inflammatory activity of compound K. Pretreatment with FG, containing compound K at high concentration, attenuated AST as well as ALT levels in rats, while no obvious effect was observed in the group that received FRG, whose content of compound K was lower than that of FG. In addition, the results of our histopathological analysis were consistent with changes in the serum biochemical analysis. DNA microarray analysis indicated that JNK- and glutathione S-transferase (GST)-related genes were involved in the hepatotoxicity. Notably, compound K, a major ginsenoside in FG, inhibited the phosphorylation of JNK in HepG2 cells. FG was shown to possess hepatoprotective activity against paracetamol (APAP)-induced liver injury better than FRG. Compound K might play an important role for an anti-inflammatory activity of FG by inhibiting JNK signalling in the liver. © 2014 Royal Pharmaceutical Society.

  11. An Integrative Framework for Bayesian Variable Selection with Informative Priors for Identifying Genes and Pathways

    PubMed Central

    Ander, Bradley P.; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R.; Yang, Xiaowei

    2013-01-01

    The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with ‘large p, small n’ problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed. PMID:23844055

  12. An integrative framework for Bayesian variable selection with informative priors for identifying genes and pathways.

    PubMed

    Peng, Bin; Zhu, Dianwen; Ander, Bradley P; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R; Yang, Xiaowei

    2013-01-01

    The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with 'large p, small n' problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed.

  13. Immunoassay and antibody microarray analysis of the HUPO Plasma Proteome Project reference specimens: Systematic variation between sample types and calibration of mass spectrometry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haab, Brian B.; Geierstanger, Bernhard H.; Michailidis, George

    2005-08-01

    Four different immunoassay and antibody microarray methods performed at four different sites were used to measure the levels of a broad range of proteins (N = 323 assays; 39, 88, 168, and 28 assays at the respective sites; 237 unique analytes) in the human serum and plasma reference specimens distributed by the Plasma Proteome Project (PPP) of the HUPO. The methods provided a means to (1) assess the level of systematic variation in protein abundances associated with blood preparation methods (serum, citrate-anticoagulated-plasma, EDTA-anticoagulated-plasma, or heparin-anticoagulated-plasma) and (2) evaluate the dependence on concentration of MS-based protein identifications from data sets usingmore » the HUPO specimens. Some proteins, particularly cytokines, had highly variable concentrations between the different sample preparations, suggesting specific effects of certain anticoagulants on the stability or availability of these proteins. The linkage of antibody-based measurements from 66 different analytes with the combined MS/MS data from 18 different laboratories showed that protein detection and the quality of MS data increased with analyte concentration. The conclusions from these initial analyses are that the optimal blood preparation method is variable between analytes and that the discovery of blood proteins by MS can be extended to concentrations below the ng/mL range under certain circumstances. Continued developments in antibody-based methods will further advance the scientific goals of the PPP.« less

  14. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    PubMed Central

    2009-01-01

    Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays) representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration) in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level. PMID:20003209

  15. Latent Herpes Simplex Virus Infection of Sensory Neurons Alters Neuronal Gene Expression

    PubMed Central

    Kramer, Martha F.; Cook, W. James; Roth, Frederick P.; Zhu, Jia; Holman, Holly; Knipe, David M.; Coen, Donald M.

    2003-01-01

    The persistence of herpes simplex virus (HSV) and the diseases that it causes in the human population can be attributed to the maintenance of a latent infection within neurons in sensory ganglia. Little is known about the effects of latent infection on the host neuron. We have addressed the question of whether latent HSV infection affects neuronal gene expression by using microarray transcript profiling of host gene expression in ganglia from latently infected versus mock-infected mouse trigeminal ganglia. 33P-labeled cDNA probes from pooled ganglia harvested at 30 days postinfection or post-mock infection were hybridized to nylon arrays printed with 2,556 mouse genes. Signal intensities were acquired by phosphorimager. Mean intensities (n = 4 replicates in each of three independent experiments) of signals from mock-infected versus latently infected ganglia were compared by using a variant of Student's t test. We identified significant changes in the expression of mouse neuronal genes, including several with roles in gene expression, such as the Clk2 gene, and neurotransmission, such as genes encoding potassium voltage-gated channels and a muscarinic acetylcholine receptor. We confirmed the neuronal localization of some of these transcripts by using in situ hybridization. To validate the microarray results, we performed real-time reverse transcriptase PCR analyses for a selection of the genes. These studies demonstrate that latent HSV infection can alter neuronal gene expression and might provide a new mechanism for how persistent viral infection can cause chronic disease. PMID:12915567

  16. Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer's disease-like rats using microarray analysis.

    PubMed

    Wang, Zhe; Xu, Panpan; Chen, Biyue; Zhang, Zheyu; Zhang, Chunhu; Zhan, Qiong; Huang, Siqi; Xia, Zi-An; Peng, Weijun

    2018-04-27

    Alzheimer's disease (AD) is the most common form of dementia worldwide. Accumulating evidence indicates that non-coding RNAs are strongly implicated in AD-associated pathophysiology. However, the role of these ncRNAs remains largely unknown. In the present study, we used microarray analysis technology to characterize the expression patterns of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in hippocampal tissue from Aβ 1-42 -induced AD model rats, to integrate interaction data and thus provide novel insights into the mechanisms underlying AD. A total of 555 circRNAs, 183 miRNAs and 319 mRNAs were identified to be significantly dysregulated (fold-change ≥ 2.0 and p -value < 0.05) in the hippocampus of AD rats. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of randomly-selected circRNAs, miRNAs and mRNAs. Next, GO and KEGG pathway analyses were performed to further investigate ncRNAs biological functions and potential mechanisms. In addition, we constructed circRNA-miRNA and competitive endogenous RNA (ceRNA) regulatory networks to determine functional interactions between ncRNAs and mRNAs. Our results suggest the involvement of different ncRNA expression patterns in the pathogenesis of AD. Our findings provide a novel perspective for further research into AD pathogenesis and might facilitate the development of novel therapeutics targeting ncRNAs.

  17. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.

    PubMed

    Zhang, B; Zhang, B; Chen, X; Bae, S; Singh, K; Washington, M K; Datta, P K

    2014-02-18

    Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown. We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed. Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays. Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU.

  18. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway

    PubMed Central

    Zhang, B; Zhang, B; Chen, X; Bae, S; Singh, K; Washington, M K; Datta, P K

    2014-01-01

    Background: Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown. Methods: We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed. Results: Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays. Conclusion: Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU. PMID:24384683

  19. Development and Application of a Salmonid EST Database and cDNA Microarray: Data Mining and Interspecific Hybridization Characteristics

    PubMed Central

    Rise, Matthew L.; von Schalburg, Kristian R.; Brown, Gordon D.; Mawer, Melanie A.; Devlin, Robert H.; Kuipers, Nathanael; Busby, Maura; Beetz-Sargent, Marianne; Alberto, Roberto; Gibbs, A. Ross; Hunt, Peter; Shukin, Robert; Zeznik, Jeffrey A.; Nelson, Colleen; Jones, Simon R.M.; Smailus, Duane E.; Jones, Steven J.M.; Schein, Jacqueline E.; Marra, Marco A.; Butterfield, Yaron S.N.; Stott, Jeff M.; Ng, Siemon H.S.; Davidson, William S.; Koop, Ben F.

    2004-01-01

    We report 80,388 ESTs from 23 Atlantic salmon (Salmo salar) cDNA libraries (61,819 ESTs), 6 rainbow trout (Oncorhynchus mykiss) cDNA libraries (14,544 ESTs), 2 chinook salmon (Oncorhynchus tshawytscha) cDNA libraries (1317 ESTs), 2 sockeye salmon (Oncorhynchus nerka) cDNA libraries (1243 ESTs), and 2 lake whitefish (Coregonus clupeaformis) cDNA libraries (1465 ESTs). The majority of these are 3′ sequences, allowing discrimination between paralogs arising from a recent genome duplication in the salmonid lineage. Sequence assembly reveals 28,710 different S. salar, 8981 O. mykiss, 1085 O. tshawytscha, 520 O. nerka, and 1176 C. clupeaformis putative transcripts. We annotate the submitted portion of our EST database by molecular function. Higher- and lower-molecular-weight fractions of libraries are shown to contain distinct gene sets, and higher rates of gene discovery are associated with higher-molecular weight libraries. Pyloric caecum library group annotations indicate this organ may function in redox control and as a barrier against systemic uptake of xenobiotics. A microarray is described, containing 7356 salmonid elements representing 3557 different cDNAs. Analyses of cross-species hybridizations to this cDNA microarray indicate that this resource may be used for studies involving all salmonids. PMID:14962987

  20. Screening for Intellectual Disability Using High-Resolution CMA Technology in a Retrospective Cohort from Central Brazil

    PubMed Central

    Pereira, Rodrigo Roncato; Pinto, Irene Plaza; Minasi, Lysa Bernardes; de Melo, Aldaires Vieira; da Cruz e Cunha, Damiana Mirian; Cruz, Alex Silva; Ribeiro, Cristiano Luiz; da Silva, Cláudio Carlos; de Melo e Silva, Daniela; da Cruz, Aparecido Divino

    2014-01-01

    Intellectual disability is a complex, variable, and heterogeneous disorder, representing a disabling condition diagnosed worldwide, and the etiologies are multiple and highly heterogeneous. Microscopic chromosomal abnormalities and well-characterized genetic conditions are the most common causes of intellectual disability. Chromosomal Microarray Analysis analyses have made it possible to identify putatively pathogenic copy number variation that could explain the molecular etiology of intellectual disability. The aim of the current study was to identify possible submicroscopic genomic alterations using a high-density chromosomal microarray in a retrospective cohort of patients with otherwise undiagnosable intellectual disabilities referred by doctors from the public health system in Central Brazil. The CytoScan HD technology was used to detect changes in the genome copy number variation of patients who had intellectual disability and a normal karyotype. The analysis detected 18 CNVs in 60% of patients. Pathogenic CNVs represented about 22%, so it was possible to propose the etiology of intellectual disability for these patients. Likely pathogenic and unknown clinical significance CNVs represented 28% and 50%, respectively. Inherited and de novo CNVs were equally distributed. We report the nature of CNVs in patients from Central Brazil, representing a population not yet screened by microarray technologies. PMID:25061755

  1. mRNA Expression Profiling of Laser Microbeam Microdissected Cells from Slender Embryonic Structures

    PubMed Central

    Scheidl, Stefan J.; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-01-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-β1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions. PMID:11891179

  2. High dimensional biological data retrieval optimization with NoSQL technology.

    PubMed

    Wang, Shicai; Pandis, Ioannis; Wu, Chao; He, Sijin; Johnson, David; Emam, Ibrahim; Guitton, Florian; Guo, Yike

    2014-01-01

    High-throughput transcriptomic data generated by microarray experiments is the most abundant and frequently stored kind of data currently used in translational medicine studies. Although microarray data is supported in data warehouses such as tranSMART, when querying relational databases for hundreds of different patient gene expression records queries are slow due to poor performance. Non-relational data models, such as the key-value model implemented in NoSQL databases, hold promise to be more performant solutions. Our motivation is to improve the performance of the tranSMART data warehouse with a view to supporting Next Generation Sequencing data. In this paper we introduce a new data model better suited for high-dimensional data storage and querying, optimized for database scalability and performance. We have designed a key-value pair data model to support faster queries over large-scale microarray data and implemented the model using HBase, an implementation of Google's BigTable storage system. An experimental performance comparison was carried out against the traditional relational data model implemented in both MySQL Cluster and MongoDB, using a large publicly available transcriptomic data set taken from NCBI GEO concerning Multiple Myeloma. Our new key-value data model implemented on HBase exhibits an average 5.24-fold increase in high-dimensional biological data query performance compared to the relational model implemented on MySQL Cluster, and an average 6.47-fold increase on query performance on MongoDB. The performance evaluation found that the new key-value data model, in particular its implementation in HBase, outperforms the relational model currently implemented in tranSMART. We propose that NoSQL technology holds great promise for large-scale data management, in particular for high-dimensional biological data such as that demonstrated in the performance evaluation described in this paper. We aim to use this new data model as a basis for migrating tranSMART's implementation to a more scalable solution for Big Data.

  3. High dimensional biological data retrieval optimization with NoSQL technology

    PubMed Central

    2014-01-01

    Background High-throughput transcriptomic data generated by microarray experiments is the most abundant and frequently stored kind of data currently used in translational medicine studies. Although microarray data is supported in data warehouses such as tranSMART, when querying relational databases for hundreds of different patient gene expression records queries are slow due to poor performance. Non-relational data models, such as the key-value model implemented in NoSQL databases, hold promise to be more performant solutions. Our motivation is to improve the performance of the tranSMART data warehouse with a view to supporting Next Generation Sequencing data. Results In this paper we introduce a new data model better suited for high-dimensional data storage and querying, optimized for database scalability and performance. We have designed a key-value pair data model to support faster queries over large-scale microarray data and implemented the model using HBase, an implementation of Google's BigTable storage system. An experimental performance comparison was carried out against the traditional relational data model implemented in both MySQL Cluster and MongoDB, using a large publicly available transcriptomic data set taken from NCBI GEO concerning Multiple Myeloma. Our new key-value data model implemented on HBase exhibits an average 5.24-fold increase in high-dimensional biological data query performance compared to the relational model implemented on MySQL Cluster, and an average 6.47-fold increase on query performance on MongoDB. Conclusions The performance evaluation found that the new key-value data model, in particular its implementation in HBase, outperforms the relational model currently implemented in tranSMART. We propose that NoSQL technology holds great promise for large-scale data management, in particular for high-dimensional biological data such as that demonstrated in the performance evaluation described in this paper. We aim to use this new data model as a basis for migrating tranSMART's implementation to a more scalable solution for Big Data. PMID:25435347

  4. Gene expression profiling of whole blood: Comparison of target preparation methods for accurate and reproducible microarray analysis

    PubMed Central

    Vartanian, Kristina; Slottke, Rachel; Johnstone, Timothy; Casale, Amanda; Planck, Stephen R; Choi, Dongseok; Smith, Justine R; Rosenbaum, James T; Harrington, Christina A

    2009-01-01

    Background Peripheral blood is an accessible and informative source of transcriptomal information for many human disease and pharmacogenomic studies. While there can be significant advantages to analyzing RNA isolated from whole blood, particularly in clinical studies, the preparation of samples for microarray analysis is complicated by the need to minimize artifacts associated with highly abundant globin RNA transcripts. The impact of globin RNA transcripts on expression profiling data can potentially be reduced by using RNA preparation and labeling methods that remove or block globin RNA during the microarray assay. We compared four different methods for preparing microarray hybridization targets from human whole blood collected in PAXGene tubes. Three of the methods utilized the Affymetrix one-cycle cDNA synthesis/in vitro transcription protocol but varied treatment of input RNA as follows: i. no treatment; ii. treatment with GLOBINclear; or iii. treatment with globin PNA oligos. In the fourth method cDNA targets were prepared with the Ovation amplification and labeling system. Results We find that microarray targets generated with labeling methods that reduce globin mRNA levels or minimize the impact of globin transcripts during hybridization detect more transcripts in the microarray assay compared with the standard Affymetrix method. Comparison of microarray results with quantitative PCR analysis of a panel of genes from the NF-kappa B pathway shows good correlation of transcript measurements produced with all four target preparation methods, although method-specific differences in overall correlation were observed. The impact of freezing blood collected in PAXGene tubes on data reproducibility was also examined. Expression profiles show little or no difference when RNA is extracted from either fresh or frozen blood samples. Conclusion RNA preparation and labeling methods designed to reduce the impact of globin mRNA transcripts can significantly improve the sensitivity of the DNA microarray expression profiling assay for whole blood samples. While blockage of globin transcripts during first strand cDNA synthesis with globin PNAs resulted in the best overall performance in this study, we conclude that selection of a protocol for expression profiling studies in blood should depend on several factors, including implementation requirements of the method and study design. RNA isolated from either freshly collected or frozen blood samples stored in PAXGene tubes can be used without altering gene expression profiles. PMID:19123946

  5. Gaussian mixture clustering and imputation of microarray data.

    PubMed

    Ouyang, Ming; Welsh, William J; Georgopoulos, Panos

    2004-04-12

    In microarray experiments, missing entries arise from blemishes on the chips. In large-scale studies, virtually every chip contains some missing entries and more than 90% of the genes are affected. Many analysis methods require a full set of data. Either those genes with missing entries are excluded, or the missing entries are filled with estimates prior to the analyses. This study compares methods of missing value estimation. Two evaluation metrics of imputation accuracy are employed. First, the root mean squared error measures the difference between the true values and the imputed values. Second, the number of mis-clustered genes measures the difference between clustering with true values and that with imputed values; it examines the bias introduced by imputation to clustering. The Gaussian mixture clustering with model averaging imputation is superior to all other imputation methods, according to both evaluation metrics, on both time-series (correlated) and non-time series (uncorrelated) data sets.

  6. Correcting for batch effects in case-control microbiome studies

    PubMed Central

    Gibbons, Sean M.; Duvallet, Claire

    2018-01-01

    High-throughput data generation platforms, like mass-spectrometry, microarrays, and second-generation sequencing are susceptible to batch effects due to run-to-run variation in reagents, equipment, protocols, or personnel. Currently, batch correction methods are not commonly applied to microbiome sequencing datasets. In this paper, we compare different batch-correction methods applied to microbiome case-control studies. We introduce a model-free normalization procedure where features (i.e. bacterial taxa) in case samples are converted to percentiles of the equivalent features in control samples within a study prior to pooling data across studies. We look at how this percentile-normalization method compares to traditional meta-analysis methods for combining independent p-values and to limma and ComBat, widely used batch-correction models developed for RNA microarray data. Overall, we show that percentile-normalization is a simple, non-parametric approach for correcting batch effects and improving sensitivity in case-control meta-analyses. PMID:29684016

  7. Defining the interaction of human soluble lectin ZG16p and mycobacterial phosphatidylinositol mannosides

    PubMed Central

    Ikeda, Akemi; Kojima-Aikawa, Kyoko; Taniguchi, Naoyuki; Varón Silva, Daniel; Feizi, Ten; Seeberger, Peter H.; Yamaguchi, Yoshiki

    2018-01-01

    ZG16p is a soluble mammalian lectin that interacts with mannose and heparan sulfate. Here we describe detailed analyses of the interactions of human ZG16p with mycobacterial phosphatidylinositol mannosides (PIMs), using glycan microarray and NMR. Pathogen-related glycan microarray analysis identified phosphatidylinositol mono- and di-mannosides (PIM1 and PIM2) as novel ligand candidates of ZG16p. Saturation Transfer Difference (STD) NMR and transferred NOE experiments with chemically synthesized PIM glycans indicate that PIMs preferentially interacts with ZG16p using the mannose residues. Binding site of PIMs is identified by chemical shift perturbation experiments using uniformly 15N-labeled ZG16p. NMR results with docking simulations suggest a binding mode of ZG16p and PIM glycan, which would help to consider the physiological role of ZG16p. PMID:25919894

  8. 2008 Microarray Research Group (MARG Survey): Sensing the State of Microarray Technology

    EPA Science Inventory

    Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution and transformation, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. Th...

  9. THE ABRF-MARG MICROARRAY SURVEY 2004: TAKING THE PULSE OF THE MICROARRAY FIELD

    EPA Science Inventory

    Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. The goal of the surve...

  10. Contributions to Statistical Problems Related to Microarray Data

    ERIC Educational Resources Information Center

    Hong, Feng

    2009-01-01

    Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…

  11. Parallel, confocal, and complete spectrum imager for fluorescent detection of high-density microarray

    NASA Astrophysics Data System (ADS)

    Bogdanov, Valery L.; Boyce-Jacino, Michael

    1999-05-01

    Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.

  12. Nonlinear matching measure for the analysis of on-off type DNA microarray images

    NASA Astrophysics Data System (ADS)

    Kim, Jong D.; Park, Misun; Kim, Jongwon

    2003-07-01

    In this paper, we propose a new nonlinear matching measure for automatic analysis of the on-off type DNA microarray images in which the hybridized spots are detected by the template matching method. The targeting spots of HPV DNA chips are designed for genotyping the human papilloma virus(HPV). The proposed measure is obtained by binarythresholding over the whole template region and taking the number of white pixels inside the spotted area. This measure is evaluated in terms of the accuracy of the estimated marker location to show better performance than the normalized covariance.

  13. A whole blood gene expression-based signature for smoking status

    PubMed Central

    2012-01-01

    Background Smoking is the leading cause of preventable death worldwide and has been shown to increase the risk of multiple diseases including coronary artery disease (CAD). We sought to identify genes whose levels of expression in whole blood correlate with self-reported smoking status. Methods Microarrays were used to identify gene expression changes in whole blood which correlated with self-reported smoking status; a set of significant genes from the microarray analysis were validated by qRT-PCR in an independent set of subjects. Stepwise forward logistic regression was performed using the qRT-PCR data to create a predictive model whose performance was validated in an independent set of subjects and compared to cotinine, a nicotine metabolite. Results Microarray analysis of whole blood RNA from 209 PREDICT subjects (41 current smokers, 4 quit ≤ 2 months, 64 quit > 2 months, 100 never smoked; NCT00500617) identified 4214 genes significantly correlated with self-reported smoking status. qRT-PCR was performed on 1,071 PREDICT subjects across 256 microarray genes significantly correlated with smoking or CAD. A five gene (CLDND1, LRRN3, MUC1, GOPC, LEF1) predictive model, derived from the qRT-PCR data using stepwise forward logistic regression, had a cross-validated mean AUC of 0.93 (sensitivity=0.78; specificity=0.95), and was validated using 180 independent PREDICT subjects (AUC=0.82, CI 0.69-0.94; sensitivity=0.63; specificity=0.94). Plasma from the 180 validation subjects was used to assess levels of cotinine; a model using a threshold of 10 ng/ml cotinine resulted in an AUC of 0.89 (CI 0.81-0.97; sensitivity=0.81; specificity=0.97; kappa with expression model = 0.53). Conclusion We have constructed and validated a whole blood gene expression score for the evaluation of smoking status, demonstrating that clinical and environmental factors contributing to cardiovascular disease risk can be assessed by gene expression. PMID:23210427

  14. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukunaga, Satoki; Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558; Kakehashi, Anna

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective ofmore » initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.« less

  15. Integrated Microfluidic Devices for Automated Microarray-Based Gene Expression and Genotyping Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Lodes, Mike; Fuji, H. Sho; Danley, David; McShea, Andrew

    Microarray assays typically involve multistage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Automation of these processes would improve robustness, reduce run-to-run and operator-to-operator variation, and reduce costs. In this chapter, a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps for microarray-based gene expression or genotyping analysis is presented. The device consists of a semiconductor-based CustomArray® chip with 12,000 features and a microfluidic cartridge. The CustomArray was manufactured using a semiconductor-based in situ synthesis technology. The micro-fluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels, and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed that the device identified influenza A hemagglutinin and neuraminidase subtypes and sequenced portions of both genes, demonstrating the potential of integrated microfluidic and microarray technology for multiple virus detection. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps and allows microarray-based DNA analysis in a rapid and automated fashion.

  16. Chemiluminescence microarrays in analytical chemistry: a critical review.

    PubMed

    Seidel, Michael; Niessner, Reinhard

    2014-09-01

    Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

  17. Exploratory Visual Analysis of Statistical Results from Microarray Experiments Comparing High and Low Grade Glioma

    PubMed Central

    Reif, David M.; Israel, Mark A.; Moore, Jason H.

    2007-01-01

    The biological interpretation of gene expression microarray results is a daunting challenge. For complex diseases such as cancer, wherein the body of published research is extensive, the incorporation of expert knowledge provides a useful analytical framework. We have previously developed the Exploratory Visual Analysis (EVA) software for exploring data analysis results in the context of annotation information about each gene, as well as biologically relevant groups of genes. We present EVA as a flexible combination of statistics and biological annotation that provides a straightforward visual interface for the interpretation of microarray analyses of gene expression in the most commonly occuring class of brain tumors, glioma. We demonstrate the utility of EVA for the biological interpretation of statistical results by analyzing publicly available gene expression profiles of two important glial tumors. The results of a statistical comparison between 21 malignant, high-grade glioblastoma multiforme (GBM) tumors and 19 indolent, low-grade pilocytic astrocytomas were analyzed using EVA. By using EVA to examine the results of a relatively simple statistical analysis, we were able to identify tumor class-specific gene expression patterns having both statistical and biological significance. Our interactive analysis highlighted the potential importance of genes involved in cell cycle progression, proliferation, signaling, adhesion, migration, motility, and structure, as well as candidate gene loci on a region of Chromosome 7 that has been implicated in glioma. Because EVA does not require statistical or computational expertise and has the flexibility to accommodate any type of statistical analysis, we anticipate EVA will prove a useful addition to the repertoire of computational methods used for microarray data analysis. EVA is available at no charge to academic users and can be found at http://www.epistasis.org. PMID:19390666

  18. Identification of genes modulated in rheumatoid arthritis using complementary DNA microarray analysis of lymphoblastoid B cell lines from disease-discordant monozygotic twins.

    PubMed

    Haas, Christian S; Creighton, Chad J; Pi, Xiujun; Maine, Ira; Koch, Alisa E; Haines, G Kenneth; Ling, Song; Chinnaiyan, Arul M; Holoshitz, Joseph

    2006-07-01

    To identify disease-specific gene expression profiles in patients with rheumatoid arthritis (RA), using complementary DNA (cDNA) microarray analyses on lymphoblastoid B cell lines (LCLs) derived from RA-discordant monozygotic (MZ) twins. The cDNA was prepared from LCLs derived from the peripheral blood of 11 pairs of RA-discordant MZ twins. The RA twin cDNA was labeled with cy5 fluorescent dye, and the cDNA of the healthy co-twin was labeled with cy3. To determine relative expression profiles, cDNA from each twin pair was combined and hybridized on 20,000-element microarray chips. Immunohistochemistry and real-time polymerase chain reaction were used to detect the expression of selected gene products in synovial tissue from patients with RA compared with patients with osteoarthritis and normal healthy controls. In RA twin LCLs compared with healthy co-twin LCLs, 1,163 transcripts were significantly differentially expressed. Of these, 747 were overexpressed and 416 were underexpressed. Gene ontology analysis revealed many genes known to play a role in apoptosis, angiogenesis, proteolysis, and signaling. The 3 most significantly overexpressed genes were laeverin (a novel enzyme with sequence homology to CD13), 11beta-hydroxysteroid dehydrogenase type 2 (a steroid pathway enzyme), and cysteine-rich, angiogenic inducer 61 (a known angiogenic factor). The products of these genes, heretofore uncharacterized in RA, were all abundantly expressed in RA synovial tissues. Microarray cDNA analysis of peripheral blood-derived LCLs from well-controlled patient populations is a useful tool to detect RA-relevant genes and could help in identifying novel therapeutic targets.

  19. CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets

    PubMed Central

    Li, Yang; Liu, Jun S.; Mootha, Vamsi K.

    2017-01-01

    In recent years, there has been a huge rise in the number of publicly available transcriptional profiling datasets. These massive compendia comprise billions of measurements and provide a special opportunity to predict the function of unstudied genes based on co-expression to well-studied pathways. Such analyses can be very challenging, however, since biological pathways are modular and may exhibit co-expression only in specific contexts. To overcome these challenges we introduce CLIC, CLustering by Inferred Co-expression. CLIC accepts as input a pathway consisting of two or more genes. It then uses a Bayesian partition model to simultaneously partition the input gene set into coherent co-expressed modules (CEMs), while assigning the posterior probability for each dataset in support of each CEM. CLIC then expands each CEM by scanning the transcriptome for additional co-expressed genes, quantified by an integrated log-likelihood ratio (LLR) score weighted for each dataset. As a byproduct, CLIC automatically learns the conditions (datasets) within which a CEM is operative. We implemented CLIC using a compendium of 1774 mouse microarray datasets (28628 microarrays) or 1887 human microarray datasets (45158 microarrays). CLIC analysis reveals that of 910 canonical biological pathways, 30% consist of strongly co-expressed gene modules for which new members are predicted. For example, CLIC predicts a functional connection between protein C7orf55 (FMC1) and the mitochondrial ATP synthase complex that we have experimentally validated. CLIC is freely available at www.gene-clic.org. We anticipate that CLIC will be valuable both for revealing new components of biological pathways as well as the conditions in which they are active. PMID:28719601

  20. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and gamma-rays.

    PubMed

    Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep; Iwahashi, Hitoshi

    2006-07-21

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma (gamma)-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and gamma-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and gamma-rays). Similarly, for X- and gamma-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and gamma-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-à-vis their energy levels.

Top