Sample records for performing computational fluid

  1. Marc Henry de Frahan | NREL

    Science.gov Websites

    Computing Project, Marc develops high-fidelity turbulence models to enhance simulation accuracy and efficient numerical algorithms for future high performance computing hardware architectures. Research Interests High performance computing High order numerical methods for computational fluid dynamics Fluid

  2. Analyses of ACPL thermal/fluid conditioning system

    NASA Technical Reports Server (NTRS)

    Stephen, L. A.; Usher, L. H.

    1976-01-01

    Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.

  3. A High Performance Computing Approach to the Simulation of Fluid Solid Interaction Problems with Rigid and Flexible Components (Open Access Publisher’s Version)

    DTIC Science & Technology

    2014-08-01

    performance computing, smoothed particle hydrodynamics, rigid body dynamics, flexible body dynamics ARMAN PAZOUKI ∗, RADU SERBAN ∗, DAN NEGRUT ∗ A...HIGH PERFORMANCE COMPUTING APPROACH TO THE SIMULATION OF FLUID-SOLID INTERACTION PROBLEMS WITH RIGID AND FLEXIBLE COMPONENTS This work outlines a unified...are implemented to model rigid and flexible multibody dynamics. The two- way coupling of the fluid and solid phases is supported through use of

  4. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    NASA Technical Reports Server (NTRS)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  5. A FRAMEWORK FOR FINE-SCALE COMPUTATIONAL FLUID DYNAMICS AIR QUALITY MODELING AND ANALYSIS

    EPA Science Inventory

    Fine-scale Computational Fluid Dynamics (CFD) simulation of pollutant concentrations within roadway and building microenvironments is feasible using high performance computing. Unlike currently used regulatory air quality models, fine-scale CFD simulations are able to account rig...

  6. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    NASA Technical Reports Server (NTRS)

    Abernathy, J. M.

    1986-01-01

    A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.

  7. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  8. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  9. Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.

    2013-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  10. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    San Andres, Luis

    1996-01-01

    This report describes a thermohydrodynamic analysis and computer programs for the prediction of the static and dynamic force response of fluid film bearings for cryogenic applications. The research performed addressed effectively the most important theoretical and practical issues related to the operation and performance of cryogenic fluid film bearings. Five computer codes have been licensed by the Texas A&M University to NASA centers and contractors and a total of 14 technical papers have been published.

  11. Fluid Flow Investigations within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics

    DOE PAGES

    Piro, M.H.A; Wassermann, F.; Grundmann, S.; ...

    2017-05-23

    The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less

  12. Fluid Flow Investigations within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piro, M.H.A; Wassermann, F.; Grundmann, S.

    The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less

  13. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    NASA Astrophysics Data System (ADS)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  14. MPI implementation of PHOENICS: A general purpose computational fluid dynamics code

    NASA Astrophysics Data System (ADS)

    Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D. B.

    1995-03-01

    PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.

  15. MPI implementation of PHOENICS: A general purpose computational fluid dynamics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simunovic, S.; Zacharia, T.; Baltas, N.

    1995-04-01

    PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. Themore » Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.« less

  16. Aeroelastic Modeling of a Nozzle Startup Transient

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  17. Experimental Testing and Computational Fluid Dynamics Simulation of Maple Seeds and Performance Analysis as a Wind Turbine

    NASA Astrophysics Data System (ADS)

    Holden, Jacob R.

    Descending maple seeds generate lift to slow their fall and remain aloft in a blowing wind; have the wings of these seeds evolved to descend as slowly as possible? A unique energy balance equation, experimental data, and computational fluid dynamics simulations have all been developed to explore this question from a turbomachinery perspective. The computational fluid dynamics in this work is the first to be performed in the relative reference frame. Maple seed performance has been analyzed for the first time based on principles of wind turbine analysis. Application of the Betz Limit and one-dimensional momentum theory allowed for empirical and computational power and thrust coefficients to be computed for maple seeds. It has been determined that the investigated species of maple seeds perform near the Betz limit for power conversion and thrust coefficient. The power coefficient for a maple seed is found to be in the range of 48-54% and the thrust coefficient in the range of 66-84%. From Betz theory, the stream tube area expansion of the maple seed is necessary for power extraction. Further investigation of computational solutions and mechanical analysis find three key reasons for high maple seed performance. First, the area expansion is driven by maple seed lift generation changing the fluid momentum and requiring area to increase. Second, radial flow along the seed surface is promoted by a sustained leading edge vortex that centrifuges low momentum fluid outward. Finally, the area expansion is also driven by the spanwise area variation of the maple seed imparting a radial force on the flow. These mechanisms result in a highly effective device for the purpose of seed dispersal. However, the maple seed also provides insight into fundamental questions about how turbines can most effectively change the momentum of moving fluids in order to extract useful power or dissipate kinetic energy.

  18. The coupling of fluids, dynamics, and controls on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  19. Thrust Augmentation Study of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft

    DTIC Science & Technology

    2012-09-01

    configuration by varying the gap between the CFFs. Computational fluid simulations of the dual CFF configuration was performed using ANSYS CFX to find the...Computational fluid simulations of the dual CFF configuration was performed using ANSYS CFX to find the thrust generated as well as the optimal operating point...RECOMMENDATIONS ...............................................................................43 APPENDIX A. ANSYS CFX SETTINGS FOR DUAL CFF (8,000

  20. Pressure Distribution and Performance Impacts of Aerospike Nozzles on Rotating Detonation Engines

    DTIC Science & Technology

    2017-06-01

    design methodology at both on- and off-design conditions anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid...operation. Therefore, the nozzle contour was designed using a traditional, steady-state design methodology at both on- and off-design conditions...anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid dynamics (CFD) simulations were performed on various nozzle

  1. High-Performance Java Codes for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  2. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  3. Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel

    NASA Astrophysics Data System (ADS)

    Dewangan, Satish Kumar

    2018-05-01

    Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.

  4. A Novel Shape Parameterization Approach

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.

  5. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  6. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  7. Parallel Three-Dimensional Computation of Fluid Dynamics and Fluid-Structure Interactions of Ram-Air Parachutes

    NASA Technical Reports Server (NTRS)

    Tezduyar, Tayfun E.

    1998-01-01

    This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.

  8. Multiphysics Thrust Chamber Modeling for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Cheng, Gary; Chen, Yen-Sen

    2006-01-01

    The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation. A two-pronged approach is employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of heat transfer on thrust performance. Preliminary results on both aspects are presented.

  9. Computational fluid dynamics characterization of a novel mixed cell raceway design

    USDA-ARS?s Scientific Manuscript database

    Computational fluid dynamics (CFD) analysis was performed on a new type of mixed cell raceway (MCR) that incorporates longitudinal plug flow using inlet and outlet weirs for the primary fraction of the total flow. As opposed to regular MCR wherein vortices are entirely characterized by the boundary ...

  10. Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD)

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Shafik, Ramel

    2013-06-01

    The car disk brake design is improved with two different blade designs compared to the baseline blade design. The two designs were simulated in Computational fluid dynamics (CFD) to obtain heat transfer properties such as Nusselt number and Heat transfer coefficient. The heat transfer property is compared against the baseline design. The improved shape has the highest heat transfer performance. The curved design is inferior to baseline design in heat transfer performance.

  11. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less

  12. Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Farmer, Richard

    2003-01-01

    The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.

  13. Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors

    NASA Astrophysics Data System (ADS)

    Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.

    2008-05-01

    This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.

  14. Problems Related to Parallelization of CFD Algorithms on GPU, Multi-GPU and Hybrid Architectures

    NASA Astrophysics Data System (ADS)

    Biazewicz, Marek; Kurowski, Krzysztof; Ludwiczak, Bogdan; Napieraia, Krystyna

    2010-09-01

    Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics, which uses numerical methods and algorithms to solve and analyze fluid flows. CFD is used in various domains, such as oil and gas reservoir uncertainty analysis, aerodynamic body shapes optimization (e.g. planes, cars, ships, sport helmets, skis), natural phenomena analysis, numerical simulation for weather forecasting or realistic visualizations. CFD problem is very complex and needs a lot of computational power to obtain the results in a reasonable time. We have implemented a parallel application for two-dimensional CFD simulation with a free surface approximation (MAC method) using new hardware architectures, in particular multi-GPU and hybrid computing environments. For this purpose we decided to use NVIDIA graphic cards with CUDA environment due to its simplicity of programming and good computations performance. We used finite difference discretization of Navier-Stokes equations, where fluid is propagated over an Eulerian Grid. In this model, the behavior of the fluid inside the cell depends only on the properties of local, surrounding cells, therefore it is well suited for the GPU-based architecture. In this paper we demonstrate how to use efficiently the computing power of GPUs for CFD. Additionally, we present some best practices to help users analyze and improve the performance of CFD applications executed on GPU. Finally, we discuss various challenges around the multi-GPU implementation on the example of matrix multiplication.

  15. Parallel aeroelastic computations for wing and wing-body configurations

    NASA Technical Reports Server (NTRS)

    Byun, Chansup

    1994-01-01

    The objective of this research is to develop computationally efficient methods for solving fluid-structural interaction problems by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures on parallel computers. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.

  16. Three-dimensional Computational Fluid Dynamics Investigation of a Spinning Helicopter Slung Load

    NASA Technical Reports Server (NTRS)

    Theorn, J. N.; Duque, E. P. N.; Cicolani, L.; Halsey, R.

    2005-01-01

    After performing steady-state Computational Fluid Dynamics (CFD) calculations using OVERFLOW to validate the CFD method against static wind-tunnel data of a box-shaped cargo container, the same setup was used to investigate unsteady flow with a moving body. Results were compared to flight test data previously collected in which the container is spinning.

  17. EVALUATION OF VENTILATION PERFORMANCE FOR INDOOR SPACE

    EPA Science Inventory

    The paper discusses a personal-computer-based application of computational fluid dynamics that can be used to determine the turbulent flow field and time-dependent/steady-state contaminant concentration distributions within isothermal indoor space. (NOTE: Ventilation performance ...

  18. CFD - Mature Technology?

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  19. Inlet Development for a Rocket Based Combined Cycle, Single Stage to Orbit Vehicle Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.

    1999-01-01

    Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.

  20. Transient thermal analysis of fluid systems

    NASA Technical Reports Server (NTRS)

    Chandler, G. D.; Trust, R. D.

    1977-01-01

    Computer program performs transient thermal analysis of any 2-node to 200-node-thermal network, which transports heat by fluid flow convection. Program can be modified to add conduction along tubes and radiation.

  1. Euler Flow Computations on Non-Matching Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Gumaste, Udayan

    1999-01-01

    Advanced fluid solvers to predict aerodynamic performance-coupled treatment of multiple fields are described. The interaction between the fluid and structural components in the bladed regions of the engine is investigated with respect to known blade failures caused by either flutter or forced vibrations. Methods are developed to describe aeroelastic phenomena for internal flows in turbomachinery by accounting for the increased geometric complexity, mutual interaction between adjacent structural components and presence of thermal and geometric loading. The computer code developed solves the full three dimensional aeroelastic problem of-stage. The results obtained show that flow computations can be performed on non-matching finite-volume unstructured meshes with second order spatial accuracy.

  2. Computational Modeling of Space Physiology for Informing Spaceflight Countermeasure Design and Predictions of Efficacy

    NASA Technical Reports Server (NTRS)

    Lewandowski, B. E.; DeWitt, J. K.; Gallo, C. A.; Gilkey, K. M.; Godfrey, A. P.; Humphreys, B. T.; Jagodnik, K. M.; Kassemi, M.; Myers, J. G.; Nelson, E. S.; hide

    2017-01-01

    MOTIVATION: Spaceflight countermeasures mitigate the harmful effects of the space environment on astronaut health and performance. Exercise has historically been used as a countermeasure to physical deconditioning, and additional countermeasures including lower body negative pressure, blood flow occlusion and artificial gravity are being researched as countermeasures to spaceflight-induced fluid shifts. The NASA Digital Astronaut Project uses computational models of physiological systems to inform countermeasure design and to predict countermeasure efficacy.OVERVIEW: Computational modeling supports the development of the exercise devices that will be flown on NASAs new exploration crew vehicles. Biomechanical modeling is used to inform design requirements to ensure that exercises can be properly performed within the volume allocated for exercise and to determine whether the limited mass, volume and power requirements of the devices will affect biomechanical outcomes. Models of muscle atrophy and bone remodeling can predict device efficacy for protecting musculoskeletal health during long-duration missions. A lumped-parameter whole-body model of the fluids within the body, which includes the blood within the cardiovascular system, the cerebral spinal fluid, interstitial fluid and lymphatic system fluid, estimates compartmental changes in pressure and volume due to gravitational changes. These models simulate fluid shift countermeasure effects and predict the associated changes in tissue strain in areas of physiological interest to aid in predicting countermeasure effectiveness. SIGNIFICANCE: Development and testing of spaceflight countermeasure prototypes are resource-intensive efforts. Computational modeling can supplement this process by performing simulations that reduce the amount of necessary experimental testing. Outcomes of the simulations are often important for the definition of design requirements and the identification of factors essential in ensuring countermeasure efficacy.

  3. Development of a cryogenic mixed fluid J-T cooling computer code, 'JTMIX'

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1991-01-01

    An initial study was performed for analyzing and predicting the temperatures and cooling capacities when mixtures of fluids are used in Joule-Thomson coolers and in heat pipes. A computer code, JTMIX, was developed for mixed gas J-T analysis for any fluid combination of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with the NIST computer code, DDMIX, it has accurately predicted order-of-magnitude increases in J-T cooling capacities when various hydrocarbons are added to nitrogen, and it predicts nitrogen normal boiling point depressions to as low as 60 K when neon is added.

  4. High Order Semi-Lagrangian Advection Scheme

    NASA Astrophysics Data System (ADS)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  5. Comparison of two methods to determine fan performance curves using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Onma, Patinya; Chantrasmi, Tonkid

    2018-01-01

    This work investigates a systematic numerical approach that employs Computational Fluid Dynamics (CFD) to obtain performance curves of a backward-curved centrifugal fan. Generating the performance curves requires a number of three-dimensional simulations with varying system loads at a fixed rotational speed. Two methods were used and their results compared to experimental data. The first method incrementally changes the mass flow late through the inlet boundary condition while the second method utilizes a series of meshes representing the physical damper blade at various angles. The generated performance curves from both methods are compared with an experiment setup in accordance with the AMCA fan performance testing standard.

  6. Specialized computer architectures for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  7. Computational fluid dynamics research

    NASA Technical Reports Server (NTRS)

    Chandra, Suresh; Jones, Kenneth; Hassan, Hassan; Mcrae, David Scott

    1992-01-01

    The focus of research in the computational fluid dynamics (CFD) area is two fold: (1) to develop new approaches for turbulence modeling so that high speed compressible flows can be studied for applications to entry and re-entry flows; and (2) to perform research to improve CFD algorithm accuracy and efficiency for high speed flows. Research activities, faculty and student participation, publications, and financial information are outlined.

  8. Optimising the Parallelisation of OpenFOAM Simulations

    DTIC Science & Technology

    2014-06-01

    UNCLASSIFIED UNCLASSIFIED Optimising the Parallelisation of OpenFOAM Simulations Shannon Keough Maritime Division Defence...Science and Technology Organisation DSTO-TR-2987 ABSTRACT The OpenFOAM computational fluid dynamics toolbox allows parallel computation of...performance of a given high performance computing cluster with several OpenFOAM cases, running using a combination of MPI libraries and corresponding MPI

  9. A discrete element model for the influence of surfactants on sedimentation characteristics of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Son, Kwon Joong

    2018-02-01

    Hindering particle agglomeration and re-dispersion processes, gravitational sedimentation of suspended particles in magnetorheological (MR) fluids causes inferior performance and controllability of MR fluids in response to a user-specified magnetic field. Thus, suspension stability is one of the principal factors to be considered in synthesizing MR fluids. However, only a few computational studies have been reported so far on the sedimentation characteristics of suspended particles under gravity. In this paper, the settling dynamics of paramagnetic particles suspended in MR fluids was investigated via discrete element method (DEM) simulations. This work focuses particularly on developing accurate fluid-particle and particle-particle interaction models which can account for the influence of stabilizing surfactants on the MR fluid sedimentation. Effect of the stabilizing surfactants on interparticle interactions was incorporated into the derivation of a reliable contact-impact model for DEM computation. Also, the influence of the stabilizing additives on fluid-particle interactions was considered by incorporating Stokes drag with shape and wall correction factors into DEM formulation. The results of simulations performed for model validation purposes showed a good agreement with the published sedimentation measurement data in terms of an initial sedimentation velocity and a final sedimentation ratio.

  10. Parallel computation of three-dimensional aeroelastic fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mani

    This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.

  11. Data Point Averaging for Computational Fluid Dynamics Data

    NASA Technical Reports Server (NTRS)

    Norman, Jr., David (Inventor)

    2016-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  12. Data Point Averaging for Computational Fluid Dynamics Data

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  13. Applied Computational Fluid Dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  14. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  15. Multiphysics Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2006-01-01

    The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics methodology. Formulations for heat transfer in solids and porous media were implemented and anchored. A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of hydrogen dissociation and recombination on heat transfer and thrust performance. The formulations and preliminary results on both aspects are presented.

  16. Computational Fluid Dynamics Simulation Study of Active Power Control in Wind Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Aho, Jake; Gebraad, Pieter

    2016-08-01

    This paper presents an analysis performed on a wind plant's ability to provide active power control services using a high-fidelity computational fluid dynamics-based wind plant simulator. This approach allows examination of the impact on wind turbine wake interactions within a wind plant on performance of the wind plant controller. The paper investigates several control methods for improving performance in waked conditions. One method uses wind plant wake controls, an active field of research in which wind turbine control systems are coordinated to account for their wakes, to improve the overall performance. Results demonstrate the challenge of providing active power controlmore » in waked conditions but also the potential methods for improving this performance.« less

  17. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  18. Using stroboscopic flow imaging to validate large-scale computational fluid dynamics simulations

    NASA Astrophysics Data System (ADS)

    Laurence, Ted A.; Ly, Sonny; Fong, Erika; Shusteff, Maxim; Randles, Amanda; Gounley, John; Draeger, Erik

    2017-02-01

    The utility and accuracy of computational modeling often requires direct validation against experimental measurements. The work presented here is motivated by taking a combined experimental and computational approach to determine the ability of large-scale computational fluid dynamics (CFD) simulations to understand and predict the dynamics of circulating tumor cells in clinically relevant environments. We use stroboscopic light sheet fluorescence imaging to track the paths and measure the velocities of fluorescent microspheres throughout a human aorta model. Performed over complex physiologicallyrealistic 3D geometries, large data sets are acquired with microscopic resolution over macroscopic distances.

  19. Inertance Tube Modeling and the Effects of Temperature

    DTIC Science & Technology

    2010-01-01

    fluid dynamics. In one application in multistage cryocoolers , the performance of inertance tubes at the cryogenic temperatures is of interest. One... cryocoolers , the performance of inertance tubes at the cryogenic temperatures is of interest. One purpose of this paper is to understand how...acoustic power. KEYWORDS: Inertance tube, cryocoolers , pulse tube refrigerators, oscillating flow, computational fluid dynamics INTRODUCTION Pulse

  20. Thermal Protection System Cavity Heating for Simplified and Actual Geometries Using Computational Fluid Dynamics Simulations with Unstructured Grids

    NASA Technical Reports Server (NTRS)

    McCloud, Peter L.

    2010-01-01

    Thermal Protection System (TPS) Cavity Heating is predicted using Computational Fluid Dynamics (CFD) on unstructured grids for both simplified cavities and actual cavity geometries. Validation was performed using comparisons to wind tunnel experimental results and CFD predictions using structured grids. Full-scale predictions were made for simplified and actual geometry configurations on the Space Shuttle Orbiter in a mission support timeframe.

  1. Development of an Efficient CFD Model for Nuclear Thermal Thrust Chamber Assembly Design

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed thermo-fluid environments and global characteristics of the internal ballistics for a hypothetical solid-core nuclear thermal thrust chamber assembly (NTTCA). Several numerical and multi-physics thermo-fluid models, such as real fluid, chemically reacting, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver as the underlying computational methodology. The numerical simulations of detailed thermo-fluid environment of a single flow element provide a mechanism to estimate the thermal stress and possible occurrence of the mid-section corrosion of the solid core. In addition, the numerical results of the detailed simulation were employed to fine tune the porosity model mimic the pressure drop and thermal load of the coolant flow through a single flow element. The use of the tuned porosity model enables an efficient simulation of the entire NTTCA system, and evaluating its performance during the design cycle.

  2. A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows

    NASA Astrophysics Data System (ADS)

    Lei, Xin; Li, Jiequan

    2018-04-01

    This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.

  3. Comparison of Computational Results with a Low-g, Nitrogen Slosh and Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Stewart, Mark; Moder, Jeff

    2015-01-01

    The proposed paper will compare a fluid/thermal simulation, in FLUENT, with a low-g, nitrogen slosh experiment. The French Space Agency, CNES, performed cryogenic nitrogen experiments in several zero gravity aircraft campaigns. The computational results have been compared with high-speed photographic data, pressure data, and temperature data from sensors on the axis of the cylindrically shaped tank. The comparison between these experimental and computational results is generally favorable: the initial temperature stratification is in good agreement, and the two-phase fluid motion is qualitatively captured.

  4. CFD comparison with centrifugal compressor measurements on a wide operating range

    NASA Astrophysics Data System (ADS)

    Le Sausse, P.; Fabrie, P.; Arnou, D.; Clunet, F.

    2013-04-01

    Centrifugal compressors are widely used in industrial applications thanks to their high efficiency. They are able to provide a wide operating range before reaching the flow barrier or surge limits. Performances and range are described by compressor maps obtained experimentally. After a description of performance test rig, this article compares measured centrifugal compressor performances with computational fluid dynamics results. These computations are performed at steady conditions with R134a refrigerant as fluid. Navier-Stokes equations, coupled with k-ɛ turbulence model, are solved by the commercial software ANSYS-CFX by means of volume finite method. Input conditions are varied in order to calculate several speed lines. Theoretical isentropic efficiency and theoretical surge line are finally compared to experimental data.

  5. Multiphase, multi-electrode Joule heat computations for glass melter and in situ vitrification simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowery, P.S.; Lessor, D.L.

    Waste glass melter and in situ vitrification (ISV) processes represent the combination of electrical thermal, and fluid flow phenomena to produce a stable waste-from product. Computational modeling of the thermal and fluid flow aspects of these processes provides a useful tool for assessing the potential performance of proposed system designs. These computations can be performed at a fraction of the cost of experiment. Consequently, computational modeling of vitrification systems can also provide and economical means for assessing the suitability of a proposed process application. The computational model described in this paper employs finite difference representations of the basic continuum conservationmore » laws governing the thermal, fluid flow, and electrical aspects of the vitrification process -- i.e., conservation of mass, momentum, energy, and electrical charge. The resulting code is a member of the TEMPEST family of codes developed at the Pacific Northwest Laboratory (operated by Battelle for the US Department of Energy). This paper provides an overview of the numerical approach employed in TEMPEST. In addition, results from several TEMPEST simulations of sample waste glass melter and ISV processes are provided to illustrate the insights to be gained from computational modeling of these processes. 3 refs., 13 figs.« less

  6. A heterogeneous computing environment for simulating astrophysical fluid flows

    NASA Technical Reports Server (NTRS)

    Cazes, J.

    1994-01-01

    In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.

  7. Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)

    2000-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.

  8. Computing Thermal Effects of Cavitation in Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet; Dash, Sanford M.

    2005-01-01

    A computer program implements a numerical model of thermal effects of cavitation in cryogenic fluids. The model and program were developed for use in designing and predicting the performances of turbopumps for cryogenic fluids. Prior numerical models used for this purpose do not account for either the variability of properties of cryogenic fluids or the thermal effects (especially, evaporative cooling) involved in cavitation. It is important to account for both because in a cryogenic fluid, the thermal effects of cavitation are substantial, and the cavitation characteristics are altered by coupling between the variable fluid properties and the phase changes involved in cavitation. The present model accounts for both thermal effects and variability of properties by incorporating a generalized representation of the properties of cryogenic fluids into a generalized compressible-fluid formulation for a cavitating pump. The model has been extensively validated for liquid nitrogen and liquid hydrogen. Using the available data on the properties of these fluids, the model has been shown to predict accurate temperature-depression values.

  9. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs on a Windows 95/NT personal computer. The program, help files and examples are licensed by Texas A&M University Technology License Office. The study of the static and dynamic performance of two hydrostatic/hydrodynamic bearings demonstrates the importance of centrifugal and advection fluid inertia effects for operation at high rotational speeds. The first example considers a conceptual hydrostatic thrust bearing for an advanced liquid hydrogen turbopump operating at 170,000 rpm. The large axial stiffness and damping coefficients of the bearing should provide accurate control and axial positioning of the turbopump and also allow for unshrouded impellers, therefore increasing the overall pump efficiency. The second bearing uses a refrigerant R134a, and its application in oil-free air conditioning compressors is of great technological importance and commercial value. The computed predictions reveal that the LH2 bearing load capacity and flow rate increase with the recess pressure (i.e. increasing orifice diameters). The bearing axial stiffness has a maximum for a recess pressure rati of approx. 0.55. while the axial damping coefficient decreases as the recess pressure ratio increases. The computer results from three flow models are compared. These models are a) inertialess, b) fluid inertia at recess edges only, and c) full fluid inertia at both recess edges and film lands. The full inertia model shows the lowest flow rates, axial load capacity and stiffness coefficient but on the other hand renders the largest damping coefficients and inertia coefficients. The most important findings are related to the reduction of the outflow through the inner radius and the appearance of subambient pressures. The performance of the refrigerant hybrid thrust bearing is evaluated at two operating speeds and pressure drops. The computed results are presented in dimensionless form to evidence consistent trends in the bearing performance characteristics. As the applied axial load increases, the bearing film thickness and flow rate decrease while the recess pressure increases. The axial stiffness coefficient shows a maximum for a certain intermediate load while the damping coefficient steadily increases. The computed results evidence the paramount of centrifugal fluid inertia at low recess pressures (i.e. low loads), and where there is actually an inflow through the bearing inner diameter, accompanied by subambient pressures just downstream of the bearing recess edge. These results are solely due to centrifugal fluid inertia and advection transport effects. Recommendations include the extension of the computer program to handle flexure pivot tilting pad hybrid bearings and the ability to calculate moment coefficients for shaft angular misalignments.

  10. Dynamic Mesh CFD Simulations of Orion Parachute Pendulum Motion During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Halstrom, Logan D.; Schwing, Alan M.; Robinson, Stephen K.

    2016-01-01

    This paper demonstrates the usage of computational fluid dynamics to study the effects of pendulum motion dynamics of the NASAs Orion Multi-Purpose Crew Vehicle parachute system on the stability of the vehicles atmospheric entry and decent. Significant computational fluid dynamics testing has already been performed at NASAs Johnson Space Center, but this study sought to investigate the effect of bulk motion of the parachute, such as pitching, on the induced aerodynamic forces. Simulations were performed with a moving grid geometry oscillating according to the parameters observed in flight tests. As with the previous simulations, OVERFLOW computational fluid dynamics tool is used with the assumption of rigid, non-permeable geometry. Comparison to parachute wind tunnel tests is included for a preliminary validation of the dynamic mesh model. Results show qualitative differences in the flow fields of the static and dynamic simulations and quantitative differences in the induced aerodynamic forces, suggesting that dynamic mesh modeling of the parachute pendulum motion may uncover additional dynamic effects.

  11. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    PubMed

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. On the rational design of compressible flow ejectors

    NASA Technical Reports Server (NTRS)

    Ortwerth, P. J.

    1979-01-01

    A fluid mechanics review of chemical laser ejectors is presented. The characteristics of ejectors with single and multiple driver nozzles are discussed. Methods to compute an optimized performance map in which secondary Mach number and performance are computed versus mass ratio, to compute the flow distortion at each optimized condition, and to determine the thrust area for the design point to match diffuser impedence are examined.

  13. Experimental and computational fluid dynamics studies of mixing of complex oral health products

    NASA Astrophysics Data System (ADS)

    Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team

    2017-11-01

    Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).

  14. A computational fluid dynamics simulation framework for ventricular catheter design optimization.

    PubMed

    Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A

    2017-11-10

    OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using the standard catheter hole configuration as a baseline. While the standard ventricular catheter design featuring uniform inlet hole diameters and hole spacing has a standard deviation of 14.27% for the inlet flow rates, the optimized design has a standard deviation of 0.30%. CONCLUSIONS This customizable framework, paired with high-performance computing, provides a rapid method of design testing to solve complex flow problems. While a relatively simplified ventricular catheter model was used to demonstrate the framework, the computational approach is applicable to any baseline catheter model, and it is easily adapted to optimize catheters for the unique needs of different patients as well as for other fluid-based medical devices.

  15. High-performance computational fluid dynamics: a custom-code approach

    NASA Astrophysics Data System (ADS)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  16. The development and application of CFD technology in mechanical engineering

    NASA Astrophysics Data System (ADS)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  17. TAP 2: A finite element program for thermal analysis of convectively cooled structures

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1980-01-01

    A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.

  18. Light-cone reduction vs. TsT transformations: a fluid dynamics perspective

    NASA Astrophysics Data System (ADS)

    Dutta, Suvankar; Krishna, Hare

    2018-05-01

    We compute constitutive relations for a charged (2+1) dimensional Schrödinger fluid up to first order in derivative expansion, using holographic techniques. Starting with a locally boosted, asymptotically AdS, 4 + 1 dimensional charged black brane geometry, we uplift that to ten dimensions and perform TsT transformations to obtain an effective five dimensional local black brane solution with asymptotically Schrödinger isometries. By suitably implementing the holographic techniques, we compute the constitutive relations for the effective fluid living on the boundary of this space-time and extract first order transport coefficients from these relations. Schrödinger fluid can also be obtained by reducing a charged relativistic conformal fluid over light-cone. It turns out that both the approaches result the same system at the end. Fluid obtained by light-cone reduction satisfies a restricted class of thermodynamics. Here, we see that the charged fluid obtained holographically also belongs to the same restricted class.

  19. Computational aeroelasticity using a pressure-based solver

    NASA Astrophysics Data System (ADS)

    Kamakoti, Ramji

    A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.

  20. Applications of CFD and visualization techniques

    NASA Technical Reports Server (NTRS)

    Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.

    1992-01-01

    In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.

  1. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  2. Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2017-02-01

    In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.

  3. 3D Parallel Multigrid Methods for Real-Time Fluid Simulation

    NASA Astrophysics Data System (ADS)

    Wan, Feifei; Yin, Yong; Zhang, Suiyu

    2018-03-01

    The multigrid method is widely used in fluid simulation because of its strong convergence. In addition to operating accuracy, operational efficiency is also an important factor to consider in order to enable real-time fluid simulation in computer graphics. For this problem, we compared the performance of the Algebraic Multigrid and the Geometric Multigrid in the V-Cycle and Full-Cycle schemes respectively, and analyze the convergence and speed of different methods. All the calculations are done on the parallel computing of GPU in this paper. Finally, we experiment with the 3D-grid for each scale, and give the exact experimental results.

  4. Analysis of Flowfields over Four-Engine DC-X Rockets

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Cornelison, Joni

    1996-01-01

    The objective of this study is to validate a computational methodology for the aerodynamic performance of an advanced conical launch vehicle configuration. The computational methodology is based on a three-dimensional, viscous flow, pressure-based computational fluid dynamics formulation. Both wind-tunnel and ascent flight-test data are used for validation. Emphasis is placed on multiple-engine power-on effects. Computational characterization of the base drag in the critical subsonic regime is the focus of the validation effort; until recently, almost no multiple-engine data existed for a conical launch vehicle configuration. Parametric studies using high-order difference schemes are performed for the cold-flow tests, whereas grid studies are conducted for the flight tests. The computed vehicle axial force coefficients, forebody, aftbody, and base surface pressures compare favorably with those of tests. The results demonstrate that with adequate grid density and proper distribution, a high-order difference scheme, finite rate afterburning kinetics to model the plume chemistry, and a suitable turbulence model to describe separated flows, plume/air mixing, and boundary layers, computational fluid dynamics is a tool that can be used to predict the low-speed aerodynamic performance for rocket design and operations.

  5. A Fluid Structure Algorithm with Lagrange Multipliers to Model Free Swimming

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Dilek, Ezgi

    2017-11-01

    A new monolithic approach is prosed to solve the fluid-structure interaction (FSI) problem with Lagrange multipliers in order to model free swimming/flying. In the present approach, the fluid domain is modeled by the incompressible Navier-Stokes equations and discretized using an Arbitrary Lagrangian-Eulerian (ALE) formulation based on the stable side-centered unstructured finite volume method. The solid domain is modeled by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. In order to impose the body motion/deformation, the distance between the constraint pair nodes is imposed using the Lagrange multipliers, which is independent from the frame of reference. The resulting algebraic linear equations are solved in a fully coupled manner using a dual approach (null space method). The present numerical algorithm is initially validated for the classical FSI benchmark problems and then applied to the free swimming of three linked ellipses. The authors are grateful for the use of the computing resources provided by the National Center for High Performance Computing (UYBHM) under Grant Number 10752009 and the computing facilities at TUBITAK-ULAKBIM, High Performance and Grid Computing Center.

  6. Using Computational and Mechanical Models to Study Animal Locomotion

    PubMed Central

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  7. Gigaflop performance on a CRAY-2: Multitasking a computational fluid dynamics application

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Overman, Andrea L.; Lambiotte, Jules J.; Streett, Craig L.

    1991-01-01

    The methodology is described for converting a large, long-running applications code that executed on a single processor of a CRAY-2 supercomputer to a version that executed efficiently on multiple processors. Although the conversion of every application is different, a discussion of the types of modification used to achieve gigaflop performance is included to assist others in the parallelization of applications for CRAY computers, especially those that were developed for other computers. An existing application, from the discipline of computational fluid dynamics, that had utilized over 2000 hrs of CPU time on CRAY-2 during the previous year was chosen as a test case to study the effectiveness of multitasking on a CRAY-2. The nature of dominant calculations within the application indicated that a sustained computational rate of 1 billion floating-point operations per second, or 1 gigaflop, might be achieved. The code was first analyzed and modified for optimal performance on a single processor in a batch environment. After optimal performance on a single CPU was achieved, the code was modified to use multiple processors in a dedicated environment. The results of these two efforts were merged into a single code that had a sustained computational rate of over 1 gigaflop on a CRAY-2. Timings and analysis of performance are given for both single- and multiple-processor runs.

  8. Scaling effects in spiral capsule robots.

    PubMed

    Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan

    2017-04-01

    Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2  m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.

  9. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    NASA Technical Reports Server (NTRS)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  10. GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA

    NASA Astrophysics Data System (ADS)

    Ren, Qinlong

    Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1,000 US dollars. The release of NVIDIA's CUDA architecture which includes both hardware and programming environment in 2007 makes GPU computing attractive. Due to its highly parallel nature, lattice Boltzmann method is successfully ported into GPU with a performance benefit during the recent years. In the current work, LBM CUDA code is developed for different fluid flow and heat transfer problems. In this dissertation, lattice Boltzmann method and immersed boundary method are used to study natural convection in an enclosure with an array of conduting obstacles, double-diffusive convection in a vertical cavity with Soret and Dufour effects, PCM melting process in a latent heat thermal energy storage system with internal fins, mixed convection in a lid-driven cavity with a sinusoidal cylinder, and AC electrothermal pumping in microfluidic systems on a CUDA computational platform. It is demonstrated that LBM is an efficient method to simulate complex heat transfer problems using GPU on CUDA.

  11. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  12. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  13. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.

    1994-01-01

    This research program deals with the application of high-performance computing methods for the analysis of complete jet engines. We have entitled this program by applying the two dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition, and solution capabilities were successfully tested. We then focused attention on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion that results from these structural displacements. This is treated by a new arbitrary Lagrangian-Eulerian (ALE) technique that models the fluid mesh motion as that of a fictitious mass-spring network. New partitioned analysis procedures to treat this coupled three-component problem are developed. These procedures involved delayed corrections and subcycling. Preliminary results on the stability, accuracy, and MPP computational efficiency are reported.

  14. Internal Flow

    NASA Astrophysics Data System (ADS)

    Greitzer, E. M.; Tan, C. S.; Graf, M. B.

    2004-06-01

    Focusing on phenomena important in implementing the performance of a broad range of fluid devices, this work describes the behavior of internal flows encountered in propulsion systems, fluid machinery (compressors, turbines, and pumps) and ducts (diffusers, nozzles and combustion chambers). The book equips students and practicing engineers with a range of new analytical tools. These tools offer enhanced interpretation and application of both experimental measurements and the computational procedures that characterize modern fluids engineering.

  15. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  16. Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment

    NASA Technical Reports Server (NTRS)

    Wei, H.; Shang, H. M.; Chen, Y. S.

    2001-01-01

    The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.

  17. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.

  18. Flow visualization of CFD using graphics workstations

    NASA Technical Reports Server (NTRS)

    Lasinski, Thomas; Buning, Pieter; Choi, Diana; Rogers, Stuart; Bancroft, Gordon

    1987-01-01

    High performance graphics workstations are used to visualize the fluid flow dynamics obtained from supercomputer solutions of computational fluid dynamic programs. The visualizations can be done independently on the workstation or while the workstation is connected to the supercomputer in a distributed computing mode. In the distributed mode, the supercomputer interactively performs the computationally intensive graphics rendering tasks while the workstation performs the viewing tasks. A major advantage of the workstations is that the viewers can interactively change their viewing position while watching the dynamics of the flow fields. An overview of the computer hardware and software required to create these displays is presented. For complex scenes the workstation cannot create the displays fast enough for good motion analysis. For these cases, the animation sequences are recorded on video tape or 16 mm film a frame at a time and played back at the desired speed. The additional software and hardware required to create these video tapes or 16 mm movies are also described. Photographs illustrating current visualization techniques are discussed. Examples of the use of the workstations for flow visualization through animation are available on video tape.

  19. Postmortem computed tomography and magnetic resonance imaging facilitates forensic autopsy in a fatal case of poisoning with formic acid, diphenhydramine, and ethanol.

    PubMed

    Berger, Florian; Steuer, Andrea E; Rentsch, Katharina; Gascho, Dominic; Stamou, Stamatios; Schärli, Sarah; Thali, Michael J; Krämer, Thomas; Flach, Patricia M

    2016-09-01

    A case of fatal poisoning by ingesting formic acid, diphenhydramine, and ethanol by a 25-year-old woman who committed suicide is presented. Prior to autopsy, postmortem computed tomography and postmortem magnetic resonance tomography were performed and revealed severe damage to the stomach, the left thoracic wall, and parts of the liver. Imaging detected acid-induced fluid-fluid level within the thoracic cavity (fat-equivalent fluid and necrotic pleural effusion). This case report illustrates that postmortem cross-sectional imaging may facilitate dissection of severely damaged or complex regions, and may provide additional information compared to autopsy and toxicological examinations alone.

  20. Visualization of unsteady computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Haimes, Robert

    1994-11-01

    A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.

  1. Visualization of unsteady computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1994-01-01

    A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.

  2. Parallel Computational Fluid Dynamics: Current Status and Future Requirements

    NASA Technical Reports Server (NTRS)

    Simon, Horst D.; VanDalsem, William R.; Dagum, Leonardo; Kutler, Paul (Technical Monitor)

    1994-01-01

    One or the key objectives of the Applied Research Branch in the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Allies Research Center is the accelerated introduction of highly parallel machines into a full operational environment. In this report we discuss the performance results obtained from the implementation of some computational fluid dynamics (CFD) applications on the Connection Machine CM-2 and the Intel iPSC/860. We summarize some of the experiences made so far with the parallel testbed machines at the NAS Applied Research Branch. Then we discuss the long term computational requirements for accomplishing some of the grand challenge problems in computational aerosciences. We argue that only massively parallel machines will be able to meet these grand challenge requirements, and we outline the computer science and algorithm research challenges ahead.

  3. Computational Fluid Dynamics Analysis of Thoracic Aortic Dissection

    NASA Astrophysics Data System (ADS)

    Tang, Yik; Fan, Yi; Cheng, Stephen; Chow, Kwok

    2011-11-01

    Thoracic Aortic Dissection (TAD) is a cardiovascular disease with high mortality. An aortic dissection is formed when blood infiltrates the layers of the vascular wall, and a new artificial channel, the false lumen, is created. The expansion of the blood vessel due to the weakened wall enhances the risk of rupture. Computational fluid dynamics analysis is performed to study the hemodynamics of this pathological condition. Both idealized geometry and realistic patient configurations from computed tomography (CT) images are investigated. Physiological boundary conditions from in vivo measurements are employed. Flow configuration and biomechanical forces are studied. Quantitative analysis allows clinicians to assess the risk of rupture in making decision regarding surgical intervention.

  4. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Peiyuan; Brown, Timothy; Fullmer, William D.

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling ofmore » the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.« less

  5. Computational Investigation of Fluidic Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Deere, Karen A.

    1999-01-01

    A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.

  6. Implementation of Interaction Algorithm to Non-Matching Discrete Interfaces Between Structure and Fluid Mesh

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Po

    1999-01-01

    This paper presents software for solving the non-conforming fluid structure interfaces in aeroelastic simulation. It reviews the algorithm of interpolation and integration, highlights the flexibility and the user-friendly feature that allows the user to select the existing structure and fluid package, like NASTRAN and CLF3D, to perform the simulation. The presented software is validated by computing the High Speed Civil Transport model.

  7. Non-intrusive uncertainty quantification of computational fluid dynamics simulations: notes on the accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Zimoń, Małgorzata; Sawko, Robert; Emerson, David; Thompson, Christopher

    2017-11-01

    Uncertainty quantification (UQ) is increasingly becoming an indispensable tool for assessing the reliability of computational modelling. Efficient handling of stochastic inputs, such as boundary conditions, physical properties or geometry, increases the utility of model results significantly. We discuss the application of non-intrusive generalised polynomial chaos techniques in the context of fluid engineering simulations. Deterministic and Monte Carlo integration rules are applied to a set of problems, including ordinary differential equations and the computation of aerodynamic parameters subject to random perturbations. In particular, we analyse acoustic wave propagation in a heterogeneous medium to study the effects of mesh resolution, transients, number and variability of stochastic inputs. We consider variants of multi-level Monte Carlo and perform a novel comparison of the methods with respect to numerical and parametric errors, as well as computational cost. The results provide a comprehensive view of the necessary steps in UQ analysis and demonstrate some key features of stochastic fluid flow systems.

  8. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  9. Performance of a parallel code for the Euler equations on hypercube computers

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.

    1990-01-01

    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.

  10. Extended MHD modeling of nonlinear instabilities in fusion and space plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germaschewski, Kai

    A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements ofmore » the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.« less

  11. Study of Geometric Porosity on Static Stability and Drag Using Computational Fluid Dynamics for Rigid Parachute Shapes

    NASA Technical Reports Server (NTRS)

    Greathouse, James S.; Schwing, Alan M.

    2015-01-01

    This paper explores use of computational fluid dynamics to study the e?ect of geometric porosity on static stability and drag for NASA's Multi-Purpose Crew Vehicle main parachute. Both of these aerodynamic characteristics are of interest to in parachute design, and computational methods promise designers the ability to perform detailed parametric studies and other design iterations with a level of control previously unobtainable using ground or flight testing. The approach presented here uses a canopy structural analysis code to define the inflated parachute shapes on which structured computational grids are generated. These grids are used by the computational fluid dynamics code OVERFLOW and are modeled as rigid, impermeable bodies for this analysis. Comparisons to Apollo drop test data is shown as preliminary validation of the technique. Results include several parametric sweeps through design variables in order to better understand the trade between static stability and drag. Finally, designs that maximize static stability with a minimal loss in drag are suggested for further study in subscale ground and flight testing.

  12. Fluid Centrality: A Social Network Analysis of Social-Technical Relations in Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Enriquez, Judith Guevarra

    2010-01-01

    In this article, centrality is explored as a measure of computer-mediated communication (CMC) in networked learning. Centrality measure is quite common in performing social network analysis (SNA) and in analysing social cohesion, strength of ties and influence in CMC, and computer-supported collaborative learning research. It argues that measuring…

  13. Effects of Fluid Environment on Microbial Uptake Kinetics

    DTIC Science & Technology

    1990-09-26

    Marine snow parti- is crucial for the performance of all biological wastewater cles, large amorphous aggregates that form in marine sys - treatment...particle trajectories in computer models (Tambo and Wata- nabe 1979). These computer-generated aggregates, de- the %%ater column (Table 2). This analysis

  14. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.

    PubMed

    Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W

    2002-10-01

    Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of the experimental kinematics, are useful when determining trends in force production, but do not provide accurate estimates of the magnitudes of the forces produced. By contrast, unsteady computations about the deforming pectoral fins using experimentally measured fin kinematics were found to give excellent agreement, both in the time history of force production throughout the flapping strokes and in the magnitudes of the generated forces.

  15. A magnetic fluid seal for rotary blood pumps: image and computational analyses of behaviors of magnetic fluids.

    PubMed

    Mitamura, Yoshinori; Yano, Tetsuya; Okamoto, Eiji

    2013-01-01

    A magnetic fluid (MF) seal has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids (several days). We have developed an MF seal that has a shield mechanism. The seal was perfect for 275 days in water. To investigate the effect of a shield, behaviors of MFs in a seal in water were studied both experimentally and computationally. (a) Two kinds of MF seals, one with a shield and one without a shield, were installed in a centrifugal pump. Behaviors of MFs in the seals in water were observed with a video camera and high-speed microscope. In the seal without a shield, the surface of the water in the seal waved and the turbulent flow affected behaviors of the MFs. In contrast, MFs rotated stably in the seal with a shield in water even at high rotational speeds. (b) Computational fluid dynamics analysis revealed that a stationary secondary flow pattern in the seal and small velocity difference between magnetic fluid and water at the interface. These MF behaviors prolonged the life of an MF seal in water.

  16. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  17. Modular thermal analyzer routine, volume 1

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Phillips, M. A.; Williams, D. R.

    1972-01-01

    The Modular Thermal Analyzer Routine (MOTAR) is a general thermal analysis routine with strong capabilities for performing thermal analysis of systems containing flowing fluids, fluid system controls (valves, heat exchangers, etc.), life support systems, and thermal radiation situations. Its modular organization permits the analysis of a very wide range of thermal problems for simple problems containing a few conduction nodes to those containing complicated flow and radiation analysis with each problem type being analyzed with peak computational efficiency and maximum ease of use. The organization and programming methods applied to MOTAR achieved a high degree of computer utilization efficiency in terms of computer execution time and storage space required for a given problem. The computer time required to perform a given problem on MOTAR is approximately 40 to 50 percent that required for the currently existing widely used routines. The computer storage requirement for MOTAR is approximately 25 percent more than the most commonly used routines for the most simple problems but the data storage techniques for the more complicated options should save a considerable amount of space.

  18. Assessment of WENO-extended two-fluid modelling in compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Kitamura, Keiichi; Nonomura, Taku

    2017-03-01

    The two-fluid modelling based on an advection-upwind-splitting-method (AUSM)-family numerical flux function, AUSM+-up, following the work by Chang and Liou [Journal of Computational Physics 2007;225: 840-873], has been successfully extended to the fifth order by weighted-essentially-non-oscillatory (WENO) schemes. Then its performance is surveyed in several numerical tests. The results showed a desired performance in one-dimensional benchmark test problems: Without relying upon an anti-diffusion device, the higher-order two-fluid method captures the phase interface within a fewer grid points than the conventional second-order method, as well as a rarefaction wave and a very weak shock. At a high pressure ratio (e.g. 1,000), the interpolated variables appeared to affect the performance: the conservative-variable-based characteristic-wise WENO interpolation showed less sharper but more robust representations of the shocks and expansions than the primitive-variable-based counterpart did. In two-dimensional shock/droplet test case, however, only the primitive-variable-based WENO with a huge void fraction realised a stable computation.

  19. Graphics supercomputer for computational fluid dynamics research

    NASA Astrophysics Data System (ADS)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  20. Computational Challenges of Viscous Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin; Kim, Chang Sung

    2004-01-01

    Over the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of the computational fluid dynamics (CFD) discipline. Although incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to the rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low-speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient CFD took become increasingly important in fluid engineering for incompressible and low-speed flow. This paper reviews some of the successes made possible by advances in computational technologies during the same period, and discusses some of the current challenges faced in computing incompressible flows.

  1. Aeroelasticity of wing and wing-body configurations on parallel computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup

    1995-01-01

    The objective of this research is to develop computationally efficient methods for solving aeroelasticity problems on parallel computers. Both uncoupled and coupled methods are studied in this research. For the uncoupled approach, the conventional U-g method is used to determine the flutter boundary. The generalized aerodynamic forces required are obtained by the pulse transfer-function analysis method. For the coupled approach, the fluid-structure interaction is obtained by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.

  2. Phase field model of fluid-driven fracture in elastic media: Immersed-fracture formulation and validation with analytical solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis

    Propagation of fluid-driven fractures plays an important role in natural and engineering processes, including transport of magma in the lithosphere, geologic sequestration of carbon dioxide, and oil and gas recovery from low-permeability formations, among many others. The simulation of fracture propagation poses a computational challenge as a result of the complex physics of fracture and the need to capture disparate length scales. Phase field models represent fractures as a diffuse interface and enjoy the advantage that fracture nucleation, propagation, branching, or twisting can be simulated without ad hoc computational strategies like remeshing or local enrichment of the solution space. Heremore » we propose a new quasi-static phase field formulation for modeling fluid-driven fracturing in elastic media at small strains. The approach fully couples the fluid flow in the fracture (described via the Reynolds lubrication approximation) and the deformation of the surrounding medium. The flow is solved on a lower dimensionality mesh immersed in the elastic medium. This approach leads to accurate coupling of both physics. We assessed the performance of the model extensively by comparing results for the evolution of fracture length, aperture, and fracture fluid pressure against analytical solutions under different fracture propagation regimes. Thus, the excellent performance of the numerical model in all regimes builds confidence in the applicability of phase field approaches to simulate fluid-driven fracture.« less

  3. Phase field model of fluid-driven fracture in elastic media: Immersed-fracture formulation and validation with analytical solutions

    DOE PAGES

    Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis

    2017-04-20

    Propagation of fluid-driven fractures plays an important role in natural and engineering processes, including transport of magma in the lithosphere, geologic sequestration of carbon dioxide, and oil and gas recovery from low-permeability formations, among many others. The simulation of fracture propagation poses a computational challenge as a result of the complex physics of fracture and the need to capture disparate length scales. Phase field models represent fractures as a diffuse interface and enjoy the advantage that fracture nucleation, propagation, branching, or twisting can be simulated without ad hoc computational strategies like remeshing or local enrichment of the solution space. Heremore » we propose a new quasi-static phase field formulation for modeling fluid-driven fracturing in elastic media at small strains. The approach fully couples the fluid flow in the fracture (described via the Reynolds lubrication approximation) and the deformation of the surrounding medium. The flow is solved on a lower dimensionality mesh immersed in the elastic medium. This approach leads to accurate coupling of both physics. We assessed the performance of the model extensively by comparing results for the evolution of fracture length, aperture, and fracture fluid pressure against analytical solutions under different fracture propagation regimes. Thus, the excellent performance of the numerical model in all regimes builds confidence in the applicability of phase field approaches to simulate fluid-driven fracture.« less

  4. Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Khayyer, Abbas; Gotoh, Hitoshi; Falahaty, Hosein; Shimizu, Yuma

    2018-02-01

    Simulation of incompressible fluid flow-elastic structure interactions is targeted by using fully-Lagrangian mesh-free computational methods. A projection-based fluid model (moving particle semi-implicit (MPS)) is coupled with either a Newtonian or a Hamiltonian Lagrangian structure model (MPS or HMPS) in a mathematically-physically consistent manner. The fluid model is founded on the solution of Navier-Stokes and continuity equations. The structure models are configured either in the framework of Newtonian mechanics on the basis of conservation of linear and angular momenta, or Hamiltonian mechanics on the basis of variational principle for incompressible elastodynamics. A set of enhanced schemes are incorporated for projection-based fluid model (Enhanced MPS), thus, the developed coupled solvers for fluid structure interaction (FSI) are referred to as Enhanced MPS-MPS and Enhanced MPS-HMPS. Besides, two smoothed particle hydrodynamics (SPH)-based FSI solvers, being developed by the authors, are considered and their potential applicability and comparable performance are briefly discussed in comparison with MPS-based FSI solvers. The SPH-based FSI solvers are established through coupling of projection-based incompressible SPH (ISPH) fluid model and SPH-based Newtonian/Hamiltonian structure models, leading to Enhanced ISPH-SPH and Enhanced ISPH-HSPH. A comparative study is carried out on the performances of the FSI solvers through a set of benchmark tests, including hydrostatic water column on an elastic plate, high speed impact of an elastic aluminum beam, hydroelastic slamming of a marine panel and dam break with elastic gate.

  5. Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube

    NASA Astrophysics Data System (ADS)

    Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake

    2017-11-01

    A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.

  6. Computational fluid dynamics investigation of turbulence models for non-newtonian fluid flow in anaerobic digesters.

    PubMed

    Wu, Binxin

    2010-12-01

    In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.

  7. Fast methods to numerically integrate the Reynolds equation for gas fluid films

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1992-01-01

    The alternating direction implicit (ADI) method is adopted, modified, and applied to the Reynolds equation for thin, gas fluid films. An efficient code is developed to predict both the steady-state and dynamic performance of an aerodynamic journal bearing. An alternative approach is shown for hybrid journal gas bearings by using Liebmann's iterative solution (LIS) for elliptic partial differential equations. The results are compared with known design criteria from experimental data. The developed methods show good accuracy and very short computer running time in comparison with methods based on an inverting of a matrix. The computer codes need a small amount of memory and can be run on either personal computers or on mainframe systems.

  8. SigmaPlot 2000, Version 6.00, SPSS Inc. Computer Software Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HURLBUT, S.T.

    2000-10-24

    SigmaPlot is a vendor software product used in conjunction with the supercritical fluid extraction Fourier transform infrared spectrometer (SFE-FTIR) system. This product converts the raw spectral data to useful area numbers. SigmaPlot will be used in conjunction with procedure ZA-565-301, ''Determination of Moisture by Supercritical Fluid Extraction and Infrared Detection.'' This test plan will be performed in conjunction with or prior to HNF-6936, ''HA-53 Supercritical Fluid Extraction System Acceptance Test Plan'', to perform analyses for water. The test will ensure that the software can be installed properly and will manipulate the analytical data correctly.

  9. Hypersonic Magneto-Fluid-Dynamic Compression in Cylindrical Inlet

    NASA Technical Reports Server (NTRS)

    Shang, Joseph S.; Chang, Chau-Lyan

    2007-01-01

    Hypersonic magneto-fluid-dynamic interaction has been successfully performed as a virtual leading-edge strake and a virtual cowl of a cylindrical inlet. In a side-by-side experimental and computational study, the magnitude of the induced compression was found to be depended on configuration and electrode placement. To better understand the interacting phenomenon the present investigation is focused on a direct current discharge at the leading edge of a cylindrical inlet for which validating experimental data is available. The present computational result is obtained by solving the magneto-fluid-dynamics equations at the low magnetic Reynolds number limit and using a nonequilibrium weakly ionized gas model based on the drift-diffusion theory. The numerical simulation provides a detailed description of the intriguing physics. After validation with experimental measurements, the computed results further quantify the effectiveness of a magnet-fluid-dynamic compression for a hypersonic cylindrical inlet. At a minuscule power input to a direct current surface discharge of 8.14 watts per square centimeter of electrode area produces an additional compression of 6.7 percent for a constant cross-section cylindrical inlet.

  10. Application of foam-extend on turbulent fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Rege, K.; Hjertager, B. H.

    2017-12-01

    Turbulent flow around flexible structures is likely to induce structural vibrations which may eventually lead to fatigue failure. In order to assess the fatigue life of these structures, it is necessary to take the action of the flow on the structure into account, but also the influence of the vibrating structure on the fluid flow. This is achieved by performing fluid-structure interaction (FSI) simulations. In this work, we have investigated the capability of a FSI toolkit for the finite volume computational fluid dynamics software foam-extend to simulate turbulence-induced vibrations of a flexible structure. A large-eddy simulation (LES) turbulence model has been implemented to a basic FSI problem of a flexible wall which is placed in a confined, turbulent flow. This problem was simulated for 2.32 seconds. This short simulation required over 200 computation hours, using 20 processor cores. Thereby, it has been shown that the simulation of FSI with LES is possible, but also computationally demanding. In order to make turbulent FSI simulations with foam-extend more applicable, more sophisticated turbulence models and/or faster FSI iteration schemes should be applied.

  11. Fluid mechanics of heart valves.

    PubMed

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  12. Source Listings for Computer Code SPIRALI Incompressible, Turbulent Spiral Grooved Cylindrical and Face Seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.; Shapiro, Wibur

    2005-01-01

    This is the source listing of the computer code SPIRALI which predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures.

  13. Performance of the Widely-Used CFD Code OVERFLOW on the Pleides Supercomputer

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2017-01-01

    Computational performance studies were made for NASA's widely used Computational Fluid Dynamics code OVERFLOW on the Pleiades Supercomputer. Two test cases were considered: a full launch vehicle with a grid of 286 million points and a full rotorcraft model with a grid of 614 million points. Computations using up to 8000 cores were run on Sandy Bridge and Ivy Bridge nodes. Performance was monitored using times reported in the day files from the Portable Batch System utility. Results for two grid topologies are presented and compared in detail. Observations and suggestions for future work are made.

  14. Rotor-Bearing Dynamics Technology Design Guide. Part 8. A computerized Data Retrieval System for Fluid Film Bearings

    DTIC Science & Technology

    1980-10-01

    AFAPL-TR-78-6 ’: Part Vill (U ROTOR -BEARING DYNAMICS - TECHNOLOGY DESIGN GUIDE ¢ Part Vil A Comput eri eval Syteftor Fluid Film Bearings SHAKER...Protection," Task 304806, "Aerospace Lubrication," Work Unit 30480685, " Rotor -Bearing Dynamics Design." The work reported herein was performed during the...the previous issue of the Rotor -Bearing Dynamics Technology Design Guide, - one volume dealt with the calculation of performance parameters and pertur

  15. Implementation of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for High Performance Computing (HPC). In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for CFD applications.

  16. SRM Internal Flow Test and Computational Fluid Dynamic Analysis. Volume 1; Major Task Summaries

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.

    1995-01-01

    During the four year period of performance for NASA contract, NASB-39095, ERC has performed a wide variety of tasks to support the design and continued development of new and existing solid rocket motors and the resolution of operational problems associated with existing solid rocket motor's at NASA MSFC. This report summarizes the support provided to NASA MSFC during the contractual period of performance. The report is divided into three main sections. The first section presents summaries for the major tasks performed. These tasks are grouped into three major categories: full scale motor analysis, subscale motor analysis and cold flow analysis. The second section includes summaries describing the computational fluid dynamics (CFD) tasks performed. The third section, the appendices of the report, presents detailed descriptions of the analysis efforts as well as published papers, memoranda and final reports associated with specific tasks. These appendices are referenced in the summaries. The subsection numbers for the three sections correspond to the same topics for direct cross referencing.

  17. Computer Simulation Performed for Columbia Project Cooling System

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  18. Efficient Parallel Kernel Solvers for Computational Fluid Dynamics Applications

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He

    1997-01-01

    Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be partitioned and distributed appropriately among processors to reduce communication cost and to attain load balance. More importantly, even with careful partitioning and mapping, the performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms may be serial in nature and may not be implemented efficiently on parallel machines. In many cases, new algorithms have to be introduced to increase parallel performance. In order to achieve optimal performance, in addition to partitioning and mapping, a careful performance study should be conducted for a given application to find a good algorithm-machine combination. This process, however, is usually painful and elusive. The goal of this project is to design and develop efficient parallel algorithms for highly accurate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed algorithms into actual simulation packages. The work plan has well achieved. Two highly accurate, efficient Poisson solvers have been developed and tested based on two different approaches: (1) Adopting a mathematical geometry which has a better capacity to describe the fluid, (2) Using compact scheme to gain high order accuracy in numerical discretization. The previously developed Parallel Diagonal Dominant (PDD) algorithm and Reduced Parallel Diagonal Dominant (RPDD) algorithm have been carefully studied on different parallel platforms for different applications, and a NASA simulation code developed by Man M. Rai and his colleagues has been parallelized and implemented based on data dependency analysis. These achievements are addressed in detail in the paper.

  19. Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan A.; Blanco, Marco A.; Errington, Jeffrey R.; Shen, Vincent K.

    2017-02-01

    We present a method for predicting the free energy landscape of fluids at low temperatures from flat-histogram grand canonical Monte Carlo simulations performed at higher ones. We illustrate our approach for both pure and multicomponent systems using two different sampling methods as a demonstration. This allows us to predict the thermodynamic behavior of systems which undergo both first order and continuous phase transitions upon cooling using simulations performed only at higher temperatures. After surveying a variety of different systems, we identify a range of temperature differences over which the extrapolation of high temperature simulations tends to quantitatively predict the thermodynamic properties of fluids at lower ones. Beyond this range, extrapolation still provides a reasonably well-informed estimate of the free energy landscape; this prediction then requires less computational effort to refine with an additional simulation at the desired temperature than reconstruction of the surface without any initial estimate. In either case, this method significantly increases the computational efficiency of these flat-histogram methods when investigating thermodynamic properties of fluids over a wide range of temperatures. For example, we demonstrate how a binary fluid phase diagram may be quantitatively predicted for many temperatures using only information obtained from a single supercritical state.

  20. Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation

    USGS Publications Warehouse

    Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.

    2004-01-01

    A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.

  1. Thermal Analysis of Magnetically-Coupled Pump for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Senocak, Inanc; Udaykumar, H. S.; Ndri, Narcisse; Francois, Marianne; Shyy, Wei

    1999-01-01

    Magnetically-coupled pump is under evaluation at Kennedy Space Center for possible cryogenic applications. A major concern is the impact of low temperature fluid flows on the pump performance. As a first step toward addressing this and related issues, a computational fluid dynamics and heat transfer tool has been adopted in a pump geometry. The computational tool includes (i) a commercial grid generator to handle multiple grid blocks and complicated geometric definitions, and (ii) an in-house computational fluid dynamics and heat transfer software developed in the Principal Investigator's group at the University of Florida. Both pure-conduction and combined convection-conduction computations have been conducted. A pure-conduction analysis gives insufficient information about the overall thermal distribution. Combined convection-conduction analysis indicates the significant influence of the coolant over the entire flow path. Since 2-D simulation is of limited help, future work on full 3-D modeling of the pump using multi-materials is needed. A comprehensive and accurate model can be developed to take into account the effect of multi-phase flow in the cooling flow loop, and the magnetic interactions.

  2. Computations of Axisymmetric Flows in Hypersonic Shock Tubes

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Wilson, Gregory J.

    1995-01-01

    A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.

  3. Understanding Lymphatic Valve Function via Computational Modeling

    NASA Astrophysics Data System (ADS)

    Wolf, Ki; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander

    2017-11-01

    The lymphatic system is a crucial part to the circulatory system with many important functions, such as transport of interstitial fluid, fatty acid, and immune cells. Lymphatic vessels' contractile walls and valves allow lymph flow against adverse pressure gradients and prevent back flow. Yet, the effect of lymphatic valves' geometric and mechanical properties to pumping performance and lymphatic dysfunctions like lymphedema is not well understood. Our coupled fluid-solid computational model based on lattice Boltzmann model and lattice spring model investigates the dynamics and effectiveness of lymphatic valves in resistance minimization, backflow prevention, and viscoelastic response under different geometric and mechanical properties, suggesting the range of lymphatic valve parameters with effective pumping performance. Our model also provides more physiologically relevant relations of the valve response under varied conditions to a lumped parameter model of the lymphatic system giving an integrative insight into lymphatic system performance, including its failure due to diseases. NSF CMMI-1635133.

  4. Skylab extravehicular mobility unit thermal simulator

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.; Phillips, M. A.

    1974-01-01

    The analytical methods, thermal model, and user's instructions for the Skylab Extravehicular Mobility Unit (SEMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the SEMU on the NASA-JSC Univac 1108 computer system. It accounts for conductive, convective, and radiant heat transfer as well as fluid flow and special component characterization. The program provides thermal performance predictions for a 967 node thermal model in one thirty-sixth (1/36) of mission time when operated at a calculating interval of three minutes (mission time). The program has the operational flexibility to: (1) accept card or magnetic tape data input for the thermal model describing the SEMU structure, fluid systems, crewman and component performance, (2) accept card and/or magnetic tape input of internally generated heat and heat influx from the space environment, and (3) output tabular or plotted histories of temperature, flow rates, and other parameters describing system operating modes.

  5. Studies of turbulence models in a computational fluid dynamics model of a blood pump.

    PubMed

    Song, Xinwei; Wood, Houston G; Day, Steven W; Olsen, Don B

    2003-10-01

    Computational fluid dynamics (CFD) is used widely in design of rotary blood pumps. The choice of turbulence model is not obvious and plays an important role on the accuracy of CFD predictions. TASCflow (ANSYS Inc., Canonsburg, PA, U.S.A.) has been used to perform CFD simulations of blood flow in a centrifugal left ventricular assist device; a k-epsilon model with near-wall functions was used in the initial numerical calculation. To improve the simulation, local grids with special distribution to ensure the k-omega model were used. Iterations have been performed to optimize the grid distribution and turbulence modeling and to predict flow performance more accurately comparing to experimental data. A comparison of k-omega model and experimental measurements of the flow field obtained by particle image velocimetry shows better agreement than k-epsilon model does, especially in the near-wall regions.

  6. Drekar v.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seefeldt, Ben; Sondak, David; Hensinger, David M.

    Drekar is an application code that solves partial differential equations for fluids that can be optionally coupled to electromagnetics. Drekar solves low-mach compressible and incompressible computational fluid dynamics (CFD), compressible and incompressible resistive magnetohydrodynamics (MHD), and multiple species plasmas interacting with electromagnetic fields. Drekar discretization technology includes continuous and discontinuous finite element formulations, stabilized finite element formulations, mixed integration finite element bases (nodal, edge, face, volume) and an initial arbitrary Lagrangian Eulerian (ALE) capability. Drekar contains the implementation of the discretized physics and leverages the open source Trilinos project for both parallel solver capabilities and general finite element discretization tools.more » The code will be released open source under a BSD license. The code is used for fundamental research for simulation of fluids and plasmas on high performance computing environments.« less

  7. Harmonic oscillations of laminae in non-Newtonian fluids: A lattice Boltzmann-Immersed Boundary approach

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    In this paper, the fluid dynamics induced by a rigid lamina undergoing harmonic oscillations in a non-Newtonian calm fluid is investigated. The fluid is modelled through the lattice Boltzmann method and the flow is assumed to be nearly incompressible. An iterative viscosity-correction based procedure is proposed to properly account for the non-Newtonian fluid feature and its accuracy is evaluated. In order to handle the mutual interaction between the lamina and the encompassing fluid, the Immersed Boundary method is adopted. A numerical campaign is performed. In particular, the effect of the non-Newtonian feature is highlighted by investigating the fluid forces acting on a harmonically oscillating lamina for different values of the Reynolds number. The findings prove that the non-Newtonian feature can drastically influence the behaviour of the fluid and, as a consequence, the forces acting upon the lamina. Several considerations are carried out on the time history of the drag coefficient and the results are used to compute the added mass through the hydrodynamic function. Moreover, the computational cost involved in the numerical simulations is discussed. Finally, two applications concerning water resources are investigated: the flow through an obstructed channel and the particle sedimentation. Present findings highlight a strong coupling between the body shape, the Reynolds number, and the flow behaviour index.

  8. Computational Investigation on the performance of thermo-acoustically driven pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra

    2017-02-01

    A Thermoacoustic Pulse Tube Refrigeration (TAPTR) system employs a thermo acoustic engine as the pressure wave generator instead of mechanical compressor. Such refrigeration systems are highly reliable due to the absence of moving components, structural simplicity and the use of environmental friendly working fluids. In the present work, a traveling wave thermoacoustic primmover (TWTAPM) has been developed and it is coupled to a pulse tube cryocooler. The performance of TAPTR depends on the operating and working fluid parameters. Simulation studies of the system has been performed using ANSYS Fluent and compared with experimental results.

  9. [Computer-assisted image processing for quantifying histopathologic variables in the healing of colonic anastomosis in dogs].

    PubMed

    Novelli, M D; Barreto, E; Matos, D; Saad, S S; Borra, R C

    1997-01-01

    The authors present the experimental results of the computerized quantifying of tissular structures involved in the reparative process of colonic anastomosis performed by manual suture and biofragmentable ring. The quantified variables in this study were: oedema fluid, myofiber tissue, blood vessel and cellular nuclei. An image processing software developed at Laboratório de Informática Dedicado à Odontologia (LIDO) was utilized to quantifying the pathognomonic alterations in the inflammatory process in colonic anastomosis performed in 14 dogs. The results were compared to those obtained through traditional way diagnosis by two pathologists in view of counterproof measures. The criteria for these diagnoses were defined in levels represented by absent, light, moderate and intensive which were compared to analysis performed by the computer. There was significant statistical difference between two techniques: the biofragmentable ring technique exhibited low oedema fluid, organized myofiber tissue and higher number of alongated cellular nuclei in relation to manual suture technique. The analysis of histometric variables through computational image processing was considered efficient and powerful to quantify the main tissular inflammatory and reparative changing.

  10. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 3; Titan, ASRM, and Subscale Motor Analyses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A computational fluid dynamics (CFD) analysis has been performed on the aft slot region of the Titan 4 Solid Rocket Motor Upgrade (SRMU). This analysis was performed in conjunction with MSFC structural modeling of the propellant grain to determine if the flow field induced stresses would adversely alter the propellant geometry to the extent of causing motor failure. The results of the coupled CFD/stress analysis have shown that there is a continual increase of flow field resistance at the aft slot due to the aft segment propellant grain being progressively moved radially toward the centerline of the motor port. This 'bootstrapping' effect between grain radial movement and internal flow resistance is conducive to causing a rapid motor failure.

  11. Application of a distributed network in computational fluid dynamic simulations

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.; Deshpande, Ashish

    1994-01-01

    A general-purpose 3-D, incompressible Navier-Stokes algorithm is implemented on a network of concurrently operating workstations using parallel virtual machine (PVM) and compared with its performance on a CRAY Y-MP and on an Intel iPSC/860. The problem is relatively computationally intensive, and has a communication structure based primarily on nearest-neighbor communication, making it ideally suited to message passing. Such problems are frequently encountered in computational fluid dynamics (CDF), and their solution is increasingly in demand. The communication structure is explicitly coded in the implementation to fully exploit the regularity in message passing in order to produce a near-optimal solution. Results are presented for various grid sizes using up to eight processors.

  12. Fluid-Structure Interaction Using Retarded Potential and ABAQUS

    DTIC Science & Technology

    1992-08-19

    APPLICATION A retarded potential (RP) capability has been coupled to the ABAQUS program, through the DLOAD user written subroutine , to form ABAQUS - RP...and ABAQUS C. T. DYKA Geo-Centers, Inc. Fort Washington, MD 20744 and M. A. TAMM Computer Operations and Communications Branch Research Computation... ABAQUS 63569N 6. AUTHOR(S) 6604 C. T. Dyka* and M. A. Tamm 7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) b. PERFORMING ORGANIZATION REPORT NUMBER

  13. Implementation of NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Schultz, Matthew; Jin, Hao-Qiang; Yan, Jerry

    2000-01-01

    A number of features make Java an attractive but a debatable choice for High Performance Computing (HPC). In order to gauge the applicability of Java to the Computational Fluid Dynamics (CFD) we have implemented NAS Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would move Java closer to Fortran in the competition for CFD applications.

  14. Fluid Dynamics of Competitive Swimming: A Computational Study

    NASA Astrophysics Data System (ADS)

    Mittal, Rajat; Loebbeck, Alfred; Singh, Hersh; Mark, Russell; Wei, Timothy

    2004-11-01

    The dolphin kick is an important component in competitive swimming and is used extensively by swimmers immediately following the starting dive as well as after turns. In this stroke, the swimmer swims about three feet under the water surface and the stroke is executed by performing an undulating wave-like motion of the body that is quite similar to the anguilliform propulsion mode in fish. Despite the relatively simple kinematics of this stoke, considerable variability in style and performance is observed even among Olympic level swimmers. Motivated by this, a joint experimental-numerical study has been initiated to examine the fluid-dynamics of this stroke. The current presentation will describe the computational portion of this study. The computations employ a sharp interface immersed boundary method (IBM) which allows us to simulate flows with complex moving boudnaries on stationary Cartesian grids. 3D body scans of male and female Olympic swimmers have been obtained and these are used in conjuction with high speed videos to recreate a realistic dolphin kick for the IBM solver. Preliminary results from these computations will be presented.

  15. Computational fluid modeling and performance analysis of a bidirectional rotating perfusion culture system.

    PubMed

    Kang, Chang-Wei; Wang, Yan; Tania, Marshella; Zhou, Huancheng; Gao, Yi; Ba, Te; Tan, Guo-Dong Sean; Kim, Sangho; Leo, Hwa Liang

    2013-01-01

    A myriad of bioreactor configurations have been investigated as extracorporeal medical support systems for temporary replacement of vital organ functions. In recent years, studies have demonstrated that the rotating bioreactors have the potential to be utilized as bioartificial liver assist devices (BLADs) owing to their advantage of ease of scalability of cell-culture volume. However, the fluid movement in the rotating chamber will expose the suspended cells to unwanted flow structures with abnormally high shear conditions that may result in poor cell stability and in turn lower the efficacy of the bioreactor system. In this study, we compared the hydrodynamic performance of our modified rotating bioreactor design with that of an existing rotating bioreactor design. Computational fluid dynamic analysis coupled with experimental results were employed in the optimization process for the development of the modified bioreactor design. Our simulation results showed that the modified bioreactor had lower fluid induced shear stresses and more uniform flow conditions within its rotating chamber than the conventional design. Experimental results revealed that the cells within the modified bioreactor also exhibited better cell-carrier attachment, higher metabolic activity, and cell viability compared to those in the conventional design. In conclusion, this study was able to provide important insights into the flow physics within the rotating bioreactors, and help enhanced the hydrodynamic performance of an existing rotating bioreactor for BLAD applications. © 2013 American Institute of Chemical Engineers.

  16. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  17. Design optimization of hydraulic turbine draft tube based on CFD and DOE method

    NASA Astrophysics Data System (ADS)

    Nam, Mun chol; Dechun, Ba; Xiangji, Yue; Mingri, Jin

    2018-03-01

    In order to improve performance of the hydraulic turbine draft tube in its design process, the optimization for draft tube is performed based on multi-disciplinary collaborative design optimization platform by combining the computation fluid dynamic (CFD) and the design of experiment (DOE) in this paper. The geometrical design variables are considered as the median section in the draft tube and the cross section in its exit diffuser and objective function is to maximize the pressure recovery factor (Cp). Sample matrixes required for the shape optimization of the draft tube are generated by optimal Latin hypercube (OLH) method of the DOE technique and their performances are evaluated through computational fluid dynamic (CFD) numerical simulation. Subsequently the main effect analysis and the sensitivity analysis of the geometrical parameters of the draft tube are accomplished. Then, the design optimization of the geometrical design variables is determined using the response surface method. The optimization result of the draft tube shows a marked performance improvement over the original.

  18. Performance Analysis of Scientific and Engineering Applications Using MPInside and TAU

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Mehrotra, Piyush; Taylor, Kenichi Jun Haeng; Shende, Sameer Suresh; Biswas, Rupak

    2010-01-01

    In this paper, we present performance analysis of two NASA applications using performance tools like Tuning and Analysis Utilities (TAU) and SGI MPInside. MITgcmUV and OVERFLOW are two production-quality applications used extensively by scientists and engineers at NASA. MITgcmUV is a global ocean simulation model, developed by the Estimating the Circulation and Climate of the Ocean (ECCO) Consortium, for solving the fluid equations of motion using the hydrostatic approximation. OVERFLOW is a general-purpose Navier-Stokes solver for computational fluid dynamics (CFD) problems. Using these tools, we analyze the MPI functions (MPI_Sendrecv, MPI_Bcast, MPI_Reduce, MPI_Allreduce, MPI_Barrier, etc.) with respect to message size of each rank, time consumed by each function, and how ranks communicate. MPI communication is further analyzed by studying the performance of MPI functions used in these two applications as a function of message size and number of cores. Finally, we present the compute time, communication time, and I/O time as a function of the number of cores.

  19. Workload Characterization of CFD Applications Using Partial Differential Equation Solvers

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.

  20. Studies of Plasma Instabilities using Unstructured Discontinuous Galerkin Method with the Two-Fluid Plasma Model

    NASA Astrophysics Data System (ADS)

    Song, Yang; Srinivasan, Bhuvana

    2017-10-01

    The discontinuous Galerkin (DG) method has the advantage of resolving shocks and sharp gradients that occur in neutral fluids and plasmas. An unstructured DG code has been developed in this work to study plasma instabilities using the two-fluid plasma model. Unstructured meshes are known to produce small and randomized grid errors compared to traditional structured meshes. Computational tests for Rayleigh-Taylor instabilities in radially-converging flows are performed using the MHD model. Choice of grid geometry is not obvious for simulations of instabilities in these circular configurations. Comparisons of the effects for different grids are made. A 2D magnetic nozzle simulation using the two-fluid plasma model is also performed. A vacuum boundary condition technique is applied to accurately solve the Riemann problem on the edge of the plume.

  1. On-Track Testing as a Validation Method of Computational Fluid Dynamic Simulations of a Formula SAE Vehicle

    NASA Astrophysics Data System (ADS)

    Weingart, Robert

    This thesis is about the validation of a computational fluid dynamics simulation of a ground vehicle by means of a low-budget coast-down test. The vehicle is built to the standards of the 2014 Formula SAE rules. It is equipped with large wings in the front and rear of the car; the vertical loads on the tires are measured by specifically calibrated shock potentiometers. The coast-down test was performed on a runway of a local airport and is used to determine vehicle specific coefficients such as drag, downforce, aerodynamic balance, and rolling resistance for different aerodynamic setups. The test results are then compared to the respective simulated results. The drag deviates about 5% from the simulated to the measured results. The downforce numbers show a deviation up to 18% respectively. Moreover, a sensitivity analysis of inlet velocities, ride heights, and pitch angles was performed with the help of the computational simulation.

  2. Simplified dynamic analysis to evaluate liquefaction-induced lateral deformation of earth slopes: a computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid

    2014-09-01

    Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.

  3. A magnetic fluid seal for rotary blood pumps: Behaviors of magnetic fluids in a magnetic fluid seal.

    PubMed

    Mitamura, Yoshinori; Yano, Tetsuya; Nakamura, Wataru; Okamoto, Eiji

    2013-01-01

    A magnetic fluid (MF) seal has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids (several days). We have developed an MF seal that has a shield mechanism. The seal was perfect for 275 days in water. To investigate the effect of a shield, behaviors of MFs in a seal in water were studied both experimentally and computationally. (a) Two kinds of MF seals, one with a shield and one without a shield, were installed in a centrifugal pump. Behaviors of MFs in the seals in water were observed with a video camera and high-speed microscope. In the seal without a shield, the surface of the water in the seal waved and the turbulent flow affected behaviors of the MFs. In contrast, MFs rotated stably in the seal with a shield in water even at high rotational speeds. (b) Computational fluid dynamics analysis revealed that a stationary secondary flow pattern in the seal and small velocity difference between magnetic fluid and water at the interface. These MF behaviors prolonged the life of an MF seal in water.

  4. Aeroelastic Analysis Of Joined Wing Of High Altitude Long Endurance (HALE) Aircraft Based On The Sensor-Craft Configuration

    NASA Astrophysics Data System (ADS)

    Marisarla, Soujanya; Ghia, Urmila; "Karman" Ghia, Kirti

    2002-11-01

    Towards a comprehensive aeroelastic analysis of a joined wing, fluid dynamics and structural analyses are initially performed separately. Steady flow calculations are currently performed using 3-D compressible Navier-Stokes equations. Flow analysis of M6-Onera wing served to validate the software for the fluid dynamics analysis. The complex flow field of the joined wing is analyzed and the prevailing fluid dynamic forces are computed using COBALT software. Currently, these forces are being transferred as fluid loads on the structure. For the structural analysis, several test cases were run considering the wing as a cantilever beam; these served as validation cases. A nonlinear structural analysis of the wing is being performed using ANSYS software to predict the deflections and stresses on the joined wing. Issues related to modeling, and selecting appropriate mesh for the structure were addressed by first performing a linear analysis. The frequencies and mode shapes of the deformed wing are obtained from modal analysis. Both static and dynamic analyses are carried out, and the results obtained are carefully analyzed. Loose coupling between the fluid and structural analyses is currently being examined.

  5. Optimization of Simplex Atomizer Inlet Port Configuration through Computational Fluid Dynamics and Experimental Study for Aero-Gas Turbine Applications

    NASA Astrophysics Data System (ADS)

    Marudhappan, Raja; Chandrasekhar, Udayagiri; Hemachandra Reddy, Koni

    2017-10-01

    The design of plain orifice simplex atomizer for use in the annular combustion system of 1100 kW turbo shaft engine is optimized. The discrete flow field of jet fuel inside the swirl chamber of the atomizer and up to 1.0 mm downstream of the atomizer exit are simulated using commercial Computational Fluid Dynamics (CFD) software. The Euler-Euler multiphase model is used to solve two sets of momentum equations for liquid and gaseous phases and the volume fraction of each phase is tracked throughout the computational domain. The atomizer design is optimized after performing several 2D axis symmetric analyses with swirl and the optimized inlet port design parameters are used for 3D simulation. The Volume Of Fluid (VOF) multiphase model is used in the simulation. The orifice exit diameter is 0.6 mm. The atomizer is fabricated with the optimized geometric parameters. The performance of the atomizer is tested in the laboratory. The experimental observations are compared with the results obtained from 2D and 3D CFD simulations. The simulated velocity components, pressure field, streamlines and air core dynamics along the atomizer axis are compared to previous research works and found satisfactory. The work has led to a novel approach in the design of pressure swirl atomizer.

  6. Fluid Dynamics Lagrangian Simulation Model

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1994-02-01

    The work performed by Science Applications International Corporation (SAIC) on this contract, Fluid Dynamics Lagrangian Simulation Model, Contract Number N00014-89-C-2106, SAIC Project Number 01-0157-03-0768, focused on a number of research topics in fluid dynamics. The work was in support of the programs of NRL's Laboratory for Computational Physics and Fluid Dynamics and covered the period from 10 September 1989 to 9 December 1993. In the following sections, we describe each of the efforts and the results obtained. Much of the research work has resulted in journal publications. These are included in Appendices of this report for which the reader is referred for complete details.

  7. High-Performance Algorithms and Complex Fluids | Computational Science |

    Science.gov Websites

    only possible by combining experimental data with simulation. Capabilities Capabilities include: Block -laden, non-Newtonian, as well as traditional internal and external flows. Contact Ray Grout Group

  8. Flexible Inhibitor Fluid-Structure Interaction Simulation in RSRM.

    NASA Astrophysics Data System (ADS)

    Wasistho, Bono

    2005-11-01

    We employ our tightly coupled fluid/structure/combustion simulation code 'Rocstar-3' for solid propellant rocket motors to study 3D flows past rigid and flexible inhibitors in the Reusable Solid Rocket Motor (RSRM). We perform high resolution simulations of a section of the rocket near the center joint slot at 100 seconds after ignition, using inflow conditions based on less detailed 3D simulations of the full RSRM. Our simulations include both inviscid and turbulent flows (using LES dynamic subgrid-scale model), and explore the interaction between the inhibitor and the resulting fluid flow. The response of the solid components is computed by an implicit finite element solver. The internal mesh motion scheme in our block-structured fluid solver enables our code to handle significant changes in geometry. We compute turbulent statistics and determine the compound instabilities originated from the natural hydrodynamic instabilities and the inhibitor motion. The ultimate goal is to studdy the effect of inhibitor flexing on the turbulent field.

  9. Development of a thermal storage module using modified anhydrous sodium hydroxide

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Rowny, P. E.

    1980-01-01

    The laboratory scale testing of a modified anhydrous NaOH latent heat storage concept for small solar thermal power systems such as total energy systems utilizing organic Rankine systems is discussed. A diagnostic test on the thermal energy storage module and an investigation of alternative heat transfer fluids and heat exchange concepts are specifically addressed. A previously developed computer simulation model is modified to predict the performance of the module in a solar total energy system environment. In addition, the computer model is expanded to investigate parametrically the incorporation of a second heat exchange inside the module which will vaporize and superheat the Rankine cycle power fluid.

  10. Structural, thermodynamic, and electrical properties of polar fluids and ionic solutions on a hypersphere: Results of simulations

    NASA Astrophysics Data System (ADS)

    Caillol, J. M.; Levesque, D.

    1992-01-01

    The reliability and the efficiency of a new method suitable for the simulations of dielectric fluids and ionic solutions is established by numerical computations. The efficiency depends on the use of a simulation cell which is the surface of a four-dimensional sphere. The reliability originates from a charge-charge potential solution of the Poisson equation in this confining volume. The computation time, for systems of a few hundred molecules, is reduced by a factor of 2 or 3 compared to this of a simulation performed in a cubic volume with periodic boundary conditions and the Ewald charge-charge potential.

  11. Flow induction by pressure forces

    NASA Technical Reports Server (NTRS)

    Garris, C. A.; Toh, K. H.; Amin, S.

    1992-01-01

    A dual experimental/computational approach to the fluid mechanics of complex interactions that take place in a rotary-jet ejector is presented. The long-range goal is to perform both detailed flow mapping and finite element computational analysis. The described work represents an initial finding on the experimental mapping program. Test results on the hubless rotary-jet are discussed.

  12. Conference on Fluid Machinery, 8th, Budapest, Hungary, Sept. 1987, Proceedings. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Szabo, A.; Kisbocskoi, L.

    The present conference on turbomachine fluid mechanics gives attention to the analysis of labyrinth seals, irrigation turbomachinery, axial-flow fans, poppet valves, the generation of Karman vortices, self-rectifying Wells-type air turbines, computer simulations for water-supply systems, the computation of meridional flow in turbomachines, entrained air effects on vortex pump performance, the three-dimensional potential flow in a draft tube, and hydro powerplant diagnostic methods. Also discussed are a mathematical model for the initiation of cavitation wear, cryogenic flow in ejectors, flow downstream of guide vanes in a Kaplan turbine, unsteady flow in rotating cascades, novel methods for turbomachine vibration monitoring, cavitation breakdown in centrifugal pumps, test results for Banki turbines, centrifugal compressor return-channel flow, performance predictions for regenerative turbomachines, and secondary flows in a centrifugal pump.

  13. Evaluation of Preduster in Cement Industry Based on Computational Fluid Dynamic

    NASA Astrophysics Data System (ADS)

    Septiani, E. L.; Widiyastuti, W.; Djafaar, A.; Ghozali, I.; Pribadi, H. M.

    2017-10-01

    Ash-laden hot air from clinker in cement industry is being used to reduce water contain in coal, however it may contain large amount of ash even though it was treated by a preduster. This study investigated preduster performance as a cyclone separator in the cement industry by Computational Fluid Dynamic method. In general, the best performance of cyclone is it have relatively high efficiency with the low pressure drop. The most accurate and simple turbulence model, Reynold Average Navier Stokes (RANS), standard k-ε, and combination with Lagrangian model as particles tracking model were used to solve the problem. The measurement in simulation result are flow pattern in the cyclone, pressure outlet and collection efficiency of preduster. The applied model well predicted by comparing with the most accurate empirical model and pressure outlet in experimental measurement.

  14. Effect of Heliox on Respiratory Outcomes during Rigid Bronchoscopy in Term Lambs.

    PubMed

    Sowder, Justin C; Dahl, Mar Janna; Zuspan, Kaitlin R; Albertine, Kurt H; Null, Donald M; Barneck, Mitchell D; Grimmer, J Fredrik

    2018-03-01

    Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.

  15. Effects of Acoustic and Fluid Dynamic Interactions in Resonators: Applications in Thermoacoustic Refrigeration

    NASA Astrophysics Data System (ADS)

    Antao, Dion Savio

    Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization of the systems over a wide range of operating conditions helped to better understand the factors that govern and affect the performance of the PTR. The operating frequency of the linear motor driving the PTR affected the systems' performance the most. Other parameters that resulted in performance variations were the mean operating pressure, the pressure amplitude output from the linear motor, and the geometry of the inertance tube. The effect of the inertance tube's geometry was controlled by a single parameter labeled the "inertance". External/ambient conditions affected the performance of the cryocoolers too. To prevent the influence of the ambient conditions on the performance, a vacuum chamber was fabricated to isolate the low temperature regions of the PTR from the variable ambient atmosphere. The experiments provided important information and guidelines for the simulation studies of the PTR that were carried out concurrently. A time-dependent high fidelity computational fluid dynamic model of the entire PTR system was developed to gain a better understanding of internal interactions between the refrigerant fluid and the porous heat-exchangers in its various components and to facilitate better design of PTR systems based on the knowledge gained. The compressible forms of the conservation of mass, momentum and energy equations are solved in the gas and porous media (appropriate estimation of fluid dynamics in heat-exchangers) regions. The heat transfer in the porous regions is governed by a thermal non-equilibrium heat transfer model that calculates a separate gas and solid temperature and accounts for heat transfer between the two. The numerical model was validated using both temporal and quasi-steady state results obtained from the experimental studies. The validated model was applied to study the effects of different operating parameters (frequency, pressure and geometry of the components) on the PTR's performance. The simulations revealed interesting steady-periodic flow patterns that develop in the pulse tube due to the fluctuations caused by the piston and the presence of the inertance tube. Similar to the experiments, the simulations provided important information that help guide the design of efficient PTR systems.

  16. Development of numerical methods for overset grids with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1995-01-01

    Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.

  17. Large-Scale Distributed Computational Fluid Dynamics on the Information Power Grid Using Globus

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen; Biswas, Rupak; Saini, Subhash; VanderWijngaart, Robertus; Yarrow, Maurice; Zechtzer, Lou; Foster, Ian; Larsson, Olle

    1999-01-01

    This paper describes an experiment in which a large-scale scientific application development for tightly-coupled parallel machines is adapted to the distributed execution environment of the Information Power Grid (IPG). A brief overview of the IPG and a description of the computational fluid dynamics (CFD) algorithm are given. The Globus metacomputing toolkit is used as the enabling device for the geographically-distributed computation. Modifications related to latency hiding and Load balancing were required for an efficient implementation of the CFD application in the IPG environment. Performance results on a pair of SGI Origin 2000 machines indicate that real scientific applications can be effectively implemented on the IPG; however, a significant amount of continued effort is required to make such an environment useful and accessible to scientists and engineers.

  18. Cost efficient CFD simulations: Proper selection of domain partitioning strategies

    NASA Astrophysics Data System (ADS)

    Haddadi, Bahram; Jordan, Christian; Harasek, Michael

    2017-10-01

    Computational Fluid Dynamics (CFD) is one of the most powerful simulation methods, which is used for temporally and spatially resolved solutions of fluid flow, heat transfer, mass transfer, etc. One of the challenges of Computational Fluid Dynamics is the extreme hardware demand. Nowadays super-computers (e.g. High Performance Computing, HPC) featuring multiple CPU cores are applied for solving-the simulation domain is split into partitions for each core. Some of the different methods for partitioning are investigated in this paper. As a practical example, a new open source based solver was utilized for simulating packed bed adsorption, a common separation method within the field of thermal process engineering. Adsorption can for example be applied for removal of trace gases from a gas stream or pure gases production like Hydrogen. For comparing the performance of the partitioning methods, a 60 million cell mesh for a packed bed of spherical adsorbents was created; one second of the adsorption process was simulated. Different partitioning methods available in OpenFOAM® (Scotch, Simple, and Hierarchical) have been used with different numbers of sub-domains. The effect of the different methods and number of processor cores on the simulation speedup and also energy consumption were investigated for two different hardware infrastructures (Vienna Scientific Clusters VSC 2 and VSC 3). As a general recommendation an optimum number of cells per processor core was calculated. Optimized simulation speed, lower energy consumption and consequently the cost effects are reported here.

  19. Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk

    NASA Astrophysics Data System (ADS)

    Long, C. C.; Marsden, A. L.; Bazilevs, Y.

    2014-10-01

    In this paper we perform shape optimization of a pediatric pulsatile ventricular assist device (PVAD). The device simulation is carried out using fluid-structure interaction (FSI) modeling techniques within a computational framework that combines FEM for fluid mechanics and isogeometric analysis for structural mechanics modeling. The PVAD FSI simulations are performed under realistic conditions (i.e., flow speeds, pressure levels, boundary conditions, etc.), and account for the interaction of air, blood, and a thin structural membrane separating the two fluid subdomains. The shape optimization study is designed to reduce thrombotic risk, a major clinical problem in PVADs. Thrombotic risk is quantified in terms of particle residence time in the device blood chamber. Methods to compute particle residence time in the context of moving spatial domains are presented in a companion paper published in the same issue (Comput Mech, doi: 10.1007/s00466-013-0931-y, 2013). The surrogate management framework, a derivative-free pattern search optimization method that relies on surrogates for increased efficiency, is employed in this work. For the optimization study shown here, particle residence time is used to define a suitable cost or objective function, while four adjustable design optimization parameters are used to define the device geometry. The FSI-based optimization framework is implemented in a parallel computing environment, and deployed with minimal user intervention. Using five SEARCH/ POLL steps the optimization scheme identifies a PVAD design with significantly better throughput efficiency than the original device.

  20. Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Green, Lawrence L.

    2000-01-01

    Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.

  1. A Computational and Experimental Investigation of a Three-Dimensional Hypersonic Scramjet Inlet Flow Field. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Holland, Scott Douglas

    1991-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three dimensional sidewall compression scramjet inlet configuration was performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration.

  2. Distributed-Memory Computing With the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Cheatwood, F. McNeil

    1997-01-01

    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), a Navier-Stokes solver, has been modified for use in a parallel, distributed-memory environment using the Message-Passing Interface (MPI) standard. A standard domain decomposition strategy is used in which the computational domain is divided into subdomains with each subdomain assigned to a processor. Performance is examined on dedicated parallel machines and a network of desktop workstations. The effect of domain decomposition and frequency of boundary updates on performance and convergence is also examined for several realistic configurations and conditions typical of large-scale computational fluid dynamic analysis.

  3. BIGHORN Computational Fluid Dynamics Theory, Methodology, and Code Verification & Validation Benchmark Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yidong; Andrs, David; Martineau, Richard Charles

    This document presents the theoretical background for a hybrid finite-element / finite-volume fluid flow solver, namely BIGHORN, based on the Multiphysics Object Oriented Simulation Environment (MOOSE) computational framework developed at the Idaho National Laboratory (INL). An overview of the numerical methods used in BIGHORN are discussed and followed by a presentation of the formulation details. The document begins with the governing equations for the compressible fluid flow, with an outline of the requisite constitutive relations. A second-order finite volume method used for solving the compressible fluid flow problems is presented next. A Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) formulation for timemore » integration is also presented. The multi-fluid formulation is being developed. Although multi-fluid is not fully-developed, BIGHORN has been designed to handle multi-fluid problems. Due to the flexibility in the underlying MOOSE framework, BIGHORN is quite extensible, and can accommodate both multi-species and multi-phase formulations. This document also presents a suite of verification & validation benchmark test problems for BIGHORN. The intent for this suite of problems is to provide baseline comparison data that demonstrates the performance of the BIGHORN solution methods on problems that vary in complexity from laminar to turbulent flows. Wherever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using BIGHORN.« less

  4. Effects of walking in deep venous thrombosis: a new integrated solid and fluid mechanics model.

    PubMed

    López, Josep M; Fortuny, Gerard; Puigjaner, Dolors; Herrero, Joan; Marimon, Francesc; Garcia-Bennett, Josep

    2017-05-01

    Deep venous thrombosis (DVT) is a common disease. Large thrombi in venous vessels cause bad blood circulation and pain; and when a blood clot detaches from a vein wall, it causes an embolism whose consequences range from mild to fatal. Walking is recommended to DVT patients as a therapeutical complement. In this study the mechanical effects of walking on a specific patient of DVT were simulated by means of an unprecedented integration of 3 elements: a real geometry, a biomechanical model of body tissues, and a computational fluid dynamics study. A set of computed tomography images of a patient's leg with a thrombus in the popliteal vein was employed to reconstruct a geometry model. Then a biomechanical model was used to compute the new deformed geometry of the vein as a function of the fiber stretch level of the semimembranosus muscle. Finally, a computational fluid dynamics study was performed to compute the blood flow and the wall shear stress (WSS) at the vein and thrombus walls. Calculations showed that either a lengthening or shortening of the semimembranosus muscle led to a decrease of WSS levels up to 10%. Notwithstanding, changes in blood viscosity properties or blood flow rate may easily have a greater impact in WSS. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Numerical Stability and Control Analysis Towards Falling-Leaf Prediction Capabilities of Splitflow for Two Generic High-Performance Aircraft Models

    NASA Technical Reports Server (NTRS)

    Charlton, Eric F.

    1998-01-01

    Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.

  6. Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows

    NASA Astrophysics Data System (ADS)

    Crowell, Andrew Rippetoe

    This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two-pronged approach is found to exhibit balanced performance in terms of accuracy and computational expense, relative to several existing approaches. This approach enables CFD-based loads to be implemented into long duration fluid-thermal-structural simulations.

  7. FDNS CFD Code Benchmark for RBCC Ejector Mode Operation

    NASA Technical Reports Server (NTRS)

    Holt, James B.; Ruf, Joe

    1999-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.

  8. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 1 progress report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottes, S.A.; Bojanowski, C.; Shen, J.

    2012-04-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through December 2011.« less

  9. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 2 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottes, S.A.; Bojanowski, C.; Shen, J.

    2012-06-28

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through March 2012.« less

  10. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 1 quarter 3 progress report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C.

    2011-08-26

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of April through June 2011.« less

  11. Development of hybrid computer plasma models for different pressure regimes

    NASA Astrophysics Data System (ADS)

    Hromadka, Jakub; Ibehej, Tomas; Hrach, Rudolf

    2016-09-01

    With increased performance of contemporary computers during last decades numerical simulations became a very powerful tool applicable also in plasma physics research. Plasma is generally an ensemble of mutually interacting particles that is out of the thermodynamic equilibrium and for this reason fluid computer plasma models give results with only limited accuracy. On the other hand, much more precise particle models are often limited only on 2D problems because of their huge demands on the computer resources. Our contribution is devoted to hybrid modelling techniques that combine advantages of both modelling techniques mentioned above, particularly to their so-called iterative version. The study is focused on mutual relations between fluid and particle models that are demonstrated on the calculations of sheath structures of low temperature argon plasma near a cylindrical Langmuir probe for medium and higher pressures. Results of a simple iterative hybrid plasma computer model are also given. The authors acknowledge the support of the Grant Agency of Charles University in Prague (project 220215).

  12. The numerical approach adopted in toba computer code for mass and heat transfer dynamic analysis of metal hydride hydrogen storage beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Osery, I.A.

    1983-12-01

    Modelling studies of metal hydride hydrogen storage beds is a part of an extensive R and D program conducted in Egypt on hydrogen energy. In this context two computer programs; namely RET and RET1; have been developed. In RET computer program, a cylindrical conduction bed model is considered and an approximate analytical solution is used for solution of the associated mass and heat transfer problem. This problem is solved in RET1 computer program numerically allowing more flexibility in operating conditions but still limited to cylindrical configuration with only two alternatives for heat exchange; either fluid is passing through tubes imbeddedmore » in the solid alloy matrix or solid rods are surrounded by annular fluid tubes. The present computer code TOBA is more flexible and realistic. It performs the mass and heat transfer dynamic analysis of metal hydride storage beds using a variety of geometrical and operating alternatives.« less

  13. Automotive applications of superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginsberg, M.

    1987-01-01

    These proceedings compile papers on supercomputers in the automobile industry. Titles include: An automotive engineer's guide to the effective use of scalar, vector, and parallel computers; fluid mechanics, finite elements, and supercomputers; and Automotive crashworthiness performance on a supercomputer.

  14. A family of position- and orientation-independent embedded boundary methods for viscous flow and fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Huang, Daniel Z.; De Santis, Dante; Farhat, Charbel

    2018-07-01

    The Finite Volume method with Exact two-material Riemann Problems (FIVER) is both a computational framework for multi-material flows characterized by large density jumps, and an Embedded Boundary Method (EBM) for computational fluid dynamics and highly nonlinear Fluid-Structure Interaction (FSI) problems. This paper deals with the EBM aspect of FIVER. For FSI problems, this EBM has already demonstrated the ability to address viscous effects along wall boundaries, and large deformations and topological changes of such boundaries. However, like for most EBMs - also known as immersed boundary methods - the performance of FIVER in the vicinity of a wall boundary can be sensitive with respect to the position and orientation of this boundary relative to the embedding mesh. This is mainly due to ill-conditioning issues that arise when an embedded interface becomes too close to a node of the embedding mesh, which may lead to spurious oscillations in the computed solution gradients at the wall boundary. This paper resolves these issues by introducing an alternative definition of the active/inactive status of a mesh node that leads to the removal of all sources of potential ill-conditioning from all spatial approximations performed by FIVER in the vicinity of a fluid-structure interface. It also makes two additional contributions. The first one is a new procedure for constructing the fluid-structure half Riemann problem underlying the semi-discretization by FIVER of the convective fluxes. This procedure eliminates one extrapolation from the conventional treatment of the wall boundary conditions and replaces it by an interpolation, which improves robustness. The second contribution is a post-processing algorithm for computing quantities of interest at the wall that achieves smoothness in the computed solution and its gradients. Lessons learned from these enhancements and contributions that are triggered by the new definition of the status of a mesh node are then generalized and exploited to eliminate from the original version of the FIVER method its sensitivities with respect to both of the position and orientation of the wall boundary relative to the embedding mesh, while maintaining the original definition of the status of a mesh node. This leads to a family of second-generation FIVER methods whose performance is illustrated in this paper for several flow and FSI problems. These include a challenging flow problem over a bird wing characterized by a feather-induced surface roughness, and a complex flexible flapping wing problem for which experimental data is available.

  15. Computational System For Rapid CFD Analysis In Engineering

    NASA Technical Reports Server (NTRS)

    Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.

    1995-01-01

    Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.

  16. Validation of Magnetic Resonance Thermometry by Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Rydquist, Grant; Owkes, Mark; Verhulst, Claire M.; Benson, Michael J.; Vanpoppel, Bret P.; Burton, Sascha; Eaton, John K.; Elkins, Christopher P.

    2016-11-01

    Magnetic Resonance Thermometry (MRT) is a new experimental technique that can create fully three-dimensional temperature fields in a noninvasive manner. However, validation is still required to determine the accuracy of measured results. One method of examination is to compare data gathered experimentally to data computed with computational fluid dynamics (CFD). In this study, large-eddy simulations have been performed with the NGA computational platform to generate data for a comparison with previously run MRT experiments. The experimental setup consisted of a heated jet inclined at 30° injected into a larger channel. In the simulations, viscosity and density were scaled according to the local temperature to account for differences in buoyant and viscous forces. A mesh-independent study was performed with 5 mil-, 15 mil- and 45 mil-cell meshes. The program Star-CCM + was used to simulate the complete experimental geometry. This was compared to data generated from NGA. Overall, both programs show good agreement with the experimental data gathered with MRT. With this data, the validity of MRT as a diagnostic tool has been shown and the tool can be used to further our understanding of a range of flows with non-trivial temperature distributions.

  17. High temperature superconductors applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T(sub c) superconductors.

  18. High temperature superconductors applications in telecommunications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data formore » such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.« less

  19. Computational fluid dynamic modelling of cavitation

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  20. The Role of Multiphysics Simulation in Multidisciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Rifai, Steven M.; Ferencz, Robert M.; Wang, Wen-Ping; Spyropoulos, Evangelos T.; Lawrence, Charles; Melis, Matthew E.

    1998-01-01

    This article describes the applications of the Spectrum(Tm) Solver in Multidisciplinary Analysis (MDA). Spectrum, a multiphysics simulation software based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling as well as the interaction between these disciplines. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena. Interaction constraints are enforced in a fully-coupled manner using the augmented-Lagrangian method. Within the multiphysics framework, the finite element treatment of fluids is based on Galerkin-Least-Squares (GLS) method with discontinuity capturing operators. The arbitrary-Lagrangian-Eulerian method is utilized to account for deformable fluid domains. The finite element treatment of solids and structures is based on the Hu-Washizu variational principle. The multiphysics architecture lends itself naturally to high-performance parallel computing. Aeroelastic, propulsion, thermal management and manufacturing applications are presented.

  1. The application of CAD, CAE & CAM in development of butterfly valve’s disc

    NASA Astrophysics Data System (ADS)

    Asiff Razif Shah Ranjit, Muhammad; Hanie Abdullah, Nazlin

    2017-06-01

    The improved design of a butterfly valve disc is based on the concept of sandwich theory. Butterfly valves are mostly used in various industries such as oil and gas plant. The primary failure modes for valves are indented disc, keyways and shaft failure and the cavitation damage. Emphasis on the application of CAD, a new model of the butterfly valve’s disc structure was designed. The structure analysis was analysed using the finite element analysis. Butterfly valve performance factors can be obtained is by using Computational Fluid Dynamics (CFD) software to simulate the physics of fluid flow in a piping system around a butterfly valve. A comparison analysis was done using the finite element to justify the performance of the structure. The second application of CAE is the computational fluid flow analysis. The upstream pressure and the downstream pressure was analysed to calculate the cavitation index and determine the performance throughout each opening position of the valve. The CAM process was done using 3D printer to produce a prototype and analysed the structure in form of prototype. The structure was downscale fabricated based on the model designed initially through the application of CAD. This study is utilized the application of CAD, CAE and CAM for a better improvement of the butterfly valve’s disc components.

  2. Coupled fluid-flow and magnetic-field simulation of the Riga dynamo experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenjeres, S.; Hanjalic, K.; Renaudier, S.

    2006-12-15

    Magnetic fields of planets, stars, and galaxies result from self-excitation in moving electroconducting fluids, also known as the dynamo effect. This phenomenon was recently experimentally confirmed in the Riga dynamo experiment [A. Gailitis et al., Phys. Rev. Lett. 84, 4365 (2000); A. Gailitis et al., Physics of Plasmas 11, 2838 (2004)], consisting of a helical motion of sodium in a long pipe followed by a straight backflow in a surrounding annular passage, which provided adequate conditions for magnetic-field self-excitation. In this paper, a first attempt to simulate computationally the Riga experiment is reported. The velocity and turbulence fields are modeledmore » by a finite-volume Navier-Stokes solver using a Reynolds-averaged-Navier-Stokes turbulence model. The magnetic field is computed by an Adams-Bashforth finite-difference solver. The coupling of the two computational codes, although performed sequentially, provides an improved understanding of the interaction between the fluid velocity and magnetic fields in the saturation regime of the Riga dynamo experiment under realistic working conditions.« less

  3. Computational and Experimental Fluid-Structure Interaction Analysis of a High-Lift Wing with a Slat-Cove Filler for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Scholten, William D.; Patterson, Ryan D.; Hartl, Darren J.; Strganac, Thomas W.; Chapelon, Quentin H. C.; Turner, Travis

    2017-01-01

    Airframe noise is a significant component of overall noise produced by transport aircraft during landing and approach (low speed maneuvers). A significant source for this noise is the cove of the leading-edge slat. The slat-cove filler (SCF) has been shown to be effective at mitigating slat noise. The objective of this work is to understand the fluid-structure interaction (FSI) behavior of a superelastic shape memory alloy (SMA) SCF in flow using both computational and physical models of a high-lift wing. Initial understanding of flow around the SCF and wing is obtained using computational fluid dynamics (CFD) analysis at various angles of attack. A framework compatible with an SMA constitutive model (implemented as a user material subroutine) is used to perform FSI analysis for multiple flow and configuration cases. A scaled physical model of the high-lift wing is constructed and tested in the Texas A&M 3 ft-by-4-foot wind tunnel. Initial validation of both CFD and FSI analysis is conducted by comparing lift, drag and pressure distributions with experimental results.

  4. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  5. Development of a Cross-Flow Fan Rotor for Vertical Take-Off and Landing Aircraft

    DTIC Science & Technology

    2013-06-01

    ANSYS CFX , along with the commercial computer-aided design software SolidWorks, was used to model and perform a parametric study on the number of rotor...the results found using ANSYS CFX . The experimental and analytical models were successfully compared at speeds ranging from 4,000 to 7,000 RPM...will make vertical take-off possible. The commercial computational fluid dynamics software ANSYS CFX , along with the commercial computer-aided design

  6. Computational fluid dynamics analysis of SSME phase 2 and phase 2+ preburner injector element hydrogen flow paths

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.

    1992-01-01

    Phase 2+ Space Shuttle Main Engine powerheads, E0209 and E0215 degraded their main combustion chamber (MCC) liners at a faster rate than is normal for phase 2 powerheads. One possible cause of the accelerated degradation was a reduction of coolant flow through the MCC. Hardware changes were made to the preburner fuel leg which may have reduced the resistance and, therefore, pulled some of the hydrogen from the MCC coolant leg. A computational fluid dynamics (CFD) analysis was performed to determine hydrogen flow path resistances of the phase 2+ fuel preburner injector elements relative to the phase 2 element. FDNS was implemented on axisymmetric grids with the hydrogen assumed to be incompressible. The analysis was performed in two steps: the first isolated the effect of the different inlet areas and the second modeled the entire injector element hydrogen flow path.

  7. LB3D: A parallel implementation of the Lattice-Boltzmann method for simulation of interacting amphiphilic fluids

    NASA Astrophysics Data System (ADS)

    Schmieschek, S.; Shamardin, L.; Frijters, S.; Krüger, T.; Schiller, U. D.; Harting, J.; Coveney, P. V.

    2017-08-01

    We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and supporting tools which have enabled research utilising high performance computing resources for nearly two decades, LB3D version 7 provides a subset of the research code functionality as an open source project. Here, we describe the theoretical basis of the algorithm as well as computational aspects of the implementation. The software package is validated against simulations of meso-phases resulting from self-assembly in ternary fluid mixtures comprising immiscible and amphiphilic components such as water-oil-surfactant systems. The impact of the surfactant species on the dynamics of spinodal decomposition are tested and quantitative measurement of the permeability of a body centred cubic (BCC) model porous medium for a simple binary mixture is described. Single-core performance and scaling behaviour of the code are reported for simulations on current supercomputer architectures.

  8. Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids

    NASA Astrophysics Data System (ADS)

    Ma, Xinrong; Duan, Zhijian

    2018-04-01

    High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.

  9. A computational continuum model of poroelastic beds

    PubMed Central

    Zampogna, G. A.

    2017-01-01

    Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such configurations by deriving and validating a continuum model for the poroelastic bed and its interface with the above free fluid. We show that, using stress continuity condition and slip velocity condition at the interface, the effective model captures the effects of small changes in the microstructure anisotropy correctly and predicts the overall behaviour in a physically consistent and controllable manner. Moreover, we show that the performance of the effective model is accurate by validating with fully microscopic resolved simulations. The proposed computational tool can be used in investigations in a wide range of fields, including mechanical engineering, bio-engineering and geophysics. PMID:28413355

  10. Imaging diagnosis--Use of multiphasic contrast-enhanced computed tomography for diagnosis of mesenteric volvulus in a dog.

    PubMed

    Chow, Kathleen Ella; Stent, Andrew William; Milne, Marjorie

    2014-01-01

    A 4-year-old German shorthaired pointer presented with collapse and hematochezia. Radiographs showed gas and fluid-distended small intestines and loss of serosal detail. Ultrasound examination showed hypomotile, fluid-distended small intestines, and thrombosed jejunal veins. Multiphasic contrast-enhanced computed tomography was performed and showed a CT "whirl sign," an important but nonspecific sign of intestinal volvulus in human patients. At surgery, the majority of the small intestine was entangled in the volvulus and showed black discoloration. The patient was euthanized. Postmortem evaluation yielded a diagnosis of jejunoileal mesenteric volvulus secondary to a congenital omphalomesenteric duct remnant. © 2013 American College of Veterinary Radiology.

  11. Patient-Specific Modeling of Hemodynamics: Supporting Surgical Planning in a Fontan Circulation Correction.

    PubMed

    van Bakel, Theodorus M J; Lau, Kevin D; Hirsch-Romano, Jennifer; Trimarchi, Santi; Dorfman, Adam L; Figueroa, C Alberto

    2018-04-01

    Computational fluid dynamics (CFD) is a modeling technique that enables calculation of the behavior of fluid flows in complex geometries. In cardiovascular medicine, CFD methods are being used to calculate patient-specific hemodynamics for a variety of applications, such as disease research, noninvasive diagnostics, medical device evaluation, and surgical planning. This paper provides a concise overview of the methods to perform patient-specific computational analyses using clinical data, followed by a case study where CFD-supported surgical planning is presented in a patient with Fontan circulation complicated by unilateral pulmonary arteriovenous malformations. In closing, the challenges for implementation and adoption of CFD modeling in clinical practice are discussed.

  12. Domain decomposition methods in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gropp, William D.; Keyes, David E.

    1991-01-01

    The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.

  13. Computational Modeling of the Dolphin Kick in Competitive Swimming

    NASA Astrophysics Data System (ADS)

    Loebbeck, A.; Mark, R.; Bhanot, G.

    2005-11-01

    Numerical simulations are being used to study the fluid dynamics of the dolphin kick in competitive swimming. This stroke is performed underwater after starts and turns and involves an undulatory motion of the body. Highly detailed laser body scans of elite swimmers are used and the kinematics of the dolphin kick is recreated from videos of Olympic level swimmers. We employ a parallelized immersed boundary method to simulate the flow associated with this stroke in all its complexity. The simulations provide a first of its kind glimpse of the fluid and vortex dynamics associated with this stroke and hydrodynamic force computations allow us to gain a better understanding of the thrust producing mechanisms.

  14. Artificial Intelligence In Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  15. Nonlinear Fluid Computations in a Distributed Environment

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.; Smith, Merritt H.

    1995-01-01

    The performance of a loosely and tightly-coupled workstation cluster is compared against a conventional vector supercomputer for the solution the Reynolds- averaged Navier-Stokes equations. The application geometries include a transonic airfoil, a tiltrotor wing/fuselage, and a wing/body/empennage/nacelle transport. Decomposition is of the manager-worker type, with solution of one grid zone per worker process coupled using the PVM message passing library. Task allocation is determined by grid size and processor speed, subject to available memory penalties. Each fluid zone is computed using an implicit diagonal scheme in an overset mesh framework, while relative body motion is accomplished using an additional worker process to re-establish grid communication.

  16. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  17. An Application-Based Performance Characterization of the Columbia Supercluster

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Djomehri, Jahed M.; Hood, Robert; Jin, Hoaqiang; Kiris, Cetin; Saini, Subhash

    2005-01-01

    Columbia is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processors each, and currently ranked as the second-fastest computer in the world. In this paper, we present the performance characteristics of Columbia obtained on up to four computing nodes interconnected via the InfiniBand and/or NUMAlink4 communication fabrics. We evaluate floating-point performance, memory bandwidth, message passing communication speeds, and compilers using a subset of the HPC Challenge benchmarks, and some of the NAS Parallel Benchmarks including the multi-zone versions. We present detailed performance results for three scientific applications of interest to NASA, one from molecular dynamics, and two from computational fluid dynamics. Our results show that both the NUMAlink4 and the InfiniBand hold promise for application scaling to a large number of processors.

  18. X-33 Computational Aeroheating/Aerodynamic Predictions and Comparisons With Experimental Data

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Thompson, Richard A.; Berry, Scott A.; Horvath, Thomas J.; Murphy, Kelly J.; Nowak, Robert J.; Alter, Stephen J.

    2003-01-01

    This report details a computational fluid dynamics study conducted in support of the phase II development of the X-33 vehicle. Aerodynamic and aeroheating predictions were generated for the X-33 vehicle at both flight and wind-tunnel test conditions using two finite-volume, Navier-Stokes solvers. Aerodynamic computations were performed at Mach 6 and Mach 10 wind-tunnel conditions for angles of attack from 10 to 50 with body-flap deflections of 0 to 20. Additional aerodynamic computations were performed over a parametric range of free-stream conditions at Mach numbers of 4 to 10 and angles of attack from 10 to 50. Laminar and turbulent wind-tunnel aeroheating computations were performed at Mach 6 for angles of attack of 20 to 40 with body-flap deflections of 0 to 20. Aeroheating computations were performed at four flight conditions with Mach numbers of 6.6 to 8.9 and angles of attack of 10 to 40. Surface heating and pressure distributions, surface streamlines, flow field information, and aerodynamic coefficients from these computations are presented, and comparisons are made with wind-tunnel data.

  19. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  20. Experimental Investigation of Project Orion Crew Exploration Vehicle Aeroheating in AEDC Tunnel 9

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Horvath, Thomas J.; Berger, Karen T.; Lillard, Randolph P.; Kirk, Benjamin S.; Coblish, Joseph J.; Norris, Joseph D.

    2008-01-01

    An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Arnold Engineering Development Center Tunnel 9. The goals of this test were to measure turbulent heating augmentation levels on the heat shield and to obtain high-fidelity heating data for assessment of computational fluid dynamics methods. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins for the computational method. Data from both the wind tunnel test and the computational study are presented herein.

  1. In vitro flow assessment: from PC-MRI to computational fluid dynamics including fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Kratzke, Jonas; Rengier, Fabian; Weis, Christian; Beller, Carsten J.; Heuveline, Vincent

    2016-04-01

    Initiation and development of cardiovascular diseases can be highly correlated to specific biomechanical parameters. To examine and assess biomechanical parameters, numerical simulation of cardiovascular dynamics has the potential to complement and enhance medical measurement and imaging techniques. As such, computational fluid dynamics (CFD) have shown to be suitable to evaluate blood velocity and pressure in scenarios, where vessel wall deformation plays a minor role. However, there is a need for further validation studies and the inclusion of vessel wall elasticity for morphologies being subject to large displacement. In this work, we consider a fluid-structure interaction (FSI) model including the full elasticity equation to take the deformability of aortic wall soft tissue into account. We present a numerical framework, in which either a CFD study can be performed for less deformable aortic segments or an FSI simulation for regions of large displacement such as the aortic root and arch. Both of the methods are validated by means of an aortic phantom experiment. The computational results are in good agreement with 2D phase-contrast magnetic resonance imaging (PC-MRI) velocity measurements as well as catheter-based pressure measurements. The FSI simulation shows a characteristic vessel compliance effect on the flow field induced by the elasticity of the vessel wall, which the CFD model is not capable of. The in vitro validated FSI simulation framework can enable the computation of complementary biomechanical parameters such as the stress distribution within the vessel wall.

  2. Analyses and Comparison of Solar Air Heater with Various Rib Roughness using Computational Fluid Dynamics (CFD)

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ravi; Cheepu, Muralimohan; Srinivas, B.; Venkateswarlu, D.; Pramod Kumar, G.; Shiva, Apireddi

    2018-03-01

    In solar air heater, artificial roughness on absorber plate become prominent technique to improving heat transfer rate of air flowing passage as a result of laminar sublayer. The selection of rib geometries plays important role on friction characteristics and heat transfer rate. Many researchers studying the roughness shapes over the years to investigate the effect of geometries on the performance of friction factor and heat transfer of the solar air heater. The present study made an attempt to develop the different rib shapes utilised for creating artificial rib roughness and its comparison to investigate higher performance of the geometries. The use of computational fluid dynamics software resulted in correlation of friction factor and heat transfer rate. The simulations studies were performed on 2D computational fluid dynamics model and analysed to identify the most effective parameters of relative roughness of the height, width and pitch on major considerations of friction factor and heat transfer. The Reynolds number is varied in a range from 3000 to 20000, in the current study and modelling has conducted on heat transfer and turbulence phenomena by using Reynolds number. The modelling results showed the formation of strong vortex in the main stream flow due to the right angle triangle roughness over the square, rectangle, improved rectangle and equilateral triangle geometries enhanced the heat transfer extension in the solar air heater. The simulation of the turbulence kinetic energy of the geometry suggests the local turbulence kinetic energy has been influenced strongly by the alignments of the right angle triangle.

  3. Effect of hole size on fluid dynamics of a posterior-chamber phakic intraocular lens with a central perforation by using computational fluid dynamics.

    PubMed

    Kawamorita, Takushi; Shimizu, Kimiya; Shoji, Nobuyuki

    2016-04-01

    A modified implantable collamer lens (ICL) with a central hole with a diameter of 0.36 mm, referred to as a hole-ICL, was created to improve aqueous humour circulation. The aim of this study is to investigate the ideal hole size in a hole-ICL from the standpoint of the fluid dynamic characteristics of the aqueous humour using computational fluid dynamics. Fluid dynamics simulation using an ICL was performed with thermal-hydraulic analysis software FloEFD V 12.2 (Mentor Graphics Corp.). In the simulation, three-dimensional eye models based on a modified Liou-Brennan model eye with a conventional ICL (Model ICM, Staar Surgical) and a hole-ICL were used. The hole-ICL was -9.0 dioptres (D) and 12.0 mm in length, with an optic zone of 5.5 mm. The vaulting was 0.50 mm. The quantity of aqueous humour produced by the ciliary body was set at 2.80 μL/min. Flow distribution between the anterior surface of the crystalline lens and the posterior surface of the ICL was calculated, and trajectory analysis was performed. With an increase in the central hole size, the velocity of the aqueous humour increased, with the peak velocity occurring at a diameter of approximately 0.4 mm. Once the diameter had increased above 0.4 mm, the velocity then decreased. The velocity difference between the cases of a central hole size of 0.1 mm and 0.2 mm was significant. The desirable central hole size was 0.2 mm or larger in terms of flow dynamics. The current model, based on a central hole size of 0.36 mm, was close to ideal. The optimisation of the hole size should be performed based on results from a long-term clinical study so as to analyse the incidence rate of secondary cataract and optical performance.

  4. Experimental and Computational Investigation of Triple-rotating Blades in a Mower Deck

    NASA Astrophysics Data System (ADS)

    Chon, Woochong; Amano, Ryoichi S.

    Experimental and computational studies were performed on the 1.27m wide three-spindle lawn mower deck with side discharge arrangement. Laser Doppler Velocimetry was used to measure the air velocity at 12 different sections under the mower deck. The high-speed video camera test provided valuable visual evidence of airflow and grass discharge patterns. The strain gages were attached at several predetermined locations of the mower blades to measure the strain. In computational fluid dynamics work, computer based analytical studies were performed. During this phase of work, two different trials were attempted. First, two-dimensional blade shapes at several arbitrary radial sections were selected for flow computations around the blade model. Finally, a three-dimensional full deck model was developed and compared with the experimental results.

  5. Analysis of electrophoresis performance

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    A flexible efficient computer code is being developed to simulate electrophoretic separation phenomena, in either a cylindrical or a rectangular geometry. The code will computer the evolution in time of the concentrations of an arbitrary number of chemical species, and of the temperature, pH distribution, conductivity, electric field, and fluid motion. Use of nonuniform meshes and fast accurate implicit time-stepping will yield accurate answers at economical cost.

  6. Designing a Robust Micromixer Based on Fluid Stretching

    NASA Astrophysics Data System (ADS)

    Mott, David; Gautam, Dipesh; Voth, Greg; Oran, Elaine

    2010-11-01

    A metric for measuring fluid stretching based on finite-time Lyapunov exponents is described, and the use of this metric for optimizing mixing in microfluidic components is explored. The metric is implemented within an automated design approach called the Computational Toolbox (CTB). The CTB designs components by adding geometric features, such a grooves of various shapes, to a microchannel. The transport produced by each of these features in isolation was pre-computed and stored as an "advection map" for that feature, and the flow through a composite geometry that combines these features is calculated rapidly by applying the corresponding maps in sequence. A genetic algorithm search then chooses the feature combination that optimizes a user-specified metric. Metrics based on the variance of concentration generally require the user to specify the fluid distributions at inflow, which leads to different mixer designs for different inflow arrangements. The stretching metric is independent of the fluid arrangement at inflow. Mixers designed using the stretching metric are compared to those designed using a variance of concentration metric and show excellent performance across a variety of inflow distributions and diffusivities.

  7. Hybrid Parallelization of Adaptive MHD-Kinetic Module in Multi-Scale Fluid-Kinetic Simulation Suite

    DOE PAGES

    Borovikov, Sergey; Heerikhuisen, Jacob; Pogorelov, Nikolai

    2013-04-01

    The Multi-Scale Fluid-Kinetic Simulation Suite has a computational tool set for solving partially ionized flows. In this paper we focus on recent developments of the kinetic module which solves the Boltzmann equation using the Monte-Carlo method. The module has been recently redesigned to utilize intra-node hybrid parallelization. We describe in detail the redesign process, implementation issues, and modifications made to the code. Finally, we conduct a performance analysis.

  8. 77 FR 64834 - Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0250] Computational Fluid Dynamics Best Practice... public comments on draft NUREG-2152, ``Computational Fluid Dynamics Best Practice Guidelines for Dry Cask... System (ADAMS): You may access publicly-available documents online in the NRC Library at http://www.nrc...

  9. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  10. Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1992-01-01

    Experimental and computational fluid dynamic activities in rocket propulsion were discussed. The workshop was an open meeting of government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  11. Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1992-01-01

    Presented here are 59 abstracts and presentations and three invited presentations given at the Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 28-30, 1992. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed, including a computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  12. Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1993-01-01

    Conference publication includes 79 abstracts and presentations and 3 invited presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  13. Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 1

    NASA Technical Reports Server (NTRS)

    Williams, Robert W. (Compiler)

    1993-01-01

    Conference publication includes 79 abstracts and presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of this workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  14. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow Ventricular Assist Device (VAD).

    PubMed

    Song, Xinwei; Wood, Houston G; Olsen, Don

    2004-04-01

    The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.

  15. Designing an information search interface for younger and older adults.

    PubMed

    Pak, Richard; Price, Margaux M

    2008-08-01

    The present study examined Web-based information retrieval as a function of age for two information organization schemes: hierarchical organization and one organized around tags or keywords. Older adults' performance in information retrieval tasks has traditionally been lower compared with younger adults'. The current study examined the degree to which information organization moderated age-related performance differences on an information retrieval task. The theory of fluid and crystallized intelligence may provide insight into different kinds of information architectures that may reduce age-related differences in computer-based information retrieval performance. Fifty younger (18-23 years of age) and 50 older (55-76 years of age) participants browsed a Web site for answers to specific questions. Half of the participants browsed the hierarchically organized system (taxonomy), which maintained a one-to-one relationship between menu link and page, whereas the other half browsed the tag-based interface, with a many-to-one relationship between menu and page. This difference was expected to interact with age-related differences in fluid and crystallized intelligence. Age-related differences in information retrieval performance persisted; however, a tag-based retrieval interface reduced age-related differences, as compared with a taxonomical interface. Cognitive aging theory can lead to interface interventions that reduce age-related differences in performance with technology. In an information retrieval paradigm, older adults may be able to leverage their increased crystallized intelligence to offset fluid intelligence declines in a computer-based information search task. More research is necessary, but the results suggest that information retrieval interfaces organized around keywords may reduce age-related differences in performance.

  16. Convection measurement package for space processing sounding rocket flights. [low gravity manufacturing - fluid dynamics

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.

    1975-01-01

    The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.

  17. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

  18. Computational Performance of Intel MIC, Sandy Bridge, and GPU Architectures: Implementation of a 1D c++/OpenMP Electrostatic Particle-In-Cell Code

    DTIC Science & Technology

    2014-05-01

    fusion, space and astrophysical plasmas, but still the general picture can be presented quite well with the fluid approach [6, 7]. The microscopic...purpose computing CPU for algorithms where processing of large blocks of data is done in parallel. The reason for that is the GPU’s highly effective...parallel structure. Most of the image and video processing computations involve heavy matrix and vector op- erations over large amounts of data and

  19. Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Byun, Chansup; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel super computers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.

  20. Prediction of overall and blade-element performance for axial-flow pump configurations

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Kavanagh, P.; Okiishi, T. H.; Miller, M. J.

    1973-01-01

    A method and a digital computer program for prediction of the distributions of fluid velocity and properties in axial flow pump configurations are described and evaluated. The method uses the blade-element flow model and an iterative numerical solution of the radial equilbrium and continuity conditions. Correlated experimental results are used to generate alternative methods for estimating blade-element turning and loss characteristics. Detailed descriptions of the computer program are included, with example input and typical computed results.

  1. Computational Fluid Dynamics Analysis of the Effect of Plaques in the Left Coronary Artery

    PubMed Central

    Chaichana, Thanapong; Sun, Zhonghua; Jewkes, James

    2012-01-01

    This study was to investigate the hemodynamic effect of simulated plaques in left coronary artery models, which were generated from a sample patient's data. Plaques were simulated and placed at the left main stem and the left anterior descending (LAD) to produce at least 60% coronary stenosis. Computational fluid dynamics analysis was performed to simulate realistic physiological conditions that reflect the in vivo cardiac hemodynamics, and comparison of wall shear stress (WSS) between Newtonian and non-Newtonian fluid models was performed. The pressure gradient (PSG) and flow velocities in the left coronary artery were measured and compared in the left coronary models with and without presence of plaques during cardiac cycle. Our results showed that the highest PSG was observed in stenotic regions caused by the plaques. Low flow velocity areas were found at postplaque locations in the left circumflex, LAD, and bifurcation. WSS at the stenotic locations was similar between the non-Newtonian and Newtonian models although some more details were observed with non-Newtonian model. There is a direct correlation between coronary plaques and subsequent hemodynamic changes, based on the simulation of plaques in the realistic coronary models. PMID:22400051

  2. Angled injection: Hybrid fluid film bearings for cryogenic applications

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1995-01-01

    A computational bulk-flow analysis for prediction of the force coefficients of hybrid fluid film bearings with angled orifice injection is presented. Past measurements on water-lubricated hybrid bearings with angle orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and nul or negative whirl frequency ratios. A simple analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the recess which retards the shear flow induced by journal rotation, and consequently, reduces cross-coupling forces. The predictions from the model correlate well with experimental measurements from a radial and 45 deg angled orifice injection, five recess water hybrid bearings (C = 125 microns) operating at 10.2, 17.4, and 24.6 krpm and with nominal supply pressures equal to 4, 5.5, and 7 MPa. An application example for a liquid oxygen six recess/pad hybrid journal bearing shows the advantages of tangential orifice injection on the rotordynamic force coefficients and stability indicator for forward whirl motions and without performance degradation on direct stiffness and damping coefficients. The computer program generated, 'hydrojet,' extends and complements previously developed codes.

  3. Working research codes into fluid dynamics education: a science gateway approach

    NASA Astrophysics Data System (ADS)

    Mason, Lachlan; Hetherington, James; O'Reilly, Martin; Yong, May; Jersakova, Radka; Grieve, Stuart; Perez-Suarez, David; Klapaukh, Roman; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Research codes are effective for illustrating complex concepts in educational fluid dynamics courses, compared to textbook examples, an interactive three-dimensional visualisation can bring a problem to life! Various barriers, however, prevent the adoption of research codes in teaching: codes are typically created for highly-specific `once-off' calculations and, as such, have no user interface and a steep learning curve. Moreover, a code may require access to high-performance computing resources that are not readily available in the classroom. This project allows academics to rapidly work research codes into their teaching via a minimalist `science gateway' framework. The gateway is a simple, yet flexible, web interface allowing students to construct and run simulations, as well as view and share their output. Behind the scenes, the common operations of job configuration, submission, monitoring and post-processing are customisable at the level of shell scripting. In this talk, we demonstrate the creation of an example teaching gateway connected to the Code BLUE fluid dynamics software. Student simulations can be run via a third-party cloud computing provider or a local high-performance cluster. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  4. Pledget-Armed Sutures Affect the Haemodynamic Performance of Biologic Aortic Valve Substitutes: A Preliminary Experimental and Computational Study.

    PubMed

    Capelli, Claudio; Corsini, Chiara; Biscarini, Dario; Ruffini, Francesco; Migliavacca, Francesco; Kocher, Alfred; Laufer, Guenther; Taylor, Andrew M; Schievano, Silvia; Andreas, Martin; Burriesci, Gaetano; Rath, Claus

    2017-03-01

    Surgical aortic valve replacement is the most common procedure of choice for the treatment of severe aortic stenosis. Bioprosthetic valves are traditionally sewed-in the aortic root by means of pledget-armed sutures during open-heart surgery. Recently, novel bioprostheses which include a stent-based anchoring system have been introduced to allow rapid implantation, therefore reducing the duration and invasiveness of the intervention. Different effects on the hemodynamics were clinically reported associated with the two technologies. The aim of this study was therefore to investigate whether the differences in hemodynamic performances are an effect of different anchoring systems. Two commercially available bio-prosthetic aortic valves, one sewed-in with pledget-armed sutures and one rapid-deployment, were thus tested in this study by means of a combined approach of experimental and computational tools. In vitro experiments were performed to evaluate the overall hydrodynamic performance under identical standard conditions; computational fluid dynamics analyses were set-up to explore local flow variations due to different design of the anchoring system. The results showed how the performance of cardiac valve substitutes is negatively affected by the presence of pledget-armed sutures. These are causing flow disturbances, which in turn increase the mean pressure gradient and decrease the effective orifice area. The combined approach of experiments and numerical simulations can be effectively used to quantify the detailed relationship between local fluid-dynamics and overall performances associated with different valve technologies.

  5. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1975-01-01

    A recently developed, potentially high-performance nonarterial wick has been extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 K and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: (1) maximum heat pipe performance as a function of fluid inventory, (2) maximum performance as a function of operating temperature, (3) maximum performance as a function of evaporator elevation, and (4) influence of slab wick orientation on performance. The experimental data was compared with theoretical predictions obtained with the computer program GRADE.

  6. Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1993-01-01

    The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.

  7. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia.

    PubMed

    Drees, R; Forrest, L J; Chappell, R

    2009-07-01

    Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity.

  8. An analytical formula for the longitudinal resonance frequencies of a fluid-filled crack

    NASA Astrophysics Data System (ADS)

    Maeda, Y.; Kumagai, H.

    2013-12-01

    The fluid-filled crack model (Chouet, 1986, JGR) simulates the resonances of a rectangular crack filled with an inviscid fluid embedded in a homogeneous isotropic elastic medium. The model demonstrates the existence of a slow wave, known as the crack wave, that propagates along the solid-fluid interfaces. The wave velocity depends on the crack stiffness. The model has been used to interpret the peak frequencies of long-period (LP) and very long period (VLP) seismic events at various volcanoes (Chouet and Matoza, 2013, JVGR). Up to now, crack model simulations have been performed using the finite difference (Chouet, 1986) and boundary integral (Yamamoto and Kawakatsu, 2008, GJI) methods. These methods require computationally extensive procedures to estimate the complex frequencies of crack resonance modes. Establishing an easier way to calculate the frequencies of crack resonances would help understanding of the observed frequencies. In this presentation, we propose a simple analytical formula for the longitudinal resonance frequencies of a fluid-filled crack. We first evaluated the analytical expression proposed by Kumagai (2009, Encyc. Complex. Sys. Sci.) through a comparison of the expression with the peak frequencies computed by a 2D version of the FDM code of Chouet (1986). Our comparison revealed that the equation of Kumagai (2009) shows discrepancies with the resonant frequencies computed by the FDM. We then modified the formula as fmL = (m-1)a/[2L(1+2ɛmLC)1/2], (1) where L is the crack length, a is the velocity of sound in the fluid, C is the crack stiffness, m is a positive integer defined such that the wavelength of the normal displacement on the crack surface is 2L/m, and ɛmL is a constant that depends on the longitudinal resonance modes. Excellent fits were obtained between the peak frequencies calculated by the FDM and by Eq. (1), suggesting that this equation is suitable for the resonant frequencies. We also performed 3D FDM computations of the longitudinal mode resonances. The peak frequencies computed by the FDM are well fitted by Eq. (1). The best-fit ɛmL values are different from those for 2D and depend on W/L, where W is the crack width. Eq. (1) shows that fmL is a simple analytical function of a/L and C given m and W/L. This enables simple and rapid interpretations of the source processes of LP events, including estimation of the fluid properties and crack geometries as well as identification of the resonance modes of the individual peak frequencies. LP events at volcanoes often exhibit peak frequency variations. In such cases, the frequency variations can be easily converted to variations in the fluid properties and crack geometries. We showed that Eq. (1) is consistent with the analytical solution for an infinite crack given by Ferrazzini and Aki (1987, JGR). Although a theoretical derivation of Eq. (1) was not obtained yet, Eq. (1) is consistent with the frequencies expected from the wavelengths of the fluid pressure variation.

  9. Atmospheric cloud physics thermal systems analysis

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.

  10. High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.

    1996-01-01

    This research program dealt with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in January 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled three-component problem were developed during 1994 and 1995. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor tor parallel versions of ENG10 was developed. During 1995 and 1996 we developed the capability tor the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames. Benchmark results were presented at the 1196 Computational Aeroscience meeting.

  11. Statistical substantiation of the van der Waals theory of inhomogeneous fluids

    NASA Astrophysics Data System (ADS)

    Baidakov, V. G.; Protsenko, S. P.; Chernykh, G. G.; Boltachev, G. Sh.

    2002-04-01

    Computer experiments on simulation of thermodynamic properties and structural characteristics of a Lennard-Jones fluid in one- and two-phase models have been performed for the purpose of checking the base concepts of the van der Waals theory. Calculations have been performed by the method of molecular dynamics at cutoff radii of the intermolecular potential rc,1=2.6σ and rc,2=6.78σ. The phase equilibrium parameters, surface tension, and density distribution have been determined in a two-phase model with a flat liquid-vapor interface. The strong dependence of these properties on the value of rc is shown. The p,ρ,T properties and correlation functions have been calculated in a homogeneous model for a stable and a metastable fluid. An equation of state for a Lennard-Jones fluid describing stable, metastable, and labile regions has been built. It is shown that at T>=1.1 the properties of a flat interface within the computer experimental error can be described by the van der Waals square-gradient theory with an influence parameter κ independent of the density. Taking into account the density dependence of κ through the second moment of the direct correlation function will deteriorate the agreement of the theory with data of computer simulation. The contribution of terms of a higher order than (∇ρ)2 to the Helmholtz free energy of an inhomogeneous system has been considered. It is shown that taking into account terms proportional to (∇ρ)4 leaves no way of obtaining agreement between the theory and simulation data, while taking into consideration of terms proportional to (∇ρ)6 makes it possible to describe with adequate accuracy all the properties of a flat interface in the temperature range from the triple to the critical point.

  12. Special issue of Computers and Fluids in honor of Cecil E. (Chuck) Leith

    DOE PAGES

    Zhou, Ye; Herring, Jackson

    2017-05-12

    Here, this special issue of Computers and Fluids is dedicated to Cecil E. (Chuck) Leith in honor of his research contributions, leadership in the areas of statistical fluid mechanics, computational fluid dynamics, and climate theory. Leith's contribution to these fields emerged from his interest in solving complex fluid flow problems--even those at high Mach numbers--in an era well before large scale supercomputing became the dominant mode of inquiry into these fields. Yet the issues raised and solved by his research effort are still of vital interest today.

  13. Special issue of Computers and Fluids in honor of Cecil E. (Chuck) Leith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ye; Herring, Jackson

    Here, this special issue of Computers and Fluids is dedicated to Cecil E. (Chuck) Leith in honor of his research contributions, leadership in the areas of statistical fluid mechanics, computational fluid dynamics, and climate theory. Leith's contribution to these fields emerged from his interest in solving complex fluid flow problems--even those at high Mach numbers--in an era well before large scale supercomputing became the dominant mode of inquiry into these fields. Yet the issues raised and solved by his research effort are still of vital interest today.

  14. Automated Parameter Studies Using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosimis, Michael J.; Nemec, Marian

    2004-01-01

    Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated points in a design space by performing steady-state computations at fixed flight conditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration of interest. This "point analysis" provides detailed information about the flowfield, which aides an engineer in understanding, or correcting, a design. A point analysis is typically performed using high fidelity methods at a handful of critical design points, e.g. a cruise or landing configuration, or a sample of points along a flight trajectory.

  15. Improvements in the efficiency of turboexpanders in cryogenic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agahi, R.R.; Lin, M.C.; Ershaghi, B.

    1996-12-31

    Process designers have utilized turboexpanders in cryogenic processes because of their higher thermal efficiencies when compared with conventional refrigeration cycles. Process design and equipment performance have improved substantially through the utilization of modern technologies. Turboexpander manufacturers have also adopted Computational Fluid Dynamic Software, Computer Numerical Control Technology and Holography Techniques to further improve an already impressive turboexpander efficiency performance. In this paper, the authors explain the design process of the turboexpander utilizing modern technology. Two cases of turboexpanders processing helium (4.35{degrees}K) and hydrogen (56{degrees}K) will be presented.

  16. Role of computational fluid dynamics in unsteady aerodynamics for aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Goorjian, Peter M.

    1989-01-01

    In the last two decades there have been extensive developments in computational unsteady transonic aerodynamics. Such developments are essential since the transonic regime plays an important role in the design of modern aircraft. Therefore, there has been a large effort to develop computational tools with which to accurately perform flutter analysis at transonic speeds. In the area of Computational Fluid Dynamics (CFD), unsteady transonic aerodynamics are characterized by the feature of modeling the motion of shock waves over aerodynamic bodies, such as wings. This modeling requires the solution of nonlinear partial differential equations. Most advanced codes such as XTRAN3S use the transonic small perturbation equation. Currently, XTRAN3S is being used for generic research in unsteady aerodynamics and aeroelasticity of almost full aircraft configurations. Use of Euler/Navier Stokes equations for simple typical sections has just begun. A brief history of the development of CFD for aeroelastic applications is summarized. The development of unsteady transonic aerodynamics and aeroelasticity are also summarized.

  17. VOFTools - A software package of calculation tools for volume of fluid methods using general convex grids

    NASA Astrophysics Data System (ADS)

    López, J.; Hernández, J.; Gómez, P.; Faura, F.

    2018-02-01

    The VOFTools library includes efficient analytical and geometrical routines for (1) area/volume computation, (2) truncation operations that typically arise in VOF (volume of fluid) methods, (3) area/volume conservation enforcement (VCE) in PLIC (piecewise linear interface calculation) reconstruction and(4) computation of the distance from a given point to the reconstructed interface. The computation of a polyhedron volume uses an efficient formula based on a quadrilateral decomposition and a 2D projection of each polyhedron face. The analytical VCE method is based on coupling an interpolation procedure to bracket the solution with an improved final calculation step based on the above volume computation formula. Although the library was originally created to help develop highly accurate advection and reconstruction schemes in the context of VOF methods, it may have more general applications. To assess the performance of the supplied routines, different tests, which are provided in FORTRAN and C, were implemented for several 2D and 3D geometries.

  18. Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows

    NASA Astrophysics Data System (ADS)

    Staples, Anne

    2008-11-01

    Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.

  19. Computational strategies for three-dimensional flow simulations on distributed computer systems. Ph.D. Thesis Semiannual Status Report, 15 Aug. 1993 - 15 Feb. 1994

    NASA Technical Reports Server (NTRS)

    Weed, Richard Allen; Sankar, L. N.

    1994-01-01

    An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.

  20. Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade

    DTIC Science & Technology

    2016-11-01

    turbine blades to have fluid run through them during use1—a feature which many newer engines include. A cutaway view of a typical rotorcraft engine...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade ...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade by Luis

  1. Hydraulic Performance of Shallow Foundations for the Support of Vertical-Wall Bridge Abutments

    DOT National Transportation Integrated Search

    2017-02-01

    This study combined abutment flume experiments with numerical modeling using computational fluid dynamics (CFD) to investigate flow fields and scour at vertical-wall abutments with shallow foundations. The focus was situations dominated by flow contr...

  2. Computational fluid dynamics applications to improve crop production systems

    USDA-ARS?s Scientific Manuscript database

    Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...

  3. Direct Numerical Simulation of Liquid Nozzle Spray with Comparison to Shadowgraphy and X-Ray Computed Tomography Experimental Results

    NASA Astrophysics Data System (ADS)

    van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis

    2014-11-01

    In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.

  4. Construction and Utilization of a Beowulf Computing Cluster: A User's Perspective

    NASA Technical Reports Server (NTRS)

    Woods, Judy L.; West, Jeff S.; Sulyma, Peter R.

    2000-01-01

    Lockheed Martin Space Operations - Stennis Programs (LMSO) at the John C Stennis Space Center (NASA/SSC) has designed and built a Beowulf computer cluster which is owned by NASA/SSC and operated by LMSO. The design and construction of the cluster are detailed in this paper. The cluster is currently used for Computational Fluid Dynamics (CFD) simulations. The CFD codes in use and their applications are discussed. Examples of some of the work are also presented. Performance benchmark studies have been conducted for the CFD codes being run on the cluster. The results of two of the studies are presented and discussed. The cluster is not currently being utilized to its full potential; therefore, plans are underway to add more capabilities. These include the addition of structural, thermal, fluid, and acoustic Finite Element Analysis codes as well as real-time data acquisition and processing during test operations at NASA/SSC. These plans are discussed as well.

  5. Three-dimensional computational fluid dynamics modelling and experimental validation of the Jülich Mark-F solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    Nishida, R. T.; Beale, S. B.; Pharoah, J. G.; de Haart, L. G. J.; Blum, L.

    2018-01-01

    This work is among the first where the results of an extensive experimental research programme are compared to performance calculations of a comprehensive computational fluid dynamics model for a solid oxide fuel cell stack. The model, which combines electrochemical reactions with momentum, heat, and mass transport, is used to obtain results for an established industrial-scale fuel cell stack design with complex manifolds. To validate the model, comparisons with experimentally gathered voltage and temperature data are made for the Jülich Mark-F, 18-cell stack operating in a test furnace. Good agreement is obtained between the model and experiment results for cell voltages and temperature distributions, confirming the validity of the computational methodology for stack design. The transient effects during ramp up of current in the experiment may explain a lower average voltage than model predictions for the power curve.

  6. Computer animation challenges for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine

    2012-07-01

    Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.

  7. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model.

    PubMed

    Spühler, Jeannette H; Jansson, Johan; Jansson, Niclas; Hoffman, Johan

    2018-01-01

    Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.

  8. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model

    PubMed Central

    Spühler, Jeannette H.; Jansson, Johan; Jansson, Niclas; Hoffman, Johan

    2018-01-01

    Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework. PMID:29713288

  9. HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.

    Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is themore » inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.« less

  10. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE PAGES

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO 2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO 2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO 2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO 2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat fluxmore » profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  11. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO 2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO 2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO 2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO 2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat fluxmore » profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  12. Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.

  13. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  14. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.

    PubMed

    Makhijani, V B; Yang, H Q; Singhal, A K; Hwang, N H

    1994-04-01

    A combined experimental-computational study was performed to investigate the flow mechanics which could cause cavitation during the squeezing and rebounding phases of valve closure in the 29 mm mitral bileaflet Edwards-Duromedics (ED) mechanical heart valve (MHV). Leaflet closing motion was measured in vitro, and input into a computational fluid mechanics software package, CFD-ACE, to compute flow velocities and pressures in the small gap space between the occluder tip and valve housing. The possibility of cavitation inception was predicted when fluid pressures dropped below the saturated vapor pressure for blood plasma. The computational analysis indicated that cavitation is more likely to be induced during valve rebound rather than the squeezing phase of valve closure in the 29 mm ED-MHV. Also, there is a higher probability of cavitation at lower values of the gap width at the point of impact between the leaflet tip and housing. These predictions of cavitation inception are not likely to be significantly influenced by the water-hammer pressure gradient that develops during valve closure.

  15. Improved Helicopter Rotor Performance Prediction through Loose and Tight CFD/CSD Coupling

    NASA Astrophysics Data System (ADS)

    Ickes, Jacob C.

    Helicopters and other Vertical Take-Off or Landing (VTOL) vehicles exhibit an interesting combination of structural dynamic and aerodynamic phenomena which together drive the rotor performance. The combination of factors involved make simulating the rotor a challenging and multidisciplinary effort, and one which is still an active area of interest in the industry because of the money and time it could save during design. Modern tools allow the prediction of rotorcraft physics from first principles. Analysis of the rotor system with this level of accuracy provides the understanding necessary to improve its performance. There has historically been a divide between the comprehensive codes which perform aeroelastic rotor simulations using simplified aerodynamic models, and the very computationally intensive Navier-Stokes Computational Fluid Dynamics (CFD) solvers. As computer resources become more available, efforts have been made to replace the simplified aerodynamics of the comprehensive codes with the more accurate results from a CFD code. The objective of this work is to perform aeroelastic rotorcraft analysis using first-principles simulations for both fluids and structural predictions using tools available at the University of Toledo. Two separate codes are coupled together in both loose coupling (data exchange on a periodic interval) and tight coupling (data exchange each time step) schemes. To allow the coupling to be carried out in a reliable and efficient way, a Fluid-Structure Interaction code was developed which automatically performs primary functions of loose and tight coupling procedures. Flow phenomena such as transonics, dynamic stall, locally reversed flow on a blade, and Blade-Vortex Interaction (BVI) were simulated in this work. Results of the analysis show aerodynamic load improvement due to the inclusion of the CFD-based airloads in the structural dynamics analysis of the Computational Structural Dynamics (CSD) code. Improvements came in the form of improved peak/trough magnitude prediction, better phase prediction of these locations, and a predicted signal with a frequency content more like the flight test data than the CSD code acting alone. Additionally, a tight coupling analysis was performed as a demonstration of the capability and unique aspects of such an analysis. This work shows that away from the center of the flight envelope, the aerodynamic modeling of the CSD code can be replaced with a more accurate set of predictions from a CFD code with an improvement in the aerodynamic results. The better predictions come at substantially increased computational costs between 1,000 and 10,000 processor-hours.

  16. Progress Towards a Microgravity CFD Validation Study Using the ISS SPHERES-SLOSH Experiment

    NASA Technical Reports Server (NTRS)

    Storey, Jedediah M.; Kirk, Daniel; Marsell, Brandon (Editor); Schallhorn, Paul (Editor)

    2017-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecrafts mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many CFD programs have been validated by slosh experiments using various fluids in earth gravity, but prior to the ISS SPHERES-Slosh experiment1, little experimental data for long-duration, zero-gravity slosh existed. This paper presents the current status of an ongoing CFD validation study using the ISS SPHERES-Slosh experimental data.

  17. Progress Towards a Microgravity CFD Validation Study Using the ISS SPHERES-SLOSH Experiment

    NASA Technical Reports Server (NTRS)

    Storey, Jed; Kirk, Daniel (Editor); Marsell, Brandon (Editor); Schallhorn, Paul (Editor)

    2017-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecrafts mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many CFD programs have been validated by slosh experiments using various fluids in earth gravity, but prior to the ISS SPHERES-Slosh experiment, little experimental data for long-duration, zero-gravity slosh existed. This paper presents the current status of an ongoing CFD validation study using the ISS SPHERES-Slosh experimental data.

  18. Electric Motor Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin

    2015-06-09

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize themore » passive thermal performance, work is being performed to measure motor material thermal properties and thermal contact resistances. The active cooling performance of automatic transmission fluid (ATF) jets is also being measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings.« less

  19. FDNS CFD Code Benchmark for RBCC Ejector Mode Operation: Continuing Toward Dual Rocket Effects

    NASA Technical Reports Server (NTRS)

    West, Jeff; Ruf, Joseph H.; Turner, James E. (Technical Monitor)

    2000-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi -dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code [2] was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for the Diffusion and Afterburning (DAB) test conditions at the 200-psia thruster operation point, Results with and without downstream fuel injection are presented.

  20. Application of computational fluid dynamics and laminar flow technology for improved performance and sonic boom reduction

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1992-01-01

    A discussion is given of the many factors that affect sonic booms with particular emphasis on the application and development of improved computational fluid dynamics (CFD) codes. The benefits that accrue from interference (induced) lift, distributing lift using canard configurations, the use of wings with dihedral or anhedral and hybrid laminar flow control for drag reduction are detailed. The application of the most advanced codes to a wider variety of configurations along with improved ray-tracing codes to arrive at more accurate and, hopefully, lower sonic booms is advocated. Finally, it is speculated that when all of the latest technology is applied to the design of a supersonic transport it will be found environmentally acceptable.

  1. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JACKSON VL

    2011-08-31

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance atmore » full-scale.« less

  2. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  3. A computational fluid dynamics simulation of high- and low-current arcs in self-blast circuit breakers

    NASA Astrophysics Data System (ADS)

    Claessens, M.; Möller, K.; Thiel, H. G.

    1997-07-01

    Computational fluid dynamics calculations for high- and low-current arcs in an interrupter of the self-blast type have been performed. The mixing process of the hot PTFE cloud with the cold 0022-3727/30/13/011/img6 in the pressure chamber is strongly inhomogeneous. The existence of two different species has been taken into account by interpolation of the material functions according to their mass fraction in each grid cell. Depending on the arcing time, fault current and interrupter geometry, blow temperatures of up to 2000 K have been found. The simulation results for a decaying arc immediately before current zero yield a significantly reduced arc cooling at the stagnation point for high blow temperatures.

  4. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.

  5. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  6. Users' Manual for Computer Code SPIRALI Incompressible, Turbulent Spiral Grooved Cylindrical and Face Seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.; Shapiro, Wilbur

    2005-01-01

    The SPIRALI code predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures. A derivation of the equations governing the performance of turbulent, incompressible, spiral groove cylindrical and face seals along with a description of their solution is given. The computer codes are described, including an input description, sample cases, and comparisons with results of other codes.

  7. Mathematical Modeling of Diverse Phenomena

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  8. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler.

    PubMed

    de Boer, Anne H; Hagedoorn, Paul; Woolhouse, Robert; Wynn, Ed

    2012-09-01

    To use computational fluid dynamics (CFD) for evaluating and understanding the performance of the high-dose disposable Twincer™ dry powder inhaler, as well as to learn the effect of design modifications on dose entrainment, powder dispersion and retention behaviour. Comparison of predicted flow and particle behaviour from CFD computations with experimental data obtained with cascade impactor and laser diffraction analysis. Inhaler resistance, flow split, particle trajectories and particle residence times can well be predicted with CFD for a multiple classifier based inhaler like the Twincer™. CFD computations showed that the flow split of the Twincer™ is independent of the pressure drop across the inhaler and that the total flow rate can be decreased without affecting the dispersion efficacy or retention behaviour. They also showed that classifier symmetry can be improved by reducing the resistance of one of the classifier bypass channels, which for the current concept does not contribute to the swirl in the classifier chamber. CFD is a highly valuable tool for development and optimisation of dry powder inhalers. CFD can assist adapting the inhaler design to specific physico-chemical properties of the drug formulation with respect to dispersion and retention behaviour. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  9. Analytical approach on the stiffness of MR fluid filled spring

    NASA Astrophysics Data System (ADS)

    Sikulskyi, Stanislav; Kim, Daewon

    2017-04-01

    A solid mechanical spring generally exhibits uniform stiffness. This paper studies a mechanical spring filled with magnetorheological (MR) fluid to achieve controllable stiffness. The hollow spring filled with MR fluid is subjected to a controlled magnetic field in order to change the viscosity of the MR fluid and thereby to change the overall stiffness of the spring. MR fluid is considered as a Bingham viscoplastic linear material in the mathematical model. The goal of this research is to study the feasibility of such spring system by analytically computing the effects of MR fluid on overall spring stiffness. For this purpose, spring mechanics and MR fluid behavior are studied to increase the accuracy of the analysis. Numerical simulations are also performed to generate some assumptions, which simplify calculations in the analytical part. The accuracy of the present approach is validated by comparing the analytical results to previously known experimental results. Overall stiffness variations of the spring are also discussed for different spring designs.

  10. Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.; Hathaway, Michael D.; Chen, Jen-Ping

    2009-01-01

    Two recent research endeavors in turbomachinery at NASA Glenn Research Center have focused on compression system stall inception and compression system aerothermodynamic performance. Physical experiment and computational research are ongoing in support of these research objectives. TURBO, an unsteady, three-dimensional, Navier-Stokes computational fluid dynamics code commissioned and developed by NASA, has been utilized, enhanced, and validated in support of these endeavors. In the research which follows, TURBO is shown to accurately capture compression system flow range-from choke to stall inception-and also to accurately calculate fundamental aerothermodynamic performance parameters. Rigorous full-annulus calculations are performed to validate TURBO s ability to simulate the unstable, unsteady, chaotic stall inception process; as part of these efforts, full-annulus calculations are also performed at a condition approaching choke to further document TURBO s capabilities to compute aerothermodynamic performance data and support a NASA code assessment effort.

  11. A multilevel modeling approach to examining individual differences in skill acquisition for a computer-based task.

    PubMed

    Nair, Sankaran N; Czaja, Sara J; Sharit, Joseph

    2007-06-01

    This article explores the role of age, cognitive abilities, prior experience, and knowledge in skill acquisition for a computer-based simulated customer service task. Fifty-two participants aged 50-80 performed the task over 4 consecutive days following training. They also completed a battery that assessed prior computer experience and cognitive abilities. The data indicated that overall quality and efficiency of performance improved with practice. The predictors of initial level of performance and rate of change in performance varied according to the performance parameter assessed. Age and fluid intelligence predicted initial level and rate of improvement in overall quality, whereas crystallized intelligence and age predicted initial e-mail processing time, and crystallized intelligence predicted rate of change in e-mail processing time over days. We discuss the implications of these findings for the design of intervention strategies.

  12. Physically-Based Modelling and Real-Time Simulation of Fluids.

    NASA Astrophysics Data System (ADS)

    Chen, Jim Xiong

    1995-01-01

    Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.

  13. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.

  14. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  15. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC year 1 quarter 4 progress report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C.

    2011-12-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of July through September 2011.« less

  16. Nick Kincaid | NREL

    Science.gov Websites

    from Colorado School of Mines. His research interests include optical modeling, computational fluid dynamics, and heat transfer. His work involves optical performance modeling of concentrating solar power experience includes developing thermal and optical models of CSP components at Norwich Solar Technologies

  17. Computational and Experimental Investigations of the Molecular Scale Structure and Dynamics of Gologically Important Fluids and Mineral-Fluid Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Geoffrey

    United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).

  18. Thermal Hydraulic Computational Fluid Dynamics Simulations and Experimental Investigation of Deformed Fuel Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, Brian; Jackson, R. Brian

    2017-03-08

    The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services.more » The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.« less

  19. Development and Implementation of Non-Newtonian Rheology Into the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    DiSalvo, Roberto; Deaconu, Stelu; Majumdar, Alok

    2006-01-01

    One of the goals of this program was to develop the experimental and analytical/computational tools required to predict the flow of non-Newtonian fluids through the various system components of a propulsion system: pipes, valves, pumps etc. To achieve this goal we selected to augment the capabilities of NASA's Generalized Fluid System Simulation Program (GFSSP) software. GFSSP is a general-purpose computer program designed to calculate steady state and transient pressure and flow distributions in a complex fluid network. While the current version of the GFSSP code is able to handle various systems components the implicit assumption in the code is that the fluids in the system are Newtonian. To extend the capability of the code to non-Newtonian fluids, such as silica gelled fuels and oxidizers, modifications to the momentum equations of the code have been performed. We have successfully implemented in GFSSP flow equations for fluids with power law behavior. The implementation of the power law fluid behavior into the GFSSP code depends on knowledge of the two fluid coefficients, n and K. The determination of these parameters for the silica gels used in this program was performed experimentally. The n and K parameters for silica water gels were determined experimentally at CFDRC's Special Projects Laboratory, with a constant shear rate capillary viscometer. Batches of 8:1 (by weight) water-silica gel were mixed using CFDRC s 10-gallon gelled propellant mixer. Prior to testing the gel was allowed to rest in the rheometer tank for at least twelve hours to ensure that the delicate structure of the gel had sufficient time to reform. During the tests silica gel was pressure fed and discharged through stainless steel pipes ranging from 1", to 36", in length and three diameters; 0.0237", 0.032", and 0.047". The data collected in these tests included pressure at tube entrance and volumetric flowrate. From these data the uncorrected shear rate, shear stress, residence time, and viscosity were evaluated using formulae for non-Newtonian, power law fluids. The maximum shear rates (corrected for entrance effects) obtained in the rheometer with the current setup were in the 150,000 to 170,000sec- range. GFSSP simulations were performed with a flow circuit simulating the capillary rheometer and using Power Law gel viscosity coefficients from the experimental data. The agreement between the experimental data and the simulated flow curves was within +/-4% given quality entrance effect data.

  20. An Evaluation of Architectural Platforms for Parallel Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1996-01-01

    We study the computational, communication, and scalability characteristics of a computational fluid dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory multiprocessors with different topologies - the IBM SP and the Cray T3D. We investigate the impact of various networks connecting the cluster of workstations on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  1. Parallelizing Navier-Stokes Computations on a Variety of Architectural Platforms

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1997-01-01

    We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  2. CFD Evaluation of a 3rd Generation LDI Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2017-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a nineteen-element injector array arranged in a three-module, 7-5-7 element configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that meets effective area and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  3. Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development.

    PubMed

    Bai, Ge; Bee, Jared S; Biddlecombe, James G; Chen, Quanmin; Leach, W Thomas

    2012-02-28

    Agitation of small amounts of liquid is performed routinely in biopharmaceutical process, formulation, and packaging development. Protein degradation commonly results from agitation, but the specific stress responsible or degradation mechanism is usually not well understood. Characterization of the agitation stress methods is critical to identifying protein degradation mechanisms or specific sensitivities. In this study, computational fluid dynamics (CFD) was used to model agitation of 1 mL of fluid by four types of common laboratory agitation instruments, including a rotator, orbital shaker, magnetic stirrer and vortex mixer. Fluid stresses in the bulk liquid and near interfaces were identified, quantified and compared. The vortex mixer provides the most intense stresses overall, while the stir bar system presented locally intense shear proximal to the hydrophobic stir bar surface. The rotator provides gentler fluid stresses, but the air-water interfacial area and surface stresses are relatively high given its low rotational frequency. The orbital shaker provides intermediate-level stresses but with the advantage of a large stable platform for consistent vial-to-vial homogeneity. Selection of experimental agitation methods with targeted types and intensities of stresses can facilitate better understanding of protein degradation mechanisms and predictability for "real world" applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Three-dimensional numerical study of laminar confined slot jet impingement cooling using slurry of nano-encapsulated phase change material

    NASA Astrophysics Data System (ADS)

    Mohib Ur Rehman, M.; Qu, Z. G.; Fu, R. P.

    2016-10-01

    This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material (NEPCM) as a coolant. The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100nm suspended in it. A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code. The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered. The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid. It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and Cm=0.28. However, due to the higher viscosity of slurry compared with the base fluid, the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.

  5. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonneville, Alain; Jung, Hun Bok; Shao, Hongbo

    We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA – for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5more » samples for realistic ranges of pressures (up to 275 bar) and temperatures (up to 210 °C) for both the rock samples and the injected fluid. After fracturing, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.« less

  6. Irrigation of human prepared root canal – ex vivo based computational fluid dynamics analysis

    PubMed Central

    Šnjarić, Damir; Čarija, Zoran; Braut, Alen; Halaji, Adelaida; Kovačević, Maja; Kuiš, Davor

    2012-01-01

    Aim To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Methods Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Results Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. Conclusions The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values –irrigant flow pattern, velocity, and pressure – were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate. PMID:23100209

  7. Irrigation of human prepared root canal--ex vivo based computational fluid dynamics analysis.

    PubMed

    Snjaric, Damir; Carija, Zoran; Braut, Alen; Halaji, Adelaida; Kovacevic, Maja; Kuis, Davor

    2012-10-01

    To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values -irrigant flow pattern, velocity, and pressure - were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate.

  8. A numerical framework for bubble transport in a subcooled fluid flow

    NASA Astrophysics Data System (ADS)

    Jareteg, Klas; Sasic, Srdjan; Vinai, Paolo; Demazière, Christophe

    2017-09-01

    In this paper we present a framework for the simulation of dispersed bubbly two-phase flows, with the specific aim of describing vapor-liquid systems with condensation. We formulate and implement a framework that consists of a population balance equation (PBE) for the bubble size distribution and an Eulerian-Eulerian two-fluid solver. The PBE is discretized using the Direct Quadrature Method of Moments (DQMOM) in which we include the condensation of the bubbles as an internal phase space convection. We investigate the robustness of the DQMOM formulation and the numerical issues arising from the rapid shrinkage of the vapor bubbles. In contrast to a PBE method based on the multiple-size-group (MUSIG) method, the DQMOM formulation allows us to compute a distribution with dynamic bubble sizes. Such a property is advantageous to capture the wide range of bubble sizes associated with the condensation process. Furthermore, we compare the computational performance of the DQMOM-based framework with the MUSIG method. The results demonstrate that DQMOM is able to retrieve the bubble size distribution with a good numerical precision in only a small fraction of the computational time required by MUSIG. For the two-fluid solver, we examine the implementation of the mass, momentum and enthalpy conservation equations in relation to the coupling to the PBE. In particular, we propose a formulation of the pressure and liquid continuity equations, that was shown to correctly preserve mass when computing the vapor fraction with DQMOM. In addition, the conservation of enthalpy was also proven. Therefore a consistent overall framework that couples the PBE and two-fluid solvers is achieved.

  9. Multilevel Iterative Methods in Nonlinear Computational Plasma Physics

    NASA Astrophysics Data System (ADS)

    Knoll, D. A.; Finn, J. M.

    1997-11-01

    Many applications in computational plasma physics involve the implicit numerical solution of coupled systems of nonlinear partial differential equations or integro-differential equations. Such problems arise in MHD, systems of Vlasov-Fokker-Planck equations, edge plasma fluid equations. We have been developing matrix-free Newton-Krylov algorithms for such problems and have applied these algorithms to the edge plasma fluid equations [1,2] and to the Vlasov-Fokker-Planck equation [3]. Recently we have found that with increasing grid refinement, the number of Krylov iterations required per Newton iteration has grown unmanageable [4]. This has led us to the study of multigrid methods as a means of preconditioning matrix-free Newton-Krylov methods. In this poster we will give details of the general multigrid preconditioned Newton-Krylov algorithm, as well as algorithm performance details on problems of interest in the areas of magnetohydrodynamics and edge plasma physics. Work supported by US DoE 1. Knoll and McHugh, J. Comput. Phys., 116, pg. 281 (1995) 2. Knoll and McHugh, Comput. Phys. Comm., 88, pg. 141 (1995) 3. Mousseau and Knoll, J. Comput. Phys. (1997) (to appear) 4. Knoll and McHugh, SIAM J. Sci. Comput. 19, (1998) (to appear)

  10. Direct differentiation of the quasi-incompressible fluid formulation of fluid-structure interaction using the PFEM

    NASA Astrophysics Data System (ADS)

    Zhu, Minjie; Scott, Michael H.

    2017-07-01

    Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.

  11. Interfacial gauge methods for incompressible fluid dynamics

    PubMed Central

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  12. Computational Fluid Dynamics: Past, Present, And Future

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1988-01-01

    Paper reviews development of computational fluid dynamics and explores future prospects of technology. Report covers such topics as computer technology, turbulence, development of solution methodology, developemnt of algorithms, definition of flow geometries, generation of computational grids, and pre- and post-data processing.

  13. Aerodynamics of a Flapping Airfoil with a Flexible Tail

    NASA Astrophysics Data System (ADS)

    Lai, Alan Kai San

    This dissertation presents computational solutions to an airfoil in a oscillatory heaving motion with a aeroelastically flexible tail attachment. An unsteady potential flow solver is coupled to a structural solver to obtain the aeroelastic flow solution over an inviscid fluid to investigate the propulsive performance of such a configuration. The simulation is then extended to a two-dimensional viscous solver by coupling NASA's CFL3D solver to the structural solver to study how the flow is altered by the presence of viscosity. Finally, additional simulations are done in three dimensions over wings with varying aspect ratio to study the three-dimensional effects on the propulsive performance of an airfoil with an aeroelastic tail. The computation reveals that the addition of the aeroelastic trailing edge improved the thrust generated by a heaving airfoil significantly. As the frequency of the heaving motion increases, the thrust generated by the airfoil with the tail increases exponentially. In an inviscid fluid, the increase in thrust is insufficient to overcome the increase in power required to maintain the motion and as a result the overall propulsive efficiency is reduced. When the airfoil is heaving in a viscous fluid, the presence of a suction boundary layer and the appearance of leading edge vortex increase the thrust generated to such an extent that the propulsive efficiency is increased by about 3% when compared to the same airfoil with a rigid tail. The three-dimensional computations shows that the presence of the tip vorticies suppress some of the increase in thrust observed in the two-dimensional viscous computations for short span wings. For large span wings, the overall thrust enhancing capabilities of the aeroelastic tail is preserved.

  14. Analysis of hydrodynamic force acting on commercialized rowing blades using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Aziz, A. M. Y.; Harun, M. N.; Syahrom, Ardiyansyah; Omar, A. H.

    2017-04-01

    This paper presents a study of the hydrodynamics of several rowing blade designs. The study was done using Computational Fluid Dynamics (CFD) which enabled the investigation to be done similar to the experimental study, but with additional hydrodynamic visualization for further analysis and understanding. The CFD method was validated using quasi-static experimental data from Caplan (2007). Besides that, the proposed CFD analyses have improved the precious CFD results with the percentage of error of 6.58 percent of lift and 0.69 percent of drag force compared to 33.65 and 18.75 percent obtained by Coppel (2010). Consequent to the successful validation, the study then proceeded with the real size of Macon, Big balde and Fat blade. It was found that the hydrodynamic performance of the Fat blade was the highest due to the area, aspect ratio and the shape of the blade. Besides that, distribution of pressure for all models were also investigated which deepened the understanding of the blade fluid mechanics of rowing.

  15. Exploring a Multiphysics Resolution Approach for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Estupinan Donoso, Alvaro Antonio; Peters, Bernhard

    2018-06-01

    Metal additive manufacturing (AM) is a fast-evolving technology aiming to efficiently produce complex parts while saving resources. Worldwide, active research is being performed to solve the existing challenges of this growing technique. Constant computational advances have enabled multiscale and multiphysics numerical tools that complement the traditional physical experimentation. In this contribution, an advanced discrete-continuous concept is proposed to address the physical phenomena involved during laser powder bed fusion. The concept treats powder as discrete by the extended discrete element method, which predicts the thermodynamic state and phase change for each particle. The fluid surrounding is solved with multiphase computational fluid dynamics techniques to determine momentum, heat, gas and liquid transfer. Thus, results track the positions and thermochemical history of individual particles in conjunction with the prevailing fluid phases' temperature and composition. It is believed that this methodology can be employed to complement experimental research by analysis of the comprehensive results, which can be extracted from it to enable AM processes optimization for parts qualification.

  16. Analysis of solid particles falling down and interacting in a channel with sedimentation using fictitious boundary method

    NASA Astrophysics Data System (ADS)

    Usman, K.; Walayat, K.; Mahmood, R.; Kousar, N.

    2018-06-01

    We have examined the behavior of solid particles in particulate flows. The interaction of particles with each other and with the fluid is analyzed. Solid particles can move freely through a fixed computational mesh using an Eulerian approach. Fictitious boundary method (FBM) is used for treating the interaction between particles and the fluid. Hydrodynamic forces acting on the particle's surface are calculated using an explicit volume integral approach. A collision model proposed by Glowinski, Singh, Joseph and coauthors is used to handle particle-wall and particle-particle interactions. The particulate flow is computed using multigrid finite element solver FEATFLOW. Numerical experiments are performed considering two particles falling and colliding and sedimentation of many particles while interacting with each other. Results for these experiments are presented and compared with the reference values. Effects of the particle-particle interaction on the motion of the particles and on the physical behavior of the fluid-particle system has been analyzed.

  17. Evaluation of Computational Fluid Dynamics and Coupled Fluid-Solid Modeling for a Direct Transfer Preswirl System.

    PubMed

    Javiya, Umesh; Chew, John; Hills, Nick; Dullenkopf, Klaus; Scanlon, Timothy

    2013-05-01

    The prediction of the preswirl cooling air delivery and disk metal temperature are important for the cooling system performance and the rotor disk thermal stresses and life assessment. In this paper, standalone 3D steady and unsteady computation fluid dynamics (CFD), and coupled FE-CFD calculations are presented for prediction of these temperatures. CFD results are compared with previous measurements from a direct transfer preswirl test rig. The predicted cooling air temperatures agree well with the measurement, but the nozzle discharge coefficients are under predicted. Results from the coupled FE-CFD analyses are compared directly with thermocouple temperature measurements and with heat transfer coefficients on the rotor disk previously obtained from a rotor disk heat conduction solution. Considering the modeling limitations, the coupled approach predicted the solid metal temperatures well. Heat transfer coefficients on the rotor disk from CFD show some effect of the temperature variations on the heat transfer coefficients. Reasonable agreement is obtained with values deduced from the previous heat conduction solution.

  18. Fluid Analysis and Improved Structure of an ATEG Heat Exchanger Based on Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.

    2015-06-01

    In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.

  19. Comparison of ultrasonography, radiography and a single computed tomography slice for the identification of fluid within the tympanic bulla of rabbit cadavers.

    PubMed

    King, A M; Posthumus, J; Hammond, G; Sullivan, M

    2012-08-01

    Evaluation of the tympanic bulla (TB) in cases of otitis media in the rabbit can be a diagnostic challenge, although a feature often associated with the condition is the accumulation of fluid or material within the TB. Randomly selected TB from 40 rabbit cadavers were filled with a water-based, water-soluble jelly lubricant. A dorsoventral radiograph and single computed tomography (CT) slice were taken followed by an ultrasound (US) examination. Image interpretation was performed by blinded operators. The content of each TB was determined (fluid or gas) using each technique and the cadavers were frozen and sectioned for confirmation. CT was the most accurate diagnostic method, but US produced better results than radiography. Given the advantages of US over the other imaging techniques, the results suggest that further work is warranted to determine US applications in the evaluation of the rabbit TB and clinical cases of otitis media in this species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang

    2018-03-01

    A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.

  1. Simple, stable and reliable modeling of gas properties of organic working fluids in aerodynamic designs of turbomachinery for ORC and VCC

    NASA Astrophysics Data System (ADS)

    Kawakubo, T.

    2016-05-01

    A simple, stable and reliable modeling of the real gas nature of the working fluid is required for the aerodesigns of the turbine in the Organic Rankine Cycle and of the compressor in the Vapor Compression Cycle. Although many modern Computational Fluid Dynamics tools are capable of incorporating real gas models, simulations with such a gas model tend to be more time-consuming than those with a perfect gas model and even can be unstable due to the simulation near the saturation boundary. Thus a perfect gas approximation is still an attractive option to stably and swiftly conduct a design simulation. In this paper, an effective method of the CFD simulation with a perfect gas approximation is discussed. A method of representing the performance of the centrifugal compressor or the radial-inflow turbine by means of each set of non-dimensional performance parameters and translating the fictitious perfect gas result to the actual real gas performance is presented.

  2. A Comparison of Computed and Experimental Flowfields of the RAH-66 Helicopter

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Budge, A. M.; Duque, E. P. N.

    1996-01-01

    This paper compares and evaluates numerical and experimental flowfields of the RAH-66 Comanche helicopter. The numerical predictions were obtained by solving the Thin-Layer Navier-Stokes equations. The computations use actuator disks to investigate the main and tail rotor effects upon the fuselage flowfield. The wind tunnel experiment was performed in the 14 x 22 foot facility located at NASA Langley. A suite of flow conditions, rotor thrusts and fuselage-rotor-tail configurations were tested. In addition, the tunnel model and the computational geometry were based upon the same CAD definition. Computations were performed for an isolated fuselage configuration and for a rotor on configuration. Comparisons between the measured and computed surface pressures show areas of correlation and some discrepancies. Local areas of poor computational grid-quality and local areas of geometry differences account for the differences. These calculations demonstrate the use of advanced computational fluid dynamic methodologies towards a flight vehicle currently under development. It serves as an important verification for future computed results.

  3. Methods for Computationally Efficient Structured CFD Simulations of Complex Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.; Chen, Jen-Ping

    2012-01-01

    This research presents more efficient computational methods by which to perform multi-block structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-fidelity solutions of complicated geometries and their associated flows. This computational framework offers flexibility in allocating resources to balance process count and wall-clock computation time, while facilitating research interests of simulating axial compressor stall inception with more complete gridding of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows. These methods are validated and demonstrate improved computational efficiency when applied to complicated geometries and flows.

  4. CFD Based Computations of Flexible Helicopter Blades for Stability Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2011-01-01

    As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.

  5. Using Computers in Fluids Engineering Education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1998-01-01

    Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.

  6. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  7. Computer simulation to predict energy use, greenhouse gas emissions and costs for production of fluid milk using alternative processing methods

    USDA-ARS?s Scientific Manuscript database

    Computer simulation is a useful tool for benchmarking the electrical and fuel energy consumption and water use in a fluid milk plant. In this study, a computer simulation model of the fluid milk process based on high temperature short time (HTST) pasteurization was extended to include models for pr...

  8. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.

    PubMed

    Ene, Florentina; Delassus, Patrick; Morris, Liam

    2014-08-01

    The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.

  9. Software for Analyzing Sequences of Flow-Related Images

    NASA Technical Reports Server (NTRS)

    Klimek, Robert; Wright, Ted

    2004-01-01

    Spotlight is a computer program for analysis of sequences of images generated in combustion and fluid physics experiments. Spotlight can perform analysis of a single image in an interactive mode or a sequence of images in an automated fashion. The primary type of analysis is tracking of positions of objects over sequences of frames. Features and objects that are typically tracked include flame fronts, particles, droplets, and fluid interfaces. Spotlight automates the analysis of object parameters, such as centroid position, velocity, acceleration, size, shape, intensity, and color. Images can be processed to enhance them before statistical and measurement operations are performed. An unlimited number of objects can be analyzed simultaneously. Spotlight saves results of analyses in a text file that can be exported to other programs for graphing or further analysis. Spotlight is a graphical-user-interface-based program that at present can be executed on Microsoft Windows and Linux operating systems. A version that runs on Macintosh computers is being considered.

  10. Real-time contaminant sensing and control in civil infrastructure systems

    NASA Astrophysics Data System (ADS)

    Rimer, Sara; Katopodes, Nikolaos

    2014-11-01

    A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.

  11. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  12. Computational Fluid Dynamics Simulation of Flows in an Oxidation Ditch Driven by a New Surface Aerator.

    PubMed

    Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe

    2013-11-01

    In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k - ɛ model, RNG k - ɛ model, realizable k - ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use.

  13. User's guide for ENSAERO: A multidisciplinary program for fluid/structural/control interaction studies of aircraft (release 1)

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1994-01-01

    Strong interactions can occur between the flow about an aerospace vehicle and its structural components resulting in several important aeroelastic phenomena. These aeroelastic phenomena can significantly influence the performance of the vehicle. At present, closed-form solutions are available for aeroelastic computations when flows are in either the linear subsonic or supersonic range. However, for aeroelasticity involving complex nonlinear flows with shock waves, vortices, flow separations, and aerodynamic heating, computational methods are still under development. These complex aeroelastic interactions can be dangerous and limit the performance of aircraft. Examples of these detrimental effects are aircraft with highly swept wings experiencing vortex-induced aeroelastic oscillations, transonic regime at which the flutter speed is low, aerothermoelastic loads that play a critical role in the design of high-speed vehicles, and flow separations that often lead to buffeting with undesirable structural oscillations. The simulation of these complex aeroelastic phenomena requires an integrated analysis of fluids and structures. This report presents a summary of the development, applications, and procedures to use the multidisciplinary computer code ENSAERO. This code is based on the Euler/Navier-Stokes flow equations and modal/finite-element structural equations.

  14. Determination of Stability and Control Derivatives using Computational Fluid Dynamics and Automatic Differentiation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Green, Lawrence L.; Montgomery, Raymond C.; Raney, David L.

    1999-01-01

    With the recent interest in novel control effectors there is a need to determine the stability and control derivatives of new aircraft configurations early in the design process. These derivatives are central to most control law design methods and would allow the determination of closed-loop control performance of the vehicle. Early determination of the static and dynamic behavior of an aircraft may permit significant improvement in configuration weight, cost, stealth, and performance through multidisciplinary design. The classical method of determining static stability and control derivatives - constructing and testing wind tunnel models - is expensive and requires a long lead time for the resultant data. Wind tunnel tests are also limited to the preselected control effectors of the model. To overcome these shortcomings, computational fluid dynamics (CFD) solvers are augmented via automatic differentiation, to directly calculate the stability and control derivatives. The CFD forces and moments are differentiated with respect to angle of attack, angle of sideslip, and aircraft shape parameters to form these derivatives. A subset of static stability and control derivatives of a tailless aircraft concept have been computed by two differentiated inviscid CFD codes and verified for accuracy with central finite-difference approximations and favorable comparisons to a simulation database.

  15. An Integrated Solution for Performing Thermo-fluid Conjugate Analysis

    NASA Technical Reports Server (NTRS)

    Kornberg, Oren

    2009-01-01

    A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.

  16. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  17. A comparison of two central difference schemes for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Maksymiuk, C. M.; Swanson, R. C.; Pulliam, T. H.

    1990-01-01

    Five viscous transonic airfoil cases were computed by two significantly different computational fluid dynamics codes: An explicit finite-volume algorithm with multigrid, and an implicit finite-difference approximate-factorization method with Eigenvector diagonalization. Both methods are described in detail, and their performance on the test cases is compared. The codes utilized the same grids, turbulence model, and computer to provide the truest test of the algorithms. The two approaches produce very similar results, which, for attached flows, also agree well with experimental results; however, the explicit code is considerably faster.

  18. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Chen, P.-S.; Gumaste, U.; Leoinne, M.; Stern, P.

    1995-01-01

    This research program deals with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by an ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled 3-component problem were developed in 1994. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 has been developed. It is planned to use the steady-state global solution provided by ENG10 as input to a localized three-dimensional FSI analysis for engine regions where aeroelastic effects may be important.

  19. Fluid flow dynamics in MAS systems

    NASA Astrophysics Data System (ADS)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  20. Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Tan, Daisuke

    2012-10-01

    A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected to result in an extensive improvement in the effective cooling performance of large scale supercomputer systems.

  1. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  2. Scalable High Performance Computing: Direct and Large-Eddy Turbulent Flow Simulations Using Massively Parallel Computers

    NASA Technical Reports Server (NTRS)

    Morgan, Philip E.

    2004-01-01

    This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.

  3. Computer modeling of heat pipe performance

    NASA Technical Reports Server (NTRS)

    Peterson, G. P.

    1983-01-01

    A parametric study of the defining equations which govern the steady state operational characteristics of the Grumman monogroove dual passage heat pipe is presented. These defining equations are combined to develop a mathematical model which describes and predicts the operational and performance capabilities of a specific heat pipe given the necessary physical characteristics and working fluid. Included is a brief review of the current literature, a discussion of the governing equations, and a description of both the mathematical and computer model. Final results of preliminary test runs of the model are presented and compared with experimental tests on actual prototypes.

  4. Influence of the operational parameters on bioelectricity generation in continuous microbial fuel cell, experimental and computational fluid dynamics modelling

    NASA Astrophysics Data System (ADS)

    Sobieszuk, Paweł; Zamojska-Jaroszewicz, Anna; Makowski, Łukasz

    2017-12-01

    The influence of the organic loading rate (also known as active anodic chamber volume) on bioelectricity generation in a continuous, two-chamber microbial fuel cell for the treatment of synthetic wastewater, with glucose as the only carbon source, was examined. Ten sets of experiments with different combinations of hydraulic retention times (0.24-1.14 d) and influent chemical oxygen demand concentrations were performed to verify the impact of organic loading rate on the voltage generation capacity of a simple dual-chamber microbial fuel cell working in continuous mode. We found that there is an optimal hydraulic retention time value at which the maximum voltage is generated: 0.41 d. However, there were no similar effects, in terms of voltage generation, when a constant hydraulic retention time with different influent chemical oxygen demand of wastewater was used. The obtained maximal voltage value (600 mV) has also been compared to literature data. Computational fluid dynamics (CFD) was used to calculate the fluid flow and the exit age distribution of fluid elements in the reactor to explain the obtained experimental results and identify the crucial parameters for the design of bioreactors on an industrial scale.

  5. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms.

    PubMed

    Suzuki, Takashi; Takao, Hiroyuki; Suzuki, Takamasa; Suzuki, Tomoaki; Masuda, Shunsuke; Dahmani, Chihebeddine; Watanabe, Mitsuyoshi; Mamori, Hiroya; Ishibashi, Toshihiro; Yamamoto, Hideki; Yamamoto, Makoto; Murayama, Yuichi

    2017-01-01

    In most simulations of intracranial aneurysm hemodynamics, blood is assumed to be a Newtonian fluid. However, it is a non-Newtonian fluid, and its viscosity profile differs among individuals. Therefore, the common viscosity assumption may not be valid for all patients. This study aims to test the suitability of the common viscosity assumption. Blood viscosity datasets were obtained from two healthy volunteers. Three simulations were performed for three different-sized aneurysms, two using measured value-based non-Newtonian models and one using a Newtonian model. The parameters proposed to predict an aneurysmal rupture obtained using the non-Newtonian models were compared with those obtained using the Newtonian model. The largest difference (25%) in the normalized wall shear stress (NWSS) was observed in the smallest aneurysm. Comparing the difference ratio to the NWSS with the Newtonian model between the two Non-Newtonian models, the difference of the ratio was 17.3%. Irrespective of the aneurysmal size, computational fluid dynamics simulations with either the common Newtonian or non-Newtonian viscosity assumption could lead to values different from those of the patient-specific viscosity model for hemodynamic parameters such as NWSS.

  6. Personal Computer Transport Analysis Program

    NASA Technical Reports Server (NTRS)

    DiStefano, Frank, III; Wobick, Craig; Chapman, Kirt; McCloud, Peter

    2012-01-01

    The Personal Computer Transport Analysis Program (PCTAP) is C++ software used for analysis of thermal fluid systems. The program predicts thermal fluid system and component transients. The output consists of temperatures, flow rates, pressures, delta pressures, tank quantities, and gas quantities in the air, along with air scrubbing component performance. PCTAP s solution process assumes that the tubes in the system are well insulated so that only the heat transfer between fluid and tube wall and between adjacent tubes is modeled. The system described in the model file is broken down into its individual components; i.e., tubes, cold plates, heat exchangers, etc. A solution vector is built from the components and a flow is then simulated with fluid being transferred from one component to the next. The solution vector of components in the model file is built at the initiation of the run. This solution vector is simply a list of components in the order of their inlet dependency on other components. The component parameters are updated in the order in which they appear in the list at every time step. Once the solution vectors have been determined, PCTAP cycles through the components in the solution vector, executing their outlet function for each time-step increment.

  7. Impact of subgrid fluid turbulence on inertial particles subject to gravity

    NASA Astrophysics Data System (ADS)

    Rosa, Bogdan; Pozorski, Jacek

    2017-07-01

    Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.

  8. Molecular dynamics studies of transport properties and equation of state of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Nwobi, Obika C.

    Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the coefficients.

  9. Computational Fluid Dynamics Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1989-01-01

    The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.

  10. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  11. [Research activities in applied mathematics, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  12. Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.

  13. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia

    PubMed Central

    Drees, R.; Forrest, L. J.; Chappell, R.

    2009-01-01

    Objectives Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Methods Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Results Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. Clinical Significance We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity. PMID:19508490

  14. A Computational Investigation for Determining the Natural Frequencies and Damping Effects of Diaphragm-Implemented Spacecraft Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Lenahen, Brian; Bernier, Adrien; Gangadharan, Sathya; Sudermann, James; Marsell, Brandon

    2012-01-01

    Spin-stabilization maneuvers are typically performed by spacecraft entering low-earth orbit to maintain attitude stability. These maneuvers induce periodic fluid movement inside the spacecraft's propellant tank known as fuel slosh, which is responsible for creating forces and moments on the sidewalls of the propellant tank. These forces and moments adversely affect spin-stabilization and risk jeopardizing the mission of the spacecraft. Therefore, propellant tanks are designed with propellant management devices (PMD's) such as barnes or diaphragms which work to counteract the forces and moments associated with fuel slosh. However, despite the presence of PMD's, the threat of spin-stabilization interference still exists should the propellant tank be excited at its natural frequency. When the fluid is excited at its natural frequency, the forces and moments acting on the propellant tank are amplified and may result in destabilizing the spacecraft. Thus, a computational analysis is conducted concerning diaphragm-implemented propellant tanks excited at their natural frequencies. Using multi-disciplinary computational fluid dynamics (CFD) software, computational models are developed to reflect potential scenarios that spacecraft propellant tanks could experience. By simulating the propellant tank under a wide array of parameters and variables including fill-level, gravity and diaphragm material and shape, a better understanding is gained as to how these parameters individually and collectively affect liquid propellant tanks and ultimately, spacecraft attitude dynamics.

  15. Nonlinear Computational Aeroelasticity: Formulations and Solution Algorithms

    DTIC Science & Technology

    2003-03-01

    problem is proposed. Fluid-structure coupling algorithms are then discussed with some emphasis on distributed computing strategies. Numerical results...the structure and the exchange of structure motion to the fluid. The computational fluid dynamics code PFES is our finite element code for the numerical ...unstructured meshes). It was numerically demonstrated [1-3] that EBS can be less diffusive than SUPG [4-6] and the standard Finite Volume schemes

  16. Assessing the activity of sarcoidosis: quantitative /sup 67/Ga-citrate imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajman, W.A.; Greenwald, L.V.; Staton, G.

    1984-04-01

    Three different methods of quantitating /sup 67/Ga-citrate lung images - a visual index, a computer-assisted index, and the total-lung-to-background ratio - were compared in 71 studies of patients with biopsy-proven sarcoidosis. Fifty consecutive cases were analyzed independently by two different observers using all three methods. In these studies, each index was correlated with the cell differential in the bronchoalveolar lavage fluid. The total-lung-to-background ratio proved to be the simplest to perform; correlated best with the original visual index and the percentage of lymphocytes obtained in bronchoalveolar lavage fluid. Sensitivity for detecting active disease was 84% compared with 64% and 58%more » for the visual and computer-assisted indices, respectively, with no sacrifice in specificity.« less

  17. [Computational fluid dynamics simulation of different impeller combinations in high viscosity fermentation and its application].

    PubMed

    Dong, Shuhao; Zhu, Ping; Xu, Xiaoying; Li, Sha; Jiang, Yongxiang; Xu, Hong

    2015-07-01

    Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased.

  18. TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1976-01-01

    The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.

  19. Extended development of a sodium hydroxide thermal energy storage module

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Rowny, P. E.; Cohen, B. M.

    1980-01-01

    The post-test evaluation of a single heat exchanger sodium hydroxide thermal energy storage module for use in solar electric generation is reported. Chemical analyses of the storage medium used in the experimental model are presented. The experimental verification of the module performance using an alternate heat transfer fluid, Caloria HT-43, is described. Based on these results, a design analysis of a dual heat exchanger concept within the storage module is presented. A computer model and a reference design for the dual system (storage working fluid/power cycle working fluid) were completed. The dual system is estimated to have a capital cost of approximately one half that of the single heat exchanger concept.

  20. Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics.

    PubMed

    Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad

    2013-12-01

    Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.

  1. Pancreatic fluid collections: What is the ideal imaging technique?

    PubMed

    Dhaka, Narendra; Samanta, Jayanta; Kochhar, Suman; Kalra, Navin; Appasani, Sreekanth; Manrai, Manish; Kochhar, Rakesh

    2015-12-28

    Pancreatic fluid collections (PFCs) are seen in up to 50% of cases of acute pancreatitis. The Revised Atlanta classification categorized these collections on the basis of duration of disease and contents, whether liquid alone or a mixture of fluid and necrotic debris. Management of these different types of collections differs because of the variable quantity of debris; while patients with pseudocysts can be drained by straight-forward stent placement, walled-off necrosis requires multi-disciplinary approach. Differentiating these collections on the basis of clinical severity alone is not reliable, so imaging is primarily performed. Contrast-enhanced computed tomography is the commonly used modality for the diagnosis and assessment of proportion of solid contents in PFCs; however with certain limitations such as use of iodinated contrast material especially in renal failure patients and radiation exposure. Magnetic resonance imaging (MRI) performs better than computed tomography (CT) in characterization of pancreatic/peripancreatic fluid collections especially for quantification of solid debris and fat necrosis (seen as fat density globules), and is an alternative in those situations where CT is contraindicated. Also magnetic resonance cholangiopancreatography is highly sensitive for detecting pancreatic duct disruption and choledocholithiasis. Endoscopic ultrasound is an evolving technique with higher reproducibility for fluid-to-debris component estimation with the added advantage of being a single stage procedure for both diagnosis (solid debris delineation) and management (drainage of collection) in the same sitting. Recently role of diffusion weighted MRI and positron emission tomography/CT with (18)F-FDG labeled autologous leukocytes is also emerging for detection of infection noninvasively. Comparative studies between these imaging modalities are still limited. However we look forward to a time when this gap in literature will be fulfilled.

  2. Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels

    NASA Astrophysics Data System (ADS)

    Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.

    2018-05-01

    Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.

  3. Generating Inviscid and Viscous Fluid Flow Simulations over a Surface Using a Quasi-simultaneous Technique

    NASA Technical Reports Server (NTRS)

    Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)

    2014-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.

  4. Geometry definition and grid generation for a complete fighter aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1986-01-01

    Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.

  5. Geometry definition and grid generation for a complete fighter aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas A.

    1986-01-01

    Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. A procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system is presented. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.

  6. Drag penalty due to the asperities in the substrate of super-hydrophobic and liquid infused surfaces

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo J.; Arenas, Isnardo; Leonardi, Stefano

    2017-11-01

    Direct numerical simulations of two superposed fluids in a turbulent channel with a textured surface made of pinnacles of random height have been performed. The viscosity ratio between the two fluids are N =μo /μi = 50 (μo and μi are the viscosities of outer and inner fluid respectively) mimicking a super-hydrophobic surface (water over air) and N=2.5 (water over heptane) resembling a liquid infused surface. Two set of simulations have been performed varying the Reynolds number, Reτ = 180 and Reτ = 390 . The interface between the two fluids is flat simulating infinite surface tension. The position of the interface between the two fluids has been varied in the vertical direction from the base of the substrate (what would be a rough wall) to the highest point of the roughness. Drag reduction is very sensitive to the position of the interface between the two fluids. Asperities above the interface induce a large form drag and diminish considerably the drag reduction. When the mean height of the surface measured from the interface in the outer fluid is greater than one wall unit, k+ > 1 , the drag increases with respect to a smooth wall. Present results provide a guideline to the accuracy required in manufacturing super-hydrophobic and liquid infused surfaces. This work was supported under ONR MURI Grants N00014-12-0875 and N00014-12- 1-0962, Program Manager Dr. Ki-Han Kim. Numerical simulations were performed on the Texas Advanced Computer Center.

  7. The Microgravity Research Experiments (MICREX) Data Base. Volume 2

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  8. The Microgravity Research Experiments (MICREX) Data Base. Volume 1

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J.C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  9. Global Magnetohydrodynamic Simulation Using High Performance FORTRAN on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    High Performance Fortran (HPF) is one of modern and common techniques to achieve high performance parallel computation. We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5 VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  10. Interfacial gauge methods for incompressible fluid dynamics

    DOE PAGES

    Saye, R.

    2016-06-10

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less

  11. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  12. Decoupled CFD-based optimization of efficiency and cavitation performance of a double-suction pump

    NASA Astrophysics Data System (ADS)

    Škerlavaj, A.; Morgut, M.; Jošt, D.; Nobile, E.

    2017-04-01

    In this study the impeller geometry of a double-suction pump ensuring the best performances in terms of hydraulic efficiency and reluctance of cavitation is determined using an optimization strategy, which was driven by means of the modeFRONTIER optimization platform. The different impeller shapes (designs) are modified according to the optimization parameters and tested with a computational fluid dynamics (CFD) software, namely ANSYS CFX. The simulations are performed using a decoupled approach, where only the impeller domain region is numerically investigated for computational convenience. The flow losses in the volute are estimated on the base of the velocity distribution at the impeller outlet. The best designs are then validated considering the computationally more expensive full geometry CFD model. The overall results show that the proposed approach is suitable for quick impeller shape optimization.

  13. CFD-Based Design of a Filming Injector for N+3 Combustors

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2016-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements coupled with a new fuel-filming injector design for next-generation N+3 combustors. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations on a N+3 injector configuration, in a single-element and a five-element injector array. All computations were performed with a consistent approach towards mesh-generation, spray-, ignition- and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that met effective area, aerodynamics, and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  14. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches.

    PubMed

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2010-08-26

    This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports. 2010 Elsevier Ltd. All rights reserved.

  15. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. II. Structural features.

    PubMed

    Sesé, Luis M; Bailey, Lorna E

    2007-04-28

    The structural features of the quantum hard-sphere system in the region of the fluid-face-centered-cubic-solid transition, for reduced number densities 0.45

  16. FaCSI: A block parallel preconditioner for fluid-structure interaction in hemodynamics

    NASA Astrophysics Data System (ADS)

    Deparis, Simone; Forti, Davide; Grandperrin, Gwenol; Quarteroni, Alfio

    2016-12-01

    Modeling Fluid-Structure Interaction (FSI) in the vascular system is mandatory to reliably compute mechanical indicators in vessels undergoing large deformations. In order to cope with the computational complexity of the coupled 3D FSI problem after discretizations in space and time, a parallel solution is often mandatory. In this paper we propose a new block parallel preconditioner for the coupled linearized FSI system obtained after space and time discretization. We name it FaCSI to indicate that it exploits the Factorized form of the linearized FSI matrix, the use of static Condensation to formally eliminate the interface degrees of freedom of the fluid equations, and the use of a SIMPLE preconditioner for saddle-point problems. FaCSI is built upon a block Gauss-Seidel factorization of the FSI Jacobian matrix and it uses ad-hoc preconditioners for each physical component of the coupled problem, namely the fluid, the structure and the geometry. In the fluid subproblem, after operating static condensation of the interface fluid variables, we use a SIMPLE preconditioner on the reduced fluid matrix. Moreover, to efficiently deal with a large number of processes, FaCSI exploits efficient single field preconditioners, e.g., based on domain decomposition or the multigrid method. We measure the parallel performances of FaCSI on a benchmark cylindrical geometry and on a problem of physiological interest, namely the blood flow through a patient-specific femoropopliteal bypass. We analyze the dependence of the number of linear solver iterations on the cores count (scalability of the preconditioner) and on the mesh size (optimality).

  17. Self-reconfigurable ship fluid-network modeling for simulation-based design

    NASA Astrophysics Data System (ADS)

    Moon, Kyungjin

    Our world is filled with large-scale engineering systems, which provide various services and conveniences in our daily life. A distinctive trend in the development of today's large-scale engineering systems is the extensive and aggressive adoption of automation and autonomy that enable the significant improvement of systems' robustness, efficiency, and performance, with considerably reduced manning and maintenance costs, and the U.S. Navy's DD(X), the next-generation destroyer program, is considered as an extreme example of such a trend. This thesis pursues a modeling solution for performing simulation-based analysis in the conceptual or preliminary design stage of an intelligent, self-reconfigurable ship fluid system, which is one of the concepts of DD(X) engineering plant development. Through the investigations on the Navy's approach for designing a more survivable ship system, it is found that the current naval simulation-based analysis environment is limited by the capability gaps in damage modeling, dynamic model reconfiguration, and simulation speed of the domain specific models, especially fluid network models. As enablers of filling these gaps, two essential elements were identified in the formulation of the modeling method. The first one is the graph-based topological modeling method, which will be employed for rapid model reconstruction and damage modeling, and the second one is the recurrent neural network-based, component-level surrogate modeling method, which will be used to improve the affordability and efficiency of the modeling and simulation (M&S) computations. The integration of the two methods can deliver computationally efficient, flexible, and automation-friendly M&S which will create an environment for more rigorous damage analysis and exploration of design alternatives. As a demonstration for evaluating the developed method, a simulation model of a notional ship fluid system was created, and a damage analysis was performed. Next, the models representing different design configurations of the fluid system were created, and damage analyses were performed with them in order to find an optimal design configuration for system survivability. Finally, the benefits and drawbacks of the developed method were discussed based on the result of the demonstration.

  18. A performance comparison of the Cray-2 and the Cray X-MP

    NASA Technical Reports Server (NTRS)

    Schmickley, Ronald; Bailey, David H.

    1986-01-01

    A suite of thirteen large Fortran benchmark codes were run on Cray-2 and Cray X-MP supercomputers. These codes were a mix of compute-intensive scientific application programs (mostly Computational Fluid Dynamics) and some special vectorized computation exercise programs. For the general class of programs tested on the Cray-2, most of which were not specially tuned for speed, the floating point operation rates varied under a variety of system load configurations from 40 percent up to 125 percent of X-MP performance rates. It is concluded that the Cray-2, in the original system configuration studied (without memory pseudo-banking) will run untuned Fortran code, on average, about 70 percent of X-MP speeds.

  19. Asynchronous communication in spectral-element and discontinuous Galerkin methods for atmospheric dynamics - a case study using the High-Order Methods Modeling Environment (HOMME-homme_dg_branch)

    NASA Astrophysics Data System (ADS)

    Jamroz, Benjamin F.; Klöfkorn, Robert

    2016-08-01

    The scalability of computational applications on current and next-generation supercomputers is increasingly limited by the cost of inter-process communication. We implement non-blocking asynchronous communication in the High-Order Methods Modeling Environment for the time integration of the hydrostatic fluid equations using both the spectral-element and discontinuous Galerkin methods. This allows the overlap of computation with communication, effectively hiding some of the costs of communication. A novel detail about our approach is that it provides some data movement to be performed during the asynchronous communication even in the absence of other computations. This method produces significant performance and scalability gains in large-scale simulations.

  20. Operationally Efficient Propulsion System Study (OEPSS) Data Book. Volume 8; Integrated Booster Propulsion Module (BPM) Engine Start Dynamics

    NASA Technical Reports Server (NTRS)

    Kemp, Victoria R.

    1992-01-01

    A fluid-dynamic, digital-transient computer model of an integrated, parallel propulsion system was developed for the CDC mainframe and the SUN workstation computers. Since all STME component designs were used for the integrated system, computer subroutines were written characterizing the performance and geometry of all the components used in the system, including the manifolds. Three transient analysis reports were completed. The first report evaluated the feasibility of integrated engine systems in regards to the start and cutoff transient behavior. The second report evaluated turbopump out and combined thrust chamber/turbopump out conditions. The third report presented sensitivity study results in staggered gas generator spin start and in pump performance characteristics.

  1. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German; Kidd, Terrel G.

    1999-01-01

    A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

  2. Computer program for computing the properties of seventeen fluids. [cryogenic liquids

    NASA Technical Reports Server (NTRS)

    Brennan, J. A.; Friend, D. G.; Arp, V. D.; Mccarty, R. D.

    1992-01-01

    The present study describes modifications and additions to the MIPROPS computer program for calculating the thermophysical properties of 17 fluids. These changes include adding new fluids, new properties, and a new interface to the program. The new program allows the user to select the input and output parameters and the units to be displayed for each parameter. Fluids added to the MIPROPS program are carbon dioxide, carbon monoxide, deuterium, helium, normal hydrogen, and xenon. The most recent modifications to the MIPROPS program are the addition of viscosity and thermal conductivity correlations for parahydrogen and the addition of the fluids normal hydrogen and xenon. The recently added interface considerably increases the program's utility.

  3. Tools for 3D scientific visualization in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.

  4. High-resolution subgrid models: background, grid generation, and implementation

    NASA Astrophysics Data System (ADS)

    Sehili, Aissa; Lang, Günther; Lippert, Christoph

    2014-04-01

    The basic idea of subgrid models is the use of available high-resolution bathymetric data at subgrid level in computations that are performed on relatively coarse grids allowing large time steps. For that purpose, an algorithm that correctly represents the precise mass balance in regions where wetting and drying occur was derived by Casulli (Int J Numer Method Fluids 60:391-408, 2009) and Casulli and Stelling (Int J Numer Method Fluids 67:441-449, 2010). Computational grid cells are permitted to be wet, partially wet, or dry, and no drying threshold is needed. Based on the subgrid technique, practical applications involving various scenarios were implemented including an operational forecast model for water level, salinity, and temperature of the Elbe Estuary in Germany. The grid generation procedure allows a detailed boundary fitting at subgrid level. The computational grid is made of flow-aligned quadrilaterals including few triangles where necessary. User-defined grid subdivision at subgrid level allows a correct representation of the volume up to measurement accuracy. Bottom friction requires a particular treatment. Based on the conveyance approach, an appropriate empirical correction was worked out. The aforementioned features make the subgrid technique very efficient, robust, and accurate. Comparison of predicted water levels with the comparatively highly resolved classical unstructured grid model shows very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out in less than 10 min on a standard PC-like hardware. The subgrid technique is therefore a promising framework to perform accurate temporal and spatial large-scale simulations of coastal and estuarine flow and transport processes at low computational cost.

  5. Segment-specific resistivity improves body fluid volume estimates from bioimpedance spectroscopy in hemodialysis patients.

    PubMed

    Zhu, F; Kuhlmann, M K; Kaysen, G A; Sarkar, S; Kaitwatcharachai, C; Khilnani, R; Stevens, L; Leonard, E F; Wang, J; Heymsfield, S; Levin, N W

    2006-02-01

    Discrepancies in body fluid estimates between segmental bioimpedance spectroscopy (SBIS) and gold-standard methods may be due to the use of a uniform value of tissue resistivity to compute extracellular fluid volume (ECV) and intracellular fluid volume (ICV). Discrepancies may also arise from the exclusion of fluid volumes of hands, feet, neck, and head from measurements due to electrode positions. The aim of this study was to define the specific resistivity of various body segments and to use those values for computation of ECV and ICV along with a correction for unmeasured fluid volumes. Twenty-nine maintenance hemodialysis patients (16 men) underwent body composition analysis including whole body MRI, whole body potassium (40K) content, deuterium, and sodium bromide dilution, and segmental and wrist-to-ankle bioimpedance spectroscopy, all performed on the same day before a hemodialysis. Segment-specific resistivity was determined from segmental fat-free mass (FFM; by MRI), hydration status of FFM (by deuterium and sodium bromide), tissue resistance (by SBIS), and segment length. Segmental FFM was higher and extracellular hydration of FFM was lower in men compared with women. Segment-specific resistivity values for arm, trunk, and leg all differed from the uniform resistivity used in traditional SBIS algorithms. Estimates for whole body ECV, ICV, and total body water from SBIS using segmental instead of uniform resistivity values and after adjustment for unmeasured fluid volumes of the body did not differ significantly from gold-standard measures. The uniform tissue resistivity values used in traditional SBIS algorithms result in underestimation of ECV, ICV, and total body water. Use of segmental resistivity values combined with adjustment for body volumes that are neglected by traditional SBIS technique significantly improves estimations of body fluid volume in hemodialysis patients.

  6. Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John N.

    1997-01-01

    A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.

  7. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  8. Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet

    NASA Technical Reports Server (NTRS)

    McMaster, Matthew S.

    1992-01-01

    Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.

  9. Numerical simulation of fluid flow around a scramaccelerator projectile

    NASA Technical Reports Server (NTRS)

    Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.

    1991-01-01

    Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.

  10. A variational multiscale method for particle-cloud tracking in turbomachinery flows

    NASA Astrophysics Data System (ADS)

    Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.

    2014-11-01

    We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.

  11. Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach.

    PubMed

    Luca, Adrian; Marchiano, Regis; Chassaing, Jean-Camille

    2016-06-01

    This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.

  12. Tensor methodology and computational geometry in direct computational experiments in fluid mechanics

    NASA Astrophysics Data System (ADS)

    Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Julia

    2017-07-01

    The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite - element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate systems with direct and inverse transformations. So new method for mathematical representation and synthesis of computational experiment based on large particle method is proposed.

  13. Computational Analyses of Offset Stream Nozzles for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Dippold, Vance, III; Foster, Lancert; Wiese,Michael

    2007-01-01

    The Wind computational fluid dynamics code was used to perform a series of simulations on two offset stream nozzle concepts for jet noise reduction. The first concept used an S-duct to direct the secondary stream to the lower side of the nozzle. The second concept used vanes to turn the secondary flow downward. The analyses were completed in preparation of tests conducted in the NASA Glenn Research Center Aeroacoustic Propulsion Laboratory. The offset stream nozzles demonstrated good performance and reduced the amount of turbulence on the lower side of the jet plume. The computer analyses proved instrumental in guiding the development of the final test configurations and giving insight into the flow mechanics of offset stream nozzles. The computational predictions were compared with flowfield results from the jet rig testing and showed excellent agreement.

  14. Computational Fluid Dynamics and Experimental Characterization of the Pediatric Pump-Lung.

    PubMed

    Wu, Zhongjun J; Gellman, Barry; Zhang, Tao; Taskin, M Ertan; Dasse, Kurt A; Griffith, Bartley P

    2011-12-01

    The pediatric pump-lung (PediPL) is a miniaturized integrated pediatric pump-oxygenator specifically designed for cardiac or cardiopulmonary support for patients weighing 5-20 kg to allow mobility and extended use for 30 days. The PediPL incorporates a magnetically levitated impeller with uniquely configured hollow fiber membranes into a single unit capable of performing both pumping and gas exchange. A combined computational and experimental study was conducted to characterize the functional and hemocompatibility performances of this newly developed device. The three-dimensional flow features of the PediPL and its hemolytic characteristics were analyzed using computational fluid dynamics based modeling. The oxygen exchange was modeled based on a convection-diffusion-reaction process. The hollow fiber membranes were modeled as a porous medium which incorporates the flow resistance in the bundle by an added momentum sink term. The pumping function was evaluated for the required range of operating conditions (0.5-2.5 L/min and 1000-3000 rpm). The blood damage potentials were further analyzed in terms of flow and shear stress fields, and the calculations of hemolysis index. In parallel, the hydraulic pump performance, oxygen transfer and hemolysis level were quantified experimentally. Based on the computational and experimental results, the PediPL device is found to be functional to provide necessary oxygen transfer and blood pumping requirements for the pediatric patients. Smooth blood flow characteristics and low blood damage potential were observed in the entire device. The in-vitro tests further confirmed that the PediPL can provide adequate blood pumping and oxygen transfer over the range of intended operating conditions with acceptable hemolytic performance. The rated flow rate for oxygenation is 2.5 L/min. The normalized index of hemolysis is 0.065 g/100L at 1.0 L/min and 3000 rpm.

  15. Towards a new method for modeling multicomponent, multiphase flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Kong, X. Z.; Schaedle, P.; Leal, A. M. M.; Saar, M. O.

    2016-12-01

    The ability to computationally simulate multiphase-multicomponent fluid flow, coupled with geochemical reactions between fluid species and rock minerals, in porous and/or fractured subsurface systems is of major importance to a vast number of applications. These include (1) carbon dioxide storage in geologic formations, (2) geothermal energy extraction, (3) combinations of the latter two applications during CO2-Plume Geothermal energy extraction, (4) waste fluid and waste storage, as well as (5) groundwater and contaminant transport. Modeling these systems with such a wide variety of coupled physical and chemical processes is both challenging and computationally expensive. In this work we present a new approach to develop a simulator for multicomponent-multiphase flow and reactive transport in porous media by using state of the art numerical tools, namely FEniCS (fenicsproject.org) and Reaktoro (reaktoro.org). The governing partial differential equations for fluid flow and transport are solved using FEniCS, which enables fast and efficient implementation of computer codes for the simulation of complex physical phenomena using finite element methods on unstructured meshes. FEniCS supports a wide range of finite element schemes of special interest to porous media flow. In addition, FEniCS interfaces with many sparse linear solvers and provides convenient tools for adaptive mesh refinement and the capability of massively parallel calculations. A fundamental component of our contribution is the coupling of our FEniCS based flow and transport solver with our chemical reaction simulator, Reaktoro, which implements efficient, robust, and accurate methods for chemical equilibrium and kinetics calculations at every node of the mesh, at every time step. These numerical methods for reaction modeling have been especially developed for performance-critical applications such as reactive transport modeling. Furthermore, Reaktoro is also used for the calculation of thermodynamic properties of rock minerals and fluids. The proposed simulator can, however, be coupled with other back-ends for the calculation of both thermodynamic and thermophysical properties of rock minerals and fluids. We present several example applications of our new approach, demonstrating its capabilities and computation speed.

  16. Current structure of strongly nonlinear interfacial solitary waves

    NASA Astrophysics Data System (ADS)

    Semin, Sergey; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim; Churaev, Egor

    2015-04-01

    The characteristics of highly nonlinear solitary internal waves (solitons) in two-layer flow are computed within the fully nonlinear Navier-Stokes equations with use of numerical model of the Massachusetts Institute of Technology (MITgcm). The verification and adaptation of the model is based on the data from laboratory experiments [Carr & Davies, 2006]. The present paper also compares the results of our calculations with the computations performed in the framework of the fully nonlinear Bergen Ocean Model [Thiem et al, 2011]. The comparison of the computed soliton parameters with the predictions of the weakly nonlinear theory based on the Gardner equation is given. The occurrence of reverse flow in the bottom layer directly behind the soliton is confirmed in numerical simulations. The trajectories of Lagrangian particles in the internal soliton on the surface, on the interface and near the bottom are computed. The results demonstrated completely different trajectories at different depths of the model area. Thus, in the surface layer is observed the largest displacement of Lagrangian particles, which can be more than two and a half times larger than the characteristic width of the soliton. Located at the initial moment along the middle pycnocline fluid particles move along the elongated vertical loop at a distance of not more than one third of the width of the solitary wave. In the bottom layer of the fluid moves in the opposite direction of propagation of the internal wave, but under the influence of the reverse flow, when the bulk of the velocity field of the soliton ceases to influence the trajectory, it moves in the opposite direction. The magnitude of displacement of fluid particles in the bottom layer is not more than the half-width of the solitary wave. 1. Carr, M., and Davies, P.A. The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid. Phys. Fluids, 2006, vol. 18, No. 1, 1 - 10. 2. Thiem, O., Carr, M., Berntsen, J., and Davies, P.A. Numerical simulation of internal solitary wave-induced reverse flow and associated vortices in a shallow, two-layer fluid benthic boundary layer. Ocean Dynamics, 2011, vol. 61, No. 6, 857 - 872.

  17. A magnetic fluid seal for rotary blood pumps: effects of seal structure on long-term performance in liquid.

    PubMed

    Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya

    2011-03-01

    A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids. We developed an MF seal that has a "shield" mechanism, and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Three types of MF seals were used. Seal A was a conventional seal without a shield. Seal B had the same structure as that of Seal A, but the seal was installed at 1 mm below liquid level. Seal C was a seal with a shield and the MF was set at 1 mm below liquid level. Seal A failed after 6 and 11 days. Seal B showed better results (20 and 73 days). Seal C showed long-term durability (217 and 275 days). The reason for different results in different seal structures was considered to be different flow conditions near the magnetic fluid. Fluid dynamics near the MF in the pump were analyzed using computational fluid dynamics (CFD) software. We have developed an MF seal with a shield that works in liquid for >275 days. The MF seal is promising as a shaft seal for rotary blood pumps.

  18. Notes on aerodynamic forces 1 : rectilinear motion

    NASA Technical Reports Server (NTRS)

    Munk, Max M

    1922-01-01

    The study of the motion of perfect fluids is of paramount importance for the understanding of the chief phenomena occurring in the air surrounding an aircraft, and for the numerical determination of their effects. The author recently successfully employed some simple methods for the investigation of the flow of a perfect fluid that have never been mentioned in connection with aeronautical problems. These methods appeal particularly to the engineer who is untrained in performing laborious mathematical computations, as they do away with these and allow one to obtain many interesting results by the mere application of some general and well-known principles of mechanics. Discussed here are the kinetic energy of moving fluids, the momentum of a body in a perfect fluid, two dimensional flow, three dimensional flow, and the distribution of the transverse forces of very elongated surfaces of revolution.

  19. The effects of the secondary fluid temperature on the energy transfer in an unsteady ejector with a radial-flow diffuser

    NASA Astrophysics Data System (ADS)

    Ababneh, Amer Khalil; Jawarneh, Ali M.; Tlilan, Hitham M.; Ababneh, Mohammad K.

    2009-11-01

    Unsteady ejectors are devices whereby energy is exchanged between directly interacting fluids. Unlike steady ejectors, the mechanism responsible for the energy transfer is reversible in nature and thus higher efficiencies are perceivable. A potential application for PEE is for enhancement in output power per weight as in turbochargers. The unsteady ejector when used as a turbocharger the device is expected to perform under wide range of ambient temperatures. Therefore, it is important to investigate the effects of the temperature of the induced ambient air on the energy transfer. The radial-flow ejector, which usually leads to higher-pressure ratios with fewer stages, was selected for the investigation. The flow field is investigated at two Mach numbers 2.5 and 3.0 utilizing rectangular short-length supersonic nozzles for accelerating the primary fluid. Fundamental to the enhancement of these devices performance relies on the management of the flow field in such a way to minimize entropy production. The numerical analyses were conducted utilizing a package of computational fluid dynamics.

  20. Fluid-Structure Model of Lymphatic Valve and Vessel

    NASA Astrophysics Data System (ADS)

    Wolf, Ki; Ballard, Matthew; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander

    The lymphatic system is a part of the circulatory system that performs a range of important functions such as transportation of interstitial fluid, fatty acid, and immune cells. The lymphatic vessels are composed of contractile walls to pump lymph against adverse pressure gradient and lymphatic valves that prevent back flow. Despite the importance of lymphatic system, the contribution of mechanical and geometric changes of lymphatic valves and vessels in pathologies of lymphatic dysfunction, such as lymphedema, is not well understood. We developed a coupled fluid-solid computational model to simultaneously simulate a lymphatic vessel, valve, and flow. A lattice Boltzmann model is used to represent the fluid component, while lattice spring model is used for the solid component of the lymphatic vessel, whose mechanical properties are derived experimentally. Behaviors such as lymph flow pattern and lymphatic valve performance against backflow and adverse pressure gradient under varied parameters of lymphatic valve and vessel geometry and mechanical properties are investigated to provide a better insight into the dynamics of lymphatic vessels, valves, and system and give insight into how they might fail in disease. NSF CMMI-1635133.

  1. Contributions of each isotope in some fluids on neutronic performance in a fusion-fission hybrid reactor: a Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Günay, M.; Şarer, B.; Kasap, H.

    2014-08-01

    In the present investigation, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa ferritic steel structural material and 99-95 % Li20Sn80-1-5 % SFG-Pu, 99-95 % Li20Sn80-1-5 % SFG-PuF4, 99-95 % Li20Sn80-1-5 % SFG-PuO2 the molten salt-heavy metal mixtures, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium zone with the width of 3 cm was used for the neutron multiplicity between liquid first wall and blanket. The contributions of each isotope in fluids on the nuclear parameters of a fusion-fission hybrid reactor such as tritium breeding ratio, energy multiplication factor, heat deposition rate were computed in liquid first wall, blanket and shield zones. Three-dimensional analyses were performed by using Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  2. Aeroelastic Stability & Response of Rotating Structures

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Reddy, T. S. R.

    2001-01-01

    A summary of the work performed under NASA grant NCC3-605 is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods.

  3. CFD MODELING OF FINE SCALE FLOW AND TRANSPORT IN THE HOUSTON METROPOLITAN AREA, TEXAS

    EPA Science Inventory

    Fine scale modeling of flows and air quality in Houston, Texas is being performed; the use of computational fluid dynamics (CFD) modeling is being applied to investigate the influence of morphologic structures on the within-grid transport and dispersion of sources in grid models ...

  4. Soup-Can Pendulum

    ERIC Educational Resources Information Center

    Peters, Randall D.

    2004-01-01

    In these studies, a vegetable can containing fluid was swung as a pendulum by supporting its end-lips with a pair of knife edges. The motion was measured with a capacitive sensor and the logarithmic decrement in free decay was estimated from computer-collected records. Measurements performed with nine different homogeneous liquids, distributed…

  5. Faster Aerodynamic Simulation With Cart3D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.

  6. Modeling Potential Carbon Monoxide Exposure Due to Operation of a Major Rocket Engine Altitude Test Facility Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Blotzer, Michael J.; Woods, Jody L.

    2009-01-01

    This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.

  7. Simulations of solid-fluid coupling with application to crystal entrainment in vigorous convection

    NASA Astrophysics Data System (ADS)

    Suckale, J.; Elkins-Tanton, L. T.; Sethian, J.; Yu, J.

    2009-12-01

    Many problems in computational geophysics require the accurate coupling of a solid body to viscous flow. Examples range from understanding the role of highly crystalline magma for the dynamic of volcanic eruptions to crystal entrainment in magmatic flow and the emplacement of xenoliths. In this paper, we present and validate a numerical method for solid-fluid coupling. The algorithm relies on a two-step projection scheme: In the first step, we solve the multiple-phase Navier-Stokes or Stokes equation in both domains. In the second step, we project the velocity field in the solid domain onto a rigid-body motion by enforcing that the deformation tensor in the respective domain is zero. This procedure is also used to enforce the no-slip boundary condition on the solid-fluid interface. We perform several benchmark computations to validate our computations. More precisely, we investigate the formation of a wake behind both fixed and mobile cylinders and cuboids with and without imposed velocity fields in the fluid. These preliminary tests indicate that our code is able to simulate solid-fluid coupling for Reynolds numbers of up to 1000. Finally, we apply our method to the problem of crystal entrainment in vigorous convection. The interplay between sedimentation and re-entrainment of crystals in convective flow is of fundamental importance for understanding the compositional evolution of magmatic reservoirs of various sizes from small lava ponds to magma oceans at the planetary scale. Previous studies of this problem have focused primarily on laboratory experiments, often with conflicting conclusions. Our work is complementary to these prior studies as we model the competing processes of gravitational sedimentation and entrainment of crystals at the length scale of the size of the crystals.

  8. Computational Fluid Dynamics Simulation of Hydrodynamics and Stresses in the PhEur/USP Disintegration Tester Under Fed and Fasted Fluid Characteristics.

    PubMed

    Kindgen, Sarah; Wachtel, Herbert; Abrahamsson, Bertil; Langguth, Peter

    2015-09-01

    Disintegration of oral solid dosage forms is a prerequisite for drug dissolution and absorption and is to a large extent dependent on the pressures and hydrodynamic conditions in the solution that the dosage form is exposed to. In this work, the hydrodynamics in the PhEur/USP disintegration tester were investigated using computational fluid dynamics (CFD). Particle image velocimetry was used to validate the CFD predictions. The CFD simulations were performed with different Newtonian and non-Newtonian fluids, representing fasted and fed states. The results indicate that the current design and operating conditions of the disintegration test device, given by the pharmacopoeias, are not reproducing the in vivo situation. This holds true for the hydrodynamics in the disintegration tester that generates Reynolds numbers dissimilar to the reported in vivo situation. Also, when using homogenized US FDA meal, representing the fed state, too high viscosities and relative pressures are generated. The forces acting on the dosage form are too small for all fluids compared to the in vivo situation. The lack of peristaltic contractions, which generate hydrodynamics and shear stress in vivo, might be the major drawback of the compendial device resulting in the observed differences between predicted and in vivo measured hydrodynamics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Comparison of Computational Results with a Low-g, Nitrogen Slosh and Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Moder, Jeffrey P.

    2015-01-01

    This paper compares a fluid/thermal simulation, in Fluent, with a low-g, nitrogen slosh and boiling experiment. In 2010, the French Space Agency, CNES, performed cryogenic nitrogen experiments in a low-g aircraft campaign. From one parabolic flight, a low-g interval was simulated that focuses on low-g motion of nitrogen liquid and vapor with significant condensation, evaporation, and boiling. The computational results are compared with high-speed video, pressure data, heat transfer, and temperature data from sensors on the axis of the cylindrically shaped tank. These experimental and computational results compare favorably. The initial temperature stratification is in good agreement, and the two-phase fluid motion is qualitatively captured. Temperature data is matched except that the temperature sensors are unable to capture fast temperature transients when the sensors move from wet to dry (liquid to vapor) operation. Pressure evolution is approximately captured, but condensation and evaporation rate modeling and prediction need further theoretical analysis.

  10. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  11. A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers

    NASA Technical Reports Server (NTRS)

    Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on-going study progresses.

  12. Analysis, approximation, and computation of a coupled solid/fluid temperature control problem

    NASA Technical Reports Server (NTRS)

    Gunzburger, Max D.; Lee, Hyung C.

    1993-01-01

    An optimization problem is formulated motivated by the desire to remove temperature peaks, i.e., 'hot spots', along the bounding surfaces of containers of fluid flows. The heat equation of the solid container is coupled to the energy equations for the fluid. Heat sources can be located in the solid body, the fluid, or both. Control is effected by adjustments to the temperature of the fluid at the inflow boundary. Both mathematical analyses and computational experiments are given.

  13. Parallel computational fluid dynamics '91; Conference Proceedings, Stuttgart, Germany, Jun. 10-12, 1991

    NASA Technical Reports Server (NTRS)

    Reinsch, K. G. (Editor); Schmidt, W. (Editor); Ecer, A. (Editor); Haeuser, Jochem (Editor); Periaux, J. (Editor)

    1992-01-01

    A conference was held on parallel computational fluid dynamics and produced related papers. Topics discussed in these papers include: parallel implicit and explicit solvers for compressible flow, parallel computational techniques for Euler and Navier-Stokes equations, grid generation techniques for parallel computers, and aerodynamic simulation om massively parallel systems.

  14. Simulations of turbulent rotating flows using a subfilter scale stress model derived from the partially integrated transport modeling method

    NASA Astrophysics Data System (ADS)

    Chaouat, Bruno

    2012-04-01

    The partially integrated transport modeling (PITM) method [B. Chaouat and R. Schiestel, "A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows," Phys. Fluids 17, 065106 (2005), 10.1063/1.1928607; R. Schiestel and A. Dejoan, "Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations," Theor. Comput. Fluid Dyn. 18, 443 (2005), 10.1007/s00162-004-0155-z; B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgridscale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3; B. Chaouat and R. Schiestel, "Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations," Int. J. Heat Fluid Flow 30, 602 (2009), 10.1016/j.ijheatfluidflow.2009.02.021] viewed as a continuous approach for hybrid RANS/LES (Reynolds averaged Navier-Stoke equations/large eddy simulations) simulations with seamless coupling between RANS and LES regions is used to derive a subfilter scale stress model in the framework of second-moment closure applicable in a rotating frame of reference. This present subfilter scale model is based on the transport equations for the subfilter stresses and the dissipation rate and appears well appropriate for simulating unsteady flows on relatively coarse grids or flows with strong departure from spectral equilibrium because the cutoff wave number can be located almost anywhere inside the spectrum energy. According to the spectral theory developed in the wave number space [B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3], the coefficients used in this model are no longer constants but they are some analytical functions of a dimensionless parameter controlling the spectral distribution of turbulence. The pressure-strain correlation term encompassed in this model is inspired from the nonlinear SSG model [C. G. Speziale, S. Sarkar, and T. B. Gatski, "Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach," J. Fluid Mech. 227, 245 (1991), 10.1017/S0022112091000101] developed initially for homogeneous rotating flows in RANS methodology. It is modeled in system rotation using the principle of objectivity. Its modeling is especially extended in a low Reynolds number version for handling non-homogeneous wall flows. The present subfilter scale stress model is then used for simulating large scales of rotating turbulent flows on coarse and medium grids at moderate, medium, and high rotation rates. It is also applied to perform a simulation on a refined grid at the highest rotation rate. As a result, it is found that the PITM simulations reproduce fairly well the mean features of rotating channel flows allowing a drastic reduction of the computational cost in comparison with the one required for performing highly resolved LES. Overall, the mean velocities and turbulent stresses are found to be in good agreement with the data of highly resolved LES [E. Lamballais, O. Metais, and M. Lesieur, "Spectral-dynamic model for large-eddy simulations of turbulent rotating flow," Theor. Comput. Fluid Dyn. 12, 149 (1998)]. The anisotropy character of the flow resulting from the rotation effects is also well reproduced in accordance with the reference data. Moreover, the PITM2 simulations performed on the medium grid predict qualitatively well the three-dimensional flow structures as well as the longitudinal roll cells which appear in the anticyclonic wall-region of the rotating flows. As expected, the PITM3 simulation performed on the refined grid reverts to highly resolved LES. The present model based on a rational formulation appears to be an interesting candidate for tackling a large variety of engineering flows subjected to rotation.

  15. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation.

    PubMed

    Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.

  16. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation

    PubMed Central

    Reagan, Andrew J.; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M.

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth’s weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction. PMID:26849061

  17. Theory and simulation of time-fractional fluid diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Sanchez-Sesma, Francisco J.; Luzón, Francisco; Perez Gavilán, Juan J.

    2013-08-01

    We simulate a fluid flow in inhomogeneous anisotropic porous media using a time-fractional diffusion equation and the staggered Fourier pseudospectral method to compute the spatial derivatives. A fractional derivative of the order of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion equation. It implies a time-dependent permeability tensor having a power-law time dependence, which describes memory effects and accounts for anomalous diffusion. We provide a complete analysis of the physics based on plane waves. The concepts of phase, group and energy velocities are analyzed to describe the location of the diffusion front, and the attenuation and quality factors are obtained to quantify the amplitude decay. We also obtain the frequency-domain Green function. The time derivative is computed with the Grünwald-Letnikov summation, which is a finite-difference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. An example of the pressure field generated by a fluid injection in a heterogeneous sandstone illustrates the performance of the algorithm for different values of ν. The calculation requires storing the whole pressure field in the computer memory since anomalous diffusion ‘recalls the past’.

  18. Investigation of prescribed movement in fluid–structure interaction simulation for the human phonation process☆

    PubMed Central

    Zörner, S.; Kaltenbacher, M.; Döllinger, M.

    2013-01-01

    In a partitioned approach for computational fluid–structure interaction (FSI) the coupling between fluid and structure causes substantial computational resources. Therefore, a convenient alternative is to reduce the problem to a pure flow simulation with preset movement and applying appropriate boundary conditions. This work investigates the impact of replacing the fully-coupled interface condition with a one-way coupling. To continue to capture structural movement and its effect onto the flow field, prescribed wall movements from separate simulations and/or measurements are used. As an appropriate test case, we apply the different coupling strategies to the human phonation process, which is a highly complex interaction of airflow through the larynx and structural vibration of the vocal folds (VF). We obtain vocal fold vibrations from a fully-coupled simulation and use them as input data for the simplified simulation, i.e. just solving the fluid flow. All computations are performed with our research code CFS++, which is based on the finite element (FE) method. The presented results show that a pure fluid simulation with prescribed structural movement can substitute the fully-coupled approach. However, caution must be used to ensure accurate boundary conditions on the interface, and we found that only a pressure driven flow correctly responds to the physical effects when using specified motion. PMID:24204083

  19. Molecular-dynamics evaluation of fluid-phase equilibrium properties by a novel free-energy perturbation approach: Application to gas solubility and vapor pressure of liquid hexane

    NASA Astrophysics Data System (ADS)

    Kuwajima, Satoru; Kikuchi, Hiroaki; Fukuda, Mitsuhiro

    2006-03-01

    A novel free-energy perturbation method is developed for the computation of the free energy of transferring a molecule between fluid phases. The methodology consists in drawing a free-energy profile of the target molecule moving across a binary-phase structure built in the computer. The novelty of the method lies in the difference of the definition of the free-energy profile from the common definition. As an important element of the method, the process of making a correction to the transfer free energy with respect to the cutoff of intermolecular forces is elucidated. In order to examine the performance of the method in the application to fluid-phase equilibrium properties, molecular-dynamics computations are carried out for the evaluation of gas solubility and vapor pressure of liquid n-hexane at 298.15K. The gas species treated are methane, ethane, propane, and n-butane, with the gas solubility expressed as Henry's constant. It is shown that the method works fine and calculated results are generally in good agreement with experiments. It is found that the cutoff correction is strikingly large, constituting a dominant part of the calculated transfer free energy at the cutoff of 8Å.

  20. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.; Kidd, T.G.

    1999-05-18

    A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.

  1. Development of small scale cluster computer for numerical analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.

    2017-09-01

    In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.

  2. Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAER,THOMAS A.; SACKINGER,PHILIP A.; SUBIA,SAMUEL R.

    1999-10-14

    Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-staticmore » solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.« less

  3. CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Luckring, James M.; McMillin, S. Naomi; Flamm, Jeffrey D.; Roman, Dino

    2016-01-01

    A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.

  4. Application of Pinniped Vibrissae to Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram (Principal Investigator); Ameri, Ali; Poinsatte, Phil; Thurman, Doug; Wroblewski, Adam; Snyder, Chris

    2015-01-01

    Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possess undulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce drag compared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae and California Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and 3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of the whiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskers were used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to perform wind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to study incidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulations were conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements over the baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixed wing aircraft. Noise reduction potential is also explored.

  5. Neptune Aerocapture Systems Analysis

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae

    2004-01-01

    A Neptune Aerocapture Systems Analysis is completed to determine the feasibility, benefit and risk of an aeroshell aerocapture system for Neptune and to identify technology gaps and technology performance goals. The high fidelity systems analysis is completed by a five center NASA team and includes the following disciplines and analyses: science; mission design; aeroshell configuration screening and definition; interplanetary navigation analyses; atmosphere modeling; computational fluid dynamics for aerodynamic performance and database definition; initial stability analyses; guidance development; atmospheric flight simulation; computational fluid dynamics and radiation analyses for aeroheating environment definition; thermal protection system design, concepts and sizing; mass properties; structures; spacecraft design and packaging; and mass sensitivities. Results show that aerocapture can deliver 1.4 times more mass to Neptune orbit than an all-propulsive system for the same launch vehicle. In addition aerocapture results in a 3-4 year reduction in trip time compared to all-propulsive systems. Aerocapture is feasible and performance is adequate for the Neptune aerocapture mission. Monte Carlo simulation results show 100% successful capture for all cases including conservative assumptions on atmosphere and navigation. Enabling technologies for this mission include TPS manufacturing; and aerothermodynamic methods and validation for determining coupled 3-D convection, radiation and ablation aeroheating rates and loads, and the effects on surface recession.

  6. Aerodynamics of Race Cars

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  7. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    NASA Astrophysics Data System (ADS)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an iterative design process which will lead to a design with a reduced pressure drop, increased thermal effectiveness, and improved mechanical performance as it relates to creep deformation and transient thermal stresses.

  8. A visual programming environment for the Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Tomboulian, Sherryl; Crockett, Thomas W.; Middleton, David

    1988-01-01

    The Navier-Stokes computer is a high-performance, reconfigurable, pipelined machine designed to solve large computational fluid dynamics problems. Due to the complexity of the architecture, development of effective, high-level language compilers for the system appears to be a very difficult task. Consequently, a visual programming methodology has been developed which allows users to program the system at an architectural level by constructing diagrams of the pipeline configuration. These schematic program representations can then be checked for validity and automatically translated into machine code. The visual environment is illustrated by using a prototype graphical editor to program an example problem.

  9. Performance and Scalability of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for scientific applications. In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for scientific applications.

  10. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation.

    PubMed

    Shen, Fei; Tian, Libin; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zou, Dexun; Zhu, Baoning; Liu, Yanping; Li, Xiujin

    2013-10-01

    As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20-60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)(-1) (729 mL (g TS(digested))(-1)) and 431 mL (g TS)(-1) (632 mL (g TS(digested))(-1)) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.

  11. Domain decomposition algorithms and computation fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.

    1988-01-01

    In the past several years, domain decomposition was a very popular topic, partly motivated by the potential of parallelization. While a large body of theory and algorithms were developed for model elliptic problems, they are only recently starting to be tested on realistic applications. The application of some of these methods to two model problems in computational fluid dynamics are investigated. Some examples are two dimensional convection-diffusion problems and the incompressible driven cavity flow problem. The construction and analysis of efficient preconditioners for the interface operator to be used in the iterative solution of the interface solution is described. For the convection-diffusion problems, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is discussed.

  12. National Combustion Code: A Multidisciplinary Combustor Design System

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Liu, Nan-Suey

    1997-01-01

    The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.

  13. Fluid flow dynamics in MAS systems.

    PubMed

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Neural networks for calibration tomography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur

    1993-01-01

    Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.

  15. Dynamical properties and transport coefficients of one-dimensional Lennard-Jones fluids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bazhenov, Alexiev M.; Heyes, David M.

    1990-01-01

    The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.

  16. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.

    PubMed

    Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T

    2018-01-01

    In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.

  17. An ultrashort mixing length micromixer: the shear superposition micromixer.

    PubMed

    Bottausci, Frédéric; Cardonne, Caroline; Meinhart, Carl; Mezić, Igor

    2007-03-01

    We report for the first time a laminar high-performance continuous micromixing process of two fluids over a length of 200 microns in under 10 milliseconds achieved by an optimization of the control parameters amplitude and frequency in the mixing device denoted as 'Shear Superposition Micromixer'. We improve mixing time by approximately 5 orders of magnitude over diffusion-limited mixing. The data indicate that rapid mixing is a result of the combined action of Taylor-Aris dispersion in the main and secondary microchannels and unsteady vortex motion that occurs at finite Reynolds number, which occurs above a threshold amplitude and frequency. The mixing performance is quantified using micron-resolution particle image velocimetry (micro-PIV) and computational fluid dynamics (CFD) simulations.

  18. Removing Grit During Wastewater Treatment: CFD Analysis of HDVS Performance.

    PubMed

    Meroney, Robert N; Sheker, Robert E

    2016-05-01

    Computational Fluid Dynamics (CFD) was used to simulate the grit and sand separation effectiveness of a typical hydrodynamic vortex separator (HDVS) system. The analysis examined the influences on the separator efficiency of: flow rate, fluid viscosities, total suspended solids (TSS), and particle size and distribution. It was found that separator efficiency for a wide range of these independent variables could be consolidated into a few curves based on the particle fall velocity to separator inflow velocity ratio, Ws/Vin. Based on CFD analysis it was also determined that systems of different sizes with length scale ratios ranging from 1 to 10 performed similarly when Ws/Vin and TSS were held constant. The CFD results have also been compared to a limited range of experimental data.

  19. Analytical and numerical performance models of a Heisenberg Vortex Tube

    NASA Astrophysics Data System (ADS)

    Bunge, C. D.; Cavender, K. A.; Matveev, K. I.; Leachman, J. W.

    2017-12-01

    Analytical and numerical investigations of a Heisenberg Vortex Tube (HVT) are performed to estimate the cooling potential with cryogenic hydrogen. The Ranque-Hilsch Vortex Tube (RHVT) is a device that tangentially injects a compressed fluid stream into a cylindrical geometry to promote enthalpy streaming and temperature separation between inner and outer flows. The HVT is the result of lining the inside of a RHVT with a hydrogen catalyst. This is the first concept to utilize the endothermic heat of para-orthohydrogen conversion to aid primary cooling. A review of 1st order vortex tube models available in the literature is presented and adapted to accommodate cryogenic hydrogen properties. These first order model predictions are compared with 2-D axisymmetric Computational Fluid Dynamics (CFD) simulations.

  20. MIXING STUDY FOR JT-71/72 TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2013-11-26

    All modeling calculations for the mixing operations of miscible fluids contained in HBLine tanks, JT-71/72, were performed by taking a three-dimensional Computational Fluid Dynamics (CFD) approach. The CFD modeling results were benchmarked against the literature results and the previous SRNL test results to validate the model. Final performance calculations were performed by using the validated model to quantify the mixing time for the HB-Line tanks. The mixing study results for the JT-71/72 tanks show that, for the cases modeled, the mixing time required for blending of the tank contents is no more than 35 minutes, which is well below 2.5more » hours of recirculation pump operation. Therefore, the results demonstrate the adequacy of 2.5 hours’ mixing time of the tank contents by one recirculation pump to get well mixed.« less

  1. Computational Fluid Dynamics (CFD) Analysis Of Optical Payload For Lasercomm Science (OPALS) sealed enclosure module

    NASA Technical Reports Server (NTRS)

    Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel

    2012-01-01

    Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.

  2. Flow field prediction in full-scale Carrousel oxidation ditch by using computational fluid dynamics.

    PubMed

    Yang, Yin; Wu, Yingying; Yang, Xiao; Zhang, Kai; Yang, Jiakuan

    2010-01-01

    In order to optimize the flow field in a full-scale Carrousel oxidation ditch with many sets of disc aerators operating simultaneously, an experimentally validated numerical tool, based on computational fluid dynamics (CFD), was proposed. A full-scale, closed-loop bioreactor (Carrousel oxidation ditch) in Ping Dingshan Sewage Treatment Plant in Ping Dingshan City, a medium-sized city in Henan Province of China, was evaluated using CFD. Moving wall model was created to simulate many sets of disc aerators which created fluid motion in the ditch. The simulated results were acceptable compared with the experimental data and the following results were obtained: (1) a new method called moving wall model could simulate the flow field in Carrousel oxidation ditch with many sets of disc aerators operating simultaneously. The whole number of cells of grids decreased significantly, thus the calculation amount decreased, and (2) CFD modeling generally characterized the flow pattern in the full-scale tank. 3D simulation could be a good supplement for improving the hydrodynamic performance in oxidation ditch designs.

  3. Computational Study of Intracranial Aneurysms with Flow Diverting Stent: Correlation with Surgical Outcome

    NASA Astrophysics Data System (ADS)

    Tang, Yik Sau; Chiu, Tin Lok; Tsang, Anderson Chun On; Leung, Gilberto Ka Kit; Chow, Kwok Wing

    2016-11-01

    Intracranial aneurysm, abnormal swelling of the cerebral artery, can cause massive internal bleeding in the subarachnoid space upon aneurysm rupture, leading to a high mortality rate. Deployment of a flow diverting stent through endovascular technique can obstruct the blood flow into the aneurysm, thus reducing the risk of rupture. Patient-specific models with both bifurcation and sidewall aneurysms have been investigated. Computational fluid dynamics analysis with physiological boundary conditions has been performed. Several hemodynamic parameters including volume flow rate into the aneurysm and the energy (sum of the fluid kinetic and potential energy) loss between the inlet and outlets were analyzed and compared with the surgical outcome. Based on the simulation results, we conjecture that a clinically successful case might imply less blood flow into the aneurysm after stenting, and thus a smaller amount of energy loss in driving the fluid flow in that portion of artery. This study might provide physicians with quantitative information for surgical decision making. (Partial financial support by the Innovation and Technology Support Program (ITS/011/13 & ITS/150/15) of the Hong Kong Special Administrative Region Government)

  4. Assess and improve the sustainability of water treatment facility using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tejada-Martinez, Andres; Lei, Hongxia; Zhang, Qiong

    2016-11-01

    Fluids problems in water treatment industry are often simplified or omitted since the focus is usually on chemical process only. However hydraulics also plays an important role in determining effluent water quality. Recent studies have demonstrated that computational fluid dynamics (CFD) has the ability to simulate the physical and chemical processes in reactive flows in water treatment facilities, such as in chlorine and ozone disinfection tanks. This study presents the results from CFD simulations of reactive flow in an existing full-scale ozone disinfection tank and in potential designs. Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT (the product of disinfectant concentration and contact time) obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone disinfection tank designs and developed a composite indicator to quantify the sustainability of ozone disinfection tank in technological, environmental and economic dimensions.

  5. Numerical study of Tallinn storm-water system flooding conditions using CFD simulations of multi-phase flow in a large-scale inverted siphon

    NASA Astrophysics Data System (ADS)

    Kaur, K.; Laanearu, J.; Annus, I.

    2017-10-01

    The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.

  6. Computational Analysis of Human Blood Flow

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  7. ABSIM. Simulation of Absorption Systems in Flexible and Modular Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, G.

    1994-06-01

    The computer code has been developed for simulation of absorption systems at steady-state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system`s components. When all the equations have been established, a mathematical solver routine is employed to solve them simultaneously. Property subroutines contained in a separate data base serve to provide thermodynamic properties of the working fluids. The code is user-oriented and requires a relatively simple input containing the given operating conditions and the working fluid atmore » each state point. the user conveys to the computer an image of the cycle by specifying the different components and their interconnections. Based on this information, the program calculates the temperature, flowrate, concentration, pressure and vapor fraction at each state point in the system and the heat duty at each unit, from which the coefficient of performance may be determined. A graphical user-interface is provided to facilitate interactive input and study of the output.« less

  8. ABSIM. Simulation of Absorption Systems in Flexible and Modular Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, G.

    1994-06-01

    The computer code has been developed for simulation of absorption systems at steady-state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components. When all the equations have been established, a mathematical solver routine is employed to solve them simultaneously. Property subroutines contained in a separate data base serve to provide thermodynamic properties of the working fluids. The code is user-oriented and requires a relatively simple input containing the given operating conditions and the working fluid atmore » each state point. the user conveys to the computer an imagev of the cycle by specifying the different components and their interconnections. Based on this information, the program calculates the temperature, flowrate, concentration, pressure and vapor fraction at each state point in the system and the heat duty at each unit, from which the coefficient of performance may be determined. A graphical user-interface is provided to fcilitate interactive input and study of the output.« less

  9. Computational fluid dynamics - The coming revolution

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1982-01-01

    The development of aerodynamic theory is traced from the days of Aristotle to the present, with the next stage in computational fluid dynamics dependent on superspeed computers for flow calculations. Additional attention is given to the history of numerical methods inherent in writing computer codes applicable to viscous and inviscid analyses for complex configurations. The advent of the superconducting Josephson junction is noted to place configurational demands on computer design to avoid limitations imposed by the speed of light, and a Japanese projection of a computer capable of several hundred billion operations/sec is mentioned. The NASA Numerical Aerodynamic Simulator is described, showing capabilities of a billion operations/sec with a memory of 240 million words using existing technology. Near-term advances in fluid dynamics are discussed.

  10. Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.

  11. The NAS parallel benchmarks

    NASA Technical Reports Server (NTRS)

    Bailey, David (Editor); Barton, John (Editor); Lasinski, Thomas (Editor); Simon, Horst (Editor)

    1993-01-01

    A new set of benchmarks was developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of a set of kernels, the 'Parallel Kernels,' and a simulated application benchmark. Together they mimic the computation and data movement characteristics of large scale computational fluid dynamics (CFD) applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification - all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

  12. Program Aids Design Of Fluid-Circulating Systems

    NASA Technical Reports Server (NTRS)

    Bacskay, Allen; Dalee, Robert

    1992-01-01

    Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.

  13. Charon Message-Passing Toolkit for Scientific Computations

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Yan, Jerry (Technical Monitor)

    2000-01-01

    Charon is a library, callable from C and Fortran, that aids the conversion of structured-grid legacy codes-such as those used in the numerical computation of fluid flows-into parallel, high- performance codes. Key are functions that define distributed arrays, that map between distributed and non-distributed arrays, and that allow easy specification of common communications on structured grids. The library is based on the widely accepted MPI message passing standard. We present an overview of the functionality of Charon, and some representative results.

  14. Miniature gas turbines: Numerical study of the effects of heat transfer and Reynolds number on the performance of an axial compressor

    NASA Astrophysics Data System (ADS)

    Xiang, Junting; Schlüter, Jörg Uwe; Duan, Fei

    2014-04-01

    In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its miniaturization. The NASA stage 35 compressor is selected as the configuration in this study and computational fluid dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.

  15. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment.

    PubMed

    Xiang, J; Tutino, V M; Snyder, K V; Meng, H

    2014-10-01

    Image-based computational fluid dynamics holds a prominent position in the evaluation of intracranial aneurysms, especially as a promising tool to stratify rupture risk. Current computational fluid dynamics findings correlating both high and low wall shear stress with intracranial aneurysm growth and rupture puzzle researchers and clinicians alike. These conflicting findings may stem from inconsistent parameter definitions, small datasets, and intrinsic complexities in intracranial aneurysm growth and rupture. In Part 1 of this 2-part review, we proposed a unifying hypothesis: both high and low wall shear stress drive intracranial aneurysm growth and rupture through mural cell-mediated and inflammatory cell-mediated destructive remodeling pathways, respectively. In the present report, Part 2, we delineate different wall shear stress parameter definitions and survey recent computational fluid dynamics studies, in light of this mechanistic heterogeneity. In the future, we expect that larger datasets, better analyses, and increased understanding of hemodynamic-biologic mechanisms will lead to more accurate predictive models for intracranial aneurysm risk assessment from computational fluid dynamics. © 2014 by American Journal of Neuroradiology.

  16. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    ERIC Educational Resources Information Center

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  17. New Developments in Modeling MHD Systems on High Performance Computing Architectures

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D. J.; Bhattacharjee, A.

    2009-04-01

    Modeling the wide range of time and length scales present even in fluid models of plasmas like MHD and X-MHD (Extended MHD including two fluid effects like Hall term, electron inertia, electron pressure gradient) is challenging even on state-of-the-art supercomputers. In the last years, HPC capacity has continued to grow exponentially, but at the expense of making the computer systems more and more difficult to program in order to get maximum performance. In this paper, we will present a new approach to managing the complexity caused by the need to write efficient codes: Separating the numerical description of the problem, in our case a discretized right hand side (r.h.s.), from the actual implementation of efficiently evaluating it. An automatic code generator is used to describe the r.h.s. in a quasi-symbolic form while leaving the translation into efficient and parallelized code to a computer program itself. We implemented this approach for OpenGGCM (Open General Geospace Circulation Model), a model of the Earth's magnetosphere, which was accelerated by a factor of three on regular x86 architecture and a factor of 25 on the Cell BE architecture (commonly known for its deployment in Sony's PlayStation 3).

  18. Computational Fluid Dynamics Simulation of Flows in an Oxidation Ditch Driven by a New Surface Aerator

    PubMed Central

    Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe

    2013-01-01

    Abstract In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k−ɛ model, RNG k−ɛ model, realizable k−ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use. PMID:24302850

  19. RotCFD Analysis of the AH-56 Cheyenne Hub Drag

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Bass, Tal A.; Keith, Matthew D.; Oppenheim, Rebecca T.; Runyon, Bryan T.; Veras-Alba, Belen

    2016-01-01

    In 2016, the U.S. Army Aviation Development Directorate (ADD) conducted tests in the U.S. Army 7- by 10- Foot Wind Tunnel at NASA Ames Research Center of a nonrotating 2/5th-scale AH-56 rotor hub. The objective of the tests was to determine how removing the mechanical control gyro affected the drag. Data for the lift, drag, and pitching moment were recorded for the 4-bladed rotor hub in various hardware configurations, azimuth angles, and angles of attack. Numerical simulations of a selection of the configurations and orientations were then performed, and the results were compared with the test data. To generate the simulation results, the hardware configurations were modeled using Creo and Rhinoceros 5, three-dimensional surface modeling computer-aided design (CAD) programs. The CAD model was imported into Rotorcraft Computational Fluid Dynamics (RotCFD), a computational fluid dynamics (CFD) tool used for analyzing rotor flow fields. RotCFD simulation results were compared with the experimental results of three hardware configurations at two azimuth angles, two angles of attack, and with and without wind tunnel walls. The results help validate RotCFD as a tool for analyzing low-drag rotor hub designs for advanced high-speed rotorcraft concepts. Future work will involve simulating additional hub geometries to reduce drag or tailor to other desired performance levels.

  20. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT.

    PubMed

    Soudah, Eduardo; Ng, E Y K; Loong, T H; Bordone, Maurizio; Pua, Uei; Narayanan, Sriram

    2013-01-01

    The objective of this study is to find a correlation between the abdominal aortic aneurysm (AAA) geometric parameters, wall stress shear (WSS), abdominal flow patterns, intraluminal thrombus (ILT), and AAA arterial wall rupture using computational fluid dynamics (CFD). Real AAA 3D models were created by three-dimensional (3D) reconstruction of in vivo acquired computed tomography (CT) images from 5 patients. Based on 3D AAA models, high quality volume meshes were created using an optimal tetrahedral aspect ratio for the whole domain. In order to quantify the WSS and the recirculation inside the AAA, a 3D CFD using finite elements analysis was used. The CFD computation was performed assuming that the arterial wall is rigid and the blood is considered a homogeneous Newtonian fluid with a density of 1050 kg/m(3) and a kinematic viscosity of 4 × 10(-3) Pa·s. Parallelization procedures were used in order to increase the performance of the CFD calculations. A relation between AAA geometric parameters (asymmetry index ( β ), saccular index ( γ ), deformation diameter ratio ( χ ), and tortuosity index ( ε )) and hemodynamic loads was observed, and it could be used as a potential predictor of AAA arterial wall rupture and potential ILT formation.

  1. MHD mixed convection analysis of non-Newtonian power law fluid in an open channel with round cavity

    NASA Astrophysics Data System (ADS)

    Bose, Pritom; Rakib, Tawfiqur; Das, Sourav; Rabbi, Khan Md.; Mojumder, Satyajit

    2017-06-01

    In this study, magneto-hydrodynamic (MHD) mixed convection flow through a channel with a round cavity at bottom wall using non-Newtonian power law fluid is analysed numerically. The cavity is kept at uniformly high temperature whereas rest of the bottom wall is insulated and top wall of the channel is maintained at a temperature lower than cavity temperature. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method is appointed to solve the continuity, momentum and energy equations. The problem is solved for wide range of pertinent parameters like Rayleigh number (Ra= 103 - 105), Hartmann number (Ha= 0 - 60) and power law index (n= 0.5 - 1.5) at constant Richardson number Ri= 1.0. The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study is illustrated by average Nusselt number plots. Result of this investigation indicates that heat transfer is highest for dilatant fluids at this configuration and they perform better (47% more heat transfer) in absence of magnetic field. The retardation of heat transfer is offset by shear thickening nature of non-Newtonian fluid.

  2. Experimental and theoretical analysis of nanofluids based on high temperature-heat transfer fluid with enhanced thermal properties

    NASA Astrophysics Data System (ADS)

    Navas, Javier; Sánchez-Coronilla, Antonio; Martín, Elisa I.; Gómez-Villarejo, Roberto; Teruel, Miriam; Gallardo, Juan Jesús; Aguilar, Teresa; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2017-04-01

    In this work, nanofluids were prepared using commercial Cu nanoparticles and a commercial high temperature-heat transfer Fluid (eutectic mixture of diphenyl oxide and biphenyl) as the base fluid, which is used in concentrating solar power (CSP) plants. Different properties such as density, viscosity, heat capacity and thermal conductivity were characterized. Nanofluids showed enhanced heat transfer efficiency. In detail, the incorporation of Cu nanoparticles led to an increase of the heat capacity up to 14%. Also, thermal conductivity was increased up to 13%. Finally, the performance of the nanofluids prepared increased up to 11% according to the Dittus-Boelter correlation. On the other hand, equilibrium molecular dynamics simulation was used to model the experimental nanofluid system studied. Thermodynamic properties such as heat capacity and thermal conductivity were calculated and the results were compared with experimental data. The analysis of the radial function distributions (RDFs) and the inspection of the spatial distribution functions (SDFs) indicate the important role that plays the metal-oxygen interaction in the system. Dynamic properties such as the diffusion coefficients of base fluid and nanofluid were computed according to Einstein relation by computing the mean square displacement (MSD). Supplementary online material is available in electronic form at http://www.epjap.org

  3. Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids

    NASA Astrophysics Data System (ADS)

    Aureli, M.; Basaran, M. E.; Porfiri, M.

    2012-03-01

    In this paper, we study flexural vibrations of a cantilever beam with thin rectangular cross section submerged in a quiescent viscous fluid and undergoing oscillations whose amplitude is comparable with its width. The structure is modeled using Euler-Bernoulli beam theory and the distributed hydrodynamic loading is described by a single complex-valued hydrodynamic function which accounts for added mass and fluid damping experienced by the structure. We perform a parametric 2D computational fluid dynamics analysis of an oscillating rigid lamina, representative of a generic beam cross section, to understand the dependence of the hydrodynamic function on the governing flow parameters. We find that increasing the frequency and amplitude of the vibration elicits vortex shedding and convection phenomena which are, in turn, responsible for nonlinear hydrodynamic damping. We establish a manageable nonlinear correction to the classical hydrodynamic function developed for small amplitude vibration and we derive a computationally efficient reduced order modal model for the beam nonlinear oscillations. Numerical and theoretical results are validated by comparison with ad hoc designed experiments on tapered beams and multimodal vibrations and with data available in the literature. Findings from this work are expected to find applications in the design of slender structures of interest in marine applications, such as biomimetic propulsion systems and energy harvesting devices.

  4. Asynchronous communication in spectral-element and discontinuous Galerkin methods for atmospheric dynamics – a case study using the High-Order Methods Modeling Environment (HOMME-homme_dg_branch)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamroz, Benjamin F.; Klofkorn, Robert

    The scalability of computational applications on current and next-generation supercomputers is increasingly limited by the cost of inter-process communication. We implement non-blocking asynchronous communication in the High-Order Methods Modeling Environment for the time integration of the hydrostatic fluid equations using both the spectral-element and discontinuous Galerkin methods. This allows the overlap of computation with communication, effectively hiding some of the costs of communication. A novel detail about our approach is that it provides some data movement to be performed during the asynchronous communication even in the absence of other computations. This method produces significant performance and scalability gains in large-scalemore » simulations.« less

  5. Asynchronous communication in spectral-element and discontinuous Galerkin methods for atmospheric dynamics – a case study using the High-Order Methods Modeling Environment (HOMME-homme_dg_branch)

    DOE PAGES

    Jamroz, Benjamin F.; Klofkorn, Robert

    2016-08-26

    The scalability of computational applications on current and next-generation supercomputers is increasingly limited by the cost of inter-process communication. We implement non-blocking asynchronous communication in the High-Order Methods Modeling Environment for the time integration of the hydrostatic fluid equations using both the spectral-element and discontinuous Galerkin methods. This allows the overlap of computation with communication, effectively hiding some of the costs of communication. A novel detail about our approach is that it provides some data movement to be performed during the asynchronous communication even in the absence of other computations. This method produces significant performance and scalability gains in large-scalemore » simulations.« less

  6. Reynolds Number Effects on Leading Edge Radius Variations of a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.

    2001-01-01

    A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.

  7. Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA

    NASA Astrophysics Data System (ADS)

    Pope, David

    Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.

  8. CFD simulation of flow through heart: a perspective review.

    PubMed

    Khalafvand, S S; Ng, E Y K; Zhong, L

    2011-01-01

    The heart is an organ which pumps blood around the body by contraction of muscular wall. There is a coupled system in the heart containing the motion of wall and the motion of blood fluid; both motions must be computed simultaneously, which make biological computational fluid dynamics (CFD) difficult. The wall of the heart is not rigid and hence proper boundary conditions are essential for CFD modelling. Fluid-wall interaction is very important for real CFD modelling. There are many assumptions for CFD simulation of the heart that make it far from a real model. A realistic fluid-structure interaction modelling the structure by the finite element method and the fluid flow by CFD use more realistic coupling algorithms. This type of method is very powerful to solve the complex properties of the cardiac structure and the sensitive interaction of fluid and structure. The final goal of heart modelling is to simulate the total heart function by integrating cardiac anatomy, electrical activation, mechanics, metabolism and fluid mechanics together, as in the computational framework.

  9. Gpu Implementation of a Viscous Flow Solver on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Xu, Tianhao; Chen, Long

    2016-06-01

    Graphics processing units have gained popularities in scientific computing over past several years due to their outstanding parallel computing capability. Computational fluid dynamics applications involve large amounts of calculations, therefore a latest GPU card is preferable of which the peak computing performance and memory bandwidth are much better than a contemporary high-end CPU. We herein focus on the detailed implementation of our GPU targeting Reynolds-averaged Navier-Stokes equations solver based on finite-volume method. The solver employs a vertex-centered scheme on unstructured grids for the sake of being capable of handling complex topologies. Multiple optimizations are carried out to improve the memory accessing performance and kernel utilization. Both steady and unsteady flow simulation cases are carried out using explicit Runge-Kutta scheme. The solver with GPU acceleration in this paper is demonstrated to have competitive advantages over the CPU targeting one.

  10. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    NASA Astrophysics Data System (ADS)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  11. The Zero Boil-Off Tank Experiment Contributions to the Development of Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad

    2015-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.

  12. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.

    PubMed

    Verbruggen, Stefaan W; Vaughan, Ted J; McNamara, Laoise M

    2014-01-01

    Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid-structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity ([Formula: see text] compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities [Formula: see text] and average maximum shear stresses [Formula: see text] surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology.

  13. On wings and keels (2)

    NASA Astrophysics Data System (ADS)

    Slooff, J. W.

    1985-05-01

    The physical mechanisms governing the hydrodynamics of sailing yacht keels and the parameters that, through these mechanisms, determine keel performance are discussed. It is concluded that due to the presence of the free water surface optimum keel shapes differ from optimum shapes for aircraft wings. Utilizing computational fluid dynamics analysis and optimization it is found that the performance of conventional keels can be improved significantly by reducing taper or even applying inverse taper (upside-down keel) and that decisive improvements in performance can be realized through keels with winglets.

  14. The Fluid Dynamics of Competitive Swimming

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  15. Development of Polarized UV Raman and Infrared Emission/Absorption Spectroscopy for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Osborne, Robin; Wehrmeyer, Joseph; Farmer, Richard; Trinh, Huu; Dobson, Chris; Eskridge, Richard; Cramer, John; Hartfield, Roy; Turner, Jim (Technical Monitor)

    2001-01-01

    The objective of this project is to provide measurements of species concentrations and temperature for hot-fire test articles at Test Stand 115 at NASA Marshall Space Flight Center. Measurements can be useful for comparison to computational fluid dynamics simulations and help to evaluate combustion performance.

  16. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Computational fluid dynamics simulations are performed as part of a process to design a vortex generator array for a two-dimensional inlet for Mach 1.6. The objective is to improve total pressure recovery a on at the engine face of the inlet. Both vane-type and ramp-type vortex generators are examined.

  17. Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Tian, Qiang; Hu, HaiYan

    2018-04-01

    As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.

  18. Computational Analysis of a Wells Turbine with Flexible Trailing Edges

    NASA Astrophysics Data System (ADS)

    Kincaid, Kellis; Macphee, David

    2017-11-01

    The Wells turbine is often used to produce a net positive power from an oscillating air column excited by ocean waves. It has been parametrically studied quite thoroughly in the past, both experimentally and numerically. The effects of various characteristics such as blade count and profile, solidity, and tip gap are well known. Several three-dimensional computational studies have been carried out using commercial code to investigate many phenomena detected in experiments: hysteresis, tip-gap drag, and post-stall behavior for example. In this work, the open-source code Foam-Extend is used to examine the effect of flexible blades on the performance of the Wells turbine. A new solver is created to integrate fluid-structure interaction into the code, allowing an accurate solution for both the solid and fluid domains. Reynolds-averaged governing equations are employed in a fully transient solution model. The elastic modulus of the flexible portion of the blade and the tip-gap width are varied, and the resulting flow fields are investigated to determine the cause of any performance differences. NSF Grant EEC 1659710.

  19. Application of Pinniped Vibrissae to Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Poinsatte, Philip; Thurman, Douglas; Wroblewski, Adam; Snyder, Christopher

    2015-01-01

    Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possessundulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce dragcompared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae andCalifornia Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of thewhiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskerswere used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to performwind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to studyincidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulationswere conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements overthe baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixedwing aircraft. Noise reduction potential is also explored

  20. Nasal conchae function as aerodynamic baffles: Experimental computational fluid dynamic analysis in a turkey nose (Aves: Galliformes).

    PubMed

    Bourke, Jason M; Witmer, Lawrence M

    2016-12-01

    We tested the aerodynamic function of nasal conchae in birds using CT data from an adult male wild turkey (Meleagris gallopavo) to construct 3D models of its nasal passage. A series of digital "turbinectomies" were performed on these models and computational fluid dynamic analyses were performed to simulate resting inspiration. Models with turbinates removed were compared to the original, unmodified control airway. Results revealed that the four conchae found in turkeys, along with the crista nasalis, alter the flow of inspired air in ways that can be considered baffle-like. However, these baffle-like functions were remarkably limited in their areal extent, indicating that avian conchae are more functionally independent than originally hypothesized. Our analysis revealed that the conchae of birds are efficient baffles that-along with potential heat and moisture transfer-serve to efficiently move air to specific regions of the nasal passage. This alternate function of conchae has implications for their evolution in birds and other amniotes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Computational fluid dynamics: An engineering tool?

    NASA Astrophysics Data System (ADS)

    Anderson, J. D., Jr.

    1982-06-01

    Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.

  2. Current Grid Generation Strategies and Future Requirements in Hypersonic Vehicle Design, Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Periklis; Venkatapathy, Ethiraj; Prabhu, Dinesh; Loomis, Mark P.; Olynick, Dave; Arnold, James O. (Technical Monitor)

    1998-01-01

    Recent advances in computational power enable computational fluid dynamic modeling of increasingly complex configurations. A review of grid generation methodologies implemented in support of the computational work performed for the X-38 and X-33 are presented. In strategizing topological constructs and blocking structures factors considered are the geometric configuration, optimal grid size, numerical algorithms, accuracy requirements, physics of the problem at hand, computational expense, and the available computer hardware. Also addressed are grid refinement strategies, the effects of wall spacing, and convergence. The significance of grid is demonstrated through a comparison of computational and experimental results of the aeroheating environment experienced by the X-38 vehicle. Special topics on grid generation strategies are also addressed to model control surface deflections, and material mapping.

  3. The role of higher-order terms in perturbation approaches to the monomer and\\xA0bonding contributions in a SAFT-type equation of state for square-well chain\\xA0fluids

    NASA Astrophysics Data System (ADS)

    Solana, J. R.; Akhouri, B. P.

    2018-07-01

    A perturbation theory for square-well chain fluids is developed within the scheme of the (generalised) Wertheim thermodynamic perturbation theory. The theory is based on the Pavlyukhin parametrisations [Y. T. Pavlyukhin, J. Struct. Chem. 53, 476 (2012)] of their simulation data for the first four perturbation terms in the high temperature expansion of the Helmholtz free energy of square-well monomer fluids combined with a second-order perturbation theory for the contact value of the radial distribution function of the square-well monomer fluid that enters into bonding contribution. To obtain the latter perturbation terms, we have performed computer simulations in the hard-sphere reference system. The importance of the perturbation terms beyond the second-order one for the monomer fluid and of the approximations of different orders in the bonding contribution for the chain fluids in the predicted equation of state, excess energy and liquid-vapour coexistence densities is analysed.

  4. Impedance loading and radiation of finite aperture multipole sources in fluid filled boreholes

    NASA Astrophysics Data System (ADS)

    Geerits, Tim W.; Kranz, Burkhard

    2017-04-01

    In the exploration of oil and gas finite aperture multipole borehole acoustic sources are commonly used to excite borehole modes in a fluid-filled borehole surrounded by a (poro-) elastic formation. Due to the mutual interaction of the constituent sources and their immediate proximity to the formation it has been unclear how and to what extent these effects influence radiator performance. We present a theory, based on the equivalent surface source formulation for fluid-solid systems that incorporates these 'loading' effects and allows for swift computation of the multipole source dimensionless impedance, the associated radiator motion and the resulting radiated wave field in borehole fluid and formation. Dimensionless impedance results are verified through a comparison with finite element modeling results in the cases of a logging while drilling tool submersed in an unbounded fluid and a logging while drilling tool submersed in a fluid filled borehole surrounded by a fast and a slow formation. In all these cases we consider a monopole, dipole and quadrupole excitation, as these cases are relevant to many borehole acoustic applications. Overall, we obtain a very good agreement.

  5. A comparative study of serial and parallel aeroelastic computations of wings

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Guruswamy, Guru P.

    1994-01-01

    A procedure for computing the aeroelasticity of wings on parallel multiple-instruction, multiple-data (MIMD) computers is presented. In this procedure, fluids are modeled using Euler equations, and structures are modeled using modal or finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. In the present parallel procedure, each computational domain is scalable. A parallel integration scheme is used to compute aeroelastic responses by solving fluid and structural equations concurrently. The computational efficiency issues of parallel integration of both fluid and structural equations are investigated in detail. This approach, which reduces the total computational time by a factor of almost 2, is demonstrated for a typical aeroelastic wing by using various numbers of processors on the Intel iPSC/860.

  6. Complex three dimensional modelling of porous media using high performance computing and multi-scale incompressible approach

    NASA Astrophysics Data System (ADS)

    Martin, R.; Orgogozo, L.; Noiriel, C. N.; Guibert, R.; Golfier, F.; Debenest, G.; Quintard, M.

    2013-05-01

    In the context of biofilm growth in porous media, we developed high performance computing tools to study the impact of biofilms on the fluid transport through pores of a solid matrix. Indeed, biofilms are consortia of micro-organisms that are developing in polymeric extracellular substances that are generally located at a fluid-solid interfaces like pore interfaces in a water-saturated porous medium. Several applications of biofilms in porous media are encountered for instance in bio-remediation methods by allowing the dissolution of organic pollutants. Many theoretical studies have been done on the resulting effective properties of these modified media ([1],[2], [3]) but the bio-colonized porous media under consideration are mainly described following simplified theoretical media (stratified media, cubic networks of spheres ...). Therefore, recent experimental advances have provided tomography images of bio-colonized porous media which allow us to observe realistic biofilm micro-structures inside the porous media [4]. To solve closure system of equations related to upscaling procedures in realistic porous media, we solve the velocity field of fluids through pores on complex geometries that are described with a huge number of cells (up to billions). Calculations are made on a realistic 3D sample geometry obtained by X micro-tomography. Cell volumes are coming from a percolation experiment performed to estimate the impact of precipitation processes on the properties of a fluid transport phenomena in porous media [5]. Average permeabilities of the sample are obtained from velocities by using MPI-based high performance computing on up to 1000 processors. Steady state Stokes equations are solved using finite volume approach. Relaxation pre-conditioning is introduced to accelerate the code further. Good weak or strong scaling are reached with results obtained in hours instead of weeks. Factors of accelerations of 20 up to 40 can be reached. Tens of geometries can now be computed by sending batteries of codes in a mass production procedure. Some constraints can now be provided for poro-elastic imaging at the scale of reservoirs, for CO2 storage monitoring or geophysical exploration. 1. Golfier F. et al., Biofilms in porous media: Development of macroscopic transport equations va volume averaging with closure for local mass equilibrium conditions, Advances in Water Resources, 32, 463-485 (2009). 2. Orgogozo L. et al., Upscaling of transport processes in porous media with biofilms in non-equilibrium conditions, Advances in Water Resources, 33(5), 585-600 (2010). 3. Davit Y. et al., Modeling non-equilibrium mass transport in biologically reactive porous media, Advances in Water Resources, 33, 1075-1093, (2010). 4. Davit Y. et al., Imaging biofilm in porous media using X-ray computed micro-tomography, Journal of Microscopy, 242(1), 15-25 (2010). 5. Noiriel C. et al., Upscaling calcium carbonate precipitation rates from pore to continuum scale, Chemical Geology, 318-319, 60-74 (2012).

  7. Drainage and impregnation capillary pressure curves calculated by the X-ray CT model of Berea sandstone using Lattice Boltzmann's method

    NASA Astrophysics Data System (ADS)

    Zakirov, T.; Galeev, A.; Khramchenkov, M.

    2018-05-01

    The study deals with the features of the technique for simulating the capillary pressure curves of porous media on their X-ray microtomographic images. The results of a computational experiment on the immiscible displacement of an incompressible fluid by another in the pore space represented by a digital image of the Berea sandstone are presented. For the mathematical description of two-phase fluid flow we use Lattice Boltzmann Equation (LBM), and phenomena at the fluids interface are described by the color-gradient model. Compared with laboratory studies, the evaluation of capillary pressure based on the results of a computational filtration experiment is a non-destructive method and has a number of advantages: the absence of labor for preparation of fluids and core; the possibility of modeling on the scale of very small core fragments (several mm), which is difficult to realize under experimental conditions; three-dimensional visualization of the dynamics of filling the pore space with a displacing fluid during drainage and impregnation; the possibility of carrying out multivariate calculations for specified parameters of multiphase flow (density and viscosity of fluids, surface tension, wetting contact angle). A satisfactory agreement of the capillary pressure curves during drainage with experimental results was obtained. It is revealed that with the increase in the volume of the digital image, the relative deviation of the calculated and laboratory data decreases and for cubic digital cores larger than 1 mm it does not exceed 5%. The behavior of the non-wetting fluid flow during drainage is illustrated. It is shown that flow regimes under which computational and laboratory experiments are performed the distribution of the injected phase in directions different from the gradient of the hydrodynamic drop, including the opposite ones, is characteristic. Experimentally confirmed regularities are obtained when carrying out calculations for drainage and imbibition at different values of interfacial tension. There is a close coincidence in the average diameters of permeable channels, estimated by capillary curves for different interfacial tension and pore network model. The differences do not exceed 15%.

  8. Orbital Express fluid transfer demonstration system

    NASA Astrophysics Data System (ADS)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging of receiving tank, purging of coupling and de-mate of the coupling.

  9. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  10. Numerical simulation of evolutionary erodible bedforms using the particle finite element method

    NASA Astrophysics Data System (ADS)

    Bravo, Rafael; Becker, Pablo; Ortiz, Pablo

    2017-07-01

    This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.

  11. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions.

    PubMed

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail.

  12. Computer Program for the Design and Off-Design Performance of Turbojet and Turbofan Engine Cycles

    NASA Technical Reports Server (NTRS)

    Morris, S. J.

    1978-01-01

    The rapid computer program is designed to be run in a stand-alone mode or operated within a larger program. The computation is based on a simplified one-dimensional gas turbine cycle. Each component in the engine is modeled thermo-dynamically. The component efficiencies used in the thermodynamic modeling are scaled for the off-design conditions from input design point values using empirical trends which are included in the computer code. The engine cycle program is capable of producing reasonable engine performance prediction with a minimum of computer execute time. The current computer execute time on the IBM 360/67 for one Mach number, one altitude, and one power setting is about 0.1 seconds. about 0.1 seconds. The principal assumption used in the calculation is that the compressor is operated along a line of maximum adiabatic efficiency on the compressor map. The fluid properties are computed for the combustion mixture, but dissociation is not included. The procedure included in the program is only for the combustion of JP-4, methane, or hydrogen.

  13. Advances in computational design and analysis of airbreathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Klineberg, John M.

    1989-01-01

    The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.

  14. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    NASA Astrophysics Data System (ADS)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  15. Investigation of growth features in several hydraulic fractures

    NASA Astrophysics Data System (ADS)

    Bykov, Alexander; Galybin, Alexander; Evdokimov, Alexander; Zavialova, Natalia; Zavialov, Ivan; Negodiaev, Sergey; Perepechkin, Ilia

    2017-04-01

    In this paper we simulate the growth of three or more interacting hydraulic fractures in the horizontal well with a cross flow of fluid between them. Calculation of the dynamics of cracks is performed in three dimensional space. The computation of the movement of fracturing fluid with proppant is performed in the two-dimensional space (the flow was averaged along crack aperture). For determining the hydraulic pipe resistance coefficient we used a generalization of the Reynolds number for fluids with power rheology and a generalization of the von Karman equation made by Dodge and Meiner. The calculations showed that the first crack was developing faster than the rest in homogeneous medium. During the steady loading the outer cracks pinch the inner cracks and it was shown that only the first and last fracture develop in extreme case. It is also possible to simulate the parameters at which the two developing outer cracks pinch the central one in the horizontal direction. In this case, the central crack may grow in the vertical direction.

  16. Combined Numerical/Analytical Perturbation Solutions of the Navier-Stokes Equations for Aerodynamic Ejector/Mixer Nozzle Flows

    NASA Technical Reports Server (NTRS)

    DeChant, Lawrence Justin

    1998-01-01

    In spite of rapid advances in both scalar and parallel computational tools, the large number of variables involved in both design and inverse problems make the use of sophisticated fluid flow models impractical, With this restriction, it is concluded that an important family of methods for mathematical/computational development are reduced or approximate fluid flow models. In this study a combined perturbation/numerical modeling methodology is developed which provides a rigorously derived family of solutions. The mathematical model is computationally more efficient than classical boundary layer but provides important two-dimensional information not available using quasi-1-d approaches. An additional strength of the current methodology is its ability to locally predict static pressure fields in a manner analogous to more sophisticated parabolized Navier Stokes (PNS) formulations. To resolve singular behavior, the model utilizes classical analytical solution techniques. Hence, analytical methods have been combined with efficient numerical methods to yield an efficient hybrid fluid flow model. In particular, the main objective of this research has been to develop a system of analytical and numerical ejector/mixer nozzle models, which require minimal empirical input. A computer code, DREA Differential Reduced Ejector/mixer Analysis has been developed with the ability to run sufficiently fast so that it may be used either as a subroutine or called by an design optimization routine. Models are of direct use to the High Speed Civil Transport Program (a joint government/industry project seeking to develop an economically.viable U.S. commercial supersonic transport vehicle) and are currently being adopted by both NASA and industry. Experimental validation of these models is provided by comparison to results obtained from open literature and Limited Exclusive Right Distribution (LERD) sources, as well as dedicated experiments performed at Texas A&M. These experiments have been performed using a hydraulic/gas flow analog. Results of comparisons of DREA computations with experimental data, which include entrainment, thrust, and local profile information, are overall good. Computational time studies indicate that DREA provides considerably more information at a lower computational cost than contemporary ejector nozzle design models. Finally. physical limitations of the method, deviations from experimental data, potential improvements and alternative formulations are described. This report represents closure to the NASA Graduate Researchers Program. Versions of the DREA code and a user's guide may be obtained from the NASA Lewis Research Center.

  17. Hybrid MPI+OpenMP Programming of an Overset CFD Solver and Performance Investigations

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Jin, Haoqiang H.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This report describes a two level parallelization of a Computational Fluid Dynamic (CFD) solver with multi-zone overset structured grids. The approach is based on a hybrid MPI+OpenMP programming model suitable for shared memory and clusters of shared memory machines. The performance investigations of the hybrid application on an SGI Origin2000 (O2K) machine is reported using medium and large scale test problems.

  18. The impact of supercomputers on experimentation: A view from a national laboratory

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Arnold, J. O.

    1985-01-01

    The relative roles of large scale scientific computers and physical experiments in several science and engineering disciplines are discussed. Increasing dependence on computers is shown to be motivated both by the rapid growth in computer speed and memory, which permits accurate numerical simulation of complex physical phenomena, and by the rapid reduction in the cost of performing a calculation, which makes computation an increasingly attractive complement to experimentation. Computer speed and memory requirements are presented for selected areas of such disciplines as fluid dynamics, aerodynamics, aerothermodynamics, chemistry, atmospheric sciences, astronomy, and astrophysics, together with some examples of the complementary nature of computation and experiment. Finally, the impact of the emerging role of computers in the technical disciplines is discussed in terms of both the requirements for experimentation and the attainment of previously inaccessible information on physical processes.

  19. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  20. Fluid-solid coupled simulation of the ignition transient of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liu, Peijin; He, Guoqiang

    2015-05-01

    The first period of the solid rocket motor operation is the ignition transient, which involves complex processes and, according to chronological sequence, can be divided into several stages, namely, igniter jet injection, propellant heating and ignition, flame spreading, chamber pressurization and solid propellant deformation. The ignition transient should be comprehensively analyzed because it significantly influences the overall performance of the solid rocket motor. A numerical approach is presented in this paper for simulating the fluid-solid interaction problems in the ignition transient of the solid rocket motor. In the proposed procedure, the time-dependent numerical solutions of the governing equations of internal compressible fluid flow are loosely coupled with those of the geometrical nonlinearity problems to determine the propellant mechanical response and deformation. The well-known Zeldovich-Novozhilov model was employed to model propellant ignition and combustion. The fluid-solid coupling interface data interpolation scheme and coupling instance for different computational agents were also reported. Finally, numerical validation was performed, and the proposed approach was applied to the ignition transient of one laboratory-scale solid rocket motor. For the application, the internal ballistics were obtained from the ground hot firing test, and comparisons were made. Results show that the integrated framework allows us to perform coupled simulations of the propellant ignition, strong unsteady internal fluid flow, and propellant mechanical response in SRMs with satisfactory stability and efficiency and presents a reliable and accurate solution to complex multi-physics problems.

Top