ERIC Educational Resources Information Center
Pecorella, Patricia A.; Bowers, David G.
Multiple regression in a double cross-validated design was used to predict two performance measures (total variable expense and absence rate) by multi-month period in five industrial firms. The regressions do cross-validate, and produce multiple coefficients which display both concurrent and predictive effects, peaking 18 months to two years…
Use of Empirical Estimates of Shrinkage in Multiple Regression: A Caution.
ERIC Educational Resources Information Center
Kromrey, Jeffrey D.; Hines, Constance V.
1995-01-01
The accuracy of four empirical techniques to estimate shrinkage in multiple regression was studied through Monte Carlo simulation. None of the techniques provided unbiased estimates of the population squared multiple correlation coefficient, but the normalized jackknife and bootstrap techniques demonstrated marginally acceptable performance with…
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
ℓ(p)-Norm multikernel learning approach for stock market price forecasting.
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ(1)-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ(p)-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ(1)-norm multiple support vector regression model.
ℓ p-Norm Multikernel Learning Approach for Stock Market Price Forecasting
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ 1-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ p-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ 1-norm multiple support vector regression model. PMID:23365561
Chen, Ying-Jen; Ho, Meng-Yang; Chen, Kwan-Ju; Hsu, Chia-Fen; Ryu, Shan-Jin
2009-08-01
The aims of the present study were to (i) investigate if traditional Chinese word reading ability can be used for estimating premorbid general intelligence; and (ii) to provide multiple regression equations for estimating premorbid performance on Raven's Standard Progressive Matrices (RSPM), using age, years of education and Chinese Graded Word Reading Test (CGWRT) scores as predictor variables. Four hundred and twenty-six healthy volunteers (201 male, 225 female), aged 16-93 years (mean +/- SD, 41.92 +/- 18.19 years) undertook the tests individually under supervised conditions. Seventy percent of subjects were randomly allocated to the derivation group (n = 296), and the rest to the validation group (n = 130). RSPM score was positively correlated with CGWRT score and years of education. RSPM and CGWRT scores and years of education were also inversely correlated with age, but the declining trend for RSPM performance against age was steeper than that for CGWRT performance. Separate multiple regression equations were derived for estimating RSPM scores using different combinations of age, years of education, and CGWRT score for both groups. The multiple regression coefficient of each equation ranged from 0.71 to 0.80 with the standard error of estimate between 7 and 8 RSPM points. When fitting the data of one group to the equations derived from its counterpart group, the cross-validation multiple regression coefficients ranged from 0.71 to 0.79. There were no significant differences in the 'predicted-obtained' RSPM discrepancies between any equations. The regression equations derived in the present study may provide a basis for estimating premorbid RSPM performance.
Zhu, Xiang; Stephens, Matthew
2017-01-01
Bayesian methods for large-scale multiple regression provide attractive approaches to the analysis of genome-wide association studies (GWAS). For example, they can estimate heritability of complex traits, allowing for both polygenic and sparse models; and by incorporating external genomic data into the priors, they can increase power and yield new biological insights. However, these methods require access to individual genotypes and phenotypes, which are often not easily available. Here we provide a framework for performing these analyses without individual-level data. Specifically, we introduce a “Regression with Summary Statistics” (RSS) likelihood, which relates the multiple regression coefficients to univariate regression results that are often easily available. The RSS likelihood requires estimates of correlations among covariates (SNPs), which also can be obtained from public databases. We perform Bayesian multiple regression analysis by combining the RSS likelihood with previously proposed prior distributions, sampling posteriors by Markov chain Monte Carlo. In a wide range of simulations RSS performs similarly to analyses using the individual data, both for estimating heritability and detecting associations. We apply RSS to a GWAS of human height that contains 253,288 individuals typed at 1.06 million SNPs, for which analyses of individual-level data are practically impossible. Estimates of heritability (52%) are consistent with, but more precise, than previous results using subsets of these data. We also identify many previously unreported loci that show evidence for association with height in our analyses. Software is available at https://github.com/stephenslab/rss. PMID:29399241
No Evidence of Reaction Time Slowing in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Ferraro, F. Richard
2016-01-01
A total of 32 studies comprising 238 simple reaction time and choice reaction time conditions were examined in individuals with autism spectrum disorder (n?=?964) and controls (n?=?1032). A Brinley plot/multiple regression analysis was performed on mean reaction times, regressing autism spectrum disorder performance onto the control performance as…
ERIC Educational Resources Information Center
Choi, Kilchan
2011-01-01
This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…
Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo
2017-11-01
[Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.
Mutter, Brigitte; Alcorn, Mark B; Welsh, Marilyn
2006-06-01
This study of the relationship between theory of mind and executive function examined whether on the false-belief task age differences between 3 and 5 ears of age are related to development of working-memory capacity and inhibitory processes. 72 children completed tasks measuring false belief, working memory, and inhibition. Significant age effects were observed for false-belief and working-memory performance, as well as for the false-alarm and perseveration measures of inhibition. A simultaneous multiple linear regression specified the contribution of age, inhibition, and working memory to the prediction of false-belief performance. This model was significant, explaining a total of 36% of the variance. To examine the independent contributions of the working-memory and inhibition variables, after controlling for age, two hierarchical multiple linear regressions were conducted. These multiple regression analyses indicate that working memory and inhibition make small, overlapping contributions to false-belief performance after accounting for age, but that working memory, as measured in this study, is a somewhat better predictor of false-belief understanding than is inhibition.
ERIC Educational Resources Information Center
Bloom, Allan M.; And Others
In response to the increasing importance of student performance in required classes, research was conducted to compare two prediction procedures, linear modeling using multiple regression and nonlinear modeling using AID3. Performance in the first college math course (College Mathematics, Calculus, or Business Calculus Matrices) was the dependent…
Accounting for estimated IQ in neuropsychological test performance with regression-based techniques.
Testa, S Marc; Winicki, Jessica M; Pearlson, Godfrey D; Gordon, Barry; Schretlen, David J
2009-11-01
Regression-based normative techniques account for variability in test performance associated with multiple predictor variables and generate expected scores based on algebraic equations. Using this approach, we show that estimated IQ, based on oral word reading, accounts for 1-9% of the variability beyond that explained by individual differences in age, sex, race, and years of education for most cognitive measures. These results confirm that adding estimated "premorbid" IQ to demographic predictors in multiple regression models can incrementally improve the accuracy with which regression-based norms (RBNs) benchmark expected neuropsychological test performance in healthy adults. It remains to be seen whether the incremental variance in test performance explained by estimated "premorbid" IQ translates to improved diagnostic accuracy in patient samples. We describe these methods, and illustrate the step-by-step application of RBNs with two cases. We also discuss the rationale, assumptions, and caveats of this approach. More broadly, we note that adjusting test scores for age and other characteristics might actually decrease the accuracy with which test performance predicts absolute criteria, such as the ability to drive or live independently.
Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C
2015-01-01
We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Le, Huy; Marcus, Justin
2012-01-01
This study used Monte Carlo simulation to examine the properties of the overall odds ratio (OOR), which was recently introduced as an index for overall effect size in multiple logistic regression. It was found that the OOR was relatively independent of study base rate and performed better than most commonly used R-square analogs in indexing model…
Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki
2017-05-01
This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients
NASA Astrophysics Data System (ADS)
Gorgees, HazimMansoor; Mahdi, FatimahAssim
2018-05-01
This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.
Khalil, Mohamed H.; Shebl, Mostafa K.; Kosba, Mohamed A.; El-Sabrout, Karim; Zaki, Nesma
2016-01-01
Aim: This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens’ eggs. Materials and Methods: Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. Results: The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. Conclusion: A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens. PMID:27651666
ERIC Educational Resources Information Center
Kaufman, Dahlia; Codding, Robin S.; Markus, Keith A.; Tryon, Georgiana Shick; Kyse, Eden Nagler
2013-01-01
Verbal and written performance feedback for improving preschool and kindergarten teachers' treatment integrity of behavior plans was compared using a combined multiple-baseline and multiple-treatment design across teacher-student dyads with order counterbalanced as within-series conditions. Supplemental generalized least square regression analyses…
NASA Astrophysics Data System (ADS)
Zahari, Siti Meriam; Ramli, Norazan Mohamed; Moktar, Balkiah; Zainol, Mohammad Said
2014-09-01
In the presence of multicollinearity and multiple outliers, statistical inference of linear regression model using ordinary least squares (OLS) estimators would be severely affected and produces misleading results. To overcome this, many approaches have been investigated. These include robust methods which were reported to be less sensitive to the presence of outliers. In addition, ridge regression technique was employed to tackle multicollinearity problem. In order to mitigate both problems, a combination of ridge regression and robust methods was discussed in this study. The superiority of this approach was examined when simultaneous presence of multicollinearity and multiple outliers occurred in multiple linear regression. This study aimed to look at the performance of several well-known robust estimators; M, MM, RIDGE and robust ridge regression estimators, namely Weighted Ridge M-estimator (WRM), Weighted Ridge MM (WRMM), Ridge MM (RMM), in such a situation. Results of the study showed that in the presence of simultaneous multicollinearity and multiple outliers (in both x and y-direction), the RMM and RIDGE are more or less similar in terms of superiority over the other estimators, regardless of the number of observation, level of collinearity and percentage of outliers used. However, when outliers occurred in only single direction (y-direction), the WRMM estimator is the most superior among the robust ridge regression estimators, by producing the least variance. In conclusion, the robust ridge regression is the best alternative as compared to robust and conventional least squares estimators when dealing with simultaneous presence of multicollinearity and outliers.
On the method of Ermakov and Zolotukhin for multiple integration
NASA Technical Reports Server (NTRS)
Cranley, R.; Patterson, T. N. L.
1971-01-01
By introducing the idea of pseudo-implementation, a practical assessment of the method for multiple integration is made. The performance of the method is found to be unimpressive in comparison with a recent regression method.
Pang, Marco Y.C.; Eng, Janice J.
2011-01-01
Introduction Chronic stroke survivors with low bone mineral density (BMD) are particularly prone to fragility fractures. The purpose of this study was to identify the determinants of balance, mobility and falls in this sub-group of stroke patients. Methods Thirty nine chronic stroke survivors with low hip BMD (T-score <-1.0) were studied. Each subject was evaluated for: balance, mobility, leg muscle strength, spasticity, and falls-related self-efficacy. Any falls in the past 12 months were also recorded. Multiple regression analysis was used to identify the determinants of balance and mobility performance whereas logistic regression was used to identify the determinants of falls. Results Multiple regression analysis revealed that after adjusting for basic demographics, falls-related self-efficacy remained independently associated with balance/mobility performance (R2=0.494, P<0.001). Logistic regression showed that falls-related self-efficacy, but not balance and mobility performance, was a significant determinant of falls (odds ratio: 0.18, P=0.04). Conclusions Falls-related self-efficacy, but not mobility and balance performance, was the most important determinant of accidental falls. This psychological factor should not be overlooked in the prevention of fragility fractures among chronic stroke survivors with low hip BMD. PMID:18097709
NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.
Ruyssinck, Joeri; Huynh-Thu, Vân Anh; Geurts, Pierre; Dhaene, Tom; Demeester, Piet; Saeys, Yvan
2014-01-01
One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms) and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made publicly available.
Multiple imputation for cure rate quantile regression with censored data.
Wu, Yuanshan; Yin, Guosheng
2017-03-01
The main challenge in the context of cure rate analysis is that one never knows whether censored subjects are cured or uncured, or whether they are susceptible or insusceptible to the event of interest. Considering the susceptible indicator as missing data, we propose a multiple imputation approach to cure rate quantile regression for censored data with a survival fraction. We develop an iterative algorithm to estimate the conditionally uncured probability for each subject. By utilizing this estimated probability and Bernoulli sample imputation, we can classify each subject as cured or uncured, and then employ the locally weighted method to estimate the quantile regression coefficients with only the uncured subjects. Repeating the imputation procedure multiple times and taking an average over the resultant estimators, we obtain consistent estimators for the quantile regression coefficients. Our approach relaxes the usual global linearity assumption, so that we can apply quantile regression to any particular quantile of interest. We establish asymptotic properties for the proposed estimators, including both consistency and asymptotic normality. We conduct simulation studies to assess the finite-sample performance of the proposed multiple imputation method and apply it to a lung cancer study as an illustration. © 2016, The International Biometric Society.
Greensmith, David J.
2014-01-01
Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. PMID:24125908
Campos-Filho, N; Franco, E L
1989-02-01
A frequent procedure in matched case-control studies is to report results from the multivariate unmatched analyses if they do not differ substantially from the ones obtained after conditioning on the matching variables. Although conceptually simple, this rule requires that an extensive series of logistic regression models be evaluated by both the conditional and unconditional maximum likelihood methods. Most computer programs for logistic regression employ only one maximum likelihood method, which requires that the analyses be performed in separate steps. This paper describes a Pascal microcomputer (IBM PC) program that performs multiple logistic regression by both maximum likelihood estimation methods, which obviates the need for switching between programs to obtain relative risk estimates from both matched and unmatched analyses. The program calculates most standard statistics and allows factoring of categorical or continuous variables by two distinct methods of contrast. A built-in, descriptive statistics option allows the user to inspect the distribution of cases and controls across categories of any given variable.
Factors affecting match performance in professional Australian football.
Sullivan, Courtney; Bilsborough, Johann C; Cianciosi, Michael; Hocking, Joel; Cordy, Justin T; Coutts, Aaron J
2014-05-01
To determine the physical activity measures and skill-performance characteristics that contribute to coaches' perception of performance and player performance rank in professional Australian Football (AF). Prospective, longitudinal. Physical activity profiles were assessed via microtechnology (GPS and accelerometer) from 40 professional AF players from the same team during 15 Australian Football League games. Skill-performance measure and player-rank scores (Champion Data Rank) were provided by a commercial statistical provider. The physical-performance variables, skill involvements, and individual player performance scores were expressed relative to playing time for each quarter. A stepwise multiple regression was used to examine the contribution of physical activity and skill involvements to coaches' perception of performance and player rank in AF. Stepwise multiple-regression analysis revealed that 42.2% of the variance in coaches' perception of a player's performance could be explained by the skill-performance characteristics (player rank/min, effective kicks/min, pressure points/min, handballs/min, and running bounces/ min), with a small contribution from physical activity measures (accelerations/min) (adjusted R2 = .422, F6,282 = 36.054, P < .001). Multiple regression also revealed that 66.4% of the adjusted variance in player rank could be explained by total disposals/min, effective kicks/min, pressure points/min, kick clangers/min, marks/min, speed (m/min), and peak speed (adjusted R2 = .664, F7,281 = 82.289, P < .001). Increased physical activity throughout a match (speed [m/min] β - 0.097 and peak speed β - 0.116) negatively affects player rank in AF. Skill performance rather than increased physical activity is more important to coaches' perception of performance and player rank in professional AF.
A Study of the Effect of the Front-End Styling of Sport Utility Vehicles on Pedestrian Head Injuries
Qin, Qin; Chen, Zheng; Bai, Zhonghao; Cao, Libo
2018-01-01
Background The number of sport utility vehicles (SUVs) on China market is continuously increasing. It is necessary to investigate the relationships between the front-end styling features of SUVs and head injuries at the styling design stage for improving the pedestrian protection performance and product development efficiency. Methods Styling feature parameters were extracted from the SUV side contour line. And simplified finite element models were established based on the 78 SUV side contour lines. Pedestrian headform impact simulations were performed and validated. The head injury criterion of 15 ms (HIC15) at four wrap-around distances was obtained. A multiple linear regression analysis method was employed to describe the relationships between the styling feature parameters and the HIC15 at each impact point. Results The relationship between the selected styling features and the HIC15 showed reasonable correlations, and the regression models and the selected independent variables showed statistical significance. Conclusions The regression equations obtained by multiple linear regression can be used to assess the performance of SUV styling in protecting pedestrians' heads and provide styling designers with technical guidance regarding their artistic creations.
Greensmith, David J
2014-01-01
Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
A Constrained Linear Estimator for Multiple Regression
ERIC Educational Resources Information Center
Davis-Stober, Clintin P.; Dana, Jason; Budescu, David V.
2010-01-01
"Improper linear models" (see Dawes, Am. Psychol. 34:571-582, "1979"), such as equal weighting, have garnered interest as alternatives to standard regression models. We analyze the general circumstances under which these models perform well by recasting a class of "improper" linear models as "proper" statistical models with a single predictor. We…
NASA Astrophysics Data System (ADS)
Delbari, Masoomeh; Sharifazari, Salman; Mohammadi, Ehsan
2018-02-01
The knowledge of soil temperature at different depths is important for agricultural industry and for understanding climate change. The aim of this study is to evaluate the performance of a support vector regression (SVR)-based model in estimating daily soil temperature at 10, 30 and 100 cm depth at different climate conditions over Iran. The obtained results were compared to those obtained from a more classical multiple linear regression (MLR) model. The correlation sensitivity for the input combinations and periodicity effect were also investigated. Climatic data used as inputs to the models were minimum and maximum air temperature, solar radiation, relative humidity, dew point, and the atmospheric pressure (reduced to see level), collected from five synoptic stations Kerman, Ahvaz, Tabriz, Saghez, and Rasht located respectively in the hyper-arid, arid, semi-arid, Mediterranean, and hyper-humid climate conditions. According to the results, the performance of both MLR and SVR models was quite well at surface layer, i.e., 10-cm depth. However, SVR performed better than MLR in estimating soil temperature at deeper layers especially 100 cm depth. Moreover, both models performed better in humid climate condition than arid and hyper-arid areas. Further, adding a periodicity component into the modeling process considerably improved the models' performance especially in the case of SVR.
Test anxiety and academic performance in chiropractic students.
Zhang, Niu; Henderson, Charles N R
2014-01-01
Objective : We assessed the level of students' test anxiety, and the relationship between test anxiety and academic performance. Methods : We recruited 166 third-quarter students. The Test Anxiety Inventory (TAI) was administered to all participants. Total scores from written examinations and objective structured clinical examinations (OSCEs) were used as response variables. Results : Multiple regression analysis shows that there was a modest, but statistically significant negative correlation between TAI scores and written exam scores, but not OSCE scores. Worry and emotionality were the best predictive models for written exam scores. Mean total anxiety and emotionality scores for females were significantly higher than those for males, but not worry scores. Conclusion : Moderate-to-high test anxiety was observed in 85% of the chiropractic students examined. However, total test anxiety, as measured by the TAI score, was a very weak predictive model for written exam performance. Multiple regression analysis demonstrated that replacing total anxiety (TAI) with worry and emotionality (TAI subscales) produces a much more effective predictive model of written exam performance. Sex, age, highest current academic degree, and ethnicity contributed little additional predictive power in either regression model. Moreover, TAI scores were not found to be statistically significant predictors of physical exam skill performance, as measured by OSCEs.
de Vries, Haitze J; Reneman, Michiel F; Groothoff, Johan W; Geertzen, Jan H B; Brouwer, Sandra
2013-03-01
To assess self-reported work ability and work performance of workers who stay at work despite chronic nonspecific musculoskeletal pain (CMP), and to explore which variables were associated with these outcomes. In a cross-sectional study we assessed work ability (Work Ability Index, single item scale 0-10) and work performance (Health and Work Performance Questionnaire, scale 0-10) among 119 workers who continued work while having CMP. Scores of work ability and work performance were categorized into excellent (10), good (9), moderate (8) and poor (0-7). Hierarchical multiple regression and logistic regression analysis was used to analyze the relation of socio-demographic, pain-related, personal- and work-related variables with work ability and work performance. Mean work ability and work performance were 7.1 and 7.7 (poor to moderate). Hierarchical multiple regression analysis revealed that higher work ability scores were associated with lower age, better general health perception, and higher pain self-efficacy beliefs (R(2) = 42 %). Higher work performance was associated with lower age, higher pain self-efficacy beliefs, lower physical work demand category and part-time work (R(2) = 37 %). Logistic regression analysis revealed that work ability ≥8 was significantly explained by age (OR = 0.90), general health perception (OR = 1.04) and pain self-efficacy (OR = 1.15). Work performance ≥8 was explained by pain self-efficacy (OR = 1.11). Many workers with CMP who stay at work report poor to moderate work ability and work performance. Our findings suggest that a subgroup of workers with CMP can stay at work with high work ability and performance, especially when they have high beliefs of pain self-efficacy. Our results further show that not the pain itself, but personal and work-related factors relate to work ability and work performance.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Kuo, C. Y.
1979-01-01
The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.
Simultaneous multiple non-crossing quantile regression estimation using kernel constraints
Liu, Yufeng; Wu, Yichao
2011-01-01
Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response variable and covariates. For many applications, one often needs to estimate multiple conditional quantile functions of the response variable given covariates. Although one can estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is that multiple quantiles can share strength among them to gain better estimation accuracy than individually estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel representations for QR functions and apply constraints on the kernel coefficients to avoid crossing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our numerical results demonstrate the competitive performance of our SNQR over the original individual QR estimation. PMID:22190842
ERIC Educational Resources Information Center
Fan, Xitao
This paper empirically and systematically assessed the performance of bootstrap resampling procedure as it was applied to a regression model. Parameter estimates from Monte Carlo experiments (repeated sampling from population) and bootstrap experiments (repeated resampling from one original bootstrap sample) were generated and compared. Sample…
Correlation Weights in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.; Jones, Jeff A.
2010-01-01
A general theory on the use of correlation weights in linear prediction has yet to be proposed. In this paper we take initial steps in developing such a theory by describing the conditions under which correlation weights perform well in population regression models. Using OLS weights as a comparison, we define cases in which the two weighting…
An Empirical Study of Eight Nonparametric Tests in Hierarchical Regression.
ERIC Educational Resources Information Center
Harwell, Michael; Serlin, Ronald C.
When normality does not hold, nonparametric tests represent an important data-analytic alternative to parametric tests. However, the use of nonparametric tests in educational research has been limited by the absence of easily performed tests for complex experimental designs and analyses, such as factorial designs and multiple regression analyses,…
Multiple Logistic Regression Analysis of Cigarette Use among High School Students
ERIC Educational Resources Information Center
Adwere-Boamah, Joseph
2011-01-01
A binary logistic regression analysis was performed to predict high school students' cigarette smoking behavior from selected predictors from 2009 CDC Youth Risk Behavior Surveillance Survey. The specific target student behavior of interest was frequent cigarette use. Five predictor variables included in the model were: a) race, b) frequency of…
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.
1998-01-01
The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.
Statistical Evaluation of Time Series Analysis Techniques
NASA Technical Reports Server (NTRS)
Benignus, V. A.
1973-01-01
The performance of a modified version of NASA's multivariate spectrum analysis program is discussed. A multiple regression model was used to make the revisions. Performance improvements were documented and compared to the standard fast Fourier transform by Monte Carlo techniques.
NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms
Ruyssinck, Joeri; Huynh-Thu, Vân Anh; Geurts, Pierre; Dhaene, Tom; Demeester, Piet; Saeys, Yvan
2014-01-01
One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms) and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made publicly available. PMID:24667482
Regression of a vaginal leiomyoma after ovariohysterectomy in a dog: a case report.
Sathya, Suresh; Linn, Kathleen
2014-01-01
An 11 yr old female mixed-breed Siberian husky was presented with a history of sanguineous vaginal discharge, swelling of the perineal area, decreased appetite, and lethargy. A single, large vaginal leiomyoma and multiple mammary tumors were diagnosed. Mastectomy and ovariohysterectomy were performed. The vaginal leiomyoma regressed completely after ovariohysterectomy. This is the first reported case of spontaneous regression of a vaginal leiomyoma after ovariohysterectomy in a dog.
Mental ability and psychological work performance in Chinese workers.
Zhong, Fei; Yano, Eiji; Lan, Yajia; Wang, Mianzhen; Wang, Zhiming; Wang, Xiaorong
2006-10-01
This study was to explore the relationship among mental ability, occupational stress, and psychological work performance in Chinese workers, and to identify relevant modifiers of mental ability and psychological work performance. Psychological Stress Intensity (PSI), psychological work performance, and mental ability (Mental Function Index, MFI) were determined among 485 Chinese workers (aged 33 to 62 yr, 65% of men) with varied work occupations. Occupational Stress Questionnaire (OSQ) and mental ability with 3 tests (including immediate memory, digit span, and cipher decoding) were used. The relationship between mental ability and psychological work performance was analyzed with multiple linear regression approach. PSI, MFI, or psychological work performance were significantly different among different work types and educational level groups (p<0.01). Multiple linear regression analysis showed that MFI was significantly related to gender, age, educational level, and work type. Higher MFI and lower PSI predicted a better psychological work performance, even after adjusted for gender, age, educational level, and work type. The study suggests that occupational stress and low mental ability are important predictors for poor psychological work performance, which is modified by both gender and educational level.
Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry
2013-08-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.
Kim, Yoonsang; Emery, Sherry
2013-01-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415
Assessment of Communications-related Admissions Criteria in a Three-year Pharmacy Program
Tejada, Frederick R.; Lang, Lynn A.; Purnell, Miriam; Acedera, Lisa; Ngonga, Ferdinand
2015-01-01
Objective. To determine if there is a correlation between TOEFL and other admissions criteria that assess communications skills (ie, PCAT variables: verbal, reading, essay, and composite), interview, and observational scores and to evaluate TOEFL and these admissions criteria as predictors of academic performance. Methods. Statistical analyses included two sample t tests, multiple regression and Pearson’s correlations for parametric variables, and Mann-Whitney U for nonparametric variables, which were conducted on the retrospective data of 162 students, 57 of whom were foreign-born. Results. The multiple regression model of the other admissions criteria on TOEFL was significant. There was no significant correlation between TOEFL scores and academic performance. However, significant correlations were found between the other admissions criteria and academic performance. Conclusion. Since TOEFL is not a significant predictor of either communication skills or academic success of foreign-born PharmD students in the program, it may be eliminated as an admissions criterion. PMID:26430273
Assessment of Communications-related Admissions Criteria in a Three-year Pharmacy Program.
Parmar, Jayesh R; Tejada, Frederick R; Lang, Lynn A; Purnell, Miriam; Acedera, Lisa; Ngonga, Ferdinand
2015-08-25
To determine if there is a correlation between TOEFL and other admissions criteria that assess communications skills (ie, PCAT variables: verbal, reading, essay, and composite), interview, and observational scores and to evaluate TOEFL and these admissions criteria as predictors of academic performance. Statistical analyses included two sample t tests, multiple regression and Pearson's correlations for parametric variables, and Mann-Whitney U for nonparametric variables, which were conducted on the retrospective data of 162 students, 57 of whom were foreign-born. The multiple regression model of the other admissions criteria on TOEFL was significant. There was no significant correlation between TOEFL scores and academic performance. However, significant correlations were found between the other admissions criteria and academic performance. Since TOEFL is not a significant predictor of either communication skills or academic success of foreign-born PharmD students in the program, it may be eliminated as an admissions criterion.
ERIC Educational Resources Information Center
Trautwein, Ulrich; Marsh, Herbert W.; Nagengast, Benjamin; Ludtke, Oliver; Nagy, Gabriel; Jonkmann, Kathrin
2012-01-01
In modern expectancy-value theory (EVT) in educational psychology, expectancy and value beliefs additively predict performance, persistence, and task choice. In contrast to earlier formulations of EVT, the multiplicative term Expectancy x Value in regression-type models typically plays no major role in educational psychology. The present study…
NASA Astrophysics Data System (ADS)
Sahabiev, I. A.; Ryazanov, S. S.; Kolcova, T. G.; Grigoryan, B. R.
2018-03-01
The three most common techniques to interpolate soil properties at a field scale—ordinary kriging (OK), regression kriging with multiple linear regression drift model (RK + MLR), and regression kriging with principal component regression drift model (RK + PCR)—were examined. The results of the performed study were compiled into an algorithm of choosing the most appropriate soil mapping technique. Relief attributes were used as the auxiliary variables. When spatial dependence of a target variable was strong, the OK method showed more accurate interpolation results, and the inclusion of the auxiliary data resulted in an insignificant improvement in prediction accuracy. According to the algorithm, the RK + PCR method effectively eliminates multicollinearity of explanatory variables. However, if the number of predictors is less than ten, the probability of multicollinearity is reduced, and application of the PCR becomes irrational. In that case, the multiple linear regression should be used instead.
A Solution to Separation and Multicollinearity in Multiple Logistic Regression
Shen, Jianzhao; Gao, Sujuan
2010-01-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286
A Solution to Separation and Multicollinearity in Multiple Logistic Regression.
Shen, Jianzhao; Gao, Sujuan
2008-10-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.
NASA Astrophysics Data System (ADS)
Tang, Jie; Liu, Rong; Zhang, Yue-Li; Liu, Mou-Ze; Hu, Yong-Fang; Shao, Ming-Jie; Zhu, Li-Jun; Xin, Hua-Wen; Feng, Gui-Wen; Shang, Wen-Jun; Meng, Xiang-Guang; Zhang, Li-Rong; Ming, Ying-Zi; Zhang, Wei
2017-02-01
Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the “derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the “validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied and their performances were compared in this work. Among all the machine learning models, RT performed best in both derivation [0.71 (0.67-0.76)] and validation cohorts [0.73 (0.63-0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our knowledge, this is the first study to use machine learning models to predict TSD, which will further facilitate personalized medicine in tacrolimus administration in the future.
Burgette, Lane F; Reiter, Jerome P
2013-06-01
Multinomial outcomes with many levels can be challenging to model. Information typically accrues slowly with increasing sample size, yet the parameter space expands rapidly with additional covariates. Shrinking all regression parameters towards zero, as often done in models of continuous or binary response variables, is unsatisfactory, since setting parameters equal to zero in multinomial models does not necessarily imply "no effect." We propose an approach to modeling multinomial outcomes with many levels based on a Bayesian multinomial probit (MNP) model and a multiple shrinkage prior distribution for the regression parameters. The prior distribution encourages the MNP regression parameters to shrink toward a number of learned locations, thereby substantially reducing the dimension of the parameter space. Using simulated data, we compare the predictive performance of this model against two other recently-proposed methods for big multinomial models. The results suggest that the fully Bayesian, multiple shrinkage approach can outperform these other methods. We apply the multiple shrinkage MNP to simulating replacement values for areal identifiers, e.g., census tract indicators, in order to protect data confidentiality in public use datasets.
RRegrs: an R package for computer-aided model selection with multiple regression models.
Tsiliki, Georgia; Munteanu, Cristian R; Seoane, Jose A; Fernandez-Lozano, Carlos; Sarimveis, Haralambos; Willighagen, Egon L
2015-01-01
Predictive regression models can be created with many different modelling approaches. Choices need to be made for data set splitting, cross-validation methods, specific regression parameters and best model criteria, as they all affect the accuracy and efficiency of the produced predictive models, and therefore, raising model reproducibility and comparison issues. Cheminformatics and bioinformatics are extensively using predictive modelling and exhibit a need for standardization of these methodologies in order to assist model selection and speed up the process of predictive model development. A tool accessible to all users, irrespectively of their statistical knowledge, would be valuable if it tests several simple and complex regression models and validation schemes, produce unified reports, and offer the option to be integrated into more extensive studies. Additionally, such methodology should be implemented as a free programming package, in order to be continuously adapted and redistributed by others. We propose an integrated framework for creating multiple regression models, called RRegrs. The tool offers the option of ten simple and complex regression methods combined with repeated 10-fold and leave-one-out cross-validation. Methods include Multiple Linear regression, Generalized Linear Model with Stepwise Feature Selection, Partial Least Squares regression, Lasso regression, and Support Vector Machines Recursive Feature Elimination. The new framework is an automated fully validated procedure which produces standardized reports to quickly oversee the impact of choices in modelling algorithms and assess the model and cross-validation results. The methodology was implemented as an open source R package, available at https://www.github.com/enanomapper/RRegrs, by reusing and extending on the caret package. The universality of the new methodology is demonstrated using five standard data sets from different scientific fields. Its efficiency in cheminformatics and QSAR modelling is shown with three use cases: proteomics data for surface-modified gold nanoparticles, nano-metal oxides descriptor data, and molecular descriptors for acute aquatic toxicity data. The results show that for all data sets RRegrs reports models with equal or better performance for both training and test sets than those reported in the original publications. Its good performance as well as its adaptability in terms of parameter optimization could make RRegrs a popular framework to assist the initial exploration of predictive models, and with that, the design of more comprehensive in silico screening applications.Graphical abstractRRegrs is a computer-aided model selection framework for R multiple regression models; this is a fully validated procedure with application to QSAR modelling.
De Cola, Maria Cristina; D'Aleo, Giangaetano; Sessa, Edoardo; Marino, Silvia
2015-01-01
Objective. To investigate the influence of demographic and clinical variables, such as depression, fatigue, and quantitative MRI marker on cognitive performances in a sample of patients affected by multiple sclerosis (MS). Methods. 60 MS patients (52 relapsing remitting and 8 primary progressive) underwent neuropsychological assessments using Rao's Brief Repeatable Battery of Neuropsychological Tests (BRB-N), the Beck Depression Inventory-second edition (BDI-II), and the Fatigue Severity Scale (FSS). We performed magnetic resonance imaging to all subjects using a 3 T scanner and obtained tissue-specific volumes (normalized brain volume and cortical brain volume). We used Student's t-test to compare depressed and nondepressed MS patients. Finally, we performed a multivariate regression analysis in order to assess possible predictors of patients' cognitive outcome among demographic and clinical variables. Results. 27.12% of the sample (16/59) was cognitively impaired, especially in tasks requiring attention and information processing speed. From between group comparison, we find that depressed patients had worse performances on BRB-N score, greater disability and disease duration, and brain volume decrease. According to multiple regression analysis, the BDI-II score was a significant predictor for most of the neuropsychological tests. Conclusions. Our findings suggest that the presence of depressive symptoms is an important determinant of cognitive performance in MS patients. PMID:25861633
Pang, M Y C; Eng, J J
2008-07-01
Chronic stroke survivors with low hip bone density are particularly prone to fractures. This study shows that fear of falling is independently associated with falls in this population. Thus, fear of falling should not be overlooked in the prevention of fragility fractures in these patients. Chronic stroke survivors with low bone mineral density (BMD) are particularly prone to fragility fractures. The purpose of this study was to identify the determinants of balance, mobility and falls in this sub-group of stroke patients. Thirty-nine chronic stroke survivors with low hip BMD (T-score <-1.0) were studied. Each subject was evaluated for the following: balance, mobility, leg muscle strength, spasticity, and fall-related self-efficacy. Any falls in the past 12 months were also recorded. Multiple regression analysis was used to identify the determinants of balance and mobility performance, whereas logistic regression was used to identify the determinants of falls. Multiple regression analysis revealed that after adjusting for basic demographics, fall-related self-efficacy remained independently associated with balance/mobility performance (R2 = 0.494, P < 0.001). Logistic regression showed that fall-related self-efficacy, but not balance and mobility performance, was a significant determinant of falls (odds ratio: 0.18, P = 0.04). Fall-related self-efficacy, but not mobility and balance performance, was the most important determinant of accidental falls. This psychological factor should not be overlooked in the prevention of fragility fractures among chronic stroke survivors with low hip BMD.
The prediction of intelligence in preschool children using alternative models to regression.
Finch, W Holmes; Chang, Mei; Davis, Andrew S; Holden, Jocelyn E; Rothlisberg, Barbara A; McIntosh, David E
2011-12-01
Statistical prediction of an outcome variable using multiple independent variables is a common practice in the social and behavioral sciences. For example, neuropsychologists are sometimes called upon to provide predictions of preinjury cognitive functioning for individuals who have suffered a traumatic brain injury. Typically, these predictions are made using standard multiple linear regression models with several demographic variables (e.g., gender, ethnicity, education level) as predictors. Prior research has shown conflicting evidence regarding the ability of such models to provide accurate predictions of outcome variables such as full-scale intelligence (FSIQ) test scores. The present study had two goals: (1) to demonstrate the utility of a set of alternative prediction methods that have been applied extensively in the natural sciences and business but have not been frequently explored in the social sciences and (2) to develop models that can be used to predict premorbid cognitive functioning in preschool children. Predictions of Stanford-Binet 5 FSIQ scores for preschool-aged children is used to compare the performance of a multiple regression model with several of these alternative methods. Results demonstrate that classification and regression trees provided more accurate predictions of FSIQ scores than does the more traditional regression approach. Implications of these results are discussed.
Agha, Salah R; Alnahhal, Mohammed J
2012-11-01
The current study investigates the possibility of obtaining the anthropometric dimensions, critical to school furniture design, without measuring all of them. The study first selects some anthropometric dimensions that are easy to measure. Two methods are then used to check if these easy-to-measure dimensions can predict the dimensions critical to the furniture design. These methods are multiple linear regression and neural networks. Each dimension that is deemed necessary to ergonomically design school furniture is expressed as a function of some other measured anthropometric dimensions. Results show that out of the five dimensions needed for chair design, four can be related to other dimensions that can be measured while children are standing. Therefore, the method suggested here would definitely save time and effort and avoid the difficulty of dealing with students while measuring these dimensions. In general, it was found that neural networks perform better than multiple linear regression in the current study. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Logsdon, Benjamin A.; Carty, Cara L.; Reiner, Alexander P.; Dai, James Y.; Kooperberg, Charles
2012-01-01
Motivation: For many complex traits, including height, the majority of variants identified by genome-wide association studies (GWAS) have small effects, leaving a significant proportion of the heritable variation unexplained. Although many penalized multiple regression methodologies have been proposed to increase the power to detect associations for complex genetic architectures, they generally lack mechanisms for false-positive control and diagnostics for model over-fitting. Our methodology is the first penalized multiple regression approach that explicitly controls Type I error rates and provide model over-fitting diagnostics through a novel normally distributed statistic defined for every marker within the GWAS, based on results from a variational Bayes spike regression algorithm. Results: We compare the performance of our method to the lasso and single marker analysis on simulated data and demonstrate that our approach has superior performance in terms of power and Type I error control. In addition, using the Women's Health Initiative (WHI) SNP Health Association Resource (SHARe) GWAS of African-Americans, we show that our method has power to detect additional novel associations with body height. These findings replicate by reaching a stringent cutoff of marginal association in a larger cohort. Availability: An R-package, including an implementation of our variational Bayes spike regression (vBsr) algorithm, is available at http://kooperberg.fhcrc.org/soft.html. Contact: blogsdon@fhcrc.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22563072
Ribbons, Karen; Lea, Rodney; Schofield, Peter W; Lechner-Scott, Jeannette
2017-01-01
Neurological and psychological symptoms in multiple sclerosis can affect cognitive function. The objective of this study was to explore the relationship between psychological measures and cognitive performance in a patient cohort. In 322 multiple sclerosis patients, psychological symptoms were measured using the Depression Anxiety and Stress Scale, and cognitive function was evaluated using Audio Recorded Cognitive Screen. Multifactor linear regression analysis, accounting for all clinical covariates, found that anxiety was the only psychological measure to remain a significant predictor of cognitive performance (p<0.001), particularly memory function (p<0.001). Further prospective studies are required to determine whether treatment of anxiety improves cognitive impairment.
Metsemakers, W-J; Handojo, K; Reynders, P; Sermon, A; Vanderschot, P; Nijs, S
2015-04-01
Despite modern advances in the treatment of tibial shaft fractures, complications including nonunion, malunion, and infection remain relatively frequent. A better understanding of these injuries and its complications could lead to prevention rather than treatment strategies. A retrospective study was performed to identify risk factors for deep infection and compromised fracture healing after intramedullary nailing (IMN) of tibial shaft fractures. Between January 2000 and January 2012, 480 consecutive patients with 486 tibial shaft fractures were enrolled in the study. Statistical analysis was performed to determine predictors of deep infection and compromised fracture healing. Compromised fracture healing was subdivided in delayed union and nonunion. The following independent variables were selected for analysis: age, sex, smoking, obesity, diabetes, American Society of Anaesthesiologists (ASA) classification, polytrauma, fracture type, open fractures, Gustilo type, primary external fixation (EF), time to nailing (TTN) and reaming. As primary statistical evaluation we performed a univariate analysis, followed by a multiple logistic regression model. Univariate regression analysis revealed similar risk factors for delayed union and nonunion, including fracture type, open fractures and Gustilo type. Factors affecting the occurrence of deep infection in this model were primary EF, a prolonged TTN, open fractures and Gustilo type. Multiple logistic regression analysis revealed polytrauma as the single risk factor for nonunion. With respect to delayed union, no risk factors could be identified. In the same statistical model, deep infection was correlated with primary EF. The purpose of this study was to evaluate risk factors of poor outcome after IMN of tibial shaft fractures. The univariate regression analysis showed that the nature of complications after tibial shaft nailing could be multifactorial. This was not confirmed in a multiple logistic regression model, which only revealed polytrauma and primary EF as risk factors for nonunion and deep infection, respectively. Future strategies should focus on prevention in high-risk populations such as polytrauma patients treated with EF. Copyright © 2014 Elsevier Ltd. All rights reserved.
Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea
NASA Astrophysics Data System (ADS)
Um, Myoung-Jin; Yun, Hyeseon; Jeong, Chang-Sam; Heo, Jun-Haeng
2011-11-01
SummaryIn this study, new factors that influence precipitation were extracted from geographic variables using factor analysis, which allow for an accurate estimation of orographic precipitation. Correlation analysis was also used to examine the relationship between nine topographic variables from digital elevation models (DEMs) and the precipitation in Jeju Island. In addition, a spatial analysis was performed in order to verify the validity of the regression model. From the results of the correlation analysis, it was found that all of the topographic variables had a positive correlation with the precipitation. The relations between the variables also changed in accordance with a change in the precipitation duration. However, upon examining the correlation matrix, no significant relationship between the latitude and the aspect was found. According to the factor analysis, eight topographic variables (latitude being the exception) were found to have a direct influence on the precipitation. Three factors were then extracted from the eight topographic variables. By directly comparing the multiple regression model with the factors (model 1) to the multiple regression model with the topographic variables (model 3), it was found that model 1 did not violate the limits of statistical significance and multicollinearity. As such, model 1 was considered to be appropriate for estimating the precipitation when taking into account the topography. In the study of model 1, the multiple regression model using factor analysis was found to be the best method for estimating the orographic precipitation on Jeju Island.
Predictive ability of a comprehensive incremental test in mountain bike marathon.
Ahrend, Marc-Daniel; Schneeweiss, Patrick; Martus, Peter; Niess, Andreas M; Krauss, Inga
2018-01-01
Traditional performance tests in mountain bike marathon (XCM) primarily quantify aerobic metabolism and may not describe the relevant capacities in XCM. We aimed to validate a comprehensive test protocol quantifying its intermittent demands. Forty-nine athletes (38.8±9.1 years; 38 male; 11 female) performed a laboratory performance test, including an incremental test, to determine individual anaerobic threshold (IAT), peak power output (PPO) and three maximal efforts (10 s all-out sprint, 1 min maximal effort and 5 min maximal effort). Within 2 weeks, the athletes participated in one of three XCM races (n=15, n=9 and n=25). Correlations between test variables and race times were calculated separately. In addition, multiple regression models of the predictive value of laboratory outcomes were calculated for race 3 and across all races (z-transformed data). All variables were correlated with race times 1, 2 and 3: 10 s all-out sprint (r=-0.72; r=-0.59; r=-0.61), 1 min maximal effort (r=-0.85; r=-0.84; r=-0.82), 5 min maximal effort (r=-0.57; r=-0.85; r=-0.76), PPO (r=-0.77; r=-0.73; r=-0.76) and IAT (r=-0.71; r=-0.67; r=-0.68). The best-fitting multiple regression models for race 3 (r 2 =0.868) and across all races (r 2 =0.757) comprised 1 min maximal effort, IAT and body weight. Aerobic and intermittent variables correlated least strongly with race times. Their use in a multiple regression model confirmed additional explanatory power to predict XCM performance. These findings underline the usefulness of the comprehensive incremental test to predict performance in that sport more precisely.
Atkinson, Sarah; Haran, Dave
2004-01-01
OBJECTIVE: To examine whether decentralization has improved health system performance in the State of Ceara, north-east Brazil. METHODS: Ceara is strongly committed to decentralization. A survey across 45 local (municipio) health systems collected data on performance and formal organization, including decentralization, informal management and local political culture. The indicators for informal management and local political culture were based on prior ethnographic research. Data were analysed using analysis of variance, Duncan's post-hoc test and multiple regression. FINDINGS: Decentralization was associated with improved performance, but only for 5 of our 22 performance indicators. Moreover, in the multiple regression, decentralization explained the variance in only one performance indicator; indicators for informal management and political culture appeared to be more important influences. However, some indicators for informal management were themselves associated with decentralization but not any of the political culture indicators. CONCLUSION: Good management practices in the study led to decentralized local health systems rather than vice versa. Any apparent association between decentralization and performance seems to be an artefact of the informal management, and the wider political culture in which a local health system is embedded strongly influences the performance of local health systems. PMID:15640917
Richardson, Miles
2017-04-01
In ergonomics there is often a need to identify and predict the separate effects of multiple factors on performance. A cost-effective fractional factorial approach to understanding the relationship between task characteristics and task performance is presented. The method has been shown to provide sufficient independent variability to reveal and predict the effects of task characteristics on performance in two domains. The five steps outlined are: selection of performance measure, task characteristic identification, task design for user trials, data collection, regression model development and task characteristic analysis. The approach can be used for furthering knowledge of task performance, theoretical understanding, experimental control and prediction of task performance. Practitioner Summary: A cost-effective method to identify and predict the separate effects of multiple factors on performance is presented. The five steps allow a better understanding of task factors during the design process.
Iserbyt, Peter; Schouppe, Gilles; Charlier, Nathalie
2015-04-01
Research investigating lifeguards' performance of Basic Life Support (BLS) with Automated External Defibrillator (AED) is limited. Assessing simulated BLS/AED performance in Flemish lifeguards and identifying factors affecting this performance. Six hundred and sixteen (217 female and 399 male) certified Flemish lifeguards (aged 16-71 years) performed BLS with an AED on a Laerdal ResusciAnne manikin simulating an adult victim of drowning. Stepwise multiple linear regression analysis was conducted with BLS/AED performance as outcome variable and demographic data as explanatory variables. Mean BLS/AED performance for all lifeguards was 66.5%. Compression rate and depth adhered closely to ERC 2010 guidelines. Ventilation volume and flow rate exceeded the guidelines. A significant regression model, F(6, 415)=25.61, p<.001, ES=.38, explained 27% of the variance in BLS performance (R2=.27). Significant predictors were age (beta=-.31, p<.001), years of certification (beta=-.41, p<.001), time on duty per year (beta=-.25, p<.001), practising BLS skills (beta=.11, p=.011), and being a professional lifeguard (beta=-.13, p=.029). 71% of lifeguards reported not practising BLS/AED. Being young, recently certified, few days of employment per year, practising BLS skills and not being a professional lifeguard are factors associated with higher BLS/AED performance. Measures should be taken to prevent BLS/AED performances from decaying with age and longer certification. Refresher courses could include a formal skills test and lifeguards should be encouraged to practise their BLS/AED skills. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kontic, Dean; Zenic, Natasa; Uljevic, Ognjen; Sekulic, Damir; Lesnik, Blaz
2017-06-01
Swimming capacities are hypothesized to be important determinants of water polo performance but there is an evident lack of studies examining different swimming capacities in relation to specific offensive and defensive performance variables in this sport. The aim of this study was to determine the relationship between five swimming capacities and six performance determinants in water polo. The sample comprised 79 high-level youth water polo players (all males, 17-18 years of age). The variables included six performance-related variables (agility in offence and defense, efficacy in offence and defense, polyvalence in offence and defense), and five swimming-capacity tests (water polo sprint test [15 m], swimming sprint test [25 m], short-distance [100 m], aerobic endurance [400 m] and an anaerobic lactate endurance test [4× 50 m]). First, multiple regressions were calculated for one-half of the sample of subjects which were then validated with the remaining half of the sample. The 25-m swim was not included in the regression analyses due to the multicollinearity with other predictors. The originally calculated regression models were validated for defensive agility (R=0.67 and R=0.55 for the original regression calculation and validation subsample, respectively) offensive agility (R=0.59 and R=0.61), and offensive efficacy (R=0.64 and R=0.58). Anaerobic lactate endurance is a significant predictor of offensive and defensive agility, while 15 m sprint significantly contributes to offensive efficacy. Swimming capacities are not found to be related to the polyvalence of the players. The most superior offensive performance can be expected from those players with a high level of anaerobic lactate endurance and advanced sprinting capacity, while anaerobic lactate endurance is recognized as most important quality in defensive duties. Future studies should observe players' polyvalence in relation to (theoretical) knowledge of technical and tactical tasks. Results reinforce the need for the cross-validation of the prediction-models in sport and exercise sciences.
Azadi, Sama; Karimi-Jashni, Ayoub
2016-02-01
Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.
Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao
2016-04-01
To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.
Linear regression analysis: part 14 of a series on evaluation of scientific publications.
Schneider, Astrid; Hommel, Gerhard; Blettner, Maria
2010-11-01
Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.
Weather Impact on Airport Arrival Meter Fix Throughput
NASA Technical Reports Server (NTRS)
Wang, Yao
2017-01-01
Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.
Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Sravan Kumar, V G; Jha, B; Ghosh, P K
2005-01-01
Alang-Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10 x 10(6)(+/-7.82 x 10(5)) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol pieces (polyurethane foam material), sponge, oiled rope, cotton waste, rubber, etc. In this study multiple regression analysis was used to develop predictive models for energy content of combustible ship-scrapping solid wastes. The scope of work comprised qualitative and quantitative estimation of solid waste samples and performing a sequential selection procedure for isolating variables. Three regression models were developed to correlate the energy content (net calorific values (LHV)) with variables derived from material composition, proximate and ultimate analyses. The performance of these models for this particular waste complies well with the equations developed by other researchers (Dulong, Steuer, Scheurer-Kestner and Bento's) for estimating energy content of municipal solid waste.
Covariate Selection for Multilevel Models with Missing Data
Marino, Miguel; Buxton, Orfeu M.; Li, Yi
2017-01-01
Missing covariate data hampers variable selection in multilevel regression settings. Current variable selection techniques for multiply-imputed data commonly address missingness in the predictors through list-wise deletion and stepwise-selection methods which are problematic. Moreover, most variable selection methods are developed for independent linear regression models and do not accommodate multilevel mixed effects regression models with incomplete covariate data. We develop a novel methodology that is able to perform covariate selection across multiply-imputed data for multilevel random effects models when missing data is present. Specifically, we propose to stack the multiply-imputed data sets from a multiple imputation procedure and to apply a group variable selection procedure through group lasso regularization to assess the overall impact of each predictor on the outcome across the imputed data sets. Simulations confirm the advantageous performance of the proposed method compared with the competing methods. We applied the method to reanalyze the Healthy Directions-Small Business cancer prevention study, which evaluated a behavioral intervention program targeting multiple risk-related behaviors in a working-class, multi-ethnic population. PMID:28239457
Relationship of aerobic and anaerobic parameters with 400 m front crawl swimming performance
Kalva-Filho, CA; Campos, EZ; Andrade, VL; Silva, ASR; Zagatto, AM; Lima, MCS
2015-01-01
The aims of the present study were to investigate the relationship of aerobic and anaerobic parameters with 400 m performance, and establish which variable better explains long distance performance in swimming. Twenty-two swimmers (19.1±1.5 years, height 173.9±10.0 cm, body mass 71.2±10.2 kg; 76.6±5.3% of 400 m world record) underwent a lactate minimum test to determine lactate minimum speed (LMS) (i.e., aerobic capacity index). Moreover, the swimmers performed a 400 m maximal effort to determine mean speed (S400m), peak oxygen uptake (V.O2PEAK) and total anaerobic contribution (CANA). The CANA was assumed as the sum of alactic and lactic contributions. Physiological parameters of 400 m were determined using the backward extrapolation technique (V.O2PEAK and alactic contributions of CANA) and blood lactate concentration analysis (lactic anaerobic contributions of CANA). The Pearson correlation test and backward multiple regression analysis were used to verify the possible correlations between the physiological indices (predictor factors) and S400m (independent variable) (p < 0.05). Values are presented as mean ± standard deviation. Significant correlations were observed between S400m (1.4±0.1 m·s-1) and LMS (1.3±0.1 m·s-1; r = 0.80), V.O2PEAK (4.5±3.9 L·min-1; r = 0.72) and CANA (4.7±1.5 L·O2; r= 0.44). The best model constructed using multiple regression analysis demonstrated that LMS and V.O2PEAK explained 85% of the 400 m performance variance. When backward multiple regression analysis was performed, CANA lost significance. Thus, the results demonstrated that both aerobic parameters (capacity and power) can be used to predict 400 m swimming performance. PMID:28479663
Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman
2011-01-01
This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626
A population-based study on the association between rheumatoid arthritis and voice problems.
Hah, J Hun; An, Soo-Youn; Sim, Songyong; Kim, So Young; Oh, Dong Jun; Park, Bumjung; Kim, Sung-Gyun; Choi, Hyo Geun
2016-07-01
The objective of this study was to investigate whether rheumatoid arthritis increases the frequency of organic laryngeal lesions and the subjective voice complaint rate in those with no organic laryngeal lesion. We performed a cross-sectional study using the data from 19,368 participants (418 rheumatoid arthritis patients and 18,950 controls) of the 2008-2011 Korea National Health and Nutrition Examination Survey. The associations between rheumatoid arthritis and organic laryngeal lesions/subjective voice complaints were analyzed using simple/multiple logistic regression analysis with complex sample adjusting for confounding factors, including age, sex, smoking status, stress level, and body mass index, which could provoke voice problems. Vocal nodules, vocal polyp, and vocal palsy were not associated with rheumatoid arthritis in a multiple regression analysis, and only laryngitis showed a positive association (adjusted odds ratio, 1.59; 95 % confidence interval, 1.01-2.52; P = 0.047). Rheumatoid arthritis was associated with subjective voice discomfort in a simple regression analysis, but not in a multiple regression analysis. Participants with rheumatoid arthritis were older, more often female, and had higher stress levels than those without rheumatoid arthritis. These factors were associated with subjective voice complaints in both simple and multiple regression analyses. Rheumatoid arthritis was not associated with organic laryngeal diseases except laryngitis. Rheumatoid arthritis did not increase the odds ratio for subjective voice complaints. Voice problems in participants with rheumatoid arthritis originated from the characteristics of the rheumatoid arthritis group (higher mean age, female sex, and stress level) rather than rheumatoid arthritis itself.
A Comparison of Two Scoring Methods for an Automated Speech Scoring System
ERIC Educational Resources Information Center
Xi, Xiaoming; Higgins, Derrick; Zechner, Klaus; Williamson, David
2012-01-01
This paper compares two alternative scoring methods--multiple regression and classification trees--for an automated speech scoring system used in a practice environment. The two methods were evaluated on two criteria: construct representation and empirical performance in predicting human scores. The empirical performance of the two scoring models…
ERIC Educational Resources Information Center
Uy, Chin; Manalo, Ronaldo A.; Cabauatan, Ronaldo R.
2015-01-01
In the Philippines, students seeking admission to a university are usually required to meet certain entrance requirements, including passing the entrance examinations with questions on IQ and English, mathematics, and science. This paper aims to determine the factors that affect the performance of entrants into business programmes in high-stakes…
ERIC Educational Resources Information Center
Roulette-McIntyre, Ovella; Bagaka's, Joshua G.; Drake, Daniel D.
2005-01-01
This study identified parental practices that relate positively to high school students' academic performance. Parents of 643 high school students participated in the study. Data analysis, using a multiple linear regression model, shows parent-school connection, student gender, and race are significant predictors of student academic performance.…
The Relative Performance of Female and Male Students in Accounting Principles Classes.
ERIC Educational Resources Information Center
Bouillon, Marvin L.; Doran, B. Michael
1992-01-01
The performance of female and male students in Accounting Principles (AP) I and II was compared by using multiple regression techniques to assess the incremental explanatory effects of gender. Males significantly outperformed females in AP I, contradicting earlier studies. Similar gender of instructor and student was insignificant. (JOW)
NASA Technical Reports Server (NTRS)
Maahs, H. G.
1972-01-01
Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.
Borgquist, Ola; Wise, Matt P; Nielsen, Niklas; Al-Subaie, Nawaf; Cranshaw, Julius; Cronberg, Tobias; Glover, Guy; Hassager, Christian; Kjaergaard, Jesper; Kuiper, Michael; Smid, Ondrej; Walden, Andrew; Friberg, Hans
2017-08-01
Dysglycemia and glycemic variability are associated with poor outcomes in critically ill patients. Targeted temperature management alters blood glucose homeostasis. We investigated the association between blood glucose concentrations and glycemic variability and the neurologic outcomes of patients randomized to targeted temperature management at 33°C or 36°C after cardiac arrest. Post hoc analysis of the multicenter TTM-trial. Primary outcome of this analysis was neurologic outcome after 6 months, referred to as "Cerebral Performance Category." Thirty-six sites in Europe and Australia. All 939 patients with out-of-hospital cardiac arrest of presumed cardiac cause that had been included in the TTM-trial. Targeted temperature management at 33°C or 36°C. Nonparametric tests as well as multiple logistic regression and mixed effects logistic regression models were used. Median glucose concentrations on hospital admission differed significantly between Cerebral Performance Category outcomes (p < 0.0001). Hyper- and hypoglycemia were associated with poor neurologic outcome (p = 0.001 and p = 0.054). In the multiple logistic regression models, the median glycemic level was an independent predictor of poor Cerebral Performance Category (Cerebral Performance Category, 3-5) with an odds ratio (OR) of 1.13 in the adjusted model (p = 0.008; 95% CI, 1.03-1.24). It was also a predictor in the mixed model, which served as a sensitivity analysis to adjust for the multiple time points. The proportion of hyperglycemia was higher in the 33°C group compared with the 36°C group. Higher blood glucose levels at admission and during the first 36 hours, and higher glycemic variability, were associated with poor neurologic outcome and death. More patients in the 33°C treatment arm had hyperglycemia.
Kikui, Miki; Kida, Momoyo; Kosaka, Takayuki; Yamamoto, Masaaki; Yoshimuta, Yoko; Yasui, Sakae; Nokubi, Takashi; Maeda, Yoshinobu; Kokubo, Yoshihiro; Watanabe, Makoto; Miyamoto, Yoshihiro
2015-01-01
Abstract There are numerous reports on the relationship between regular utilization of dental care services and oral health, but most are based on questionnaires and subjective evaluation. Few have objectively evaluated masticatory performance and its relationship to utilization of dental care services. The purpose of this study was to identify the effect of regular utilization of dental services on masticatory performance. The subjects consisted of 1804 general residents of Suita City, Osaka Prefecture (760 men and 1044 women, mean age 66.5 ± 7.9 years). Regular utilization of dental services and oral hygiene habits (frequency of toothbrushing and use of interdental aids) was surveyed, and periodontal status, occlusal support, and masticatory performance were measured. Masticatory performance was evaluated by a chewing test using gummy jelly. The correlation between age, sex, regular dental utilization, oral hygiene habits, periodontal status or occlusal support, and masticatory performance was analyzed using Spearman's correlation test and t‐test. In addition, multiple linear regression analysis was carried out to investigate the relationship of regular dental utilization with masticatory performance after controlling for other factors. Masticatory performance was significantly correlated to age when using Spearman's correlation test, and to regular dental utilization, periodontal status, or occlusal support with t‐test. Multiple linear regression analysis showed that regular utilization of dental services was significantly related to masticatory performance even after adjusting for age, sex, oral hygiene habits, periodontal status, and occlusal support (standardized partial regression coefficient β = 0.055). These findings suggested that the regular utilization of dental care services is an important factor influencing masticatory performance in a Japanese urban population. PMID:29744141
Kikui, Miki; Ono, Takahiro; Kida, Momoyo; Kosaka, Takayuki; Yamamoto, Masaaki; Yoshimuta, Yoko; Yasui, Sakae; Nokubi, Takashi; Maeda, Yoshinobu; Kokubo, Yoshihiro; Watanabe, Makoto; Miyamoto, Yoshihiro
2015-12-01
There are numerous reports on the relationship between regular utilization of dental care services and oral health, but most are based on questionnaires and subjective evaluation. Few have objectively evaluated masticatory performance and its relationship to utilization of dental care services. The purpose of this study was to identify the effect of regular utilization of dental services on masticatory performance. The subjects consisted of 1804 general residents of Suita City, Osaka Prefecture (760 men and 1044 women, mean age 66.5 ± 7.9 years). Regular utilization of dental services and oral hygiene habits (frequency of toothbrushing and use of interdental aids) was surveyed, and periodontal status, occlusal support, and masticatory performance were measured. Masticatory performance was evaluated by a chewing test using gummy jelly. The correlation between age, sex, regular dental utilization, oral hygiene habits, periodontal status or occlusal support, and masticatory performance was analyzed using Spearman's correlation test and t -test. In addition, multiple linear regression analysis was carried out to investigate the relationship of regular dental utilization with masticatory performance after controlling for other factors. Masticatory performance was significantly correlated to age when using Spearman's correlation test, and to regular dental utilization, periodontal status, or occlusal support with t -test. Multiple linear regression analysis showed that regular utilization of dental services was significantly related to masticatory performance even after adjusting for age, sex, oral hygiene habits, periodontal status, and occlusal support (standardized partial regression coefficient β = 0.055). These findings suggested that the regular utilization of dental care services is an important factor influencing masticatory performance in a Japanese urban population.
High-level language ability in healthy individuals and its relationship with verbal working memory.
Antonsson, Malin; Longoni, Francesca; Einald, Christina; Hallberg, Lina; Kurt, Gabriella; Larsson, Kajsa; Nilsson, Tina; Hartelius, Lena
2016-01-01
The aims of the study were to investigate healthy subjects' performance on a clinical test of high-level language (HLL) and how it is related to demographic characteristics and verbal working memory (VWM). One hundred healthy subjects (20-79 years old) were assessed with the Swedish BeSS test (Laakso, Brunnegård, Hartelius, & Ahlsén, 2000) and two digit span tasks. Relationships between the demographic variables, VWM and BeSS were investigated both with bivariate correlations and multiple regression analysis. The results present the norms for BeSS. The correlations and multiple regression analysis show that demographic variables had limited influence on test performance. Measures of VWM were moderately related to total BeSS score and weakly to moderately correlated with five of the seven subtests. To conclude, education has an influence on the test as a whole but measures of VWM stood out as the most robust predictor of HLL.
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
NASA Astrophysics Data System (ADS)
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.
2012-01-01
Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505
Huang, Guangzao; Yuan, Mingshun; Chen, Moliang; Li, Lei; You, Wenjie; Li, Hanjie; Cai, James J; Ji, Guoli
2017-10-07
The application of machine learning in cancer diagnostics has shown great promise and is of importance in clinic settings. Here we consider applying machine learning methods to transcriptomic data derived from tumor-educated platelets (TEPs) from individuals with different types of cancer. We aim to define a reliability measure for diagnostic purposes to increase the potential for facilitating personalized treatments. To this end, we present a novel classification method called MFRB (for Multiple Fitting Regression and Bayes decision), which integrates the process of multiple fitting regression (MFR) with Bayes decision theory. MFR is first used to map multidimensional features of the transcriptomic data into a one-dimensional feature. The probability density function of each class in the mapped space is then adjusted using the Gaussian probability density function. Finally, the Bayes decision theory is used to build a probabilistic classifier with the estimated probability density functions. The output of MFRB can be used to determine which class a sample belongs to, as well as to assign a reliability measure for a given class. The classical support vector machine (SVM) and probabilistic SVM (PSVM) are used to evaluate the performance of the proposed method with simulated and real TEP datasets. Our results indicate that the proposed MFRB method achieves the best performance compared to SVM and PSVM, mainly due to its strong generalization ability for limited, imbalanced, and noisy data.
Spatial interpolation schemes of daily precipitation for hydrologic modeling
Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.
2012-01-01
Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.
Mapping diffuse photosynthetically active radiation from satellite data in Thailand
NASA Astrophysics Data System (ADS)
Choosri, P.; Janjai, S.; Nunez, M.; Buntoung, S.; Charuchittipan, D.
2017-12-01
In this paper, calculation of monthly average hourly diffuse photosynthetically active radiation (PAR) using satellite data is proposed. Diffuse PAR was analyzed at four stations in Thailand. A radiative transfer model was used for calculating the diffuse PAR for cloudless sky conditions. Differences between the diffuse PAR under all sky conditions obtained from the ground-based measurements and those from the model are representative of cloud effects. Two models are developed, one describing diffuse PAR only as a function of solar zenith angle, and the second one as a multiple linear regression with solar zenith angle and satellite reflectivity acting linearly and aerosol optical depth acting in logarithmic functions. When tested with an independent data set, the multiple regression model performed best with a higher coefficient of variance R2 (0.78 vs. 0.70), lower root mean square difference (RMSD) (12.92% vs. 13.05%) and the same mean bias difference (MBD) of -2.20%. Results from the multiple regression model are used to map diffuse PAR throughout the country as monthly averages of hourly data.
Clifford support vector machines for classification, regression, and recurrence.
Bayro-Corrochano, Eduardo Jose; Arana-Daniel, Nancy
2010-11-01
This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real and complex-valued support vector machines using the Clifford geometric algebra. In this framework, we handle the design of kernels involving the Clifford or geometric product. In this approach, one redefines the optimization variables as multivectors. This allows us to have a multivector as output. Therefore, we can represent multiple classes according to the dimension of the geometric algebra in which we work. We show that one can apply CSVM for classification and regression and also to build a recurrent CSVM. The CSVM is an attractive approach for the multiple input multiple output processing of high-dimensional geometric entities. We carried out comparisons between CSVM and the current approaches to solve multiclass classification and regression. We also study the performance of the recurrent CSVM with experiments involving time series. The authors believe that this paper can be of great use for researchers and practitioners interested in multiclass hypercomplex computing, particularly for applications in complex and quaternion signal and image processing, satellite control, neurocomputation, pattern recognition, computer vision, augmented virtual reality, robotics, and humanoids.
A Prediction Model for Community Colleges Using Graduation Rate as the Performance Indicator
ERIC Educational Resources Information Center
Moosai, Susan
2010-01-01
In this thesis a prediction model using graduation rate as the performance indicator is obtained for community colleges for three cohort years, 2003, 2004, and 2005 in the states of California, Florida, and Michigan. Multiple Regression analysis, using an aggregate of seven predictor variables, was employed in determining this prediction model.…
Gender Performance Differences in Biochemistry
ERIC Educational Resources Information Center
Rauschenberger, Matthew M.; Sweeder, Ryan D.
2010-01-01
This study examined the historical performance of students at Michigan State University in a two-part biochemistry series Biochem I (n = 5,900) and Biochem II (n = 5,214) for students enrolled from 1997 to 2009. Multiple linear regressions predicted 54.9-87.5% of the variance in student from Biochem I grade and 53.8-76.1% of the variance in…
Complex Intellect vs the IQ Test as a Predictor of Performance.
ERIC Educational Resources Information Center
Dees, James W.
In order to test the ubiquity of the structure of the intellect for predictors of performance, a psychomotor skill (M 16 rifle proficiency test), a measure of perseverance (completion or resignation from OCS Program), and a measure of leadership ability (peer ratings) were selected as criteria on which multiple regressions were conducted with a…
Locomotive syndrome is associated not only with physical capacity but also degree of depression.
Ikemoto, Tatsunori; Inoue, Masayuki; Nakata, Masatoshi; Miyagawa, Hirofumi; Shimo, Kazuhiro; Wakabayashi, Toshiko; Arai, Young-Chang P; Ushida, Takahiro
2016-05-01
Reports of locomotive syndrome (LS) have recently been increasing. Although physical performance measures for LS have been well investigated to date, studies including psychiatric assessment are still scarce. Hence, the aim of this study was to investigate both physical and mental parameters in relation to presence and severity of LS using a 25-question geriatric locomotive function scale (GLFS-25) questionnaire. 150 elderly people aged over 60 years who were members of our physical-fitness center and displayed well-being were enrolled in this study. Firstly, using the previously determined GLFS-25 cutoff value (=16 points), subjects were divided into two groups accordingly: an LS and non-LS group in order to compare each parameter (age, grip strength, timed-up-and-go test (TUG), one-leg standing with eye open, back muscle and leg muscle strength, degree of depression and cognitive impairment) between the groups using the Mann-Whitney U-test followed by multiple logistic regression analysis. Secondly, a multiple linear regression was conducted to determine which variables showed the strongest correlation with severity of LS. We confirmed 110 people for non-LS (73%) and 40 people for LS using the GLFS-25 cutoff value. Comparative analysis between LS and non-LS revealed significant differences in parameters in age, grip strength, TUG, one-leg standing, back muscle strength and degree of depression (p < 0.006, after Bonferroni correction). Multiple logistic regression revealed that functional decline in grip strength, TUG and one-leg standing and degree of depression were significantly associated with LS. On the other hand, we observed that the significant contributors towards the GLFS-25 score were TUG and degree of depression in multiple linear regression analysis. The results indicate that LS is associated with not only the capacity of physical performance but also the degree of depression although most participants fell under the criteria of LS. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi
2007-10-01
Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.
Frndak, Seth E; Smerbeck, Audrey M; Irwin, Lauren N; Drake, Allison S; Kordovski, Victoria M; Kunker, Katrina A; Khan, Anjum L; Benedict, Ralph H B
2016-10-01
We endeavored to clarify how distinct co-occurring symptoms relate to the presence of negative work events in employed multiple sclerosis (MS) patients. Latent profile analysis (LPA) was utilized to elucidate common disability patterns by isolating patient subpopulations. Samples of 272 employed MS patients and 209 healthy controls (HC) were administered neuroperformance tests of ambulation, hand dexterity, processing speed, and memory. Regression-based norms were created from the HC sample. LPA identified latent profiles using the regression-based z-scores. Finally, multinomial logistic regression tested for negative work event differences among the latent profiles. Four profiles were identified via LPA: a common profile (55%) characterized by slightly below average performance in all domains, a broadly low-performing profile (18%), a poor motor abilities profile with average cognition (17%), and a generally high-functioning profile (9%). Multinomial regression analysis revealed that the uniformly low-performing profile demonstrated a higher likelihood of reported negative work events. Employed MS patients with co-occurring motor, memory and processing speed impairments were most likely to report a negative work event, classifying them as uniquely at risk for job loss.
Predictive ability of a comprehensive incremental test in mountain bike marathon
Schneeweiss, Patrick; Martus, Peter; Niess, Andreas M; Krauss, Inga
2018-01-01
Objectives Traditional performance tests in mountain bike marathon (XCM) primarily quantify aerobic metabolism and may not describe the relevant capacities in XCM. We aimed to validate a comprehensive test protocol quantifying its intermittent demands. Methods Forty-nine athletes (38.8±9.1 years; 38 male; 11 female) performed a laboratory performance test, including an incremental test, to determine individual anaerobic threshold (IAT), peak power output (PPO) and three maximal efforts (10 s all-out sprint, 1 min maximal effort and 5 min maximal effort). Within 2 weeks, the athletes participated in one of three XCM races (n=15, n=9 and n=25). Correlations between test variables and race times were calculated separately. In addition, multiple regression models of the predictive value of laboratory outcomes were calculated for race 3 and across all races (z-transformed data). Results All variables were correlated with race times 1, 2 and 3: 10 s all-out sprint (r=−0.72; r=−0.59; r=−0.61), 1 min maximal effort (r=−0.85; r=−0.84; r=−0.82), 5 min maximal effort (r=−0.57; r=−0.85; r=−0.76), PPO (r=−0.77; r=−0.73; r=−0.76) and IAT (r=−0.71; r=−0.67; r=−0.68). The best-fitting multiple regression models for race 3 (r2=0.868) and across all races (r2=0.757) comprised 1 min maximal effort, IAT and body weight. Conclusion Aerobic and intermittent variables correlated least strongly with race times. Their use in a multiple regression model confirmed additional explanatory power to predict XCM performance. These findings underline the usefulness of the comprehensive incremental test to predict performance in that sport more precisely. PMID:29387445
Testing a single regression coefficient in high dimensional linear models
Zhong, Ping-Shou; Li, Runze; Wang, Hansheng; Tsai, Chih-Ling
2017-01-01
In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z-test to assess the significance of each covariate. Based on the p-value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively. PMID:28663668
Testing a single regression coefficient in high dimensional linear models.
Lan, Wei; Zhong, Ping-Shou; Li, Runze; Wang, Hansheng; Tsai, Chih-Ling
2016-11-01
In linear regression models with high dimensional data, the classical z -test (or t -test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z -test to assess the significance of each covariate. Based on the p -value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively.
Spelman, Tim; Gray, Orla; Lucas, Robyn; Butzkueven, Helmut
2015-12-09
This report describes a novel Stata-based application of trigonometric regression modelling to 55 years of multiple sclerosis relapse data from 46 clinical centers across 20 countries located in both hemispheres. Central to the success of this method was the strategic use of plot analysis to guide and corroborate the statistical regression modelling. Initial plot analysis was necessary for establishing realistic hypotheses regarding the presence and structural form of seasonal and latitudinal influences on relapse probability and then testing the performance of the resultant models. Trigonometric regression was then necessary to quantify these relationships, adjust for important confounders and provide a measure of certainty as to how plausible these associations were. Synchronization of graphing techniques with regression modelling permitted a systematic refinement of models until best-fit convergence was achieved, enabling novel inferences to be made regarding the independent influence of both season and latitude in predicting relapse onset timing in MS. These methods have the potential for application across other complex disease and epidemiological phenomena suspected or known to vary systematically with season and/or geographic location.
Multiple Correlation versus Multiple Regression.
ERIC Educational Resources Information Center
Huberty, Carl J.
2003-01-01
Describes differences between multiple correlation analysis (MCA) and multiple regression analysis (MRA), showing how these approaches involve different research questions and study designs, different inferential approaches, different analysis strategies, and different reported information. (SLD)
NASA Astrophysics Data System (ADS)
Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.
2017-05-01
The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for maximal response. For the calculation of the regression coefficients, dispersion and correlation coefficients, the software Matlab was used.
ERIC Educational Resources Information Center
Jaccard, James; And Others
1990-01-01
Issues in the detection and interpretation of interaction effects between quantitative variables in multiple regression analysis are discussed. Recent discussions associated with problems of multicollinearity are reviewed in the context of the conditional nature of multiple regression with product terms. (TJH)
NASA Astrophysics Data System (ADS)
George, Anna Ray Bayless
A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.
Dai, Quxiu; Ma, Liping; Ren, Nanqi; Ning, Ping; Guo, Zhiying; Xie, Longgui; Gao, Haijun
2018-06-06
Modified phosphogypsum (MPG) was developed to improve dewaterability of sewage sludge, and dewatering performance, properties of treated sludge, composition and morphology distribution of EPS, dynamic analysis and multiple regression model on bound water release were investigated. The results showed that addition of MPG caused extracellular polymeric substances (EPS) disintegration through charge neutralization. Destruction of EPS promoted the formation of larger sludge flocs and the release of bound water into supernatant. Simultaneously, content of organics with molecular weight between 1000 and 7000 Da in soluble EPS (SB-EPS) increased with increasing of EPS dissolved into the liquid phase. Besides, about 8.8 kg•kg -1 DS of bound water was released after pretreatment with 40%DS MPG dosage. Additionally, a multiple linear regression model for bound water release was established, showing that lower loosely bond EPS (LB-EPS) content and specific resistance of filtration (SRF) may improve dehydration performance, and larger sludge flocs may be beneficial for sludge dewatering. Copyright © 2018 Elsevier Ltd. All rights reserved.
Beyond Multiple Regression: Using Commonality Analysis to Better Understand R[superscript 2] Results
ERIC Educational Resources Information Center
Warne, Russell T.
2011-01-01
Multiple regression is one of the most common statistical methods used in quantitative educational research. Despite the versatility and easy interpretability of multiple regression, it has some shortcomings in the detection of suppressor variables and for somewhat arbitrarily assigning values to the structure coefficients of correlated…
Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha
2012-05-01
Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
ERIC Educational Resources Information Center
Jiao, Qun G.; DaRos-Voseles, Denise A.; Collins, Kathleen M. T.; Onwuegbuzie, Anthony J.
2011-01-01
This study examined the extent to which academic procrastination predicted the performance of cooperative groups in graduate-level research methods courses. A total of 28 groups was examined (n = 83 students), ranging in size from 2 to 5 (M = 2.96, SD = 1.10). Multiple regression analyses revealed that neither within-group mean nor within-group…
Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape.
Kawaguchi, Junki; Yoshimoto, Shunsuke; Kuroda, Yoshihiro; Oshiro, Osamu
2017-09-01
An approach to finger motion capture that places fewer restrictions on the usage environment and actions of the user is an important research topic in biomechanics and human-computer interaction. We proposed a system that electrically detects finger motion from the associated deformation of the wrist and estimates the finger joint angles using multiple regression models. A wrist-mounted sensing device with 16 electrodes detects deformation of the wrist from changes in electrical contact resistance at the skin. In this study, we experimentally investigated the accuracy of finger joint angle estimation, the adequacy of two multiple regression models, and the resolution of the estimation of total finger joint angles. In experiments, both the finger joint angles and the system output voltage were recorded as subjects performed flexion/extension of the fingers. These data were used for calibration using the least-squares method. The system was found to be capable of estimating the total finger joint angle with a root-mean-square error of 29-34 degrees. A multiple regression model with a second-order polynomial basis function was shown to be suitable for the estimation of all total finger joint angles, but not those of the thumb.
Statistical Prediction in Proprietary Rehabilitation.
ERIC Educational Resources Information Center
Johnson, Kurt L.; And Others
1987-01-01
Applied statistical methods to predict case expenditures for low back pain rehabilitation cases in proprietary rehabilitation. Extracted predictor variables from case records of 175 workers compensation claimants with some degree of permanent disability due to back injury. Performed several multiple regression analyses resulting in a formula that…
Mohd Yusof, Mohd Yusmiaidil Putera; Cauwels, Rita; Deschepper, Ellen; Martens, Luc
2015-08-01
The third molar development (TMD) has been widely utilized as one of the radiographic method for dental age estimation. By using the same radiograph of the same individual, third molar eruption (TME) information can be incorporated to the TMD regression model. This study aims to evaluate the performance of dental age estimation in individual method models and the combined model (TMD and TME) based on the classic regressions of multiple linear and principal component analysis. A sample of 705 digital panoramic radiographs of Malay sub-adults aged between 14.1 and 23.8 years was collected. The techniques described by Gleiser and Hunt (modified by Kohler) and Olze were employed to stage the TMD and TME, respectively. The data was divided to develop three respective models based on the two regressions of multiple linear and principal component analysis. The trained models were then validated on the test sample and the accuracy of age prediction was compared between each model. The coefficient of determination (R²) and root mean square error (RMSE) were calculated. In both genders, adjusted R² yielded an increment in the linear regressions of combined model as compared to the individual models. The overall decrease in RMSE was detected in combined model as compared to TMD (0.03-0.06) and TME (0.2-0.8). In principal component regression, low value of adjusted R(2) and high RMSE except in male were exhibited in combined model. Dental age estimation is better predicted using combined model in multiple linear regression models. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Luck, Tobias; Pabst, Alexander; Rodriguez, Francisca S; Schroeter, Matthias L; Witte, Veronica; Hinz, Andreas; Mehnert, Anja; Engel, Christoph; Loeffler, Markus; Thiery, Joachim; Villringer, Arno; Riedel-Heller, Steffi G
2018-05-01
To provide new age-, sex-, and education-specific reference values for an extended version of the well-established Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery (CERAD-NAB) that additionally includes the Trail Making Test and the Verbal Fluency Test-S-Words. Norms were calculated based on the cognitive performances of n = 1,888 dementia-free participants (60-79 years) from the population-based German LIFE-Adult-Study. Multiple regressions were used to examine the association of the CERAD-NAB scores with age, sex, and education. In order to calculate the norms, quantile and censored quantile regression analyses were performed estimating marginal means of the test scores at 2.28, 6.68, 10, 15.87, 25, 50, 75, and 90 percentiles for age-, sex-, and education-specific subgroups. Multiple regression analyses revealed that younger age was significantly associated with better cognitive performance in 15 CERAD-NAB measures and higher education with better cognitive performance in all 17 measures. Women performed significantly better than men in 12 measures and men than women in four measures. The determined norms indicate ceiling effects for the cognitive performances in the Boston Naming, Word List Recognition, Constructional Praxis Copying, and Constructional Praxis Recall tests. The new norms for the extended CERAD-NAB will be useful for evaluating dementia-free German-speaking adults in a broad variety of relevant cognitive domains. The extended CERAD-NAB follows more closely the criteria for the new DSM-5 Mild and Major Neurocognitive Disorder. Additionally, it could be further developed to include a test for social cognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Application of XGBoost algorithm in hourly PM2.5 concentration prediction
NASA Astrophysics Data System (ADS)
Pan, Bingyue
2018-02-01
In view of prediction techniques of hourly PM2.5 concentration in China, this paper applied the XGBoost(Extreme Gradient Boosting) algorithm to predict hourly PM2.5 concentration. The monitoring data of air quality in Tianjin city was analyzed by using XGBoost algorithm. The prediction performance of the XGBoost method is evaluated by comparing observed and predicted PM2.5 concentration using three measures of forecast accuracy. The XGBoost method is also compared with the random forest algorithm, multiple linear regression, decision tree regression and support vector machines for regression models using computational results. The results demonstrate that the XGBoost algorithm outperforms other data mining methods.
Chaurasia, Ashok; Harel, Ofer
2015-02-10
Tests for regression coefficients such as global, local, and partial F-tests are common in applied research. In the framework of multiple imputation, there are several papers addressing tests for regression coefficients. However, for simultaneous hypothesis testing, the existing methods are computationally intensive because they involve calculation with vectors and (inversion of) matrices. In this paper, we propose a simple method based on the scalar entity, coefficient of determination, to perform (global, local, and partial) F-tests with multiply imputed data. The proposed method is evaluated using simulated data and applied to suicide prevention data. Copyright © 2014 John Wiley & Sons, Ltd.
González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F
2017-09-01
The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between Cr and Cd, Cu and Zn in multiple regression; and between Cr and Cd in SVM regression. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, So Young; Sim, Songyong; Choi, Hyo Geun
2017-01-01
Although an association between energy drinks and suicide has been suggested, few prior studies have considered the role of emotional factors including stress, sleep, and school performance in adolescents. This study aimed to evaluate the association of energy drinks with suicide, independent of possible confounders including stress, sleep, and school performance. In total, 121,106 adolescents with 13-18 years olds from the 2014 and 2015 Korea Youth Risk Behavior Web-based Survey were surveyed for age, sex, region of residence, economic level, paternal and maternal education level, sleep time, stress level, school performance, frequency of energy drink intake, and suicide attempts. Subjective stress levels were classified into severe, moderate, mild, a little, and no stress. Sleep time was divided into 6 groups: < 6 h; 6 ≤ h < 7; 7 ≤ h < 8; 8 ≤ h < 9; and ≥ 9 h. School performance was classified into 5 levels: A (highest), B (middle, high), C (middle), D (middle, low), and E (lowest). Frequency of energy drink consumption was divided into 3 groups: ≥ 3, 1-2, and 0 times a week. The associations of sleep time, stress level, and school performance with suicide attempts and the frequency of energy drink intake were analyzed using multiple and ordinal logistic regression analysis, respectively, with complex sampling. The relationship between frequency of energy drink intake and suicide attempts was analyzed using multiple logistic regression analysis with complex sampling. Higher stress levels, lack of sleep, and low school performance were significantly associated with suicide attempts (each P < 0.001). These variables of high stress level, abnormal sleep time, and low school performance were also proportionally related with higher energy drink intake (P < 0.001). Frequent energy drink intake was significantly associated with suicide attempts in multiple logistic regression analyses (AOR for frequency of energy intake ≥ 3 times a week = 3.03, 95% CI = 2.64-3.49, P < 0.001). Severe stress, inadequate sleep, and low school performance were related with more energy drink intake and suicide attempts in Korean adolescents. Frequent energy drink intake was positively related with suicide attempts, even after adjusting for stress, sleep time, and school performance.
Kim, So Young; Sim, Songyong
2017-01-01
Objective Although an association between energy drinks and suicide has been suggested, few prior studies have considered the role of emotional factors including stress, sleep, and school performance in adolescents. This study aimed to evaluate the association of energy drinks with suicide, independent of possible confounders including stress, sleep, and school performance. Methods In total, 121,106 adolescents with 13–18 years olds from the 2014 and 2015 Korea Youth Risk Behavior Web-based Survey were surveyed for age, sex, region of residence, economic level, paternal and maternal education level, sleep time, stress level, school performance, frequency of energy drink intake, and suicide attempts. Subjective stress levels were classified into severe, moderate, mild, a little, and no stress. Sleep time was divided into 6 groups: < 6 h; 6 ≤ h < 7; 7 ≤ h < 8; 8 ≤ h < 9; and ≥ 9 h. School performance was classified into 5 levels: A (highest), B (middle, high), C (middle), D (middle, low), and E (lowest). Frequency of energy drink consumption was divided into 3 groups: ≥ 3, 1–2, and 0 times a week. The associations of sleep time, stress level, and school performance with suicide attempts and the frequency of energy drink intake were analyzed using multiple and ordinal logistic regression analysis, respectively, with complex sampling. The relationship between frequency of energy drink intake and suicide attempts was analyzed using multiple logistic regression analysis with complex sampling. Results Higher stress levels, lack of sleep, and low school performance were significantly associated with suicide attempts (each P < 0.001). These variables of high stress level, abnormal sleep time, and low school performance were also proportionally related with higher energy drink intake (P < 0.001). Frequent energy drink intake was significantly associated with suicide attempts in multiple logistic regression analyses (AOR for frequency of energy intake ≥ 3 times a week = 3.03, 95% CI = 2.64–3.49, P < 0.001). Conclusion Severe stress, inadequate sleep, and low school performance were related with more energy drink intake and suicide attempts in Korean adolescents. Frequent energy drink intake was positively related with suicide attempts, even after adjusting for stress, sleep time, and school performance. PMID:29135989
Engvall, Karin; Hult, M; Corner, R; Lampa, E; Norbäck, D; Emenius, G
2010-01-01
The aim was to develop a new model to identify residential buildings with higher frequencies of "SBS" than expected, "risk buildings". In 2005, 481 multi-family buildings with 10,506 dwellings in Stockholm were studied by a new stratified random sampling. A standardised self-administered questionnaire was used to assess "SBS", atopy and personal factors. The response rate was 73%. Statistical analysis was performed by multiple logistic regressions. Dwellers owning their building reported less "SBS" than those renting. There was a strong relationship between socio-economic factors and ownership. The regression model, ended up with high explanatory values for age, gender, atopy and ownership. Applying our model, 9% of all residential buildings in Stockholm were classified as "risk buildings" with the highest proportion in houses built 1961-1975 (26%) and lowest in houses built 1985-1990 (4%). To identify "risk buildings", it is necessary to adjust for ownership and population characteristics.
Suzuki, Hideaki; Tabata, Takahisa; Koizumi, Hiroki; Hohchi, Nobusuke; Takeuchi, Shoko; Kitamura, Takuro; Fujino, Yoshihisa; Ohbuchi, Toyoaki
2014-12-01
This study aimed to create a multiple regression model for predicting hearing outcomes of idiopathic sudden sensorineural hearing loss (ISSNHL). The participants were 205 consecutive patients (205 ears) with ISSNHL (hearing level ≥ 40 dB, interval between onset and treatment ≤ 30 days). They received systemic steroid administration combined with intratympanic steroid injection. Data were examined by simple and multiple regression analyses. Three hearing indices (percentage hearing improvement, hearing gain, and posttreatment hearing level [HLpost]) and 7 prognostic factors (age, days from onset to treatment, initial hearing level, initial hearing level at low frequencies, initial hearing level at high frequencies, presence of vertigo, and contralateral hearing level) were included in the multiple regression analysis as dependent and explanatory variables, respectively. In the simple regression analysis, the percentage hearing improvement, hearing gain, and HLpost showed significant correlation with 2, 5, and 6 of the 7 prognostic factors, respectively. The multiple correlation coefficients were 0.396, 0.503, and 0.714 for the percentage hearing improvement, hearing gain, and HLpost, respectively. Predicted values of HLpost calculated by the multiple regression equation were reliable with 70% probability with a 40-dB-width prediction interval. Prediction of HLpost by the multiple regression model may be useful to estimate the hearing prognosis of ISSNHL. © The Author(s) 2014.
Liu, Rong; Li, Xi; Zhang, Wei; Zhou, Hong-Hao
2015-01-01
Objective Multiple linear regression (MLR) and machine learning techniques in pharmacogenetic algorithm-based warfarin dosing have been reported. However, performances of these algorithms in racially diverse group have never been objectively evaluated and compared. In this literature-based study, we compared the performances of eight machine learning techniques with those of MLR in a large, racially-diverse cohort. Methods MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied in warfarin dose algorithms in a cohort from the International Warfarin Pharmacogenetics Consortium database. Covariates obtained by stepwise regression from 80% of randomly selected patients were used to develop algorithms. To compare the performances of these algorithms, the mean percentage of patients whose predicted dose fell within 20% of the actual dose (mean percentage within 20%) and the mean absolute error (MAE) were calculated in the remaining 20% of patients. The performances of these techniques in different races, as well as the dose ranges of therapeutic warfarin were compared. Robust results were obtained after 100 rounds of resampling. Results BART, MARS and SVR were statistically indistinguishable and significantly out performed all the other approaches in the whole cohort (MAE: 8.84–8.96 mg/week, mean percentage within 20%: 45.88%–46.35%). In the White population, MARS and BART showed higher mean percentage within 20% and lower mean MAE than those of MLR (all p values < 0.05). In the Asian population, SVR, BART, MARS and LAR performed the same as MLR. MLR and LAR optimally performed among the Black population. When patients were grouped in terms of warfarin dose range, all machine learning techniques except ANN and LAR showed significantly higher mean percentage within 20%, and lower MAE (all p values < 0.05) than MLR in the low- and high- dose ranges. Conclusion Overall, machine learning-based techniques, BART, MARS and SVR performed superior than MLR in warfarin pharmacogenetic dosing. Differences of algorithms’ performances exist among the races. Moreover, machine learning-based algorithms tended to perform better in the low- and high- dose ranges than MLR. PMID:26305568
Mainou, Maria; Madenidou, Anastasia-Vasiliki; Liakos, Aris; Paschos, Paschalis; Karagiannis, Thomas; Bekiari, Eleni; Vlachaki, Efthymia; Wang, Zhen; Murad, Mohammad Hassan; Kumar, Shaji; Tsapas, Apostolos
2017-06-01
We performed a systematic review and meta-regression analysis of randomized control trials to investigate the association between response to initial treatment and survival outcomes in patients with newly diagnosed multiple myeloma (MM). Response outcomes included complete response (CR) and the combined outcome of CR or very good partial response (VGPR), while survival outcomes were overall survival (OS) and progression-free survival (PFS). We used random-effect meta-regression models and conducted sensitivity analyses based on definition of CR and study quality. Seventy-two trials were included in the systematic review, 63 of which contributed data in meta-regression analyses. There was no association between OS and CR in patients without autologous stem cell transplant (ASCT) (regression coefficient: .02, 95% confidence interval [CI] -0.06, 0.10), in patients undergoing ASCT (-.11, 95% CI -0.44, 0.22) and in trials comparing ASCT with non-ASCT patients (.04, 95% CI -0.29, 0.38). Similarly, OS did not correlate with the combined metric of CR or VGPR, and no association was evident between response outcomes and PFS. Sensitivity analyses yielded similar results. This meta-regression analysis suggests that there is no association between conventional response outcomes and survival in patients with newly diagnosed MM. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Shear, Benjamin R.; Zumbo, Bruno D.
2013-01-01
Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…
Using Robust Standard Errors to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan T.
2012-01-01
Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…
John W. Edwards; Susan C. Loeb; David C. Guynn
1994-01-01
Multiple regression and use-availability analyses are two methods for examining habitat selection. Use-availability analysis is commonly used to evaluate macrohabitat selection whereas multiple regression analysis can be used to determine microhabitat selection. We compared these techniques using behavioral observations (n = 5534) and telemetry locations (n = 2089) of...
NASA Astrophysics Data System (ADS)
Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.
2017-12-01
The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.
Ibidunni, Ayodotun Stephen; Ibidunni, Oyebisi Mary; Olokundun, Maxwell Ayodele; Falola, Hezekiah Olubusayo; Salau, Odunayo Paul; Borishade, Taiye Tairat
2018-06-01
This article present data on the disposition of SME operators towards enhancing SMEs Performance through entrepreneurial orientations. Copies of structured questionnaire were administered to 102 SME owners/managers. Using descriptive and standard multiple regression statistical analysis, the data described how proactiveness, risk-taking and autonomy orientations significantly influenced SMEs' profitability, sales growth, customer satisfaction and new product success.
ERIC Educational Resources Information Center
Eichler, Jack F.; Peeples, Junelyn
2013-01-01
Two different online homework systems were administered to students in a first-quarter general chemistry course. This study used a multiple regression model to control for the students' academic and socioeconomic background, and it was found that students who completed the online homework activities performed significantly better on a common…
ERIC Educational Resources Information Center
Khan, Wasi Z.; Al Zubaidy, Sarim
2017-01-01
The variance in students' academic performance in a civilian institute and in a military technological institute could be linked to the environment of the competition available to the students. The magnitude of talent, domain of skills and volume of efforts students put are identical in both type of institutes. The significant factor is the…
ERIC Educational Resources Information Center
Hong, Hee Kyung
2012-01-01
The purpose of this study was to simultaneously examine relationships between teacher quality and instructional time and mathematics and science achievement of 8th grade cohorts in 18 advanced and developing economies. In addition, the study examined changes in mathematics and science performance across the two groups of economies over time using…
Building Regression Models: The Importance of Graphics.
ERIC Educational Resources Information Center
Dunn, Richard
1989-01-01
Points out reasons for using graphical methods to teach simple and multiple regression analysis. Argues that a graphically oriented approach has considerable pedagogic advantages in the exposition of simple and multiple regression. Shows that graphical methods may play a central role in the process of building regression models. (Author/LS)
Testing Different Model Building Procedures Using Multiple Regression.
ERIC Educational Resources Information Center
Thayer, Jerome D.
The stepwise regression method of selecting predictors for computer assisted multiple regression analysis was compared with forward, backward, and best subsets regression, using 16 data sets. The results indicated the stepwise method was preferred because of its practical nature, when the models chosen by different selection methods were similar…
No evidence of reaction time slowing in autism spectrum disorder.
Ferraro, F Richard
2016-01-01
A total of 32 studies comprising 238 simple reaction time and choice reaction time conditions were examined in individuals with autism spectrum disorder (n = 964) and controls (n = 1032). A Brinley plot/multiple regression analysis was performed on mean reaction times, regressing autism spectrum disorder performance onto the control performance as a way to examine any generalized simple reaction time/choice reaction time slowing exhibited by the autism spectrum disorder group. The resulting regression equation was Y (autism spectrum disorder) = 0.99 × (control) + 87.93, which accounted for 92.3% of the variance. These results suggest that there are little if any simple reaction time/choice reaction time slowing in this sample of individual with autism spectrum disorder, in comparison with controls. While many cognitive and information processing domains are compromised in autism spectrum disorder, it appears that simple reaction time/choice reaction time remain relatively unaffected in autism spectrum disorder. © The Author(s) 2014.
Incremental Validity in the Clinical Assessment of Early Childhood Development
ERIC Educational Resources Information Center
Liu, Xin; Zhou, Xiaobin; Lackaff, Julie
2013-01-01
The authors demonstrate the increment of clinical validity in early childhood assessment of physical impairment (PI), developmental delay (DD), and autism (AUT) using multiple standardized developmental screening measures such as performance measures and parent and teacher rating scales. Hierarchical regression and sensitivity/specificity analyses…
On the method of Ermakov and Zolotukhin for multiple integration
NASA Technical Reports Server (NTRS)
Cranley, R.; Patterson, T. N. L.
1971-01-01
The method of Ermakov and Zolotukhin is discussed along with its later developments. By introducing the idea of pseudo-implementation a practical assessment of the method is made. The performance of the method is found to be unimpressive in comparison with a recent regression method.
Decreasing Multicollinearity: A Method for Models with Multiplicative Functions.
ERIC Educational Resources Information Center
Smith, Kent W.; Sasaki, M. S.
1979-01-01
A method is proposed for overcoming the problem of multicollinearity in multiple regression equations where multiplicative independent terms are entered. The method is not a ridge regression solution. (JKS)
Tsygankov, B D; Malygin, Ya V; Gatin, F F
2015-01-01
Factors of patients' satisfaction with medical care vary depending on the level of care and medical specialty. Patient's satisfaction with psychiatric care is understudied. An aim of the present study is to find out the factors of satisfaction with psychiatric care in inpatients with neurotic and depressive disorders. The sample included 356 inpatients suffering from neurotic or depressive disorders. The patients were questioned using PAPI questionnaire designed for this study. Statistical analysis was performed using multiple regression. Key factors of satisfaction with medical care included quality of work of nurses and psychiatrists, hospital ward comfort, the number and quality of psychotherapeutic sessions, psychiatrists' empathy and aptitude to provide the patient with information about the disease and treatment. Multiple regression equation explained 81% of the variance of patients' satisfaction.
Kim, Sungjin; Jinich, Adrián; Aspuru-Guzik, Alán
2017-04-24
We propose a multiple descriptor multiple kernel (MultiDK) method for efficient molecular discovery using machine learning. We show that the MultiDK method improves both the speed and accuracy of molecular property prediction. We apply the method to the discovery of electrolyte molecules for aqueous redox flow batteries. Using multiple-type-as opposed to single-type-descriptors, we obtain more relevant features for machine learning. Following the principle of "wisdom of the crowds", the combination of multiple-type descriptors significantly boosts prediction performance. Moreover, by employing multiple kernels-more than one kernel function for a set of the input descriptors-MultiDK exploits nonlinear relations between molecular structure and properties better than a linear regression approach. The multiple kernels consist of a Tanimoto similarity kernel and a linear kernel for a set of binary descriptors and a set of nonbinary descriptors, respectively. Using MultiDK, we achieve an average performance of r 2 = 0.92 with a test set of molecules for solubility prediction. We also extend MultiDK to predict pH-dependent solubility and apply it to a set of quinone molecules with different ionizable functional groups to assess their performance as flow battery electrolytes.
Parameter estimation in Cox models with missing failure indicators and the OPPERA study.
Brownstein, Naomi C; Cai, Jianwen; Slade, Gary D; Bair, Eric
2015-12-30
In a prospective cohort study, examining all participants for incidence of the condition of interest may be prohibitively expensive. For example, the "gold standard" for diagnosing temporomandibular disorder (TMD) is a physical examination by a trained clinician. In large studies, examining all participants in this manner is infeasible. Instead, it is common to use questionnaires to screen for incidence of TMD and perform the "gold standard" examination only on participants who screen positively. Unfortunately, some participants may leave the study before receiving the "gold standard" examination. Within the framework of survival analysis, this results in missing failure indicators. Motivated by the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study, a large cohort study of TMD, we propose a method for parameter estimation in survival models with missing failure indicators. We estimate the probability of being an incident case for those lacking a "gold standard" examination using logistic regression. These estimated probabilities are used to generate multiple imputations of case status for each missing examination that are combined with observed data in appropriate regression models. The variance introduced by the procedure is estimated using multiple imputation. The method can be used to estimate both regression coefficients in Cox proportional hazard models as well as incidence rates using Poisson regression. We simulate data with missing failure indicators and show that our method performs as well as or better than competing methods. Finally, we apply the proposed method to data from the OPPERA study. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zhao, Wei; Fan, Shaojia; Guo, Hai; Gao, Bo; Sun, Jiaren; Chen, Laiguo
2016-11-01
The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000-2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.
Multiplicative Forests for Continuous-Time Processes
Weiss, Jeremy C.; Natarajan, Sriraam; Page, David
2013-01-01
Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability. PMID:25284967
Multiplicative Forests for Continuous-Time Processes.
Weiss, Jeremy C; Natarajan, Sriraam; Page, David
2012-01-01
Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability.
Deep ensemble learning of sparse regression models for brain disease diagnosis.
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2017-04-01
Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.
Deep ensemble learning of sparse regression models for brain disease diagnosis
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2018-01-01
Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer’s disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call ‘ Deep Ensemble Sparse Regression Network.’ To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. PMID:28167394
Multiple-Instance Regression with Structured Data
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran; Roper, Alex
2008-01-01
We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.
Parental education predicts change in intelligence quotient after childhood epilepsy surgery.
Meekes, Joost; van Schooneveld, Monique M J; Braams, Olga B; Jennekens-Schinkel, Aag; van Rijen, Peter C; Hendriks, Marc P H; Braun, Kees P J; van Nieuwenhuizen, Onno
2015-04-01
To know whether change in the intelligence quotient (IQ) of children who undergo epilepsy surgery is associated with the educational level of their parents. Retrospective analysis of data obtained from a cohort of children who underwent epilepsy surgery between January 1996 and September 2010. We performed simple and multiple regression analyses to identify predictors associated with IQ change after surgery. In addition to parental education, six variables previously demonstrated to be associated with IQ change after surgery were included as predictors: age at surgery, duration of epilepsy, etiology, presurgical IQ, reduction of antiepileptic drugs, and seizure freedom. We used delta IQ (IQ 2 years after surgery minus IQ shortly before surgery) as the primary outcome variable, but also performed analyses with pre- and postsurgical IQ as outcome variables to support our findings. To validate the results we performed simple regression analysis with parental education as the predictor in specific subgroups. The sample for regression analysis included 118 children (60 male; median age at surgery 9.73 years). Parental education was significantly associated with delta IQ in simple regression analysis (p = 0.004), and also contributed significantly to postsurgical IQ in multiple regression analysis (p = 0.008). Additional analyses demonstrated that parental education made a unique contribution to prediction of delta IQ, that is, it could not be replaced by the illness-related variables. Subgroup analyses confirmed the association of parental education with IQ change after surgery for most groups. Children whose parents had higher education demonstrate on average a greater increase in IQ after surgery and a higher postsurgical--but not presurgical--IQ than children whose parents completed at most lower secondary education. Parental education--and perhaps other environmental variables--should be considered in the prognosis of cognitive function after childhood epilepsy surgery. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Hayes, Timothy; Usami, Satoshi; Jacobucci, Ross; McArdle, John J
2015-12-01
In this article, we describe a recent development in the analysis of attrition: using classification and regression trees (CART) and random forest methods to generate inverse sampling weights. These flexible machine learning techniques have the potential to capture complex nonlinear, interactive selection models, yet to our knowledge, their performance in the missing data analysis context has never been evaluated. To assess the potential benefits of these methods, we compare their performance with commonly employed multiple imputation and complete case techniques in 2 simulations. These initial results suggest that weights computed from pruned CART analyses performed well in terms of both bias and efficiency when compared with other methods. We discuss the implications of these findings for applied researchers. (c) 2015 APA, all rights reserved).
Hayes, Timothy; Usami, Satoshi; Jacobucci, Ross; McArdle, John J.
2016-01-01
In this article, we describe a recent development in the analysis of attrition: using classification and regression trees (CART) and random forest methods to generate inverse sampling weights. These flexible machine learning techniques have the potential to capture complex nonlinear, interactive selection models, yet to our knowledge, their performance in the missing data analysis context has never been evaluated. To assess the potential benefits of these methods, we compare their performance with commonly employed multiple imputation and complete case techniques in 2 simulations. These initial results suggest that weights computed from pruned CART analyses performed well in terms of both bias and efficiency when compared with other methods. We discuss the implications of these findings for applied researchers. PMID:26389526
Noh, J-W; Kwon, Y-D; Yoon, S-J; Hwang, J-I
2011-06-01
Numerous studies on HNC services have been carried out by signifying their needs, efficiency and effectiveness. However, no study has ever been performed to determine the critical factors associated with HNC's positive results despite the deluge of positive studies on the service. This study included all of the 89 training hospitals that were practising HNC service in Korea as of November 2006. The input factors affecting the performance were classified as either internal or external environmental factors. This analysis was conducted to understand the impact that the corresponding factors had on performance. Data were analysed by using multiple linear regressions. The internal and external environment variables affected the performance of HNC based on univariate analysis. The meaningful variables were internal environmental factors. Specifically, managerial resource (the number of operating beds and the outpatient/inpatient ratio) were meaningful when the multiple linear regression analysis was performed. Indeed, the importance of organizational culture (the passion of HNC nurses) was significant. This study, considering the limited market size of Korea, illustrates that the critical factor for the development of hospital-led HNC lies with internal environmental factors rather than external ones. Among the internal environmental factors, the hospitals' managerial resource-related factors (specifically, the passion of nurses) were the most important contributing element. © 2011 The Authors. International Nursing Review © 2011 International Council of Nurses.
ERIC Educational Resources Information Center
Nafukho, Fredrick Muyia; Hinton, Barbara E.
2003-01-01
Multiple regression analyses of data from 143 public transportation drivers in Kenya indicated that driver experience and hours worked were significantly related to rates of traffic accidents. Educational level, training, salary, and average speed were not related. (Contains 45 references.) (SK)
A Comparison of Three Tests of Mediation
ERIC Educational Resources Information Center
Warbasse, Rosalia E.
2009-01-01
A simulation study was conducted to evaluate the performance of three tests of mediation: the bias-corrected and accelerated bootstrap (Efron & Tibshirani, 1993), the asymmetric confidence limits test (MacKinnon, 2008), and a multiple regression approach described by Kenny, Kashy, and Bolger (1998). The evolution of these methods is reviewed and…
The Impact of Prior Programming Knowledge on Lecture Attendance and Final Exam
ERIC Educational Resources Information Center
Veerasamy, Ashok Kumar; D'Souza, Daryl; Lindén, Rolf; Laakso, Mikko-Jussi
2018-01-01
In this article, we report the results of the impact of prior programming knowledge (PPK) on lecture attendance (LA) and on subsequent final programming exam performance in a university level introductory programming course. This study used Spearman's rank correlation coefficient, multiple regression, Kruskal-Wallis, and Bonferroni correction…
(The Androgyny Dimension: A Comment on Stokes, Childs, and Fuehrer: And a Response.)
ERIC Educational Resources Information Center
Lubinski, David; Stokes, Joseph
1983-01-01
Suggests a critical methodological flaw in a study done about the relationship between the Bem Sex-Role Inventory and certain indices of self-disclosure (Stokes, et al.). Notes that multiple regression analysis was not performed in appropriate hierarchical fashion. Includes Stokes reply to the critique. (PAS)
Relationship between Job Burnout and Personal Wellness in Mental Health Professionals
ERIC Educational Resources Information Center
Puig, Ana; Baggs, Adrienne; Mixon, Kacy; Park, Yang Min; Kim, Bo Young; Lee, Sang Min
2012-01-01
This study aimed to determine the nature of the relationship between job burnout and personal wellness among mental health professionals. The authors performed intercorrelations and multivariate multiple regression analyses to identify the relationship between subscales of job burnout and personal wellness. Results showed that all subscales of job…
Transfer in Artificial Grammar Learning: The Role of Repetition Information
ERIC Educational Resources Information Center
Lotz, Anja; Kinder, Annette
2006-01-01
In this article, the authors report 2 experiments that investigated the sources of information used in transfer and nontransfer tasks in artificial grammar learning. Multiple regression analyses indicated that 2 types of information about repeating elements were crucial for performance in both tasks: information about the repetition of adjacent…
Obtaining Predictions from Models Fit to Multiply Imputed Data
ERIC Educational Resources Information Center
Miles, Andrew
2016-01-01
Obtaining predictions from regression models fit to multiply imputed data can be challenging because treatments of multiple imputation seldom give clear guidance on how predictions can be calculated, and because available software often does not have built-in routines for performing the necessary calculations. This research note reviews how…
Batistatou, Evridiki; McNamee, Roseanne
2012-12-10
It is known that measurement error leads to bias in assessing exposure effects, which can however, be corrected if independent replicates are available. For expensive replicates, two-stage (2S) studies that produce data 'missing by design', may be preferred over a single-stage (1S) study, because in the second stage, measurement of replicates is restricted to a sample of first-stage subjects. Motivated by an occupational study on the acute effect of carbon black exposure on respiratory morbidity, we compare the performance of several bias-correction methods for both designs in a simulation study: an instrumental variable method (EVROS IV) based on grouping strategies, which had been recommended especially when measurement error is large, the regression calibration and the simulation extrapolation methods. For the 2S design, either the problem of 'missing' data was ignored or the 'missing' data were imputed using multiple imputations. Both in 1S and 2S designs, in the case of small or moderate measurement error, regression calibration was shown to be the preferred approach in terms of root mean square error. For 2S designs, regression calibration as implemented by Stata software is not recommended in contrast to our implementation of this method; the 'problematic' implementation of regression calibration although substantially improved with use of multiple imputations. The EVROS IV method, under a good/fairly good grouping, outperforms the regression calibration approach in both design scenarios when exposure mismeasurement is severe. Both in 1S and 2S designs with moderate or large measurement error, simulation extrapolation severely failed to correct for bias. Copyright © 2012 John Wiley & Sons, Ltd.
2012-01-01
Background Cognitive deficits and multiple psychoactive drug regimens are both common in patients treated for opioid-dependence. Therefore, we examined whether the cognitive performance of patients in opioid-substitution treatment (OST) is associated with their drug treatment variables. Methods Opioid-dependent patients (N = 104) who were treated either with buprenorphine or methadone (n = 52 in both groups) were given attention, working memory, verbal, and visual memory tests after they had been a minimum of six months in treatment. Group-wise results were analysed by analysis of variance. Predictors of cognitive performance were examined by hierarchical regression analysis. Results Buprenorphine-treated patients performed statistically significantly better in a simple reaction time test than methadone-treated ones. No other significant differences between groups in cognitive performance were found. In each OST drug group, approximately 10% of the attention performance could be predicted by drug treatment variables. Use of benzodiazepine medication predicted about 10% of performance variance in working memory. Treatment with more than one other psychoactive drug (than opioid or BZD) and frequent substance abuse during the past month predicted about 20% of verbal memory performance. Conclusions Although this study does not prove a causal relationship between multiple prescription drug use and poor cognitive functioning, the results are relevant for psychosocial recovery, vocational rehabilitation, and psychological treatment of OST patients. Especially for patients with BZD treatment, other treatment options should be actively sought. PMID:23121989
Tanaka, N; Kunihiro, Y; Kubo, M; Kawano, R; Oishi, K; Ueda, K; Gondo, T
2018-05-29
To identify characteristic high-resolution computed tomography (CT) findings for individual collagen vascular disease (CVD)-related interstitial pneumonias (IPs). The HRCT findings of 187 patients with CVD, including 55 patients with rheumatoid arthritis (RA), 50 with systemic sclerosis (SSc), 46 with polymyositis/dermatomyositis (PM/DM), 15 with mixed connective tissue disease, 11 with primary Sjögren's syndrome, and 10 with systemic lupus erythematosus, were evaluated. Lung parenchymal abnormalities were compared among CVDs using χ 2 test, Kruskal-Wallis test, and multiple logistic regression analysis. A CT-pathology correlation was performed in 23 patients. In RA-IP, honeycombing was identified as the significant indicator based on multiple logistic regression analyses. Traction bronchiectasis (81.8%) was further identified as the most frequent finding based on χ 2 test. In SSc IP, lymph node enlargement and oesophageal dilatation were identified as the indicators based on multiple logistic regression analyses, and ground-glass opacity (GGO) was the most extensive based on Kruskal-Wallis test, which reflects the higher frequency of the pathological nonspecific interstitial pneumonia (NSIP) pattern present in the CT-pathology correlation. In PM/DM IP, airspace consolidation and the absence of honeycombing were identified as the indicators based on multiple logistic regression analyses, and predominance of consolidation over GGO (32.6%) and predominant subpleural distribution of GGO/consolidation (41.3%) were further identified as the most frequent findings based on χ 2 test, which reflects the higher frequency of the pathological NSIP and/or the organising pneumonia patterns present in the CT-pathology correlation. Several characteristic high-resolution CT findings with utility for estimating underlying CVD were identified. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kasper, David; Cole, Jackson L.; Gardner, Cristilyn N.; Garver, Bethany; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.
2018-06-01
We present new multi-broadband transit photometry of HD 189733b observed with the Wyoming Infrared Observatory. With an ensemble of Sloan filter observations across multiple transits we have created an ultra-low resolution transmission spectrum to discern the nature of the exoplanet atmosphere. This data set exemplifies the capabilities of the 2.3 m observatory. The analysis was performed with a Markov-Chain Monte-Carlo method assisted by a Gaussian-processes regression model. These observations were taken as part of the University of Wyoming's 2017 Research Experience for Undergraduates (REU) and represent one of multiple hot Jupiter exoplanet targets for which we have transit event observations in multiple broadband filters.
ERIC Educational Resources Information Center
Song, Ji Hoon
2011-01-01
The purpose of this research was to examine the mediating roles of job autonomy and the quality of the leader-member relationship to explain the impact of organizational support on team performance. A total of 228 cases collected from Korean business organizations were used for data analysis. Hierarchical multiple regression, Type 1 SS-based…
A Powerful Test for Comparing Multiple Regression Functions.
Maity, Arnab
2012-09-01
In this article, we address the important problem of comparison of two or more population regression functions. Recently, Pardo-Fernández, Van Keilegom and González-Manteiga (2007) developed test statistics for simple nonparametric regression models: Y(ij) = θ(j)(Z(ij)) + σ(j)(Z(ij))∊(ij), based on empirical distributions of the errors in each population j = 1, … , J. In this paper, we propose a test for equality of the θ(j)(·) based on the concept of generalized likelihood ratio type statistics. We also generalize our test for other nonparametric regression setups, e.g, nonparametric logistic regression, where the loglikelihood for population j is any general smooth function [Formula: see text]. We describe a resampling procedure to obtain the critical values of the test. In addition, we present a simulation study to evaluate the performance of the proposed test and compare our results to those in Pardo-Fernández et al. (2007).
Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach
NASA Astrophysics Data System (ADS)
Bagirov, Adil M.; Mahmood, Arshad; Barton, Andrew
2017-05-01
This paper develops the Clusterwise Linear Regression (CLR) technique for prediction of monthly rainfall. The CLR is a combination of clustering and regression techniques. It is formulated as an optimization problem and an incremental algorithm is designed to solve it. The algorithm is applied to predict monthly rainfall in Victoria, Australia using rainfall data with five input meteorological variables over the period of 1889-2014 from eight geographically diverse weather stations. The prediction performance of the CLR method is evaluated by comparing observed and predicted rainfall values using four measures of forecast accuracy. The proposed method is also compared with the CLR using the maximum likelihood framework by the expectation-maximization algorithm, multiple linear regression, artificial neural networks and the support vector machines for regression models using computational results. The results demonstrate that the proposed algorithm outperforms other methods in most locations.
Predicting story goodness performance from cognitive measures following traumatic brain injury.
Lê, Karen; Coelho, Carl; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan
2012-05-01
This study examined the prediction of performance on measures of the Story Goodness Index (SGI; Lê, Coelho, Mozeiko, & Grafman, 2011) from executive function (EF) and memory measures following traumatic brain injury (TBI). It was hypothesized that EF and memory measures would significantly predict SGI outcomes. One hundred sixty-seven individuals with TBI participated in the study. Story retellings were analyzed using the SGI protocol. Three cognitive measures--Delis-Kaplan Executive Function System (D-KEFS; Delis, Kaplan, & Kramer, 2001) Sorting Test, Wechsler Memory Scale--Third Edition (WMS-III; Wechsler, 1997) Working Memory Primary Index (WMI), and WMS-III Immediate Memory Primary Index (IMI)--were entered into a multiple linear regression model for each discourse measure. Two sets of regression analyses were performed, the first with the Sorting Test as the first predictor and the second with it as the last. The first set of regression analyses identified the Sorting Test and IMI as the only significant predictors of performance on measures of the SGI. The second set identified all measures as significant predictors when evaluating each step of the regression function. The cognitive variables predicted performance on the SGI measures, although there were differences in the amount of explained variance. The results (a) suggest that storytelling ability draws on a number of underlying skills and (b) underscore the importance of using discrete cognitive tasks rather than broad cognitive indices to investigate the cognitive substrates of discourse.
NASA Astrophysics Data System (ADS)
Kiss, I.; Alexa, V.; Serban, S.; Rackov, M.; Čavić, M.
2018-01-01
The cast hipereutectoid steel (usually named Adamite) is a roll manufacturing destined material, having mechanical, chemical properties and Carbon [C] content of which stands between steelandiron, along-withitsalloyelements such as Nickel [Ni], Chrome [Cr], Molybdenum [Mo] and/or other alloy elements. Adamite Rolls are basically alloy steel rolls (a kind of high carbon steel) having hardness ranging from 40 to 55 degrees Shore C, with Carbon [C] percentage ranging from 1.35% until to 2% (usually between 1.2˜2.3%), the extra Carbon [C] and the special alloying element giving an extra wear resistance and strength. First of all the Adamite roll’s prominent feature is the small variation in hardness of the working surface, and has a good abrasion resistance and bite performance. This paper reviews key aspects of roll material properties and presents an analysis of the influences of chemical composition upon the mechanical properties (hardness) of the cast hipereutectoid steel rolls (Adamite). Using the multiple regression analysis (the double and triple regression equations), some mathematical correlations between the cast hipereutectoid steel rolls’ chemical composition and the obtained hardness are presented. In this work several results and evidence obtained by actual experiments are presented. Thus, several variation boundaries for the chemical composition of cast hipereutectoid steel rolls, in view the obtaining the proper values of the hardness, are revealed. For the multiple regression equations, correlation coefficients and graphical representations the software Matlab was used.
Tighe, Elizabeth L.; Schatschneider, Christopher
2015-01-01
The purpose of this study was to investigate the joint and unique contributions of morphological awareness and vocabulary knowledge at five reading comprehension levels in Adult Basic Education (ABE) students. We introduce the statistical technique of multiple quantile regression, which enabled us to assess the predictive utility of morphological awareness and vocabulary knowledge at multiple points (quantiles) along the continuous distribution of reading comprehension. To demonstrate the efficacy of our multiple quantile regression analysis, we compared and contrasted our results with a traditional multiple regression analytic approach. Our results indicated that morphological awareness and vocabulary knowledge accounted for a large portion of the variance (82-95%) in reading comprehension skills across all quantiles. Morphological awareness exhibited the greatest unique predictive ability at lower levels of reading comprehension whereas vocabulary knowledge exhibited the greatest unique predictive ability at higher levels of reading comprehension. These results indicate the utility of using multiple quantile regression to assess trajectories of component skills across multiple levels of reading comprehension. The implications of our findings for ABE programs are discussed. PMID:25351773
Almalik, Osama; Nijhuis, Michiel B; van den Heuvel, Edwin R
2014-01-01
Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear regression analysis combining all data from multiple storage conditions was recently proposed in the literature when variances are homogeneous across storage conditions. The combined analysis is expected to perform better than the separate analysis per storage condition, since pooling data would lead to an improved estimate of the variation and higher numbers of degrees of freedom, but this is not evident for shelf-life estimation. Indeed, the two approaches treat the observed initial batch results, the intercepts in the model, and poolability of batches differently, which may eliminate or reduce the expected advantage of the combined approach with respect to the separate approach. Therefore, a simulation study was performed to compare the distribution of simulated shelf-life estimates on several characteristics between the two approaches and to quantify the difference in shelf-life estimates. In general, the combined statistical analysis does estimate the true shelf life more consistently and precisely than the analysis per storage condition, but it did not outperform the separate analysis in all circumstances.
Composite marginal quantile regression analysis for longitudinal adolescent body mass index data.
Yang, Chi-Chuan; Chen, Yi-Hau; Chang, Hsing-Yi
2017-09-20
Childhood and adolescenthood overweight or obesity, which may be quantified through the body mass index (BMI), is strongly associated with adult obesity and other health problems. Motivated by the child and adolescent behaviors in long-term evolution (CABLE) study, we are interested in individual, family, and school factors associated with marginal quantiles of longitudinal adolescent BMI values. We propose a new method for composite marginal quantile regression analysis for longitudinal outcome data, which performs marginal quantile regressions at multiple quantile levels simultaneously. The proposed method extends the quantile regression coefficient modeling method introduced by Frumento and Bottai (Biometrics 2016; 72:74-84) to longitudinal data accounting suitably for the correlation structure in longitudinal observations. A goodness-of-fit test for the proposed modeling is also developed. Simulation results show that the proposed method can be much more efficient than the analysis without taking correlation into account and the analysis performing separate quantile regressions at different quantile levels. The application to the longitudinal adolescent BMI data from the CABLE study demonstrates the practical utility of our proposal. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Chung, Yuh-Jin; Jung, Woo-Chul
2017-01-01
In the distribution service industry, sales people often experience multiple occupational stressors such as excessive emotional labor, workplace mistreatment, and job insecurity. The present study aimed to explore the associations of these stressors with depressive symptoms among women sales workers at a clothing shopping mall in Korea. A cross sectional study was conducted on 583 women who consist of clothing sales workers and manual workers using a structured questionnaire to assess demographic factors, occupational stressors, and depressive symptoms. Multiple regression analyses were performed to explore the association of these stressors with depressive symptoms. Scores for job stress subscales such as job demand, job control, and job insecurity were higher among sales workers than among manual workers (p < 0.01). The multiple regression analysis revealed the association between occupation and depressive symptoms after controlling for age, educational level, cohabiting status, and occupational stressors (sβ = 0.08, p = 0.04). A significant interaction effect between occupation and social support was also observed in this model (sβ = −0.09, p = 0.02). The multiple regression analysis stratified by occupation showed that job demand, job insecurity, and workplace mistreatment were significantly associated with depressive symptoms in both occupations (p < 0.05), although the strength of statistical associations were slightly different. We found negative associations of social support (sβ = −0.22, p < 0.01) and emotional effort (sβ = −0.17, p < 0.01) with depressive symptoms in another multiple regression model for sales workers. Emotional dissonance (sβ = 0.23, p < 0.01) showed positive association with depressive symptoms in this model. The result of this study indicated that reducing occupational stressors would be effective for women sales workers to prevent depressive symptoms. In particular, promoting social support could be the most effective way to promote women sales workers’ mental health. PMID:29168777
Chung, Yuh-Jin; Jung, Woo-Chul; Kim, Hyunjoo; Cho, Seong-Sik
2017-11-23
In the distribution service industry, sales people often experience multiple occupational stressors such as excessive emotional labor, workplace mistreatment, and job insecurity. The present study aimed to explore the associations of these stressors with depressive symptoms among women sales workers at a clothing shopping mall in Korea. A cross sectional study was conducted on 583 women who consist of clothing sales workers and manual workers using a structured questionnaire to assess demographic factors, occupational stressors, and depressive symptoms. Multiple regression analyses were performed to explore the association of these stressors with depressive symptoms. Scores for job stress subscales such as job demand, job control, and job insecurity were higher among sales workers than among manual workers ( p < 0.01). The multiple regression analysis revealed the association between occupation and depressive symptoms after controlling for age, educational level, cohabiting status, and occupational stressors (sβ = 0.08, p = 0.04). A significant interaction effect between occupation and social support was also observed in this model (sβ = -0.09, p = 0.02). The multiple regression analysis stratified by occupation showed that job demand, job insecurity, and workplace mistreatment were significantly associated with depressive symptoms in both occupations ( p < 0.05), although the strength of statistical associations were slightly different. We found negative associations of social support (sβ = -0.22, p < 0.01) and emotional effort (sβ = -0.17, p < 0.01) with depressive symptoms in another multiple regression model for sales workers. Emotional dissonance (sβ = 0.23, p < 0.01) showed positive association with depressive symptoms in this model. The result of this study indicated that reducing occupational stressors would be effective for women sales workers to prevent depressive symptoms. In particular, promoting social support could be the most effective way to promote women sales workers' mental health.
Quality of search strategies reported in systematic reviews published in stereotactic radiosurgery.
Faggion, Clovis M; Wu, Yun-Chun; Tu, Yu-Kang; Wasiak, Jason
2016-06-01
Systematic reviews require comprehensive literature search strategies to avoid publication bias. This study aimed to assess and evaluate the reporting quality of search strategies within systematic reviews published in the field of stereotactic radiosurgery (SRS). Three electronic databases (Ovid MEDLINE(®), Ovid EMBASE(®) and the Cochrane Library) were searched to identify systematic reviews addressing SRS interventions, with the last search performed in October 2014. Manual searches of the reference lists of included systematic reviews were conducted. The search strategies of the included systematic reviews were assessed using a standardized nine-question form based on the Cochrane Collaboration guidelines and Assessment of Multiple Systematic Reviews checklist. Multiple linear regression analyses were performed to identify the important predictors of search quality. A total of 85 systematic reviews were included. The median quality score of search strategies was 2 (interquartile range = 2). Whilst 89% of systematic reviews reported the use of search terms, only 14% of systematic reviews reported searching the grey literature. Multiple linear regression analyses identified publication year (continuous variable), meta-analysis performance and journal impact factor (continuous variable) as predictors of higher mean quality scores. This study identified the urgent need to improve the quality of search strategies within systematic reviews published in the field of SRS. This study is the first to address how authors performed searches to select clinical studies for inclusion in their systematic reviews. Comprehensive and well-implemented search strategies are pivotal to reduce the chance of publication bias and consequently generate more reliable systematic review findings.
A nonparametric multiple imputation approach for missing categorical data.
Zhou, Muhan; He, Yulei; Yu, Mandi; Hsu, Chiu-Hsieh
2017-06-06
Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness) probabilities. We propose a nearest-neighbour multiple imputation approach to impute a missing at random categorical outcome and to estimate the proportion of each category. The donor set for imputation is formed by measuring distances between each missing value with other non-missing values. The distance function is calculated based on a predictive score, which is derived from two working models: one fits a multinomial logistic regression for predicting the missing categorical outcome (the outcome model) and the other fits a logistic regression for predicting missingness probabilities (the missingness model). A weighting scheme is used to accommodate contributions from two working models when generating the predictive score. A missing value is imputed by randomly selecting one of the non-missing values with the smallest distances. We conduct a simulation to evaluate the performance of the proposed method and compare it with several alternative methods. A real-data application is also presented. The simulation study suggests that the proposed method performs well when missingness probabilities are not extreme under some misspecifications of the working models. However, the calibration estimator, which is also based on two working models, can be highly unstable when missingness probabilities for some observations are extremely high. In this scenario, the proposed method produces more stable and better estimates. In addition, proper weights need to be chosen to balance the contributions from the two working models and achieve optimal results for the proposed method. We conclude that the proposed multiple imputation method is a reasonable approach to dealing with missing categorical outcome data with more than two levels for assessing the distribution of the outcome. In terms of the choices for the working models, we suggest a multinomial logistic regression for predicting the missing outcome and a binary logistic regression for predicting the missingness probability.
NASA Astrophysics Data System (ADS)
Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari
2018-01-01
Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg/day) in Jenderan catchment area.
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Zhou, Qing-he; Xiao, Wang-pin; Shen, Ying-yan
2014-07-01
The spread of spinal anesthesia is highly unpredictable. In patients with increased abdominal girth and short stature, a greater cephalad spread after a fixed amount of subarachnoidally administered plain bupivacaine is often observed. We hypothesized that there is a strong correlation between abdominal girth/vertebral column length and cephalad spread. Age, weight, height, body mass index, abdominal girth, and vertebral column length were recorded for 114 patients. The L3-L4 interspace was entered, and 3 mL of 0.5% plain bupivacaine was injected into the subarachnoid space. The cephalad spread (loss of temperature sensation and loss of pinprick discrimination) was assessed 30 minutes after intrathecal injection. Linear regression analysis was performed for age, weight, height, body mass index, abdominal girth, vertebral column length, and the spread of spinal anesthesia, and the combined linear contribution of age up to 55 years, weight, height, abdominal girth, and vertebral column length was tested by multiple regression analysis. Linear regression analysis showed that there was a significant univariate correlation among all 6 patient characteristics evaluated and the spread of spinal anesthesia (all P < 0.039) except for age and loss of temperature sensation (P > 0.068). Multiple regression analysis showed that abdominal girth and the vertebral column length were the key determinants for spinal anesthesia spread (both P < 0.0001), whereas age, weight, and height could be omitted without changing the results (all P > 0.059, all 95% confidence limits < 0.372). Multiple regression analysis revealed that the combination of a patient's 5 general characteristics, especially abdominal girth and vertebral column length, had a high predictive value for the spread of spinal anesthesia after a given dose of plain bupivacaine.
Physiological and anthropometric determinants of rhythmic gymnastics performance.
Douda, Helen T; Toubekis, Argyris G; Avloniti, Alexandra A; Tokmakidis, Savvas P
2008-03-01
To identify the physiological and anthropometric predictors of rhythmic gymnastics performance, which was defined from the total ranking score of each athlete in a national competition. Thirty-four rhythmic gymnasts were divided into 2 groups, elite (n = 15) and nonelite (n = 19), and they underwent a battery of anthropometric, physical fitness, and physiological measurements. The principal-components analysis extracted 6 components: anthropometric, flexibility, explosive strength, aerobic capacity, body dimensions, and anaerobic metabolism. These were used in a simultaneous multiple-regression procedure to determine which best explain the variance in rhythmic gymnastics performance. Based on the principal-component analysis, the anthropometric component explained 45% of the total variance, flexibility 12.1%, explosive strength 9.2%, aerobic capacity 7.4%, body dimensions 6.8%, and anaerobic metabolism 4.6%. Components of anthropometric (r = .50) and aerobic capacity (r = .49) were significantly correlated with performance (P < .01). When the multiple-regression model-y = 10.708 + (0.0005121 x VO2max) + (0.157 x arm span) + (0.814 x midthigh circumference) - (0.293 x body mass)-was applied to elite gymnasts, 92.5% of the variation was explained by VO2max (58.9%), arm span (12%), midthigh circumference (13.1%), and body mass (8.5%). Selected anthropometric characteristics, aerobic power, flexibility, and explosive strength are important determinants of successful performance. These findings might have practical implications for both training and talent identification in rhythmic gymnastics.
ERIC Educational Resources Information Center
Anderson, Carolyn J.; Verkuilen, Jay; Peyton, Buddy L.
2010-01-01
Survey items with multiple response categories and multiple-choice test questions are ubiquitous in psychological and educational research. We illustrate the use of log-multiplicative association (LMA) models that are extensions of the well-known multinomial logistic regression model for multiple dependent outcome variables to reanalyze a set of…
Cox regression analysis with missing covariates via nonparametric multiple imputation.
Hsu, Chiu-Hsieh; Yu, Mandi
2018-01-01
We consider the situation of estimating Cox regression in which some covariates are subject to missing, and there exists additional information (including observed event time, censoring indicator and fully observed covariates) which may be predictive of the missing covariates. We propose to use two working regression models: one for predicting the missing covariates and the other for predicting the missing probabilities. For each missing covariate observation, these two working models are used to define a nearest neighbor imputing set. This set is then used to non-parametrically impute covariate values for the missing observation. Upon the completion of imputation, Cox regression is performed on the multiply imputed datasets to estimate the regression coefficients. In a simulation study, we compare the nonparametric multiple imputation approach with the augmented inverse probability weighted (AIPW) method, which directly incorporates the two working models into estimation of Cox regression, and the predictive mean matching imputation (PMM) method. We show that all approaches can reduce bias due to non-ignorable missing mechanism. The proposed nonparametric imputation method is robust to mis-specification of either one of the two working models and robust to mis-specification of the link function of the two working models. In contrast, the PMM method is sensitive to misspecification of the covariates included in imputation. The AIPW method is sensitive to the selection probability. We apply the approaches to a breast cancer dataset from Surveillance, Epidemiology and End Results (SEER) Program.
Ruedl, Gerhard; Greier, Klaus; Kirschner, Werner; Kopp, Martin
2016-01-01
The increasing prevalence of overweight and obesity among children is often associated with motor deficits. Motor performance among children partly depends on modifiable factors, for example, weight status, electronic media use, sports club participation, and on nonmodifiable factors, for example, sex, age, migration background, or socio-economic status. To evaluate factors associated with motor performance among overweight and nonoverweight Tyrolean primary school children. Height, weight, and sport motor performance of primary school children were measured using the German motor performance test DMT 6-18. In addition, children were asked about migration background, sports club participation, and electronic media use in their room. A total of 304 children (48.7% girls) with a mean age of 8.0 ± 1.2 years were tested. In total, 61 (20.1%) children were overweight or obese. Regarding motor performance, nonoverweight children showed significantly higher total z-scores (106.8 ± 5.7 vs. 102.4 ± 6.8). For the total cohort, results of the multiple linear regression analysis (R (2) = 0.20) revealed that factors male sex (β = 0.12), nonoverweight children (β = 0.28), higher school grade (β = 0.23), sports club participation (β = 0.18),and > 2 weekly lessons of physical education (β = 0.26) were associated with an increased motor performance. For nonoverweight children results of the multiple linear regression analysis (R (2) = 0.09) found that a higher school grade (β = 0.17), sports club participation (β = 0.16),and more than 2 weekly lessons of physical education (β = 0.22) were associated with an increased motor performance. For the overweight children, results of the multiple linear regression analysis (R (2) = 0 .43) showed that no migration background (β = 0.23), a higher school grade (β = 0.55), sports club participation (β = 0.33) and more than 2 weekly lessons of physical education (β = 0.48) were associated with an increased motor performance. Regarding modifiable factors, motor performance among overweight and nonoverweight children is strongly associated with a higher number of weekly lessons in physical education. Therefore, daily lessons in physical education are strongly recommended to improve motor performance especially among overweight primary school children.
NASA Astrophysics Data System (ADS)
Ibrahim, Elsy; Kim, Wonkook; Crawford, Melba; Monbaliu, Jaak
2017-02-01
Remote sensing has been successfully utilized to distinguish and quantify sediment properties in the intertidal environment. Classification approaches of imagery are popular and powerful yet can lead to site- and case-specific results. Such specificity creates challenges for temporal studies. Thus, this paper investigates the use of regression models to quantify sediment properties instead of classifying them. Two regression approaches, namely multiple regression (MR) and support vector regression (SVR), are used in this study for the retrieval of bio-physical variables of intertidal surface sediment of the IJzermonding, a Belgian nature reserve. In the regression analysis, mud content, chlorophyll a concentration, organic matter content, and soil moisture are estimated using radiometric variables of two airborne sensors, namely airborne hyperspectral sensor (AHS) and airborne prism experiment (APEX) and and using field hyperspectral acquisitions by analytical spectral device (ASD). The performance of the two regression approaches is best for the estimation of moisture content. SVR attains the highest accuracy without feature reduction while MR achieves good results when feature reduction is carried out. Sediment property maps are successfully obtained using the models and hyperspectral imagery where SVR used with all bands achieves the best performance. The study also involves the extraction of weights identifying the contribution of each band of the images in the quantification of each sediment property when MR and principal component analysis are used.
Learning accurate and interpretable models based on regularized random forests regression
2014-01-01
Background Many biology related research works combine data from multiple sources in an effort to understand the underlying problems. It is important to find and interpret the most important information from these sources. Thus it will be beneficial to have an effective algorithm that can simultaneously extract decision rules and select critical features for good interpretation while preserving the prediction performance. Methods In this study, we focus on regression problems for biological data where target outcomes are continuous. In general, models constructed from linear regression approaches are relatively easy to interpret. However, many practical biological applications are nonlinear in essence where we can hardly find a direct linear relationship between input and output. Nonlinear regression techniques can reveal nonlinear relationship of data, but are generally hard for human to interpret. We propose a rule based regression algorithm that uses 1-norm regularized random forests. The proposed approach simultaneously extracts a small number of rules from generated random forests and eliminates unimportant features. Results We tested the approach on some biological data sets. The proposed approach is able to construct a significantly smaller set of regression rules using a subset of attributes while achieving prediction performance comparable to that of random forests regression. Conclusion It demonstrates high potential in aiding prediction and interpretation of nonlinear relationships of the subject being studied. PMID:25350120
ERIC Educational Resources Information Center
Quirk, Matthew; Dowdy, Erin; Goldstein, Ariel; Carnazzo, Katherine
2017-01-01
This study is a brief psychometric report examining the Kindergarten Student Entrance Profile (KSEP). Multiple regression models were tested examining associations between kindergarten teachers' ratings of children's social-emotional and cognitive readiness during the first month of kindergarten with academic and social-emotional outcomes almost 6…
The Impact of School Community Partnerships on the Success of Elementary Schools
ERIC Educational Resources Information Center
Grady, Kevin Richard
2010-01-01
This study employed multiple regression modeling to examine the success of 63 California elementary schools in terms of (a) school-community social capital, (b) student academic performance, (c) student behavioral incident rate, and (d) teacher turnover rate with respect to the extent of school-community partnership programs. Also of interest to…
Student Physical Education Teachers' Well-Being: Contribution of Basic Psychological Needs
ERIC Educational Resources Information Center
Ciyin, Gülten; Erturan-Ilker, Gökçe
2014-01-01
This study adopted Self-Determination Theory tenets and aimed to explore whether student physical education (PE) teachers' satisfaction of the three basic psychological needs independently predicts well-being. 267 Turkish student PE teachers were recruited for the study. Two stepwise multiple regression analysis was performed in which each outcome…
A Course Specific Perspective in the Prediction of Academic Success.
ERIC Educational Resources Information Center
Beaulieu, R. P.
1990-01-01
Students (N=94) enrolled in a senior-level management course over six semesters were used to investigate the ability of four measures from two industrial tests to predict course performance. The resulting multiple regression equation with four predictors could accurately predict achievement of males, but not of females. (Author/TE)
Gender/racial Differences in Jock Identity, Dating, and Adolescent Sexual Risk.
ERIC Educational Resources Information Center
Miller, Kathleen E.; Farrell, Michael P.; Barnes, Grace M.; Melnick, Merrill J.; Sabo, Don
2005-01-01
Despite recent declines in overall sexual activity, sexual risk-taking remains a substantial danger to US youth. Existing research points to athletic participation as a promising venue for reducing these risks. Linear regressions and multiple analyses of covariance were performed on a longitudinal sample of nearly 600 Western New York adolescents…
Assessing wildfire risks at multiple spatial scales
Justin Fitch
2008-01-01
In continuation of the efforts to advance wildfire science and develop tools for wildland fire managers, a spatial wildfire risk assessment was carried out using Classification and Regression Tree analysis (CART) and Geographic Information Systems (GIS). The analysis was performed at two scales. The small-scale assessment covered the entire state of New Mexico, while...
Optimal design application on the advanced aeroelastic rotor blade
NASA Technical Reports Server (NTRS)
Wei, F. S.; Jones, R.
1985-01-01
The vibration and performance optimization procedure using regression analysis was successfully applied to an advanced aeroelastic blade design study. The major advantage of this regression technique is that multiple optimizations can be performed to evaluate the effects of various objective functions and constraint functions. The data bases obtained from the rotorcraft flight simulation program C81 and Myklestad mode shape program are analytically determined as a function of each design variable. This approach has been verified for various blade radial ballast weight locations and blade planforms. This method can also be utilized to ascertain the effect of a particular cost function which is composed of several objective functions with different weighting factors for various mission requirements without any additional effort.
Kelly, Ronald R; Gaustad, Martha G
2007-01-01
This study of deaf college students examined specific relationships between their mathematics performance and their assessed skills in reading, language, and English morphology. Simple regression analyses showed that deaf college students' language proficiency scores, reading grade level, and morphological knowledge regarding word segmentation and meaning were all significantly correlated with both the ACT Mathematics Subtest and National Technical Institute for the Deaf (NTID) Mathematics Placement Test scores. Multiple regression analyses identified the best combination from among these potential independent predictors of students' performance on both the ACT and NTID mathematics tests. Additionally, the participating deaf students' grades in their college mathematics courses were significantly and positively associated with their reading grade level and their knowledge of morphological components of words.
Classification of independent components of EEG into multiple artifact classes.
Frølich, Laura; Andersen, Tobias S; Mørup, Morten
2015-01-01
In this study, we aim to automatically identify multiple artifact types in EEG. We used multinomial regression to classify independent components of EEG data, selecting from 65 spatial, spectral, and temporal features of independent components using forward selection. The classifier identified neural and five nonneural types of components. Between subjects within studies, high classification performances were obtained. Between studies, however, classification was more difficult. For neural versus nonneural classifications, performance was on par with previous results obtained by others. We found that automatic separation of multiple artifact classes is possible with a small feature set. Our method can reduce manual workload and allow for the selective removal of artifact classes. Identifying artifacts during EEG recording may be used to instruct subjects to refrain from activity causing them. Copyright © 2014 Society for Psychophysiological Research.
Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi
2013-09-01
Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.
Efficient Regressions via Optimally Combining Quantile Information*
Zhao, Zhibiao; Xiao, Zhijie
2014-01-01
We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér-Rao lower bound under appropriate conditions. In the case of non-regular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods. PMID:25484481
Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression
ERIC Educational Resources Information Center
Beckstead, Jason W.
2012-01-01
The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…
General Nature of Multicollinearity in Multiple Regression Analysis.
ERIC Educational Resources Information Center
Liu, Richard
1981-01-01
Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)
1986-09-01
OF REPORT Approved for public release; distribution 2b DECLASSIFICATION /DOWNGRADING SCHEDULE is unlimited. 4 PERFORMING ORGANIZATION REPORT NUMBER(S...S MONITORING ORGANIZATION REPORT NUMBER(S) 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If applicable...ORGAIZATION (If applicable) 8c ADDRESS(Ciry, State, ard ZIPCode) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO INO NO ACCESSION
ERIC Educational Resources Information Center
Astrom, Raven L.; Wadsworth, Sally J.; Olson, Richard K.; Willcutt, Erik G.; DeFries, John C.
2012-01-01
Reading performance data from 254 pairs of identical (MZ) and 420 pairs of fraternal (DZ) twins, 8.0 to 20.0 years of age, were subjected to multiple regression analyses. An extension of the DeFries-Fulker (DF) analysis (DeFries & Fulker, 1985, 1988) that facilitated inclusion of data from 303 of their nontwin siblings was employed. In addition to…
Sample size determination for logistic regression on a logit-normal distribution.
Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance
2017-06-01
Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.
Ryu, Hosihn; Moon, Jihyeon; Jung, Jiyeon
2018-06-14
This study examined the influence of health behaviors and occupational stress on the prediabetic state of male office workers, and identified related risks and influencing factors. The study used a cross-sectional design and performed an integrative analysis on data from regular health checkups, health questionnaires, and a health behavior-related survey of employees of a company, using Spearman’s correlation coefficients and multiple logistic regression analysis. The results showed significant relationships of prediabetic state with health behaviors and occupational stress. Among health behaviors, a diet without vegetables and fruits (Odds Ratio (OR) = 3.74, 95% Confidence Interval (CI) = 1.93⁻7.66) was associated with a high risk of prediabetic state. In the subscales on occupational stress, organizational system in the 4th quartile (OR = 4.83, 95% CI = 2.40⁻9.70) was significantly associated with an increased likelihood of prediabetic state. To identify influencing factors of prediabetic state, the multiple logistic regression was performed using regression models. The results showed that dietary habits (β = 1.20, p = 0.002), total occupational stress score (β = 1.33, p = 0.024), and organizational system (β = 1.13, p = 0.009) were significant influencing factors. The present findings indicate that active interventions are needed at workplace for the systematic and comprehensive management of health behaviors and occupational stress that influence prediabetic state of office workers.
Rębacz-Maron, Ewa; Parafiniuk, Mirosław
2014-01-01
The aim of this paper was to examine the extent to which socioeconomic factors, anthropological data and somatic indices influenced the results of spirometric measurements (FEV1 and FVC) in Tanzanian youth. The population studied were young black Bantu men aged 12.8-24.0 years. Analysis was performed for the whole data set (n = 255), as well as separately for two age groups: under 17.5 years (n = 168) and 17.5 + (n = 87). A backward stepwise multiple regression analysis was performed for FEV1 and FVC as dependent variables on socioeconomic and anthropometric data. Multiple regression analysis for the whole group revealed that the socioeconomic and anthropometric data under analysis accounted for 38% of the variation in FEV1. In addition the analysis demonstrated that 34% of the variation in FVC could be accounted for by the variables used in the regression. A significant impact in explaining the variability of FVC was exhibited by the thorax mobility, financial situation of the participants and Pignet-Verwaecka Index. Analysis of the data indicates the significant role of selected socio-economic factors on the development of the biological specimens investigated. There were no perceptible pathologies, and the results can be treated as a credible interpretation of the influence exerted by the environment in which the teenagers under study grew up.
Tighe, Elizabeth L; Schatschneider, Christopher
2016-07-01
The purpose of this study was to investigate the joint and unique contributions of morphological awareness and vocabulary knowledge at five reading comprehension levels in adult basic education (ABE) students. We introduce the statistical technique of multiple quantile regression, which enabled us to assess the predictive utility of morphological awareness and vocabulary knowledge at multiple points (quantiles) along the continuous distribution of reading comprehension. To demonstrate the efficacy of our multiple quantile regression analysis, we compared and contrasted our results with a traditional multiple regression analytic approach. Our results indicated that morphological awareness and vocabulary knowledge accounted for a large portion of the variance (82%-95%) in reading comprehension skills across all quantiles. Morphological awareness exhibited the greatest unique predictive ability at lower levels of reading comprehension whereas vocabulary knowledge exhibited the greatest unique predictive ability at higher levels of reading comprehension. These results indicate the utility of using multiple quantile regression to assess trajectories of component skills across multiple levels of reading comprehension. The implications of our findings for ABE programs are discussed. © Hammill Institute on Disabilities 2014.
Stepwise versus Hierarchical Regression: Pros and Cons
ERIC Educational Resources Information Center
Lewis, Mitzi
2007-01-01
Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…
O'Brien, Celia Laird; Thomas, John X; Green, Marianne M
2018-01-01
Medical educators struggle to find effective ways to assess essential competencies such as communication, professionalism, and teamwork. Portfolio-based assessment provides one method of addressing this problem by allowing faculty reviewers to judge performance, as based on a longitudinal record of student behavior. At the Feinberg School of Medicine, the portfolio system measures behavioral competence using multiple assessments collected over time. This study examines whether a preclerkship portfolio review is a valid method of identifying problematic student behavior affecting later performance in clerkships. The authors divided students into two groups based on a summative preclerkship portfolio review in 2014: students who had concerning behavior in one or more competencies and students progressing satisfactorily. They compared how students in these groups later performed on two clerkship outcomes as of October 2015: final grades in required clerkships, and performance on a clerkship clinical composite score. They used Mann-Whitney tests and multiple linear regression to examine the relationship between portfolio review results and clerkship outcomes. They used USMLE Step 1 to control for knowledge acquisition. Students with concerning behavior preclerkship received significantly lower clerkship grades than students progressing satisfactorily (P = .002). They also scored significantly lower on the clinical composite score (P < .001). Regression analysis indicated concerning behavior was associated with lower clinical composite scores, even after controlling for knowledge acquisition. The results show a preclerkship portfolio review can identify behaviors that impact clerkship performance. A comprehensive portfolio system is a valid way to measure behavioral competencies.
Kwon, Jin-Woo; Choi, Jin A; La, Tae Yoon
2016-11-01
The aim of this article was to assess the associations of serum 25-hydroxyvitamin D [25(OH)D] and daily sun exposure time with myopia in Korean adults.This study is based on the Korea National Health and Nutrition Examination Survey (KNHANES) of Korean adults in 2010-2012; multiple logistic regression analyses were performed to examine the associations of serum 25(OH)D levels and daily sun exposure time with myopia, defined as spherical equivalent ≤-0.5D, after adjustment for age, sex, household income, body mass index (BMI), exercise, intraocular pressure (IOP), and education level. Also, multiple linear regression analyses were performed to examine the relationship between serum 25(OH)D levels with spherical equivalent after adjustment for daily sun exposure time in addition to the confounding factors above.Between the nonmyopic and myopic groups, spherical equivalent, age, IOP, BMI, waist circumference, education level, household income, and area of residence differed significantly (all P < 0.05). Compared with subjects with daily sun exposure time <2 hour, subjects with sun exposure time ≥2 to <5 hour, and those with sun exposure time ≥5 hour had significantly less myopia (P < 0.001). In addition, compared with subjects were categorized into quartiles of serum 25(OH)D, the higher quartiles had gradually lower prevalences of myopia after adjustment for confounding factors (P < 0.001). In multiple linear regression analyses, spherical equivalent was significantly associated with serum 25(OH)D concentration after adjustment for confounding factors (P = 0.002).Low serum 25(OH)D levels and shorter daily sun exposure time may be independently associated with a high prevalence of myopia in Korean adults. These data suggest a direct role for vitamin D in the development of myopia.
Memory complaints in epilepsy: An examination of the role of mood and illness perceptions.
Tinson, Deborah; Crockford, Christopher; Gharooni, Sara; Russell, Helen; Zoeller, Sophie; Leavy, Yvonne; Lloyd, Rachel; Duncan, Susan
2018-03-01
The study examined the role of mood and illness perceptions in explaining the variance in the memory complaints of patients with epilepsy. Forty-four patients from an outpatient tertiary care center and 43 volunteer controls completed a formal assessment of memory and a verbal fluency test, as well as validated self-report questionnaires on memory complaints, mood, and illness perceptions. In hierarchical multiple regression analyses, objective memory test performance and verbal fluency did not contribute significantly to the variance in memory complaints for either patients or controls. In patients, illness perceptions and mood were highly correlated. Illness perceptions correlated more highly with memory complaints than mood and were therefore added to the multiple regression analysis. This accounted for an additional 25% of the variance, after controlling for objective memory test performance and verbal fluency, and the model was significant (model B). In order to compare with other studies, mood was added to a second model, instead of illness perceptions. This accounted for an additional 24% of the variance, which was again significant (model C). In controls, low mood accounted for 11% of the variance in memory complaints (model C2). A measure of illness perceptions was more highly correlated with the memory complaints of patients with epilepsy than with a measure of mood. In a hierarchical multiple regression model, illness perceptions accounted for 25% of the variance in memory complaints. Illness perceptions could provide useful information in a clinical investigation into the self-reported memory complaints of patients with epilepsy, alongside the assessment of mood and formal memory testing. Copyright © 2017 Elsevier Inc. All rights reserved.
Ventura, Cristina; Latino, Diogo A R S; Martins, Filomena
2013-01-01
The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
The effects of texting on driving performance in a driving simulator: the influence of driver age.
Rumschlag, Gordon; Palumbo, Theresa; Martin, Amber; Head, Doreen; George, Rajiv; Commissaris, Randall L
2015-01-01
Distracted driving is a significant contributor to motor vehicle accidents and fatalities, and texting is a particularly significant form of driver distraction that continues to be on the rise. The present study examined the influence of driver age (18-59 years old) and other factors on the disruptive effects of texting on simulated driving behavior. While 'driving' the simulator, subjects were engaged in a series of brief text conversations with a member of the research team. The primary dependent variable was the occurrence of Lane Excursions (defined as any time the center of the vehicle moved outside the directed driving lane, e.g., into the lane for oncoming traffic or onto the shoulder of the road), measured as (1) the percent of subjects that exhibited Lane Excursions, (2) the number of Lane Excursions occurring and (3) the percent of the texting time in Lane Excursions. Multiple Regression analyses were used to assess the influence of several factors on driving performance while texting, including text task duration, texting skill level (subject-reported), texting history (#texts/week), driver gender and driver age. Lane Excursions were not observed in the absence of texting, but 66% of subjects overall exhibited Lane Excursions while texting. Multiple Regression analysis for all subjects (N=50) revealed that text task duration was significantly correlated with the number of Lane Excursions, and texting skill level and driver age were significantly correlated with the percent of subjects exhibiting Lane Excursions. Driver gender was not significantly correlated with Lane Excursions during texting. Multiple Regression analysis of only highly skilled texters (N=27) revealed that driver age was significantly correlated with the number of Lane Excursions, the percent of subjects exhibiting Lane Excursions and the percent of texting time in Lane Excursions. In contrast, Multiple Regression analysis of those drivers who self-identified as not highly skilled texters (N=23) revealed that text task duration was significantly correlated with the number of Lane Excursions. The present studies confirm past reports that texting impairs driving simulator performance. Moreover, the present study demonstrates that for highly skilled texters, the effects of texting on driving are actually worse for older drivers. Given the increasing frequency of texting while driving within virtually all age groups, these data suggest that 'no texting while driving' education and public service messages need to be continued, and they should be expanded to target older drivers as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru
2017-09-01
Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Yamamoto, Saori; Shiga, Hiroshi
2018-03-13
To clarify the relationship between masticatory performance and oral health-related quality of life (OHRQoL) before and after complete denture treatment. Thirty patients wearing complete dentures were asked to chew a gummy jelly on their habitual chewing side, and the amount of glucose extraction during chewing was measured as the parameter of masticatory performance. Subjects were asked to answer the Oral Health Impact Profile (OHIP-J49) questionnaire, which consists of 49 questions related to oral problems. The total score of 49 question items along with individual domain scores within the seven domains (functional limitation, pain, psychological discomfort, physical disability, psychological disability, social disability and handicap) were calculated and used as the parameters of OHRQoL. These records were obtained before treatment and 3 months after treatment. Each parameter of masticatory performance and OHRQoL was compared before treatment and after treatment. The relationship between masticatory performance and OHRQoL was investigated, and a stepwise multiple linear regression analysis was performed. Both masticatory performance and OHRQoL were significantly improved after treatment. Furthermore, masticatory performance was significantly correlated with some parameters of OHRQoL. The stepwise multiple linear regression analysis showed functional limitation and pain as important factors affecting masticatory performance before treatment and functional limitation as important factors affecting masticatory performance after treatment. These results suggested that masticatory performance and OHRQoL are significantly improved after treatment and that there is a close relationship between the two. Moreover, functional limitation was found to be the most important factor affecting masticatory performance. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mfumu Kihumba, Antoine; Ndembo Longo, Jean; Vanclooster, Marnik
2016-03-01
A multivariate statistical modelling approach was applied to explain the anthropogenic pressure of nitrate pollution on the Kinshasa groundwater body (Democratic Republic of Congo). Multiple regression and regression tree models were compared and used to identify major environmental factors that control the groundwater nitrate concentration in this region. The analyses were made in terms of physical attributes related to the topography, land use, geology and hydrogeology in the capture zone of different groundwater sampling stations. For the nitrate data, groundwater datasets from two different surveys were used. The statistical models identified the topography, the residential area, the service land (cemetery), and the surface-water land-use classes as major factors explaining nitrate occurrence in the groundwater. Also, groundwater nitrate pollution depends not on one single factor but on the combined influence of factors representing nitrogen loading sources and aquifer susceptibility characteristics. The groundwater nitrate pressure was better predicted with the regression tree model than with the multiple regression model. Furthermore, the results elucidated the sensitivity of the model performance towards the method of delineation of the capture zones. For pollution modelling at the monitoring points, therefore, it is better to identify capture-zone shapes based on a conceptual hydrogeological model rather than to adopt arbitrary circular capture zones.
Abnormal dynamics of language in schizophrenia.
Stephane, Massoud; Kuskowski, Michael; Gundel, Jeanette
2014-05-30
Language could be conceptualized as a dynamic system that includes multiple interactive levels (sub-lexical, lexical, sentence, and discourse) and components (phonology, semantics, and syntax). In schizophrenia, abnormalities are observed at all language elements (levels and components) but the dynamic between these elements remains unclear. We hypothesize that the dynamics between language elements in schizophrenia is abnormal and explore how this dynamic is altered. We, first, investigated language elements with comparable procedures in patients and healthy controls. Second, using measures of reaction time, we performed multiple linear regression analyses to evaluate the inter-relationships among language elements and the effect of group on these relationships. Patients significantly differed from controls with respect to sub-lexical/lexical, lexical/sentence, and sentence/discourse regression coefficients. The intercepts of the regression slopes increased in the same order above (from lower to higher levels) in patients but not in controls. Regression coefficients between syntax and both sentence level and discourse level semantics did not differentiate patients from controls. This study indicates that the dynamics between language elements is abnormal in schizophrenia. In patients, top-down flow of linguistic information might be reduced, and the relationship between phonology and semantics but not between syntax and semantics appears to be altered. Published by Elsevier Ireland Ltd.
Satellite remote sensing of fine particulate air pollutants over Indian mega cities
NASA Astrophysics Data System (ADS)
Sreekanth, V.; Mahesh, B.; Niranjan, K.
2017-11-01
In the backdrop of the need for high spatio-temporal resolution data on PM2.5 mass concentrations for health and epidemiological studies over India, empirical relations between Aerosol Optical Depth (AOD) and PM2.5 mass concentrations are established over five Indian mega cities. These relations are sought to predict the surface PM2.5 mass concentrations from high resolution columnar AOD datasets. Current study utilizes multi-city public domain PM2.5 data (from US Consulate and Embassy's air monitoring program) and MODIS AOD, spanning for almost four years. PM2.5 is found to be positively correlated with AOD. Station-wise linear regression analysis has shown spatially varying regression coefficients. Similar analysis has been repeated by eliminating data from the elevated aerosol prone seasons, which has improved the correlation coefficient. The impact of the day to day variability in the local meteorological conditions on the AOD-PM2.5 relationship has been explored by performing a multiple regression analysis. A cross-validation approach for the multiple regression analysis considering three years of data as training dataset and one-year data as validation dataset yielded an R value of ∼0.63. The study was concluded by discussing the factors which can improve the relationship.
Enhance-Synergism and Suppression Effects in Multiple Regression
ERIC Educational Resources Information Center
Lipovetsky, Stan; Conklin, W. Michael
2004-01-01
Relations between pairwise correlations and the coefficient of multiple determination in regression analysis are considered. The conditions for the occurrence of enhance-synergism and suppression effects when multiple determination becomes bigger than the total of squared correlations of the dependent variable with the regressors are discussed. It…
Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Manh, Cuong Do
2015-01-01
The Mekong Delta is highly vulnerable to climate change and a dengue endemic area in Vietnam. This study aims to examine the association between climate factors and dengue incidence and to identify the best climate prediction model for dengue incidence in Can Tho city, the Mekong Delta area in Vietnam. We used three different regression models comprising: standard multiple regression model (SMR), seasonal autoregressive integrated moving average model (SARIMA), and Poisson distributed lag model (PDLM) to examine the association between climate factors and dengue incidence over the period 2003-2010. We validated the models by forecasting dengue cases for the period of January-December, 2011 using the mean absolute percentage error (MAPE). Receiver operating characteristics curves were used to analyze the sensitivity of the forecast of a dengue outbreak. The results indicate that temperature and relative humidity are significantly associated with changes in dengue incidence consistently across the model methods used, but not cumulative rainfall. The Poisson distributed lag model (PDLM) performs the best prediction of dengue incidence for a 6, 9, and 12-month period and diagnosis of an outbreak however the SARIMA model performs a better prediction of dengue incidence for a 3-month period. The simple or standard multiple regression performed highly imprecise prediction of dengue incidence. We recommend a follow-up study to validate the model on a larger scale in the Mekong Delta region and to analyze the possibility of incorporating a climate-based dengue early warning method into the national dengue surveillance system. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Abdul, Wares MD.; Ohtsu, Mizuki; Nakano, Kazuya; Haneishi, Hideaki
2018-02-01
We propose a method to estimate transcutaneous bilirubin, hemoglobin, and melanin based on the diffuse reflectance spectroscopy. In the proposed method, the Monte Carlo simulation-based multiple regression analysis for an absorbance spectrum in the visible wavelength region (460-590 nm) is used to specify the concentrations of bilirubin (Cbil), oxygenated hemoglobin (Coh), deoxygenated hemoglobin (Cdh), and melanin (Cm). Using the absorbance spectrum calculated from the measured diffuse reflectance spectrum as a response variable and the extinction coefficients of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Total hemoglobin concentration (Cth) and tissue oxygen saturation (StO2) are simply calculated from the oxygenated hemoglobin and deoxygenated hemoglobin. In vivo animal experiments with bile duct ligation in rats demonstrated that the estimated Cbil is increased after ligation of bile duct and reaches to around 20 mg/dl at 72 h after the onset of the ligation, which corresponds to the reference value of Cbil measured by a commercially available transcutaneous bilirubin meter. We also performed in vivo experiments with rats while varying the fraction of inspired oxygen (FiO2). Coh and Cdh decreased and increased, respectively, as FiO2 decreased. Consequently, StO2 was dramatically decreased. The results in this study indicate potential of the method for simultaneous evaluation of multiple chromophores in skin tissue.
Optimized multiple linear mappings for single image super-resolution
NASA Astrophysics Data System (ADS)
Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo
2017-12-01
Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.
Cross reactions elicited by serum 17-OH progesterone and 11-desoxycortisol in cortisol assays.
Brossaud, Julie; Barat, Pascal; Gualde, Dominique; Corcuff, Jean-Benoît
2009-09-01
Different pathophysiological situations such as congenital adrenal hyperplasia, adrenocortical carcinoma, metyrapone treatment, etc. elicit specificity problems with serum cortisol assay. We assayed cortisol using 2 kits and performed cross reaction studies as well as multiple regression analysis using 2 other steroids: 11-desoxycortisol and 17-OH progesterone. Analysis showed the existence of an analytical bias. Importantly, significantly different biases were demonstrated in newborns or patients taking metyrapone. Multiple regression analysis and cross reaction studies showed that 11-desoxycortisol level significantly influenced cortisol determination. Moreover, despite using the normal ranges provided by manufacturers discrepant results occurred such as 17% discordance in the diagnosis of hypocorticism in infants. We wish to raise awareness about the consequences of the (lack of) specificity of cortisol assays with regard to the evaluation of hypocorticism in infants or when "unusual" steroids may be increased.
An Effect Size for Regression Predictors in Meta-Analysis
ERIC Educational Resources Information Center
Aloe, Ariel M.; Becker, Betsy Jane
2012-01-01
A new effect size representing the predictive power of an independent variable from a multiple regression model is presented. The index, denoted as r[subscript sp], is the semipartial correlation of the predictor with the outcome of interest. This effect size can be computed when multiple predictor variables are included in the regression model…
Regression Analysis: Legal Applications in Institutional Research
ERIC Educational Resources Information Center
Frizell, Julie A.; Shippen, Benjamin S., Jr.; Luna, Andrew L.
2008-01-01
This article reviews multiple regression analysis, describes how its results should be interpreted, and instructs institutional researchers on how to conduct such analyses using an example focused on faculty pay equity between men and women. The use of multiple regression analysis will be presented as a method with which to compare salaries of…
RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,
This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)
Incremental Net Effects in Multiple Regression
ERIC Educational Resources Information Center
Lipovetsky, Stan; Conklin, Michael
2005-01-01
A regular problem in regression analysis is estimating the comparative importance of the predictors in the model. This work considers the 'net effects', or shares of the predictors in the coefficient of the multiple determination, which is a widely used characteristic of the quality of a regression model. Estimation of the net effects can be a…
Floating Data and the Problem with Illustrating Multiple Regression.
ERIC Educational Resources Information Center
Sachau, Daniel A.
2000-01-01
Discusses how to introduce basic concepts of multiple regression by creating a large-scale, three-dimensional regression model using the classroom walls and floor. Addresses teaching points that should be covered and reveals student reaction to the model. Finds that the greatest benefit of the model is the low fear, walk-through, nonmathematical…
A Model for Predicting Student Performance on High-Stakes Assessment
ERIC Educational Resources Information Center
Dammann, Matthew Walter
2010-01-01
This research study examined the use of student achievement on reading and math state assessments to predict success on the science state assessment. Multiple regression analysis was utilized to test the prediction for all students in grades 5 and 8 in a mid-Atlantic state. The prediction model developed from the analysis explored the combined…
ERIC Educational Resources Information Center
Shertzer, John; Wall, Vernon; Frandsen, Alisa; Guo, Yan; Whalen, Donald F.; Shelley, Mack C., II
2005-01-01
Multiple regression was performed on four dependent variables derived from the results of a student survey measuring attitudes about student leadership: (a) leadership is important to the student, (b) the student considers himself or herself to be a leader, (c) leadership will be important to the student after college, and (d) leaders need to be…
Two Readiness Measures As Predictors Of First- And Third-Grade Reading Achievement
ERIC Educational Resources Information Center
Randel, Mildred A.; And Others
1977-01-01
Multiple-regression procedures were used to assess effectiveness of the ABC Inventory and the Metropolitan Readiness Test (MRT) in predicting first- and third-grade reading achievement. MRT performance accounted for 11 percent of the variance in first-grade SRA reading scores. In predicting third-grade reading, the MRT accounted for 26 percent of…
Predicting Negative Discipline in Traditional Families: A Multi-Dimensional Stress Model.
ERIC Educational Resources Information Center
Fisher, Philip A.
An attempt is made to integrate existing theories of family violence by introducing the concept of family role stress. Role stressors may be defined as factors inhibiting the enactment of family roles. Multiple regression analyses were performed on data from 190 families to test a hypothesis involving the prediction of negative discipline at…
ERIC Educational Resources Information Center
Penland, Nathan Paul
2017-01-01
Research has shown benefits to the student experience for college students when they participate in intramural sports on university campuses. These benefits include improved physical and social health as well as academic performance. This non-experimental, predictive correlational study sought to understand if a relationship exists between the…
The Impact of Managerial Coaching on Learning Outcomes within the Team Context: An Analysis
ERIC Educational Resources Information Center
Hagen, Marcia; Aguilar, Mariya Gavrilova
2012-01-01
This study investigates the relationship between coaching expertise, project difficulty, and team empowerment on team learning outcomes within the context of a high-performance work team. Variables were tested using multiple regression analysis. The data were analyzed for two groups--team leaders and team members--using t-tests, factor analysis,…
Lee, L.; Helsel, D.
2005-01-01
Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.
2017-03-23
PUBLIC RELEASE; DISTRIBUTION UNLIMITED Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and... Cost and Probability of Cost and Schedule Overrun for Program Managers Ryan C. Trudelle Follow this and additional works at: https://scholar.afit.edu...afit.edu. Recommended Citation Trudelle, Ryan C., "Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and
The effect of working in an infection isolation room on hospital nurses' job satisfaction.
Kagan, Ilya; Fridman, Shoshana; Shalom, Esther; Melnikov, Semyon
2018-03-01
To examine how the nature of working in a carbapenemase-producing Klebsiella pneumoniae infection isolation room affects nurses' job performance and job satisfaction. Job satisfaction is under intensive research as a factor in the retention of nursing staff. In a cross-sectional design study, a convenience sample of 87 registered nurses who had worked in carbapenemase-producing Klebsiella pneumoniae isolation rooms in a tertiary medical centre in Israel answered a self-administered questionnaire. Data were analysed by descriptive statistics, Pearson correlation coefficients, t tests, one-way ANOVA and multiple regression analysis. Job satisfaction was significantly correlated with perceived knowledge of carbapenemase-producing Klebsiella pneumoniae, with personal experience of working in an isolation room and the perceived level of professional functioning. Multiple regression analysis found that the quality of the nurses' personal experience of isolation room work and their perceived level of professional functioning there explained 33% of the variance in job satisfaction. Managers need to take into account that prolonged work in isolation can negatively impinge upon both performance and job satisfaction. Managers can consider refraining from lengthy nurse assignment to the isolation room. This would also apply to other areas of nursing practice where work is performed in isolation. © 2017 John Wiley & Sons Ltd.
Fuzzy regression modeling for tool performance prediction and degradation detection.
Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L
2010-10-01
In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred A.
2014-01-01
High-resolution gridded daily data sets are essential for natural resource management and the analyses of climate changes and their effects. This study aims to evaluate the performance of 15 simple or complex interpolation techniques in reproducing daily precipitation at a resolution of 1 km2 over topographically complex areas. Methods are tested considering two different sets of observation densities and different rainfall amounts. We used rainfall data that were recorded at 74 and 145 observational stations, respectively, spread over the 5760 km2 of the Republic of Cyprus, in the Eastern Mediterranean. Regression analyses utilizing geographical copredictors and neighboring interpolation techniques were evaluated both in isolation and combined. Linear multiple regression (LMR) and geographically weighted regression methods (GWR) were tested. These included a step-wise selection of covariables, as well as inverse distance weighting (IDW), kriging, and 3D-thin plate splines (TPS). The relative rank of the different techniques changes with different station density and rainfall amounts. Our results indicate that TPS performs well for low station density and large-scale events and also when coupled with regression models. It performs poorly for high station density. The opposite is observed when using IDW. Simple IDW performs best for local events, while a combination of step-wise GWR and IDW proves to be the best method for large-scale events and high station density. This study indicates that the use of step-wise regression with a variable set of geographic parameters can improve the interpolation of large-scale events because it facilitates the representation of local climate dynamics.
Hahn, Sowon; Buttaccio, Daniel R; Hahn, Jungwon; Lee, Taehun
2015-01-01
The present study demonstrates that levels of extraversion and neuroticism can predict attentional performance during a change detection task. After completing a change detection task built on the flicker paradigm, participants were assessed for personality traits using the Revised Eysenck Personality Questionnaire (EPQ-R). Multiple regression analyses revealed that higher levels of extraversion predict increased change detection accuracies, while higher levels of neuroticism predict decreased change detection accuracies. In addition, neurotic individuals exhibited decreased sensitivity A' and increased fixation dwell times. Hierarchical regression analyses further revealed that eye movement measures mediate the relationship between neuroticism and change detection accuracies. Based on the current results, we propose that neuroticism is associated with decreased attentional control over the visual field, presumably due to decreased attentional disengagement. Extraversion can predict increased attentional performance, but the effect is smaller than the relationship between neuroticism and attention.
Prediction of performance on the RCMP physical ability requirement evaluation.
Stanish, H I; Wood, T M; Campagna, P
1999-08-01
The Royal Canadian Mounted Police use the Physical Ability Requirement Evaluation (PARE) for screening applicants. The purposes of this investigation were to identify those field tests of physical fitness that were associated with PARE performance and determine which most accurately classified successful and unsuccessful PARE performers. The participants were 27 female and 21 male volunteers. Testing included measures of aerobic power, anaerobic power, agility, muscular strength, muscular endurance, and body composition. Multiple regression analysis revealed a three-variable model for males (70-lb bench press, standing long jump, and agility) explaining 79% of the variability in PARE time, whereas a one-variable model (agility) explained 43% of the variability for females. Analysis of the classification accuracy of the males' data was prohibited because 91% of the males passed the PARE. Classification accuracy of the females' data, using logistic regression, produced a two-variable model (agility, 1.5-mile endurance run) with 93% overall classification accuracy.
Yamazaki, Takeshi; Takeda, Hisato; Hagiya, Koichi; Yamaguchi, Satoshi; Sasaki, Osamu
2018-03-13
Because lactation periods in dairy cows lengthen with increasing total milk production, it is important to predict individual productivities after 305 days in milk (DIM) to determine the optimal lactation period. We therefore examined whether the random regression (RR) coefficient from 306 to 450 DIM (M2) can be predicted from those during the first 305 DIM (M1) by using a random regression model. We analyzed test-day milk records from 85690 Holstein cows in their first lactations and 131727 cows in their later (second to fifth) lactations. Data in M1 and M2 were analyzed separately by using different single-trait RR animal models. We then performed a multiple regression analysis of the RR coefficients of M2 on those of M1 during the first and later lactations. The first-order Legendre polynomials were practical covariates of random regression for the milk yields of M2. All RR coefficients for the additive genetic (AG) effect and the intercept for the permanent environmental (PE) effect of M2 had moderate to strong correlations with the intercept for the AG effect of M1. The coefficients of determination for multiple regression of the combined intercepts for the AG and PE effects of M2 on the coefficients for the AG effect of M1 were moderate to high. The daily milk yields of M2 predicted by using the RR coefficients for the AG effect of M1 were highly correlated with those obtained by using the coefficients of M2. Milk production after 305 DIM can be predicted by using the RR coefficient estimates of the AG effect during the first 305 DIM.
Finding structure in data using multivariate tree boosting
Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.
2016-01-01
Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183
Interquantile Shrinkage in Regression Models
Jiang, Liewen; Wang, Huixia Judy; Bondell, Howard D.
2012-01-01
Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant effect over one region of quantile levels but varying effects in other regions. To automatically perform estimation and detection of the interquantile commonality, we develop two penalization methods. When the quantile slope coefficients indeed do not change across quantile levels, the proposed methods will shrink the slopes towards constant and thus improve the estimation efficiency. We establish the oracle properties of the two proposed penalization methods. Through numerical investigations, we demonstrate that the proposed methods lead to estimations with competitive or higher efficiency than the standard quantile regression estimation in finite samples. Supplemental materials for the article are available online. PMID:24363546
Modular organization and hospital performance.
Kuntz, Ludwig; Vera, Antonio
2007-02-01
The concept of modularization represents a modern form of organization, which contains the vertical disaggregation of the firm and the use of market mechanisms within hierarchies. The objective of this paper is to examine whether the use of modular structures has a positive effect on hospital performance. The empirical section makes use of multiple regression analyses and leads to the main result that modularization does not have a positive effect on hospital performance. However, the analysis also finds out positive efficiency effects of two central ideas of modularization, namely process orientation and internal market mechanisms.
Gandhi, Sailaxmi; Pavalur, Rajitha; Thanapal, Sivakumar; Parathasarathy, Nirmala B; Desai, Geetha; Bhola, Poornima; Philip, Mariamma; Chaturvedi, Santosh K
2014-10-01
Work benefits mental health in innumerable ways. Vocational rehabilitation can enhance self-esteem. Medication adherence can improve work performance and thereby the individuals' self-esteem. To test the hypothesis that there would be a significant correlation between medication adherence, work performance and self-esteem. A quantitative, descriptive correlational research design was adopted to invite patients attending psychiatric rehabilitation services to participate in the research. Data was collected from a convenience sample of 60 subjects using the 'Medication Adherence Rating scale', 'Griffiths work behaviour scale' and the 'Rosenberg's Self-esteem scale'. Analysis was done using spss18 with descriptive statistics, Pearsons correlation coefficient and multiple regression analysis. There were 36 males and 24 females who participated in this study. The subjects had good mean medication adherence of 8.4 ± 1.5 with median of 9.00, high mean self-esteem of 17.65 ± 2.97 with median of 18.0 and good mean work performance of 88.62 ± 22.56 with median of 93.0. Although weak and not significant, there was a positive correlation (r = 0.22, P = 0.103) between medication adherence and work performance; positive correlation between (r = 0.25, P = 0.067) medication adherence and self-esteem; positive correlation between (r = 0.136, P = 0.299) work performance and self-esteem. Multiple regression analysis showed no significant predictors for medication adherence, work performance and self-esteem among patients with psychiatric illness. Medication monitoring and strengthening of work habit can improve self-esteem thereby, strengthening hope of recovery from illness.
Relationship between masticatory performance using a gummy jelly and masticatory movement.
Uesugi, Hanako; Shiga, Hiroshi
2017-10-01
The purpose of this study was to clarify the relationship between masticatory performance using a gummy jelly and masticatory movement. Thirty healthy males were asked to chew a gummy jelly on their habitual chewing side for 20s, and the parameters of masticatory performance and masticatory movement were calculated as follows. For evaluating the masticatory performance, the amount of glucose extraction during chewing of a gummy jelly was measured. For evaluating the masticatory movement, the movement of the mandibular incisal point was recorded using the MKG K6-I, and ten parameters of the movement path (opening distance and masticatory width), movement rhythm (opening time, closing time, occluding time, and cycle time), stability of movement (stability of path and stability of rhythm), and movement velocity (opening maximum velocity and closing maximum velocity) were calculated from 10 cycles of chewing beginning with the fifth cycle. The relationship between the amount of glucose extraction and parameters representing masticatory movement was investigated and then stepwise multiple linear regression analysis was performed. The amount of glucose extraction was associated with 7 parameters representing the masticatory movement. Stepwise multiple linear regression analysis showed that the opening distance, closing time, stability of rhythm, and closing maximum velocity were the most important factors affecting the glucose extraction. From these results it was suggested that there was a close relation between masticatory performance and masticatory movement, and that the masticatory performance could be increased by rhythmic, rapid and stable mastication with a large opening distance. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Does the Aristotle Score predict outcome in congenital heart surgery?
Kang, Nicholas; Tsang, Victor T; Elliott, Martin J; de Leval, Marc R; Cole, Timothy J
2006-06-01
The Aristotle Score has been proposed as a measure of 'complexity' in congenital heart surgery, and a tool for comparing performance amongst different centres. To date, however, it remains unvalidated. We examined whether the Basic Aristotle Score was a useful predictor of mortality following open-heart surgery, and compared it to the Risk Adjustment in Congenital Heart Surgery (RACHS-1) system. We also examined the ability of the Aristotle Score to measure performance. The Basic Aristotle Score and RACHS-1 risk categories were assigned retrospectively to 1085 operations involving cardiopulmonary bypass in children less than 18 years of age. Multiple logistic regression analysis was used to determine the significance of the Aristotle Score and RACHS-1 category as independent predictors of in-hospital mortality. Operative performance was calculated using the Aristotle equation: performance = complexity x survival. Multiple logistic regression identified RACHS-1 category to be a powerful predictor of mortality (Wald 17.7, p < 0.0001), whereas Aristotle Score was only weakly associated with mortality (Wald 4.8, p = 0.03). Age at operation and bypass time were also highly significant predictors of postoperative death (Wald 13.7 and 33.8, respectively, p < 0.0001 for both). Operative performance was measured at 7.52 units. The Basic Aristotle Score was only weakly associated with postoperative mortality in this series. Operative performance appeared to be inflated by the fact that the overall complexity of cases was relatively high in this series. An alternative equation (performance = complexity/mortality) is proposed as a fairer and more logical method of risk-adjustment.
Wang, Zengjian; Zhang, Delong; Liang, Bishan; Chang, Song; Pan, Jinghua; Huang, Ruiwang; Liu, Ming
2016-01-01
Biological motion perception (BMP) refers to the ability to perceive the moving form of a human figure from a limited amount of stimuli, such as from a few point lights located on the joints of a moving body. BMP is commonplace and important, but there is great inter-individual variability in this ability. This study used multiple regression model analysis to explore the association between BMP performance and intrinsic brain activity, in order to investigate the neural substrates underlying inter-individual variability of BMP performance. The resting-state functional magnetic resonance imaging (rs-fMRI) and BMP performance data were collected from 24 healthy participants, for whom intrinsic brain networks were constructed, and a graph-based network efficiency metric was measured. Then, a multiple linear regression model was used to explore the association between network regional efficiency and BMP performance. We found that the local and global network efficiency of many regions was significantly correlated with BMP performance. Further analysis showed that the local efficiency rather than global efficiency could be used to explain most of the BMP inter-individual variability, and the regions involved were predominately located in the Default Mode Network (DMN). Additionally, discrimination analysis showed that the local efficiency of certain regions such as the thalamus could be used to classify BMP performance across participants. Notably, the association pattern between network nodal efficiency and BMP was different from the association pattern of static directional/gender information perception. Overall, these findings show that intrinsic brain network efficiency may be considered a neural factor that explains BMP inter-individual variability. PMID:27853427
Tools to Support Interpreting Multiple Regression in the Face of Multicollinearity
Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K.
2012-01-01
While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses. PMID:22457655
Tools to support interpreting multiple regression in the face of multicollinearity.
Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K
2012-01-01
While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses.
Şenel, Talat; Cengiz, Mehmet Ali
2016-01-01
In today's world, Public expenditures on health are one of the most important issues for governments. These increased expenditures are putting pressure on public budgets. Therefore, health policy makers have focused on the performance of their health systems and many countries have introduced reforms to improve the performance of their health systems. This study investigates the most important determinants of healthcare efficiency for OECD countries using second stage approach for Bayesian Stochastic Frontier Analysis (BSFA). There are two steps in this study. First we measure 29 OECD countries' healthcare efficiency by BSFA using the data from the OECD Health Database. At second stage, we expose the multiple relationships between the healthcare efficiency and characteristics of healthcare systems across OECD countries using Bayesian beta regression.
Predicting ecological flow regime at ungaged sites: A comparison of methods
Murphy, Jennifer C.; Knight, Rodney R.; Wolfe, William J.; Gain, W. Scott
2012-01-01
Nineteen ecologically relevant streamflow characteristics were estimated using published rainfall–runoff and regional regression models for six sites with observed daily streamflow records in Kentucky. The regional regression model produced median estimates closer to the observed median for all but two characteristics. The variability of predictions from both models was generally less than the observed variability. The variability of the predictions from the rainfall–runoff model was greater than that from the regional regression model for all but three characteristics. Eight characteristics predicted by the rainfall–runoff model display positive or negative bias across all six sites; biases are not as pronounced for the regional regression model. Results suggest that a rainfall–runoff model calibrated on a single characteristic is less likely to perform well as a predictor of a range of other characteristics (flow regime) when compared with a regional regression model calibrated individually on multiple characteristics used to represent the flow regime. Poor model performance may misrepresent hydrologic conditions, potentially distorting the perceived risk of ecological degradation. Without prior selection of streamflow characteristics, targeted calibration, and error quantification, the widespread application of general hydrologic models to ecological flow studies is problematic. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
An improved multiple linear regression and data analysis computer program package
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1972-01-01
NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.
A secure distributed logistic regression protocol for the detection of rare adverse drug events
El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat
2013-01-01
Background There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. Objective To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. Methods We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. Results The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. Conclusion The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models. PMID:22871397
Peak oxygen consumption measured during the stair-climbing test in lung resection candidates.
Brunelli, Alessandro; Xiumé, Francesco; Refai, Majed; Salati, Michele; Di Nunzio, Luca; Pompili, Cecilia; Sabbatini, Armando
2010-01-01
The stair-climbing test is commonly used in the preoperative evaluation of lung resection candidates, but it is difficult to standardize and provides little physiologic information on the performance. To verify the association between the altitude and the V(O2peak) measured during the stair-climbing test. 109 consecutive candidates for lung resection performed a symptom-limited stair-climbing test with direct breath-by-breath measurement of V(O2peak) by a portable gas analyzer. Stepwise logistic regression and bootstrap analyses were used to verify the association of several perioperative variables with a V(O2peak) <15 ml/kg/min. Subsequently, multiple regression analysis was also performed to develop an equation to estimate V(O2peak) from stair-climbing parameters and other patient-related variables. 56% of patients climbing <14 m had a V(O2peak) <15 ml/kg/min, whereas 98% of those climbing >22 m had a V(O2peak) >15 ml/kg/min. The altitude reached at stair-climbing test resulted in the only significant predictor of a V(O2peak) <15 ml/kg/min after logistic regression analysis. Multiple regression analysis yielded an equation to estimate V(O2peak) factoring altitude (p < 0.0001), speed of ascent (p = 0.005) and body mass index (p = 0.0008). There was an association between altitude and V(O2peak) measured during the stair-climbing test. Most of the patients climbing more than 22 m are able to generate high values of V(O2peak) and can proceed to surgery without any additional tests. All others need to be referred for a formal cardiopulmonary exercise test. In addition, we were able to generate an equation to estimate V(O2peak), which could assist in streamlining the preoperative workup and could be used across different settings to standardize this test. Copyright (c) 2010 S. Karger AG, Basel.
A secure distributed logistic regression protocol for the detection of rare adverse drug events.
El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat
2013-05-01
There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models.
NASA Astrophysics Data System (ADS)
McCammon, Susan; Golden, Jeannie; Wuensch, Karl L.
This study investigated the extent to which thinking skills and mathematical competency would predict the course performance of freshman and sophomore science majors enrolled in physics courses. Multiple-regression equations revealed that algebra and critical thinking skills were the best overall predictors across several physics courses. Although arithmetic skills, math anxiety, and primary mental abilities scores also correlated with performance, they were redundant with the algebra and critical thinking. The most surprising finding of the study was the differential validity by sex; predictor variables were successful in predicting course performance for women but not for men.
Lang, Dean H; Sharkey, Neil A; Lionikas, Arimantas; Mack, Holly A; Larsson, Lars; Vogler, George P; Vandenbergh, David J; Blizard, David A; Stout, Joseph T; Stitt, Joseph P; McClearn, Gerald E
2005-05-01
The aim of this study was to compare three methods of adjusting skeletal data for body size and examine their use in QTL analyses. It was found that dividing skeletal phenotypes by body mass index induced erroneous QTL results. The preferred method of body size adjustment was multiple regression. Many skeletal studies have reported strong correlations between phenotypes for muscle, bone, and body size, and these correlations add to the difficulty in identifying genetic influence on skeletal traits that are not mediated through overall body size. Quantitative trait loci (QTL) identified for skeletal phenotypes often map to the same chromosome regions as QTLs for body size. The actions of a QTL identified as influencing BMD could therefore be mediated through the generalized actions of growth on body size or muscle mass. Three methods of adjusting skeletal phenotypes to body size were performed on morphologic, structural, and compositional measurements of the femur and tibia in 200-day-old C57BL/6J x DBA/2 (BXD) second generation (F(2)) mice (n = 400). A common method of removing the size effect has been through the use of ratios. This technique and two alternative techniques using simple and multiple regression were performed on muscle and skeletal data before QTL analyses, and the differences in QTL results were examined. The use of ratios to remove the size effect was shown to increase the size effect by inducing spurious correlations, thereby leading to inaccurate QTL results. Adjustments for body size using multiple regression eliminated these problems. Multiple regression should be used to remove the variance of co-factors related to skeletal phenotypes to allow for the study of genetic influence independent of correlated phenotypes. However, to better understand the genetic influence, adjusted and unadjusted skeletal QTL results should be compared. Additional insight can be gained by observing the difference in LOD score between the adjusted and nonadjusted phenotypes. Identifying QTLs that exert their effects on skeletal phenotypes through body size-related pathways as well as those having a more direct and independent influence on bone are equally important in deciphering the complex physiologic pathways responsible for the maintenance of bone health.
NASA Astrophysics Data System (ADS)
Hofer, Marlis; Nemec, Johanna
2016-04-01
This study presents first steps towards verifying the hypothesis that uncertainty in global and regional glacier mass simulations can be reduced considerably by reducing the uncertainty in the high-resolution atmospheric input data. To this aim, we systematically explore the potential of different predictor strategies for improving the performance of regression-based downscaling approaches. The investigated local-scale target variables are precipitation, air temperature, wind speed, relative humidity and global radiation, all at a daily time scale. Observations of these target variables are assessed from three sites in geo-environmentally and climatologically very distinct settings, all within highly complex topography and in the close proximity to mountain glaciers: (1) the Vernagtbach station in the Northern European Alps (VERNAGT), (2) the Artesonraju measuring site in the tropical South American Andes (ARTESON), and (3) the Brewster measuring site in the Southern Alps of New Zealand (BREWSTER). As the large-scale predictors, ERA interim reanalysis data are used. In the applied downscaling model training and evaluation procedures, particular emphasis is put on appropriately accounting for the pitfalls of limited and/or patchy observation records that are usually the only (if at all) available data from the glacierized mountain sites. Generalized linear models and beta regression are investigated as alternatives to ordinary least squares regression for the non-Gaussian target variables. By analyzing results for the three different sites, five predictands and for different times of the year, we look for systematic improvements in the downscaling models' skill specifically obtained by (i) using predictor data at the optimum scale rather than the minimum scale of the reanalysis data, (ii) identifying the optimum predictor allocation in the vertical, and (iii) considering multiple (variable, level and/or grid point) predictor options combined with state-of-art empirical feature selection tools. First results show that in particular for air temperature, those downscaling models based on direct predictor selection show comparative skill like those models based on multiple predictors. For all other target variables, however, multiple predictor approaches can considerably outperform those models based on single predictors. Including multiple variable types emerges as the most promising predictor option (in particular for wind speed at all sites), even if the same predictor set is used across the different cases.
ERIC Educational Resources Information Center
Baylor, Carolyn; Yorkston, Kathryn; Bamer, Alyssa; Britton, Deanna; Amtmann, Dagmar
2010-01-01
Purpose: To explore variables associated with self-reported communicative participation in a sample (n = 498) of community-dwelling adults with multiple sclerosis (MS). Method: A battery of questionnaires was administered online or on paper per participant preference. Data were analyzed using multiple linear backward stepwise regression. The…
NASA Astrophysics Data System (ADS)
Lombardo, L.; Cama, M.; Maerker, M.; Parisi, L.; Rotigliano, E.
2014-12-01
This study aims at comparing the performances of Binary Logistic Regression (BLR) and Boosted Regression Trees (BRT) methods in assessing landslide susceptibility for multiple-occurrence regional landslide events within the Mediterranean region. A test area was selected in the north-eastern sector of Sicily (southern Italy), corresponding to the catchments of the Briga and the Giampilieri streams both stretching for few kilometres from the Peloritan ridge (eastern Sicily, Italy) to the Ionian sea. This area was struck on the 1st October 2009 by an extreme climatic event resulting in thousands of rapid shallow landslides, mainly of debris flows and debris avalanches types involving the weathered layer of a low to high grade metamorphic bedrock. Exploiting the same set of predictors and the 2009 landslide archive, BLR- and BRT-based susceptibility models were obtained for the two catchments separately, adopting a random partition (RP) technique for validation; besides, the models trained in one of the two catchments (Briga) were tested in predicting the landslide distribution in the other (Giampilieri), adopting a spatial partition (SP) based validation procedure. All the validation procedures were based on multi-folds tests so to evaluate and compare the reliability of the fitting, the prediction skill, the coherence in the predictor selection and the precision of the susceptibility estimates. All the obtained models for the two methods produced very high predictive performances, with a general congruence between BLR and BRT in the predictor importance. In particular, the research highlighted that BRT-models reached a higher prediction performance with respect to BLR-models, for RP based modelling, whilst for the SP-based models the difference in predictive skills between the two methods dropped drastically, converging to an analogous excellent performance. However, when looking at the precision of the probability estimates, BLR demonstrated to produce more robust models in terms of selected predictors and coefficients, as well as of dispersion of the estimated probabilities around the mean value for each mapped pixel. The difference in the behaviour could be interpreted as the result of overfitting effects, which heavily affect decision tree classification more than logistic regression techniques.
Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula
2011-01-01
Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.
Validity of Treadmill-Derived Critical Speed on Predicting 5000-Meter Track-Running Performance.
Nimmerichter, Alfred; Novak, Nina; Triska, Christoph; Prinz, Bernhard; Breese, Brynmor C
2017-03-01
Nimmerichter, A, Novak, N, Triska, C, Prinz, B, and Breese, BC. Validity of treadmill-derived critical speed on predicting 5,000-meter track-running performance. J Strength Cond Res 31(3): 706-714, 2017-To evaluate 3 models of critical speed (CS) for the prediction of 5,000-m running performance, 16 trained athletes completed an incremental test on a treadmill to determine maximal aerobic speed (MAS) and 3 randomly ordered runs to exhaustion at the [INCREMENT]70% intensity, at 110% and 98% of MAS. Critical speed and the distance covered above CS (D') were calculated using the hyperbolic speed-time (HYP), the linear distance-time (LIN), and the linear speed inverse-time model (INV). Five thousand meter performance was determined on a 400-m running track. Individual predictions of 5,000-m running time (t = [5,000-D']/CS) and speed (s = D'/t + CS) were calculated across the 3 models in addition to multiple regression analyses. Prediction accuracy was assessed with the standard error of estimate (SEE) from linear regression analysis and the mean difference expressed in units of measurement and coefficient of variation (%). Five thousand meter running performance (speed: 4.29 ± 0.39 m·s; time: 1,176 ± 117 seconds) was significantly better than the predictions from all 3 models (p < 0.0001). The mean difference was 65-105 seconds (5.7-9.4%) for time and -0.22 to -0.34 m·s (-5.0 to -7.5%) for speed. Predictions from multiple regression analyses with CS and D' as predictor variables were not significantly different from actual running performance (-1.0 to 1.1%). The SEE across all models and predictions was approximately 65 seconds or 0.20 m·s and is therefore considered as moderate. The results of this study have shown the importance of aerobic and anaerobic energy system contribution to predict 5,000-m running performance. Using estimates of CS and D' is valuable for predicting performance over race distances of 5,000 m.
Use of probabilistic weights to enhance linear regression myoelectric control
NASA Astrophysics Data System (ADS)
Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.
2015-12-01
Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.
Interaction Models for Functional Regression.
Usset, Joseph; Staicu, Ana-Maria; Maity, Arnab
2016-02-01
A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data.
2016-01-01
Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications. PMID:27806075
Miguel-Hurtado, Oscar; Guest, Richard; Stevenage, Sarah V; Neil, Greg J; Black, Sue
2016-01-01
Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications.
A simulation study on Bayesian Ridge regression models for several collinearity levels
NASA Astrophysics Data System (ADS)
Efendi, Achmad; Effrihan
2017-12-01
When analyzing data with multiple regression model if there are collinearities, then one or several predictor variables are usually omitted from the model. However, there sometimes some reasons, for instance medical or economic reasons, the predictors are all important and should be included in the model. Ridge regression model is not uncommon in some researches to use to cope with collinearity. Through this modeling, weights for predictor variables are used for estimating parameters. The next estimation process could follow the concept of likelihood. Furthermore, for the estimation nowadays the Bayesian version could be an alternative. This estimation method does not match likelihood one in terms of popularity due to some difficulties; computation and so forth. Nevertheless, with the growing improvement of computational methodology recently, this caveat should not at the moment become a problem. This paper discusses about simulation process for evaluating the characteristic of Bayesian Ridge regression parameter estimates. There are several simulation settings based on variety of collinearity levels and sample sizes. The results show that Bayesian method gives better performance for relatively small sample sizes, and for other settings the method does perform relatively similar to the likelihood method.
The Geometry of Enhancement in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.
2011-01-01
In linear multiple regression, "enhancement" is said to occur when R[superscript 2] = b[prime]r greater than r[prime]r, where b is a p x 1 vector of standardized regression coefficients and r is a p x 1 vector of correlations between a criterion y and a set of standardized regressors, x. When p = 1 then b [is congruent to] r and…
ERIC Educational Resources Information Center
Viglione, Donald J.; Perry, William; Giromini, Luciano; Meyer, Gregory J.
2011-01-01
We used multiple regression to calculate a new Ego Impairment Index (EII-3). The aim was to incorporate changes in the component variables and distribution of the number of responses as found in the new Rorschach Performance Assessment System, while sustaining the validity and reliability of previous EIIs. The EII-3 formula was derived from a…
Temporal Progression of Visual Injury from Blast Exposure
2017-09-01
seen throughout the duration of the study. To correlate experimental blast exposures in rodents to human blast exposures, a computational parametric...software (JMP 10.0, Cary,NC). Descriptive and univariate analyses will first be performed to identify the occurrence of delayed visual system...later). The biostatistician evaluating the retrospective data has completed the descriptive analysis and is working on the multiple regression. Table
Aggression in Primary Schools: The Predictive Power of the School and Home Environment
ERIC Educational Resources Information Center
Kozina, Ana
2015-01-01
In this study, we analyse the predictive power of home and school environment-related factors for determining pupils' aggression. The multiple regression analyses are performed for fourth- and eighth-grade pupils based on the Trends in Mathematics and Science Study (TIMSS) 2007 (N = 8394) and TIMSS 2011 (N = 9415) databases for Slovenia. At the…
ERIC Educational Resources Information Center
Nyroos, Mikaela; Wiklund-Hornqvist, Carola
2012-01-01
The aim of this study was to examine the relationship between working memory capacity and mathematical performance measured by the national curriculum assessment in third-grade children (n = 40). The national tests concerned six subareas within mathematics. One-way ANOVA, two-tailed Pearson correlation and multiple regression analyses were…
Female homicide in Rio Grande do Sul, Brazil.
Leites, Gabriela Tomedi; Meneghel, Stela Nazareth; Hirakata, Vania Noemi
2014-01-01
This study aimed to assess the female homicide rate due to aggression in Rio Grande do Sul, Brazil, using this as a "proxy" of femicide. This was an ecological study which correlated the female homicide rate due to aggression in Rio Grande do Sul, according to the 35 microregions defined by the Brazilian Institute of Geography and Statistics (IBGE), with socioeconomic and demographic variables access and health indicators. Pearson's correlation test was performed with the selected variables. After this, multiple linear regressions were performed with variables with p < 0.20. The standardized average of female homicide rate due to aggression in the period from 2003 to 2007 was 3.1 obits per 100 thousand. After multiple regression analysis, the final model included male mortality due to aggression (p = 0.016), the percentage of hospital admissions for alcohol (p = 0.005) and the proportion of ill-defined deaths (p = 0.015). The model have an explanatory power of 39% (adjusted r2 = 0.391). The results are consistent with other studies and indicate a strong relationship between structural violence in society and violence against women, in addition to a higher incidence of female deaths in places with high alcohol hospitalization.
Chalé-Rush, Angela; Guralnik, Jack M; Walkup, Michael P; Miller, Michael E; Rejeski, W Jack; Katula, Jeffrey A; King, Abby C; Glynn, Nancy W; Manini, Todd M; Blair, Steven N; Fielding, Roger A
2010-10-01
To determine whether participation in usual moderate-intensity or more-vigorous physical activity (MVPA) is associated with physical function performance and to identify sociodemographic, psychosocial, and disease-related covariates that may also compromise physical function performance. Cross-sectional analysis of baseline variables of a randomized controlled intervention trial. Four academic research centers. Four hundred twenty-four older adults aged 70 to 89 at risk for mobility disability (scoring <10 on the Short Physical Performance Battery (SPPB)) and able to complete the 400-m walk test within 15 minutes. Minutes of MVPA (dichotomized according to above or below 150 min/wk of MVPA) assessed according to the Community Healthy Activities Model Program for Seniors questionnaire, SPPB score, 400-m walk test, sex, body mass index (BMI), depressive symptoms, age, and number of medications. The SPPB summary score was associated with minutes of MVPA (ρ=0.16, P=.001). In multiple regression analyses, age, minutes of MVPA, number of medications, and depressive symptoms were associated with performance on the composite SPPB (P<.05). There was an association between 400-m walk time and minutes of MVPA (ρ=-0.18; P<.001). In multiple regression analyses, age, sex, minutes of MVPA, BMI, and number of medications were associated with performance on the 400-m walk test (P<.05). Minutes of MVPA, sex, BMI, depressive symptoms, age, and number of medications are associated with physical function performance and should all be taken into consideration in the prevention of mobility disability. © 2010, Copyright the Authors. Journal compilation © 2010, The American Geriatrics Society.
Andruszkow, Hagen; Hildebrand, Frank; Lefering, Rolf; Pape, Hans-Christoph; Hoffmann, Reinhard; Schweigkofler, Uwe
2014-10-01
Helicopter emergency medical service (HEMS) has been established in the preclinical treatment of multiple traumatised patients despite an ongoing controversy towards the potential benefit. Celebrating the 20th anniversary of TraumaRegister DGU(®) of the German Trauma Society (DGU) the presented study intended to provide an overview of HEMS rescue in Germany over the last 10 years analysing the potential beneficial impact of a nationwide helicopter rescue in multiple traumatised patients. We analysed TraumaRegister DGU(®) including multiple traumatised patients (ISS ≥ 16) between 2002 and 2012. In-hospital mortality was defined as main outcome. An adjusted, multivariate regression with 13 confounders was performed to evaluate the potential survival benefit. 42,788 patients were included in the present study. 14,275 (33.4%) patients were rescued by HEMS and 28,513 (66.6%) by GEMS. Overall, 66.8% (n=28,569) patients were transported to a level I trauma centre and 28.2% (n=12,052) to a level II trauma centre. Patients rescued by HEMS sustained a higher injury severity compared to GEMS (ISS HEMS: 29.5 ± 12.6 vs. 27.5 ± 11.8). Helicopter rescue teams performed more on-scene interventions, and mission times were increased in HEMS rescue (HEMS: 77.2 ± 28.7 min. vs. GEMS: 60.9 ± 26.9 min.). Linear regression analysis revealed that the frequency of HEMS rescue has decreased significantly between 2002 and 2012. In case of transportation to level I trauma centres a decrease of 1.7% per year was noted (p<0.001) while a decline of 1.6% per year (p<0.001) was measured for level II trauma centre admissions. According to multivariate logistic regression HEMS was proven a positive independent survival predictor between 2002 and 2012 (OR 0.863; 95%-CI 0.800-0.930; Nagelkerkes-R(2) 0.539) with only little differences between each year. This study was able to prove an independent survival benefit of HEMS in multiple traumatised patients during the last 10 years. Despite this fact, a constant decline of HEMS rescue missions was found in multiple trauma patients due to unknown reasons. We concluded that HEMS should be used more often in case of trauma in order to guarantee the proven benefit for multiple traumatised patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haydel, Angela Michelle
The purpose of this dissertation was to advance theoretical understanding about fit between the personal resources of individuals and the characteristics of science achievement tasks. Testing continues to be pervasive in schools, yet we know little about how students perceive tests and what they think and feel while they are actually working on test items. This study focused on both the personal (cognitive and motivational) and situational factors that may contribute to individual differences in achievement-related outcomes. 387 eighth grade students first completed a survey including measures of science achievement goals, capability beliefs, efficacy related to multiple-choice items and performance assessments, validity beliefs about multiple-choice items and performance assessments, and other perceptions of these item formats. Students then completed science achievement tests including multiple-choice items and two performance assessments. A sample of students was asked to verbalize both thoughts and feelings as they worked through the test items. These think-alouds were transcribed and coded for evidence of cognitive, metacognitive and motivational engagement. Following each test, all students completed measures of effort, mood, energy level and strategy use during testing. Students reported that performance assessments were more challenging, authentic, interesting and valid than multiple-choice tests. They also believed that comparisons between students were easier using multiple-choice items. Overall, students tried harder, felt better, had higher levels of energy and used more strategies while working on performance assessments. Findings suggested that performance assessments might be more congruent with a mastery achievement goal orientation, while multiple-choice tests might be more congruent with a performance achievement goal orientation. A variable-centered analytic approach including regression analyses provided information about how students, on average, who differed in terms of their teachers' ratings of their science ability, achievement goals, capability beliefs and experiences with science achievement tasks perceived, engaged in, and performed on multiple-choice items and performance assessments. Person-centered analyses provided information about the perceptions, engagement and performance of subgroups of individuals who had different motivational characteristics. Generally, students' personal goals and capability beliefs related more strongly to test perceptions, but not performance, while teacher ratings of ability and test-specific beliefs related to performance.
NASA Astrophysics Data System (ADS)
Chiong, W. L.; Omar, A. F.
2017-07-01
Non-destructive technique based on visible (VIS) spectroscopy using light emitting diode (LED) as lighting was used for evaluation of the internal quality of mango fruit. The objective of this study was to investigate feasibility of white LED as lighting in spectroscopic instrumentation to predict the acidity and soluble solids content of intact Sala Mango. The reflectance spectra of the mango samples were obtained and measured in the visible range (400-700 nm) using VIS spectroscopy illuminated under different white LEDs and tungsten-halogen lamp (pro lamp). Regression models were developed by multiple linear regression to establish the relationship between spectra and internal quality. Direct calibration transfer procedure was then applied between master and slave lighting to check on the acidity prediction results after transfer. Determination of mango acidity under white LED lighting was successfully performed through VIS spectroscopy using multiple linear regression but otherwise for soluble solids content. Satisfactory results were obtained for calibration transfer between LEDs with different correlated colour temperature indicated this technique was successfully used in spectroscopy measurement between two similar light sources in prediction of internal quality of mango.
Sloas, Stacey B; Keith, Becky; Whitehead, Malcolm T
2013-01-01
This study investigated a pretest strategy that identified physical therapist assistant (PTA) students who were at risk of failure on the National Physical Therapy Examination (NPTE). Program assessment data from five cohorts of PTA students (2005-2009) were used to develop a stepwise multiple regression formula that predicted first-time NPTE licensure scores. Data used included the Nelson-Denny Reading Test, grades from eight core courses, grade point average upon admission to the program, and scores from three mock NPTE exams given during the program. Pearson correlation coefficients were calculated between each of the 15 variables and NPTE scores. Stepwise multiple regression analysis was performed using data collected at the ends of the first, second, and third (final) semesters of the program. Data from the class of 2010 were then used to validate the formula. The end-of-program formula accounted for the greatest variance (57%) in predicted scores. Those students scoring below a predicted scaled score of 620 were identified to be at risk of failure of the licensure exam. These students were counseled, and a remedial plan was developed based on regression predictions prior to them sitting for the licensure exam.
Advanced statistics: linear regression, part I: simple linear regression.
Marill, Keith A
2004-01-01
Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.
Snell, Kym Ie; Ensor, Joie; Debray, Thomas Pa; Moons, Karel Gm; Riley, Richard D
2017-01-01
If individual participant data are available from multiple studies or clusters, then a prediction model can be externally validated multiple times. This allows the model's discrimination and calibration performance to be examined across different settings. Random-effects meta-analysis can then be used to quantify overall (average) performance and heterogeneity in performance. This typically assumes a normal distribution of 'true' performance across studies. We conducted a simulation study to examine this normality assumption for various performance measures relating to a logistic regression prediction model. We simulated data across multiple studies with varying degrees of variability in baseline risk or predictor effects and then evaluated the shape of the between-study distribution in the C-statistic, calibration slope, calibration-in-the-large, and E/O statistic, and possible transformations thereof. We found that a normal between-study distribution was usually reasonable for the calibration slope and calibration-in-the-large; however, the distributions of the C-statistic and E/O were often skewed across studies, particularly in settings with large variability in the predictor effects. Normality was vastly improved when using the logit transformation for the C-statistic and the log transformation for E/O, and therefore we recommend these scales to be used for meta-analysis. An illustrated example is given using a random-effects meta-analysis of the performance of QRISK2 across 25 general practices.
Okada, Hiroshi; Fukui, Michiaki; Tanaka, Muhei; Matsumoto, Shinobu; Iwase, Hiroya; Kobayashi, Kanae; Asano, Mai; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto
2013-10-01
Recent studies have suggested that a difference in systolic blood pressure (SBP) between arms is associated with both vascular disease and mortality. The aim of this study was to investigate the relationship between a difference in SBP between arms and change in urinary albumin excretion or development of albuminuria in patients with type 2 diabetes. We measured SBP in 408 consecutive patients with type 2 diabetes, and calculated a difference in SBP between arms. We performed follow-up study to assess change in urinary albumin excretion or development of albuminuria, mean interval of which was 4.6 ± 1.7 years. We then evaluated the relationship of a difference in SBP between arms to diabetic nephropathy using multiple regression analysis and multiple Cox regression model. Multiple regression analyses demonstrated that a difference in SBP between arms was independently associated with change in urinary albumin excretion (β = 0.1869, P = 0.0010). Adjusted Cox regression analyses demonstrated that a difference in SBP between arms was associated with an increased hazard of development of albuminuria; hazard ratio was 1.215 (95% confidence interval 1.077-1.376). Moreover, the risk of development of albuminuria was increased in patients with a difference in SBP of equal to or more than 10 mmHg between arms; hazard ratio was 4.168 (95% confidence interval 1.478-11.70). A difference in SBP between arms could be a novel predictor of the development and progression of diabetic nephropathy in patients with type 2 diabetes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Selection of higher order regression models in the analysis of multi-factorial transcription data.
Prazeres da Costa, Olivia; Hoffman, Arthur; Rey, Johannes W; Mansmann, Ulrich; Buch, Thorsten; Tresch, Achim
2014-01-01
Many studies examine gene expression data that has been obtained under the influence of multiple factors, such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead to effect modification and confounding. Higher order linear regression models can account for these effects. We present a new methodology for linear model selection and apply it to microarray data of bone marrow-derived macrophages. This experiment investigates the influence of three variable factors: the genetic background of the mice from which the macrophages were obtained, Yersinia enterocolitica infection (two strains, and a mock control), and treatment/non-treatment with interferon-γ. We set up four different linear regression models in a hierarchical order. We introduce the eruption plot as a new practical tool for model selection complementary to global testing. It visually compares the size and significance of effect estimates between two nested models. Using this methodology we were able to select the most appropriate model by keeping only relevant factors showing additional explanatory power. Application to experimental data allowed us to qualify the interaction of factors as either neutral (no interaction), alleviating (co-occurring effects are weaker than expected from the single effects), or aggravating (stronger than expected). We find a biologically meaningful gene cluster of putative C2TA target genes that appear to be co-regulated with MHC class II genes. We introduced the eruption plot as a tool for visual model comparison to identify relevant higher order interactions in the analysis of expression data obtained under the influence of multiple factors. We conclude that model selection in higher order linear regression models should generally be performed for the analysis of multi-factorial microarray data.
[Associations between dormitory environment/other factors and sleep quality of medical students].
Zheng, Bang; Wang, Kailu; Pan, Ziqi; Li, Man; Pan, Yuting; Liu, Ting; Xu, Dan; Lyu, Jun
2016-03-01
To investigate the sleep quality and related factors among medical students in China, understand the association between dormitory environment and sleep quality, and provide evidence and recommendations for sleep hygiene intervention. A total of 555 undergraduate students were selected from a medical school of an university in Beijing through stratified-cluster random-sampling to conduct a questionnaire survey by using Chinese version of Pittsburgh Sleep Quality Index (PSQI) and self-designed questionnaire. Analyses were performed by using multiple logistic regression model as well as multilevel linear regression model. The prevalence of sleep disorder was 29.1%(149/512), and 39.1%(200/512) of the students reported that the sleep quality was influenced by dormitory environment. PSQI score was negatively correlated with self-reported rating of dormitory environment (γs=-0.310, P<0.001). Logistic regression analysis showed the related factors of sleep disorder included grade, sleep regularity, self-rated health status, pressures of school work and employment, as well as dormitory environment. RESULTS of multilevel regression analysis also indicated that perception on dormitory environment (individual level) was associated with sleep quality with the dormitory level random effects under control (b=-0.619, P<0.001). The prevalence of sleep disorder was high in medical students, which was associated with multiple factors. Dormitory environment should be taken into consideration when the interventions are taken to improve the sleep quality of students.
Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression.
Beckstead, Jason W
2012-03-30
The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic strategy to isolate, examine, and remove suppression effects has been offered. In this article such an approach, rooted in confirmatory factor analysis theory and employing matrix algebra, is developed. Suppression is viewed as the result of criterion-irrelevant variance operating among predictors. Decomposition of predictor variables into criterion-relevant and criterion-irrelevant components using structural equation modeling permits derivation of regression weights with the effects of criterion-irrelevant variance omitted. Three examples with data from applied research are used to illustrate the approach: the first assesses child and parent characteristics to explain why some parents of children with obsessive-compulsive disorder accommodate their child's compulsions more so than do others, the second examines various dimensions of personal health to explain individual differences in global quality of life among patients following heart surgery, and the third deals with quantifying the relative importance of various aptitudes for explaining academic performance in a sample of nursing students. The approach is offered as an analytic tool for investigators interested in understanding predictor-criterion relationships when complex patterns of intercorrelation among predictors are present and is shown to augment dominance analysis.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa
2011-08-01
In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.
ERIC Educational Resources Information Center
Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.
2013-01-01
This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)
Rahman, Md. Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D. W.; Labrique, Alain B.; Rashid, Mahbubur; Christian, Parul; West, Keith P.
2017-01-01
Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 − -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset. PMID:29261760
Kabir, Alamgir; Rahman, Md Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D W; Labrique, Alain B; Rashid, Mahbubur; Christian, Parul; West, Keith P
2017-01-01
Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 - -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset.
Are we on the same page? The performance effects of congruence between supervisor and group trust.
Carter, Min Z; Mossholder, Kevin W
2015-09-01
Taking a multiple-stakeholder perspective, we examined the effects of supervisor-work group trust congruence on groups' task and contextual performance using a polynomial regression and response surface analytical framework. We expected motivation experienced by work groups to mediate the positive influence of trust congruence on performance. Although hypothesized congruence effects on performance were more strongly supported for affective rather than for cognitive trust, we found significant indirect effects on performance (via work group motivation) for both types of trust. We discuss the performance effects of trust congruence and incongruence between supervisors and work groups, as well as implications for practice and future research. (c) 2015 APA, all rights reserved).
Alici, Ferizan; Buerkle, Bernd; Tempfer, Clemens B
2014-07-01
To describe the performance curve of hysteroscopy-naïve probands repeatedly working through a surgery algorithm on a hysteroscopy trainer. We prospectively recruited medical students to a 30min demonstration session teaching a standardized surgery algorithm. Subjects subsequently performed three training courses immediately after training (T1) and after 24h (T2) and 48h (T3). Skills were recorded with a 20-item Objective Structured Assessment of Technical Skills (OSATS) at T1, T2, and T3. The presence of a sustained OSATS score improvement from T1 to T3 was the primary outcome. Performance time (PT) and self assessment (SA) were secondary outcomes. Statistics were performed using paired T-test and multiple linear regression analysis. 92 subjects were included. OSATS scores significantly improved over time from T1 to T2 (15.21±1.95 vs. 16.02±2.06, respectively; p<0.0001) and from T2 to T3 (16.02±2.06 vs. 16.95±1.61, respectively; p<0.0001). The secondary outcomes PT (414±119s vs. 357±88s vs. 304±91s; p<0.0001) and SA (3.02±0.85 vs. 3.80±0.76 vs. 4.41±0.67; p<0.0001) also showed an improvement over time with quicker performance and higher confidence. SA, but not PT demonstrated construct validity. In a multiple linear regression analysis, gender (odds ratio (OR) 0.96; 95% confidence interval (CI) 0.35-2.71; p=0.9) did not independently influence the likelihood of OSATS score improvement. In a hysteroscopy-naïve population, there is a continuous and sustained improvement of surgical proficiency and confidence after multiple training courses on a hysteroscopy trainer. Serial hysteroscopy trainings may be helpful for teaching hysteroscopy skills. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A simple measure of cognitive reserve is relevant for cognitive performance in MS patients.
Della Corte, Marida; Santangelo, Gabriella; Bisecco, Alvino; Sacco, Rosaria; Siciliano, Mattia; d'Ambrosio, Alessandro; Docimo, Renato; Cuomo, Teresa; Lavorgna, Luigi; Bonavita, Simona; Tedeschi, Gioacchino; Gallo, Antonio
2018-05-04
Cognitive reserve (CR) contributes to preserve cognition despite brain damage. This theory has been applied to multiple sclerosis (MS) to explain the partial relationship between cognition and MRI markers of brain pathology. Our aim was to determine the relationship between two measures of CR and cognition in MS. One hundred and forty-seven MS patients were enrolled. Cognition was assessed using the Rao's Brief Repeatable Battery and the Stroop Test. CR was measured as the vocabulary subtest of the WAIS-R score (VOC) and the number of years of formal education (EDU). Regression analysis included raw score data on each neuropsychological (NP) test as dependent variables and demographic/clinical parameters, VOC, and EDU as independent predictors. A binary logistic regression analysis including clinical/CR parameters as covariates and absence/presence of cognitive deficits as dependent variables was performed too. VOC, but not EDU, was strongly correlated with performances at all ten NP tests. EDU was correlated with executive performances. The binary logistic regression showed that only the Expanded Disability Status Scale (EDSS) and VOC were independently correlated with the presence/absence of CD. The lower the VOC and/or the higher the EDSS, the higher the frequency of CD. In conclusion, our study supports the relevance of CR in subtending cognitive performances and the presence of CD in MS patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari
2009-11-15
Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performancemore » of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.« less
Impulsivity, attention, memory, and decision-making among adolescent marijuana users.
Dougherty, Donald M; Mathias, Charles W; Dawes, Michael A; Furr, R Michael; Charles, Nora E; Liguori, Anthony; Shannon, Erin E; Acheson, Ashley
2013-03-01
Marijuana is a popular drug of abuse among adolescents, and they may be uniquely vulnerable to resulting cognitive and behavioral impairments. Previous studies have found impairments among adolescent marijuana users. However, the majority of this research has examined measures individually rather than multiple domains in a single cohesive analysis. This study used a logistic regression model that combines performance on a range of tasks to identify which measures were most altered among adolescent marijuana users. The purpose of this research was to determine unique associations between adolescent marijuana use and performances on multiple cognitive and behavioral domains (attention, memory, decision-making, and impulsivity) in 14- to 17-year-olds while simultaneously controlling for performances across the measures to determine which measures most strongly distinguish marijuana users from nonusers. Marijuana-using adolescents (n = 45) and controls (n = 48) were tested. Logistic regression analyses were conducted to test for: (1) differences between marijuana users and nonusers on each measure, (2) associations between marijuana use and each measure after controlling for the other measures, and (3) the degree to which (1) and (2) together elucidated differences among marijuana users and nonusers. Of all the cognitive and behavioral domains tested, impaired short-term recall memory and consequence sensitivity impulsivity were associated with marijuana use after controlling for performances across all measures. This study extends previous findings by identifying cognitive and behavioral impairments most strongly associated with adolescent marijuana users. These specific deficits are potential targets of intervention for this at-risk population.
Entry characteristics and performance in a Masters module in Tropical Medicine: a 5-year analysis.
Weigel, R; Robinson, D; Stewart, M; Assinder, S
2016-06-01
Postgraduate courses can contribute to better-qualified personnel in resource-limited settings. We aimed to identify how entry characteristics of applicants predict performance in order to provide support measures early. We describe demographic data and end-of-module examination marks of medical doctors who enrolled in a first semester module of two one-year MSc programmes between 2010 and 2014. We used t-tests and one-way anova to compare, and post hoc tests to locate differences of mean marks between categories of entry characteristics in univariate analysis. After exclusion of collinear variables, multiple regression examined the effect of several characteristics in multivariable analysis. Eighty-nine students (47% male) with a mean age of 32 (SD 6.4) years who received their medical degree in the UK (19%), other European (22%), African (35%) or other countries (24%) attended the 3-months module. Their mean mark was 69.1% (SD 10.9). Medical graduates from UK universities achieved significantly higher mean marks than graduates from other countries. Students' age was significantly negatively correlated with the module mark. In multiple linear regression, place of medical degree (β = -0.44, P < 0.001) and time since graduation (β = -0.28, P = 0.007) were strongest predictors of performance, explaining 32% of the variation of mean marks. Students' performance substantially differs based on their entry criteria in this 1st semester module. Non-UK graduates and mature students might benefit from early support. © 2016 John Wiley & Sons Ltd.
The M Word: Multicollinearity in Multiple Regression.
ERIC Educational Resources Information Center
Morrow-Howell, Nancy
1994-01-01
Notes that existence of substantial correlation between two or more independent variables creates problems of multicollinearity in multiple regression. Discusses multicollinearity problem in social work research in which independent variables are usually intercorrelated. Clarifies problems created by multicollinearity, explains detection of…
Ling, Ru; Liu, Jiawang
2011-12-01
To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.
NASA Astrophysics Data System (ADS)
Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad; Azali, Sadegh Tarigh
2017-11-01
Thorough and realistic performance predictions are among the main requisites for estimating excavation costs and time of the tunneling projects. Also, NTNU/SINTEF rock drillability indices, including the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), and Cutter Life Index™ (CLI), are among the most effective indices for determining rock drillability. In this study, brittleness value (S20), Sievers' J-Value (SJ), abrasion value (AV), and Abrasion Value Cutter Steel (AVS) tests are conducted to determine these indices for a wide range of Iranian hard igneous rocks. In addition, relationships between such drillability parameters with petrographic features and index properties of the tested rocks are investigated. The results from multiple regression analysis revealed that the multiple regression models prepared using petrographic features provide a better estimation of drillability compared to those prepared using index properties. Also, it was found that the semiautomatic petrography and multiple regression analyses provide a suitable complement to determine drillability properties of igneous rocks. Based on the results of this study, AV has higher correlations with studied mineralogical indices than AVS. The results imply that, in general, rock surface hardness of hard igneous rocks is very high, and the acidic igneous rocks have a lower strength and density and higher S20 than those of basic rocks. Moreover, DRI is higher, while BWI is lower in acidic igneous rocks, suggesting that drill and blast tunneling is more convenient in these rocks than basic rocks.
2013-01-01
Background Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis. Methods We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities. Results A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis. Conclusions We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression. PMID:24308539
Probabilistic Low-Rank Multitask Learning.
Kong, Yu; Shao, Ming; Li, Kang; Fu, Yun
2018-03-01
In this paper, we consider the problem of learning multiple related tasks simultaneously with the goal of improving the generalization performance of individual tasks. The key challenge is to effectively exploit the shared information across multiple tasks as well as preserve the discriminative information for each individual task. To address this, we propose a novel probabilistic model for multitask learning (MTL) that can automatically balance between low-rank and sparsity constraints. The former assumes a low-rank structure of the underlying predictive hypothesis space to explicitly capture the relationship of different tasks and the latter learns the incoherent sparse patterns private to each task. We derive and perform inference via variational Bayesian methods. Experimental results on both regression and classification tasks on real-world applications demonstrate the effectiveness of the proposed method in dealing with the MTL problems.
Hayashi, Tatsuya; Saitoh, Satoshi; Fukuzawa, Kei; Tsuji, Yoshinori; Takahashi, Junji; Kawamura, Yusuke; Akuta, Norio; Kobayashi, Masahiro; Ikeda, Kenji; Fujii, Takeshi; Miyati, Tosiaki; Kumada, Hiromitsu
2017-09-15
Noninvasive liver fibrosis evaluation was performed in patients with nonalcoholic fatty liver disease (NAFLD). We used a quantitative method based on the hepatic volume acquired from gadoxetate disodium-enhanced (Gd-EOB-DTPA-enhanced) magnetic resonance imaging (MRI) for diagnosing advanced fibrosis in patients with NAFLD. A total of 130 patients who were diagnosed with NAFLD and underwent Gd-EOB-DTPA-enhanced MRI were retrospectively included. Histological data were available for 118 patients. Hepatic volumetric parameters, including the left hepatic lobe to right hepatic lobe volume ratio (L/R ratio), were measured. The usefulness of the L/R ratio for diagnosing fibrosis ≥F3-4 and F4 was assessed using the area under the receiver operating characteristic (AUROC) curve. Multiple regression analysis was performed to identify variables (age, body mass index, serum fibrosis markers, and histological features) that were associated with the L/R ratio. The L/R ratio demonstrated good performance in differentiating advanced fibrosis (AUROC, 0.80; 95% confidence interval, 0.72 to 0.88) from cirrhosis (AUROC, 0.87; 95% confidence interval, 0.75 to 0.99). Multiple regression analysis showed that only fibrosis was significantly associated with the L/R ratio (coefficient, 0.121; p<0.0001). The L/R ratio, which is not influenced by pathological parameters other than fibrosis, is useful for diagnosing cirrhosis in patients with NAFLD.
Extending the Distributed Lag Model framework to handle chemical mixtures.
Bello, Ghalib A; Arora, Manish; Austin, Christine; Horton, Megan K; Wright, Robert O; Gennings, Chris
2017-07-01
Distributed Lag Models (DLMs) are used in environmental health studies to analyze the time-delayed effect of an exposure on an outcome of interest. Given the increasing need for analytical tools for evaluation of the effects of exposure to multi-pollutant mixtures, this study attempts to extend the classical DLM framework to accommodate and evaluate multiple longitudinally observed exposures. We introduce 2 techniques for quantifying the time-varying mixture effect of multiple exposures on an outcome of interest. Lagged WQS, the first technique, is based on Weighted Quantile Sum (WQS) regression, a penalized regression method that estimates mixture effects using a weighted index. We also introduce Tree-based DLMs, a nonparametric alternative for assessment of lagged mixture effects. This technique is based on the Random Forest (RF) algorithm, a nonparametric, tree-based estimation technique that has shown excellent performance in a wide variety of domains. In a simulation study, we tested the feasibility of these techniques and evaluated their performance in comparison to standard methodology. Both methods exhibited relatively robust performance, accurately capturing pre-defined non-linear functional relationships in different simulation settings. Further, we applied these techniques to data on perinatal exposure to environmental metal toxicants, with the goal of evaluating the effects of exposure on neurodevelopment. Our methods identified critical neurodevelopmental windows showing significant sensitivity to metal mixtures. Copyright © 2017 Elsevier Inc. All rights reserved.
Age is no barrier: predictors of academic success in older learners
NASA Astrophysics Data System (ADS)
Imlach, Abbie-Rose; Ward, David D.; Stuart, Kimberley E.; Summers, Mathew J.; Valenzuela, Michael J.; King, Anna E.; Saunders, Nichole L.; Summers, Jeffrey; Srikanth, Velandai K.; Robinson, Andrew; Vickers, James C.
2017-11-01
Although predictors of academic success have been identified in young adults, such predictors are unlikely to translate directly to an older student population, where such information is scarce. The current study aimed to examine cognitive, psychosocial, lifetime, and genetic predictors of university-level academic performance in older adults (50-79 years old). Participants were mostly female (71%) and had a greater than high school education level (M = 14.06 years, SD = 2.76), on average. Two multiple linear regression analyses were conducted. The first examined all potential predictors of grade point average (GPA) in the subset of participants who had volunteered samples for genetic analysis (N = 181). Significant predictors of GPA were then re-examined in a second multiple linear regression using the full sample (N = 329). Our data show that the cognitive domains of episodic memory and language processing, in conjunction with midlife engagement in cognitively stimulating activities, have a role in predicting academic performance as measured by GPA in the first year of study. In contrast, it was determined that age, IQ, gender, working memory, psychosocial factors, and common brain gene polymorphisms linked to brain function, plasticity and degeneration (APOE, BDNF, COMT, KIBRA, SERT) did not influence academic performance. These findings demonstrate that ageing does not impede academic achievement, and that discrete cognitive skills as well as lifetime engagement in cognitively stimulating activities can promote academic success in older adults.
Tian, Ting; McLachlan, Geoffrey J.; Dieters, Mark J.; Basford, Kaye E.
2015-01-01
It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances. PMID:26689369
Tian, Ting; McLachlan, Geoffrey J; Dieters, Mark J; Basford, Kaye E
2015-01-01
It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances.
Zeckey, C; Wendt, K; Mommsen, P; Winkelmann, M; Frömke, C; Weidemann, J; Stübig, T; Krettek, C; Hildebrand, F
2015-01-01
Chest trauma is a relevant risk factor for mortality after multiple trauma. Kinetic therapy (KT) represents a potential treatment option in order to restore pulmonary function. Decision criteria for performing kinetic therapy are not fully elucidated. The purpose of this study was to investigate the decision making process to initiate kinetic therapy in a well defined multiple trauma cohort. A retrospective analysis (2000-2009) of polytrauma patients (age > 16 years, ISS ⩾ 16) with severe chest trauma (AIS(Chest) ⩾ 3) was performed. Patients with AIS(Head) ⩾ 3 were excluded. Patients receiving either kinetic (KT+) or lung protective ventilation strategy (KT-) were compared. Chest trauma was classified according to the AIS(Chest), Pulmonary Contusion Score (PCS), Wagner Jamieson Score and Thoracic Trauma Severity Score (TTS). There were multiple outcome parameters investigated included mortality, posttraumatic complications and clinical data. A multivariate regression analysis was performed. Two hundred and eighty-three patients were included (KT+: n=160; KT-: n=123). AIS(Chest), age and gender were comparable in both groups. There were significant higher values of the ISS, PCS, Wagner Jamieson Score and TTS in group KT+. The incidence of posttraumatic complications and mortality was increased compared to group KT- (p< 0.05). Despite that, kinetic therapy failed to be an independent risk factor for mortality in multivariate logistic regression analysis. Kinetic therapy is an option in severely injured patients with severe chest trauma. Decision making is not only based on anatomical aspects such as the AIS(Chest), but on overall injury severity, pulmonary contusions and physiological deterioration. It could be assumed that the increased mortality in patients receiving KT is primarily caused by these factors and does not reflect an independent adverse effect of KT. Furthermore, KT was not shown to be an independent risk factor for mortality.
A comparison of multiple imputation methods for incomplete longitudinal binary data.
Yamaguchi, Yusuke; Misumi, Toshihiro; Maruo, Kazushi
2018-01-01
Longitudinal binary data are commonly encountered in clinical trials. Multiple imputation is an approach for getting a valid estimation of treatment effects under an assumption of missing at random mechanism. Although there are a variety of multiple imputation methods for the longitudinal binary data, a limited number of researches have reported on relative performances of the methods. Moreover, when focusing on the treatment effect throughout a period that has often been used in clinical evaluations of specific disease areas, no definite investigations comparing the methods have been available. We conducted an extensive simulation study to examine comparative performances of six multiple imputation methods available in the SAS MI procedure for longitudinal binary data, where two endpoints of responder rates at a specified time point and throughout a period were assessed. The simulation study suggested that results from naive approaches of a single imputation with non-responders and a complete case analysis could be very sensitive against missing data. The multiple imputation methods using a monotone method and a full conditional specification with a logistic regression imputation model were recommended for obtaining unbiased and robust estimations of the treatment effect. The methods were illustrated with data from a mental health research.
Voxelwise multivariate analysis of multimodality magnetic resonance imaging
Naylor, Melissa G.; Cardenas, Valerie A.; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin
2015-01-01
Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remains a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. PMID:23408378
Estimating Soil Cation Exchange Capacity from Soil Physical and Chemical Properties
NASA Astrophysics Data System (ADS)
Bateni, S. M.; Emamgholizadeh, S.; Shahsavani, D.
2014-12-01
The soil Cation Exchange Capacity (CEC) is an important soil characteristic that has many applications in soil science and environmental studies. For example, CEC influences soil fertility by controlling the exchange of ions in the soil. Measurement of CEC is costly and difficult. Consequently, several studies attempted to obtain CEC from readily measurable soil physical and chemical properties such as soil pH, organic matter, soil texture, bulk density, and particle size distribution. These studies have often used multiple regression or artificial neural network models. Regression-based models cannot capture the intricate relationship between CEC and soil physical and chemical attributes and provide inaccurate CEC estimates. Although neural network models perform better than regression methods, they act like a black-box and cannot generate an explicit expression for retrieval of CEC from soil properties. In a departure with regression and neural network models, this study uses Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) to estimate CEC from easily measurable soil variables such as clay, pH, and OM. CEC estimates from GEP and MARS are compared with measurements at two field sites in Iran. Results show that GEP and MARS can estimate CEC accurately. Also, the MARS model performs slightly better than GEP. Finally, a sensitivity test indicates that organic matter and pH have respectively the least and the most significant impact on CEC.
ERIC Educational Resources Information Center
Cebeci, Halil Ibrahim; Yazgan, Harun Resit; Geyik, Abdulkadir
2009-01-01
This study explores the relationship between the student performance and instructional design. The research was conducted at the E-Learning School at a university in Turkey. A list of design factors that had potential influence on student success was created through a review of the literature and interviews with relevant experts. From this, the…
A New Mathematical Framework for Design Under Uncertainty
2016-05-05
blending multiple information sources via auto-regressive stochastic modeling. A computationally efficient machine learning framework is developed based on...sion and machine learning approaches; see Fig. 1. This will lead to a comprehensive description of system performance with less uncertainty than in the...Bayesian optimization of super-cavitating hy- drofoils The goal of this study is to demonstrate the capabilities of statistical learning and
ERIC Educational Resources Information Center
Siweya, Hlengani J.; Letsoalo, Peter
2014-01-01
This study investigated whether formative assessment is a predictor of summative assessment in a university first-year chemistry class. The sample comprised a total of 1687 first-year chemistry students chosen from the 2011 and 2012 cohorts. Both simple and multiple linear regression (SLR and MLR) techniques were applied to perform the primary aim…
A comparison of two microscale laboratory reporting methods in a secondary chemistry classroom
NASA Astrophysics Data System (ADS)
Martinez, Lance Michael
This study attempted to determine if there was a difference between the laboratory achievement of students who used a modified reporting method and those who used traditional laboratory reporting. The study also determined the relationships between laboratory performance scores and the independent variables score on the Group Assessment of Logical Thinking (GALT) test, chronological age in months, gender, and ethnicity for each of the treatment groups. The study was conducted using 113 high school students who were enrolled in first-year general chemistry classes at Pueblo South High School in Colorado. The research design used was the quasi-experimental Nonequivalent Control Group Design. The statistical treatment consisted of the Multiple Regression Analysis and the Analysis of Covariance. Based on the GALT, students in the two groups were generally in the concrete and transitional stages of the Piagetian cognitive levels. The findings of the study revealed that the traditional and the modified methods of laboratory reporting did not have any effect on the laboratory performance outcome of the subjects. However, the students who used the traditional method of reporting showed a higher laboratory performance score when evaluation was conducted using the New Standards rubric recommended by the state. Multiple Regression Analysis revealed that there was a significant relationship between the criterion variable student laboratory performance outcome of individuals who employed traditional laboratory reporting methods and the composite set of predictor variables. On the contrary, there was no significant relationship between the criterion variable student laboratory performance outcome of individuals who employed modified laboratory reporting methods and the composite set of predictor variables.
VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.
Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro
2016-01-01
In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.
Kuiper, Gerhardus J A J M; Houben, Rik; Wetzels, Rick J H; Verhezen, Paul W M; Oerle, Rene van; Ten Cate, Hugo; Henskens, Yvonne M C; Lancé, Marcus D
2017-11-01
Low platelet counts and hematocrit levels hinder whole blood point-of-care testing of platelet function. Thus far, no reference ranges for MEA (multiple electrode aggregometry) and PFA-100 (platelet function analyzer 100) devices exist for low ranges. Through dilution methods of volunteer whole blood, platelet function at low ranges of platelet count and hematocrit levels was assessed on MEA for four agonists and for PFA-100 in two cartridges. Using (multiple) regression analysis, 95% reference intervals were computed for these low ranges. Low platelet counts affected MEA in a positive correlation (all agonists showed r 2 ≥ 0.75) and PFA-100 in an inverse correlation (closure times were prolonged with lower platelet counts). Lowered hematocrit did not affect MEA testing, except for arachidonic acid activation (ASPI), which showed a weak positive correlation (r 2 = 0.14). Closure time on PFA-100 testing was inversely correlated with hematocrit for both cartridges. Regression analysis revealed different 95% reference intervals in comparison with originally established intervals for both MEA and PFA-100 in low platelet or hematocrit conditions. Multiple regression analysis of ASPI and both tests on the PFA-100 for combined low platelet and hematocrit conditions revealed that only PFA-100 testing should be adjusted for both thrombocytopenia and anemia. 95% reference intervals were calculated using multiple regression analysis. However, coefficients of determination of PFA-100 were poor, and some variance remained unexplained. Thus, in this pilot study using (multiple) regression analysis, we could establish reference intervals of platelet function in anemia and thrombocytopenia conditions on PFA-100 and in thrombocytopenia conditions on MEA.
Liu, Chao-Yu; Huang, Wei-Lieh; Kao, Wei-Chih; Gau, Susan Shur-Fen
2017-12-01
Childhood attention-deficit/hyperactivity disorder (ADHD) and comorbid oppositional defiant disorder/conduct disorder (ODD/CD) are associated with negative school outcomes. The study aimed to examine the impact of ADHD and ODD/CD on various school functions. 395 youths with ADHD (244 with ADHD + ODD/CD and 151 with ADHD only) and 156 controls received semi-structured psychiatric interviews. School functions were assessed and compared between each group with a multiple-level model. The results showed that youths with ADHD had poorer performance across different domains of school functioning. Youths with ADHD + ODD/CD had more behavioral problems but similar academic performance than those with ADHD only. The multiple linear regression models revealed that ADHD impaired academic performance while ODD/CD aggravated behavioral problems. Our findings imply that comorbid ODD/CD may specifically contribute to social difficulties in youths with ADHD. Measures of early detection and intervention for ODD/CD should be conducted to prevent adverse outcomes.
As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...
MULTIPLE REGRESSION MODELS FOR HINDCASTING AND FORECASTING MIDSUMMER HYPOXIA IN THE GULF OF MEXICO
A new suite of multiple regression models were developed that describe the relationship between the area of bottom water hypoxia along the northern Gulf of Mexico and Mississippi-Atchafalaya River nitrate concentration, total phosphorus (TP) concentration, and discharge. Variabil...
Shin, Sunny H; McDonald, Shelby Elaine; Conley, David
2018-03-01
Adverse childhood experiences (ACEs) have been strongly linked with subsequent substance use. The aim of this study was to investigate how different patterns of ACEs influence substance use in young adulthood. Using a community sample of young individuals (N=336; ages 18-25), we performed latent class analyses (LCA) to identify homogenous groups of young people with similar patterns of ACEs. Exposure to ACEs incorporates 13 childhood adversities including childhood maltreatment, household dysfunction, and community violence. Multiple linear and logistic regression models were used in an effort to examine the associations between ACEs classes and four young adult outcomes such as alcohol-related problems, current tobacco use, drug dependence symptoms, and psychological distress. LCA identified four heterogeneous classes of young people distinguished by different patterns of ACEs exposure: Low ACEs (56%), Household Dysfunction/Community Violence (14%), Emotional ACEs (14%), and High/Multiple ACEs (16%). Multiple regression analyses found that compared to those in the Low ACEs class, young adults in the High/Multiple ACEs class reported more alcohol-related problems, current tobacco use, and psychological symptoms, controlling for sociodemographic characteristics and common risk factors for substance use such as peer substance use. Our findings confirm that for many young people, ACEs occur as multiple rather than single experiences. The results of this research suggest that exposure to poly-victimization during childhood is particularly related to substance use during young adulthood. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hultsch, D F; Hammer, M; Small, B J
1993-01-01
The predictive relationships among individual differences in self-reported physical health and activity life style and performance on an array of information processing and intellectual ability measures were examined. A sample of 484 men and women aged 55 to 86 years completed a battery of cognitive tasks measuring verbal processing time, working memory, vocabulary, verbal fluency, world knowledge, word recall, and text recall. Hierarchical regression was used to predict performance on these tasks from measures of self-reported physical health, alcohol and tobacco use, and level of participation in everyday activities. The results indicated: (a) individual differences in self-reported health and activity predicted performance on multiple cognitive measures; (b) self-reported health was more predictive of processing resource variables than knowledge-based abilities; (c) interaction effects indicated that participation in cognitively demanding activities was more highly related to performance on some measures for older adults than for middle-aged adults; and (d) age-related differences in performance on multiple measures were attenuated by partialing individual differences in self-reported health and activity.
Mean centering, multicollinearity, and moderators in multiple regression: The reconciliation redux.
Iacobucci, Dawn; Schneider, Matthew J; Popovich, Deidre L; Bakamitsos, Georgios A
2017-02-01
In this article, we attempt to clarify our statements regarding the effects of mean centering. In a multiple regression with predictors A, B, and A × B (where A × B serves as an interaction term), mean centering A and B prior to computing the product term can clarify the regression coefficients (which is good) and the overall model fit R 2 will remain undisturbed (which is also good).
2013-01-01
application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal
Psychosocial correlates of fatigue in multiple sclerosis.
Schwartz, C E; Coulthard-Morris, L; Zeng, Q
1996-02-01
To explore: (1) the interrelation among the neuropsychological, psychological, and psychosocial factors and fatigue as measured by the Multidimensional Assessment of Fatigue scale, and (2) the impact of fatigue on role performance. Clinical interview with neuropsychological testing and cross-sectional study by mail. Multiple sclerosis (MS) clinic registry of a large Boston teaching hospital. 139 MS patients representing a broad range of disability. The Multidimensional Assessment of Fatigue (MAF) scale, the Extended Disability Status Scale, the Sickness Impact Profile, Rao cognitive battery, the Trailmaking Test, depression, anxiety, and social activity limitations subscales from the Arthritis Impact Measurement Scales, and the Ryff Happiness Scale. Stepwise multiple regression analyses revealed that having a low sense of environmental mastery was the best psychosocial predictor of both global fatigue and fatigue-related distress, after adjusting for sociodemographic and medical factors. Further, people who reported being more depressed tended to report more severe fatigue. Neuropsychological performance was not associated with fatigue. Fatigue was found to limit social, work, and overall role performance, but not physical role performance. People who feel that they can choose or create environments suitable to their psychic or physical conditions report less global fatigue and less fatigue-related distress, and fatigue can have an important impact on role performance. The implications of these findings for designing fatigue management interventions are discussed.
NASA Technical Reports Server (NTRS)
Buch, A. M.; Narain, A.; Pandey, P. C.
1994-01-01
The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.
Chalé-Rush, Angela; Guralnik, Jack M.; Walkup, Michael P.; Miller, Michael E.; Rejeski, W. Jack; Katula, Jeffrey A.; King, Abby C.; Glynn, Nancy W.; Manini, Todd M.; Blair, Steven N.; Fielding, Roger A.
2010-01-01
OBJECTIVES To determine if participation in usual moderate-intensity or more vigorous physical activity (MVPA) is associated with physical function performance and to identify socio-demographic, psychosocial and disease-related covariates that may also compromise physical function performance. DESIGN Cross-sectional analysis of baseline variables of randomized controlled intervention trial. SETTING Four separate academic research centers. PARTICIPANTS Four hundred twenty-four older adults aged 70–89 years at risk for mobility-disability (scoring <10 on the Short Physical Performance Battery, SPPB) and able to complete the 400 m walk test within 15 minutes. MEASUREMENTS Minutes of MVPA (dichotomized according to above or below 150 min•wk−1 of MVPA) assessed by the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire, SPPB score, 400 M walk test, gender, body mass index (BMI), depressive symptoms, age and number of medications. RESULTS The SPPB summary score was associated with minutes of MVPA (ρ = 0.16, P = 0.001). In multiple regression analyses, age, minutes of MVPA, number of medications and depressive symptoms were associated with performance on the composite SPPB (P < 0.05). There was an association between 400 m walk time and minutes of MVPA (ρ = −0.18; P = 0.0002). In multiple regression analyses, age, gender, minutes of MVPA, BMI and number of medications were associated with performance on the 400 m walk test (P < 0.05). CONCLUSION Minutes of MVPA, gender, BMI, depressive symptoms, age, and number of medications are associated with physical function performance and all should be taken into consideration in the prevention of mobility-disability. PMID:20738437
Kakudate, Naoki; Yokoyama, Yoko; Sumida, Futoshi; Matsumoto, Yuki; Gordan, Valeria V; Gilbert, Gregg H; Velly, Ana M; Schiffman, Eric L
2018-01-01
Aims This study quantified the practice pattern of Japanese dentists in the management of pain related to temporomandibular disorders (TMDs), and identified associations between dentist characteristics and the decision to perform occlusal adjustment for TMD-related pain. Methods A cross-sectional study was conducted consisting of a questionnaire survey of dentists affiliated with the Dental Practice-based Research Network Japan (JDPBRN) (n=148). Participants were asked how they diagnosed and treated TMD-related pain. Associations between dentist characteristics and their decision to perform occlusal adjustment were analyzed via multiple logistic regression. Results 113 clinicians responded the questionnaire for a 76% response rate. 81% of the participants (n=89) treated TMDs during the previous year. Dentists treated an average of 1.9±1.8 (SD) patients with TMD-related pain monthly. Most JDPBRN dentists used similar diagnostic protocols, including questions and examinations. The most frequent treatments were splints or mouthguards (97%), medications (85%), and self-care (69%). Fifty eight percent of the participants performed occlusal adjustment for TMD-related pain. Multiple logistic regression analysis identified two factors significantly associated with the decision to perform occlusal adjustment. Odds ratios (95%CI) were “dentist lack of confidence in curing TMD-related acute pain”, 5.60 (1.260–24.861) and “proportion of patients with severe TMD-related pain”, 0.95 (0.909–0.999). Conclusions The most common treatments for TMD-related pain were reversible treatments. However, over half of dentists performed occlusal adjustment for TMD-related pain. There was a significant association between the decision to perform occlusal adjustment and lack of therapeutic confidence. The results of this study suggest that an evidence-practice gap exists regarding occlusal adjustment for TMD-related pain. PMID:28437512
He, Dan; Kuhn, David; Parida, Laxmi
2016-06-15
Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait prediction is usually represented as linear regression models. In many cases, for the same set of samples and markers, multiple traits are observed. Some of these traits might be correlated with each other. Therefore, modeling all the multiple traits together may improve the prediction accuracy. In this work, we view the multitrait prediction problem from a machine learning angle: as either a multitask learning problem or a multiple output regression problem, depending on whether different traits share the same genotype matrix or not. We then adapted multitask learning algorithms and multiple output regression algorithms to solve the multitrait prediction problem. We proposed a few strategies to improve the least square error of the prediction from these algorithms. Our experiments show that modeling multiple traits together could improve the prediction accuracy for correlated traits. The programs we used are either public or directly from the referred authors, such as MALSAR (http://www.public.asu.edu/~jye02/Software/MALSAR/) package. The Avocado data set has not been published yet and is available upon request. dhe@us.ibm.com. © The Author 2016. Published by Oxford University Press.
Multitasking in multiple sclerosis: can it inform vocational functioning?
Morse, Chelsea L; Schultheis, Maria T; McKeever, Joshua D; Leist, Thomas
2013-12-01
To examine associations between multitasking ability defined by performance on a complex task integrating multiple cognitive domains and vocational functioning in multiple sclerosis (MS). Survey data collection. Laboratory with referrals from an outpatient clinic. Community-dwelling individuals with MS (N=30) referred between October 2011 and June 2012. Not applicable. The modified Six Elements Test (SET) to measure multitasking ability, Fatigue Severity Scale to measure fatigue, several neuropsychological measures of executive functioning, and vocational status. Among the sample, 60% of individuals have reduced their work hours because of MS symptoms (cutback employment group) and 40% had maintained their work hours. Among both groups, SET performance was significantly associated with performance on several measures of neuropsychological functioning. Individuals in the cutback employment group demonstrated significantly worse overall performance on the SET (P=.041). Logistic regression was used to evaluate associations between SET performance and vocational status, while accounting for neuropsychological performance and fatigue. The overall model was significant (χ(2)3=8.65, P=.032), with fatigue [Exp(B)=.83, P=.01] and multitasking ability [Exp(B)=.60, P=.043] retained as significant predictors. Multitasking ability may play an important role in performance at work for individuals with MS. Given that multitasking was associated with vocational functioning, future efforts should assess the usefulness of incorporating multitasking ability into rehabilitation planning. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
D'Ambrosio, Alessandro; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo; Rocca, Maria A
2017-08-01
To investigate the role of cerebellar sub-regions on motor and cognitive performance in multiple sclerosis (MS) patients. Whole and sub-regional cerebellar volumes, brain volumes, T2 hyperintense lesion volumes (LV), and motor performance scores were obtained from 95 relapse-onset MS patients and 32 healthy controls (HC). MS patients also underwent an evaluation of working memory and processing speed functions. Cerebellar anterior and posterior lobes were segmented using the Spatially Unbiased Infratentorial Toolbox (SUIT) from Statistical Parametric Mapping (SPM12). Multivariate linear regression models assessed the relationship between magnetic resonance imaging (MRI) measures and motor/cognitive scores. Compared to HC, only secondary progressive multiple sclerosis (SPMS) patients had lower cerebellar volumes (total and posterior cerebellum). In MS patients, lower anterior cerebellar volume and brain T2 LV predicted worse motor performance, whereas lower posterior cerebellar volume and brain T2 LV predicted poor cognitive performance. Global measures of brain volume and infratentorial T2 LV were not selected by the final multivariate models. Cerebellar volumetric abnormalities are likely to play an important contribution to explain motor and cognitive performance in MS patients. Consistently with functional mapping studies, cerebellar posterior-inferior volume accounted for variance in cognitive measures, whereas anterior cerebellar volume accounted for variance in motor performance, supporting the assessment of cerebellar damage at sub-regional level.
Simple and multiple linear regression: sample size considerations.
Hanley, James A
2016-11-01
The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.
Aging, not menopause, is associated with higher prevalence of hyperuricemia among older women.
Krishnan, Eswar; Bennett, Mihoko; Chen, Linjun
2014-11-01
This work aims to study the associations, if any, of hyperuricemia, gout, and menopause status in the US population. Using multiyear data from the National Health and Nutrition Examination Survey, we performed unmatched comparisons and one to three age-matched comparisons of women aged 20 to 70 years with and without hyperuricemia (serum urate ≥6 mg/dL). Analyses were performed using survey-weighted multiple logistic regression and conditional logistic regression, respectively. Overall, there were 1,477 women with hyperuricemia. Age and serum urate were significantly correlated. In unmatched analyses (n = 9,573 controls), postmenopausal women were older, were heavier, and had higher prevalence of renal impairment, hypertension, diabetes, and hyperlipidemia. In multivariable regression, after accounting for age, body mass index, glomerular filtration rate, and diuretic use, menopause was associated with hyperuricemia (odds ratio, 1.36; 95% CI, 1.05-1.76; P = 0.002). In corresponding multivariable regression using age-matched data (n = 4,431 controls), the odds ratio for menopause was 0.94 (95% CI, 0.83-1.06). Current use of hormone therapy was not associated with prevalent hyperuricemia in both unmatched and matched analyses. Age is a better statistical explanation for the higher prevalence of hyperuricemia among older women than menopause status.
Undergraduate Student Motivation in Modularized Developmental Mathematics Courses
ERIC Educational Resources Information Center
Pachlhofer, Keith A.
2017-01-01
This study used the Motivated Strategies for Learning Questionnaire in modularized courses at three institutions across the nation (N = 189), and multiple regression was completed to investigate five categories of student motivation that predicted academic success and course completion. The overall multiple regression analysis was significant and…
MULGRES: a computer program for stepwise multiple regression analysis
A. Jeff Martin
1971-01-01
MULGRES is a computer program source deck that is designed for multiple regression analysis employing the technique of stepwise deletion in the search for most significant variables. The features of the program, along with inputs and outputs, are briefly described, with a note on machine compatibility.
Categorical Variables in Multiple Regression: Some Cautions.
ERIC Educational Resources Information Center
O'Grady, Kevin E.; Medoff, Deborah R.
1988-01-01
Limitations of dummy coding and nonsense coding as methods of coding categorical variables for use as predictors in multiple regression analysis are discussed. The combination of these approaches often yields estimates and tests of significance that are not intended by researchers for inclusion in their models. (SLD)
Ghasemi, Jahan B; Safavi-Sohi, Reihaneh; Barbosa, Euzébio G
2012-02-01
A quasi 4D-QSAR has been carried out on a series of potent Gram-negative LpxC inhibitors. This approach makes use of the molecular dynamics (MD) trajectories and topology information retrieved from the GROMACS package. This new methodology is based on the generation of a conformational ensemble profile, CEP, for each compound instead of only one conformation, followed by the calculation intermolecular interaction energies at each grid point considering probes and all aligned conformations resulting from MD simulations. These interaction energies are independent variables employed in a QSAR analysis. The comparison of the proposed methodology to comparative molecular field analysis (CoMFA) formalism was performed. This methodology explores jointly the main features of CoMFA and 4D-QSAR models. Step-wise multiple linear regression was used for the selection of the most informative variables. After variable selection, multiple linear regression (MLR) and partial least squares (PLS) methods used for building the regression models. Leave-N-out cross-validation (LNO), and Y-randomization were performed in order to confirm the robustness of the model in addition to analysis of the independent test set. Best models provided the following statistics: [Formula in text] (PLS) and [Formula in text] (MLR). Docking study was applied to investigate the major interactions in protein-ligand complex with CDOCKER algorithm. Visualization of the descriptors of the best model helps us to interpret the model from the chemical point of view, supporting the applicability of this new approach in rational drug design.
Shah, Kalpit N; Defroda, Steven F; Wang, Bo; Weiss, Arnold-Peter C
2017-12-01
The first carpometacarpal (CMC) joint is a common site of osteoarthritis, with arthroplasty being a common procedure to provide pain relief and improve function with low complications. However, little is known about risk factors that may predispose a patient for postoperative complications. All CMC joint arthroplasty from 2005 to 2015 in the prospectively collected American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database were identified. Bivariate testing and multiple logistic regressions were performed to determine which patient demographics, surgical variables and medical comorbidities were significant predictors for complications. These included wound related, cardiopulmonary, neurological and renal complications, return to the operating room (OR) and readmission. A total of 3344 patients were identified from the database. Of those, 45 patients (1.3%) experienced a complication including wound issues (0.66%), return to the OR (0.15%) and readmission (0.27%) amongst others. When performing bivariate analysis, age over 65, American Society of Anesthesiologists (ASA) Class, diabetes and renal dialysis were significant risk factors. Multiple logistic regression after adjusting for confounding factors demonstrated that insulin-dependent diabetes and ASA Class 4 had a strong trend while renal dialysis was a significant risk factor. CMC arthroplasty has a very low overall complication rate of 1.3% and wound complication rate of 0.66%. Diabetes requiring insulin and ASA Class 4 trended towards significance while renal dialysis was found to be a significant risk factors in logistic regression. This information may be useful for preoperative counseling and discussion with patients who have these risk factors.
Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.
Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A
2016-01-01
Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.
Comparative values of medical school assessments in the prediction of internship performance.
Lee, Ming; Vermillion, Michelle
2018-02-01
Multiple undergraduate achievements have been used for graduate admission consideration. Their relative values in the prediction of residency performance are not clear. This study compared the contributions of major undergraduate assessments to the prediction of internship performance. Internship performance ratings of the graduates of a medical school were collected from 2012 to 2015. Hierarchical multiple regression analyses were used to examine the predictive values of undergraduate measures assessing basic and clinical sciences knowledge and clinical performances, after controlling for differences in the Medical College Admission Test (MCAT). Four hundred eighty (75%) graduates' archived data were used in the study. Analyses revealed that clinical competencies, assessed by the USMLE Step 2 CK, NBME medicine exam, and an eight-station objective structured clinical examination (OSCE), were strong predictors of internship performance. Neither the USMLE Step 1 nor the inpatient internal medicine clerkship evaluation predicted internship performance. The undergraduate assessments as a whole showed a significant collective relationship with internship performance (ΔR 2 = 0.12, p < 0.001). The study supports the use of clinical competency assessments, instead of pre-clinical measures, in graduate admission consideration. It also provides validity evidence for OSCE scores in the prediction of workplace performance.
On the relation between personality and job performance of airline pilots.
Hormann, H J; Maschke, P
1996-01-01
The validity of a personality questionnaire for the prediction of job success of airline pilots is compared to validities of a simulator checkflight and of flying experience data. During selection, 274 pilots applying for employment with a European charter airline were examined with a multidimensional personality questionnaire (Temperature Structure Scales; TSS). Additionally, the applicants were graded in a simulator checkflight. On the basis of training records, the pilots were classified as performing at standard or below standard after about 3 years of employment in the hiring company. In a multiple-regression model, this dichotomous criterion for job success can be predicted with 73.8% accuracy through the simulator checkflight and flying experience prior to employment. By adding the personality questionnaire to the regression equation, the number of correct classifications increases to 79.3%. On average, successful pilots score substantially higher on interpersonal scales and lower on emotional scales of the TSS.
Eaton, Jennifer L; Mohr, David C; Hodgson, Michael J; McPhaul, Kathleen M
2018-02-01
To describe development and validation of the work-related well-being (WRWB) index. Principal components analysis was performed using Federal Employee Viewpoint Survey (FEVS) data (N = 392,752) to extract variables representing worker well-being constructs. Confirmatory factor analysis was performed to verify factor structure. To validate the WRWB index, we used multiple regression analysis to examine relationships with burnout associated outcomes. Principal Components Analysis identified three positive psychology constructs: "Work Positivity", "Co-worker Relationships", and "Work Mastery". An 11 item index explaining 63.5% of variance was achieved. The structural equation model provided a very good fit to the data. Higher WRWB scores were positively associated with all three employee experience measures examined in regression models. The new WRWB index shows promise as a valid and widely accessible instrument to assess worker well-being.
Eaton, Jennifer L; Mohr, David C; Hodgson, Michael J; McPhaul, Kathleen M
2017-10-11
To describe development and validation of the Work-Related Well-Being (WRWB) Index. Principal Components Analysis was performed using Federal Employee Viewpoint Survey (FEVS) data (N = 392,752) to extract variables representing worker well-being constructs. Confirmatory factor analysis was performed to verify factor structure. To validate the WRWB index, we used multiple regression analysis to examine relationships with burnout associated outcomes. PCA identified three positive psychology constructs: "Work Positivity", "Co-worker Relationships", and "Work Mastery". An 11 item index explaining 63.5% of variance was achieved. The structural equation model provided a very good fit to the data. Higher WRWB scores were positively associated with all 3 employee experience measures examined in regression models. The new WRWB index shows promise as a valid and widely accessible instrument to assess worker well-being.
Estimating standard errors in feature network models.
Frank, Laurence E; Heiser, Willem J
2007-05-01
Feature network models are graphical structures that represent proximity data in a discrete space while using the same formalism that is the basis of least squares methods employed in multidimensional scaling. Existing methods to derive a network model from empirical data only give the best-fitting network and yield no standard errors for the parameter estimates. The additivity properties of networks make it possible to consider the model as a univariate (multiple) linear regression problem with positivity restrictions on the parameters. In the present study, both theoretical and empirical standard errors are obtained for the constrained regression parameters of a network model with known features. The performance of both types of standard error is evaluated using Monte Carlo techniques.
The Persistence of the Gender Gap in Introductory Physics
NASA Astrophysics Data System (ADS)
Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.
2008-10-01
We previously showed[l] that despite teaching with interactive engagement techniques, the gap in performance between males and females on conceptual learning surveys persisted from pre- to posttest, at our institution. Such findings were counter to previously published work[2]. Our current work analyzes factors that may influence the observed gender gap in our courses. Posttest conceptual assessment data are modeled using both multiple regression and logistic regression analyses to estimate the gender gap in posttest scores after controlling for background factors that vary by gender. We find that at our institution the gender gap persists in interactive physics classes, but is largely due to differences in physics and math preparation and incoming attitudes and beliefs.
Multiple sex partner behavior in female undergraduate students in China: a multi-campus survey.
Yan, Hong; Chen, Weiqi; Wu, Haocheng; Bi, Yongyi; Zhang, Miaoxuan; Li, Shiyue; Braun, Kathryn L
2009-08-22
China is realizing increases in women engaged in premarital sex and multiple sex partner behavior. Our aim was to examine prevalence and determinants of multiple sex partner behavior among female undergraduates in China. Anonymously completed questionnaires were received from 4,769 unmarried female undergraduates, recruited using randomized cluster sampling by type of university and students' major and grade. Items captured demographic, family, peer and work influence, and student factors (major, academic performance, and sex-related knowledge and attitudes). To examine risk factors for sexual behaviors, we used multi-level logistic regression, yielding odds ratios (OR) and 95% confidence intervals (95% CI). Of 4,769 female students, 863 (18.10%) reported ever having sexual intercourse, and 5.31% reported having multiple sex partners (29.32% of all women having sexual intercourse). Several demographic, family, peer and work influences, and student factors (including major, performance, knowledge, and attitude toward sex) were risk factors for ever having sex. However, risk factors for multiple sex partners only included working in a place of entertainment, having current close friends that were living with boyfriends, poor academic performance, and positive attitudes toward multiple partners. These women also were more likely to practice masturbation, start having sex at a younger age, have sex with married men and/or men not their "boyfriends" at first coitus, and not use condoms consistently. A small but important subset of Chinese female undergraduates is engaged in unprotected sex with multiple sex partners. Interventions need to target at risk women, stressing the importance of consistent condom use.
Multiple sex partner behavior in female undergraduate students in China: A multi-campus survey
Yan, Hong; Chen, Weiqi; Wu, Haocheng; Bi, Yongyi; Zhang, Miaoxuan; Li, Shiyue; Braun, Kathryn L
2009-01-01
Background China is realizing increases in women engaged in premarital sex and multiple sex partner behavior. Our aim was to examine prevalence and determinants of multiple sex partner behavior among female undergraduates in China. Methods Anonymously completed questionnaires were received from 4,769 unmarried female undergraduates, recruited using randomized cluster sampling by type of university and students' major and grade. Items captured demographic, family, peer and work influence, and student factors (major, academic performance, and sex-related knowledge and attitudes). To examine risk factors for sexual behaviors, we used multi-level logistic regression, yielding odds ratios (OR) and 95% confidence intervals (95% CI). Results Of 4,769 female students, 863 (18.10%) reported ever having sexual intercourse, and 5.31% reported having multiple sex partners (29.32% of all women having sexual intercourse). Several demographic, family, peer and work influences, and student factors (including major, performance, knowledge, and attitude toward sex) were risk factors for ever having sex. However, risk factors for multiple sex partners only included working in a place of entertainment, having current close friends that were living with boyfriends, poor academic performance, and positive attitudes toward multiple partners. These women also were more likely to practice masturbation, start having sex at a younger age, have sex with married men and/or men not their "boyfriends" at first coitus, and not use condoms consistently. Conclusion A small but important subset of Chinese female undergraduates is engaged in unprotected sex with multiple sex partners. Interventions need to target at risk women, stressing the importance of consistent condom use. PMID:19698132
Advanced Statistics for Exotic Animal Practitioners.
Hodsoll, John; Hellier, Jennifer M; Ryan, Elizabeth G
2017-09-01
Correlation and regression assess the association between 2 or more variables. This article reviews the core knowledge needed to understand these analyses, moving from visual analysis in scatter plots through correlation, simple and multiple linear regression, and logistic regression. Correlation estimates the strength and direction of a relationship between 2 variables. Regression can be considered more general and quantifies the numerical relationships between an outcome and 1 or multiple variables in terms of a best-fit line, allowing predictions to be made. Each technique is discussed with examples and the statistical assumptions underlying their correct application. Copyright © 2017 Elsevier Inc. All rights reserved.
Ball, Kevin A; Best, Russell J; Wrigley, Tim V
2003-07-01
In this study, we examined the relationships between body sway, aim point fluctuation and performance in rifle shooting on an inter- and intra-individual basis. Six elite shooters performed 20 shots under competition conditions. For each shot, body sway parameters and four aim point fluctuation parameters were quantified for the time periods 5 s to shot, 3 s to shot and 1 s to shot. Three parameters were used to indicate performance. An AMTI LG6-4 force plate was used to measure body sway parameters, while a SCATT shooting analysis system was used to measure aim point fluctuation and shooting performance. Multiple regression analysis indicated that body sway was related to performance for four shooters. Also, body sway was related to aim point fluctuation for all shooters. These relationships were specific to the individual, with the strength of association, parameters of importance and time period of importance different for different shooters. Correlation analysis of significant regressions indicated that, as body sway increased, performance decreased and aim point fluctuation increased for most relationships. We conclude that body sway and aim point fluctuation are important in elite rifle shooting and performance errors are highly individual-specific at this standard. Individual analysis should be a priority when examining elite sports performance.
Use of Thematic Mapper for water quality assessment
NASA Technical Reports Server (NTRS)
Horn, E. M.; Morrissey, L. A.
1984-01-01
The evaluation of simulated TM data obtained on an ER-2 aircraft at twenty-five predesignated sample sites for mapping water quality factors such as conductivity, pH, suspended solids, turbidity, temperature, and depth, is discussed. Using a multiple regression for the seven TM bands, an equation is developed for the suspended solids. TM bands 1, 2, 3, 4, and 6 are used with logarithm conductivity in a multiple regression. The assessment of regression equations for a high coefficient of determination (R-squared) and statistical significance is considered. Confidence intervals about the mean regression point are calculated in order to assess the robustness of the regressions used for mapping conductivity, turbidity, and suspended solids, and by regressing random subsamples of sites and comparing the resultant range of R-squared, cross validation is conducted.
Brian K. Via; Todd F. Shupe; Leslie H. Groom; Michael Stine; Chi-Leung So
2003-01-01
In manufacturing, monitoring the mechanical properties of wood with near infrared spectroscopy (NIR) is an attractive alternative to more conventional methods. However, no attention has been given to see if models differ between juvenile and mature wood. Additionally, it would be convenient if multiple linear regression (MLR) could perform well in the place of more...
The dynamic model of enterprise revenue management
NASA Astrophysics Data System (ADS)
Mitsel, A. A.; Kataev, M. Yu; Kozlov, S. V.; Korepanov, K. V.
2017-01-01
The article presents the dynamic model of enterprise revenue management. This model is based on the quadratic criterion and linear control law. The model is founded on multiple regression that links revenues with the financial performance of the enterprise. As a result, optimal management is obtained so as to provide the given enterprise revenue, namely, the values of financial indicators that ensure the planned profit of the organization are acquired.
Mthimunye, Katlego D T; Daniels, Felicity M
2017-10-26
The demand for highly qualified and skilled nurses is increasing in South Africa as well as around the world. Having a background in science can create a significant advantage for students wishing to enrol for an undergraduate nursing qualification because nursing as profession is grounded in scientific evidence. The aim of this study was to investigate the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. A quantitative research method using a cross-sectional predictive design was employed in this study. The participants included first year Bachelor of Nursing students enrolled at a university in the Western Cape, South Africa. Descriptive and inferential statistics were performed to analyse the data by using the IBM Statistical Package for Social Sciences versions 24. Descriptive analysis of all variables was performed as well as the Spearman's rank correlation test to describe the relationship among the study variables. Standard multiple linear regressions analysis was performed to determine the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. The results of this study showed that grade 12 physical science is not a significant predictor (p > 0.062) of performance in first year science modules. The multiple linear regression revealed that grade 12 mathematics and life science grades explained 37.1% to 38.1% (R2 = 0.381 and adj R2 = 0.371) of the variation in the first year science grade distributions. Based on the results of the study it is evident that performance in grade 12 mathematics (β = 2.997) and life science (β = 3.175) subjects is a significant predictor (p < 0.001) of the performance in first year science modules for student nurses at the university identified for this study.
[Burnout syndrome and suicide risk among primary care nurses].
Tomás-Sábado, Joaquín; Maynegre-Santaulària, Montserrat; Pérez-Bartolomé, Meritxell; Alsina-Rodríguez, Marta; Quinta-Barbero, Roser; Granell-Navas, Sergi
2010-01-01
To observe the prevalence of the burnout syndrome and the relationship with suicide risk, self-esteem, anxiety and depression, in a sample of primary care nurses. Observational, cross-sectional and correlational study. The sample consisted of 146 nursing professionals, 131 women and 15 men, with an average age of 44.02 years (SD=10.89). Participants responded to a questionnaire which included the Spanish forms of the Maslach burnout inventory (MBI), the Plutchik Suicide Risk Scale (SR), the Kuwait University Anxiety Scale (KUAS), the Self-Rating Depression Scale (SDS) and the Rosenberg Self-esteem Scale (RSES). In the inferential statistical analysis, Pearson's r coefficients and multiple linear regression were calculated. Significant correlations between suicidal risk and anxiety, depression, self-esteem, emotional exhaustion and personal performance, were obtained. In the multiple regression analysis, depression was the main predictor of suicidal risk, followed by anxiety and emotional exhaustion. The scores obtained in burnout and suicidal risk were, in general, lower than those observed in other studies, emphasising the high level observed in personal performance, which reflects reasonable professional satisfaction. The results show the important role of working atmosphere and early recognition of mental disorders in burnout and suicidal risk prevention. Copyright (c) 2009 Elsevier España, S.L. All rights reserved.
Integrative Analysis of High-throughput Cancer Studies with Contrasted Penalization
Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Shia, BenChang; Ma, Shuangge
2015-01-01
In cancer studies with high-throughput genetic and genomic measurements, integrative analysis provides a way to effectively pool and analyze heterogeneous raw data from multiple independent studies and outperforms “classic” meta-analysis and single-dataset analysis. When marker selection is of interest, the genetic basis of multiple datasets can be described using the homogeneity model or the heterogeneity model. In this study, we consider marker selection under the heterogeneity model, which includes the homogeneity model as a special case and can be more flexible. Penalization methods have been developed in the literature for marker selection. This study advances from the published ones by introducing the contrast penalties, which can accommodate the within- and across-dataset structures of covariates/regression coefficients and, by doing so, further improve marker selection performance. Specifically, we develop a penalization method that accommodates the across-dataset structures by smoothing over regression coefficients. An effective iterative algorithm, which calls an inner coordinate descent iteration, is developed. Simulation shows that the proposed method outperforms the benchmark with more accurate marker identification. The analysis of breast cancer and lung cancer prognosis studies with gene expression measurements shows that the proposed method identifies genes different from those using the benchmark and has better prediction performance. PMID:24395534
Searching for a neurologic injury's Wechsler Adult Intelligence Scale-Third Edition profile.
Gonçalves, Marta A; Moura, Octávio; Castro-Caldas, Alexandre; Simões, Mário R
2017-01-01
This study aimed to investigate the presence of a Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) cognitive profile in a Portuguese neurologic injured sample. The Portuguese WAIS-III was administered to 81 mixed neurologic patients and 81 healthy matched controls selected from the Portuguese standardization sample. Although the mixed neurologic injury group performed significantly lower than the healthy controls for the majority of the WAIS-III scores (i.e., composite measures, discrepancies, and subtests), the mean scores were within the normal range and, therefore, at risk of being unobserved in a clinical evaluation. ROC curves analysis showed poor to acceptable diagnostic accuracy for the WAIS-III composite measures and subtests (Working Memory Index and Digit Span revealed the highest accuracy for discriminating between participants, respectively). Multiple regression analysis showed that both literacy and the presence of brain injury were significant predictors for all of the composite measures. In addition, multiple regression analysis also showed that literacy, age of injury onset, and years of survival predicted all seven composite measures for the mixed neurologic injured group. Despite the failure to find a WAIS-III cognitive profile for mixed neurologic patients, the results showed a significant influence of brain lesion and literacy in the performance of the WAIS-III.
do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro
2015-01-01
Abstract Objective: To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. Methods: This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95%, was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α <5%. Results: From 226 women included, 200 (88.5%) were 20-44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. Conclusions: This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. PMID:26100593
A sampling study on rock properties affecting drilling rate index (DRI)
NASA Astrophysics Data System (ADS)
Yenice, Hayati; Özdoğan, Mehmet V.; Özfırat, M. Kemal
2018-05-01
Drilling rate index (DRI) developed in Norway is a very useful index in determining the drillability of rocks and even in performance prediction of hard rock TBMs and it requires special laboratory test equipment. Drillability is one of the most important subjects in rock excavation. However, determining drillability index from physical and mechanical properties of rocks is very important for practicing engineers such as underground excavation, drilling operations in open pit mining, underground mining and natural stone production. That is why many researchers have studied concerned with drillability to find the correlations between drilling rate index (DRI) and penetration rate, influence of geological properties on drillability prediction in tunneling, correlations between rock properties and drillability. In this study, the relationships between drilling rate index (DRI) and some physico-mechanical properties (Density, Shore hardness, uniaxial compressive strength (UCS, σc), Indirect tensile strength (ITS, σt)) of three different rock groups including magmatic, sedimentary and metamorphic were evaluated using both simple and multiple regression analysis. This study reveals the effects of rock properties on DRI according to different types of rocks. In simple regression, quite high correlations were found between DRI and uniaxial compressive strength (UCS) and also between DRI and indirect tensile strength (ITS) values. Multiple regression analyses revealed even higher correlations when compared to simple regression. Especially, UCS, ITS, Shore hardness (SH) and the interactions between them were found to be very effective on DRI values.
Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...
Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network are used to estimate organic mass to organic carbon (OM/OC) ratios across the United States by extending previously published multiple regression techniques. Our new methodology addresses com...
Analysis and Interpretation of Findings Using Multiple Regression Techniques
ERIC Educational Resources Information Center
Hoyt, William T.; Leierer, Stephen; Millington, Michael J.
2006-01-01
Multiple regression and correlation (MRC) methods form a flexible family of statistical techniques that can address a wide variety of different types of research questions of interest to rehabilitation professionals. In this article, we review basic concepts and terms, with an emphasis on interpretation of findings relevant to research questions…
Tracking the Gender Pay Gap: A Case Study
ERIC Educational Resources Information Center
Travis, Cheryl B.; Gross, Louis J.; Johnson, Bruce A.
2009-01-01
This article provides a short introduction to standard considerations in the formal study of wages and illustrates the use of multiple regression and resampling simulation approaches in a case study of faculty salaries at one university. Multiple regression is especially beneficial where it provides information on strength of association, specific…
Estimating air drying times of lumber with multiple regression
William T. Simpson
2004-01-01
In this study, the applicability of a multiple regression equation for estimating air drying times of red oak, sugar maple, and ponderosa pine lumber was evaluated. The equation allows prediction of estimated air drying times from historic weather records of temperature and relative humidity at any desired location.
Using Robust Variance Estimation to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan
2013-01-01
The purpose of this study was to explore the use of robust variance estimation for combining commonly specified multiple regression models and for combining sample-dependent focal slope estimates from diversely specified models. The proposed estimator obviates traditionally required information about the covariance structure of the dependent…
Multiple Regression: A Leisurely Primer.
ERIC Educational Resources Information Center
Daniel, Larry G.; Onwuegbuzie, Anthony J.
Multiple regression is a useful statistical technique when the researcher is considering situations in which variables of interest are theorized to be multiply caused. It may also be useful in those situations in which the researchers is interested in studies of predictability of phenomena of interest. This paper provides an introduction to…
Using Monte Carlo Techniques to Demonstrate the Meaning and Implications of Multicollinearity
ERIC Educational Resources Information Center
Vaughan, Timothy S.; Berry, Kelly E.
2005-01-01
This article presents an in-class Monte Carlo demonstration, designed to demonstrate to students the implications of multicollinearity in a multiple regression study. In the demonstration, students already familiar with multiple regression concepts are presented with a scenario in which the "true" relationship between the response and…
ERIC Educational Resources Information Center
Bates, Reid A.; Holton, Elwood F., III; Burnett, Michael F.
1999-01-01
A case study of learning transfer demonstrates the possible effect of influential observation on linear regression analysis. A diagnostic method that tests for violation of assumptions, multicollinearity, and individual and multiple influential observations helps determine which observation to delete to eliminate bias. (SK)
Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra
NASA Astrophysics Data System (ADS)
Zhan, Hao; Fang, Jing; Tang, Liying; Yang, Hongjun; Li, Hua; Wang, Zhuju; Yang, Bin; Wu, Hongwei; Fu, Meihong
2017-08-01
Near-infrared (NIR) spectroscopy with multivariate analysis was used to quantify gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra, and the feasibility to classify the samples originating from different areas was investigated. A new high-performance liquid chromatography method was developed and validated to analyze gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra as the reference. Partial least squares (PLS), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were performed to calibrate the regression model. Different data pretreatments such as derivatives (1st and 2nd), multiplicative scatter correction, standard normal variate, Savitzky-Golay filter, and Norris derivative filter were applied to remove the systematic errors. The performance of the model was evaluated according to the root mean square of calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), and correlation coefficient (r). The results show that compared to PCR and SMLR, PLS had a lower RMSEC, RMSECV, and RMSEP and higher r for all the four analytes. PLS coupled with proper pretreatments showed good performance in both the fitting and predicting results. Furthermore, the original areas of Radix Paeoniae Rubra samples were partly distinguished by principal component analysis. This study shows that NIR with PLS is a reliable, inexpensive, and rapid tool for the quality assessment of Radix Paeoniae Rubra.
Family and school environmental predictors of sleep bruxism in children.
Rossi, Debora; Manfredini, Daniele
2013-01-01
To identify potential predictors of self-reported sleep bruxism (SB) within children's family and school environments. A total of 65 primary school children (55.4% males, mean age 9.3 ± 1.9 years) were administered a 10-item questionnaire investigating the prevalence of self-reported SB as well as nine family and school-related potential bruxism predictors. Regression analyses were performed to assess the correlation between the potential predictors and SB. A positive answer to the self-reported SB item was endorsed by 18.8% of subjects, with no sex differences. Multiple variable regression analysis identified a final model showing that having divorced parents and not falling asleep easily were the only two weak predictors of self-reported SB. The percentage of explained variance for SB by the final multiple regression model was 13.3% (Nagelkerke's R² = 0.133). While having a high specificity and a good negative predictive value, the model showed unacceptable sensitivity and positive predictive values. The resulting accuracy to predict the presence of self-reported SB was 73.8%. The present investigation suggested that, among family and school-related matters, having divorced parents and not falling asleep easily were two predictors, even if weak, of a child's self-report of SB.
Logistic Stick-Breaking Process
Ren, Lu; Du, Lan; Carin, Lawrence; Dunson, David B.
2013-01-01
A logistic stick-breaking process (LSBP) is proposed for non-parametric clustering of general spatially- or temporally-dependent data, imposing the belief that proximate data are more likely to be clustered together. The sticks in the LSBP are realized via multiple logistic regression functions, with shrinkage priors employed to favor contiguous and spatially localized segments. The LSBP is also extended for the simultaneous processing of multiple data sets, yielding a hierarchical logistic stick-breaking process (H-LSBP). The model parameters (atoms) within the H-LSBP are shared across the multiple learning tasks. Efficient variational Bayesian inference is derived, and comparisons are made to related techniques in the literature. Experimental analysis is performed for audio waveforms and images, and it is demonstrated that for segmentation applications the LSBP yields generally homogeneous segments with sharp boundaries. PMID:25258593
NASA Astrophysics Data System (ADS)
Di, Nur Faraidah Muhammad; Satari, Siti Zanariah
2017-05-01
Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.
Liquid electrolyte informatics using an exhaustive search with linear regression.
Sodeyama, Keitaro; Igarashi, Yasuhiko; Nakayama, Tomofumi; Tateyama, Yoshitaka; Okada, Masato
2018-06-14
Exploring new liquid electrolyte materials is a fundamental target for developing new high-performance lithium-ion batteries. In contrast to solid materials, disordered liquid solution properties have been less studied by data-driven information techniques. Here, we examined the estimation accuracy and efficiency of three information techniques, multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with linear regression (ES-LiR), by using coordination energy and melting point as test liquid properties. We then confirmed that ES-LiR gives the most accurate estimation among the techniques. We also found that ES-LiR can provide the relationship between the "prediction accuracy" and "calculation cost" of the properties via a weight diagram of descriptors. This technique makes it possible to choose the balance of the "accuracy" and "cost" when the search of a huge amount of new materials was carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotion, Katherine A.
2016-08-18
The Radionuclide Analysis Kit (RNAK), my team’s most recent nuclide identification software, is entering the testing phase. A question arises: will removing rare nuclides from the software’s library improve its overall performance? An affirmative response indicates fundamental errors in the software’s framework, while a negative response confirms the effectiveness of the software’s key machine learning algorithms. After thorough testing, I found that the performance of RNAK cannot be improved with the library choice effect, thus verifying the effectiveness of RNAK’s algorithms—multiple linear regression, Bayesian network using the Viterbi algorithm, and branch and bound search.
Impulsivity, Attention, Memory, and Decision-Making among Adolescent Marijuana Users
Dougherty, Donald M.; Mathias, Charles W.; Dawes, Michael A.; Furr, R. Michael; Charles, Nora E.; Liguori, Anthony; Shannon, Erin E.; Acheson, Ashley
2012-01-01
Rationale Marijuana is a popular drug of abuse among adolescents, and they may be uniquely vulnerable to resulting cognitive and behavioral impairments. Previous studies have found impairments among adolescent marijuana users. However, the majority of this research has examined measures individually rather than multiple domains in a single cohesive analysis. This study used a logistic regression model that combines performance on a range of tasks to identify which measures were most altered among adolescent marijuana users. Objectives The purpose of this research was to determine unique associations between adolescent marijuana user and performances on multiple cognitive and behavioral domains (attention, memory, decision-making, and impulsivity) in 14- to 17-year-olds while simultaneously controlling for performances across the measures to determine which measures most strongly distinguish marijuana users from non-users. Methods Marijuana-using adolescents (n=45) and controls (n=48) were tested. Logistic regression analyses were conducted to test for: (a) differences between marijuana users and non-users on each measure, (b) associations between marijuana use and each measure after controlling for the other measures, and (c) the degree to which (a) and (b) together elucidated differences among marijuana users and non-users. Results Of all the cognitive and behavioral domains tested, impaired short-term recall memory and consequence sensitivity impulsivity were associated with marijuana use after controlling for performances across all measures. Conclusions This study extends previous findings by identifying cognitive and behavioral impairments most strongly associated with adolescent marijuana users. These specific deficits are potential targets of intervention for this at-risk population. PMID:23138434
Bunn, Jennifer A; Ryan, Greg A; Button, Gabriel R; Zhang, S
2017-08-04
The purpose of this study was to retrospectively assess relationships between strength and conditioning (SC) measures and game performance in Division I volleyball. Five years of SC and game data were collected from one women's Division I collegiate team, n = 76. SC measures included: T-drill, 18.3 m sprint, back squat, hang clean, vertical jump, and broad jump. All game and SC stats were normalized to Z-scores. Analyses included assessing SC differences by position, and multiple stepwise regression to assess relationships between game and SC stats. There was a significant difference by position for broad jump (p =.002), 18.3 m sprint (p =.036), vertical (p <.001), and total strength (p =.019). Overall, game performance and SC measures were significantly correlated (r = .439, p <.001). Multiple regression analyses indicated significant relationships (p < .05) between SC measures and game success by position as follows: defensive specialist stats with squat and total strength; setters game stats with hang cleans, T-drill, and broad jump; pin hitter game stats with vertical, squat, and total strength; middle blockers game stats with broad jump. These data indicate that SC measures correlate well with game performance and are specific by position. These data could help SC coaches create a more precise training approach to focus on improving specific measures by position, which could then translate to improved game performance. These data could also help coaches with talent identification to determine playing time and rotations to maximize player ability and achieve success.
Potential serum biomarkers from a metabolomics study of autism
Wang, Han; Liang, Shuang; Wang, Maoqing; Gao, Jingquan; Sun, Caihong; Wang, Jia; Xia, Wei; Wu, Shiying; Sumner, Susan J.; Zhang, Fengyu; Sun, Changhao; Wu, Lijie
2016-01-01
Background Early detection and diagnosis are very important for autism. Current diagnosis of autism relies mainly on some observational questionnaires and interview tools that may involve a great variability. We performed a metabolomics analysis of serum to identify potential biomarkers for the early diagnosis and clinical evaluation of autism. Methods We analyzed a discovery cohort of patients with autism and participants without autism in the Chinese Han population using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF MS/MS) to detect metabolic changes in serum associated with autism. The potential metabolite candidates for biomarkers were individually validated in an additional independent cohort of cases and controls. We built a multiple logistic regression model to evaluate the validated biomarkers. Results We included 73 patients and 63 controls in the discovery cohort and 100 cases and 100 controls in the validation cohort. Metabolomic analysis of serum in the discovery stage identified 17 metabolites, 11 of which were validated in an independent cohort. A multiple logistic regression model built on the 11 validated metabolites fit well in both cohorts. The model consistently showed that autism was associated with 2 particular metabolites: sphingosine 1-phosphate and docosahexaenoic acid. Limitations While autism is diagnosed predominantly in boys, we were unable to perform the analysis by sex owing to difficulty recruiting enough female patients. Other limitations include the need to perform test–retest assessment within the same individual and the relatively small sample size. Conclusion Two metabolites have potential as biomarkers for the clinical diagnosis and evaluation of autism. PMID:26395811
Ahmadi, Maryam; Mehrabi, Nahid; Sheikhtaheri, Abbas; Sadeghi, Mojtaba
2017-09-01
The picture archiving and communication system (PACS) is a healthcare system technology which manages medical images and integrates equipment through a network. There are some theories about the use and acceptance of technology by people to describe the behavior and attitudes of end users towards information technologies. We investigated the influential factors on users' acceptance of PACS in the military hospitals of Tehran. In this applied analytical and cross-sectional study, 151 healthcare employees of military hospitals who had experience in using the PACS system were investigated. Participants were selected by census. The following variables were considered: performance expectancy, efforts expectancy, social influence, facilitating conditions and behavioral intention. Data were gathered using a questionnaire. Its validity and reliability were approved by a panel of experts and was piloted with 30 hospital healthcare staff (Cronbach's alpha =0.91). Spearman correlation coefficient and multiple linear regression analysis were used in analyzing the data. Expected performance, efforts expectancy, social impact and facilitating conditions had a significant relationship with behavioral intention. The multiple regression analysis indicated that only performance expectancy can predict the user's behavioral intentions to use PACS technology. Performance and effort expectancies are quite influential in accepting the use of PACS in hospitals. All healthcare personnel should become aware that using such technology is necessary in a hospital. Knowing the influencing factors that affect the acceptance of using new technology can help in improving its use, especially in a healthcare system. This can improve the offered healthcare services' quality.
Comparing the index-flood and multiple-regression methods using L-moments
NASA Astrophysics Data System (ADS)
Malekinezhad, H.; Nachtnebel, H. P.; Klik, A.
In arid and semi-arid regions, the length of records is usually too short to ensure reliable quantile estimates. Comparing index-flood and multiple-regression analyses based on L-moments was the main objective of this study. Factor analysis was applied to determine main influencing variables on flood magnitude. Ward’s cluster and L-moments approaches were applied to several sites in the Namak-Lake basin in central Iran to delineate homogeneous regions based on site characteristics. Homogeneity test was done using L-moments-based measures. Several distributions were fitted to the regional flood data and index-flood and multiple-regression methods as two regional flood frequency methods were compared. The results of factor analysis showed that length of main waterway, compactness coefficient, mean annual precipitation, and mean annual temperature were the main variables affecting flood magnitude. The study area was divided into three regions based on the Ward’s method of clustering approach. The homogeneity test based on L-moments showed that all three regions were acceptably homogeneous. Five distributions were fitted to the annual peak flood data of three homogeneous regions. Using the L-moment ratios and the Z-statistic criteria, GEV distribution was identified as the most robust distribution among five candidate distributions for all the proposed sub-regions of the study area, and in general, it was concluded that the generalised extreme value distribution was the best-fit distribution for every three regions. The relative root mean square error (RRMSE) measure was applied for evaluating the performance of the index-flood and multiple-regression methods in comparison with the curve fitting (plotting position) method. In general, index-flood method gives more reliable estimations for various flood magnitudes of different recurrence intervals. Therefore, this method should be adopted as regional flood frequency method for the study area and the Namak-Lake basin in central Iran. To estimate floods of various return periods for gauged catchments in the study area, the mean annual peak flood of the catchments may be multiplied by corresponding values of the growth factors, and computed using the GEV distribution.
Coquet, Julia Becaria; Tumas, Natalia; Osella, Alberto Ruben; Tanzi, Matteo; Franco, Isabella; Diaz, Maria Del Pilar
2016-01-01
A number of studies have evidenced the effect of modifiable lifestyle factors such as diet, breastfeeding and nutritional status on breast cancer risk. However, none have addressed the missing data problem in nutritional epidemiologic research in South America. Missing data is a frequent problem in breast cancer studies and epidemiological settings in general. Estimates of effect obtained from these studies may be biased, if no appropriate method for handling missing data is applied. We performed Multiple Imputation for missing values on covariates in a breast cancer case-control study of Córdoba (Argentina) to optimize risk estimates. Data was obtained from a breast cancer case control study from 2008 to 2015 (318 cases, 526 controls). Complete case analysis and multiple imputation using chained equations were the methods applied to estimate the effects of a Traditional dietary pattern and other recognized factors associated with breast cancer. Physical activity and socioeconomic status were imputed. Logistic regression models were performed. When complete case analysis was performed only 31% of women were considered. Although a positive association of Traditional dietary pattern and breast cancer was observed from both approaches (complete case analysis OR=1.3, 95%CI=1.0-1.7; multiple imputation OR=1.4, 95%CI=1.2-1.7), effects of other covariates, like BMI and breastfeeding, were only identified when multiple imputation was considered. A Traditional dietary pattern, BMI and breastfeeding are associated with the occurrence of breast cancer in this Argentinean population when multiple imputation is appropriately performed. Multiple Imputation is suggested in Latin America’s epidemiologic studies to optimize effect estimates in the future. PMID:27892664
Malomane, Dorcus Kholofelo; Norris, David; Banga, Cuthbert B; Ngambi, Jones W
2014-02-01
Body weight and weight of body parts are of economic importance. It is difficult to directly predict body weight from highly correlated morphological traits through multiple regression. Factor analysis was carried out to examine the relationship between body weight and five linear body measurements (body length, body girth, wing length, shank thickness, and shank length) in South African Venda (VN), Naked neck (NN), and Potchefstroom koekoek (PK) indigenous chicken breeds, with a view to identify those factors that define body conformation. Multiple regression was subsequently performed to predict body weight, using orthogonal traits derived from the factor analysis. Measurements were obtained from 210 chickens, 22 weeks of age, 70 chickens per breed. High correlations were obtained between body weight and all body measurements except for wing length in PK. Two factors extracted after varimax rotation explained 91, 95, and 83% of total variation in VN, NN, and PK, respectively. Factor 1 explained 73, 90, and 64% in VN, NN, and PK, respectively, and was loaded on all body measurements except for wing length in VN and PK. In a multiple regression, these two factors accounted for 72% variation in body weight in VN, while only factor 1 accounted for 83 and 74% variation in body weight in NN and PK, respectively. The two factors could be used to define body size and conformation of these breeds. Factor 1 could predict body weight in all three breeds. Body measurements can be better selected jointly to improve body weight in these breeds.
Inhibitory saccadic dysfunction is associated with cerebellar injury in multiple sclerosis.
Kolbe, Scott C; Kilpatrick, Trevor J; Mitchell, Peter J; White, Owen; Egan, Gary F; Fielding, Joanne
2014-05-01
Cognitive dysfunction is common in patients with multiple sclerosis (MS). Saccadic eye movement paradigms such as antisaccades (AS) can sensitively interrogate cognitive function, in particular, the executive and attentional processes of response selection and inhibition. Although we have previously demonstrated significant deficits in the generation of AS in MS patients, the neuropathological changes underlying these deficits were not elucidated. In this study, 24 patients with relapsing-remitting MS underwent testing using an AS paradigm. Rank correlation and multiple regression analyses were subsequently used to determine whether AS errors in these patients were associated with: (i) neurological and radiological abnormalities, as measured by standard clinical techniques, (ii) cognitive dysfunction, and (iii) regionally specific cerebral white and gray-matter damage. Although AS error rates in MS patients did not correlate with clinical disability (using the Expanded Disability Status Score), T2 lesion load or brain parenchymal fraction, AS error rate did correlate with performance on the Paced Auditory Serial Addition Task and the Symbol Digit Modalities Test, neuropsychological tests commonly used in MS. Further, voxel-wise regression analyses revealed associations between AS errors and reduced fractional anisotropy throughout most of the cerebellum, and increased mean diffusivity in the cerebellar vermis. Region-wise regression analyses confirmed that AS errors also correlated with gray-matter atrophy in the cerebellum right VI subregion. These results support the use of the AS paradigm as a marker for cognitive dysfunction in MS and implicate structural and microstructural changes to the cerebellum as a contributing mechanism for AS deficits in these patients. Copyright © 2013 Wiley Periodicals, Inc.
Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L
2016-02-10
Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wang, Lunche; Kisi, Ozgur; Zounemat-Kermani, Mohammad; Li, Hui
2017-01-01
Pan evaporation (Ep) plays important roles in agricultural water resources management. One of the basic challenges is modeling Ep using limited climatic parameters because there are a number of factors affecting the evaporation rate. This study investigated the abilities of six different soft computing methods, multi-layer perceptron (MLP), generalized regression neural network (GRNN), fuzzy genetic (FG), least square support vector machine (LSSVM), multivariate adaptive regression spline (MARS), adaptive neuro-fuzzy inference systems with grid partition (ANFIS-GP), and two regression methods, multiple linear regression (MLR) and Stephens and Stewart model (SS) in predicting monthly Ep. Long-term climatic data at various sites crossing a wide range of climates during 1961-2000 are used for model development and validation. The results showed that the models have different accuracies in different climates and the MLP model performed superior to the other models in predicting monthly Ep at most stations using local input combinations (for example, the MAE (mean absolute errors), RMSE (root mean square errors), and determination coefficient (R2) are 0.314 mm/day, 0.405 mm/day and 0.988, respectively for HEB station), while GRNN model performed better in Tibetan Plateau (MAE, RMSE and R2 are 0.459 mm/day, 0.592 mm/day and 0.932, respectively). The accuracies of above models ranked as: MLP, GRNN, LSSVM, FG, ANFIS-GP, MARS and MLR. The overall results indicated that the soft computing techniques generally performed better than the regression methods, but MLR and SS models can be more preferred at some climatic zones instead of complex nonlinear models, for example, the BJ (Beijing), CQ (Chongqing) and HK (Haikou) stations. Therefore, it can be concluded that Ep could be successfully predicted using above models in hydrological modeling studies.
Use of magnetic resonance imaging to predict the body composition of pigs in vivo.
Kremer, P V; Förster, M; Scholz, A M
2013-06-01
The objective of the study was to evaluate whether magnetic resonance imaging (MRI) offers the opportunity to reliably analyze body composition of pigs in vivo. Therefore, the relation between areas of loin eye muscle and its back fat based on MRI images were used to predict body composition values measured by dual energy X-ray absorptiometry (DXA). During the study, a total of 77 pigs were studied by MRI and DXA, with a BW ranging between 42 and 102 kg. The pigs originated from different extensive or conventional breeds or crossbreds such as Cerdo Iberico, Duroc, German Landrace, German Large White, Hampshire and Pietrain. A Siemens Magnetom Open was used for MRI in the thorax region between 13th and 14th vertebrae in order to measure the loin eye area (MRI-LA) and the above back fat area (MRI-FA) of both body sides, whereas a whole body scan was performed by DXA with a GE Lunar DPX-IQ in order to measure the amount and percentage of fat tissue (DXA-FM; DXA-%FM) and lean tissue mass (DXA-LM; DXA-%LM). A linear single regression analysis was performed to quantify the linear relationships between MRI- and DXA-derived traits. In addition, a stepwise regression procedure was carried out to calculate (multiple) regression equations between MRI and DXA variables (including BW). Single regression analyses showed high relationships between DXA-%FM and MRI-FA (R 2 = 0.89, √MSE = 2.39%), DXA-FM and MRI-FA (R 2 = 0.82, √MSE = 2757 g) and DXA-LM and MRI-LA (R 2 = 0.82, √MSE = 4018 g). Only DXA-%LM and MRI-LA did not show any relationship (R 2 = 0). As a result of the multiple regression analysis, DXA-LM and DXA-FM were both highly related to MRI-LA, MRI-FA and BW (R 2 = 0.96; √MSE = 1784 g, and R 2 = 0.95, √MSE = 1496 g). Therefore, it can be concluded that the use of MRI-derived images provides exact information about important 'carcass-traits' in pigs and may be used to reliably predict the body composition in vivo.
Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga
2006-08-01
A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.
Refractive Status at Birth: Its Relation to Newborn Physical Parameters at Birth and Gestational Age
Varghese, Raji Mathew; Sreenivas, Vishnubhatla; Puliyel, Jacob Mammen; Varughese, Sara
2009-01-01
Background Refractive status at birth is related to gestational age. Preterm babies have myopia which decreases as gestational age increases and term babies are known to be hypermetropic. This study looked at the correlation of refractive status with birth weight in term and preterm babies, and with physical indicators of intra-uterine growth such as the head circumference and length of the baby at birth. Methods All babies delivered at St. Stephens Hospital and admitted in the nursery were eligible for the study. Refraction was performed within the first week of life. 0.8% tropicamide with 0.5% phenylephrine was used to achieve cycloplegia and paralysis of accommodation. 599 newborn babies participated in the study. Data pertaining to the right eye is utilized for all the analyses except that for anisometropia where the two eyes were compared. Growth parameters were measured soon after birth. Simple linear regression analysis was performed to see the association of refractive status, (mean spherical equivalent (MSE), astigmatism and anisometropia) with each of the study variables, namely gestation, length, weight and head circumference. Subsequently, multiple linear regression was carried out to identify the independent predictors for each of the outcome parameters. Results Simple linear regression showed a significant relation between all 4 study variables and refractive error but in multiple regression only gestational age and weight were related to refractive error. The partial correlation of weight with MSE adjusted for gestation was 0.28 and that of gestation with MSE adjusted for weight was 0.10. Birth weight had a higher correlation to MSE than gestational age. Conclusion This is the first study to look at refractive error against all these growth parameters, in preterm and term babies at birth. It would appear from this study that birth weight rather than gestation should be used as criteria for screening for refractive error, especially in developing countries where the incidence of intrauterine malnutrition is higher. PMID:19214228
An empirical study using permutation-based resampling in meta-regression
2012-01-01
Background In meta-regression, as the number of trials in the analyses decreases, the risk of false positives or false negatives increases. This is partly due to the assumption of normality that may not hold in small samples. Creation of a distribution from the observed trials using permutation methods to calculate P values may allow for less spurious findings. Permutation has not been empirically tested in meta-regression. The objective of this study was to perform an empirical investigation to explore the differences in results for meta-analyses on a small number of trials using standard large sample approaches verses permutation-based methods for meta-regression. Methods We isolated a sample of randomized controlled clinical trials (RCTs) for interventions that have a small number of trials (herbal medicine trials). Trials were then grouped by herbal species and condition and assessed for methodological quality using the Jadad scale, and data were extracted for each outcome. Finally, we performed meta-analyses on the primary outcome of each group of trials and meta-regression for methodological quality subgroups within each meta-analysis. We used large sample methods and permutation methods in our meta-regression modeling. We then compared final models and final P values between methods. Results We collected 110 trials across 5 intervention/outcome pairings and 5 to 10 trials per covariate. When applying large sample methods and permutation-based methods in our backwards stepwise regression the covariates in the final models were identical in all cases. The P values for the covariates in the final model were larger in 78% (7/9) of the cases for permutation and identical for 22% (2/9) of the cases. Conclusions We present empirical evidence that permutation-based resampling may not change final models when using backwards stepwise regression, but may increase P values in meta-regression of multiple covariates for relatively small amount of trials. PMID:22587815
Riley, Richard D; Ensor, Joie; Jackson, Dan; Burke, Danielle L
2017-01-01
Many meta-analysis models contain multiple parameters, for example due to multiple outcomes, multiple treatments or multiple regression coefficients. In particular, meta-regression models may contain multiple study-level covariates, and one-stage individual participant data meta-analysis models may contain multiple patient-level covariates and interactions. Here, we propose how to derive percentage study weights for such situations, in order to reveal the (otherwise hidden) contribution of each study toward the parameter estimates of interest. We assume that studies are independent, and utilise a decomposition of Fisher's information matrix to decompose the total variance matrix of parameter estimates into study-specific contributions, from which percentage weights are derived. This approach generalises how percentage weights are calculated in a traditional, single parameter meta-analysis model. Application is made to one- and two-stage individual participant data meta-analyses, meta-regression and network (multivariate) meta-analysis of multiple treatments. These reveal percentage study weights toward clinically important estimates, such as summary treatment effects and treatment-covariate interactions, and are especially useful when some studies are potential outliers or at high risk of bias. We also derive percentage study weights toward methodologically interesting measures, such as the magnitude of ecological bias (difference between within-study and across-study associations) and the amount of inconsistency (difference between direct and indirect evidence in a network meta-analysis).
Synoptic and meteorological drivers of extreme ozone concentrations over Europe
NASA Astrophysics Data System (ADS)
Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim
2016-04-01
The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.
The effect of amblyopia on fine motor skills in children.
Webber, Ann L; Wood, Joanne M; Gole, Glen A; Brown, Brian
2008-02-01
In an investigation of the functional impact of amblyopia in children, the fine motor skills of amblyopes and age-matched control subjects were compared. The influence of visual factors that might predict any decrement in fine motor skills was also explored. Vision and fine motor skills were tested in a group of children (n = 82; mean age, 8.2 +/- 1.7 [SD] years) with amblyopia of different causes (infantile esotropia, n = 17; acquired strabismus, n = 28; anisometropia, n = 15; mixed, n = 13; and deprivation n = 9), and age-matched control children (n = 37; age 8.3 +/- 1.3 years). Visual motor control (VMC) and upper limb speed and dexterity (ULSD) items of the Bruininks-Oseretsky Test of Motor Proficiency were assessed, and logMAR visual acuity (VA) and Randot stereopsis were measured. Multiple regression models were used to identify the visual determinants of fine motor skills performance. Amblyopes performed significantly poorer than control subjects on 9 of 16 fine motor skills subitems and for the overall age-standardized scores for both VMC and ULSD items (P < 0.05). The effects were most evident on timed tasks. The etiology of amblyopia and level of binocular function significantly affected fine motor skill performance on both items; however, when examined in a multiple regression model that took into account the intercorrelation between visual characteristics, poorer fine motor skills performance was associated with strabismus (F(1,75) = 5.428; P = 0.022), but not with the level of binocular function, refractive error, or visual acuity in either eye. Fine motor skills were reduced in children with amblyopia, particularly those with strabismus, compared with control subjects. The deficits in motor performance were greatest on manual dexterity tasks requiring speed and accuracy.
Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q
2016-05-01
Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions.
Multiple regression for physiological data analysis: the problem of multicollinearity.
Slinker, B K; Glantz, S A
1985-07-01
Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.
ERIC Educational Resources Information Center
Li, Spencer D.
2011-01-01
Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…
A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants
ERIC Educational Resources Information Center
Cooper, Paul D.
2010-01-01
A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…
Conjoint Analysis: A Study of the Effects of Using Person Variables.
ERIC Educational Resources Information Center
Fraas, John W.; Newman, Isadore
Three statistical techniques--conjoint analysis, a multiple linear regression model, and a multiple linear regression model with a surrogate person variable--were used to estimate the relative importance of five university attributes for students in the process of selecting a college. The five attributes include: availability and variety of…
An Exploratory Study of Face-to-Face and Cyberbullying in Sixth Grade Students
ERIC Educational Resources Information Center
Accordino, Denise B.; Accordino, Michael P.
2011-01-01
In a pilot study, sixth grade students (N = 124) completed a questionnaire assessing students' experience with bullying and cyberbullying, demographic information, quality of parent-child relationship, and ways they have dealt with bullying/cyberbullying in the past. Two multiple regression analyses were conducted. The multiple regression analysis…
ERIC Educational Resources Information Center
Campbell, S. Duke; Greenberg, Barry
The development of a predictive equation capable of explaining a significant percentage of enrollment variability at Florida International University is described. A model utilizing trend analysis and a multiple regression approach to enrollment forecasting was adapted to investigate enrollment dynamics at the university. Four independent…
ERIC Educational Resources Information Center
Fraas, John W.; Newman, Isadore
1996-01-01
In a conjoint-analysis consumer-preference study, researchers must determine whether the product factor estimates, which measure consumer preferences, should be calculated and interpreted for each respondent or collectively. Multiple regression models can determine whether to aggregate data by examining factor-respondent interaction effects. This…
Double Cross-Validation in Multiple Regression: A Method of Estimating the Stability of Results.
ERIC Educational Resources Information Center
Rowell, R. Kevin
In multiple regression analysis, where resulting predictive equation effectiveness is subject to shrinkage, it is especially important to evaluate result replicability. Double cross-validation is an empirical method by which an estimate of invariance or stability can be obtained from research data. A procedure for double cross-validation is…
Personality Traits, Facets and Cognitive Performance: Age Differences in Their Relations
Graham, Eileen K.; Lachman, Margie E.
2014-01-01
Personality traits and cognitive performance are related, but little work has examined how these associations vary by personality facet or age. 154 adults aged 22 to 84 completed the Brief Test of Adult Cognition by Telephone (BTACT) and the NEO Five Factor Personality Inventory. Hierarchical multiple regression analyses showed negative emotional aspects of personality (neuroticism, depression) were associated with lower reasoning, and social aspects of personality (assertiveness) were associated with faster reaction time, yet lower reasoning. The association between neuroticism and performance was found primarily among younger adults. In older adulthood, better performance was associated with positive emotional aspects of personality. We discuss how personality may have different associations with performance across age and the implications for possible interventions. PMID:24821992
Functional Capacity Evaluation in Different Societal Contexts: Results of a Multicountry Study.
Ansuategui Echeita, Jone; Bethge, Matthias; van Holland, Berry J; Gross, Douglas P; Kool, Jan; Oesch, Peter; Trippolini, Maurizio A; Chapman, Elizabeth; Cheng, Andy S K; Sellars, Robert; Spavins, Megan; Streibelt, Marco; van der Wurff, Peter; Reneman, Michiel F
2018-05-25
Purpose To examine factors associated with Functional Capacity Evaluation (FCE) results in patients with painful musculoskeletal conditions, with focus on social factors across multiple countries. Methods International cross-sectional study was performed within care as usual. Simple and multiple multilevel linear regression analyses which considered measurement's dependency within clinicians and country were conducted: FCE characteristics and biopsychosocial variables from patients and clinicians as independent variables; and FCE results (floor-to-waist lift, six-minute walk, and handgrip strength) as dependent variables. Results Data were collected for 372 patients, 54 clinicians, 18 facilities and 8 countries. Patients' height and reported pain intensity were consistently associated with every FCE result. Patients' sex, height, reported pain intensity, effort during FCE, social isolation, and disability, clinician's observed physical effort, and whether FCE test was prematurely ended were associated with lift. Patient's height, Body Mass Index, post-test heart-rate, reported pain intensity and effort during FCE, days off work, and whether FCE test was prematurely ended were associated with walk. Patient's age, sex, height, affected body area, reported pain intensity and catastrophizing, and physical work demands were associated with handgrip. Final regression models explained 38‒65% of total variance. Clinician and country random effects composed 1-39% of total residual variance in these models. Conclusion Biopsychosocial factors were associated with every FCE result across multiple countries; specifically, patients' height, reported pain intensity, clinician, and measurement country. Social factors, which had been under-researched, were consistently associated with FCE performances. Patients' FCE results should be considered from a biopsychosocial perspective, including different social contexts.
Sumiyoshi, Chika; Harvey, Philip D; Takaki, Manabu; Okahisa, Yuko; Sato, Taku; Sora, Ichiro; Nuechterlein, Keith H; Subotnik, Kenneth L; Sumiyoshi, Tomiki
2015-09-01
Functional outcomes in individuals with schizophrenia suggest recovery of cognitive, everyday, and social functioning. Specifically improvement of work status is considered to be most important for their independent living and self-efficacy. The main purposes of the present study were 1) to identify which outcome factors predict occupational functioning, quantified as work hours, and 2) to provide cut-offs on the scales for those factors to attain better work status. Forty-five Japanese patients with schizophrenia and 111 healthy controls entered the study. Cognition, capacity for everyday activities, and social functioning were assessed by the Japanese versions of the MATRICS Cognitive Consensus Battery (MCCB), the UCSD Performance-based Skills Assessment-Brief (UPSA-B), and the Social Functioning Scale Individuals' version modified for the MATRICS-PASS (Modified SFS for PASS), respectively. Potential factors for work outcome were estimated by multiple linear regression analyses (predicting work hours directly) and a multiple logistic regression analyses (predicting dichotomized work status based on work hours). ROC curve analyses were performed to determine cut-off points for differentiating between the better- and poor work status. The results showed that a cognitive component, comprising visual/verbal learning and emotional management, and a social functioning component, comprising independent living and vocational functioning, were potential factors for predicting work hours/status. Cut-off points obtained in ROC analyses indicated that 60-70% achievements on the measures of those factors were expected to maintain the better work status. Our findings suggest that improvement on specific aspects of cognitive and social functioning are important for work outcome in patients with schizophrenia.
Meng, Xing; Jiang, Rongtao; Lin, Dongdong; Bustillo, Juan; Jones, Thomas; Chen, Jiayu; Yu, Qingbao; Du, Yuhui; Zhang, Yu; Jiang, Tianzi; Sui, Jing; Calhoun, Vince D.
2016-01-01
Neuroimaging techniques have greatly enhanced the understanding of neurodiversity (human brain variation across individuals) in both health and disease. The ultimate goal of using brain imaging biomarkers is to perform individualized predictions. Here we proposed a generalized framework that can predict explicit values of the targeted measures by taking advantage of joint information from multiple modalities. This framework also enables whole brain voxel-wise searching by combining multivariate techniques such as ReliefF, clustering, correlation-based feature selection and multiple regression models, which is more flexible and can achieve better prediction performance than alternative atlas-based methods. For 50 healthy controls and 47 schizophrenia patients, three kinds of features derived from resting-state fMRI (fALFF), sMRI (gray matter) and DTI (fractional anisotropy) were extracted and fed into a regression model, achieving high prediction for both cognitive scores (MCCB composite r = 0.7033, MCCB social cognition r = 0.7084) and symptomatic scores (positive and negative syndrome scale [PANSS] positive r = 0.7785, PANSS negative r = 0.7804). Moreover, the brain areas likely responsible for cognitive deficits of schizophrenia, including middle temporal gyrus, dorsolateral prefrontal cortex, striatum, cuneus and cerebellum, were located with different weights, as well as regions predicting PANSS symptoms, including thalamus, striatum and inferior parietal lobule, pinpointing the potential neuromarkers. Finally, compared to a single modality, multimodal combination achieves higher prediction accuracy and enables individualized prediction on multiple clinical measures. There is more work to be done, but the current results highlight the potential utility of multimodal brain imaging biomarkers to eventually inform clinical decision-making. PMID:27177764
Voxelwise multivariate analysis of multimodality magnetic resonance imaging.
Naylor, Melissa G; Cardenas, Valerie A; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin
2014-03-01
Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remain a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. Copyright © 2013 Wiley Periodicals, Inc.
Meijer, Kim A; Muhlert, Nils; Cercignani, Mara; Sethi, Varun; Ron, Maria A; Thompson, Alan J; Miller, David H; Chard, Declan; Geurts, Jeroen Jg; Ciccarelli, Olga
2016-10-01
While our knowledge of white matter (WM) pathology underlying cognitive impairment in relapsing remitting multiple sclerosis (MS) is increasing, equivalent understanding in those with secondary progressive (SP) MS lags behind. The aim of this study is to examine whether the extent and severity of WM tract damage differ between cognitively impaired (CI) and cognitively preserved (CP) secondary progressive multiple sclerosis (SPMS) patients. Conventional magnetic resonance imaging (MRI) and diffusion MRI were acquired from 30 SPMS patients and 32 healthy controls (HC). Cognitive domains commonly affected in MS patients were assessed. Linear regression was used to predict cognition. Diffusion measures were compared between groups using tract-based spatial statistics (TBSS). A total of 12 patients were classified as CI, and processing speed was the most commonly affected domain. The final regression model including demographic variables and radial diffusivity explained the greatest variance of cognitive performance (R 2 = 0.48, p = 0.002). SPMS patients showed widespread loss of WM integrity throughout the WM skeleton when compared with HC. When compared with CP patients, CI patients showed more extensive and severe damage of several WM tracts, including the fornix, superior longitudinal fasciculus and forceps major. Loss of WM integrity assessed using TBSS helps to explain cognitive decline in SPMS patients. © The Author(s), 2016.
Trick, Lana M; Mutreja, Rachna; Hunt, Kelly
2012-02-01
An individual-differences approach was used to investigate the roles of visuospatial working memory and the executive in multiple-object tracking. The Corsi Blocks and Visual Patterns Tests were used to assess visuospatial working memory. Two relatively nonspatial measures of the executive were used: operation span (OSPAN) and reading span (RSPAN). For purposes of comparison, the digit span test was also included (a measure not expected to correlate with tracking). The tests predicted substantial amounts of variance (R (2) = .33), and the visuospatial measures accounted for the majority (R (2) = .30), with each making a significant contribution. Although the executive measures correlated with each other, the RSPAN did not correlate with tracking. The correlation between OSPAN and tracking was similar in magnitude to that between digit span and tracking (p < .05 for both), and when regression was used to partial out shared variance between the two tests, the remaining variance predicted by the OSPAN was minimal (sr ( 2 ) = .029). When measures of spatial memory were included in the regression, the unique variance predicted by the OSPAN became negligible (sr ( 2 ) = .000004). This suggests that the executive, as measured by tests such as the OSPAN, plays little role in explaining individual differences in multiple-object tracking.
Causes of coal-miner absenteeism. Information Circular/1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.H.; Randolph, R.F.
The Bureau of Mines report describes several significant problems associated with absenteeism among underground coal miners. The vast empirical literature on employee absenteeism is reviewed, and a conceptual model of the factors that cause absenteeism among miners is presented. Portions of the model were empirically tested by performing correlational and multiple regression analyses on data collected from a group of 64 underground coal miners. The results of these tests are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friddle, Carl J; Koga, Teiichiro; Rubin, Edward M.
2000-03-15
While cardiac hypertrophy has been the subject of intensive investigation, regression of hypertrophy has been significantly less studied, precluding large-scale analysis of the relationship between these processes. In the present study, using pharmacological models of hypertrophy in mice, expression profiling was performed with fragments of more than 3,000 genes to characterize and contrast expression changes during induction and regression of hypertrophy. Administration of angiotensin II and isoproterenol by osmotic minipump produced increases in heart weight (15% and 40% respectively) that returned to pre-induction size following drug withdrawal. From multiple expression analyses of left ventricular RNA isolated at daily time-points duringmore » cardiac hypertrophy and regression, we identified sets of genes whose expression was altered at specific stages of this process. While confirming the participation of 25 genes or pathways previously known to be altered by hypertrophy, a larger set of 30 genes was identified whose expression had not previously been associated with cardiac hypertrophy or regression. Of the 55 genes that showed reproducible changes during the time course of induction and regression, 32 genes were altered only during induction and 8 were altered only during regression. This study identified both known and novel genes whose expression is affected at different stages of cardiac hypertrophy and regression and demonstrates that cardiac remodeling during regression utilizes a set of genes that are distinct from those used during induction of hypertrophy.« less
NASA Astrophysics Data System (ADS)
Polat, Esra; Gunay, Suleyman
2013-10-01
One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.
Han, Zhongyi; Wei, Benzheng; Leung, Stephanie; Nachum, Ilanit Ben; Laidley, David; Li, Shuo
2018-02-15
Pathogenesis-based diagnosis is a key step to prevent and control lumbar neural foraminal stenosis (LNFS). It conducts both early diagnosis and comprehensive assessment by drawing crucial pathological links between pathogenic factors and LNFS. Automated pathogenesis-based diagnosis would simultaneously localize and grade multiple spinal organs (neural foramina, vertebrae, intervertebral discs) to diagnose LNFS and discover pathogenic factors. The automated way facilitates planning optimal therapeutic schedules and relieving clinicians from laborious workloads. However, no successful work has been achieved yet due to its extreme challenges since 1) multiple targets: each lumbar spine has at least 17 target organs, 2) multiple scales: each type of target organ has structural complexity and various scales across subjects, and 3) multiple tasks, i.e., simultaneous localization and diagnosis of all lumbar organs, are extremely difficult than individual tasks. To address these huge challenges, we propose a deep multiscale multitask learning network (DMML-Net) integrating a multiscale multi-output learning and a multitask regression learning into a fully convolutional network. 1) DMML-Net merges semantic representations to reinforce the salience of numerous target organs. 2) DMML-Net extends multiscale convolutional layers as multiple output layers to boost the scale-invariance for various organs. 3) DMML-Net joins a multitask regression module and a multitask loss module to prompt the mutual benefit between tasks. Extensive experimental results demonstrate that DMML-Net achieves high performance (0.845 mean average precision) on T1/T2-weighted MRI scans from 200 subjects. This endows our method an efficient tool for clinical LNFS diagnosis.
Sisic, Nedim; Jelicic, Mario; Pehar, Miran; Spasic, Miodrag; Sekulic, Damir
2016-01-01
In basketball, anthropometric status is an important factor when identifying and selecting talents, while agility is one of the most vital motor performances. The aim of this investigation was to evaluate the influence of anthropometric variables and power capacities on different preplanned agility performances. The participants were 92 high-level, junior-age basketball players (16-17 years of age; 187.6±8.72 cm in body height, 78.40±12.26 kg in body mass), randomly divided into a validation and cross-validation subsample. The predictors set consisted of 16 anthropometric variables, three tests of power-capacities (Sargent-jump, broad-jump and medicine-ball-throw) as predictors. The criteria were three tests of agility: a T-Shape-Test; a Zig-Zag-Test, and a test of running with a 180-degree turn (T180). Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between observed and predicted scores, dependent samples t-test between predicted and observed scores; and Bland Altman graphics. Analysis of the variance identified centres being advanced in most of the anthropometric indices, and medicine-ball-throw (all at P<0.05); with no significant between-position-differences for other studied motor performances. Multiple regression models originally calculated for the validation subsample were then cross-validated, and confirmed for Zig-zag-Test (R of 0.71 and 0.72 for the validation and cross-validation subsample, respectively). Anthropometrics were not strongly related to agility performance, but leg length is found to be negatively associated with performance in basketball-specific agility. Power capacities are confirmed to be an important factor in agility. The results highlighted the importance of sport-specific tests when studying pre-planned agility performance in basketball. The improvement in power capacities will probably result in an improvement in agility in basketball athletes, while anthropometric indices should be used in order to identify those athletes who can achieve superior agility performance.
Ridge: a computer program for calculating ridge regression estimates
Donald E. Hilt; Donald W. Seegrist
1977-01-01
Least-squares coefficients for multiple-regression models may be unstable when the independent variables are highly correlated. Ridge regression is a biased estimation procedure that produces stable estimates of the coefficients. Ridge regression is discussed, and a computer program for calculating the ridge coefficients is presented.
Cuevas, Kimberly; Calkins, Susan D.; Bell, Martha Ann
2015-01-01
Executive functions (EFs) are linked with optimal cognitive and social-emotional development. Despite behavioral evidence of sex differences in early childhood EF, little is known about potential sex differences in corresponding brain-behavior associations. The present study examined changes in 4-year-olds’ 6–9 Hz EEG power in response to increased executive processing demands (i.e., “Stroop-like” vs. “non-Stroop” day-night tasks). Although there were no sex differences in task performance, an examination of multiple scalp electrode sites revealed that boys exhibited more widespread changes in EEG power as compared to girls. Further, multiple regression analyses controlling for maternal education and non-EF performance indicated that individual differences in boys’ and girls’ EF performance were associated with different frontal neural correlates (i.e., different frontal scalp sites and different measures of EEG power). These data reveal valuable information concerning sex differences in the neural systems underlying executive processing during early childhood. PMID:26681615
Comparing least-squares and quantile regression approaches to analyzing median hospital charges.
Olsen, Cody S; Clark, Amy E; Thomas, Andrea M; Cook, Lawrence J
2012-07-01
Emergency department (ED) and hospital charges obtained from administrative data sets are useful descriptors of injury severity and the burden to EDs and the health care system. However, charges are typically positively skewed due to costly procedures, long hospital stays, and complicated or prolonged treatment for few patients. The median is not affected by extreme observations and is useful in describing and comparing distributions of hospital charges. A least-squares analysis employing a log transformation is one approach for estimating median hospital charges, corresponding confidence intervals (CIs), and differences between groups; however, this method requires certain distributional properties. An alternate method is quantile regression, which allows estimation and inference related to the median without making distributional assumptions. The objective was to compare the log-transformation least-squares method to the quantile regression approach for estimating median hospital charges, differences in median charges between groups, and associated CIs. The authors performed simulations using repeated sampling of observed statewide ED and hospital charges and charges randomly generated from a hypothetical lognormal distribution. The median and 95% CI and the multiplicative difference between the median charges of two groups were estimated using both least-squares and quantile regression methods. Performance of the two methods was evaluated. In contrast to least squares, quantile regression produced estimates that were unbiased and had smaller mean square errors in simulations of observed ED and hospital charges. Both methods performed well in simulations of hypothetical charges that met least-squares method assumptions. When the data did not follow the assumed distribution, least-squares estimates were often biased, and the associated CIs had lower than expected coverage as sample size increased. Quantile regression analyses of hospital charges provide unbiased estimates even when lognormal and equal variance assumptions are violated. These methods may be particularly useful in describing and analyzing hospital charges from administrative data sets. © 2012 by the Society for Academic Emergency Medicine.
NASA Astrophysics Data System (ADS)
Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.
2018-01-01
Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast-iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above-mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above-mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.
A Machine Learning Framework for Plan Payment Risk Adjustment.
Rose, Sherri
2016-12-01
To introduce cross-validation and a nonparametric machine learning framework for plan payment risk adjustment and then assess whether they have the potential to improve risk adjustment. 2011-2012 Truven MarketScan database. We compare the performance of multiple statistical approaches within a broad machine learning framework for estimation of risk adjustment formulas. Total annual expenditure was predicted using age, sex, geography, inpatient diagnoses, and hierarchical condition category variables. The methods included regression, penalized regression, decision trees, neural networks, and an ensemble super learner, all in concert with screening algorithms that reduce the set of variables considered. The performance of these methods was compared based on cross-validated R 2 . Our results indicate that a simplified risk adjustment formula selected via this nonparametric framework maintains much of the efficiency of a traditional larger formula. The ensemble approach also outperformed classical regression and all other algorithms studied. The implementation of cross-validated machine learning techniques provides novel insight into risk adjustment estimation, possibly allowing for a simplified formula, thereby reducing incentives for increased coding intensity as well as the ability of insurers to "game" the system with aggressive diagnostic upcoding. © Health Research and Educational Trust.
NASA Astrophysics Data System (ADS)
Mai, W.; Zhang, J.-F.; Zhao, X.-M.; Li, Z.; Xu, Z.-W.
2017-11-01
Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.
The financial performance of diversified hospital subsidiaries.
Clement, J P; D'Aunno, T; Poyzer, B L
1993-01-01
Despite its proliferation, we know relatively little about the impact of hospital restructuring to offer new services. This exploratory study examines the relationship between types of services offered and financial performance among separately incorporated subsidiaries of acute care hospitals. We draw data from the subsidiaries of all hospital firms operating in one state (Virginia) that requires reporting by all such firms. Results from multiple regression analyses of 1987 data indicate that units that existed longer, produced health care or related products, or were nonprofit subsidiaries of nonprofit firms tended to be more profitable than the other subsidiaries. PMID:8428811
Ronot, Maxime; Lambert, Simon A.; Wagner, Mathilde; Garteiser, Philippe; Doblas, Sabrina; Albuquerque, Miguel; Paradis, Valérie; Vilgrain, Valérie; Sinkus, Ralph; Van Beers, Bernard E.
2014-01-01
Objective To assess in a high-resolution model of thin liver rat slices which viscoelastic parameter at three-dimensional multifrequency MR elastography has the best diagnostic performance for quantifying liver fibrosis. Materials and Methods The study was approved by the ethics committee for animal care of our institution. Eight normal rats and 42 rats with carbon tetrachloride induced liver fibrosis were used in the study. The rats were sacrificed, their livers were resected and three-dimensional MR elastography of 5±2 mm liver slices was performed at 7T with mechanical frequencies of 500, 600 and 700 Hz. The complex shear, storage and loss moduli, and the coefficient of the frequency power law were calculated. At histopathology, fibrosis and inflammation were assessed with METAVIR score, fibrosis was further quantified with morphometry. The diagnostic value of the viscoelastic parameters for assessing fibrosis severity was evaluated with simple and multiple linear regressions, receiver operating characteristic analysis and Obuchowski measures. Results At simple regression, the shear, storage and loss moduli were associated with the severity of fibrosis. At multiple regression, the storage modulus at 600 Hz was the only parameter associated with fibrosis severity (r = 0.86, p<0.0001). This parameter had an Obuchowski measure of 0.89+/−0.03. This measure was significantly larger than that of the loss modulus (0.78+/−0.04, p = 0.028), but not than that of the complex shear modulus (0.88+/−0.03, p = 0.84). Conclusion Our high resolution, three-dimensional multifrequency MR elastography study of thin liver slices shows that the storage modulus is the viscoelastic parameter that has the best association with the severity of liver fibrosis. However, its diagnostic performance does not differ significantly from that of the complex shear modulus. PMID:24722733
ERIC Educational Resources Information Center
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P.
2014-01-01
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
ERIC Educational Resources Information Center
Hafner, Lawrence E.
A study developed a multiple regression prediction equation for each of six selected achievement variables in a popular standardized test of achievement. Subjects, 42 fourth-grade pupils randomly selected across several classes in a large elementary school in a north Florida city, were administered several standardized tests to determine predictor…
ERIC Educational Resources Information Center
Muller, Veronica; Brooks, Jessica; Tu, Wei-Mo; Moser, Erin; Lo, Chu-Ling; Chan, Fong
2015-01-01
Purpose: The main objective of this study was to determine the extent to which physical and cognitive-affective factors are associated with fibromyalgia (FM) fatigue. Method: A quantitative descriptive design using correlation techniques and multiple regression analysis. The participants consisted of 302 members of the National Fibromyalgia &…
ERIC Educational Resources Information Center
Richter, Tobias
2006-01-01
Most reading time studies using naturalistic texts yield data sets characterized by a multilevel structure: Sentences (sentence level) are nested within persons (person level). In contrast to analysis of variance and multiple regression techniques, hierarchical linear models take the multilevel structure of reading time data into account. They…
Some Applied Research Concerns Using Multiple Linear Regression Analysis.
ERIC Educational Resources Information Center
Newman, Isadore; Fraas, John W.
The intention of this paper is to provide an overall reference on how a researcher can apply multiple linear regression in order to utilize the advantages that it has to offer. The advantages and some concerns expressed about the technique are examined. A number of practical ways by which researchers can deal with such concerns as…
A Spreadsheet Tool for Learning the Multiple Regression F-Test, T-Tests, and Multicollinearity
ERIC Educational Resources Information Center
Martin, David
2008-01-01
This note presents a spreadsheet tool that allows teachers the opportunity to guide students towards answering on their own questions related to the multiple regression F-test, the t-tests, and multicollinearity. The note demonstrates approaches for using the spreadsheet that might be appropriate for three different levels of statistics classes,…
ERIC Educational Resources Information Center
Anderson, Joan L.
2006-01-01
Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…
ERIC Educational Resources Information Center
Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.
2006-01-01
Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…
Jafari, Naghmeh; Broer, Linda; Hoppenbrouwers, Ilse A; van Duijn, Cornelia M; Hintzen, Rogier Q
2010-11-01
Multiple sclerosis is a presumed autoimmune disease associated with genetic and environmental risk factors such as infectious mononucleosis. Recent research has shown infectious mononucleosis to be associated with a specific HLA class I polymorphism. Our aim was to test if the infectious mononucleosis-linked HLA class I single nucleotide polymorphism (rs6457110) is also associated with multiple sclerosis. Genotyping of the HLA-A single nucleotide polymorphism rs6457110 using TaqMan was performed in 591 multiple sclerosis cases and 600 controls. The association of multiple sclerosis with the HLA-A single nucleotide polymorphism was tested using logistic regression adjusted for age, sex and HLA-DRB1*1501. HLA-A minor allele (A) is associated with multiple sclerosis (OR = 0.68; p = 4.08 × 10( -5)). After stratification for HLA-DRB1*1501 risk allele (T) carrier we showed a significant OR of 0.70 (p = 0.003) for HLA-A. HLA class I single nucleotide polymorphism rs6457110 is associated with infectious mononucleosis and multiple sclerosis, independent of the major class II allele, supporting the hypothesis that shared genetics may contribute to the association between infectious mononucleosis and multiple sclerosis.
Regression Models for the Analysis of Longitudinal Gaussian Data from Multiple Sources
O’Brien, Liam M.; Fitzmaurice, Garrett M.
2006-01-01
We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry. PMID:15726666
Regression Analysis of Optical Coherence Tomography Disc Variables for Glaucoma Diagnosis.
Richter, Grace M; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Chopra, Vikas; Greenfield, David S; Varma, Rohit; Schuman, Joel S; Huang, David
2016-08-01
To report diagnostic accuracy of optical coherence tomography (OCT) disc variables using both time-domain (TD) and Fourier-domain (FD) OCT, and to improve the use of OCT disc variable measurements for glaucoma diagnosis through regression analyses that adjust for optic disc size and axial length-based magnification error. Observational, cross-sectional. In total, 180 normal eyes of 112 participants and 180 eyes of 138 participants with perimetric glaucoma from the Advanced Imaging for Glaucoma Study. Diagnostic variables evaluated from TD-OCT and FD-OCT were: disc area, rim area, rim volume, optic nerve head volume, vertical cup-to-disc ratio (CDR), and horizontal CDR. These were compared with overall retinal nerve fiber layer thickness and ganglion cell complex. Regression analyses were performed that corrected for optic disc size and axial length. Area-under-receiver-operating curves (AUROC) were used to assess diagnostic accuracy before and after the adjustments. An index based on multiple logistic regression that combined optic disc variables with axial length was also explored with the aim of improving diagnostic accuracy of disc variables. Comparison of diagnostic accuracy of disc variables, as measured by AUROC. The unadjusted disc variables with the highest diagnostic accuracies were: rim volume for TD-OCT (AUROC=0.864) and vertical CDR (AUROC=0.874) for FD-OCT. Magnification correction significantly worsened diagnostic accuracy for rim variables, and while optic disc size adjustments partially restored diagnostic accuracy, the adjusted AUROCs were still lower. Axial length adjustments to disc variables in the form of multiple logistic regression indices led to a slight but insignificant improvement in diagnostic accuracy. Our various regression approaches were not able to significantly improve disc-based OCT glaucoma diagnosis. However, disc rim area and vertical CDR had very high diagnostic accuracy, and these disc variables can serve to complement additional OCT measurements for diagnosis of glaucoma.
Eyvazlou, Meysam; Zarei, Esmaeil; Rahimi, Azin; Abazari, Malek
2016-01-01
Concerns about health problems due to the increasing use of mobile phones are growing. Excessive use of mobile phones can affect the quality of sleep as one of the important issues in the health literature and general health of people. Therefore, this study investigated the relationship between the excessive use of mobile phones and general health and quality of sleep on 450 Occupational Health and Safety (OH&S) students in five universities of medical sciences in the North East of Iran in 2014. To achieve this objective, special questionnaires that included Cell Phone Overuse Scale, Pittsburgh's Sleep Quality Index (PSQI) and General Health Questionnaire (GHQ) were used, respectively. In addition to descriptive statistical methods, independent t-test, Pearson correlation, analysis of variance (ANOVA) and multiple regression tests were performed. The results revealed that half of the students had a poor level of sleep quality and most of them were considered unhealthy. The Pearson correlation co-efficient indicated a significant association between the excessive use of mobile phones and the total score of general health and the quality of sleep. In addition, the results of the multiple regression showed that the excessive use of mobile phones has a significant relationship between each of the four subscales of general health and the quality of sleep. Furthermore, the results of the multivariate regression indicated that the quality of sleep has a simultaneous effect on each of the four scales of the general health. Overall, a simultaneous study of the effects of the mobile phones on the quality of sleep and the general health could be considered as a trigger to employ some intervention programs to improve their general health status, quality of sleep and consequently educational performance.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Applied Multiple Linear Regression: A General Research Strategy
ERIC Educational Resources Information Center
Smith, Brandon B.
1969-01-01
Illustrates some of the basic concepts and procedures for using regression analysis in experimental design, analysis of variance, analysis of covariance, and curvilinear regression. Applications to evaluation of instruction and vocational education programs are illustrated. (GR)
Physical disability, life stress, and psychosocial adjustment in multiple sclerosis.
Zeldow, P B; Pavlou, M
1984-02-01
Eighty-one outpatients with diagnosed multiple sclerosis were studied in an effort to examine the relative contributions of physical health status, life stress, duration of illness, age, sex, marital status, and social class on various aspects of personal and interpersonal functioning. Stepwise multiple regression analyses were performed to identify the most significant discriminators of the seven psychosocial measures. Physical health status exerted the broadest influence, affecting personal efficiency and well-being, capacity for independent thought and action, self-confidence, self-reliance, and number of meaningful social contacts. Life stress was associated with lowered personal efficiency and sense of well-being. Duration of illness and the demographic variables had few or no effects on psychosocial adjustment. Discussion contrasts the present findings with others in the rehabilitation literature and specifies certain limitations of the study's design.
Ebert, Kerry Danahy
2014-01-01
Sentence repetition performance is attracting increasing interest as a valuable clinical marker for primary (or specific) language impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but non-verbal memory has not yet been considered. To explore the relationship between a measure of non-verbal auditory working memory (NVWM) and sentence repetition performance in a sample of bilingual children with LI. Forty-seven school-aged Spanish-English bilingual children with LI completed sentence repetition and non-word repetition tasks in both Spanish and English as well as an NVWM task. Hierarchical multiple linear regression was used to predict sentence repetition in each language using age, non-word repetition and NVWM. NVWM predicted unique variance in sentence repetition performance in both languages after accounting for chronological age and language-specific phonological memory, as measured by non-word repetition. Domain-general memory resources play a unique role in sentence repetition performance in children with LI. Non-verbal working memory weaknesses may contribute to the poor performance of children with LI on sentence repetition tasks. © 2014 Royal College of Speech and Language Therapists.
Ebert, Kerry Danahy
2015-01-01
Background Sentence repetition performance is attracting increasing interest as a valuable clinical marker for Primary (or Specific) Language Impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but nonverbal memory has not yet been considered. Aims The purpose of this study was to explore the relationship between a measure of nonverbal auditory working memory (NVWM) and sentence repetition performance in a sample of bilingual children with LI. Methods & Procedures Forty-seven school-aged Spanish-English bilingual children with LI completed sentence repetition and nonword repetition tasks in both Spanish and English as well as an NVWM task. Hierarchical multiple linear regression was used to predict sentence repetition in each language using age, nonword repetition, and NVWM. Outcomes & Results NVWM predicted unique variance in sentence repetition performance in both languages after accounting for chronological age and language-specific phonological memory, as measured by nonword repetition. Conclusions & Implications Domain-general memory resources play a unique role in sentence repetition performance in children with LI. Nonverbal working memory weaknesses may contribute to the poor performance of children with LI on sentence repetition tasks. PMID:24894308
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.
Gregoretti, Francesco; Belcastro, Vincenzo; di Bernardo, Diego; Oliva, Gennaro
2010-04-21
The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computational requirements can be met using parallel computing techniques. It has been shown that the Network Identification by multiple Regression (NIR) algorithm performs better than the other ready-to-use reverse engineering software. However it cannot be used with large networks with thousands of nodes--as is the case in biological networks--due to the high time and space complexity. In this work we overcome this limitation by designing and developing a parallel version of the NIR algorithm. The new implementation of the algorithm reaches a very good accuracy even for large gene networks, improving our understanding of the gene regulatory networks that is crucial for a wide range of biomedical applications.
The weighted priors approach for combining expert opinions in logistic regression experiments
Quinlan, Kevin R.; Anderson-Cook, Christine M.; Myers, Kary L.
2017-04-24
When modeling the reliability of a system or component, it is not uncommon for more than one expert to provide very different prior estimates of the expected reliability as a function of an explanatory variable such as age or temperature. Our goal in this paper is to incorporate all information from the experts when choosing a design about which units to test. Bayesian design of experiments has been shown to be very successful for generalized linear models, including logistic regression models. We use this approach to develop methodology for the case where there are several potentially non-overlapping priors under consideration.more » While multiple priors have been used for analysis in the past, they have never been used in a design context. The Weighted Priors method performs well for a broad range of true underlying model parameter choices and is more robust when compared to other reasonable design choices. Finally, we illustrate the method through multiple scenarios and a motivating example. Additional figures for this article are available in the online supplementary information.« less
Association of Alimentary Factors and Nutritional Status with Caries in Children of Leon, Mexico.
Guizar, Juan Manuel; Muñoz, Nathalie; Amador, Norma; Garcia, Gabriela
To determine the association between types of food consumed, nutritional status (BMI) and caries in schoolchildren. A cross-sectional study was performed with 224 schoolchildren 6 to 12 years of age. DMFT/ dmft indices, level of oral hygiene, nutritional status as quantified by BMI and types of food consumed were determined in all participants. Data were analysed using multiple linear regression with significance set at p < 0.05. Caries prevalence was 36%. In the multiple linear regression analysis adjusted for BMI, variables related to a higher number of caries were younger age and lower intake of vitamin D, calcium and fiber, with higher consumption of phosphorous and carbohydrates (R2 = 0.30; p < 0.0001 for the model). Sweetened softdrinks and chewy candy were risk factors for higher caries prevalence, while consuming milk and carrots were protectors. Caries in schoolchildren is highly prevalent in this community and is related to younger age and lower intake of vitamin D, calcium and fiber, but a higher consumption of phosphorous and carbohydrates. No relationship was found between caries and nutritional status.
Yu, Cai-Xia; Zhang, Xiu-Zhen; Zhang, Keqin; Tang, Zihui
2015-12-09
The main aim of this study was to evaluate the association between education level and osteoporosis (OP) in general Chinese Men. We conducted a large-scale, community-based, cross-sectional study to investigate the association by using self-report questionnaire to assess education levels. The data of 1092 men were available for analysis in this study. Multiple regression models controlling for confounding factors to include education level were performed to explore the relationship between education level and OP. Positive correlations between education level and T-score of quantitative bone ultrasound (QUS-T score) were reported (β = 0.108, P value < 0.001). Multiple regression analysis indicated that the education level was independently and significantly associated with OP (P < 0.1 for all models). The men with lower education level had a higher prevalence of OP. The education level was independently and significantly associated with OP. The prevalence of OP was more frequent in Chinese men with lower education level. ClinicalTrials.gov Identifier: NCT02451397 ; date of registration: 05/28/2015).
NASA Astrophysics Data System (ADS)
Tamimi, Abdallah Ibrahim
Quality management is a fundamental challenge facing businesses. This research attempted to quantify the effect of quality investment on the Cost of Poor Quality (COPQ) in an aerospace company utilizing 3 years of quality data at United Launch Alliance, a Boeing -- Lockheed Martin Joint Venture Company. Statistical analysis tools, like multiple regressions, were used to quantify the relationship between quality investments and COPQ. Strong correlations were evident by the high correlation coefficient R2 and very small p-values in multiple regression analysis. The models in the study helped produce an Excel macro that based on preset constraints, optimized the level of quality spending to minimize COPQ. The study confirmed that as quality investments were increased, the COPQ decreased steadily until a point of diminishing return was reached. The findings may be used to develop an approach to reduce the COPQ and enhance product performance. Achieving superior quality in rocket launching enhances the accuracy, reliability, and mission success of delivering satellites to their precise orbits in pursuit of knowledge, peace, and freedom while assuring safety for the end user.
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666
Golmohammadi, Hassan
2009-11-30
A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.
Katić, Mašenjka; Pirsl, Filip; Steinberg, Seth M.; Dobbin, Marnie; Curtis, Lauren M.; Pulanić, Dražen; Desnica, Lana; Titarenko, Irina; Pavletic, Steven Z.
2016-01-01
Aim To identify the factors associated with vitamin D status in patients with chronic graft-vs-host disease (cGVHD) and evaluate the association between serum vitamin D (25(OH)D) levels and cGVHD characteristics and clinical outcomes defined by the National Institutes of Health (NIH) criteria. Methods 310 cGVHD patients enrolled in the NIH cGVHD natural history study (clinicaltrials.gov: NCT00092235) were analyzed. Univariate analysis and multiple logistic regression were used to determine the associations between various parameters and 25(OH)D levels, dichotomized into categorical variables: ≤20 and >20 ng/mL, and as a continuous parameter. Multiple logistic regression was used to develop a predictive model for low vitamin D. Survival analysis and association between cGVHD outcomes and 25(OH)D as a continuous as well as categorical variable: ≤20 and >20 ng/mL; <50 and ≥50 ng/mL, and among three ordered categories: ≤20, 20-50, and ≥50 ng/mL, was performed. PMID:27374829
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram
Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under differentmore » levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.« less
The weighted priors approach for combining expert opinions in logistic regression experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinlan, Kevin R.; Anderson-Cook, Christine M.; Myers, Kary L.
When modeling the reliability of a system or component, it is not uncommon for more than one expert to provide very different prior estimates of the expected reliability as a function of an explanatory variable such as age or temperature. Our goal in this paper is to incorporate all information from the experts when choosing a design about which units to test. Bayesian design of experiments has been shown to be very successful for generalized linear models, including logistic regression models. We use this approach to develop methodology for the case where there are several potentially non-overlapping priors under consideration.more » While multiple priors have been used for analysis in the past, they have never been used in a design context. The Weighted Priors method performs well for a broad range of true underlying model parameter choices and is more robust when compared to other reasonable design choices. Finally, we illustrate the method through multiple scenarios and a motivating example. Additional figures for this article are available in the online supplementary information.« less
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four
Bartlett, Jonathan W; Keogh, Ruth H
2018-06-01
Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of regression calibration and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yahya, Noorazrul, E-mail: noorazrul.yahya@research.uwa.edu.au; Ebert, Martin A.; Bulsara, Max
Purpose: Given the paucity of available data concerning radiotherapy-induced urinary toxicity, it is important to ensure derivation of the most robust models with superior predictive performance. This work explores multiple statistical-learning strategies for prediction of urinary symptoms following external beam radiotherapy of the prostate. Methods: The performance of logistic regression, elastic-net, support-vector machine, random forest, neural network, and multivariate adaptive regression splines (MARS) to predict urinary symptoms was analyzed using data from 754 participants accrued by TROG03.04-RADAR. Predictive features included dose-surface data, comorbidities, and medication-intake. Four symptoms were analyzed: dysuria, haematuria, incontinence, and frequency, each with three definitions (grade ≥more » 1, grade ≥ 2 and longitudinal) with event rate between 2.3% and 76.1%. Repeated cross-validations producing matched models were implemented. A synthetic minority oversampling technique was utilized in endpoints with rare events. Parameter optimization was performed on the training data. Area under the receiver operating characteristic curve (AUROC) was used to compare performance using sample size to detect differences of ≥0.05 at the 95% confidence level. Results: Logistic regression, elastic-net, random forest, MARS, and support-vector machine were the highest-performing statistical-learning strategies in 3, 3, 3, 2, and 1 endpoints, respectively. Logistic regression, MARS, elastic-net, random forest, neural network, and support-vector machine were the best, or were not significantly worse than the best, in 7, 7, 5, 5, 3, and 1 endpoints. The best-performing statistical model was for dysuria grade ≥ 1 with AUROC ± standard deviation of 0.649 ± 0.074 using MARS. For longitudinal frequency and dysuria grade ≥ 1, all strategies produced AUROC>0.6 while all haematuria endpoints and longitudinal incontinence models produced AUROC<0.6. Conclusions: Logistic regression and MARS were most likely to be the best-performing strategy for the prediction of urinary symptoms with elastic-net and random forest producing competitive results. The predictive power of the models was modest and endpoint-dependent. New features, including spatial dose maps, may be necessary to achieve better models.« less
NASA Astrophysics Data System (ADS)
Hasan, Haliza; Ahmad, Sanizah; Osman, Balkish Mohd; Sapri, Shamsiah; Othman, Nadirah
2017-08-01
In regression analysis, missing covariate data has been a common problem. Many researchers use ad hoc methods to overcome this problem due to the ease of implementation. However, these methods require assumptions about the data that rarely hold in practice. Model-based methods such as Maximum Likelihood (ML) using the expectation maximization (EM) algorithm and Multiple Imputation (MI) are more promising when dealing with difficulties caused by missing data. Then again, inappropriate methods of missing value imputation can lead to serious bias that severely affects the parameter estimates. The main objective of this study is to provide a better understanding regarding missing data concept that can assist the researcher to select the appropriate missing data imputation methods. A simulation study was performed to assess the effects of different missing data techniques on the performance of a regression model. The covariate data were generated using an underlying multivariate normal distribution and the dependent variable was generated as a combination of explanatory variables. Missing values in covariate were simulated using a mechanism called missing at random (MAR). Four levels of missingness (10%, 20%, 30% and 40%) were imposed. ML and MI techniques available within SAS software were investigated. A linear regression analysis was fitted and the model performance measures; MSE, and R-Squared were obtained. Results of the analysis showed that MI is superior in handling missing data with highest R-Squared and lowest MSE when percent of missingness is less than 30%. Both methods are unable to handle larger than 30% level of missingness.
An open-access CMIP5 pattern library for temperature and precipitation: Description and methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Cary D.; Hartin, Corinne A.; Bond-Lamberty, Benjamin
Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squared regression methods. We exploremore » the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90°N/S). Bias and mean errors between modeled and pattern predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5°C, but choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. As a result, this paper describes our library of least squared regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns.« less
An open-access CMIP5 pattern library for temperature and precipitation: Description and methodology
Lynch, Cary D.; Hartin, Corinne A.; Bond-Lamberty, Benjamin; ...
2017-05-15
Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squared regression methods. We exploremore » the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90°N/S). Bias and mean errors between modeled and pattern predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5°C, but choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. As a result, this paper describes our library of least squared regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns.« less
Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier
2018-02-01
Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.
do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado Junior, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro
2015-01-01
To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95% was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α<5%. From 226 women included, 200 (88.5%) were 20 to 44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Kitagawa, Noriyuki; Okada, Hiroshi; Tanaka, Muhei; Hashimoto, Yoshitaka; Kimura, Toshihiro; Nakano, Koji; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto; Fukui, Michiaki
2016-08-01
The aim of this study was to investigate whether central systolic blood pressure (SBP) was associated with albuminuria, defined as urinary albumin excretion (UAE) ≥30 mg/g creatinine, and, if so, whether the relationship of central SBP with albuminuria was stronger than that of peripheral SBP in patients with type 2 diabetes. The authors performed a cross-sectional study in 294 outpatients with type 2 diabetes. The relationship between peripheral SBP or central SBP and UAE using regression analysis was evaluated, and the odds ratios of peripheral SBP or central SBP were calculated to identify albuminuria using logistic regression model. Moreover, the area under the receiver operating characteristic curve (AUC) of central SBP was compared with that of peripheral SBP to identify albuminuria. Multiple regression analysis demonstrated that peripheral SBP (β=0.255, P<.0001) or central SBP (r=0.227, P<.0001) was associated with UAE. Multiple logistic regression analysis demonstrated that peripheral SBP (odds ratio, 1.029; 95% confidence interval, 1.016-1.043) or central SBP (odds ratio, 1.022; 95% confidence interval, 1.011-1.034) was associated with an increased odds of albuminuria. In addition, AUC of peripheral SBP was significantly greater than that of central SBP to identify albuminuria (P=0.035). Peripheral SBP is superior to central SBP in identifying albuminuria, although both peripheral and central SBP are associated with UAE in patients with type 2 diabetes. © 2016 Wiley Periodicals, Inc.
Bomfim, Rafael Aiello; Crosato, Edgard; Mazzilli, Luiz Eugênio Nigro; Frias, Antonio Carlos
2015-01-01
This study evaluates the prevalence and risk factors of non-carious cervical lesions (NCCLs) in a Brazilian population of workers exposed and non-exposed to acid mists and chemical products. One hundred workers (46 exposed and 54 non-exposed) were evaluated in a Centro de Referência em Saúde do Trabalhador - CEREST (Worker's Health Reference Center). The workers responded to questionnaires regarding their personal information and about alcohol consumption and tobacco use. A clinical examination was conducted to evaluate the presence of NCCLs, according to WHO parameters. Statistical analyses were performed by unconditional logistic regression and multiple linear regression, with the critical level of p < 0.05. NCCLs were significantly associated with age groups (18-34, 35-44, 45-68 years). The unconditional logistic regression showed that the presence of NCCLs was better explained by age group (OR = 4.04; CI 95% 1.77-9.22) and occupational exposure to acid mists and chemical products (OR = 3.84; CI 95% 1.10-13.49), whereas the linear multiple regression revealed that NCCLs were better explained by years of smoking (p = 0.01) and age group (p = 0.04). The prevalence of NCCLs in the study population was particularly high (76.84%), and the risk factors for NCCLs were age, exposure to acid mists and smoking habit. Controlling risk factors through preventive and educative measures, allied to the use of personal protective equipment to prevent the occupational exposure to acid mists, may contribute to minimizing the prevalence of NCCLs.
Ito, Yukiko; Hattori, Reiko; Mase, Hiroki; Watanabe, Masako; Shiotani, Itaru
2008-12-01
Pollen information is indispensable for allergic individuals and clinicians. This study aimed to develop forecasting models for the total annual count of airborne pollen grains based on data monitored over the last 20 years at the Mie Chuo Medical Center, Tsu, Mie, Japan. Airborne pollen grains were collected using a Durham sampler. Total annual pollen count and pollen count from October to December (OD pollen count) of the previous year were transformed to logarithms. Regression analysis of the total pollen count was performed using variables such as the OD pollen count and the maximum temperature for mid-July of the previous year. Time series analysis revealed an alternate rhythm of the series of total pollen count. The alternate rhythm consisted of a cyclic alternation of an "on" year (high pollen count) and an "off" year (low pollen count). This rhythm was used as a dummy variable in regression equations. Of the three models involving the OD pollen count, a multiple regression equation that included the alternate rhythm variable and the interaction of this rhythm with OD pollen count showed a high coefficient of determination (0.844). Of the three models involving the maximum temperature for mid-July, those including the alternate rhythm variable and the interaction of this rhythm with maximum temperature had the highest coefficient of determination (0.925). An alternate pollen dispersal rhythm represented by a dummy variable in the multiple regression analysis plays a key role in improving forecasting models for the total annual sugi pollen count.
Ho, S C; Chan, S G; Yip, Y B; Chan, C S Y; Woo, J L F; Sham, A
2008-12-01
This 30-month study investigating bone change and its determinants in 438 perimenopausal Chinese women revealed that the fastest bone loss occurred in women undergoing menopausal transition but maintenance of body weight and physical fitness were beneficial for bone health. Soy protein intake also seemed to exert a protective effect. This 30-month follow-up study aims to investigate change in bone mineral density and its determinants in Hong Kong Chinese perimenopausal women. Four hundred and thirty-eight women aged 45 to 55 years were recruited through random telephone dialing and primary care clinic. Bone mass, body composition, lifestyle measurements were obtained at baseline and at 9-, 18- and 30-month follow-ups. Univariate and stepwise multiple regression analyses were performed with the regression coefficients of BMD/C (derived from baseline and follow-up measurements) as the outcome variables. Menopausal status was classified as pre- or postmenopausal or transitional. Menopausal status was the strongest determinant of bone changes. An annual bone loss of about 0.5% was observed among premenopausal, 2% to 2.5% among transitional, and about 1.5% in postmenopausal women. Multiple regression analyses, revealed that a positive regression slope of body weight was protective for follow-up bone loss at all sites. Number of pregnancy, soy protein intake and walking were protective for total body BMC. Higher baseline LM was also protective for neck of femur BMD. Maintenance of body weight and physical fitness were observed to have a protective effect on for bone loss in Chinese perimenopausal women.
Explaining match outcome in elite Australian Rules football using team performance indicators.
Robertson, Sam; Back, Nicole; Bartlett, Jonathan D
2016-01-01
The relationships between team performance indicators and match outcome have been examined in many team sports, however are limited in Australian Rules football. Using data from the 2013 and 2014 Australian Football League (AFL) regular seasons, this study assessed the ability of commonly reported discrete team performance indicators presented in their relative form (standardised against their opposition for a given match) to explain match outcome (Win/Loss). Logistic regression and decision tree (chi-squared automatic interaction detection (CHAID)) analyses both revealed relative differences between opposing teams for "kicks" and "goal conversion" as the most influential in explaining match outcome, with two models achieving 88.3% and 89.8% classification accuracies, respectively. Models incorporating a smaller performance indicator set displayed a slightly reduced ability to explain match outcome (81.0% and 81.5% for logistic regression and CHAID, respectively). However, both were fit to 2014 data with reduced error in comparison to the full models. Despite performance similarities across the two analysis approaches, the CHAID model revealed multiple winning performance indicator profiles, thereby increasing its comparative feasibility for use in the field. Coaches and analysts may find these results useful in informing strategy and game plan development in Australian Rules football, with the development of team-specific models recommended in future.
Machine learning of swimming data via wisdom of crowd and regression analysis.
Xie, Jiang; Xu, Junfu; Nie, Celine; Nie, Qing
2017-04-01
Every performance, in an officially sanctioned meet, by a registered USA swimmer is recorded into an online database with times dating back to 1980. For the first time, statistical analysis and machine learning methods are systematically applied to 4,022,631 swim records. In this study, we investigate performance features for all strokes as a function of age and gender. The variances in performance of males and females for different ages and strokes were studied, and the correlations of performances for different ages were estimated using the Pearson correlation. Regression analysis show the performance trends for both males and females at different ages and suggest critical ages for peak training. Moreover, we assess twelve popular machine learning methods to predict or classify swimmer performance. Each method exhibited different strengths or weaknesses in different cases, indicating no one method could predict well for all strokes. To address this problem, we propose a new method by combining multiple inference methods to derive Wisdom of Crowd Classifier (WoCC). Our simulation experiments demonstrate that the WoCC is a consistent method with better overall prediction accuracy. Our study reveals several new age-dependent trends in swimming and provides an accurate method for classifying and predicting swimming times.
Population heterogeneity in the salience of multiple risk factors for adolescent delinquency.
Lanza, Stephanie T; Cooper, Brittany R; Bray, Bethany C
2014-03-01
To present mixture regression analysis as an alternative to more standard regression analysis for predicting adolescent delinquency. We demonstrate how mixture regression analysis allows for the identification of population subgroups defined by the salience of multiple risk factors. We identified population subgroups (i.e., latent classes) of individuals based on their coefficients in a regression model predicting adolescent delinquency from eight previously established risk indices drawn from the community, school, family, peer, and individual levels. The study included N = 37,763 10th-grade adolescents who participated in the Communities That Care Youth Survey. Standard, zero-inflated, and mixture Poisson and negative binomial regression models were considered. Standard and mixture negative binomial regression models were selected as optimal. The five-class regression model was interpreted based on the class-specific regression coefficients, indicating that risk factors had varying salience across classes of adolescents. Standard regression showed that all risk factors were significantly associated with delinquency. Mixture regression provided more nuanced information, suggesting a unique set of risk factors that were salient for different subgroups of adolescents. Implications for the design of subgroup-specific interventions are discussed. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
A Highly Efficient Design Strategy for Regression with Outcome Pooling
Mitchell, Emily M.; Lyles, Robert H.; Manatunga, Amita K.; Perkins, Neil J.; Schisterman, Enrique F.
2014-01-01
The potential for research involving biospecimens can be hindered by the prohibitive cost of performing laboratory assays on individual samples. To mitigate this cost, strategies such as randomly selecting a portion of specimens for analysis or randomly pooling specimens prior to performing laboratory assays may be employed. These techniques, while effective in reducing cost, are often accompanied by a considerable loss of statistical efficiency. We propose a novel pooling strategy based on the k-means clustering algorithm to reduce laboratory costs while maintaining a high level of statistical efficiency when predictor variables are measured on all subjects, but the outcome of interest is assessed in pools. We perform simulations motivated by the BioCycle study to compare this k-means pooling strategy with current pooling and selection techniques under simple and multiple linear regression models. While all of the methods considered produce unbiased estimates and confidence intervals with appropriate coverage, pooling under k-means clustering provides the most precise estimates, closely approximating results from the full data and losing minimal precision as the total number of pools decreases. The benefits of k-means clustering evident in the simulation study are then applied to an analysis of the BioCycle dataset. In conclusion, when the number of lab tests is limited by budget, pooling specimens based on k-means clustering prior to performing lab assays can be an effective way to save money with minimal information loss in a regression setting. PMID:25220822
A highly efficient design strategy for regression with outcome pooling.
Mitchell, Emily M; Lyles, Robert H; Manatunga, Amita K; Perkins, Neil J; Schisterman, Enrique F
2014-12-10
The potential for research involving biospecimens can be hindered by the prohibitive cost of performing laboratory assays on individual samples. To mitigate this cost, strategies such as randomly selecting a portion of specimens for analysis or randomly pooling specimens prior to performing laboratory assays may be employed. These techniques, while effective in reducing cost, are often accompanied by a considerable loss of statistical efficiency. We propose a novel pooling strategy based on the k-means clustering algorithm to reduce laboratory costs while maintaining a high level of statistical efficiency when predictor variables are measured on all subjects, but the outcome of interest is assessed in pools. We perform simulations motivated by the BioCycle study to compare this k-means pooling strategy with current pooling and selection techniques under simple and multiple linear regression models. While all of the methods considered produce unbiased estimates and confidence intervals with appropriate coverage, pooling under k-means clustering provides the most precise estimates, closely approximating results from the full data and losing minimal precision as the total number of pools decreases. The benefits of k-means clustering evident in the simulation study are then applied to an analysis of the BioCycle dataset. In conclusion, when the number of lab tests is limited by budget, pooling specimens based on k-means clustering prior to performing lab assays can be an effective way to save money with minimal information loss in a regression setting. Copyright © 2014 John Wiley & Sons, Ltd.
Determinants of ambulance response time: A study in Sabah, Malaysia
NASA Astrophysics Data System (ADS)
Chin, Su Na; Cheah, Phee Kheng; Arifin, Muhamad Yaakub; Wong, Boh Leng; Omar, Zaturrawiah; Yassin, Fouziah Md; Gabda, Darmesah
2017-04-01
Ambulance response time (ART) is one of the standard key performance indicators (KPI) in measuring the emergency medical services (EMS) delivery performances. When the mean time of ART of EMS system reaches the KPI target, it shows that the EMS system performs well. This paper considers the determinants of ART, using data sampled from 967 ambulance runs in a government hospital in Sabah. Multiple regression analysis with backward elimination was proposed for the identification of significant factors. Amongst the underlying factors, travel distance, age of patients, type of treatment and peak hours were identified to be significantly affecting ART. Identifying factors that influence ART helps the development of strategic improvement planning for reducing the ART.
Use of safety management practices for improving project performance.
Cheng, Eddie W L; Kelly, Stephen; Ryan, Neal
2015-01-01
Although site safety has long been a key research topic in the construction field, there is a lack of literature studying safety management practices (SMPs). The current research, therefore, aims to test the effect of SMPs on project performance. An empirical study was conducted in Hong Kong and the data collected were analysed with multiple regression analysis. Results suggest that 3 of the 15 SMPs, which were 'safety committee at project/site level', 'written safety policy', and 'safety training scheme' explained the variance in project performance significantly. Discussion about the impact of these three SMPs on construction was provided. Assuring safe construction should be an integral part of a construction project plan.
NASA Technical Reports Server (NTRS)
Yorchak, J. P.; Hartley, C. S.; Hinman, E.
1985-01-01
The use of aptitude tests and questionnaries to evaluate an individuals aptitude for teleoperation is studied. The Raven Progressive Matrices Test and Differential Aptitude Tests, and a 16-item questionnaire for assessing the subject's interests, academic background, and previous experience are described. The Proto-Flight Manipulator Arm, cameras, console, hand controller, and task board utilized by the 17 engineers are examined. The correlation between aptitude scores and questionnaire responses, and operator performance is investigated. Multiple regression data reveal that the eight predictor variables are not individually significant for evaluating operator performance; however, the complete test battery is applicable for predicting 49 percent of subject variance on the criterion task.
Navarta-Sánchez, María Victoria; Senosiain García, Juana M; Riverol, Mario; Ursúa Sesma, María Eugenia; Díaz de Cerio Ayesa, Sara; Anaut Bravo, Sagrario; Caparrós Civera, Neus; Portillo, Mari Carmen
2016-08-01
The influence that social conditions and personal attitudes may have on the quality of life (QoL) of Parkinson's disease (PD) patients and informal caregivers does not receive enough attention in health care, as a result of it not being clearly identified, especially in informal caregivers. The aim of this study was to provide a comprehensive analysis of psychosocial adjustment and QoL determinants in PD patients and informal caregivers. Ninety-one PD patients and 83 caregivers participated in the study. Multiple regression analyses were performed including benefit finding, coping, disease severity and socio-demographic factors, in order to determine how these aspects influence the psychosocial adjustment and QoL in PD patients and caregivers. Regression models showed that severity of PD was the main predictor of psychosocial adjustment and QoL in patients. Nevertheless, multiple regression analyses also revealed that coping was a significant predictor of psychosocial adjustment in patients and caregivers. Furthermore, psychosocial adjustment was significantly related to QoL in patients and caregivers. Also, coping and benefit finding were predictors of QoL in caregivers but not in patients. Multidisciplinary interventions aimed at improving PD patients' QoL may have more effective outcomes if education about coping skills, and how these can help towards a positive psychosocial adjustment to illness, were included, and targeted not only at patients, but also at informal caregivers.
Machado-Carvalhais, Helenaura P; Ramos-Jorge, Maria L; Auad, Sheyla M; Martins, Laura H P M; Paiva, Saul M; Pordeus, Isabela A
2008-10-01
The aims of this cross-sectional study were to determine the prevalence of occupational accidents with exposure to biological material among undergraduate students of dentistry and to estimate potential risk factors associated with exposure to blood. Data were collected through a self-administered questionnaire (86.4 percent return rate), which was completed by a sample of 286 undergraduate dental students (mean age 22.4 +/-2.4 years). The students were enrolled in the clinical component of the curriculum, which corresponds to the final six semesters of study. Descriptive, bivariate, simple logistic regression and multiple logistic regression (Forward Stepwise Procedure) analyses were performed. The level of statistical significance was set at 5 percent. Percutaneous and mucous exposures to potentially infectious biological material were reported by 102 individuals (35.6 percent); 26.8 percent reported the occurrence of multiple episodes of exposure. The logistic regression analyses revealed that the incomplete use of individual protection equipment (OR=3.7; 95 percent CI 1.5-9.3), disciplines where surgical procedures are carried out (OR=16.3; 95 percent CI 7.1-37.2), and handling sharp instruments (OR=4.4; 95 percent CI 2.1-9.1), more specifically, hollow-bore needles (OR=6.8; 95 percent CI 2.1-19.0), were independently associated with exposure to blood. Policies of reviewing the procedures during clinical practice are recommended in order to reduce occupational exposure.
Mandel, Micha; Gauthier, Susan A; Guttmann, Charles R G; Weiner, Howard L; Betensky, Rebecca A
2007-12-01
The expanded disability status scale (EDSS) is an ordinal score that measures progression in multiple sclerosis (MS). Progression is defined as reaching EDSS of a certain level (absolute progression) or increasing of one point of EDSS (relative progression). Survival methods for time to progression are not adequate for such data since they do not exploit the EDSS level at the end of follow-up. Instead, we suggest a Markov transitional model applicable for repeated categorical or ordinal data. This approach enables derivation of covariate-specific survival curves, obtained after estimation of the regression coefficients and manipulations of the resulting transition matrix. Large sample theory and resampling methods are employed to derive pointwise confidence intervals, which perform well in simulation. Methods for generating survival curves for time to EDSS of a certain level, time to increase of EDSS of at least one point, and time to two consecutive visits with EDSS greater than three are described explicitly. The regression models described are easily implemented using standard software packages. Survival curves are obtained from the regression results using packages that support simple matrix calculation. We present and demonstrate our method on data collected at the Partners MS center in Boston, MA. We apply our approach to progression defined by time to two consecutive visits with EDSS greater than three, and calculate crude (without covariates) and covariate-specific curves.
Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.
Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk
2010-02-01
A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations.
ERIC Educational Resources Information Center
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Cimpian, Joseph R.
2017-01-01
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
ERIC Educational Resources Information Center
Woolley, Kristin K.
Many researchers are unfamiliar with suppressor variables and how they operate in multiple regression analyses. This paper describes the role suppressor variables play in a multiple regression model and provides practical examples that explain how they can change research results. A variable that when added as another predictor increases the total…
ERIC Educational Resources Information Center
Martz, Erin
2004-01-01
Because the onset of a spinal cord injury may involve a brush with death and because serious injury and disability can act as a reminder of death, death anxiety was examined as a predictor of posttraumatic stress levels among individuals with disabilities. This cross-sectional study used multiple regression and multivariate multiple regression to…
McClelland, Gary H; Irwin, Julie R; Disatnik, David; Sivan, Liron
2017-02-01
Multicollinearity is irrelevant to the search for moderator variables, contrary to the implications of Iacobucci, Schneider, Popovich, and Bakamitsos (Behavior Research Methods, 2016, this issue). Multicollinearity is like the red herring in a mystery novel that distracts the statistical detective from the pursuit of a true moderator relationship. We show multicollinearity is completely irrelevant for tests of moderator variables. Furthermore, readers of Iacobucci et al. might be confused by a number of their errors. We note those errors, but more positively, we describe a variety of methods researchers might use to test and interpret their moderated multiple regression models, including two-stage testing, mean-centering, spotlighting, orthogonalizing, and floodlighting without regard to putative issues of multicollinearity. We cite a number of recent studies in the psychological literature in which the researchers used these methods appropriately to test, to interpret, and to report their moderated multiple regression models. We conclude with a set of recommendations for the analysis and reporting of moderated multiple regression that should help researchers better understand their models and facilitate generalizations across studies.
[Life satisfaction and related socio-demographic factors during female midlife].
Cuadros, José Luis; Pérez-Roncero, Gonzalo R; López-Baena, María Teresa; Cuadros-Celorrio, Angela M; Fernández-Alonso, Ana María
2014-01-01
To assess life satisfaction and related factors in middle-aged Spanish women. This was a cross-sectional study including 235 women aged 40 to 65, living in Granada (Spain), healthy companions of patients visiting the obstetrics and gynecology clinics. They completed the Diener Satisfaction with Life Scale, the Menopause Rating Scale, the Perceived Stress Scale, the Insomnia Severity Index and a sociodemographic questionnaire containing personal and partner data. Internal consistency of each tool was also calculated. Almost two-thirds (61.3%) of the women were postmenopausal, and 43.8% had abdominal obesity, 36.6% had insomnia, 18.7% had poor menopause-related quality of life, 31.9% performed regular exercise, and 5.1% had severe financial problems. Life satisfaction showed significant positive correlations (Spearman's test) with female and male age, and inverse correlations with menopause-related quality of life, perceived stress and insomnia. In the multiple linear regression analysis, high life satisfaction is positively correlated with having a partner who performed exercise, and inversely with having work problems, perceived stress and the suspicion of partner infidelity. These factors explained 40% of the variance of the multiple regression analysis for life satisfaction in middle-aged women. Life satisfaction is a construct related to perceived stress, work problems, and having a partner, while aspects of menopause and general health had no significant influence. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Pomann, Gina-Maria; Sweeney, Elizabeth M; Reich, Daniel S; Staicu, Ana-Maria; Shinohara, Russell T
2015-09-10
Multiple sclerosis (MS) is an immune-mediated neurological disease that causes morbidity and disability. In patients with MS, the accumulation of lesions in the white matter of the brain is associated with disease progression and worse clinical outcomes. Breakdown of the blood-brain barrier in newer lesions is indicative of more active disease-related processes and is a primary outcome considered in clinical trials of treatments for MS. Such abnormalities in active MS lesions are evaluated in vivo using contrast-enhanced structural MRI, during which patients receive an intravenous infusion of a costly magnetic contrast agent. In some instances, the contrast agents can have toxic effects. Recently, local image regression techniques have been shown to have modest performance for assessing the integrity of the blood-brain barrier based on imaging without contrast agents. These models have centered on the problem of cross-sectional classification in which patients are imaged at a single study visit and pre-contrast images are used to predict post-contrast imaging. In this paper, we extend these methods to incorporate historical imaging information, and we find the proposed model to exhibit improved performance. We further develop scan-stratified case-control sampling techniques that reduce the computational burden of local image regression models, while respecting the low proportion of the brain that exhibits abnormal vascular permeability. Copyright © 2015 John Wiley & Sons, Ltd.
Antanasijević, Davor; Pocajt, Viktor; Povrenović, Dragan; Perić-Grujić, Aleksandra; Ristić, Mirjana
2013-12-01
The aims of this study are to create an artificial neural network (ANN) model using non-specific water quality parameters and to examine the accuracy of three different ANN architectures: General Regression Neural Network (GRNN), Backpropagation Neural Network (BPNN) and Recurrent Neural Network (RNN), for prediction of dissolved oxygen (DO) concentration in the Danube River. The neural network model has been developed using measured data collected from the Bezdan monitoring station on the Danube River. The input variables used for the ANN model are water flow, temperature, pH and electrical conductivity. The model was trained and validated using available data from 2004 to 2008 and tested using the data from 2009. The order of performance for the created architectures based on their comparison with the test data is RNN > GRNN > BPNN. The ANN results are compared with multiple linear regression (MLR) model using multiple statistical indicators. The comparison of the RNN model with the MLR model indicates that the RNN model performs much better, since all predictions of the RNN model for the test data were within the error of less than ± 10 %. In case of the MLR, only 55 % of predictions were within the error of less than ± 10 %. The developed RNN model can be used as a tool for the prediction of DO in river waters.
Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu; Yoshino, Kensuke; Suzuki, Mashiko
2018-05-01
The aim of this study was to determine factors that contribute to bone cutting errors of conventional instrumentation for tibial resection in total knee arthroplasty (TKA) as assessed by an image-free navigation system. The hypothesis is that preoperative varus alignment is a significant contributory factor to tibial bone cutting errors. This was a prospective study of a consecutive series of 72 TKAs. The amount of the tibial first-cut errors with reference to the planned cutting plane in both coronal and sagittal planes was measured by an image-free computer navigation system. Multiple regression models were developed with the amount of tibial cutting error in the coronal and sagittal planes as dependent variables and sex, age, disease, height, body mass index, preoperative alignment, patellar height (Insall-Salvati ratio) and preoperative flexion angle as independent variables. Multiple regression analysis showed that sex (male gender) (R = 0.25 p = 0.047) and preoperative varus alignment (R = 0.42, p = 0.001) were positively associated with varus tibial cutting errors in the coronal plane. In the sagittal plane, none of the independent variables was significant. When performing TKA in varus deformity, careful confirmation of the bone cutting surface should be performed to avoid varus alignment. The results of this study suggest technical considerations that can help a surgeon achieve more accurate component placement. IV.
Sato, Atsushi; Okuda, Yutaka; Fujita, Takaaki; Kimura, Norihiko; Hoshina, Noriyuki; Kato, Sayaka; Tanaka, Shigenari
2016-01-01
This study aimed to clarify which cognitive and physical factors are associated with the need for toileting assistance in stroke patients and to calculate cut-off values for discriminating between independent supervision and dependent toileting ability. This cross-sectional study included 163 first-stroke patients in nine convalescent rehabilitation wards. Based on their FIM Ⓡ instrument score for toileting, the patients were divided into an independent-supervision group and a dependent group. Multiple logistic regression analysis and receiver operating characteristic analysis were performed to identify factors related to toileting performance. The Minimental State Examination (MMSE); the Stroke Impairment Assessment Set (SIAS) score for the affected lower limb, speech, and visuospatial functions; and the Functional Assessment for Control of Trunk (FACT) were analyzed as independent variables. The multiple logistic regression analysis showed that the FIM Ⓡ instrument score for toileting was associated with the SIAS score for the affected lower limb function, MMSE, and FACT. On receiver operating characteristic analysis, the SIAS score for the affected lower limb function cut-off value was 8/7 points, the MMSE cut-off value was 25/24 points, and the FACT cut-off value was 14/13 points. Affected lower limb function, cognitive function, and trunk function were related with the need for toileting assistance. These cut-off values may be useful for judging whether toileting assistance is needed in stroke patients.
Hermann, Derik; Leménager, Tagrid; Gelbke, Jan; Welzel, Helga; Skopp, Gisela; Mann, Karl
2009-01-01
It is unclear whether impairment in decision making, measured by the Iowa Gambling Task (IGT), in addiction is substance-induced or the consequence of personality structure. Analysis of the IGT, the Tridimensional Personality Questionnaire (TPQ) and cannabinoids in hair and urine were performed in 13 cannabis users and matched controls. Hair Delta(9)-tetrahydrocannabinol (THC) correlated negatively with the last subtrial (cards 80-100) of the IGT (R = -0.67). In all participants (n = 26) the TPQ dimension, harm avoidance, correlated negatively with the total IGT score (R = -0.46). The last IGT-subtrial correlated with adventure seeking (R = 0.43), harm avoidance (R = -0.39) and reward dependence (R = -0.44). The last subtrial gives information on whether a participant has learned the IGT strategy. Multiple regression confirmed the impact of THC on the last subtrial, whereas TPQ personality traits did not additionally explain variance. Former indications of the IGT performance depending on the amount of cannabis consumed were replicated with an objective measurement of chronic cannabis consumption (hair THC). Multiple regression analysis argues for a stronger impact of chronic THC consumption than personality traits, but does not provide a causal relationship. Other factors (e.g. genetic) may also play a role. 2009 S. Karger AG, Basel.
[Organizational climate in management teams and its relationship with health care outcomes].
Peña-Viveros, Raúl; Hernández-Hernández, Dulce María; Vélez-Moreno, Ana María Luz; García-Sandoval, Martha Gabriela; Reyes-Tellez, María Araceli; Ureña-Bogarin, Enrique L
2015-01-01
To identify the relationship between organizational climate of management teams and the performance of health services. A transversal and analytical study was designed. The Organizational Climate Scale (OCS) was utilized and performance was assessed by the achievement indicators through correlation analysis and multiple regression. Thirty four medical benefits services headquarters (JSPM) were measured of the Mexican Social Security Institute. Of 862 participating, 238 (27.6%) evaluated the climate of their organizations with a high level; the maximal score was 56%. Average performance value was 0.79 ± 0.07 (minimal: 0.65; maximal: 0.92). A positive correlation was demonstrated between organizational climate level and performance (r=0.4; p=0.008). The organizational climate of the health services managers (JSPM) is directly related with performance in health care.
Tanpitukpongse, Teerath P.; Mazurowski, Maciej A.; Ikhena, John; Petrella, Jeffrey R.
2016-01-01
Background and Purpose To assess prognostic efficacy of individual versus combined regional volumetrics in two commercially-available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer's disease. Materials and Methods Data was obtained through the Alzheimer's Disease Neuroimaging Initiative. 192 subjects (mean age 74.8 years, 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1WI MRI sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant® and Neuroreader™. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated using a univariable approach employing individual regional brain volumes, as well as two multivariable approaches (multiple regression and random forest), combining multiple volumes. Results On univariable analysis of 11 NeuroQuant® and 11 Neuroreader™ regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69 NeuroQuant®, 0.68 Neuroreader™), and was not significantly different (p > 0.05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63 logistic regression, 0.60 random forest NeuroQuant®; 0.65 logistic regression, 0.62 random forest Neuroreader™). Conclusion Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer's disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in MCI, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker. PMID:28057634
Hołda, Mateusz K; Koziej, Mateusz; Wszołek, Karolina; Pawlik, Wiesław; Krawczyk-Ożóg, Agata; Sorysz, Danuta; Łoboda, Piotr; Kuźma, Katarzyna; Kuniewicz, Marcin; Lelakowski, Jacek; Dudek, Dariusz; Klimek-Piotrowska, Wiesława
2017-10-01
The aim of this study is to provide a morphometric description of the left-sided septal pouch (LSSP), left atrial accessory appendages, and diverticula using cardiac multi-slice computed tomography (MSCT) and to compare results between patient subgroups. Two hundred and ninety four patients (42.9% females) with a mean of 69.4±13.1years of age were investigated using MSCT. The presence of the LSSP, left atrial accessory appendages, and diverticula was evaluated. Multiple logistic regression analysis was performed to check whether the presence of additional left atrial structures is associated with increased risk of atrial fibrillation and cerebrovascular accidents. At least one additional left atrial structure was present in 51.7% of patients. A single LSSP, left atrial diverticulum, and accessory appendage were present in 35.7%, 16.0%, and 4.1% of patients, respectively. After adjusting for other risk factors via multiple logistic regression, patients with LSSP are more likely to have atrial fibrillation (OR=2.00, 95% CI=1.14-3.48, p=0.01). The presence of a LSSP was found to be associated with an increased risk of transient ischemic attack using multiple logistic regression analysis after adjustment for other risk factors (OR=3.88, 95% CI=1.10-13.69, p=0.03). In conclusion LSSPs, accessory appendages, and diverticula are highly prevalent anatomic structures within the left atrium, which could be easily identified by MSCT. The presence of LSSP is associated with increased risk for atrial fibrillation and transient ischemic attack. Copyright © 2017 Elsevier B.V. All rights reserved.
Clinical Decision Support Model to Predict Occlusal Force in Bruxism Patients.
Thanathornwong, Bhornsawan; Suebnukarn, Siriwan
2017-10-01
The aim of this study was to develop a decision support model for the prediction of occlusal force from the size and color of articulating paper markings in bruxism patients. We used the information from the datasets of 30 bruxism patients in which digital measurements of the size and color of articulating paper markings (12-µm Hanel; Coltene/Whaledent GmbH, Langenau, Germany) on canine protected hard stabilization splints were measured in pixels (P) and in red (R), green (G), and blue (B) values using Adobe Photoshop software (Adobe Systems, San Jose, CA, USA). The occlusal force (F) was measured using T-Scan III (Tekscan Inc., South Boston, MA, USA). The multiple regression equation was applied to predict F from the P and RGB. Model evaluation was performed using the datasets from 10 new patients. The patient's occlusal force measured by T-Scan III was used as a 'gold standard' to compare with the occlusal force predicted by the multiple regression model. The results demonstrate that the correlation between the occlusal force and the pixels and RGB of the articulating paper markings was positive (F = 1.62×P + 0.07×R -0.08×G + 0.08×B + 4.74; R 2 = 0.34). There was a high degree of agreement between the occlusal force of the patient measured using T-Scan III and the occlusal force predicted by the model (kappa value = 0.82). The results obtained demonstrate that the multiple regression model can predict the occlusal force using the digital values for the size and color of the articulating paper markings in bruxism patients.
Evaluation of Relationship between Trunk Muscle Endurance and Static Balance in Male Students
Barati, Amirhossein; SafarCherati, Afsaneh; Aghayari, Azar; Azizi, Faeze; Abbasi, Hamed
2013-01-01
Purpose Fatigue of trunk muscle contributes to spinal instability over strenuous and prolonged physical tasks and therefore may lead to injury, however from a performance perspective, relation between endurance efficient core muscles and optimal balance control has not been well-known. The purpose of this study was to examine the relationship of trunk muscle endurance and static balance. Methods Fifty male students inhabitant of Tehran university dormitory (age 23.9±2.4, height 173.0±4.5 weight 70.7±6.3) took part in the study. Trunk muscle endurance was assessed using Sørensen test of trunk extensor endurance, trunk flexor endurance test, side bridge endurance test and static balance was measured using single-limb stance test. A multiple linear regression analysis was applied to test if the trunk muscle endurance measures significantly predicted the static balance. Results There were positive correlations between static balance level and trunk flexor, extensor and lateral endurance measures (Pearson correlation test, r=0.80 and P<0.001; r=0.71 and P<0.001; r=0.84 and P<0.001, respectively). According to multiple regression analysis for variables predicting static balance, the linear combination of trunk muscle endurance measures was significantly related to the static balance (F (3,46) = 66.60, P<0.001). Endurance of trunk flexor, extensor and lateral muscles were significantly associated with the static balance level. The regression model which included these factors had the sample multiple correlation coefficient of 0.902, indicating that approximately 81% of the variance of the static balance is explained by the model. Conclusion There is a significant relationship between trunk muscle endurance and static balance. PMID:24800004
Ohseto, Hisashi; Ishikuro, Mami; Kikuya, Masahiro; Obara, Taku; Igarashi, Yuko; Takahashi, Satomi; Kikuchi, Daisuke; Shigihara, Michiko; Yamanaka, Chizuru; Miyashita, Masako; Mizuno, Satoshi; Nagai, Masato; Matsubara, Hiroko; Sato, Yuki; Metoki, Hirohito; Tachibana, Hirofumi; Maeda-Yamamoto, Mari; Kuriyama, Shinichi
2018-04-01
Metabolic syndrome and the presence of metabolic syndrome components are risk factors for cardiovascular disease (CVD). However, the association between personality traits and metabolic syndrome remains controversial, and few studies have been conducted in East Asian populations. We measured personality traits using the Japanese version of the Eysenck Personality Questionnaire (Revised Short Form) and five metabolic syndrome components-elevated waist circumference, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting glucose-in 1322 participants aged 51.1±12.7years old from Kakegawa city, Japan. Metabolic syndrome score (MS score) was defined as the number of metabolic syndrome components present, and metabolic syndrome as having the MS score of 3 or higher. We performed multiple logistic regression analyses to examine the relationship between personality traits and metabolic syndrome components and multiple regression analyses to examine the relationship between personality traits and MS scores adjusted for age, sex, education, income, smoking status, alcohol use, and family history of CVD and diabetes mellitus. We also examine the relationship between personality traits and metabolic syndrome presence by multiple logistic regression analyses. "Extraversion" scores were higher in those with metabolic syndrome components (elevated waist circumference: P=0.001; elevated triglycerides: P=0.01; elevated blood pressure: P=0.004; elevated fasting glucose: P=0.002). "Extraversion" was associated with the MS score (coefficient=0.12, P=0.0003). No personality trait was significantly associated with the presence of metabolic syndrome. Higher "extraversion" scores were related to higher MS scores, but no personality trait was significantly associated with the presence of metabolic syndrome. Copyright © 2018 Elsevier Inc. All rights reserved.
Malignant testicular tumour incidence and mortality trends
Wojtyła-Buciora, Paulina; Więckowska, Barbara; Krzywinska-Wiewiorowska, Małgorzata; Gromadecka-Sutkiewicz, Małgorzata
2016-01-01
Aim of the study In Poland testicular tumours are the most frequent cancer among men aged 20–44 years. Testicular tumour incidence since the 1980s and 1990s has been diversified geographically, with an increased risk of mortality in Wielkopolska Province, which was highlighted at the turn of the 1980s and 1990s. The aim of the study was the comparative analysis of the tendencies in incidence and death rates due to malignant testicular tumours observed among men in Poland and in Wielkopolska Province. Material and methods Data from the National Cancer Registry were used for calculations. The incidence/mortality rates among men due to malignant testicular cancer as well as the tendencies in incidence/death ratio observed in Poland and Wielkopolska were established based on regression equation. The analysis was deepened by adopting the multiple linear regression model. A p-value < 0.05 was arbitrarily adopted as the criterion of statistical significance, and for multiple comparisons it was modified according to the Bonferroni adjustment to a value of p < 0.0028. Calculations were performed with the use of PQStat v1.4.8 package. Results The incidence of malignant testicular neoplasms observed among men in Poland and in Wielkopolska Province indicated a significant rising tendency. The multiple linear regression model confirmed that the year variable is a strong incidence forecast factor only within the territory of Poland. A corresponding analysis of mortality rates among men in Poland and in Wielkopolska Province did not show any statistically significant correlations. Conclusions Late diagnosis of Polish patients calls for undertaking appropriate educational activities that would facilitate earlier reporting of the patients, thus increasing their chances for recovery. Introducing preventive examinations in the regions of increased risk of testicular tumour may allow earlier diagnosis. PMID:27095941
Clinical Decision Support Model to Predict Occlusal Force in Bruxism Patients
Thanathornwong, Bhornsawan
2017-01-01
Objectives The aim of this study was to develop a decision support model for the prediction of occlusal force from the size and color of articulating paper markings in bruxism patients. Methods We used the information from the datasets of 30 bruxism patients in which digital measurements of the size and color of articulating paper markings (12-µm Hanel; Coltene/Whaledent GmbH, Langenau, Germany) on canine protected hard stabilization splints were measured in pixels (P) and in red (R), green (G), and blue (B) values using Adobe Photoshop software (Adobe Systems, San Jose, CA, USA). The occlusal force (F) was measured using T-Scan III (Tekscan Inc., South Boston, MA, USA). The multiple regression equation was applied to predict F from the P and RGB. Model evaluation was performed using the datasets from 10 new patients. The patient's occlusal force measured by T-Scan III was used as a ‘gold standard’ to compare with the occlusal force predicted by the multiple regression model. Results The results demonstrate that the correlation between the occlusal force and the pixels and RGB of the articulating paper markings was positive (F = 1.62×P + 0.07×R –0.08×G + 0.08×B + 4.74; R2 = 0.34). There was a high degree of agreement between the occlusal force of the patient measured using T-Scan III and the occlusal force predicted by the model (kappa value = 0.82). Conclusions The results obtained demonstrate that the multiple regression model can predict the occlusal force using the digital values for the size and color of the articulating paper markings in bruxism patients. PMID:29181234
Ahmadi, Maryam; Mehrabi, Nahid; Sheikhtaheri, Abbas; Sadeghi, Mojtaba
2017-01-01
Background and aim The picture archiving and communication system (PACS) is a healthcare system technology which manages medical images and integrates equipment through a network. There are some theories about the use and acceptance of technology by people to describe the behavior and attitudes of end users towards information technologies. We investigated the influential factors on users’ acceptance of PACS in the military hospitals of Tehran. Methods In this applied analytical and cross-sectional study, 151 healthcare employees of military hospitals who had experience in using the PACS system were investigated. Participants were selected by census. The following variables were considered: performance expectancy, efforts expectancy, social influence, facilitating conditions and behavioral intention. Data were gathered using a questionnaire. Its validity and reliability were approved by a panel of experts and was piloted with 30 hospital healthcare staff (Cronbach’s alpha =0.91). Spearman correlation coefficient and multiple linear regression analysis were used in analyzing the data. Results Expected performance, efforts expectancy, social impact and facilitating conditions had a significant relationship with behavioral intention. The multiple regression analysis indicated that only performance expectancy can predict the user’s behavioral intentions to use PACS technology. Conclusion Performance and effort expectancies are quite influential in accepting the use of PACS in hospitals. All healthcare personnel should become aware that using such technology is necessary in a hospital. Knowing the influencing factors that affect the acceptance of using new technology can help in improving its use, especially in a healthcare system. This can improve the offered healthcare services’ quality. PMID:29038717
Brown, C. Erwin
1993-01-01
Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.
Liu, Qi; Wu, Youcong; Yuan, Youhua; Bai, Li; Niu, Kun
2011-12-01
To research the relationship between the virulence factors of Saccharomyces albicans (S. albicans) and the random amplified polymorphic DNA (RAPD) bands of them, and establish the regression model by multiple regression analysis. Extracellular phospholipase, secreted proteinase, ability to generate germ tubes and adhere to oral mucosal cells of 92 strains of S. albicans were measured in vitro; RAPD-polymerase chain reaction (RAPD-PCR) was used to get their bands. Multiple regression for virulence factors of S. albicans and RAPD-PCR bands was established. The extracellular phospholipase activity was associated with 4 RAPD bands: 350, 450, 650 and 1 300 bp (P < 0.05); secreted proteinase activity of S. albicans was associated with 2 bands: 350 and 1 200 bp (P < 0.05); the ability of germ tube produce was associated with 2 bands: 400 and 550 bp (P < 0.05). Some RAPD bands will reflect the virulence factors of S. albicans indirectly. These bands would contain some important messages for regulation of S. albicans virulence factors.
Bias due to two-stage residual-outcome regression analysis in genetic association studies.
Demissie, Serkalem; Cupples, L Adrienne
2011-11-01
Association studies of risk factors and complex diseases require careful assessment of potential confounding factors. Two-stage regression analysis, sometimes referred to as residual- or adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is calculated from a regression of the outcome variable on covariates and then the relationship between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the adjusted-outcome on the SNP. In this article, we examine the performance of this two-stage analysis as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP and a covariate are correlated, the two-stage approach results in biased genotypic effect and loss of power. Bias is always toward the null and increases with the squared-correlation between the SNP and the covariate (). For example, for , 0.1, and 0.5, two-stage analysis results in, respectively, 0, 10, and 50% attenuation in the SNP effect. As expected, MLR was always unbiased. Since individual SNPs often show little or no correlation with covariates, a two-stage analysis is expected to perform as well as MLR in many genetic studies; however, it produces considerably different results from MLR and may lead to incorrect conclusions when independent variables are highly correlated. While a useful alternative to MLR under , the two -stage approach has serious limitations. Its use as a simple substitute for MLR should be avoided. © 2011 Wiley Periodicals, Inc.
Motulsky, Harvey J; Brown, Ronald E
2006-01-01
Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives. PMID:16526949
2013-01-01
Background Traditional Chinese eye exercises of acupoints involve acupoint self-massage. These have been advocated as a compulsory measure to reduce ocular fatigue, as well as to retard the development of myopia, among Chinese school children. This study evaluated the impact of these eye exercises among Chinese urban children. Methods 409 children (195 males, 47.7%), aged 11.1 ± 3.2 (range 6–17) years, from the Beijing Myopia Progression Study (BMPS) were recruited. All had completed the eye exercise questionnaire, the convergence insufficiency symptom survey (CISS), and a cycloplegic autorefraction. Among these, 395 (96.6%) performed the eye exercises of acupoints. Multiple logistic regressions for myopia and multiple linear regressions for the CISS score (after adjusting for age, gender, average parental refractive error, and time spent doing near work and outdoor activity) for the different items of the eye exercises questionnaire were performed. Results Only the univariate odds ratio (95% confidence interval) for “seriousness of attitude” towards performing the eye exercises of acupoints (0.51, 0.33-0.78) showed a protective effect towards myopia. However, none of the odds ratios were significant after adjusting for the confounding factors. The univariate and multiple β coefficients for the CISS score were -2.47 (p = 0.002) and -1.65 (p = 0.039), -3.57 (p = 0.002) and -2.35 (p = 0.042), and -2.40 (p = 0.003) and -2.29 (p = 0.004), for attitude, speed of exercise, and acquaintance with acupoints, respectively, which were all significant. Conclusions The traditional Chinese eye exercises of acupoints appeared to have a modest effect on relieving near vision symptoms among Chinese urban children aged 6 to 17 years. However, no remarkable effect on reducing myopia was observed. PMID:24195652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boutilier, Justin J., E-mail: j.boutilier@mail.utoronto.ca; Lee, Taewoo; Craig, Tim
Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and appliedmore » three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR weight prediction methodologies perform comparably to the LR model and can produce clinical quality treatment plans by simultaneously predicting multiple weights that capture trade-offs associated with sparing multiple OARs.« less
Numakura, Kazuyuki; Tsuchiya, Norihiko; Yuasa, Takeshi; Saito, Mitsuru; Obara, Takashi; Tsuruta, Hiroshi; Narita, Shintaro; Horikawa, Yohei; Satoh, Shigeru; Habuchi, Tomonori
2011-10-01
We report a case of Xp11.2 translocation renal cell carcinoma (RCC) whose lung metastases were effectively treated with sunitinib. A 43-year-old woman presenting with upper abdominal pain was diagnosed with a left renal tumor. Laparoscopic left radical nephrectomy was performed. Histopathological examination of the surgical specimen revealed a clear-cell carcinoma of the left kidney. Two years later, multiple lung metastases were detected and the patient was treated daily with 50 mg sunitinib. A computed tomography scan performed after 2 cycles of sunitinib treatment revealed partial regression of these metastases. The partial regression has been maintained for >3 years. In retrospective evaluation of the primary RCC, tumor cells showed strong nuclear staining for transcription factor E3 (TFE3) protein and TFE3 split-fluorescence in-situ hybridization revealed translocation involving the TFE3 gene. These findings strongly support diagnosis of Xp11.2 translocation RCC.
Fasoli, Dijon R
2008-01-01
The purpose of this study was to measure the influence of professional nursing practice (PNP) on global hospital performance (GHP). Evidence links PNP and positive outcomes for patients and nurses, however, little is known about PNP influence on GHP measures used for patient decision-making and hospital management resource allocation decisions. A quantitative study using multiple regression analysis to predict a composite measure of GHP was conducted. Two survey instruments measuring perspectives of the PNP environment were completed by 1815 (31.3%) Registered Nurses (RN) and 28 (100%) Senior Nurse Executives (SNE) at 28 northeastern US hospitals. Secondary data provided organizational attributes. The degree of PNP was consistently reported by RNs and SNEs. When regressed with organizational factors, PNP was not a significant predictor of GHP. Better GHP was associated with lower lengths of stay, lower profitability, less admission growth, and non-health system affiliation. Further research is needed to define a nursing-sensitive GHP measure.
NASA Astrophysics Data System (ADS)
Putri, D. O.; Triatmanto, B.; Setiyadi, S.
2018-04-01
Employee performance can be the supporting factor of company performance. However, employee performance can be affected by several factors. Employees can have optimal performance if they feel safe, have good working environment and have discipline. The purposes of this research are to analyze the effect of occupational health and safety, work environment and discipline on the employee performance in PPIC Thermo section in a consumer goods company and to find the dominant variable which primarily affects employee performance. This research was conducted by taking data from 47 respondents. The data were collected using questionnaire. The techniques in data analysis is multiple linear regression with SPSS software. The result shows that occupational health and safety, work environment and discipline are simultaneously significant to the employee performance. Discipline holds the dominant factor which affects employee performance.
Zheng, Jie; Rodriguez, Santiago; Laurin, Charles; Baird, Denis; Trela-Larsen, Lea; Erzurumluoglu, Mesut A; Zheng, Yi; White, Jon; Giambartolomei, Claudia; Zabaneh, Delilah; Morris, Richard; Kumari, Meena; Casas, Juan P; Hingorani, Aroon D; Evans, David M; Gaunt, Tom R; Day, Ian N M
2017-01-01
Fine mapping is a widely used approach for identifying the causal variant(s) at disease-associated loci. Standard methods (e.g. multiple regression) require individual level genotypes. Recent fine mapping methods using summary-level data require the pairwise correlation coefficients ([Formula: see text]) of the variants. However, haplotypes rather than pairwise [Formula: see text], are the true biological representation of linkage disequilibrium (LD) among multiple loci. In this article, we present an empirical iterative method, HAPlotype Regional Association analysis Program (HAPRAP), that enables fine mapping using summary statistics and haplotype information from an individual-level reference panel. Simulations with individual-level genotypes show that the results of HAPRAP and multiple regression are highly consistent. In simulation with summary-level data, we demonstrate that HAPRAP is less sensitive to poor LD estimates. In a parametric simulation using Genetic Investigation of ANthropometric Traits height data, HAPRAP performs well with a small training sample size (N < 2000) while other methods become suboptimal. Moreover, HAPRAP's performance is not affected substantially by single nucleotide polymorphisms (SNPs) with low minor allele frequencies. We applied the method to existing quantitative trait and binary outcome meta-analyses (human height, QTc interval and gallbladder disease); all previous reported association signals were replicated and two additional variants were independently associated with human height. Due to the growing availability of summary level data, the value of HAPRAP is likely to increase markedly for future analyses (e.g. functional prediction and identification of instruments for Mendelian randomization). The HAPRAP package and documentation are available at http://apps.biocompute.org.uk/haprap/ CONTACT: : jie.zheng@bristol.ac.uk or tom.gaunt@bristol.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
NASA Technical Reports Server (NTRS)
Smith, James A.
1992-01-01
The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI < 1.0) with varying soil reflectance backgrounds is particularly difficult. Standard multiple regression methods applied to canopies within a single homogeneous soil type yield good results but perform unacceptably when applied across soil boundaries, resulting in absolute percentage errors of >1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.
Futia, Gregory L; Schlaepfer, Isabel R; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A
2017-07-01
Detection of circulating tumor cells (CTCs) in a blood sample is limited by the sensitivity and specificity of the biomarker panel used to identify CTCs over other blood cells. In this work, we present Bayesian theory that shows how test sensitivity and specificity set the rarity of cell that a test can detect. We perform our calculation of sensitivity and specificity on our image cytometry biomarker panel by testing on pure disease positive (D + ) populations (MCF7 cells) and pure disease negative populations (D - ) (leukocytes). In this system, we performed multi-channel confocal fluorescence microscopy to image biomarkers of DNA, lipids, CD45, and Cytokeratin. Using custom software, we segmented our confocal images into regions of interest consisting of individual cells and computed the image metrics of total signal, second spatial moment, spatial frequency second moment, and the product of the spatial-spatial frequency moments. We present our analysis of these 16 features. The best performing of the 16 features produced an average separation of three standard deviations between D + and D - and an average detectable rarity of ∼1 in 200. We performed multivariable regression and feature selection to combine multiple features for increased performance and showed an average separation of seven standard deviations between the D + and D - populations making our average detectable rarity of ∼1 in 480. Histograms and receiver operating characteristics (ROC) curves for these features and regressions are presented. We conclude that simple regression analysis holds promise to further improve the separation of rare cells in cytometry applications. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Inverse Association between Air Pressure and Rheumatoid Arthritis Synovitis
Furu, Moritoshi; Nakabo, Shuichiro; Ohmura, Koichiro; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Matsuda, Fumihiko; Ito, Hiromu; Fujii, Takao; Mimori, Tsuneyo
2014-01-01
Rheumatoid arthritis (RA) is a bone destructive autoimmune disease. Many patients with RA recognize fluctuations of their joint synovitis according to changes of air pressure, but the correlations between them have never been addressed in large-scale association studies. To address this point we recruited large-scale assessments of RA activity in a Japanese population, and performed an association analysis. Here, a total of 23,064 assessments of RA activity from 2,131 patients were obtained from the KURAMA (Kyoto University Rheumatoid Arthritis Management Alliance) database. Detailed correlations between air pressure and joint swelling or tenderness were analyzed separately for each of the 326 patients with more than 20 assessments to regulate intra-patient correlations. Association studies were also performed for seven consecutive days to identify the strongest correlations. Standardized multiple linear regression analysis was performed to evaluate independent influences from other meteorological factors. As a result, components of composite measures for RA disease activity revealed suggestive negative associations with air pressure. The 326 patients displayed significant negative mean correlations between air pressure and swellings or the sum of swellings and tenderness (p = 0.00068 and 0.00011, respectively). Among the seven consecutive days, the most significant mean negative correlations were observed for air pressure three days before evaluations of RA synovitis (p = 1.7×10−7, 0.00027, and 8.3×10−8, for swellings, tenderness and the sum of them, respectively). Standardized multiple linear regression analysis revealed these associations were independent from humidity and temperature. Our findings suggest that air pressure is inversely associated with synovitis in patients with RA. PMID:24454853
Monitoring heavy metal Cr in soil based on hyperspectral data using regression analysis
NASA Astrophysics Data System (ADS)
Zhang, Ningyu; Xu, Fuyun; Zhuang, Shidong; He, Changwei
2016-10-01
Heavy metal pollution in soils is one of the most critical problems in the global ecology and environment safety nowadays. Hyperspectral remote sensing and its application is capable of high speed, low cost, less risk and less damage, and provides a good method for detecting heavy metals in soil. This paper proposed a new idea of applying regression analysis of stepwise multiple regression between the spectral data and monitoring the amount of heavy metal Cr by sample points in soil for environmental protection. In the measurement, a FieldSpec HandHeld spectroradiometer is used to collect reflectance spectra of sample points over the wavelength range of 325-1075 nm. Then the spectral data measured by the spectroradiometer is preprocessed to reduced the influence of the external factors, and the preprocessed methods include first-order differential equation, second-order differential equation and continuum removal method. The algorithms of stepwise multiple regression are established accordingly, and the accuracy of each equation is tested. The results showed that the accuracy of first-order differential equation works best, which makes it feasible to predict the content of heavy metal Cr by using stepwise multiple regression.
Forecasting USAF JP-8 Fuel Needs
2009-03-01
versus complex ones. When we consider long -term forecasts, 5-years in this case, multiple regression outperforms ANN modeling within the specified...with more simple and easy-to-implement methods, versus complex ones. When we consider long -term 5-year forecasts, our multiple regression model...effort. The insight and experience was certainly appreciated. Special thanks to my Turkish peers for their continuous support and help during this long
USDA-ARS?s Scientific Manuscript database
A technique of using multiple calibration sets in partial least squares regression (PLS) was proposed to improve the quantitative determination of ammonia from open-path Fourier transform infrared spectra. The spectra were measured near animal farms, and the path-integrated concentration of ammonia...
Brewer, Michael J; Armstrong, J Scott; Parker, Roy D
2013-06-01
The ability to monitor verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), and the progression of cotton, Gossypium hirsutum L., boll responses to feeding and associated cotton boll rot provided opportunity to assess if single in-season measurements had value in evaluating at-harvest damage to bolls and if multiple in-season measurements enhanced their combined use. One in-season verde plant bug density measurement, three in-season plant injury measurements, and two at-harvest damage measurements were taken in 15 cotton fields in South Texas, 2010. Linear regression selected two measurements as potentially useful indicators of at-harvest damage: verde plant bug density (adjusted r2 = 0.68; P = 0.0004) and internal boll injury of the carpel wall (adjusted r2 = 0.72; P = 0.004). Considering use of multiple measurements, a stepwise multiple regression of the four in-season measurements selected a univariate model (verde plant bug density) using a 0.15 selection criterion (adjusted r2 = 0.74; P = 0.0002) and a bivariate model (verde plant bug density-internal boll injury) using a 0.25 selection criterion (adjusted r2 = 0.76; P = 0.0007) as indicators of at-harvest damage. In a validation using cultivar and water regime treatments experiencing low verde plant bug pressure in 2011 and 2012, the bivariate model performed better than models using verde plant bug density or internal boll injury separately. Overall, verde plant bug damaging cotton bolls exemplified the benefits of using multiple in-season measurements in pest monitoring programs, under the challenging situation when at-harvest damage results from a sequence of plant responses initiated by in-season insect feeding.